Shockwaves &
Tydi-Clasn

Raising the abstraction level of the Haskell HDL
Clash through typed waveforms and complex
streaming interfaces

Marin Adriaanse

‘M‘.ﬂ.,
v Blue,35) =
“ Blue ’ ' = " E
1 - (TE -
(N Green 28 Wm
 J ‘ ‘ Green Blue -] ™
) Red -
plue :"' 5
» W ped

) ra
- P
- i o
R L e
2
R & * Bl i

%
TUDelft

Shockwaves &
Tydi-Clash

Raising the abstraction level of the Haskell HDL Clash
through typed waveforms and complex streaming
Nterfaces

Thesis report

by

Marin Adrieanse

to obtain the degree of Master of Science
at the Delft University of Technology
to be defended publicly on June 26, 2025 at 14:00

Thesis committee:

Chair: Prof. Dr. H. Peter Hofstee

Core member 2: Dr. Ir. Chris Verhoeven

Core member 3: Dr. Ir. Zaid Al-Ars

External advisor: Dr. Ir. Christiaan Baaij

Place: Hall H, Faculty of Electrical Engineering, Mathematics & Computer Science, Delft
Project Duration: November, 2024 - June, 2025

Student number: 5346878

An electronic version of this thesis is available at http://repository.tudelft.nl/.

Faculty of Electrical Engineering, Mathematics & Computer Science - Delft University of Technology

http://repository.tudelft.nl/

T Delft

U D e I ft University of
Technology

Copyright © Marijn Adriaanse, 2025

All rights reserved.

Abstract

This work contains two systems created to raise abstraction for the Haskell-based HDL Clash.

A common tool in hardware design is the waveform viewer. Although Clash could already generate
waveform files, these only contained binary representations of the values. Without translating these
to Haskell values, they are difficult to interpret. Shockwaves was created to perform this translation.
Unlike other typed waveform solutions, Shockwaves performs the translation fully in the Haskell runtime,
and stores the results in lookup tables. This gives the programmer full control over the waveform
representation of data. There are two methods of generating VCD files from Clash, and Shockwaves was
designed to work with both. The system is fully functional for signals traced during direct simulation. The
alternative approach of simulating a design after compiling it to a different HDL depends on the Clash
compiler adding type annotations. This requires an overhaul of the Clash compiler beyond the scope of
the project.

The second system, Tydi-Clash, is a library for the Tydi streaming specification in Clash. Tydi was
designed around transferring complex data structures, and allows for multiple related streams carrying
typed, multi-dimensional data. The Tydi-Clash library supports Tydi data types, physical streams, and log-
ical stream constructs. To encourage correct usage of the streams, the internal signals are encapsulated
in algebraic and abstract data types that prevent defining or accessing undefined values. Additionally,
tests are supplied for behavioral restrictions. An example implementation revealed implementations
using Tydi-Clash are unfortunately still a bit cumbersome, but this is believed to be solvable by adding a
library of utility modules for common situations.

Preface

When | was just a little kid, | played a game. And in that game, there were logic gates. And so | started
making logic circuits to make systems in the game years before | even started programming. Now, as |
am about to finish my master’s, | can see that the love for hardware design that started back then never
left me, and hopefully never will.

In my bachelor’s degree Electrical Engineering | quickly gravitated towards digital logic once again,
and it led me to my master’s in Computer and Embedded Systems Engineering. There, | picked a single
course that taught me about Haskell and Clash, which ultimately brought me where | am today.

Now, | would like to thank my supervisors, Peter Hofstee, Zaid Al-Ars, and Christaan Baaij for their
help and support throughout the project. | would also like to thank my fellow students working on Tydi,
and colleagues at QBayLogic for their help and input. | would like to thank Frans Skarman for his support
in modifying Surfer. And | would like to thank everyone not mentioned here that came before and created
the systems upon which my work was built.

And finally, | would like to thank my family and friends - in my hometown, in Delft, and in the CodeBugs
community - that kept me going these past months.

Marijn Adriaanse
Enschede, June 2024

This research was performed in part with the support of the Eureka Xecs project TASTI (grant no. 2022005).

Contents

List of Figures vii
List of Tables vii
1 Introduction 1
2 Common background 2
21 Haskell 2
22 Clash e 3
I Shockwaves 5
3 Introduction
3.1 Objectives. L 6
3.2 Outline e e 6
4 Background & Related Work 8
4.1 Surfer e e 8
42 Spade. e e 8
4.3 Chiseland Tywaves e 8
44 MyHDLand GTKWave. e e e e e e e e e e e 8
45 ClashVCD Generation. e e 9
5 System Design 10
51 Tracingand Compiling e 10
5.2 Value Decoding and Representation L. 10
5.3 Selected Design e 11
6 Surfer Integration 12
6.1 Translator Implementation L 12
6.2 TranslationDataFormat 12
6.3 Lookup TablesinJSON e 12
6.4 EquivalentHaskell Types 13
7 Data Representation 14
7.1 The Haskell Classes Displayand Split 14
7.2 Algebraic Data Types e 14
7.3 Customized Representations and Abstract Data Types 15
7.4 Builtin Types e e 15
8 Translation 17
8.1 Tracing e 17
8.2 Post-simulation Translation of Verilog Simulations 17
9 Results 20
9.1 Tracing o 20
9.2 Post-simulation Translation 20
10 Discussion 22
10.1 Pre-translation 22
10.2 Haskell Library 22
10.3Tracing o o e e 23
10.4 Post-compilation simulation 23
11 Summary 24

I Tydi

12 Introduction
12.1 Objectives. .
12.2 Related Work
12.3 Outline . . .

13 Background
131 Tydi
13.2 Tydi-lang . .
13.3 Tydi-Chisel .
13.4 Haskell Optics

13.5 Clash Protocols. e

14 Tydi Data Types
14.1 Group
14.2 Union

14.3 Translating Haskell Types e
14.4 Type CONVErSION o o i e e e e e

15 Physical Streams

15.1 Streams and PortsinClash
15.2 Representing Control Signals L
15.3 Interacting with Physical Streams
15.4 Connecting Streams L

16 Logical Streams

16.1 Representation of Logical Streams L.

16.2 Synthesis into

Phsyical StreamBundles

16.3 Interacting with Physical StreamBundles.

17 Behavioral Verification
17.1 Stable Data Transmission
17.2 Correct Sequence Termination
17.3 Complexity Level Restrictions

17.4 Inter-stream D

18 Shockwaves Integ

ependencCies e e e

ration

18.1 TydiData Types e
18.2 Slices and Prefixes. e

18.3 Physical Strea

MS . . o e e e e e e e e e e e e e e e e e e

19 Example Implementation

19.1 Problem State

ment. e e e e e e e e

19.2 Tydi Streamlet Pipeline.
19.3 Implementation.

19.4 Results . . .
20 Discussion

21 Summary

Il Closure
22 Conclusion

References

Appendix

A Repositories
A.1 Shockwaves

25

26
26
26
27

28
28
29
30
30
30

31
31
32
32
33

34
34
35
37
38

39
39
39
40

41
41
41
43
43

44
44
44
45

46
46
46
46
48

50
51

52
53
54

56
57

A2 Tydi-Clash

JSON Format
B.1 Signal Type Table e
B.2 Value Translation Table e

Shockwaves Supported Types

Tydi Coding Styles

D.1 DirectControl. e
D.2 Intertwined Data
D.3 Case Detection UsingMaybe

Vi

List of Figures

3.1 lllustratory example of a signal defining the state of an RGB LED before and after translation

by Shockwaves. 7
7.1 Default waveform viewer representation of algebraic datatypes. 15
7.2 Examples of signals with customized implementations for Display and Split. 16
8.1 Pipeline of the Shockwaves system when using Verilog as an intermediary language. . . 19

9.1 Example signal controlInputs from the USB interface as bitvector and after Shockwaves
translation. e 21

15.1 Signal validity masking in a physical stream. data is masked by individual strobes, if they
exist, which are then masked by stai and endi, which are in turn masked by the single
strobe bit if present. All signals are masked by valid. 36

16.1 Synthesis of a logical stream to a forwards physical stream bundle. 40

17.1 Sequence termination error detection logic of a stream with complexity 8, 3 data lanes and
3 dimensions. The highlighted signals show an example or erroneous data being detected. 42

18.1 Shockwaves signals for Group and Union. 44
18.2 Shockwaves signals for Prefix. L 44
18.3 Shockwaves signals for Slice. 45
18.4 Shockwaves signals for PStream and PStreamReady. o . oo vt 45
19.1 JSON parsing pipeline. Stream types are given in simplified notation. 47
19.2 Data processing of the jsonParsermodule. 49

4.1 Advantages and disadvantages of both VCD generation methods 9
5.1 Advantages and disadvantages of different translaton methods 11
15.1 Internal physical stream datatypes o 35
15.2 External physical stream data types. Types that share the internal representation are
omitted. e 37
19.1 Modules of the JSON parsing pipeline. 47

Vii

Introduction

In the past decade, advancements in hardware development have not been able to keep up with Moore’s
law. Yet, the amount of data we process is ever increasing. As such, the industry has shifted its focus
from trying to improve the performance of regular processors to using accelerators and domain-specific
hardware [1].

Modern hardware technologies allow for custom hardware implementations that are more complex
than ever. Furthermore, the art of system design is an ever developing field. With this growth of knowledge
and resources, it becomes increasingly difficult for developers to be able to wield the vast complexity at
their disposal. As such, there is a need to create languages and tools that allow advanced systems to be
created with as little effort as possible.

Thus, this need for abstractions and less cumbersome implementations has given rise to numerous
modern HDLs. While languages such as VHDL and Verilog are still used for hardware design, these
modern HDLs allow for a higher level of abstraction, such as advanced data types and programming
constructs. However, development of new languages also requires tools and libraries to be developed to
fully leverage their advantages over classical HDLs.

To this end, two systems were developed for Clash, a modern, Haskell-based HDL. The first is
Shockwaves, a typed waveform system for Clash. This raises the abstraction level of waveform-based
debugging to the same level as the rest of Clash. The second is Tydi-Clash, which deals with the
implementation of Tydi streams. These streams can be used to create standardized, reusable, complex
hardware interfaces.

Consequently, after a common introduction to Haskell and Clash in Chapter 2, the contents of this
work are divided into two parts. Part | covers Shockwaves. Shockwaves is later used in Part Il, which
covers Tydi-Clash. Both parts have their own introduction, background information, discussion and
summary. Finally, the work is concluded in Chapter 22.

Common background

2.1. Haskell

This work deals with the Haskell [2] programming language, and thus a proper understanding of some of
its mechanics are useful to be aware of. Haskell is a general purpose functional programming language,
and uses immutable data. It is statically typed, but has a high degree of type inference. The following
sections provide an introductions to some core concepts of Haskell used throughout this thesis.

2.1.1. Basic syntax

Haskell does not use parentheses for function calls like most languages. The operator with the highest
precedence is actually the whitespace between identifiers/values, and denotes application. This means
thata b c may be read as (a(b)) (c) or even a(b,c).

Operators works as binary operators. They combine the arguments to the left and right, though they
can be grouped in parentheses to make them act like normal functions. Thus, a + breads as (+) a b.
It is possible to define custom operators, and set their associativity and precedence.

Data types can be defined after ::: x :: Int. Function types are denoted by input -> result.
Multi-parameter functions do not have multiple inputs; instead, the result after taking one argument is
a new function that takes the rest of the arguments. Hence,inf :: a -> b -> ¢, f is a function that
takes inputs of types a and b and produces a result of type c.

2.1.2. Lazy evaluation

As a language that works by definitions, rather than being imperative, Haskell relies heavily on lazy
evaluation: expressions are only evaluated when they are needed, and only to the extent that is absolutely
necessary. Since this behavior is not always desired, Haskell has several tools for forcing evaluation of a
value, even if it is not directly used.

Expressions may be set to so called bottom values such as undefined or error. These do not
represent actual values of the associated type, but rather the notion that there is no way to determine the
value. As such, attempting to evaluate such a bottom value results in an exception that, unless caught,
crashes program execution.

2.1.3. Data types

Haskell has primitive data types, such as numbers and characters, but otherwise runs on algebraic data
types. Such a type may have one or more constructors, which may in turn each have one or more data
fields of varying types. The fields can be either be nameless, and provided like function arguments, or
use record style.

1 data A =P | Q | R -- multiple constructors
> data B = V Int Int -- regular style fields
s data C = W{x::Int, y::Int} -- record syntax

Data types are may be recursive, and polymorphic, i.e. a type may take several types as parameters.
A type that takes parameters is essentially a function at the type level: it takes one or more types as

2

arguments to produce a type. The “type of a type” is called it’s kind. Besides data types and polymorphic
types, there are also kinds such as Nat for natural numbers, or Symbol for strings.

1 data X = C -- X has kind Type
2data T ab=Aa | Bb --T has kind Type -> Type -> Type

Data types don’t have to always be explicitly defined, and they can often be kept polymorphic. For
example, a function may have the type a -> a, indicating it takes one value of any type a and returns
a value of that same type. When a type parameter cannot be inferred, it may be specified with the @
operator.

1 show (def @Int) -- show the default value of Int

2.1.4. Common data types

There are a few common Haskell types that come up repeatedly in this work. () is the unit type, and only
has the value (). Itis a type that holds no actual data. Bool is a boolean, and has constructors True and
False. There are multiple number types, but in this work, Int is used for arbitrary numerical values. It
does not have a strictly defined number of bits.

Values may be grouped into tuples. Tuple types can hold heterogenous data, and there is a separate
tuple data type for each length. For example, the type of a 3-long tuple would be (a,b,c).

The final important type is the polymorphic type Maybe. The type Maybe a has constructors Just a
and Nothing, and denotes optional data.

2.1.5. Classes

A class in Haskell is essentially a set of functions, types and values that may be defined for a some
data types by implementing the class. Some common examples are Show, which allows a value to
be represented as text, and Generic, which decomposes the type and values into their different parts
(constructors, fields, etc.).

A class can be used as a constraint for a class or function. For example, thetype C a => a -> a
denotes a function that takes and produces a value of any type a for which the implementation C a exists.

Values may have default implementations. If all values have suitable defaults, the class can be
derived: it is implemented using these default implementations without requiring the programmer to
define everything manually. There are also different “deriving strategies” such as derive via, which
allow the implementation to be copied from a wrapper type instead. This can be used to provide a
secondary default implementation.

2.1.6. Type families

Type families are essentially functions over types. They may be supplied at the toplevel form, in which
case they can look much like ordinary functions, or they may be “associated” with classes (for example,
the class C a has a type X a, and the implementation of C Bool defines that X Bool = Int). Type
families are a very powerful tool for performing operations on types, or defining more complex class
instances.

2.1.7. Template Haskell

Template Haskell is an extension that adds meta-programming in compile time. It can be used to generate
code in a way that would otherwise be impossible. As such, it is extremely powerful, but it does come
at the cost of having much more complicated code. Therefore, it is generally only used if absolutely
necessary.

2.2. Clash

Clash [3], [4] (stylized as ChasH) is an HDL based on Haskell. Haskell’s purity and data immutability
make it particularly suitable to be used as an HDL. It was first created in 2009, and has since been further
developed and successfully used in many projects.

Clash consists of several Haskell libraries, containing things such as sequential logic constructs and
hardware-friendly types, and the Clash compiler, which can translate a Clash design into other HDLSs.
The Clash compiler uses the Haskell compiler frontend, and replaces the backend. In turn, this backend
has its own target language-specific backends.

2.2.1. HDL concepts in Clash

Hardware designs are generally a combination of combinatorial and sequential logic.

Creating combinatorial logic in Clash is trivial: due to Haskell’'s data immutability, any standard
expression defining values will result in combinatorial logic. Any value is simply a signal in the HDL, while
a function turns into a piece of combinatorial logic with inputs and outputs. Since Haskell is pure, the
complete behavior of the function is captured by the logic’s inputs and outputs. Control statements, such
as if or case, are turned into multiplexers.

1 combinatorial_double :: Int -> Int
2 combinatorial_double x = 2 * x

For sequential logic, Clash uses the Signal type. This type represents a time domain signal in a
certain clock domain in the design, and is essentially an array-like structure containing values for each
clock cycle.

Combinatorial logic can be applied by mapping ordinary functions to these time domain signals.
Special Clash functions, such as register and mealy, can be used to gain access to values from
previous clock cycles, allowing the creation of sequential logic.

signal_double :: Signal dom Int -> Signal dom Int
signal_double x = fmap combinatorial_double x

1
2
3
4+ accumulator :: Signal dom Int -> Signal dom Int
5 accumulator = mealy go O -- start at O

6 where go (a,x) = (a+x,a) -- (state,in) -> (state',out)

One cannot directly map combinatorial logic to multiple Signals. To convert between structures of
signals (in the same domain) and signals of structures, the bundle and unbundle functions are provided.
Cross-domain connections are outside of the scope of this work.

1 —— bundle for tuples of 2 values
> bundle :: (Signal dom a, Signal dom b) -> Signal dom (a,b)

2.2.2. Important Clash types

For the Clash compiler to be able to synthesize code, the data types used must be representable as a
fixed number of bits. For example, Haskell's Bool type is fine, while lists are not due to their unknown
length.

Some examples of commonly used Haskell types in Clash designs are Bool and (). Polymorphic
types such as Maybe and the various tuples can be used as well, but only if their contained types are
themselves synthesizable. In general, any algebraic data types can be used, as long as all of their
subvalues are of representable types.

The Clash library comes equipped with some fixed-size versions of common types. Signed and
Unsigned represent numerical values with a fixed number of bits, and Index represents numbers up to a
certain value. Vec provides fixed-length arrays of values.

1 signed :: Signed 5 -- 5 bits

2 index :: Index 10 -- an integer in the range [0,10)
3

4 vec :: Vec 3 Int -- 3 Ints

5 vec = 0 :> 1 :> 2 :> Nil

art

Shockwaves

Introduction

Debugging is an inevitable part of development, and having effective tools for debugging is essential
to the development process. While software developers have access to a multitude of testing facilities,
hardware developers have fewer tools at their disposal.

In essencence, debugging tools allow the programmer to see the inner workings of their creations.
This might be by showing execution in a stepwise manner, logging values throughout the design, or
simply representing the system in a different format.

In hardware design, one of the most used tools is a waveform viewer: signals are logged throughout
design simulation (typically in a VCD file), and their values are visualized in the time domain. This allows
the developer to see the values of every signal during each clock cycle of the simulation.

Although Clash has support for generating VCD files, the most used logging format for hardware
designs, one indispensible part is missing: since these VCD files only contain the binary representations
of Haskell values, waveform viewers can only display these values using standard formats, such as
binary, hexadecimal or signed integers. This makes the waveforms incredibly difficult to interpret, and
greatly diminishes the value of waveforms.

3.1. Objectives

The Shockwaves project aims to create a system that shows logged values in their Haskell representation
form, allowing Clash developers to properly interpret waveforms.

In creating the system, the following objectives were adhered to:

» Haskell values are displayed in a format that is close to their representation in Haskell.

» Complex nested data structures are decomposed into subsignals.

* It is possible to, with little effort, add display formats for new data types.

* The system is easy to apply to an existing design.

» The system can be used with, or is a close substitute to, existing waveform viewer pipelines.

Together, these objectives lead to a system that requires minimal effort to use, while being flexible and
broadly applicable. An illustratory example of what the output might look like with and without Shockwaves
can be seen in Fig. 3.1.

3.2. Outline

Background information is provided in Chapter 4. The main system design is discussed in Chapter 5,
and further elabortated in Chapters 6 to 8. These chapters cover the waveform viewer integration, data
representation, and translation mechanisms respectively. Chapters 9 and 10 detail and discuss the
results, and finally the part is summarized in Chapter 11.

| 1edstate [0100 1101

ledState LedState {color = Green, ..A LedState {color = Yellow,..
|: color Green Yellow
pattern [Continuous Blinking

Figure 3.1: lllustratory example of a signal defining the state of an RGB LED before and after translation
by Shockwaves.

Background & Related Work

This chapter provides some background information on waveform viewers, other HDLs, and Clash’s
methods of creating VCD files. Although there are many modern HDLs, this chapter is limited to languages
that have custom waveform viewer support, and served as an inspiration for Shockwaves.

4.1. Surfer

Surfer [5] is a modern waveform viewer written in Rust. Surfer was designed to be easily extensible with
translator modules, that may be used to represent the data in VCD files in different ways. These translators
are responsible for both the direct display and division into subsignals of VCD signals. Additionally,
translators have control over which (sub)signals are defined when, as well as their display style.

4.2. Spade

Spade [6] is a modern HDL inspired by Rust. As it was only created in 2022, the language is still quite
heavily under development.

The Spade compiler was written in Rust, and is developed by, among others, the creator of Surfer.
As such, it should come as no surprise that Surfer has typed waveform support for Spade. The Spade
compiler stores it’s ‘state’, including the signal type information, in a separate file. Surfer is given the
location of this file in a configuration option, and restores the Rust data internally. The binary data in the
VCD files is then translated using this type information.

4.3. Chisel and Tywaves

Tywaves [7] is a typed waveform viewing solution for Chisel [8], [9], @ modern HDL based on Scala.
Before Tywaves, Chisel lacked waveform support alltogether. Designs could be compiled by Chisel
to FIRRTL [10], and then further to Verilog [11] using CIRCT [12]. Tywaves updates these tools by
propagating type information to the FIRRTL code, and extending the debug output of CIRCT to include
this extra information. This debug data is used by a Surfer translator to translate the simulation data.
The pipeline is handled by the Tywaves-Chisel API.

4.4. MyHDL and GTKWave

MyHDL [13] is a Python-based HDL. It supports typed waveforms by directly putting string representations
of values into the VCD file, circumventing binary values alltogether.

Strings in VCD files are an extension to the VCD format that is supported by the GTKWave [14]
waveform viewer. Although GTKWave was not designed to be extended with arbitrary translators, the
string support means that it can be used to display typed waveforms by including all translations in the
VCD file directly. This does require including any subsignals in the VCD as well, and provides no control
over details like the display color of a value.

4.5. Clash VCD Generation

In Clash, VCD files can be generated using the Signal.Trace library [15]. This library provides several
functions for logging Clash signals. The Clash compiler takes no part in this form of simulation: the project
is simply an ordinary Haskell program making use of the Clash Haskell libraries. The main function is
responsible for setting up and running the simulation, as well as storing the results in appropriate files.

Tracing has several drawbacks. First of all, the Signal.Trace library requires Clash’s Signal objects
to function, while most computation in Clash are performed as concurrent logic on the data inside
these signals. This means that tracing intermediate values often requires extra work. Second, tracing
uses impure behavior to store the values of signals without propagating these to the toplevel entity.
Unfortunately, this does mean that if by lazy evaluation the trace statement is never evaluated, the trace
does not end up in the output. Although this of itself may be valuable information, it generally just makes
it more difficult to debug a design. As long as one value in the signal is evaluated, the signal can be
collected by the system and is fully evaluated.

Alternatively, the Clash compiler may be used to compile the Clash design to any supported HDL,
before simulating the generated code using any appropriate third party tool. While this has the ability to
capture all values in the design, the generated code may differ from the original design in several ways,
include signal names, which make it harder to understand the output. Furthermore, testbenches can no
longer be easily defined in Haskell since they must be compileable, and Haskell data types cannot be
used when writing testbenches in different languages.

The advantages and disadvantages of both methods are summarized in Table 4.1. Because of these
properties, both methods are used in practice.

Table 4.1: Advantages and disadvantages of both VCD generation methods

Using Signal.Trace Post-compilation code simulation

+ Haskell available for writing testbenches + All signals are captured
+ No extra tools required

® Only signals can be traced ® Testbench creation is difficult

® Traces may be lost due to lazy evaluation ® The compiled design might differ substan-
tially from the Clash design

® Requires external tools

System Design

This chapters deals with the major design decisions made in the project. Section 5.1 explains the
decisions regarding tracing and compiled design simulation, and Section 5.2 discusses different ways of
translating values. Section 5.3 summarizes the design decisions, and lists the components required for
the selected design.

Because of its design focus on extensibility, the amount of control over the output, and the fact it is
already in use by Clash developers, the design will focus on using Surfer as the waveform viewer.

5.1. Tracing and Compiling

Because of the respective advantages and disadvantages of creating waveform output through tracing
and simulation of the compiled design, the choice was made to attempt to make Shockwaves compatible
with both simulation types.

Clash can compile to different HDLs, but due to the simplicity of the generated Verilog designs, this
language was chosen.

5.2. Value Decoding and Representation

Unlike Spade and Chisel, Clash supports custom bit representations. This makes decoding values much
more complex. Clash itself is equipped with an unpack function, which is automatically generated for
types with custom bit representations. It would be possible to store this custom type representation, and
recreate the functionality of Clash’s unpack function in Rust for both ordinary types and types with custom
representations, but that would lead to more code redundancy.

Alternatively, it is possible to use the Haskell runtime to translate the values, as this provides access
to either the original Haskell value, or the unpack function. These are useful for both tracing and decoding
Verilog values respectively. Additionally, the Haskell runtime has access to show, which can be used to
display values as text, and is the standard display method for most types. In general, using the Haskell
runtime would allow for both standard representation of data types, and custom display rules set from
within the Clash design.

However, interfacing with the Haskell runtime introduces additional complexity. First of all, the type
information needs to be converted back to runtime type selection. Secondly, there needs to be a way to
pass information between Haskell and Surfer. Either this is done live, which would require an interface
between Rust and Haskell, or in advance, by pre-translating the values.

Live translation requires a direction communication link between Rust and Haskell, as well as access
to the project while running the waveviewer. This greatly increases the complexity of the setup, and
would be even more difficult when using the browser version of Surfer.

Pre-translation is much easier - the values can be translated in advance and passed to Surfer by
simply writing them to a file. This does come at the cost of having to translate all values (or all values for
some subset of signals) in advance, as well as having to store all translations, which as a general rule
are much larger than the bit representations.

10

Table 5.1: Advantages and disadvantages of different translation methods

Translation in Rust Live translation in Haskell Pre-translate in Haskell
#+ Translation on demand #+ Translation on demand + Values displayed as done
+ Values displayed as done in Haskell
in Haskell + Fully customizable

+ Fully customizable

® Repeated implementa- ® High complexity of joining ® All values are always
tions of unpack and show Haskell and Rust in run- translated
® Limited formats time ® Potentially large file sizes

® Requires access to the
Clash design while using
the waveform viewer

A summary of the advantages and disadvantages can be seen in Table 5.1.

Because of the desire to avoid re-implementing unpack and general control and flexibility for dis-
playing values, Haskell-based translation was chosen. Due to the time constraints of the project, the
implementation was restricted to pre-translation, but this may be extended later to also support live
translation.

5.3. Selected Design

The selected system design uses Haskell to translate all values in the VCD file and store these translations
in separate files. This determines the shared and per-approach required components when tracing and
simulating compiled code.

When tracing signals, the translations are created and added to a translation table while tracing,
which is stored alongside the VCD output. This requires modification of the current tracing library.

For compiled designs, the current pipeline consists of compiling the Clash design to another HDL
such as Verilog, and simulating this compiled design to obtain the VCD output, which can be opened in a
waveform viewer. Shockwaves will add the following steps to this pipeline:

» Modifying the Clash compiler to propagate type information to the generated HDL code
+ Linking the signals in the VCD file to type information in the compiled design
* Translating the values for all typed signals and storing the result in a translation table

Both tracing and compiled design simulation require a translator module to be added to Surfer (Chapter 6),
and a Haskell library for representing values in a Surfer-compatible data format (Chapter 7). The different
translation procedures are covered in Chapter 8.

11

Surfer Integration

This chapter describes the creation of a new translator for Surfer. Section 6.1 covers the main translator
implementation, while Sections 6.2 to 6.4 detail the way translation data for the translator is generator
from Haskell and passed to the translator module.

6.1. Translator Implementation

Surfer works with translators, which determine how a signal is shown. For example, one translator might
format data as a signed integer, while another formats the same data as a hexadecimal value. These
translators can also generate subsignals, and change a signal’s appearance.

Since Surfer was designed around the option of adding new translators, adding one is rather simple.
The added translator simply reads the lookup tables generated, and makes the translations available to
the rest of Surfer.

More precisely, the translator keeps two tables: one that lists the Haskell types of all signals, and one
that stores, for each Haskell type, the structure and translation table. The structures and translations
are stored directly as Surfer’s internal types, but subsignals missing in the translation are filled with
NotPresent values recursively upon lookup (see Section 6.2). This prevents the system from having to
store a lot of data just to mark a signal as not present.

The translator looks for the lookup table files in the same directory as the VCD file when the VCD file
is opened. The files must have the same base filename, but a different extension indicating their function.

6.2. Translation Data Format

Surfer requires two things to be able to translate a signal: structural information, and a way to translate
values from the VCD file into values for all (sub)signals in the structure.

The structure is represented by a VariableInfo object. This can take the value Compound for signals
with subsignals, or Bits, Bool, Clock, String or Real. These other variants have some effect on the
way the signal’s waveform is displayed. The Compound variant holds a list of string-VariableInfo tuples
denoting the names and structures of subsignals.

The value translations take the form of a TranslationResult object, which contains a ValueRepr
value, a ValueKind value, and a list of name-SubFieldTranslationResult pairs. ValueRepr contains
the actual value displayed, while ValueKind determines what the wave itself looks like - this mostly boils
down to the color, and whether it is displayed at all. Specifically, if a signal does not exist at a given time,
its kind is NotPresent.

6.3. Lookup Tables in JSON

The lookup tables are created using the JSON format. While this format is not that efficient, it is human
readable, easy to generate, and above all, can be directly deserialized by Rust into tables of Surfer’'s
structure and translation data types.

There are two lookup table files, corresponding to the tables stored by the translator module:

12

» <waveform>.types. json is a simple dictionary linking signal names to type names, and has the
format: {signal:type,....3}.

* <waveform>.trans. json contains the structures and translations as a dictionary of all Haskell
types in the format: {type: [structure,{value:translation,...}],...} where structure and
translation are simply the serialized JSON of Surfer's VariableInfo and TranslationResult
types.

Examples of both formats can be found in Appendix B.

For optimization, all field and variant names have been reduced to a single character. Furthermore,
ValueKind: :Normal is set as the default value during deserialization and omitted from the JSON.

6.4. Equivalent Haskell Types
The Haskell part of Shockwaves uses direct equivalents of the Rust data types used in Surfer, and
includes a module for serializing these object to JSON format.

13

Data Representation

This chapter describes how Haskell data types can be displayed in the waveform viewer by generating
data in the format specified in Chapter 6. Section 7.1 describes the Haskell classes created to generate
this data. Sections 7.2 and 7.3 show how different data types can be displayed, and Section 7.4 lists the
implementations used for different data types used in Clash.

7.1. The Haskell Classes Display and Split

The translation process does two essentially separate things: showing the value (creating the ValueRepr
and ValueKind values) and defining and generating the structure of subsignals (the VariableInfo and
SubFieldTranslationResult values). In Shockwaves, these actions are performed through the two
new classes Display and Split respectively.

Display defines the display method, which generates a (ValueRepr,ValueKind) pair. By default,
this uses Haskell’'s show method to turn a value into a string, and keeps the kind to VKNormal. This means
the type only needs to derive Show for Display to be deriveable. display merely returns the result of
the repr and kind methods, which can be overwritten individually. The library also has a flag to use
showX instead of show, which is less generic but can handle undefined subvalues better. Alternatively,
this behaviour can be derived for a single type by deriving via DisplayX.

Split defines structure, which returns a VariableInfo value, and split, which generates a list of
SubFieldTranslationResults. It has a default implementation for algebraic data types as described in
Section 7.2.

For primitive types, such as numbers, the value is not split into subsignals at all. To facilitate deriving
this behavior, a wrapper class NoSplit is provided; Split can be derived via NoSplit using the derive
via statement to obtain this behavior.

The display and split functions may be called on (partially) undefined values, which would ordinarily
crash the simulation. To prevent this, the functions safeDisplay and safeSplit exist, which catch these
exceptions. These are used by the function translate, which combines the results from the two functions,
allowing the value to be split even if it is not fully defined. The translate function is used for generating
the translation tables.

7.2. Algebraic Data Types

Most Haskell data types are fundamentally algebraic: data types have a number of constructors, which
correspond to a sum type, and each constructor may have a number of fields, which correspond to a
product type.

In a waveform viewer, we want to be able to split signals up into subsignals for each of their constructors
and fields. More accurately, every data type has subsignals for all its constructors, of which exactly one
is defined at any time. Each constructor then has subsignals for all of its fields. If the data type only
has one constructor, we may omit this subsignal for legibility, and directly add the subsignals for the
constructor’s fields to the signal of the data type. Some examples are shown in Fig. 7.1.

14

1 data Month = Jan | Feb | ... deriving (...)

> data Date = Date {month :: Month, day :: Int} deriving (...)
3 date :: Date
4+ data Instr = And Bool Bool | Invert Bool deriving (...)
5 instr :: Instr
date Date {month = May, day = 29}
— month May
— age 29
instr And True False Invert False
— And And True False
|: 0 True
1 False
— Invert Invert False
L 0 False

Figure 7.1: Default waveform viewer representation of algebraic data types.

It would be a tedious process to manually define these subsignals for every data type. Luckily, Haskell
has a class Generic which can be derived for standard algebraic data types, and provides an interface
to a representation of the type’s structure. Using this structural representation, it is possible to create the
subsignals as described.

7.3. Customized Representations and Abstract Data Types

Sometimes the default implementations of the Display and Split are insufficient to best display a data
type, and custom implementations of the classes may be preferred.

A simple example would be assigning colors to the different constructors of a data value (see Fig. 7.2),
to more easily discern what is happening in a design. The Shockwaves library includes a Color module
that allows for arbitrary RGB values to be used, in addition to some default colors.

A custom implementation of Split is much more powerful. This is particularly useful for abstract
datatypes, whose internal structure is less important (unless it is actively being debugged) than its
interface. For example, array type structures such as Clash’s Vec are defined recursively in Haskell,
but creating a recursive structure of subsignals would be less readable than simply having a list (see
Fig. 7.2). A custom implementation of the class makes this possible.

7.4. Builtin Types

Shockwaves comes with default implementations for all builtin Haskell and Clash types. Most of these
types are either primitives, or function properly using the default implementation of Sp1it. However, as
mentioned in Section 7.3, there are a few types for which this is suboptimal:

* Vec has a custom implementation that creates a list of subsignals rather than a nested structure.
The same is done for BitVector.

* Either is often used as a result value, where the Left constructor indicates an error. By setting a
flag, the Left constructor is displayed using VKWarn.

» Maybe does not really benefit from having subsignals for it's constructors. Instead, it only has
a subsignal for the contained value, which only exists if the Maybe value is of the Just variant.
Furthermore, there is a flag to make Nothing display in gray.

* Bit and Bool are both single bit values, and thus use VIBool instead of VIString (the default for
unsplit types).

* RTree has two subsignals for each of its children if it is a branch, and a single subsignal for the
contained value if it is a leaf. While these are simply the two constructors’s subfields, the type itself

15

already restricts the values to either one of these constructors. Hence, only the subsignals of the
one realizable constructor are displayed.

A list of all supported types can be found in Appendix C.
data Color = Red | Green | Blue deriving (Show,Generic,Split,...)

;
> instance Display Color where

3 kind x = VKCustom $ case x of
4

Red -> C.red
Green -> C.green
6 Blue -> C.blue
7 color :: Color
s coords :: Vec 3 Int
color Green < Red X Blue
— Red (Red)
~ Green Green
— Blue < Blue
coord 0 :>0 :>0 :> .. 0 :>1 :>2 :> .. 1 :>1 :>1 :> ..
-0 0 1
1 0
— 2 0 2 1

Figure 7.2: Examples of signals with customized implementations for Display and Split.

16

Translation

With the data requirements properly defined, all that is left is to actually generate the lookup tables. This
step differs for the different methods of generating VCD files from Clash designs. Section 8.1 covers
the solution when tracing using Clash’s Signal.Trace module, and Section 8.2 covers the pipeline for
translating VCD files generated by simulating the Verilog produced by the Clash compiler.

8.1. Tracing

For tracing, an adapted version of the Signal.Trace module is used. This module works by passing
signals through a trace function, which uses impure behavior to store the signal in a global dictionary.

The changes to the module are relatively simple. In addition to the table of signal values, two other
tables are stored globally: the signal-to-type map, and the table of structure and translation data per type.
Since the simulation happens in the Haskell runtime, and the signal’s type is directly available, these
values can be trivially generated using the translate and structure functions. One detail of note is
that the string representing the type must use the full type name, including its module of origin, to avoid
namespace collisions.

Shockwaves.Trace acts as a drop-in replacement to Signal.Trace, and requires only minimal
changes to store the results in 3 files, rather than just one. However, this also means the module
has the same drawbacks of lazy evaluation and only being able to trace time-domain signals.

8.2. Post-simulation Translation of Verilog Simulations

The second method of obtaining a VCD file is simulating a different HDL generated by the Clash compiler.
Several languages are available, but Verilog was deemed the most suitable since the generated code is
relatively simple. For example, it does not turn a record-type Haskell data type into a record in the HDL,
which does happen in VHDL generation.

To create VCD translations this way, several steps have to be performed:
» Linking the VCD signals to their Haskell types
— Annotating the Haskell types in the generated Verilog code
— Linking the signals in the VCD file to the type annotations of Verilog variables
+ Translating the values of the VCD signals in Haskell
— Gathering the values per type
— Adding a Haskell script for performing the translation to the Clash project
— Adding imports for all relevant types to the Haskell script

— Generating a function linking the type signatures to translation functions for said type and
adding it to the Haskell script

— Running the script to generate the translation tables

An overview of the complete pipeline can be seen in Fig. 8.1.

17

8.2.1. Propagating Haskell types to the Verilog code
This is one of the most difficult steps, as it requires modifications to the Clash compiler.

In the Clash compiler, there are software types (the Haskell types) which later are transformed into
hardware types (which end up in the generated HDL). Although at a type level, the compiler seems to
support adding annotations to these hardware types, in practice it is not that simple. The backend of the
Clash compiler uses extensive pattern matching on hardware types, which was not designed to support
such annotations. As a result, adding software type annotations to hardware types breaks compilation
completely.

An attempt was made to fix these issues. Unfortunately, the compiler was too complex to remove
all bugs. The modified compiler was able to compile all but two of the sample programs included with
Clash, and managed to add type annotations for most, but not all signals. The repository for the modified
compiler fork can be found in Appendix A.

To fully make this step operational, a rather extensive overhaul of the Clash compiler and all its
backends is required, which is not within the scope of the Shockwaves project, but certainly not impossible.

8.2.2. Linking VCD signals to type annotations
The next step is to link the signals in the VCD file to the type annotations in the generated Verilog.

Verilator [16] is used to generate an XML description of the Verilog design. This file is read by a
Python script to extract the hierarchy of signals. The signals are then extracted from the VCD file and
matched against this hierachy to find their source variables.

Verilator can accept special comments as annotations on variables, which get included in the XML
file. Unfortunately, the placement of these comments is after the definition of the signal, making code
generation difficult. Instead, the type information is added as a Verilog attribute annotation. When the
variable is found in the hierarchy, its source location is used to look for this annotation in the Verilog code.

The mapping from signal to Haskell type is directly stored in a JSON file for Surfer to read.

8.2.3. Gathering type values

From the VCD file and signal-to-type mapping, all values of translatable signals are collected per type.
This information is stored in a separate file, since it will need to be read by Haskell later. The file format
is rather simple: every first line contains a type name, and every second line contains a space-separated
list of values of that type.

8.2.4. Importing all relevant types
To be able to translate the bitrepresentations of the Haskell types, these types need to be in scope. This
means they have to be imported.

From the full type names, all source modules are extracted and added to the import list of the
translation script. This has the drawback that some types may be defined in hidden modules, and are
made available through different modules. This complicates the imports greatly.

There are workarounds [17], but these are questionable practice and have not (yet) been incorporated
into Shockwaves. A more proper way would require actual language support for importing non-exported
data types.

8.2.5. Linking the type signatures to translation functions

Since the types of the translation functions needs to be present at compile time, while the data to
be translated is only present at runtime, there needs to be a conversion table to transform string
representations of a type into their type function.

The Python code generates such a function, which maches the string to the structure function of
that type, as well as a translation function that turns string representations of the bitvalues back into
values using unpack, and then uses translate to translate them to Surfer data.

18

e Testbench

v
Surfer <— VCD <— Simulation <c------------- :
A E
: Verilog <— C/asﬁ <—Clash project
v compiler :
: Verilator
Shockwaves \L Sh?_(;)kwaves
translator XML forary
Values :
T \L pertype ———]
Signal types <—— Python scripts
Type table P
& main function "’ : Do
: vV v
“> Clash
Translation table runtime
Process <G Process source code
Files ~<—— Reading/writing

Figure 8.1: Pipeline of the Shockwaves system when using Verilog as an intermediary language.

8.2.6. Generating the translation tables

Finally, a simple main function reads the file containing the values of all types, uses this type to obtain
translation functions, and uses those to generate structural information and translations for all values
according to the lookup table format described in Section 6.3. These are then stored in a second JSON

file for Surfer to read.

19

Results

Shockwaves was tested on both VCD file generation methods, with varying levels of success. Section 9.1
covers tracing, while Section 9.2 discusses the results of translating Verilog simulation output.

9.1. Tracing

The tracing method was tested on a real design for a USB controller, that was already using Signal . Trace
for debugging. It was found that adapting the code required minimal effort, which was largely spent
tracking down all data types used and adding the class derives to them.

Shockwaves was able to show Haskell representations for all types, an example of which can be
seen in Fig. 9.1. The developer of the USB controller stated that this would have been very helpful during
the debugging process.

In total, 35 signals were traced over 2118 clock cycles. The VCD file took up 119KB. The signal-to-type
table used 42KB, and the translation table 514KB. Analysis of these files resulted in two observations:

» The representation of the Haskell types in string form contains largely of bytes unnecessary to
uniquely identify the types. Manually removing most of these reduced the file size of the signal
type table to only 8KB.

» The translation table contains a very large amount of double quotes, which are required by the
JSON format. Removing these reduced the file size to 369KB, showing a different file format can
greatly reduce the file size.

Although this does highlight multiple points of improvement, no performance issues were observed while
testing.

9.2. Post-simulation Translation

The adapted Clash compiler was tested on the sample projects included with Shockwaves. Out of the 16
examples, compilation failed for two. For the other examples, the compiler was able to annotate some of
the signals. Most of the internal signals and outputs were annotated, but most of the inputs were not. It
is currently unknown what caused the compilation failures and annotation irregularities.

The full post-simulation translation pipeline was tested on a test project that included a simple
accumulator, as well as a color value that changed every time the accumulator changed values. The
compiler was able to compile the design, but the inputs and output were left unannotated. The remaining
pipeline worked without issue, and successfully translated the signals.

Because of the compiler problems, the pipeline was not tested on a larger design.

20

| controlInputs K 0111110x0x100x X 10x00xxx0%000x
controlInputs Input {direction Endpoi...X Input {direction
— direction EndpointOut X EndpointIn
|: Endpoint0Out EndpointQOut >
EndpointIn < EndpointIn
— nextDataParity Just 1 X Nothing
L Just 1 >
— isSetup True I False
— usbRx Just RxAccept X Nothing
L Just RxAccept >
RxData
RxError
RxAccept RxAccept >
— usbTx
L Just Nothing
|: TxAccepted
TxError
— rxReady True I False
— txClk False
— tx Nothing
L Just

Figure 9.1: Example signal controlInputs from the USB interface as bitvector and after Shockwaves

translation.

10

Discussion

In this chapter, the effectiveness of various parts of the system is discussed, and potential improvements
and future work are suggested. Section 10.1 reflects on the choice to perform translation in advance
outside of Surfer. Section 10.2 discusses the shared Haskell library code. The different methods for
generating lookup tables are covered in Section 10.3 and Section 10.4.

10.1. Pre-translation

The use of lookup tables proved to work without issue for the project the system was tested on, and the
file size of the lookup table remained easily manageable. However, for some projects this might not be
the case. The method is particularly vulnerable to large data structures with many non-repeating values.
For example, a data structure that contains a counter that is rarely reset causes each value of the total
data structure to be different, resulting in a large amount of translation data. Moreover, the fact that these
large data structures are now interpretable will lead to larger data structures being traced.

Instead of doing everything through lookup tables, some such data structures might be common
enough to use Rust runtime translation instead. For example, instead of creating a lookup table for a
vector of data types, the system could specify how this vector should be split, and use a lookup table
for the child elements instead. Through the same mechanics that allow BitPack to be derived, rules for
deserializing data could be derived automatically.

Having these methods available while keeping the option of using a lookup table would allow the user
to choose more performant waveform representation options where possible or needed, while keeping
the option to customize waveform viewer behavior from within the Clash design. It would, however, also
require a major overhaul of the entire system, since this deserialization overrides both the Display and
Split implementations, file formats, as well as the Surfer translator.

These changes would improve the performance of the system in some scenarios. Unfortunately,
this comes at the cost of higher complexity, more maintenance, and general scope creep to recreate
Haskell’s display methods as closely as possible. Considering these drawbacks, we see no reason to
change the system this way unless a project is found for which Shockwaves is rendered unusable by
performance problems. Without majorly changing the system, some performance increases could be
achieved through code optimization and better file formats.

10.2. Haskell Library

The Haskell library includes the translation code, default implementations for all major Haskell types,
a modified tracing library and, in an ‘experimental’ module, code for post-simulation translation. The
non-experimental modules are all directly usable.

The Display and Split classes successfully allowed for customized implementations. No use
case came up where separate derivation of the classes was actually helpful, and since Haskell allows
for implementations to partially rely on defaults, they might be merged into a single class to keep
implementations cleaner.

Some other default implementations, such automatically color-coded constructors could be added to
aid users. Another utility solution might be adding data wrappers with custom implementations, such as

22

a wrapper for vectors of Maybe values that directly displays the contained values instead of having each
made available in a doubly nested structure. Such additions would be easy to add, but are very much
optional nice-to-haves.

During the project, there was no opportunity to properly analyze potential runtime improvements in
the system. Haskell has various laziness mechanics and alternative string representations that may be
leveraged to obtain higher performance, and these could most likely be applied in various places of the
library.

10.3. Tracing

The tracing module included in Shockwaves proved to be very effective. When testing the module on a
real Clash design using Signal.Trace, adapting the code required very little effort, and had immediately
clear results. The developer commented that it would have been very valuable to have Shockwaves
available while debugging the design.

The most important drawback is that Shockwaves'’s tracing module will need to be kept up to date
with Clash’s Signal.Trace module, but this is unavoidable.

10.4. Post-compilation simulation

As mentioned before, the Shockwaves pipeline for translating values generated by simulating Verilog
code has several problems. Most importantly, adding type annotations requires a major overhaul of the
Clash compiler. This was too large of a task for this project, but may still be performed later.

Other parts of the pipeline are convoluted, and have several issues such as generating the import
list for the Haskell translator. Some of these might be alleviated by extra compiler support, which would
certainly be possible to add while upgrading the compiler. However, due to the complexity of the pipeline,
it is expected most of this convolution would remain.

Despite the fact that the pipeline is most certainly not usuable in its current state, that does not mean
the efforts that went into it were in vain. Though it might only function as a proof of concept for now, it
shows that such a system is very much feasible, and adds value by making simulation results intelligible
in the same way the tracing approach does.

Furthermore, aside from the benefits from using a compiled design rather than tracing that were
previously listed in Section 4.5, a different use case has presented itself during the project: translating
values from logic analysers. A currently ongoing project is focused on recording real-world signals on
FPGAs running Clash designs, and a very similar pipeline could be used to translate the recorded values.

23

1

Summary

Waveform viewers are an essential tool in HDL development. To actually get value out of the waveforms,
they must display the data in a format representatative of the original data types. Shockwaves aims to
bring typed waveforms for Clash to the Surfer waveform viewer.

There are two methods to generate VCD files for Clash designs. The first is by adding traces in the
design (roughly equivalent to logging statements in conventional coding) and simulating the design by
executing it as a Haskell program. The second method is to compile the Clash design to a different HDL
such as Verilog, and use existing simulation tools to simulate that code. Since both options have their
own advantages and disadvantages, shockwaves was designed to support both these methods.

Unlike typed waveform solutions for higher level HDLs, Shockwaves uses Haskell to produce the
waveform data. This data is then passed to Surfer using lookup tables. Keeping the translation in Haskell
prevents reimplementation of existing Clash and Haskell functions in Surfer, and gives the programmer
complete control over the way data is represented.

Shockwaves includes a tracing module that acts as a drop-in replacement to Clash’s tracing module.
It has been tested on a real project using tracing, and worked without issue. The size of the exira files
produced combined was approximately 5 times the size of the VCD file. When used this way, Shockwaves
meets all the objectives set in the introduction.

To make Shockwaves work with a compiled language, the type data needs to be propagated from
the Haskell code to the VCD file. This includes having the compiler annotate the generated HDL. A
proof-of-concept pipeline was developed, but the compiler modifications were too substantial to complete
within the project. However, it did show the potential of the system.

It is possible to rewrite the Clash compiler to support type annotations, but this would require changes
to every compiler backend for Clash. A different future goal lies in optimization, since in larger projects,
the lookup tables might incur performance issues. This could be resolved by direct optimizations, as well
as potentially moving translation of simple and common data types to Surfer.

24

-art |

Tydi

17

Introduction

When a hardware design uses data, this data often needs to be moved - into the system, out of the
system, or between different submodules inside the system. Sometimes, this data is too big, possibly
even unbounded, to be transferred in parallel, and is streamed instead. Streaming data between different
modules generally requires some form of communication protocol.

Transferring complex data structures with variable-length fields in hardware requires advanced
communication protocols. These may be designed on a case-by-case basis, but this leads to high
implementation effort, more documentation, harder to understand designs, and as a result, more errors.

To provided a standard for many streaming applications, the Tydi specification was created. The
specification was designed around transferring complex data structures, and allows for multiple related
streams carrying typed, multi-dimensional data.

Of course, to be useful to developers, Tydi must be made available first. Tydi-Clash is an implemen-
tation of Tydi for Clash, meant to provide developers with the tools to use all parts of the specification.

12.1. Objectives

In the implementation of Tydi-Clash, the following objectives were pursued:

» Tydi streams are made available in Clash.
» The hardware representation of the streams is kept as close as possible to the Tydi specification.

» The design follows “the most important design guideline” [18]: make interfaces easy to use correctly,
and hard to use incorrectly.

* Interfaces to the streams are provided using Haskell-friendly data types.
» Tydi-Clash is integrated with Shockwaves to improve debuggability.

Additionally, the implementation serves as a practical test of Tydi as an interface standard. Observations
may be used to further improve future version of the specificaiton.

12.2. Related Work

There have been many previous advancements in the field of stream processing, resulting in a plethora
of languages and frameworks both for software [19]-[22] and hardware design [23], [24]. This includes
several industry standards [25]-[27], languages [10], [28] and projects attempting to integrate these with
existing methods [12]. However, these address the problem at a bit stream level, rather than the much
higher level of complex data types.

One interesting language is Delta [29], which allows for Haskell-like programming over time-domain
streams. Nevertheless, this is still in a prototype stage, and holds no position to replace established
languages such as Clash. Thus, a common standard such as Tydi is still valuable for these languages.

26

12.3. Outline

Chapter 13 provides background information about Tydi and several related Tydi projects, as well as
some relevant Haskell and Clash libraries. Chapters 14 to 16 cover the implementation of different facets
of the Tydi specification, and Chapter 17 extends this with additional verification modules. Chapter 18
provides information about the integration of Shockwaves.

To test Tydi-Clash, an example implementation was created, which can be found in Chapter 19. The
observations made are discussed in Chapter 20, after which the part is summarized in Chapter 21.

27

13

Background

This chapter provides a background on Tydi and several Tydi projects, as well as some relevant Haskell
libraries.

13.1. Tydi

Tydi [30] is a specification for complex streams. These streams support arbitrarily sized nested sequences
of typed data, complex data types that require multiple separate streams, as well as reverse streams.
Throughput can be managed by changing the number of parallel data lanes, and streams can be
configured to several complexity levels. This section introduces most of the important aspects of Tydi,
but we refer the reader to the official documentation [31] for a more complete overview.

13.1.1. Data types
Tydi defines four data types: Null, Bits, Group and Union.

Bits(n) denotes data consisting of n bits. Null represents the lack of data, and is equivalent to
Bits(0).

Group combines multiple values that exist in parallel. A Group contains labeled, ordered fields that
can be of any type: Group(Ny : Ty, No : Ty, ...) (labels N; and their respective types T;). The binary
representation of a group is simply the concatenation of those of the different fields.

Union combines multiple values of which only one exists at the same time. Like Group, the variants
are labeled and ordered. In hardware, it has two fields tag and union which represent which variant is
contained, and the data of that variant, respectively. For example, for Union(a : Bits(3),b : Bits(5)),
tag = 0 indicates the data is of variant a, and 3 out of the 5 bits of the union field are used to contain the
data of Bits(3).

13.1.2. Physical streams
Physical streams are at the core of Tydi. They are the hardware level representation of streams, and
they carry most of the complexity of the Tydi specification.

Physical streams have a number of parameters:

+ c¢: the complexity level of a stream. This level determines which signals are used, and may set
some behavioral restrictions. In low complexity streams, the source makes several guarantees,
while in high complexity streams, the sink must support more usage options. A source may only be
connected to a sink of equal of higher complexity.

* n: the number of data lanes present. Multiple lanes may be used in parallel to increase the
throughput.

d: the dimensionality of the stream. For example, d = 2 indicates data of the form [[x]].
» T.: the data type of data elements.

T.: the user data data type. Tydi streams may carry additional user data, of which the meaning is
not defined by the Tydi specification.

28

Physical streams contain the following signals:

* valid denotes whether any data is being sent.

* data contains the data elements for all data lanes.
 user contains the user data.

* last contains bits indicating the end of a sequence.
* stai indicates the first active data lane.

 endi indicates the last active data lane.

* strb indicates per lane whether this lane is active.

* ready run from the sink to the source, and can be used to provide backpressure. Data is only
transferred when valid and ready are both high at the same time.

Depending on the complexity level, some of these signals may be (partially) unused, or otherwise
restricted. They are still defined, to allow them to be connected to higher complexity sinks that make use
of these signals, but may be omitted in hardware.

13.1.3. Logical streams

Logical streams are abstract representations of collections of related physical streams. They exist as
a mixture of nested streams and data, and form a bridge between the abstract, nested, complex data
being transmitted, and the phsysical streams required to do so. Logical streams use slightly different
parameters from physical streams:

+ ¢: the complexity of the associated phsyical stream. The parameter may be omitted to use the
complexity of the parent stream.

« t: the throughput relative to the parent stream. The number of lanes in the physical stream equals
the product of the throughput values of that logical stream and all its parent streams, rounded up.

* d: the dimensionality. Depending on the synchronization mode (s), this represents either the total
dimensionality of the stream, or the extra number of dimensions with respect to the parent stream.

* s: the synchronization mode. This determines whether the stream is flattened (i.e. does not include
the dimensionality of the parent stream) and synchronized (one element in the parent stream
corresponds to one data structure at the same dimensionality level as the parent).

» r: the direction of the stream. If the stream is reversed, in runs in the opposite direction of the
parent stream.

» T, and T, still indicate the data type and user data data type. The stream data may include
substreams.

» x: a boolean that may be used to indicate a stream should not be optimized away, even if T, and
T, both carry no data.

Logical streams do not exist in hardware directly, but can be turned into a bundle of physical streams in
a process called synthesis. As logical streams are transformed into physical streams, substreams are
removed from the data type and further synthesized into separate physical streams.

The modules connected by Tydi streams are called streamlets.

13.2. Tydi-lang

Tydi-lang [32] is a programming languages developed for creating streaming architectures using Tydi.
Rather than aspiring to be a full HDL, the goal of Tydi-lang is only to describe the different streams
and streamlets of a system. Streamlets may be connected together or decomposed into other streamlets,

but otherwise have their implementation defined in other HDLs. Tydi-lang can generate templates for
these external implementations.

29

13.3. Tydi-Chisel

Tydi-Chisel [33] is an implementation of Tydi for the Scala-based modern HDL Chisel [8], [9]. It was
designed to be used with Tydi-lang to describe the different streams and streamlets. It also includes
some utility modules. Typed waveforms for Tydi-Chisel is provided in Tywaves (see Section 4.3).

Although Tydi-Clash is in some ways the Clash equivalent of Tydi-Chisel, Tydi-Chisel puts more focus
on the design pipeline and tooling outside Chisel itself.

13.4. Haskell Optics

Accessing data deeply hidden in nested data types can be rather inconvenient. In Haskell specifically,
the immutability of data can make changing values rather painful. For this purpose, Tydi-Clash makes
use of the Optics library [34], which provides access to (among other things) lenses and prisms.

A lens is essentially a reference to a point in a data structure. It may be used to obtain the data stored,
or generate a new object with the indicated data replaced with a different value.

Optics defines prisms for data that may or may not be defined; in this case, retrieving the value results
in a Maybe value, and changing the value only makes a difference when the value was previously already
present.

Lenses and prisms may be combined to produce new lenses and prisms. Thus, a path to a deeply
nested value may be composed of multiple optics, one per data structure.

13.5. Clash Protocols

Clash Protocols [35] is a library that contains machinery for working with interfaces. It comes equipped
with implementations for several well-known interfaces such as AXI [25] and Avalon [26]. It also includes
a “dataflow” protocol inspired by AXI, which consist of a simple forwards stream of one data type, and an
acknowledgement signal for backpressure.

The library works with so-called circuits - modules with input and output interfaces - which can be
connected together. Several testing tools are made available to verify the behavior of these circuits.

30

14

Tydi Data Types

Tydi has four main data types. The Null type corresponds directly to Haskell’s unit type (). Bits denotes
any serialized data; although this is most similar to Clash’s BitVector, it is essentially isomorphic to any
synthesizable Haskell type. Group and Union denote product and sum types respectively. Sections 14.1
and 14.2 cover the implementation of these types, and their relation to standard Haskell types is discussed
in Section 14.3. Section 14.4 further elaborates on the conversion between Haskell and Tydi types, as
well as between Tydi types.

14.1. Group

Tydi’s Group is a product type and contains a number of labeled fields. This is implemented through
three Haskell types:

+ A label type, wrapping the value of a field in a label existing purely at the type level
» A binary operator to join fields together
A toplevel container type to denote the bounds of the type

Labels are constructed using the operator >: :, which is designed to look like the standard type notation
syntax : :. It has the constructor L, wrapping the contained value.

1 label :: "myBool" >:: Bool
2 label = L True

To join the fields, the operator :&: was created. Its constructor mimics its type, and simply joins its two
subtypes. The operator is right-associative and has a lower precedence than the label operator, allowing
head-tail structures to be written without brackets.

1 joined :: "a" >:: Bool :&: "b" >:: Bool :&: "c" >:: Bool
2 joined = L True :&: L False :&: L False
3 —— equivalent to L True :&: (L False :&: L False)

Finally, the Group type wraps the joined fields to clearly denote the boundaries of the type. It is largely
useful for readability.

1 type myGroup = Group ("a" >:: Bool :&: "b" >:: Bool)
It is not necessary to specify the whole structure to read or write a field, as this can be done though the

getField and setField functions or the _field lens. These can be used to target a specific field by
supplying the type level field label.

1 g :: Group ("a" >:: Bool :&: "b" >:: Maybe Bool)
2 g =L True :&: L Nothing

3 a :: Bool

4 a = view (_field @"a") g -- evaluates to True

31

14.2. Union

The implementation of Union is rather different from that of Group. While it would certainly be possible to
represent the internal data, this has several issues:

» The operators would need to have a binary tree structure to not have a linear amount of bits
specifying the variant. This structure would be more difficult to generate and navigate.

» Even in a tree structure, the location of the variant selection bits would be difficult to align.

» The data would deviate from the format specified in the Tydi specification, which has distinctly
separate tag and union fields.

Instead, the Union type only uses a binary operator (: | :) at the type level to describe the variants,
and simply has a single record constructor with a tag and union field, the latter taking the form of a
BitVector. This constructor is hidden, and data can only be accessed through the getVariant and
mkVariant functions, or the _variant lens. Similarly to the access methods for Group, the variants are
specified at the type level.

1 type U = Union ("bool" >:: Bool :|: "int" >:: Int)
cu :: U

3 u = mkVariant @"bool" True

4 1 :: Maybe Int

5 1 = getVariant @"int" b -- evaluates to Nothing

14.3. Translating Haskell Types

Aside from primitives, Haskell data types are algebraic, and can thus be composed of Group and Union
types. Union corresponds to a type having multiple constructors, while Group represents the data fields
of a single constructor.

Tydi-Clash comes equipped with the TydiConvert class, which can be used to specify the Tydi
representation of a Haskell type. The default implementation uses the Generic class to automatically
derive the Tydi representation according to these rules:

+ If a type has multiple constructors, its Tydi representation is a Union of these constructors, each
variant having for its type the Tydi representation of the constructor.

» Otherwise, if there is a single constructor, the representation of the type is simply that of the
constructor.

* Void types (types without constructors) cannot be represented.

+ If a constructor has any fields, its representation is a Group of these fields. For record style
constructors, the field names correspond to the record’s field names; otherwise the fields are simply
numbered.

« If the constructor has no fields, its type is ().

For example:

1 data T = A | B (Unsigned 3) | C {a :: Bool, b :: Bool}
2 -—— Tydi representation:

s type T' = Union (

4 AT > O

5 :|: "B" >:: Group ("O" >:: Unsigned 3)

6 :]: "C" >:: Group (

7 "a" >:: Bool

8 :&: "b" >:: Bool

9)

During the project, a point of debate was whether to keep Groups containing only one field. The choice
was made to keep this structure, to keep the Tydi representation closer to the original Haskell data type.

While it is fairly easy to generate Tydi types based on Haskell types, the same cannot be said about
the reverse. Creating Haskell types dynamically would require using Template Haskell, and would

32

probably not result in the cleanest types since the programmer has little control over the result. In all
likelihood, the required level of control for a practical result would be on par with simply writing the types
by hand. Alternatively, one could write a script to externally generate template code instead, to expedite
the process.

14.4. Type Conversion

Expanding from the type conversion between Haskell and Tydi types, a general type conversion was
added, with the purpose of connecting any two compatible streams (see Section 15.4). The convert
function can automatically convert between compatible data types according to the following four cases:

1. Conversion from a type to itself does nothing, and bypasses the entire conversion.

2. Conversion between standard Haskell types is outsourced to the DataConvertible class. This
class has no default implementations, but may be connected to any existing conversion class
though a single polymorphic instance.

3. Conversion between standard Haskell types and Tydi types works by converting the Haskell type
to or from its Tydi representation, and then converting between the Tydi type and the Tydi type
representation of the Haskell type.

4. Conversion between Tydi types happens based on structure: both types must have the same
number of fields or variants, and these must be pairwise compatible. The field names are ignored.

Since the Tydi type is generally not simplified, the structures might not match exactly. Furthermore, the
conversion ignores field names, which might result in unexpected behaviour if two fields have compatible
types and appear in a different order. However, arbitrary reordering is in the general case not allowed,
because it may change the behavior of the interface. Improvements of this conversion are left for future
development.

33

10

Physical Streams

This chapter discusses how Tydi’s phsyical streams can be represented in Clash. Section 15.1 describes
how the streams are internally represented in Clash. Section 15.2 and Section 15.3 detail how Tydi
streams can be interpreted as certain Haskell and Clash types, and how this determines the way these
streams are used in a Clash design. Finally, Section 15.4 handles connecting streams and streamlet
ports.

15.1. Streams and Ports in Clash

Unlike Chisel, Clash does not have a notion of “port objects”. Instead, ports are simply the inputs and
outputs of functions. This also means that the ready signal present in a Tydi interface cannot be bundled
together with the forwards signals, since a function’s inputs and outputs are separated.

In the Clash design, the stream exists in the form of the values taken on by the different signals
described in the Tydi specification. The forwards signals are bundled into a PStream object, while the
ready signal is represented by PStreamReady. A source is any function taking the PStreamReady signal
as an input, and producing the corresponding PStream value as an output. Conversely, a function taking
the PStream value and producing the PStreamReady acts as a sink.

Both PStream and PStreamReady are parameterized with the types c, n, d, u, and e. These denote
the complexity level, number of lanes, dimensionality, user data type and data type respectively. Note
that these correspond to the parameters of Tydi’s physical streams directly, though they appear in a
different order - this is done to increase readability when written in Haskell.

The types of the values inside the PStream data type depend on all of these parameters. PStream
Ready objects do not use the types directly, but these types are still included to match the ready signal to
its PStream counterpart. A simplified version of the definition can be seen below:

1 data PStream ¢ n d u e = PStream
2 { valid :: Bool

3 , dat :: Vec n e

4 , user :: u

5 , last :: LastType' c n d

6 , stai :: StaiType' c n

7 , endi :: Index n

8 , strb :: StrbType' c n

9 }

10

1 data PStreamReady ¢ n d u e = NotReady | Ready

The PStream data type was designed to only contain signals that are actually defined for the complexity
level. This means that depending on the complexity level, some signals have different types. And
overview of the types can be seen in Table 15.1.

« If the complexity level has last bits per lane, LastType' ¢ n d evaluatesto Vec n (Vec d Bool).
Otherwise, the type is Vec d Bool.

34

Table 15.1: Internal physical stream data types

c | valid | data user | last stai endi strb
1
2
3 O

Bool
4 Vec d Bool
5 Bool Vec n ef | u Index n
6
7 Index n

Vec n Boolf
8 Vec n (Vec d Bool)

Data types for a physical stream with n data lanes, d dimensions, data data type e, user data data type u,
and complexity c.
T May contain undefined values even when valid is high.

+ If the complexity level has a start index, StaiType' c n evaluates to Index n. Otherwise, the type
is 0.

« If the complexity level has independent strobe bits for the data lanes, StrbType' c n evaluates to
Vec n Bool. Otherwise, the type is Bool.

15.2. Representing Control Signals
In Tydi streams, the data, last and user signals carry the actual data. The other signals, valid, stai, endi
and strb, are control signals that specify which (parts) of these data signals are actually defined.

In Clash, having separate control signals is generally considered bad practice. Instead, the data
is encapsulated in types that represent the control. For example, a memory block that has a address,
value and write_en input for writing, might in Clash have an input of the type Maybe (Index memsize,
ValueType): although the address and value signals always exist in hardware, their values are only
defined when write enable is high.

This practice is in line with the most important design principle: it is made difficult to use the interface
incorrectly, because a value must be defined when write enable is high, and cannot be supplied when
it is low. At the same time, the functions available for the Maybe type make it easier to work with the
combination of the enable signal and its related value signals. Therefore, we investigate and implement
such representations for Tydi streams.

15.2.1. Analysis of Tydi control signals

At the top level, valid controls the validity of all other signals. stai and endi together form a mask
leaving a slice of the data lanes, but also of the individual strobe signals of those data lanes. Finally, the
individual strb bits act as per-lane masks. It should be noted here that at lower complexity levels, where
the strobe consists only of a single bit, it might seem that this strobe signal should mask not only the data
lanes, but stai and endi as well. After all, if the strobe bit is low, no data is transferred, and thus the
values of stai and endi are irrelevant. However, the Tydi specification still mandates that these signals
are properly defined in order to make it possible to connect the stream to a higher complexity sink.

15.2.2. Representing valid

Now all that remains is to select appropriate types to represent the different data signals combined with
their control signals. Ideally, the set of values representable by the types chosen is exactly equal to the
set of valid values of the Tydi stream. At the highest level, there is valid, acting as an enable of all other
data. This can me modeled through Haskell's Maybe type, as it implements the optionality of the other
signals. Modeling enable signals using Maybe is standard practice in Clash. Since it will be useful in
the rest of the design, if valid is high, all signals apart from valid grouped together are from here on
referred to as a Transfer object (Egs. (15.1) and (15.2)). Since the user, last, stai and endi signals

35

strb stai strb wvalid
(per-lane) (single)

o] O ~
. 0 O
3 O
™ [:] endi -

last

Figure 15.1: Signal validity masking in a physical stream. data is masked by individual strobes, if they
exist, which are then masked by stai and endi, which are in turn masked by the single strobe bit if
present. All signals are masked by valid.

of a Transfer never contain undefined values, they may be accessed directly.

PStream = Maybe Transfer (15.1)

Transfer = (data,user,last,stai,endi,strb) (15.2)

15.2.3. Representing strb

The strobe signal can be modeled in a similar fashion to valid. At low complexity levels, where there is
only a single strobe bit, the data lanes can, as a whole, be wrapped inside of a Maybe type (Eq. (15.3)).
At high complexity levels, when strobe provides per-lane enable signals, the data of the individual lanes
is wrapped in Maybe instead (Eq. (15.4)).

(data::Vec n e, strb::Bool) = Maybe (Vec n e) (15.3)
(data::Vec n e, strb::Vec n Bool) =Vec n (Maybe e) (15.4)

15.2.4. Representing stai and endi

This leaves us with the stai and endi signals. If only endi is present, the valid lanes are a non-empty
prefix of the data lanes (Eq. (15.5)). If both are present, they form a slice instead (Eq. (15.6)). These can
then be combined with the strobe in the same way as before.

Clash does not have a type for vector prefixes or slices, so a new type is required. Although it
is certainly possible to represent this slice as an algebraic data structure, the type would be rather
complicated, and most likely hard to use in practice. Furthermore, the implementation would need to be
rather complex to avoid unnecessary data shifting in hardware due to to the binary representation of the
slice. Therefore, we instead choose to represent the data as an abstract data type wrapping a normal
vector.

(data::Vec n e, endi::Index n) =Prefix n e (15.5)

(data::Vec n e, stai::Index n,endi::Index n) = Slice n e (15.6)

36

Table 15.2: External physical stream data types. Types that share the internal representation are
omitted.

data strb

Maybe (Prefix n e)
Bool

Maybe (Slice n e)

Slice n (Maybe e) | Slice n Bool

OIN|OO| || WIN =0

Vec n (Maybe e) Vec n Bool

The new types, Slice and Prefix, are implented as a Vec with an index range and upper bound
respectively. They are protected against reading the values outside the range. All applicable standard
vector functions, as well as some additional utility functions, are provided.

At high complexity levels, where a per-lane strobe is present, the fact that stai and endi create a
consecutive set of data lanes becomes irrelevant. It is possible to transform stai and endi into two
additional per-lane strobes, and combine these with strb to obtain a single strobe (Eq. (15.7)), which
can then be applied to the data lanes (Eq. (15.8)). This greatly reduces implementation complexity of the
sink. Similarly, when creating a transfer object in the source, just the strobe may be used to specify the
validity of data lanes. In this case, stai and endi are simply set to enable the full range of data lanes.
Generally, this means stai and endi signals can be removed in optimization. Because of its general
usefulness, any prefix or slice may also be transformed to a vector of Maybe values. However, since
this type does not guarantee the active data lanes are consecutive, it cannot be used to write data for
complexity levels without a per-lane strobe.

(stai::Index n, endi::Index n, strb::Vec n Bool) =~ Vec n Bool (15.7)

(data::Vec n e, stai::Index n, endi::Index n, strb::Vec n Bool) ®Vec n (Maybe e)

(15.8)
The representations of data and strb in the presence of stai, endi and strb can be seen in Table 15.2.

15.3. Interacting with Physical Streams

To keep the synthesized code close to the Tydi representation, the PStream object is kept close to this
representation in terms of structure. However, as discussed, the data can be presented differently to
make it safer and easier to use. For this reason, the PStream constructor is kept hidden, and can only be
interfaced with through functions and patterns, making it an abstract data type.

First of all, valid can be represented as a Maybe type. We introduce the PStreamTransfer type, with
the same parameters and structure as PStream except for the valid field. The PStream can then be
turned into Maybe PStreamTransfer though the getTransfer function, and turned back using trans
fer. Alternatively, the Transfer PStreamTransfer and NoTransfer patterns are present to match the
PStream directly, as if it had two constructors like Maybe:

1 case stream of -- stream :: PStream c n d u e
2 Transfer tf -> ... -- tf :: PStreamTransfer c n d u e
3 NoTransfer -> ...

All other signals are accessed through methods of this PStreamTransfer object. These functions require
various class implementations dependent on the complexity level. To avoid having to add constrains for
all of these, the classes are bundled under a single class CompleteComplexity. This class essentially
indicates that the stream is properly defined.

37

15.3.1. Access functions

Most signals (user, last, stai, endi) are directly accessible using getter functions: getUser, getLast,
getStai, getEndi. Since stai and last have types dependent on the complexity level, there are extended
functions that add back unused signals, essentially lifting them to the maximum complexity representation:
getLastExt and getStaiExt. These extended functions help with creating complexity-independent
functions.

The two remaining signals may have undefined values in them, and thus have transformative access
functions. For data, these are getDataSliced and getDataStrobed. The former returns the data in the
complexity-dependent format constructed throughout Section 15.2, while the lattern returns individually
strobed data regardless of the complexity level as per Eq. (15.8). Since some implementations might
benefit from direct but unsafe access, getDataRaw return the data lanes directly.

Finally, strb has both a data type dependent on the complexity level, thus prompting an extended
getter variant, and may be partially obscured by stai and endi, prompting raw getter functions. Thus,
there are four getter functions: getStrb, getStrbExt, getStrbRaw and getStrbExtRaw.

15.3.2. Creator functions

The data types that have extended getter functions also have functions for creating values. mkLast,
mkStai and mkStrb take both a simple and extended value, and return either based on the complexity
level.

Finally, the different functions for obtaining the data all have respective functions for creating a
PStreamTransfer. fromSliced creates a transfer from the sliced data, the last values, and user data.
fromStrobed similarly uses the strobed data, but can only be used if the complexity level defines a
per-lane strobe. fromSignals creates the transfer from the raw data signals. When creating the transfer
this way, all signals undefined by the Tydi standard are replaced with undefineds.

15.4. Connecting Streams

Tydi allows sources of a certain complexity level to be connected to sinks of a higher complexity level. For
this to work in Haskell, the data type needs to be converted. This is done through the connect function.

APStream ¢ n d u e object may be converted to a PStream c¢' n' d' u' e' if the following condi-
tions are met:

* ¢ < c': The complexity level cannot decrease.
*n=n',d=4d': the number of lanes and dimensionality are both equal.

* uandu', aswell as e and e, share an implementation of TydiConvert, i.e. they may be converted
between as described in Section 14.4.

For PStreamReady, the same conditions are set, except for the complexity level: this much be equal or
lower, since the ready signal runs from the sink to the source.

The connect function does not allow connecting the ready signals of two incompatibly typed streams,
since these streams cannot be connected to each other. However, it may be useful to propagate the
ready signal of one stream to another. For this purpose, connectReady exists, which converts between
any two subtypes of PStreamReady.

38

10

Logical Streams

This chapter details aspects of Tydi-Clash related to logical streams and stream bundles. Section 16.1
explains the Tydi-Clash equivalent of Tydi’s logical streams. Section 16.2 describes how these are
synthesized into structures of physical streams, which are further elaborated in Section 16.3.

16.1. Representation of Logical Streams

The logical streams are implemented through types, and converted to bundles of physical streams using
type-domain computations. This allows the programmer to compose Tydi stream descriptions using a
combination of Clash data types, Tydi data types, and logical streams. These logical streams have the
same arguments as Tydi’s logical streams, and the same shorthands are defined (such as Rev and Dim).
The logical stream type does not have any constructors, and so no value can be instantiated, nor does it
have a hardware equivalent. It is purely meant for synthesis to physical streams.

16.2. Synthesis into Phsyical Stream Bundles
Tydi’s synthesis process produces a bundle of physical streams. As discussed in Section 15.1, the nature
of Haskell makes it impossible to create a single bidirectional port. Instead, the synthesis produces two
bundles of signals: one of all forwards signals, and one of all reverse signals. The synthesis process
directly creates the forwards bundle, which can then be reversed to obtain the reverse bundle. Reversed
streams are synthesized by reversing the synthesized forwards stream.

Tydi-Clash stream bundles differ from the Tydi specification in another major way: instead of flattening
the logical stream, and renaming the physical streams according to their position in the hierarchy, the
structure of the logical stream type is kept to represent the bundles. This allows substreams to be
accessed including their own substreams.

In this hierarchy, all logical streams are turned into stream nodes that hold both the subhierarchy
of the bundle and the physical stream associated with the logical stream. All data in this hierarchy is
turned into the unit type O, since the data does not exist outside the streams. Similarly, for the physical
streams, all nested streams are replaced with the unit type in the data data type. Because a Union of
logical streams results in both being instantiated in parallel, all occurrences of Union in the data are
transformed to Group in the bundle hierarchy.

Suppose we have a memory element that can receive addresses and stream back the values at
those addresses. That can be represented using a reversed substream, as in Fig. 16.1. The value is
a substream, since it is the direct response to an address value. Synthesis turns the logical stream
description with a nested stream into a hierarchical structure. In the forwards physical stream bundle, the
reverse stream shows up as the ready signal. The corresponding Haskell code then looks like:

type MemStream = New (C 5) 1 () (

1

2 Group (

3 "address" >:: Index MEMSIZE

4 :&: "value" >:: Rev CInherit 1 () (Unsigned 32)
5)

6

)

39

LStream Stream

data\b psW \h”d

Data Group PStream Group
addresy\value ’_> data¢1 addresy\value
Streams Bits(16) Rev Group 0 Stream
datay) address_~ ~~_ value pstream_—_) child
SIDANTE Bits(32) Bits(16) 0 Ready 0

Figure 16.1: Synthesis of a logical stream to a forwards physical stream bundle.

7 type MemStreamBundle = TydiSynth MemStream
s memory :: Signal dom MemStreamBundle -> Signal dom (Reverse WordStreamBundle)

The synthesis process currently does not optimize away streams that do not carry any data. Consequently,
the boolean in the logical stream type denoting a stream may not be optimized away is left unused.

16.3. Interacting with Physical Stream Bundles

Physical stream bundles consist of only three types: Group, (), and StreamNode. Tydi-Clash has the
lenses _child and _stream to access the subhierarchy and physical stream fields of these StreamNode
values respectively. Combined with the _field lensen for Group, these can be used to access any value
inside a stream bundle.

It is often useful to switch between signals of data structures and data structures of signals, and
Clash defines the bundle and unbundle functions for this purpose. These are implemented for Group and
StreamNode, as well as PStream and PStreamReady, to also allow this conversion for bundles of physical
streams.

40

1/

Behavioral Verification

Although typing may be able to prevent some incorrect usage, the Tydi standard also specifies some
behavioral rules that extend beyond the domain of single cycle values. To facilitate testing whether these
rules are adhered to, Tydi-Clash has several checks that can be included in a design for verification.

Sections 17.1 and 17.2 detail the checks performed on all physical streams, while Section 17.3
lists the additional checks for constraints imposed on low complexity streams. These checks are all
performed by passing signals of both the PStream and its respective PStreamReady through a sequential
logic funcion keeping track of the stream’s state.

Section 17.4 sheds light on the behavioral requirements of nested streams, and why these cannot
easily be checked.

17.1. Stable Data Transmission

Tydi specifies that transmission data must be stable: as soon as valid is set to high, all other (defined)
signals may no longer change until the transfer is completed by a high value bit in ready.

This property is easy to check: one simply needs to compare the current value of the stream to the
previous stream and ready signals. If the previous clock cycle contained a transfer not accepted by ready,
the current stream value must be that same transfer. For this, the values of getDataSliced, getLast,
getUser, getStai, getEndi and getStrb are compared (as well as whether there is a transfer at all). If
these values do not match, the stream is invalidated by replacing it with an errorX.

The check can only be performed if the stream’s data types (i.e. the data and user data) are members
of the Eq class.

17.2. Correct Sequence Termination

The Tydi specification states that sequences at one dimension cannot be terminated without, first or at
the same time, terminating inner sequences. Tydi-Clash contains a checker for this restriction.

The presence of empty sequences make the check slightly more complicated: if no data is sent, but
a last bit is sent for a certain dimension, that denotes an empty sequence, which from the perspective
of outer dimensions means data has been transmitted. Although empty sequences are largely left
untouched by the specification, Tydi-Clash was built to support these data structures.

The checker works according to the following rules:
» Data sent opens all dimensions.

* A last bit on one dimension opens all lower dimensions.

» A last bit terminates the sequence of the corresponding dimension. This happens after any
dimensions have been opened, i.e. a dimension may be opened and closed within the same cycle.

The checker keeps track of which dimensions have been opened, and invalidates the stream if a dimension
is closed while a higher level dimension is still opened. The checking logic is implemented as a systolic
array, which can be seen in Fig. 17.1.

41

Lane O Lane 1 Lane 2

Data coming in
""" D 0 D 0 D 0 Dimension 1 terminated
while dimension 2 is still
Last bit .- L2 L2 L2 > active, raising an error
o L1 ﬁ* L1 L1 w
active active’

LO LO
>
W

active =

anyActive’

activate’

Figure 17.1: Sequence termination error detection logic of a stream with complexity 8, 3 data lanes and
3 dimensions. The highlighted signals show an example or erroneous data being detected.

42

17.3. Complexity Level Restrictions

Below complexity level 5, the complexity levels do not determine the presence of signals, but rather
behavioral restrictions. For all four restrictions, a check is implemented to verify this behavior. Since all
restrictions relate to sequences, the checks are only performed on streams with a dimensionality of at
least 1.

The current Tydi documentation of the lower complexity levels is rather brief, and does not take
into account the possibility of empty sequences. Hence, the checks will be extended to support empty
sequences, and are based on the quoted parts of the Tydi specification [31].

“C<5: All lanes must be active for all but the last transfer of the innermost sequence.”

This is might seem easily checkable: “a transfer must have all lanes active, unless the last bit for the
innermost sequence is set”. However, the last bit might occur only in a later cycle. Furthermore, this
check fails for the transfer of empty sequences in higher dimensions.

Instead, the check is implemented as follows: if a previous transfer contained data in a strict subset
of the data lanes, without the innermost sequence being terminated by a 1ast bit, any new data being
sent will raise an exception.

“C<4: The last flag cannot be postponed until after the transfer of the last element.”

Again, this check is complicated if empty sequences are allowed. The rule is implemented as “If the last
flag of a certain dimension is set, while that dimension previously had data, and that dimension currently
has no data, an error is raised”.

“C<3: Innermost sequences must be transferred in consecutive cycles.”

This check is much simpler: if data has been sent without terminating the innermost sequence, any
NoTransfer invalidates the stream.

“C<2: Whole outermost instances must be transferred in consecutive cycles.”

The final check is similar, but needs an addendum for empty sequences. If data has been sent, or
any last flag has been set at a higher dimension level, without terminating the outermost sequence, a
NoTransfer invalidates the stream.

17.4. Inter-stream Dependencies

To avoid deadlocks, Tydi specifies an ordering for nested streams: streams are ordered depth-first,
left-to-right, in a preordering. Although data does not have to be transferred in this order, neither the
source nor the sink may rely on the other port supporting out of order data transfer.

The fact that ports may communicate out of order, yet are not allowed to depend on this behaviour
makes it difficult to check. This is further worsened by the fact these structures are very application-
dependent.

Rigorous analysis of Tydi’s inter-stream behaviors is still being worked on. Tydi-Clash currently does
not include any tools for asserting correct behavior of streamlets. It might be possible to add a layer
between ports that blocks physical streams from sending data out of order, but this would probably often
be less error-prone than out-of-order stream handling, and thus miss those bugs.

43

13

Shockwaves Integration

Although its use is far broader, the primary reason for the creation of Shockwaves was to be able to
visualize the Tydi types in Tydi-Clash. Due to their high complexity, Tydi streams would be nigh impossible
to debug using a waveform viewer that cannot interpret Haskell types. This chapter covers the integration
of Shockwaves for Tydi-Clash data types.

18.1. Tydi Data Types

The Shockwaves implementations for the Tydi data types, Group and Union, are straightforward, since
their equivalence to normal algebraic Haskell data types has already been established in Section 14.3,
and these types already have Shockwaves implementations (see Section 7.2). Groups are split into
their separate fields, while Unions are matched to their current variant, and only this variant is displayed.
Examples can be seen in Fig. 18.1.

1 coord :: Group ("x" >:: Unsigned 6 :&: "y" >:: Unsigned 6)
> filter :: Union ("nomne" >:: () :|: "lessThan" >:: Int)
coord Group {x = 0, y.. A Group {x =1, y.. A Group {x = 1, y..
t x 0 1
y 5 6
filter Union {none = O} Union {lessThan = 5}
|: none O
lessThan 5

Figure 18.1: Shockwaves signals for Group and Union.

18.2. Slices and Prefixes

Slice and Prefix are similar to Clash’s Vec, and are thus displayed in a similar fashion. Two changes
are made: values outside of the sliced range are not displayed, and an extra signal is added to display
the end (for a prefix) or range (for a slice) values. Examples can be seen in Figs. 18.2 and 18.3.

1+ dat :: Prefix 3 Int
dat 1 :>5 :>8 :>. A6 :>-:>-:>. 6 :>3 :> - > .
end 2 0 1
0 1 6
1 5 3
2 8

Figure 18.2: Shockwaves signals for Prefix.

44

1+ dat :: Slice 3 Int

dat 1 :>5 :>8 :> X6 > 2 > - D> ><- >3 > 7 > ..
— range Range 0 2 XRange 01 XRange 12
|:start 0 X1
end 2 X1 X2
-0 1 X 6 >
-1 5 X2 X3
~2 8) (7

Figure 18.3: Shockwaves signals for Slice.

18.3. Physical Streams

The final data types to integrate are those for physical streams. An example can be seen in Fig. 18.4.

PStream are rendered like Maybe values: there is a single subsignal for the transfer, if present. This
PStreamTransfer is displayed using the signals specified in Tydi. Most of these signals (1ast, user,
stai, endi) are displayed directly as stored internally. The strobe data is displayed as returned by
getStrb. The data signal is shown as obtained a vector, where, like in the implementations for Slice
and Prefix, the individual data values are only present if defined.

PStreamReady has a custom implementation of Display, coloring the NotReady constructor red. This
makes it easier to see when a stream is being blocked by the sink.

1 stream :: PStream (C 1) 2 0 () Int

> ready :: PStreamReady (C 1) 2 0 () Int
stream Transfer (PStreamTransfer (4 :> - :> Nil) Nil O (O O ..
L

transfer | PStreamTransfer (4 :> - :> Nil) Nil () () 0O True
~ data 4 :> - :> Nil

|:o 4
1

— last Nil

- user O

- stai O

— endi 0

— strb True
ready NotReady X Ready
|: NotReady \ NotReady >

Ready < Ready

Figure 18.4: Shockwaves signals for PStream and PStreamReady.

45

19

Example Implementation

To test Tydi-Clash, an example implementation of a streamed system was made. The goal of the system
in introduced in Section 19.1. The system and its implementation are described in Section 19.2 and
Section 19.3, and findings are covered in Section 19.4.

19.1. Problem Statement

The problem is about parsing JSON files containing Scrabble data. Each file contains a list of words, and
its number of occurances. Bonuses on the Scrabble board are ignored. The end goal is to, for each file,
sum up the total scores achieved.

The input format is a list of JSON objects, which each include a word. Optionally, if the word occured
more than once, a count field may be present. There may be other fields, which are only allowed to have
string and integer values, but these are to be ignored. It may be assumed that the count field always
precedes the word field. For simplicity, any strings, including field names, must be alphanumeric.

Some examples:
[

1

2 {

3 "count": 3,

4 "word": "ABRACADABRA"
5 T,

6 {

7 "ignored": 5,

8 "word": "ONCE",

9 "ignored2": "X"

10 }

i [{"word":"A"}]

1 [

19.2. Tydi Streamlet Pipeline

The process of parsing this data is split into a number of stages, aimed at testing various Tydi features.
First, the files are streamed as loose characters. A state machine parses these into a higher dimension
sequence of field-value pairs. These are then grouped together to words with their counts. The next
stage computes the total score of each word, and the final state sums up all the scores per file.

The different modules and their outputs can be seen in Fig. 19.1 and Table 19.1.

19.3. Implementation
This section describes the pipeline modules in more detail.

46

!

[Char] [[(Field,Int|*)]]
memoryReader jsonParser > wordGrouper
[[[Char]]]
[(Int,*)] [[Char]]
Int [Int]
scorePrinter scoreAccumulator wordGrader

—> Single physical stream
——— Double physical stream (substream denoted with (*))

Figure 19.1: JSON parsing pipeline. Stream types are given in simplified notation.

Table 19.1: Modules of the JSON parsing pipeline.

Module Output Description
memoryReader Stream(c =1, t = 16, e = Char) Read the input files.
jsonParser Stream(c=5,d =2, e = Parse the JSON and return a se-
Group(field: JsonField, value: quence of field-value pairs. Also re-
Union(int:Int, string: duce the number of lanes to 1 for the
Stream(t = 4, d =1, e = Char)))) fields, and 4 for any strings.
wordGrouper Stream(c=5,d=1,e = Combine the field-value pairs for a
Group(count: Int, word: word into one single item with a sub-
Stream(t =4, d =1, e = Char))) stream for the word.
wordGrader Stream(c =5,d = 1,e = Int) Calculate the score of each word, mul-
tiplied by its occurance.
scoreAccumulator Stream(c = 5,e = Int) Sum the scores of each word per file.
scorePrinter Maybe Int Output the stream of summed scores
as a Maybe signal.

Streams are giving in Tydi notation. Unless otherwise specified, streams take the default parameters
t=1,d=0,u = Null, r = Forward, s = Sync, and the complexity is inherited from the parent stream.

47

19.3.1. Memory reader

For testing purposes, the files are hardcoded. The memoryReader contains a small state machine that
loops over the different files, and transmits their contents in chunks. After all files have been read, the
reader stops transmission.

19.3.2. JSON parsing

The jsonParser module is by far the most complicated module. Not only does it parse the JSON, it
also reduces the data to fewer lanes. A state machine update function is applied to all lanes of the
input. Based on state transitions, four values are generated: data for the outer stream containing the
field, sequence termination bits for this stream, data for the word characters substream, and sequence
termination bits for this substream.

These values are compacted separately for both streams, and divided into blocks that can be
transmitted at once over one stream. A transfer may not have more data items than the number of data
lanes, and last bits must occur at the end of the transmission block. Combining consecutive compatible
last bits is not supported for simplicity. The transfer at the input is only completed when all data for both
streams has been transmitted to the next module successfully.

An example of this process can be seen in Fig. 19.2.

19.3.3. Word grouping

The wordGrouper module groups together field-value pairs into word-count pairs. Any count field with
an integer value is stored. When a word field with a string value arrives, the module sends an item
containing the count, and transmits the word string as a substream. For this, it is important that the count
field arrives before the word field. The count defaults to 1.

19.3.4. Word grading

The wordGrader looks up the Scrabble score for each letter in the word, and multiplies it with the word
count. Once a last bit is received for the innermost sequence, indicating the word has fully been processed,
the total score is transmitted. Any messages that do not contain data, but contain a last bit for the whole
file, directly create a transfer with the same last bit at the output.

19.3.5. Accumulator
The scoreAccumulator simply sums up the scores in each file, and transmits the total once a transfer
contains a last bit indicating the file is completed. This also resets the score.

19.3.6. Output
The scorePrinter ultimately functions as the sink of the whole pipeline. It is always ready to receive,
and any total scores received are sent to the output in the form of a simple Maybe value.

19.4. Results

The example Tydi-Clash project, consisting of 600 lines of code, was compiled into VHDL (6000 lines)
and Verilog (5000 lines). This might seem like a large improvement, but this is largely just due to the
way the Clash compiler works. It would be possible to write a design in these languages in fewer lines,
possibly as little as 1000. However, this code would be harder to write and understand due to the lack of
abstractions.

48

outer stream string stream

state data last data last

Combining last bits
] is not supported,
. leading to two
separate transfers

Figure 19.2: Data processing of the jsonParser module.

49

20

Discussion

All parts of Tydi-Clash were succesfully implemented, and the example implementation demonstrated a
subset of the functionality.

In writing the example implementation, it quickly became apparent that the Tydi specification suffers
from the existance of several edge cases that complicate interface design. For example, at the complexity
level used (5), last bits may arrive with or after data, complicating the implementation of modules that
only operate on the innermost sequence. This is not necessarily because of bad interface design, but
rather the inevitable result of the complexity supported by Tydi. In fact, reducing the complexity of the
interface would increase source complexity, only moving the problem.

The encapsulating data types acted as a double-edged sword. Though it certainly made it harder
to use the interface incorrectly, by preventing incorrect data access, it did little to ease correct usages.
Particularly, the intertwined nature of case detection and data access made the code harder to read. A
cleaner implementation style using Maybe for case detection was thought up to improve code quality (see
Appendix D), although much of the low-level work remains. To ease implementation of simple modules,
directly exposing the inner signals may be sensible.

Here, it is important to remember the goals of Tydi: it is not merely to make complex streams possible,
but to provide a standard that can be built upon. One could figure streaming out on a case-to-case
basis, and for each case come up with a different, more optimal solution, but this would induce a lot of
repeated effort. Currently, the basis of Tydi is there, but there is a shortcomning in the lack of standard
implementations of common functions.

Some functionality could be achieved by integrating Tydi-Clash with Clash Protocols, allowing the use
of Clash Protocols machinery to connect streamlets. Tydi-Clash can also be combined with Tydi-lang
to improve the high level design process - it may even be possible to combine the two. Additionally,
Tydi-Clash needs a collection of transformations and wrappers that take care of common functions
and edge cases at streamlet implementation level. For example, a wrapper might take care of lower
dimension information for a module that only operates on innermost data sequences, and much of the
complexity in Subsection 19.3.2 could be reduced by using high complexity output, coupled with a lane
and complexity reducer module. Such methods could greatly reduce the implementation effort, and
reduce the codebase size.

Finally, though it initially had some bugs, debugging the design was much easier due to the Shock-
waves integration. Without the integration, it would have been nigh impossible to find the bugs in the
desig. The largest signal used while debugging was 5117 bits long, and would not have had any value to
the programmer. This clearly demonstrates the value of Shockwaves.

50

2

Summary

Tydi is a streaming specification allowing associated multi-lane streams of multi-dimensional typed data.
Tydi-Clash is a Clash library for the full Tydi specification.

Tydi types have isomorphism with Haskell types. Conversion functions are in place to switch between
Haskell data types and different Tydi representations.

Tydi’s physical streams could be implemented directly, but the direct access to undefined data is
frowned upon. Therefore, the internal signals are primarily accessible through algebraic and abstract
data types. These types ensure that only data that is defined according to the Tydi specifications can be
accessed or written.

Several tests are provided to ensure the phsyical streams meet behavioral specifications. These
were designed to support empty sequences, which so far have not been explicitly defined in the Tydi
specification.

Logical streams are a bit different. Instead of flattening and splitting up the structure, the synthesis
produces a hierarchical structure, as this allows the stream bundle to be manipulated more freely.

Shockwaves instances were implemented for Tydi-Clash types to cleanly display Tydi streams and
data types in the waveform viewer. This was essential while debugging a simple example implementation.

The example implementation unfortunately highlighted several drawbacks in using Tydi-Clash. Due
to its complexity, Tydi is inherently prone to having edge cases that are difficult to cleanly resolve. The
encapsulation of data into safer data types makes it harder, though not impossible, to separate case
detection from data operations. Great care is required to keep the code clean. On the other hand, the
data encapsulation did protect the physical streams from incorrect usage, demonstrating the value of
capturing interface relations in types. Standardized modules, potentially also defined at Tydi specification
level, could resolve some of the implementation complexity. Finally, integration with Clash Protocols
seems very valuable, and would be a logical next step in the development. This might be combined with
integration with Tydi-lang.

Finally, the development of Tydi-Clash drew attention to the currently mostly overlooked effects of
empty sequences on several interface requirements. Tydi-Clash fully supports these empty sequences,
but further analysis at the Tydi level is encouraged.

51

‘art |l

Closure

27

Conclusion

This work details two systems meant to help raise abstraction of different aspects of the Haskell-based
HDL Clash: Shockwaves for typed waveforms, and Tydi-Clash for Tydi streams.

Shockwaves is a typed waveform viewing system for Clash. Unlike some other typed waveform
solutions, Shockwaves performs translation of values in the Haskell runtime and stores the results in a
lookup table, rather than translating them in the viewer itself. This gives the programmer full control over
the representation of data from inside the code, without needing to update Shockwaves itself, but also
introduces potential performance issues for large projects. Shockwaves has a replacement module for
Clash’s tracing library, which is fully functional, as well as code for translating values in designs compiled
to Verilog. The latter was partially implemented, but required compiler modification beyond the scope of
the project to fully work. Nevertheless, the system is functional and valuable, and the approach used
demonstrates the benefits of giving the programmer control over the waveform representation from within
their designs. Next steps would include performance optimizations, as well as compiler modifications to
support type annotation in compiled designs.

The Tydi-Clash implementation includes Tydi data types, physical streams, and logical streams, as
well as modules for type conversion and behavioral verification. Correct usage of the physical streams
is encouraged through encapsulated interface data types, which provide a new look on Tydi streams.
Furthermore, the behavioral verifications address the possibility of empty sequences - something not
covered by the current Tydi documentation. Since Tydi’'s complexity and inherent edge cases can make
it difficult to write correct code despite these protective measures, the library would benefit greatly from a
set of standardized modules that take care of some of the details when using Tydi. The value of a such
collection would not be confined to Tydi-Clash, but extend to Tydi as a whole. Additionally, more work
will need to be done to integrate Tydi with Clash’s Protocols library as well as Tydi-lang to integrate it into
both the Clash and Tydi ecosystems.

53

(1]

(2]

(3]

[4]

[5]

[6]

[7]

(8]

[9]

[10]

[11]

[12]

[13]

[14]
[15]

[16]

[17]

[18]

References

J. L. Hennessy and D. A. Patterson, “A new golden age for computer architecture,” Commun. ACM,
vol. 62, no. 2, pp. 48-60, Jan. 2019. DOI: 10.1145/3282307.

S. Marlow et al., “Haskell 2010 language report,” 2010. [Online]. Available: https://www.haskell.
org/definition/haskel12010.pdf.

C. P. R. Baaij, “Digital circuits in ChaSH: Functional specifications and type-directed synthesis,”
Ph.D. dissertation, University of Twente, Enschede, Jan. 2015.

QBayLogic. “Clash: A modern, functional, hardware description language.” (2025), [Online]. Avail-
able: https://clash-lang.org/ (visited on 03/27/2025).

F. Skarman, L. Klemmer, K. Laeufer, and O. Gustafsson, Surfer 0.2.0, version 0.2.0, Jun. 2024.
DOI: 10.5281/zenodo.11447243.

F. Skarman, G. Sornas, and O. Gustafsson, Spade 0.72.0, Jan. 2025. DOI: 10.5281/zenodo .
14623297.

R. Meloni, H. P. Hofstee, and Z. Al-Ars, “Tywaves: A typed waveform viewer for chisel,” in 2024 IEEE
Nordic Circuits and Systems Conference (NorCAS), 2024, pp. 1-6. DOI: 10.1109/NorCAS64408.
2024 .10752465.

J. Bachrach, H. Vo, B. Richards, et al., “Chisel: Constructing hardware in a Scala embedded
language,” in Proceedings of the 49th Annual Design Automation Conference, 2012, pp. 1216—
1225. DOI: 10.1145/2228360.2228584.

LF Projects LLC. “Chisel: Software-defined hardware.” (2025), [Online]. Available: https://www.
chisel-lang.org/ (visited on 03/27/2025).

A. lzraelevitz, J. Koenig, P. Li, et al., “Reusability is FIRRTL ground: Hardware construction
languages, compiler frameworks, and transformations,” in 2017 IEEE/ACM International Conference
on Computer-Aided Design (ICCAD), IEEE, 2017, pp. 209-216.

IEEE, “IEEE Standard for Verilog Hardware Description Language,” IEEE Std 1364-2005 (Revision
of IEEE Std 1364-2001), pp. 1-590, 2006. DOI: 10.1109/IEEESTD. 2006.99495.

A. Lenharth and C. Lattner, “CIRCT: Lifting hardware development out of the 20th century,”
2021. [Online]. Available: https : / / 11vm . org / devmtg / 2021 - 11 / slides / 2021 - CIRCT -
LiftingHardwareDevOut0fThe20thCentury.pdf (visited on 12/08/2024).

J. Decaluwe, “MyHDL.: A python-based hardware description language,” Linux Journal, vol. 2004,
p. 5, Jan. 2004.

GTKWave. [Online]. Available: https://gtkwave. sourceforge.net/.

QBayLogic, Clash.Signal.Trace, version 1.8.2, 2025. [Online]. Available: https : / / hackage -
content . haskell . org/package/clash-prelude-1.8.2/candidate/docs/Clash-Signal -
Trace.html.

W. Snyder, P. Wasson, D. Galbi, et al., Verilator, version 5.001, 2022. [Online]. Available: https:

//verilator.org.

C. Shao and R. Eisenberg. “Haskell dark arts, part |: Importing hidden values.” (2021), [Online].
Available: https://www.tweag.io/blog/2021-01-07-haskell-dark-arts-part-i/ (visited on
01/16/2024).

S. Meyers, “The most important design guideline?” IEEE Software, vol. 21, no. 4, pp. 14-16, 2004.
DOI: 10.1109/MS.2004.29.

54

https://doi.org/10.1145/3282307
https://www.haskell.org/definition/haskell2010.pdf
https://www.haskell.org/definition/haskell2010.pdf
https://clash-lang.org/
https://doi.org/10.5281/zenodo.11447243
https://doi.org/10.5281/zenodo.14623297
https://doi.org/10.5281/zenodo.14623297
https://doi.org/10.1109/NorCAS64408.2024.10752465
https://doi.org/10.1109/NorCAS64408.2024.10752465
https://doi.org/10.1145/2228360.2228584
https://www.chisel-lang.org/
https://www.chisel-lang.org/
https://doi.org/10.1109/IEEESTD.2006.99495
https://llvm.org/devmtg/2021-11/slides/2021-CIRCT-LiftingHardwareDevOutOfThe20thCentury.pdf
https://llvm.org/devmtg/2021-11/slides/2021-CIRCT-LiftingHardwareDevOutOfThe20thCentury.pdf
https://gtkwave.sourceforge.net/
https://hackage-content.haskell.org/package/clash-prelude-1.8.2/candidate/docs/Clash-Signal-Trace.html
https://hackage-content.haskell.org/package/clash-prelude-1.8.2/candidate/docs/Clash-Signal-Trace.html
https://hackage-content.haskell.org/package/clash-prelude-1.8.2/candidate/docs/Clash-Signal-Trace.html
https://verilator.org
https://verilator.org
https://www.tweag.io/blog/2021-01-07-haskell-dark-arts-part-i/
https://doi.org/10.1109/MS.2004.29

[19]

[20]

[21]

[22]

(23]

[24]

[25]

[26]

[27]

(28]

[29]

[30]

[31]

[32]

[33]

[34]

[35]

J. Auerbach, D. F. Bacon, P. Cheng, and R. Rabbah, “Lime: A Java-compatible and synthesizable
language for heterogeneous architectures,” SIGPLAN Not., vol. 45, no. 10, pp. 89-108, Oct. 2010.
DOI: 10.1145/1932682.1869469.

J. Thomas, P. Hanrahan, and M. Zaharia, “Fleet: A framework for massively parallel streaming on
fpgas,” in Proceedings of the Twenty-Fifth International Conference on Architectural Support for
Programming Languages and Operating Systems, 2020, pp. 639—651. DOI: 10.1145/3373376.
3378495.

M. Fragkoulis, P. Carbone, V. Kalavri, and A. Katsifodimos, “A survey on the evolution of stream
processing systems,” The VLDB Journal, vol. 33, no. 2, pp. 507-541, 2024.

H. Isah, T. Abughofa, S. Mahfuz, D. Ajerla, F. Zulkernine, and S. Khan, “A survey of distributed
data stream processing frameworks,” IEEE Access, vol. 7, pp. 154 300-154 316, 2019.

A. Hormati, M. Kudlur, S. Mahlke, D. Bacon, and R. Rabbah, “Optimus: Efficient realization of
streaming applications on FPGAs,” in Proceedings of the 2008 International Conference on Compil-
ers, Architectures and Synthesis for Embedded Systems, 2008, pp. 41-50. DOI: 10.1145/1450095.
1450105.

Apache Software Foundation, Apache Kafka, 2024. [Online]. Available: https://kafka.apache.
org/1.

Arm Limited, AMBA® AXI-Stream Protocol Specification, Apr. 2021. [Online]. Available: https:
//developer.arm.com/documentation/ihi0051/b.

Intel Corporation, Avalon® Streaming Interfaces, Jan. 2022. [Online]. Available: https: //www.
intel.com/content/www/us/en/docs/programmable/683091/20-1/streaming-interfaces.
html.

J. Pontes, R. Soares, E. Carvalho, F. Moraes, and N. Calazans, “SCAFFI: An intrachip FPGA
asynchronous interface based on hard macros,” in 2007 25th International Conference on Computer
Design, IEEE, 2007, pp. 541-546.

F. Schuiki, A. Kurth, T. Grosser, and L. Benini, “LLHD: A multi-level intermediate representation
for hardware description languages,” in Proceedings of the 41st ACM SIGPLAN Conference on
Programming Language Design and Implementation, 2020, pp. 258-271.

J. W. Cutler, C. Watson, E. Nkurumeh, et al., “Stream Types,” Proc. ACM Program. Lang., vol. 8,
no. PLDI, Jun. 2024. DOI: 10.1145/3656434.

J. Peltenburg, J. Van Straten, M. Brobbel, Z. Al-Ars, and H. P. Hofstee, “Tydi: An open specification
for complex data structures over hardware streams,” IEEE Micro, vol. 40, no. 4, pp. 120-130, 2020.
DOI: 10.1109/MM.2020.2996373.

M. Brobbel, J. Peltenburg, and J. van Straten, Tydi. [Online]. Available: https://abs-tudelft.
github.io/tydi/.

Y. Tian, M. Reukers, Z. Al-Ars, et al., “Tydi-lang: A language for typed streaming hardware,” in
Proceedings of the SC 23 Workshops of the International Conference on High Performance
Computing, Network, Storage, and Analysis, 2023, pp. 521-529. DOI: 10.1145/3624062.3624539.

C. Cromjongh, Y. Tian, P. Hofstee, and Z. Al-Ars, “Tydi-Chisel: Collaborative and interface-driven
data-streaming accelerators,” English, in Proceedings of the 2023 IEEE Nordic Circuits and Systems
Conference (NorCAS), IEEE, 2023. DOI: 10.1109/NorCAS58970.2023.10305451.

A. Gundry, A. Loh, A. Rybczak, and O. Grenrus, Optics, version 0.4.2.1, May 2024. [Online].
Available: https://hackage.haskell.org/package/optics-0.4.2.1.

QBayLogic, Clash Protocols, version 0.1, 2025. [Online]. Available: https://github.com/clash-
lang/clash-protocols (visited on 03/03/2025).

55

https://doi.org/10.1145/1932682.1869469
https://doi.org/10.1145/3373376.3378495
https://doi.org/10.1145/3373376.3378495
https://doi.org/10.1145/1450095.1450105
https://doi.org/10.1145/1450095.1450105
https://kafka.apache.org/1
https://kafka.apache.org/1
https://developer.arm.com/documentation/ihi0051/b
https://developer.arm.com/documentation/ihi0051/b
https://www.intel.com/content/www/us/en/docs/programmable/683091/20-1/streaming-interfaces.html
https://www.intel.com/content/www/us/en/docs/programmable/683091/20-1/streaming-interfaces.html
https://www.intel.com/content/www/us/en/docs/programmable/683091/20-1/streaming-interfaces.html
https://doi.org/10.1145/3656434
https://doi.org/10.1109/MM.2020.2996373
https://abs-tudelft.github.io/tydi/
https://abs-tudelft.github.io/tydi/
https://doi.org/10.1145/3624062.3624539
https://doi.org/10.1109/NorCAS58970.2023.10305451
https://hackage.haskell.org/package/optics-0.4.2.1
https://github.com/clash-lang/clash-protocols
https://github.com/clash-lang/clash-protocols

56

Appendix

Repositories

A.1. Shockwaves
Main Shockwaves repository: https://github.com/The-Redstar/shockwaves

Surfer fork: https://gitlab.com/The-Redstar/surfer-shockwaves

Clash compiler fork: https://github.com/The-Redstar/clash-shockwaves-compiler

A.2. Tydi-Clash

Tydi-Clash: https://github.com/The-Redstar/tydi-clash

Example system: https://github.com/The-Redstar/tydi-clash-demo

57

https://github.com/The-Redstar/shockwaves
https://gitlab.com/The-Redstar/surfer-shockwaves
https://github.com/The-Redstar/clash-shockwaves-compiler
https://github.com/The-Redstar/tydi-clash
https://github.com/The-Redstar/tydi-clash-demo

JSON Format

This appendix contains examples of the JSON lookup tables for Shockwaves.

B.1. Signal Type Table

1 {

2 "DUT.counter.x": "Clash.Sized.Internal.Unsigned 5",
3 "DUT.count": "GHC.Types.Bool"

4}

B.2. Value Translation Table

In the actual data, "kind": "Normal" and "subfield": [] are omitted, and all fields have been shortened
to a single letter (for example, "Compound" becomes "C").

2 {

3 "(Clash.Sized.BitVector.Bit,Clash.Sized.BitVector.Bit)": [
4 { "Compound": {

5 "subfields": [

6 ["Oo","String"],

7 ["1","String"]

8]

9 }

10 },

11 {

12 T1@Y g o

13 "val": {"String": "(1,0)"},
14 "kind": "Normal",

15 "subfields": [

16 {

17 "name": "O",

18 "result": {

19 "val": {"String": "1"},
20 "kind": "Normal",

21 "subfields": []

22 }

23 })

24 {

25 "name": "1",

26 "result": {

27 "val": {"String": "0"},
28 "kind": "Normal",

29 "subfields": []

30 }

31 }

58

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

]
},
"0O": {

"val": {"String": u(o’o)n}’

"kind": "Normal",
"subfields": [

{
"name": "O0",
"result": {
"val": {"String":
"kind": "Normal"
"subfields": []
}
Yo
{
"name": "1",
"result": {
"val": {"String":
"kind": "Normal"
"subfields": []
}
}
]
¥o
o1 {

"O"},

"0"},

"yal": {"String”: H(O,l)"},

"kind": "Normal",
"subfields": [

{
"name": "0",
"result": {
"val": {"String":
"kind": "Normal"
"subfields": []
}
},
{
"name": "1",
"result": {
"val": {"String":
"kind": "Normal"
"subfields": []
}
}

IlOIl}:

||1||}’

59

Shockwaves Supported Types

The following types are implemented without subsignals:
(), Bool, Char, Bit, Int, Int8, Int16, Int32, Int64, Ordering, Word, Word8, Word16, Word32, Word64,
CUShort, Signed, Unsigned, Double, Float, Fixed, SNat, Proxy

Types with standard derived implementations:
tuples of up to 15 elements, Complex, Down, Identity, Const, Product, Sum, Compose

These types have custom implementations of Display and/or Split:
Maybe, Either, Vec, BitVector, RTree, Zeroing, Wrapping, Saturating, Overflowing, Erroring

60

Tydi Coding Styles

This appendix provides three different ways to write Tydi-Clash code.

D.1. Direct Control

The most direct way is to control all signals directly. While in many cases this results in fairly simple code,
there is no protection against incorrect usage. Case detection can be separated from data handling by

defining boolean values.

Since the inner signals of physical streams are private, this method of interfacing is currently not

actually possible in Tydi-Clash.

{ -

case detection using

2 dataTransfer = inStream.
3 lastTransfer = inStream
4 outTransfer = outStream.

booleans
valid && inStream.strb

.valid && not inStream.strb && any inStream.last

valid && outReady==Ready

6 —— output dependent on case

7 outStream = PStream

8 { valid = dataTransfer || lastTransfer
9 , dat = out

10 , last = inStream.last

1" }

12

13 inReady = convertReady outReady

14

15 (state', out) = go state inStream.dat

6 newState =

if outTransfer then state'

else state

D.2. Intertwined Data

With the data encapsulated in special types, the data only becomes accessible with the data detection.
Unfortunately, mixing case detection and data generation results in less readable code.

{ -

3 Transfer tf |

9 where (state'',out)
10 Transfer tf |

any $ getLast tf

combined case detection and output generation
> (outStream, inReady,state',outTransfer) =
Just d <- getDataSliced tf -> (fromSliced (Just out)

case inStream of

(getLast tf)
O
, readyConvert outReady
, state''
, outStream==Ready)
= statemachine state d
-> (fromSliced Nothing
(getLast tf)

O

61

13 , readyConvert outReady

14 , state

15 , outStream==Ready)

16 _ -> (NoTransfer ,Ready,state,False)
17

e newState = if outTransfer then state'

19 else state

D.3. Case Detection Using Maybe

Instead of booleans, cases can be stored as Maybe values containing their relevant data. This style was
thought up as a solution to the implementation difficulties while writing the example implementation.

1 == case detection

> dataTransfer = case inStream of

3 Transfer tf | Just d <- getDataSliced tf -> Just (statemachine state d
4 , getLast tf)
5 _ -> Nothing

s lastTransfer = case inStream of

7 Transfer tf | 1 <- getlast tf, any 1 -> Just 1

8 _ -> Nothing

9

10 —— output generation

11 inReady = if | Just _ <- dataTransfer -> readyConvert outReady
12 | Just last <- lastTransfer -> readyConvert outReady
13 | otherwise -> Ready

15 outStream = if | Just ((_,d'),last) <- dataTransfer -> fromSliced (Just d')

16 last

17 @)

18 | Just last <- lastTransfer -> fromSliced Nothing
19 last

20 O

21 | otherwise -> Ready

22

23 newState = if | ((s',_),_) <- dataTransfer, outReady==Ready -> s'

2 | otherwise -> state

62

	List of Figures
	List of Tables
	Introduction
	Common background
	Haskell
	Clash

	I Shockwaves
	Introduction
	Objectives
	Outline

	Background & Related Work
	Surfer
	Spade
	Chisel and Tywaves
	MyHDL and GTKWave
	Clash VCD Generation

	System Design
	Tracing and Compiling
	Value Decoding and Representation
	Selected Design

	Surfer Integration
	Translator Implementation
	Translation Data Format
	Lookup Tables in JSON
	Equivalent Haskell Types

	Data Representation
	The Haskell Classes Display and Split
	Algebraic Data Types
	Customized Representations and Abstract Data Types
	Builtin Types

	Translation
	Tracing
	Post-simulation Translation of Verilog Simulations

	Results
	Tracing
	Post-simulation Translation

	Discussion
	Pre-translation
	Haskell Library
	Tracing
	Post-compilation simulation

	Summary

	II Tydi
	Introduction
	Objectives
	Related Work
	Outline

	Background
	Tydi
	Tydi-lang
	Tydi-Chisel
	Haskell Optics
	Clash Protocols

	Tydi Data Types
	Group
	Union
	Translating Haskell Types
	Type Conversion

	Physical Streams
	Streams and Ports in Clash
	Representing Control Signals
	Interacting with Physical Streams
	Connecting Streams

	Logical Streams
	Representation of Logical Streams
	Synthesis into Phsyical Stream Bundles
	Interacting with Physical Stream Bundles

	Behavioral Verification
	Stable Data Transmission
	Correct Sequence Termination
	Complexity Level Restrictions
	Inter-stream Dependencies

	Shockwaves Integration
	Tydi Data Types
	Slices and Prefixes
	Physical Streams

	Example Implementation
	Problem Statement
	Tydi Streamlet Pipeline
	Implementation
	Results

	Discussion
	Summary

	III Closure
	Conclusion
	References

	Appendix
	Repositories
	Shockwaves
	Tydi-Clash

	JSON Format
	Signal Type Table
	Value Translation Table

	Shockwaves Supported Types
	Tydi Coding Styles
	Direct Control
	Intertwined Data
	Case Detection Using Maybe

