
Shockwaves &
Tydi-Clash
Raising the abstraction level of the Haskell HDL
Clash through typed waveforms and complex
streaming interfaces

Marijn Adriaanse

Shockwaves &
Tydi-Clash

Raising the abstraction level of the Haskell HDL Clash
through typed waveforms and complex streaming

interfaces

Thesis report

by

Marijn Adriaanse

to obtain the degree of Master of Science

at the Delft University of Technology

to be defended publicly on June 26, 2025 at 14:00

Thesis committee:

Chair: Prof. Dr. H. Peter Hofstee

Core member 2: Dr. Ir. Chris Verhoeven

Core member 3: Dr. Ir. Zaid Al-Ars

External advisor: Dr. Ir. Christiaan Baaij

Place: Hall H, Faculty of Electrical Engineering, Mathematics & Computer Science, Delft

Project Duration: November, 2024 - June, 2025

Student number: 5346878

An electronic version of this thesis is available at http://repository.tudelft.nl/.

Faculty of Electrical Engineering, Mathematics & Computer Science · Delft University of Technology

http://repository.tudelft.nl/

Copyright © Marijn Adriaanse, 2025

All rights reserved.

Abstract

This work contains two systems created to raise abstraction for the Haskell-based HDL Clash.

A common tool in hardware design is the waveform viewer. Although Clash could already generate

waveform files, these only contained binary representations of the values. Without translating these

to Haskell values, they are difficult to interpret. Shockwaves was created to perform this translation.

Unlike other typed waveform solutions, Shockwaves performs the translation fully in the Haskell runtime,

and stores the results in lookup tables. This gives the programmer full control over the waveform

representation of data. There are two methods of generating VCD files from Clash, and Shockwaves was

designed to work with both. The system is fully functional for signals traced during direct simulation. The

alternative approach of simulating a design after compiling it to a different HDL depends on the Clash

compiler adding type annotations. This requires an overhaul of the Clash compiler beyond the scope of

the project.

The second system, Tydi-Clash, is a library for the Tydi streaming specification in Clash. Tydi was

designed around transferring complex data structures, and allows for multiple related streams carrying

typed, multi-dimensional data. The Tydi-Clash library supports Tydi data types, physical streams, and log-

ical stream constructs. To encourage correct usage of the streams, the internal signals are encapsulated

in algebraic and abstract data types that prevent defining or accessing undefined values. Additionally,

tests are supplied for behavioral restrictions. An example implementation revealed implementations

using Tydi-Clash are unfortunately still a bit cumbersome, but this is believed to be solvable by adding a

library of utility modules for common situations.

ii

Preface

When I was just a little kid, I played a game. And in that game, there were logic gates. And so I started

making logic circuits to make systems in the game years before I even started programming. Now, as I

am about to finish my master’s, I can see that the love for hardware design that started back then never

left me, and hopefully never will.

In my bachelor’s degree Electrical Engineering I quickly gravitated towards digital logic once again,

and it led me to my master’s in Computer and Embedded Systems Engineering. There, I picked a single

course that taught me about Haskell and Clash, which ultimately brought me where I am today.

Now, I would like to thank my supervisors, Peter Hofstee, Zaid Al-Ars, and Christaan Baaij for their

help and support throughout the project. I would also like to thank my fellow students working on Tydi,

and colleagues at QBayLogic for their help and input. I would like to thank Frans Skarman for his support

in modifying Surfer. And I would like to thank everyone not mentioned here that came before and created

the systems upon which my work was built.

And finally, I would like to thank my family and friends - in my hometown, in Delft, and in the CodeBugs

community - that kept me going these past months.

Marijn Adriaanse

Enschede, June 2024

This research was performed in part with the support of the Eureka Xecs project TASTI (grant no. 2022005).

iii

Contents

List of Figures vii

List of Tables vii

1 Introduction 1

2 Common background 2

2.1 Haskell . 2

2.2 Clash . 3

I Shockwaves 5

3 Introduction 6

3.1 Objectives. 6

3.2 Outline . 6

4 Background & Related Work 8

4.1 Surfer . 8

4.2 Spade . 8

4.3 Chisel and Tywaves . 8

4.4 MyHDL and GTKWave . 8

4.5 Clash VCD Generation . 9

5 System Design 10

5.1 Tracing and Compiling . 10

5.2 Value Decoding and Representation . 10

5.3 Selected Design . 11

6 Surfer Integration 12

6.1 Translator Implementation . 12

6.2 Translation Data Format . 12

6.3 Lookup Tables in JSON . 12

6.4 Equivalent Haskell Types . 13

7 Data Representation 14

7.1 The Haskell Classes Display and Split . 14

7.2 Algebraic Data Types . 14

7.3 Customized Representations and Abstract Data Types 15

7.4 Builtin Types . 15

8 Translation 17

8.1 Tracing . 17

8.2 Post-simulation Translation of Verilog Simulations . 17

9 Results 20

9.1 Tracing . 20

9.2 Post-simulation Translation . 20

10 Discussion 22

10.1 Pre-translation . 22

10.2 Haskell Library . 22

10.3 Tracing . 23

10.4 Post-compilation simulation . 23

11 Summary 24

iv

II Tydi 25

12 Introduction 26

12.1 Objectives. 26

12.2 Related Work . 26

12.3 Outline . 27

13 Background 28

13.1 Tydi . 28

13.2 Tydi-lang . 29

13.3 Tydi-Chisel . 30

13.4 Haskell Optics . 30

13.5 Clash Protocols . 30

14 Tydi Data Types 31

14.1 Group . 31

14.2 Union . 32

14.3 Translating Haskell Types . 32

14.4 Type Conversion . 33

15 Physical Streams 34

15.1 Streams and Ports in Clash . 34

15.2 Representing Control Signals . 35

15.3 Interacting with Physical Streams . 37

15.4 Connecting Streams . 38

16 Logical Streams 39

16.1 Representation of Logical Streams . 39

16.2 Synthesis into Phsyical Stream Bundles . 39

16.3 Interacting with Physical Stream Bundles . 40

17 Behavioral Verification 41

17.1 Stable Data Transmission . 41

17.2 Correct Sequence Termination . 41

17.3 Complexity Level Restrictions . 43

17.4 Inter-stream Dependencies . 43

18 Shockwaves Integration 44

18.1 Tydi Data Types . 44

18.2 Slices and Prefixes . 44

18.3 Physical Streams . 45

19 Example Implementation 46

19.1 Problem Statement . 46

19.2 Tydi Streamlet Pipeline. 46

19.3 Implementation . 46

19.4 Results . 48

20 Discussion 50

21 Summary 51

III Closure 52

22 Conclusion 53

References 54

Appendix 56

A Repositories 57

A.1 Shockwaves . 57

v

A.2 Tydi-Clash . 57

B JSON Format 58

B.1 Signal Type Table . 58

B.2 Value Translation Table . 58

C Shockwaves Supported Types 60

D Tydi Coding Styles 61

D.1 Direct Control . 61

D.2 Intertwined Data . 61

D.3 Case Detection Using Maybe . 62

vi

List of Figures

3.1 Illustratory example of a signal defining the state of an RGB LED before and after translation

by Shockwaves. 7

7.1 Default waveform viewer representation of algebraic data types. 15

7.2 Examples of signals with customized implementations for Display and Split. 16

8.1 Pipeline of the Shockwaves system when using Verilog as an intermediary language. . . 19

9.1 Example signal controlInputs from the USB interface as bitvector and after Shockwaves

translation. 21

15.1 Signal validity masking in a physical stream. data is masked by individual strobes, if they

exist, which are then masked by stai and endi, which are in turn masked by the single

strobe bit if present. All signals are masked by valid. 36

16.1 Synthesis of a logical stream to a forwards physical stream bundle. 40

17.1 Sequence termination error detection logic of a stream with complexity 8, 3 data lanes and

3 dimensions. The highlighted signals show an example or erroneous data being detected. 42

18.1 Shockwaves signals for Group and Union. 44

18.2 Shockwaves signals for Prefix. 44

18.3 Shockwaves signals for Slice. 45

18.4 Shockwaves signals for PStream and PStreamReady. 45

19.1 JSON parsing pipeline. Stream types are given in simplified notation. 47

19.2 Data processing of the jsonParser module. 49

List of Tables

4.1 Advantages and disadvantages of both VCD generation methods 9

5.1 Advantages and disadvantages of different translation methods 11

15.1 Internal physical stream data types . 35

15.2 External physical stream data types. Types that share the internal representation are

omitted. 37

19.1 Modules of the JSON parsing pipeline. 47

vii

1
Introduction

In the past decade, advancements in hardware development have not been able to keep up with Moore’s

law. Yet, the amount of data we process is ever increasing. As such, the industry has shifted its focus

from trying to improve the performance of regular processors to using accelerators and domain-specific

hardware [1].

Modern hardware technologies allow for custom hardware implementations that are more complex

than ever. Furthermore, the art of system design is an ever developing field. With this growth of knowledge

and resources, it becomes increasingly difficult for developers to be able to wield the vast complexity at

their disposal. As such, there is a need to create languages and tools that allow advanced systems to be

created with as little effort as possible.

Thus, this need for abstractions and less cumbersome implementations has given rise to numerous

modern HDLs. While languages such as VHDL and Verilog are still used for hardware design, these

modern HDLs allow for a higher level of abstraction, such as advanced data types and programming

constructs. However, development of new languages also requires tools and libraries to be developed to

fully leverage their advantages over classical HDLs.

To this end, two systems were developed for Clash, a modern, Haskell-based HDL. The first is

Shockwaves, a typed waveform system for Clash. This raises the abstraction level of waveform-based

debugging to the same level as the rest of Clash. The second is Tydi-Clash, which deals with the

implementation of Tydi streams. These streams can be used to create standardized, reusable, complex

hardware interfaces.

Consequently, after a common introduction to Haskell and Clash in Chapter 2, the contents of this

work are divided into two parts. Part I covers Shockwaves. Shockwaves is later used in Part II, which

covers Tydi-Clash. Both parts have their own introduction, background information, discussion and

summary. Finally, the work is concluded in Chapter 22.

1

2
Common background

2.1. Haskell
This work deals with the Haskell [2] programming language, and thus a proper understanding of some of

its mechanics are useful to be aware of. Haskell is a general purpose functional programming language,

and uses immutable data. It is statically typed, but has a high degree of type inference. The following

sections provide an introductions to some core concepts of Haskell used throughout this thesis.

2.1.1. Basic syntax
Haskell does not use parentheses for function calls like most languages. The operator with the highest

precedence is actually the whitespace between identifiers/values, and denotes application. This means

that a b c may be read as (a(b))(c) or even a(b,c).

Operators works as binary operators. They combine the arguments to the left and right, though they

can be grouped in parentheses to make them act like normal functions. Thus, a + b reads as (+) a b.
It is possible to define custom operators, and set their associativity and precedence.

Data types can be defined after ::: x :: Int. Function types are denoted by input -> result.
Multi-parameter functions do not have multiple inputs; instead, the result after taking one argument is

a new function that takes the rest of the arguments. Hence, in f :: a -> b -> c, f is a function that

takes inputs of types a and b and produces a result of type c.

2.1.2. Lazy evaluation
As a language that works by definitions, rather than being imperative, Haskell relies heavily on lazy

evaluation: expressions are only evaluated when they are needed, and only to the extent that is absolutely

necessary. Since this behavior is not always desired, Haskell has several tools for forcing evaluation of a

value, even if it is not directly used.

Expressions may be set to so called bottom values such as undefined or error. These do not

represent actual values of the associated type, but rather the notion that there is no way to determine the

value. As such, attempting to evaluate such a bottom value results in an exception that, unless caught,

crashes program execution.

2.1.3. Data types
Haskell has primitive data types, such as numbers and characters, but otherwise runs on algebraic data

types. Such a type may have one or more constructors, which may in turn each have one or more data

fields of varying types. The fields can be either be nameless, and provided like function arguments, or

use record style.

1 data A = P | Q | R -- multiple constructors
2 data B = V Int Int -- regular style fields
3 data C = W{x::Int , y::Int} -- record syntax

Data types are may be recursive, and polymorphic, i.e. a type may take several types as parameters.

A type that takes parameters is essentially a function at the type level: it takes one or more types as

2

arguments to produce a type. The “type of a type” is called it’s kind. Besides data types and polymorphic

types, there are also kinds such as Nat for natural numbers, or Symbol for strings.

1 data X = C -- X has kind Type
2 data T a b = A a | B b -- T has kind Type -> Type -> Type

Data types don’t have to always be explicitly defined, and they can often be kept polymorphic. For

example, a function may have the type a -> a, indicating it takes one value of any type a and returns

a value of that same type. When a type parameter cannot be inferred, it may be specified with the @
operator.

1 show (def @Int) -- show the default value of Int

2.1.4. Common data types
There are a few common Haskell types that come up repeatedly in this work. () is the unit type, and only

has the value (). It is a type that holds no actual data. Bool is a boolean, and has constructors True and

False. There are multiple number types, but in this work, Int is used for arbitrary numerical values. It

does not have a strictly defined number of bits.

Values may be grouped into tuples. Tuple types can hold heterogenous data, and there is a separate

tuple data type for each length. For example, the type of a 3-long tuple would be (a,b,c).

The final important type is the polymorphic type Maybe. The type Maybe a has constructors Just a
and Nothing, and denotes optional data.

2.1.5. Classes
A class in Haskell is essentially a set of functions, types and values that may be defined for a some

data types by implementing the class. Some common examples are Show, which allows a value to

be represented as text, and Generic, which decomposes the type and values into their different parts

(constructors, fields, etc.).

A class can be used as a constraint for a class or function. For example, the type C a => a -> a
denotes a function that takes and produces a value of any type a for which the implementation C a exists.

Values may have default implementations. If all values have suitable defaults, the class can be

derived: it is implemented using these default implementations without requiring the programmer to

define everything manually. There are also different “deriving strategies” such as derive via, which
allow the implementation to be copied from a wrapper type instead. This can be used to provide a

secondary default implementation.

2.1.6. Type families
Type families are essentially functions over types. They may be supplied at the toplevel form, in which

case they can look much like ordinary functions, or they may be “associated” with classes (for example,

the class C a has a type X a, and the implementation of C Bool defines that X Bool = Int). Type

families are a very powerful tool for performing operations on types, or defining more complex class

instances.

2.1.7. Template Haskell
Template Haskell is an extension that adds meta-programming in compile time. It can be used to generate

code in a way that would otherwise be impossible. As such, it is extremely powerful, but it does come

at the cost of having much more complicated code. Therefore, it is generally only used if absolutely

necessary.

2.2. Clash
Clash [3], [4] (stylized as CλasH) is an HDL based on Haskell. Haskell’s purity and data immutability

make it particularly suitable to be used as an HDL. It was first created in 2009, and has since been further

developed and successfully used in many projects.

3

Clash consists of several Haskell libraries, containing things such as sequential logic constructs and

hardware-friendly types, and the Clash compiler, which can translate a Clash design into other HDLs.

The Clash compiler uses the Haskell compiler frontend, and replaces the backend. In turn, this backend

has its own target language-specific backends.

2.2.1. HDL concepts in Clash
Hardware designs are generally a combination of combinatorial and sequential logic.

Creating combinatorial logic in Clash is trivial: due to Haskell’s data immutability, any standard

expression defining values will result in combinatorial logic. Any value is simply a signal in the HDL, while

a function turns into a piece of combinatorial logic with inputs and outputs. Since Haskell is pure, the

complete behavior of the function is captured by the logic’s inputs and outputs. Control statements, such

as if or case, are turned into multiplexers.

1 combinatorial_double :: Int -> Int
2 combinatorial_double x = 2 * x

For sequential logic, Clash uses the Signal type. This type represents a time domain signal in a

certain clock domain in the design, and is essentially an array-like structure containing values for each

clock cycle.

Combinatorial logic can be applied by mapping ordinary functions to these time domain signals.

Special Clash functions, such as register and mealy, can be used to gain access to values from

previous clock cycles, allowing the creation of sequential logic.

1 signal_double :: Signal dom Int -> Signal dom Int
2 signal_double x = fmap combinatorial_double x
3

4 accumulator :: Signal dom Int -> Signal dom Int
5 accumulator = mealy go 0 -- start at 0
6 where go (a,x) = (a+x,a) -- (state,in) -> (state',out)

One cannot directly map combinatorial logic to multiple Signals. To convert between structures of

signals (in the same domain) and signals of structures, the bundle and unbundle functions are provided.

Cross-domain connections are outside of the scope of this work.

1 -- bundle for tuples of 2 values
2 bundle :: (Signal dom a, Signal dom b) -> Signal dom (a,b)

2.2.2. Important Clash types
For the Clash compiler to be able to synthesize code, the data types used must be representable as a

fixed number of bits. For example, Haskell’s Bool type is fine, while lists are not due to their unknown

length.

Some examples of commonly used Haskell types in Clash designs are Bool and (). Polymorphic

types such as Maybe and the various tuples can be used as well, but only if their contained types are

themselves synthesizable. In general, any algebraic data types can be used, as long as all of their

subvalues are of representable types.

The Clash library comes equipped with some fixed-size versions of common types. Signed and

Unsigned represent numerical values with a fixed number of bits, and Index represents numbers up to a

certain value. Vec provides fixed-length arrays of values.

1 signed :: Signed 5 -- 5 bits
2 index :: Index 10 -- an integer in the range [0,10)
3

4 vec :: Vec 3 Int -- 3 Ints
5 vec = 0 :> 1 :> 2 :> Nil

4

Part I
Shockwaves

5

3
Introduction

Debugging is an inevitable part of development, and having effective tools for debugging is essential

to the development process. While software developers have access to a multitude of testing facilities,

hardware developers have fewer tools at their disposal.

In essencence, debugging tools allow the programmer to see the inner workings of their creations.

This might be by showing execution in a stepwise manner, logging values throughout the design, or

simply representing the system in a different format.

In hardware design, one of the most used tools is a waveform viewer: signals are logged throughout

design simulation (typically in a VCD file), and their values are visualized in the time domain. This allows

the developer to see the values of every signal during each clock cycle of the simulation.

Although Clash has support for generating VCD files, the most used logging format for hardware

designs, one indispensible part is missing: since these VCD files only contain the binary representations

of Haskell values, waveform viewers can only display these values using standard formats, such as

binary, hexadecimal or signed integers. This makes the waveforms incredibly difficult to interpret, and

greatly diminishes the value of waveforms.

3.1. Objectives
The Shockwaves project aims to create a system that shows logged values in their Haskell representation

form, allowing Clash developers to properly interpret waveforms.

In creating the system, the following objectives were adhered to:

• Haskell values are displayed in a format that is close to their representation in Haskell.

• Complex nested data structures are decomposed into subsignals.

• It is possible to, with little effort, add display formats for new data types.

• The system is easy to apply to an existing design.

• The system can be used with, or is a close substitute to, existing waveform viewer pipelines.

Together, these objectives lead to a system that requires minimal effort to use, while being flexible and

broadly applicable. An illustratory example of what the output might look like with and without Shockwaves

can be seen in Fig. 3.1.

3.2. Outline
Background information is provided in Chapter 4. The main system design is discussed in Chapter 5,

and further elabortated in Chapters 6 to 8. These chapters cover the waveform viewer integration, data

representation, and translation mechanisms respectively. Chapters 9 and 10 detail and discuss the

results, and finally the part is summarized in Chapter 11.

6

ledState 0100 1101

ledState LedState {color = Green, … LedState {color = Yellow,…
color Green Yellow
pattern Continuous Blinking

Figure 3.1: Illustratory example of a signal defining the state of an RGB LED before and after translation

by Shockwaves.

7

4
Background & Related Work

This chapter provides some background information on waveform viewers, other HDLs, and Clash’s

methods of creating VCD files. Although there are many modern HDLs, this chapter is limited to languages

that have custom waveform viewer support, and served as an inspiration for Shockwaves.

4.1. Surfer
Surfer [5] is a modern waveform viewer written in Rust. Surfer was designed to be easily extensible with

translator modules, that may be used to represent the data in VCD files in different ways. These translators

are responsible for both the direct display and division into subsignals of VCD signals. Additionally,

translators have control over which (sub)signals are defined when, as well as their display style.

4.2. Spade
Spade [6] is a modern HDL inspired by Rust. As it was only created in 2022, the language is still quite

heavily under development.

The Spade compiler was written in Rust, and is developed by, among others, the creator of Surfer.

As such, it should come as no surprise that Surfer has typed waveform support for Spade. The Spade

compiler stores it’s ‘state’, including the signal type information, in a separate file. Surfer is given the

location of this file in a configuration option, and restores the Rust data internally. The binary data in the

VCD files is then translated using this type information.

4.3. Chisel and Tywaves
Tywaves [7] is a typed waveform viewing solution for Chisel [8], [9], a modern HDL based on Scala.

Before Tywaves, Chisel lacked waveform support alltogether. Designs could be compiled by Chisel

to FIRRTL [10], and then further to Verilog [11] using CIRCT [12]. Tywaves updates these tools by

propagating type information to the FIRRTL code, and extending the debug output of CIRCT to include

this extra information. This debug data is used by a Surfer translator to translate the simulation data.

The pipeline is handled by the Tywaves-Chisel API.

4.4. MyHDL and GTKWave
MyHDL [13] is a Python-based HDL. It supports typed waveforms by directly putting string representations

of values into the VCD file, circumventing binary values alltogether.

Strings in VCD files are an extension to the VCD format that is supported by the GTKWave [14]

waveform viewer. Although GTKWave was not designed to be extended with arbitrary translators, the

string support means that it can be used to display typed waveforms by including all translations in the

VCD file directly. This does require including any subsignals in the VCD as well, and provides no control

over details like the display color of a value.

8

4.5. Clash VCD Generation
In Clash, VCD files can be generated using the Signal.Trace library [15]. This library provides several

functions for logging Clash signals. The Clash compiler takes no part in this form of simulation: the project

is simply an ordinary Haskell program making use of the Clash Haskell libraries. The main function is

responsible for setting up and running the simulation, as well as storing the results in appropriate files.

Tracing has several drawbacks. First of all, the Signal.Trace library requires Clash’s Signal objects

to function, while most computation in Clash are performed as concurrent logic on the data inside

these signals. This means that tracing intermediate values often requires extra work. Second, tracing

uses impure behavior to store the values of signals without propagating these to the toplevel entity.

Unfortunately, this does mean that if by lazy evaluation the trace statement is never evaluated, the trace

does not end up in the output. Although this of itself may be valuable information, it generally just makes

it more difficult to debug a design. As long as one value in the signal is evaluated, the signal can be

collected by the system and is fully evaluated.

Alternatively, the Clash compiler may be used to compile the Clash design to any supported HDL,

before simulating the generated code using any appropriate third party tool. While this has the ability to

capture all values in the design, the generated code may differ from the original design in several ways,

include signal names, which make it harder to understand the output. Furthermore, testbenches can no

longer be easily defined in Haskell since they must be compileable, and Haskell data types cannot be

used when writing testbenches in different languages.

The advantages and disadvantages of both methods are summarized in Table 4.1. Because of these

properties, both methods are used in practice.

Table 4.1: Advantages and disadvantages of both VCD generation methods

Using Signal.Trace Post-compilation code simulation

: Haskell available for writing testbenches
: No extra tools required

: All signals are captured

6 Only signals can be traced
6 Traces may be lost due to lazy evaluation

6 Testbench creation is difficult
6 The compiled design might differ substan-

tially from the Clash design
6 Requires external tools

9

5
System Design

This chapters deals with the major design decisions made in the project. Section 5.1 explains the

decisions regarding tracing and compiled design simulation, and Section 5.2 discusses different ways of

translating values. Section 5.3 summarizes the design decisions, and lists the components required for

the selected design.

Because of its design focus on extensibility, the amount of control over the output, and the fact it is

already in use by Clash developers, the design will focus on using Surfer as the waveform viewer.

5.1. Tracing and Compiling
Because of the respective advantages and disadvantages of creating waveform output through tracing

and simulation of the compiled design, the choice was made to attempt to make Shockwaves compatible

with both simulation types.

Clash can compile to different HDLs, but due to the simplicity of the generated Verilog designs, this

language was chosen.

5.2. Value Decoding and Representation
Unlike Spade and Chisel, Clash supports custom bit representations. This makes decoding values much

more complex. Clash itself is equipped with an unpack function, which is automatically generated for

types with custom bit representations. It would be possible to store this custom type representation, and

recreate the functionality of Clash’s unpack function in Rust for both ordinary types and types with custom

representations, but that would lead to more code redundancy.

Alternatively, it is possible to use the Haskell runtime to translate the values, as this provides access

to either the original Haskell value, or the unpack function. These are useful for both tracing and decoding

Verilog values respectively. Additionally, the Haskell runtime has access to show, which can be used to

display values as text, and is the standard display method for most types. In general, using the Haskell

runtime would allow for both standard representation of data types, and custom display rules set from

within the Clash design.

However, interfacing with the Haskell runtime introduces additional complexity. First of all, the type

information needs to be converted back to runtime type selection. Secondly, there needs to be a way to

pass information between Haskell and Surfer. Either this is done live, which would require an interface

between Rust and Haskell, or in advance, by pre-translating the values.

Live translation requires a direction communication link between Rust and Haskell, as well as access

to the project while running the waveviewer. This greatly increases the complexity of the setup, and

would be even more difficult when using the browser version of Surfer.

Pre-translation is much easier - the values can be translated in advance and passed to Surfer by

simply writing them to a file. This does come at the cost of having to translate all values (or all values for

some subset of signals) in advance, as well as having to store all translations, which as a general rule

are much larger than the bit representations.

10

Table 5.1: Advantages and disadvantages of different translation methods

Translation in Rust Live translation in Haskell Pre-translate in Haskell

: Translation on demand : Translation on demand
: Values displayed as done

in Haskell
: Fully customizable

: Values displayed as done

in Haskell
: Fully customizable

6 Repeated implementa-

tions of unpack and show
6 Limited formats

6 High complexity of joining

Haskell and Rust in run-

time
6 Requires access to the

Clash design while using

the waveform viewer

6 All values are always

translated
6 Potentially large file sizes

A summary of the advantages and disadvantages can be seen in Table 5.1.

Because of the desire to avoid re-implementing unpack and general control and flexibility for dis-

playing values, Haskell-based translation was chosen. Due to the time constraints of the project, the

implementation was restricted to pre-translation, but this may be extended later to also support live

translation.

5.3. Selected Design
The selected system design uses Haskell to translate all values in the VCD file and store these translations

in separate files. This determines the shared and per-approach required components when tracing and

simulating compiled code.

When tracing signals, the translations are created and added to a translation table while tracing,

which is stored alongside the VCD output. This requires modification of the current tracing library.

For compiled designs, the current pipeline consists of compiling the Clash design to another HDL

such as Verilog, and simulating this compiled design to obtain the VCD output, which can be opened in a

waveform viewer. Shockwaves will add the following steps to this pipeline:

• Modifying the Clash compiler to propagate type information to the generated HDL code

• Linking the signals in the VCD file to type information in the compiled design

• Translating the values for all typed signals and storing the result in a translation table

Both tracing and compiled design simulation require a translator module to be added to Surfer (Chapter 6),

and a Haskell library for representing values in a Surfer-compatible data format (Chapter 7). The different

translation procedures are covered in Chapter 8.

11

6
Surfer Integration

This chapter describes the creation of a new translator for Surfer. Section 6.1 covers the main translator

implementation, while Sections 6.2 to 6.4 detail the way translation data for the translator is generator

from Haskell and passed to the translator module.

6.1. Translator Implementation
Surfer works with translators, which determine how a signal is shown. For example, one translator might

format data as a signed integer, while another formats the same data as a hexadecimal value. These

translators can also generate subsignals, and change a signal’s appearance.

Since Surfer was designed around the option of adding new translators, adding one is rather simple.

The added translator simply reads the lookup tables generated, and makes the translations available to

the rest of Surfer.

More precisely, the translator keeps two tables: one that lists the Haskell types of all signals, and one

that stores, for each Haskell type, the structure and translation table. The structures and translations

are stored directly as Surfer’s internal types, but subsignals missing in the translation are filled with

NotPresent values recursively upon lookup (see Section 6.2). This prevents the system from having to

store a lot of data just to mark a signal as not present.

The translator looks for the lookup table files in the same directory as the VCD file when the VCD file

is opened. The files must have the same base filename, but a different extension indicating their function.

6.2. Translation Data Format
Surfer requires two things to be able to translate a signal: structural information, and a way to translate

values from the VCD file into values for all (sub)signals in the structure.

The structure is represented by a VariableInfo object. This can take the value Compound for signals

with subsignals, or Bits, Bool, Clock, String or Real. These other variants have some effect on the

way the signal’s waveform is displayed. The Compound variant holds a list of string-VariableInfo tuples

denoting the names and structures of subsignals.

The value translations take the form of a TranslationResult object, which contains a ValueRepr
value, a ValueKind value, and a list of name-SubFieldTranslationResult pairs. ValueRepr contains
the actual value displayed, while ValueKind determines what the wave itself looks like - this mostly boils

down to the color, and whether it is displayed at all. Specifically, if a signal does not exist at a given time,

its kind is NotPresent.

6.3. Lookup Tables in JSON
The lookup tables are created using the JSON format. While this format is not that efficient, it is human

readable, easy to generate, and above all, can be directly deserialized by Rust into tables of Surfer’s

structure and translation data types.

There are two lookup table files, corresponding to the tables stored by the translator module:

12

• <waveform>.types.json is a simple dictionary linking signal names to type names, and has the

format: {signal:type,....}.

• <waveform>.trans.json contains the structures and translations as a dictionary of all Haskell

types in the format: {type:[structure,{value:translation,...}],...} where structure and

translation are simply the serialized JSON of Surfer’s VariableInfo and TranslationResult
types.

Examples of both formats can be found in Appendix B.

For optimization, all field and variant names have been reduced to a single character. Furthermore,

ValueKind::Normal is set as the default value during deserialization and omitted from the JSON.

6.4. Equivalent Haskell Types
The Haskell part of Shockwaves uses direct equivalents of the Rust data types used in Surfer, and

includes a module for serializing these object to JSON format.

13

7
Data Representation

This chapter describes how Haskell data types can be displayed in the waveform viewer by generating

data in the format specified in Chapter 6. Section 7.1 describes the Haskell classes created to generate

this data. Sections 7.2 and 7.3 show how different data types can be displayed, and Section 7.4 lists the

implementations used for different data types used in Clash.

7.1. The Haskell Classes Display and Split
The translation process does two essentially separate things: showing the value (creating the ValueRepr
and ValueKind values) and defining and generating the structure of subsignals (the VariableInfo and

SubFieldTranslationResult values). In Shockwaves, these actions are performed through the two

new classes Display and Split respectively.

Display defines the display method, which generates a (ValueRepr,ValueKind) pair. By default,

this uses Haskell’s showmethod to turn a value into a string, and keeps the kind to VKNormal. This means

the type only needs to derive Show for Display to be deriveable. display merely returns the result of

the repr and kind methods, which can be overwritten individually. The library also has a flag to use

showX instead of show, which is less generic but can handle undefined subvalues better. Alternatively,

this behaviour can be derived for a single type by deriving via DisplayX.

Split defines structure, which returns a VariableInfo value, and split, which generates a list of

SubFieldTranslationResults. It has a default implementation for algebraic data types as described in

Section 7.2.

For primitive types, such as numbers, the value is not split into subsignals at all. To facilitate deriving

this behavior, a wrapper class NoSplit is provided; Split can be derived via NoSplit using the derive
via statement to obtain this behavior.

The display and split functions may be called on (partially) undefined values, which would ordinarily

crash the simulation. To prevent this, the functions safeDisplay and safeSplit exist, which catch these

exceptions. These are used by the function translate, which combines the results from the two functions,

allowing the value to be split even if it is not fully defined. The translate function is used for generating

the translation tables.

7.2. Algebraic Data Types
Most Haskell data types are fundamentally algebraic: data types have a number of constructors, which

correspond to a sum type, and each constructor may have a number of fields, which correspond to a

product type.

In a waveform viewer, we want to be able to split signals up into subsignals for each of their constructors

and fields. More accurately, every data type has subsignals for all its constructors, of which exactly one

is defined at any time. Each constructor then has subsignals for all of its fields. If the data type only

has one constructor, we may omit this subsignal for legibility, and directly add the subsignals for the

constructor’s fields to the signal of the data type. Some examples are shown in Fig. 7.1.

14

1 data Month = Jan | Feb | ... deriving (...)
2 data Date = Date {month :: Month, day :: Int} deriving (...)
3 date :: Date
4 data Instr = And Bool Bool | Invert Bool deriving (...)
5 instr :: Instr

date Date {month = May, day = 29}
month May
age 29

instr And True False Invert False
And And True False

0 True
1 False

Invert Invert False
0 False

Figure 7.1: Default waveform viewer representation of algebraic data types.

It would be a tedious process to manually define these subsignals for every data type. Luckily, Haskell

has a class Generic which can be derived for standard algebraic data types, and provides an interface

to a representation of the type’s structure. Using this structural representation, it is possible to create the

subsignals as described.

7.3. Customized Representations and Abstract Data Types
Sometimes the default implementations of the Display and Split are insufficient to best display a data

type, and custom implementations of the classes may be preferred.

A simple example would be assigning colors to the different constructors of a data value (see Fig. 7.2),

to more easily discern what is happening in a design. The Shockwaves library includes a Color module

that allows for arbitrary RGB values to be used, in addition to some default colors.

A custom implementation of Split is much more powerful. This is particularly useful for abstract

datatypes, whose internal structure is less important (unless it is actively being debugged) than its

interface. For example, array type structures such as Clash’s Vec are defined recursively in Haskell,

but creating a recursive structure of subsignals would be less readable than simply having a list (see

Fig. 7.2). A custom implementation of the class makes this possible.

7.4. Builtin Types
Shockwaves comes with default implementations for all builtin Haskell and Clash types. Most of these

types are either primitives, or function properly using the default implementation of Split. However, as
mentioned in Section 7.3, there are a few types for which this is suboptimal:

• Vec has a custom implementation that creates a list of subsignals rather than a nested structure.

The same is done for BitVector.

• Either is often used as a result value, where the Left constructor indicates an error. By setting a

flag, the Left constructor is displayed using VKWarn.

• Maybe does not really benefit from having subsignals for it’s constructors. Instead, it only has

a subsignal for the contained value, which only exists if the Maybe value is of the Just variant.

Furthermore, there is a flag to make Nothing display in gray.

• Bit and Bool are both single bit values, and thus use VIBool instead of VIString (the default for

unsplit types).

• RTree has two subsignals for each of its children if it is a branch, and a single subsignal for the

contained value if it is a leaf. While these are simply the two constructors’s subfields, the type itself

15

already restricts the values to either one of these constructors. Hence, only the subsignals of the

one realizable constructor are displayed.

A list of all supported types can be found in Appendix C.

1 data Color = Red | Green | Blue deriving (Show,Generic,Split ,...)
2 instance Display Color where
3 kind x = VKCustom $ case x of
4 Red -> C.red
5 Green -> C.green
6 Blue -> C.blue
7 color :: Color
8 coords :: Vec 3 Int

color Green Red Blue
Red Red
Green Green
Blue Blue

coord 0 :> 0 :> 0 :> … 0 :> 1 :> 2 :> … 1 :> 1 :> 1 :> …
0 0 1
1 0 1
2 0 2 1

Figure 7.2: Examples of signals with customized implementations for Display and Split.

16

8
Translation

With the data requirements properly defined, all that is left is to actually generate the lookup tables. This

step differs for the different methods of generating VCD files from Clash designs. Section 8.1 covers

the solution when tracing using Clash’s Signal.Trace module, and Section 8.2 covers the pipeline for

translating VCD files generated by simulating the Verilog produced by the Clash compiler.

8.1. Tracing
For tracing, an adapted version of the Signal.Trace module is used. This module works by passing

signals through a trace function, which uses impure behavior to store the signal in a global dictionary.

The changes to the module are relatively simple. In addition to the table of signal values, two other

tables are stored globally: the signal-to-type map, and the table of structure and translation data per type.

Since the simulation happens in the Haskell runtime, and the signal’s type is directly available, these

values can be trivially generated using the translate and structure functions. One detail of note is

that the string representing the type must use the full type name, including its module of origin, to avoid

namespace collisions.

Shockwaves.Trace acts as a drop-in replacement to Signal.Trace, and requires only minimal

changes to store the results in 3 files, rather than just one. However, this also means the module

has the same drawbacks of lazy evaluation and only being able to trace time-domain signals.

8.2. Post-simulation Translation of Verilog Simulations
The second method of obtaining a VCD file is simulating a different HDL generated by the Clash compiler.

Several languages are available, but Verilog was deemed the most suitable since the generated code is

relatively simple. For example, it does not turn a record-type Haskell data type into a record in the HDL,

which does happen in VHDL generation.

To create VCD translations this way, several steps have to be performed:

• Linking the VCD signals to their Haskell types

– Annotating the Haskell types in the generated Verilog code

– Linking the signals in the VCD file to the type annotations of Verilog variables

• Translating the values of the VCD signals in Haskell

– Gathering the values per type

– Adding a Haskell script for performing the translation to the Clash project

– Adding imports for all relevant types to the Haskell script

– Generating a function linking the type signatures to translation functions for said type and

adding it to the Haskell script

– Running the script to generate the translation tables

An overview of the complete pipeline can be seen in Fig. 8.1.

17

8.2.1. Propagating Haskell types to the Verilog code
This is one of the most difficult steps, as it requires modifications to the Clash compiler.

In the Clash compiler, there are software types (the Haskell types) which later are transformed into

hardware types (which end up in the generated HDL). Although at a type level, the compiler seems to

support adding annotations to these hardware types, in practice it is not that simple. The backend of the

Clash compiler uses extensive pattern matching on hardware types, which was not designed to support

such annotations. As a result, adding software type annotations to hardware types breaks compilation

completely.

An attempt was made to fix these issues. Unfortunately, the compiler was too complex to remove

all bugs. The modified compiler was able to compile all but two of the sample programs included with

Clash, and managed to add type annotations for most, but not all signals. The repository for the modified

compiler fork can be found in Appendix A.

To fully make this step operational, a rather extensive overhaul of the Clash compiler and all its

backends is required, which is not within the scope of the Shockwaves project, but certainly not impossible.

8.2.2. Linking VCD signals to type annotations
The next step is to link the signals in the VCD file to the type annotations in the generated Verilog.

Verilator [16] is used to generate an XML description of the Verilog design. This file is read by a

Python script to extract the hierarchy of signals. The signals are then extracted from the VCD file and

matched against this hierachy to find their source variables.

Verilator can accept special comments as annotations on variables, which get included in the XML

file. Unfortunately, the placement of these comments is after the definition of the signal, making code

generation difficult. Instead, the type information is added as a Verilog attribute annotation. When the

variable is found in the hierarchy, its source location is used to look for this annotation in the Verilog code.

The mapping from signal to Haskell type is directly stored in a JSON file for Surfer to read.

8.2.3. Gathering type values
From the VCD file and signal-to-type mapping, all values of translatable signals are collected per type.

This information is stored in a separate file, since it will need to be read by Haskell later. The file format

is rather simple: every first line contains a type name, and every second line contains a space-separated

list of values of that type.

8.2.4. Importing all relevant types
To be able to translate the bitrepresentations of the Haskell types, these types need to be in scope. This

means they have to be imported.

From the full type names, all source modules are extracted and added to the import list of the

translation script. This has the drawback that some types may be defined in hidden modules, and are

made available through different modules. This complicates the imports greatly.

There are workarounds [17], but these are questionable practice and have not (yet) been incorporated

into Shockwaves. A more proper way would require actual language support for importing non-exported

data types.

8.2.5. Linking the type signatures to translation functions
Since the types of the translation functions needs to be present at compile time, while the data to

be translated is only present at runtime, there needs to be a conversion table to transform string

representations of a type into their type function.

The Python code generates such a function, which maches the string to the structure function of

that type, as well as a translation function that turns string representations of the bitvalues back into

values using unpack, and then uses translate to translate them to Surfer data.

18

Clash projectVerilog

XML

VCD

Values

per type

Type table

& main function

Signal types

Translation table

Clash

compiler

Verilator

Testbench

Simulation

Clash

runtime

Python scripts

Surfer

Shockwaves

translator

Shockwaves

library

Process

Files Reading/writing

Process source code

Figure 8.1: Pipeline of the Shockwaves system when using Verilog as an intermediary language.

8.2.6. Generating the translation tables
Finally, a simple main function reads the file containing the values of all types, uses this type to obtain

translation functions, and uses those to generate structural information and translations for all values

according to the lookup table format described in Section 6.3. These are then stored in a second JSON

file for Surfer to read.

19

9
Results

Shockwaves was tested on both VCD file generation methods, with varying levels of success. Section 9.1

covers tracing, while Section 9.2 discusses the results of translating Verilog simulation output.

9.1. Tracing
The tracing method was tested on a real design for a USB controller, that was already using Signal.Trace
for debugging. It was found that adapting the code required minimal effort, which was largely spent

tracking down all data types used and adding the class derives to them.

Shockwaves was able to show Haskell representations for all types, an example of which can be

seen in Fig. 9.1. The developer of the USB controller stated that this would have been very helpful during

the debugging process.

In total, 35 signals were traced over 2118 clock cycles. The VCD file took up 119KB. The signal-to-type
table used 42KB, and the translation table 514KB. Analysis of these files resulted in two observations:

• The representation of the Haskell types in string form contains largely of bytes unnecessary to

uniquely identify the types. Manually removing most of these reduced the file size of the signal

type table to only 8KB.

• The translation table contains a very large amount of double quotes, which are required by the

JSON format. Removing these reduced the file size to 369KB, showing a different file format can

greatly reduce the file size.

Although this does highlight multiple points of improvement, no performance issues were observed while

testing.

9.2. Post-simulation Translation
The adapted Clash compiler was tested on the sample projects included with Shockwaves. Out of the 16

examples, compilation failed for two. For the other examples, the compiler was able to annotate some of

the signals. Most of the internal signals and outputs were annotated, but most of the inputs were not. It

is currently unknown what caused the compilation failures and annotation irregularities.

The full post-simulation translation pipeline was tested on a test project that included a simple

accumulator, as well as a color value that changed every time the accumulator changed values. The

compiler was able to compile the design, but the inputs and output were left unannotated. The remaining

pipeline worked without issue, and successfully translated the signals.

Because of the compiler problems, the pipeline was not tested on a larger design.

20

controlInputs 0111110x0x100x 10x00xxx0x000x

controlInputs Input {direction = Endpoi… Input {direction = Endpoi…
direction EndpointOut EndpointIn

EndpointOut EndpointOut
EndpointIn EndpointIn

nextDataParity Just 1 Nothing
Just 1

isSetup True False
usbRx Just RxAccept Nothing

Just RxAccept
RxData
RxError
RxAccept RxAccept

usbTx
Just Nothing

TxAccepted
TxError

rxReady True False
txClk False
tx Nothing

Just

Figure 9.1: Example signal controlInputs from the USB interface as bitvector and after Shockwaves

translation.

21

10
Discussion

In this chapter, the effectiveness of various parts of the system is discussed, and potential improvements

and future work are suggested. Section 10.1 reflects on the choice to perform translation in advance

outside of Surfer. Section 10.2 discusses the shared Haskell library code. The different methods for

generating lookup tables are covered in Section 10.3 and Section 10.4.

10.1. Pre-translation
The use of lookup tables proved to work without issue for the project the system was tested on, and the

file size of the lookup table remained easily manageable. However, for some projects this might not be

the case. The method is particularly vulnerable to large data structures with many non-repeating values.

For example, a data structure that contains a counter that is rarely reset causes each value of the total

data structure to be different, resulting in a large amount of translation data. Moreover, the fact that these

large data structures are now interpretable will lead to larger data structures being traced.

Instead of doing everything through lookup tables, some such data structures might be common

enough to use Rust runtime translation instead. For example, instead of creating a lookup table for a

vector of data types, the system could specify how this vector should be split, and use a lookup table

for the child elements instead. Through the same mechanics that allow BitPack to be derived, rules for

deserializing data could be derived automatically.

Having these methods available while keeping the option of using a lookup table would allow the user

to choose more performant waveform representation options where possible or needed, while keeping

the option to customize waveform viewer behavior from within the Clash design. It would, however, also

require a major overhaul of the entire system, since this deserialization overrides both the Display and

Split implementations, file formats, as well as the Surfer translator.

These changes would improve the performance of the system in some scenarios. Unfortunately,

this comes at the cost of higher complexity, more maintenance, and general scope creep to recreate

Haskell’s display methods as closely as possible. Considering these drawbacks, we see no reason to

change the system this way unless a project is found for which Shockwaves is rendered unusable by

performance problems. Without majorly changing the system, some performance increases could be

achieved through code optimization and better file formats.

10.2. Haskell Library
The Haskell library includes the translation code, default implementations for all major Haskell types,

a modified tracing library and, in an ‘experimental’ module, code for post-simulation translation. The

non-experimental modules are all directly usable.

The Display and Split classes successfully allowed for customized implementations. No use

case came up where separate derivation of the classes was actually helpful, and since Haskell allows

for implementations to partially rely on defaults, they might be merged into a single class to keep

implementations cleaner.

Some other default implementations, such automatically color-coded constructors could be added to

aid users. Another utility solution might be adding data wrappers with custom implementations, such as

22

a wrapper for vectors of Maybe values that directly displays the contained values instead of having each

made available in a doubly nested structure. Such additions would be easy to add, but are very much

optional nice-to-haves.

During the project, there was no opportunity to properly analyze potential runtime improvements in

the system. Haskell has various laziness mechanics and alternative string representations that may be

leveraged to obtain higher performance, and these could most likely be applied in various places of the

library.

10.3. Tracing
The tracing module included in Shockwaves proved to be very effective. When testing the module on a

real Clash design using Signal.Trace, adapting the code required very little effort, and had immediately

clear results. The developer commented that it would have been very valuable to have Shockwaves

available while debugging the design.

The most important drawback is that Shockwaves’s tracing module will need to be kept up to date

with Clash’s Signal.Trace module, but this is unavoidable.

10.4. Post-compilation simulation
As mentioned before, the Shockwaves pipeline for translating values generated by simulating Verilog

code has several problems. Most importantly, adding type annotations requires a major overhaul of the

Clash compiler. This was too large of a task for this project, but may still be performed later.

Other parts of the pipeline are convoluted, and have several issues such as generating the import

list for the Haskell translator. Some of these might be alleviated by extra compiler support, which would

certainly be possible to add while upgrading the compiler. However, due to the complexity of the pipeline,

it is expected most of this convolution would remain.

Despite the fact that the pipeline is most certainly not usuable in its current state, that does not mean

the efforts that went into it were in vain. Though it might only function as a proof of concept for now, it

shows that such a system is very much feasible, and adds value by making simulation results intelligible

in the same way the tracing approach does.

Furthermore, aside from the benefits from using a compiled design rather than tracing that were

previously listed in Section 4.5, a different use case has presented itself during the project: translating

values from logic analysers. A currently ongoing project is focused on recording real-world signals on

FPGAs running Clash designs, and a very similar pipeline could be used to translate the recorded values.

23

11
Summary

Waveform viewers are an essential tool in HDL development. To actually get value out of the waveforms,

they must display the data in a format representatative of the original data types. Shockwaves aims to

bring typed waveforms for Clash to the Surfer waveform viewer.

There are two methods to generate VCD files for Clash designs. The first is by adding traces in the

design (roughly equivalent to logging statements in conventional coding) and simulating the design by

executing it as a Haskell program. The second method is to compile the Clash design to a different HDL

such as Verilog, and use existing simulation tools to simulate that code. Since both options have their

own advantages and disadvantages, shockwaves was designed to support both these methods.

Unlike typed waveform solutions for higher level HDLs, Shockwaves uses Haskell to produce the

waveform data. This data is then passed to Surfer using lookup tables. Keeping the translation in Haskell

prevents reimplementation of existing Clash and Haskell functions in Surfer, and gives the programmer

complete control over the way data is represented.

Shockwaves includes a tracing module that acts as a drop-in replacement to Clash’s tracing module.

It has been tested on a real project using tracing, and worked without issue. The size of the extra files

produced combined was approximately 5 times the size of the VCD file. When used this way, Shockwaves

meets all the objectives set in the introduction.

To make Shockwaves work with a compiled language, the type data needs to be propagated from

the Haskell code to the VCD file. This includes having the compiler annotate the generated HDL. A

proof-of-concept pipeline was developed, but the compiler modifications were too substantial to complete

within the project. However, it did show the potential of the system.

It is possible to rewrite the Clash compiler to support type annotations, but this would require changes

to every compiler backend for Clash. A different future goal lies in optimization, since in larger projects,

the lookup tables might incur performance issues. This could be resolved by direct optimizations, as well

as potentially moving translation of simple and common data types to Surfer.

24

Part II
Tydi

25

12
Introduction

When a hardware design uses data, this data often needs to be moved - into the system, out of the

system, or between different submodules inside the system. Sometimes, this data is too big, possibly

even unbounded, to be transferred in parallel, and is streamed instead. Streaming data between different

modules generally requires some form of communication protocol.

Transferring complex data structures with variable-length fields in hardware requires advanced

communication protocols. These may be designed on a case-by-case basis, but this leads to high

implementation effort, more documentation, harder to understand designs, and as a result, more errors.

To provided a standard for many streaming applications, the Tydi specification was created. The

specification was designed around transferring complex data structures, and allows for multiple related

streams carrying typed, multi-dimensional data.

Of course, to be useful to developers, Tydi must be made available first. Tydi-Clash is an implemen-

tation of Tydi for Clash, meant to provide developers with the tools to use all parts of the specification.

12.1. Objectives
In the implementation of Tydi-Clash, the following objectives were pursued:

• Tydi streams are made available in Clash.

• The hardware representation of the streams is kept as close as possible to the Tydi specification.

• The design follows “the most important design guideline” [18]: make interfaces easy to use correctly,

and hard to use incorrectly.

• Interfaces to the streams are provided using Haskell-friendly data types.

• Tydi-Clash is integrated with Shockwaves to improve debuggability.

Additionally, the implementation serves as a practical test of Tydi as an interface standard. Observations

may be used to further improve future version of the specificaiton.

12.2. Related Work
There have been many previous advancements in the field of stream processing, resulting in a plethora

of languages and frameworks both for software [19]–[22] and hardware design [23], [24]. This includes

several industry standards [25]–[27], languages [10], [28] and projects attempting to integrate these with

existing methods [12]. However, these address the problem at a bit stream level, rather than the much

higher level of complex data types.

One interesting language is Delta [29], which allows for Haskell-like programming over time-domain

streams. Nevertheless, this is still in a prototype stage, and holds no position to replace established

languages such as Clash. Thus, a common standard such as Tydi is still valuable for these languages.

26

12.3. Outline
Chapter 13 provides background information about Tydi and several related Tydi projects, as well as

some relevant Haskell and Clash libraries. Chapters 14 to 16 cover the implementation of different facets

of the Tydi specification, and Chapter 17 extends this with additional verification modules. Chapter 18

provides information about the integration of Shockwaves.

To test Tydi-Clash, an example implementation was created, which can be found in Chapter 19. The

observations made are discussed in Chapter 20, after which the part is summarized in Chapter 21.

27

13
Background

This chapter provides a background on Tydi and several Tydi projects, as well as some relevant Haskell

libraries.

13.1. Tydi
Tydi [30] is a specification for complex streams. These streams support arbitrarily sized nested sequences

of typed data, complex data types that require multiple separate streams, as well as reverse streams.

Throughput can be managed by changing the number of parallel data lanes, and streams can be

configured to several complexity levels. This section introduces most of the important aspects of Tydi,

but we refer the reader to the official documentation [31] for a more complete overview.

13.1.1. Data types
Tydi defines four data types: Null, Bits, Group and Union.

Bits(n) denotes data consisting of n bits. Null represents the lack of data, and is equivalent to

Bits(0).

Group combines multiple values that exist in parallel. A Group contains labeled, ordered fields that

can be of any type: Group(N1 : T1, N2 : T2, . . .) (labels Ni and their respective types Ti). The binary

representation of a group is simply the concatenation of those of the different fields.

Union combines multiple values of which only one exists at the same time. Like Group, the variants

are labeled and ordered. In hardware, it has two fields tag and union which represent which variant is

contained, and the data of that variant, respectively. For example, for Union(a : Bits(3), b : Bits(5)),
tag = 0 indicates the data is of variant a, and 3 out of the 5 bits of the union field are used to contain the

data of Bits(3).

13.1.2. Physical streams
Physical streams are at the core of Tydi. They are the hardware level representation of streams, and

they carry most of the complexity of the Tydi specification.

Physical streams have a number of parameters:

• c: the complexity level of a stream. This level determines which signals are used, and may set

some behavioral restrictions. In low complexity streams, the source makes several guarantees,

while in high complexity streams, the sink must support more usage options. A source may only be

connected to a sink of equal of higher complexity.

• n: the number of data lanes present. Multiple lanes may be used in parallel to increase the

throughput.

• d: the dimensionality of the stream. For example, d = 2 indicates data of the form [[x]].

• Te: the data type of data elements.

• Tu: the user data data type. Tydi streams may carry additional user data, of which the meaning is

not defined by the Tydi specification.

28

Physical streams contain the following signals:

• valid denotes whether any data is being sent.

• data contains the data elements for all data lanes.

• user contains the user data.

• last contains bits indicating the end of a sequence.

• stai indicates the first active data lane.

• endi indicates the last active data lane.

• strb indicates per lane whether this lane is active.

• ready run from the sink to the source, and can be used to provide backpressure. Data is only

transferred when valid and ready are both high at the same time.

Depending on the complexity level, some of these signals may be (partially) unused, or otherwise

restricted. They are still defined, to allow them to be connected to higher complexity sinks that make use

of these signals, but may be omitted in hardware.

13.1.3. Logical streams
Logical streams are abstract representations of collections of related physical streams. They exist as

a mixture of nested streams and data, and form a bridge between the abstract, nested, complex data

being transmitted, and the phsysical streams required to do so. Logical streams use slightly different

parameters from physical streams:

• c: the complexity of the associated phsyical stream. The parameter may be omitted to use the

complexity of the parent stream.

• t: the throughput relative to the parent stream. The number of lanes in the physical stream equals

the product of the throughput values of that logical stream and all its parent streams, rounded up.

• d: the dimensionality. Depending on the synchronization mode (s), this represents either the total

dimensionality of the stream, or the extra number of dimensions with respect to the parent stream.

• s: the synchronization mode. This determines whether the stream is flattened (i.e. does not include

the dimensionality of the parent stream) and synchronized (one element in the parent stream

corresponds to one data structure at the same dimensionality level as the parent).

• r: the direction of the stream. If the stream is reversed, in runs in the opposite direction of the

parent stream.

• Te and Tu still indicate the data type and user data data type. The stream data may include

substreams.

• x: a boolean that may be used to indicate a stream should not be optimized away, even if Tu and

Te both carry no data.

Logical streams do not exist in hardware directly, but can be turned into a bundle of physical streams in

a process called synthesis. As logical streams are transformed into physical streams, substreams are

removed from the data type and further synthesized into separate physical streams.

The modules connected by Tydi streams are called streamlets.

13.2. Tydi-lang
Tydi-lang [32] is a programming languages developed for creating streaming architectures using Tydi.

Rather than aspiring to be a full HDL, the goal of Tydi-lang is only to describe the different streams

and streamlets of a system. Streamlets may be connected together or decomposed into other streamlets,

but otherwise have their implementation defined in other HDLs. Tydi-lang can generate templates for

these external implementations.

29

13.3. Tydi-Chisel
Tydi-Chisel [33] is an implementation of Tydi for the Scala-based modern HDL Chisel [8], [9]. It was

designed to be used with Tydi-lang to describe the different streams and streamlets. It also includes

some utility modules. Typed waveforms for Tydi-Chisel is provided in Tywaves (see Section 4.3).

Although Tydi-Clash is in some ways the Clash equivalent of Tydi-Chisel, Tydi-Chisel puts more focus

on the design pipeline and tooling outside Chisel itself.

13.4. Haskell Optics
Accessing data deeply hidden in nested data types can be rather inconvenient. In Haskell specifically,

the immutability of data can make changing values rather painful. For this purpose, Tydi-Clash makes

use of the Optics library [34], which provides access to (among other things) lenses and prisms.

A lens is essentially a reference to a point in a data structure. It may be used to obtain the data stored,

or generate a new object with the indicated data replaced with a different value.

Optics defines prisms for data that may or may not be defined; in this case, retrieving the value results

in a Maybe value, and changing the value only makes a difference when the value was previously already

present.

Lenses and prisms may be combined to produce new lenses and prisms. Thus, a path to a deeply

nested value may be composed of multiple optics, one per data structure.

13.5. Clash Protocols
Clash Protocols [35] is a library that contains machinery for working with interfaces. It comes equipped

with implementations for several well-known interfaces such as AXI [25] and Avalon [26]. It also includes

a “dataflow” protocol inspired by AXI, which consist of a simple forwards stream of one data type, and an

acknowledgement signal for backpressure.

The library works with so-called circuits - modules with input and output interfaces - which can be

connected together. Several testing tools are made available to verify the behavior of these circuits.

30

14
Tydi Data Types

Tydi has four main data types. The Null type corresponds directly to Haskell’s unit type (). Bits denotes
any serialized data; although this is most similar to Clash’s BitVector, it is essentially isomorphic to any

synthesizable Haskell type. Group and Union denote product and sum types respectively. Sections 14.1

and 14.2 cover the implementation of these types, and their relation to standard Haskell types is discussed

in Section 14.3. Section 14.4 further elaborates on the conversion between Haskell and Tydi types, as

well as between Tydi types.

14.1. Group
Tydi’s Group is a product type and contains a number of labeled fields. This is implemented through

three Haskell types:

• A label type, wrapping the value of a field in a label existing purely at the type level

• A binary operator to join fields together

• A toplevel container type to denote the bounds of the type

Labels are constructed using the operator >::, which is designed to look like the standard type notation

syntax ::. It has the constructor L, wrapping the contained value.

1 label :: "myBool" >:: Bool
2 label = L True

To join the fields, the operator :&: was created. Its constructor mimics its type, and simply joins its two

subtypes. The operator is right-associative and has a lower precedence than the label operator, allowing

head-tail structures to be written without brackets.

1 joined :: "a" >:: Bool :&: "b" >:: Bool :&: "c" >:: Bool
2 joined = L True :&: L False :&: L False
3 -- equivalent to L True :&: (L False :&: L False)

Finally, the Group type wraps the joined fields to clearly denote the boundaries of the type. It is largely

useful for readability.

1 type myGroup = Group ("a" >:: Bool :&: "b" >:: Bool)

It is not necessary to specify the whole structure to read or write a field, as this can be done though the

getField and setField functions or the _field lens. These can be used to target a specific field by

supplying the type level field label.

1 g :: Group ("a" >:: Bool :&: "b" >:: Maybe Bool)
2 g = L True :&: L Nothing
3 a :: Bool
4 a = view (_field @"a") g -- evaluates to True

31

14.2. Union
The implementation of Union is rather different from that of Group. While it would certainly be possible to

represent the internal data, this has several issues:

• The operators would need to have a binary tree structure to not have a linear amount of bits

specifying the variant. This structure would be more difficult to generate and navigate.

• Even in a tree structure, the location of the variant selection bits would be difficult to align.

• The data would deviate from the format specified in the Tydi specification, which has distinctly

separate tag and union fields.

Instead, the Union type only uses a binary operator (:|:) at the type level to describe the variants,

and simply has a single record constructor with a tag and union field, the latter taking the form of a

BitVector. This constructor is hidden, and data can only be accessed through the getVariant and

mkVariant functions, or the _variant lens. Similarly to the access methods for Group, the variants are

specified at the type level.

1 type U = Union ("bool" >:: Bool :|: "int" >:: Int)
2 u :: U
3 u = mkVariant @"bool" True
4 i :: Maybe Int
5 i = getVariant @"int" b -- evaluates to Nothing

14.3. Translating Haskell Types
Aside from primitives, Haskell data types are algebraic, and can thus be composed of Group and Union
types. Union corresponds to a type having multiple constructors, while Group represents the data fields

of a single constructor.

Tydi-Clash comes equipped with the TydiConvert class, which can be used to specify the Tydi

representation of a Haskell type. The default implementation uses the Generic class to automatically

derive the Tydi representation according to these rules:

• If a type has multiple constructors, its Tydi representation is a Union of these constructors, each

variant having for its type the Tydi representation of the constructor.

• Otherwise, if there is a single constructor, the representation of the type is simply that of the

constructor.

• Void types (types without constructors) cannot be represented.

• If a constructor has any fields, its representation is a Group of these fields. For record style

constructors, the field names correspond to the record’s field names; otherwise the fields are simply

numbered.

• If the constructor has no fields, its type is ().

For example:

1 data T = A | B (Unsigned 3) | C {a :: Bool, b :: Bool}
2 -- Tydi representation:
3 type T' = Union (
4 "A" >:: ()
5 :|: "B" >:: Group ("0" >:: Unsigned 3)
6 :|: "C" >:: Group (
7 "a" >:: Bool
8 :&: "b" >:: Bool
9)

10)

During the project, a point of debate was whether to keep Groups containing only one field. The choice

was made to keep this structure, to keep the Tydi representation closer to the original Haskell data type.

While it is fairly easy to generate Tydi types based on Haskell types, the same cannot be said about

the reverse. Creating Haskell types dynamically would require using Template Haskell, and would

32

probably not result in the cleanest types since the programmer has little control over the result. In all

likelihood, the required level of control for a practical result would be on par with simply writing the types

by hand. Alternatively, one could write a script to externally generate template code instead, to expedite

the process.

14.4. Type Conversion
Expanding from the type conversion between Haskell and Tydi types, a general type conversion was

added, with the purpose of connecting any two compatible streams (see Section 15.4). The convert
function can automatically convert between compatible data types according to the following four cases:

1. Conversion from a type to itself does nothing, and bypasses the entire conversion.

2. Conversion between standard Haskell types is outsourced to the DataConvertible class. This

class has no default implementations, but may be connected to any existing conversion class

though a single polymorphic instance.

3. Conversion between standard Haskell types and Tydi types works by converting the Haskell type

to or from its Tydi representation, and then converting between the Tydi type and the Tydi type

representation of the Haskell type.

4. Conversion between Tydi types happens based on structure: both types must have the same

number of fields or variants, and these must be pairwise compatible. The field names are ignored.

Since the Tydi type is generally not simplified, the structures might not match exactly. Furthermore, the

conversion ignores field names, which might result in unexpected behaviour if two fields have compatible

types and appear in a different order. However, arbitrary reordering is in the general case not allowed,

because it may change the behavior of the interface. Improvements of this conversion are left for future

development.

33

15
Physical Streams

This chapter discusses how Tydi’s phsyical streams can be represented in Clash. Section 15.1 describes

how the streams are internally represented in Clash. Section 15.2 and Section 15.3 detail how Tydi

streams can be interpreted as certain Haskell and Clash types, and how this determines the way these

streams are used in a Clash design. Finally, Section 15.4 handles connecting streams and streamlet

ports.

15.1. Streams and Ports in Clash
Unlike Chisel, Clash does not have a notion of “port objects”. Instead, ports are simply the inputs and

outputs of functions. This also means that the ready signal present in a Tydi interface cannot be bundled

together with the forwards signals, since a function’s inputs and outputs are separated.

In the Clash design, the stream exists in the form of the values taken on by the different signals

described in the Tydi specification. The forwards signals are bundled into a PStream object, while the

ready signal is represented by PStreamReady. A source is any function taking the PStreamReady signal

as an input, and producing the corresponding PStream value as an output. Conversely, a function taking

the PStream value and producing the PStreamReady acts as a sink.

Both PStream and PStreamReady are parameterized with the types c, n, d, u, and e. These denote

the complexity level, number of lanes, dimensionality, user data type and data type respectively. Note

that these correspond to the parameters of Tydi’s physical streams directly, though they appear in a

different order - this is done to increase readability when written in Haskell.

The types of the values inside the PStream data type depend on all of these parameters. PStream
Ready objects do not use the types directly, but these types are still included to match the ready signal to

its PStream counterpart. A simplified version of the definition can be seen below:

1 data PStream c n d u e = PStream
2 { valid :: Bool
3 , dat :: Vec n e
4 , user :: u
5 , last :: LastType' c n d
6 , stai :: StaiType' c n
7 , endi :: Index n
8 , strb :: StrbType' c n
9 }

10

11 data PStreamReady c n d u e = NotReady | Ready

The PStream data type was designed to only contain signals that are actually defined for the complexity

level. This means that depending on the complexity level, some signals have different types. And

overview of the types can be seen in Table 15.1.

• If the complexity level has last bits per lane, LastType' c n d evaluates to Vec n (Vec d Bool).
Otherwise, the type is Vec d Bool.

34

Table 15.1: Internal physical stream data types

c valid data user last stai endi strb
1

Bool Vec n e† u
Vec d Bool

()

Index n
Bool

2

3

4

5

6

Index n7
Vec n Bool†

8 Vec n (Vec d Bool)
Data types for a physical stream with n data lanes, d dimensions, data data type e, user data data type u,

and complexity c.
† May contain undefined values even when valid is high.

• If the complexity level has a start index, StaiType' c n evaluates to Index n. Otherwise, the type

is ().

• If the complexity level has independent strobe bits for the data lanes, StrbType' c n evaluates to

Vec n Bool. Otherwise, the type is Bool.

15.2. Representing Control Signals
In Tydi streams, the data, last and user signals carry the actual data. The other signals, valid, stai, endi
and strb, are control signals that specify which (parts) of these data signals are actually defined.

In Clash, having separate control signals is generally considered bad practice. Instead, the data

is encapsulated in types that represent the control. For example, a memory block that has a address,
value and write_en input for writing, might in Clash have an input of the type Maybe (Index memsize,
ValueType): although the address and value signals always exist in hardware, their values are only

defined when write enable is high.

This practice is in line with the most important design principle: it is made difficult to use the interface

incorrectly, because a value must be defined when write enable is high, and cannot be supplied when

it is low. At the same time, the functions available for the Maybe type make it easier to work with the

combination of the enable signal and its related value signals. Therefore, we investigate and implement

such representations for Tydi streams.

15.2.1. Analysis of Tydi control signals
At the top level, valid controls the validity of all other signals. stai and endi together form a mask

leaving a slice of the data lanes, but also of the individual strobe signals of those data lanes. Finally, the

individual strb bits act as per-lane masks. It should be noted here that at lower complexity levels, where

the strobe consists only of a single bit, it might seem that this strobe signal should mask not only the data

lanes, but stai and endi as well. After all, if the strobe bit is low, no data is transferred, and thus the

values of stai and endi are irrelevant. However, the Tydi specification still mandates that these signals

are properly defined in order to make it possible to connect the stream to a higher complexity sink.

15.2.2. Representing valid
Now all that remains is to select appropriate types to represent the different data signals combined with

their control signals. Ideally, the set of values representable by the types chosen is exactly equal to the

set of valid values of the Tydi stream. At the highest level, there is valid, acting as an enable of all other

data. This can me modeled through Haskell’s Maybe type, as it implements the optionality of the other

signals. Modeling enable signals using Maybe is standard practice in Clash. Since it will be useful in

the rest of the design, if valid is high, all signals apart from valid grouped together are from here on

referred to as a Transfer object (Eqs. (15.1) and (15.2)). Since the user, last, stai and endi signals

35

da
ta

0

1

...

n-1
us
er

la
st

strb
(per-lane)

strb
(single)

endi

stai valid

Figure 15.1: Signal validity masking in a physical stream. data is masked by individual strobes, if they

exist, which are then masked by stai and endi, which are in turn masked by the single strobe bit if

present. All signals are masked by valid.

of a Transfer never contain undefined values, they may be accessed directly.

PStream ≡ Maybe Transfer (15.1)

Transfer ≡ (data,user,last,stai,endi,strb) (15.2)

15.2.3. Representing strb
The strobe signal can be modeled in a similar fashion to valid. At low complexity levels, where there is

only a single strobe bit, the data lanes can, as a whole, be wrapped inside of a Maybe type (Eq. (15.3)).

At high complexity levels, when strobe provides per-lane enable signals, the data of the individual lanes

is wrapped in Maybe instead (Eq. (15.4)).

(data::Vec n e, strb::Bool) ≡ Maybe (Vec n e) (15.3)

(data::Vec n e, strb::Vec n Bool) ≡ Vec n (Maybe e) (15.4)

15.2.4. Representing stai and endi
This leaves us with the stai and endi signals. If only endi is present, the valid lanes are a non-empty

prefix of the data lanes (Eq. (15.5)). If both are present, they form a slice instead (Eq. (15.6)). These can

then be combined with the strobe in the same way as before.

Clash does not have a type for vector prefixes or slices, so a new type is required. Although it

is certainly possible to represent this slice as an algebraic data structure, the type would be rather

complicated, and most likely hard to use in practice. Furthermore, the implementation would need to be

rather complex to avoid unnecessary data shifting in hardware due to to the binary representation of the

slice. Therefore, we instead choose to represent the data as an abstract data type wrapping a normal

vector.

(data::Vec n e, endi::Index n) ≡ Prefix n e (15.5)

(data::Vec n e, stai::Index n,endi::Index n) ≡ Slice n e (15.6)

36

Table 15.2: External physical stream data types. Types that share the internal representation are

omitted.

c data strb
1

Maybe (Prefix n e)
Bool

2

3

4

5

6 Maybe (Slice n e)
7 Slice n (Maybe e)

Vec n (Maybe e)
Slice n Bool
Vec n Bool8

The new types, Slice and Prefix, are implented as a Vec with an index range and upper bound

respectively. They are protected against reading the values outside the range. All applicable standard

vector functions, as well as some additional utility functions, are provided.

At high complexity levels, where a per-lane strobe is present, the fact that stai and endi create a

consecutive set of data lanes becomes irrelevant. It is possible to transform stai and endi into two

additional per-lane strobes, and combine these with strb to obtain a single strobe (Eq. (15.7)), which

can then be applied to the data lanes (Eq. (15.8)). This greatly reduces implementation complexity of the

sink. Similarly, when creating a transfer object in the source, just the strobe may be used to specify the

validity of data lanes. In this case, stai and endi are simply set to enable the full range of data lanes.

Generally, this means stai and endi signals can be removed in optimization. Because of its general

usefulness, any prefix or slice may also be transformed to a vector of Maybe values. However, since

this type does not guarantee the active data lanes are consecutive, it cannot be used to write data for

complexity levels without a per-lane strobe.

(stai::Index n, endi::Index n, strb::Vec n Bool) ≈ Vec n Bool (15.7)

(data::Vec n e, stai::Index n, endi::Index n, strb::Vec n Bool) ≈ Vec n (Maybe e)
(15.8)

The representations of data and strb in the presence of stai, endi and strb can be seen in Table 15.2.

15.3. Interacting with Physical Streams
To keep the synthesized code close to the Tydi representation, the PStream object is kept close to this

representation in terms of structure. However, as discussed, the data can be presented differently to

make it safer and easier to use. For this reason, the PStream constructor is kept hidden, and can only be

interfaced with through functions and patterns, making it an abstract data type.

First of all, valid can be represented as a Maybe type. We introduce the PStreamTransfer type, with

the same parameters and structure as PStream except for the valid field. The PStream can then be

turned into Maybe PStreamTransfer though the getTransfer function, and turned back using trans
fer. Alternatively, the Transfer PStreamTransfer and NoTransfer patterns are present to match the

PStream directly, as if it had two constructors like Maybe:

1 case stream of -- stream :: PStream c n d u e
2 Transfer tf -> ... -- tf :: PStreamTransfer c n d u e
3 NoTransfer -> ...

All other signals are accessed through methods of this PStreamTransfer object. These functions require

various class implementations dependent on the complexity level. To avoid having to add constrains for

all of these, the classes are bundled under a single class CompleteComplexity. This class essentially
indicates that the stream is properly defined.

37

15.3.1. Access functions
Most signals (user, last, stai, endi) are directly accessible using getter functions: getUser, getLast,
getStai, getEndi. Since stai and last have types dependent on the complexity level, there are extended

functions that add back unused signals, essentially lifting them to the maximum complexity representation:

getLastExt and getStaiExt. These extended functions help with creating complexity-independent

functions.

The two remaining signals may have undefined values in them, and thus have transformative access

functions. For data, these are getDataSliced and getDataStrobed. The former returns the data in the

complexity-dependent format constructed throughout Section 15.2, while the lattern returns individually

strobed data regardless of the complexity level as per Eq. (15.8). Since some implementations might

benefit from direct but unsafe access, getDataRaw return the data lanes directly.

Finally, strb has both a data type dependent on the complexity level, thus prompting an extended

getter variant, and may be partially obscured by stai and endi, prompting raw getter functions. Thus,

there are four getter functions: getStrb, getStrbExt, getStrbRaw and getStrbExtRaw.

15.3.2. Creator functions
The data types that have extended getter functions also have functions for creating values. mkLast,
mkStai and mkStrb take both a simple and extended value, and return either based on the complexity

level.

Finally, the different functions for obtaining the data all have respective functions for creating a

PStreamTransfer. fromSliced creates a transfer from the sliced data, the last values, and user data.

fromStrobed similarly uses the strobed data, but can only be used if the complexity level defines a

per-lane strobe. fromSignals creates the transfer from the raw data signals. When creating the transfer

this way, all signals undefined by the Tydi standard are replaced with undefineds.

15.4. Connecting Streams
Tydi allows sources of a certain complexity level to be connected to sinks of a higher complexity level. For

this to work in Haskell, the data type needs to be converted. This is done through the connect function.

A PStream c n d u e object may be converted to a PStream c' n' d' u' e' if the following condi-

tions are met:

• c ≤ c': The complexity level cannot decrease.

• n = n',d = d': the number of lanes and dimensionality are both equal.

• u and u', as well as e and e', share an implementation of TydiConvert, i.e. they may be converted

between as described in Section 14.4.

For PStreamReady, the same conditions are set, except for the complexity level: this much be equal or

lower, since the ready signal runs from the sink to the source.

The connect function does not allow connecting the ready signals of two incompatibly typed streams,

since these streams cannot be connected to each other. However, it may be useful to propagate the

ready signal of one stream to another. For this purpose, connectReady exists, which converts between

any two subtypes of PStreamReady.

38

16
Logical Streams

This chapter details aspects of Tydi-Clash related to logical streams and stream bundles. Section 16.1

explains the Tydi-Clash equivalent of Tydi’s logical streams. Section 16.2 describes how these are

synthesized into structures of physical streams, which are further elaborated in Section 16.3.

16.1. Representation of Logical Streams
The logical streams are implemented through types, and converted to bundles of physical streams using

type-domain computations. This allows the programmer to compose Tydi stream descriptions using a

combination of Clash data types, Tydi data types, and logical streams. These logical streams have the

same arguments as Tydi’s logical streams, and the same shorthands are defined (such as Rev and Dim).
The logical stream type does not have any constructors, and so no value can be instantiated, nor does it

have a hardware equivalent. It is purely meant for synthesis to physical streams.

16.2. Synthesis into Phsyical Stream Bundles
Tydi’s synthesis process produces a bundle of physical streams. As discussed in Section 15.1, the nature

of Haskell makes it impossible to create a single bidirectional port. Instead, the synthesis produces two

bundles of signals: one of all forwards signals, and one of all reverse signals. The synthesis process

directly creates the forwards bundle, which can then be reversed to obtain the reverse bundle. Reversed

streams are synthesized by reversing the synthesized forwards stream.

Tydi-Clash stream bundles differ from the Tydi specification in another major way: instead of flattening

the logical stream, and renaming the physical streams according to their position in the hierarchy, the

structure of the logical stream type is kept to represent the bundles. This allows substreams to be

accessed including their own substreams.

In this hierarchy, all logical streams are turned into stream nodes that hold both the subhierarchy

of the bundle and the physical stream associated with the logical stream. All data in this hierarchy is

turned into the unit type (), since the data does not exist outside the streams. Similarly, for the physical

streams, all nested streams are replaced with the unit type in the data data type. Because a Union of
logical streams results in both being instantiated in parallel, all occurrences of Union in the data are

transformed to Group in the bundle hierarchy.

Suppose we have a memory element that can receive addresses and stream back the values at

those addresses. That can be represented using a reversed substream, as in Fig. 16.1. The value is

a substream, since it is the direct response to an address value. Synthesis turns the logical stream

description with a nested stream into a hierarchical structure. In the forwards physical stream bundle, the

reverse stream shows up as the ready signal. The corresponding Haskell code then looks like:

1 type MemStream = New (C 5) 1 () (
2 Group (
3 "address" >:: Index MEMSIZE
4 :&: "value" >:: Rev CInherit 1 () (Unsigned 32)
5)
6)

39

LStream

Group

Bits(16) Rev

Bits(32)

address value

Stream

PStream

Group

Bits(16) ()

address value

Group

address value

Stream()

()Ready

data

data

data

pstream

pstream child

child

Data

Streams

Structure

Figure 16.1: Synthesis of a logical stream to a forwards physical stream bundle.

7 type MemStreamBundle = TydiSynth MemStream
8 memory :: Signal dom MemStreamBundle -> Signal dom (Reverse WordStreamBundle)

The synthesis process currently does not optimize away streams that do not carry any data. Consequently,

the boolean in the logical stream type denoting a stream may not be optimized away is left unused.

16.3. Interacting with Physical Stream Bundles
Physical stream bundles consist of only three types: Group, (), and StreamNode. Tydi-Clash has the

lenses _child and _stream to access the subhierarchy and physical stream fields of these StreamNode
values respectively. Combined with the _field lensen for Group, these can be used to access any value

inside a stream bundle.

It is often useful to switch between signals of data structures and data structures of signals, and

Clash defines the bundle and unbundle functions for this purpose. These are implemented for Group and
StreamNode, as well as PStream and PStreamReady, to also allow this conversion for bundles of physical

streams.

40

17
Behavioral Verification

Although typing may be able to prevent some incorrect usage, the Tydi standard also specifies some

behavioral rules that extend beyond the domain of single cycle values. To facilitate testing whether these

rules are adhered to, Tydi-Clash has several checks that can be included in a design for verification.

Sections 17.1 and 17.2 detail the checks performed on all physical streams, while Section 17.3

lists the additional checks for constraints imposed on low complexity streams. These checks are all

performed by passing signals of both the PStream and its respective PStreamReady through a sequential

logic funcion keeping track of the stream’s state.

Section 17.4 sheds light on the behavioral requirements of nested streams, and why these cannot

easily be checked.

17.1. Stable Data Transmission
Tydi specifies that transmission data must be stable: as soon as valid is set to high, all other (defined)

signals may no longer change until the transfer is completed by a high value bit in ready.

This property is easy to check: one simply needs to compare the current value of the stream to the

previous stream and ready signals. If the previous clock cycle contained a transfer not accepted by ready,
the current stream value must be that same transfer. For this, the values of getDataSliced, getLast,
getUser, getStai, getEndi and getStrb are compared (as well as whether there is a transfer at all). If

these values do not match, the stream is invalidated by replacing it with an errorX.

The check can only be performed if the stream’s data types (i.e. the data and user data) are members

of the Eq class.

17.2. Correct Sequence Termination
The Tydi specification states that sequences at one dimension cannot be terminated without, first or at

the same time, terminating inner sequences. Tydi-Clash contains a checker for this restriction.

The presence of empty sequences make the check slightly more complicated: if no data is sent, but

a last bit is sent for a certain dimension, that denotes an empty sequence, which from the perspective

of outer dimensions means data has been transmitted. Although empty sequences are largely left

untouched by the specification, Tydi-Clash was built to support these data structures.

The checker works according to the following rules:

• Data sent opens all dimensions.

• A last bit on one dimension opens all lower dimensions.

• A last bit terminates the sequence of the corresponding dimension. This happens after any

dimensions have been opened, i.e. a dimension may be opened and closed within the same cycle.

The checker keeps track of which dimensions have been opened, and invalidates the stream if a dimension

is closed while a higher level dimension is still opened. The checking logic is implemented as a systolic

array, which can be seen in Fig. 17.1.

41

last

active

active’

activate’

activate

anyActive’

anyActive

error

D

L2

L1

L0

0 D

L2

L1

L0

0 D

L2

L1

L0

0

active active’

Lane 0 Lane 1 Lane 2

error

Dimension 1 terminated

while dimension 2 is still

active, raising an error

Data coming in

Last bit

Figure 17.1: Sequence termination error detection logic of a stream with complexity 8, 3 data lanes and

3 dimensions. The highlighted signals show an example or erroneous data being detected.

42

17.3. Complexity Level Restrictions
Below complexity level 5, the complexity levels do not determine the presence of signals, but rather

behavioral restrictions. For all four restrictions, a check is implemented to verify this behavior. Since all

restrictions relate to sequences, the checks are only performed on streams with a dimensionality of at

least 1.

The current Tydi documentation of the lower complexity levels is rather brief, and does not take

into account the possibility of empty sequences. Hence, the checks will be extended to support empty

sequences, and are based on the quoted parts of the Tydi specification [31].

“C<5: All lanes must be active for all but the last transfer of the innermost sequence.”

This is might seem easily checkable: “a transfer must have all lanes active, unless the last bit for the

innermost sequence is set”. However, the last bit might occur only in a later cycle. Furthermore, this

check fails for the transfer of empty sequences in higher dimensions.

Instead, the check is implemented as follows: if a previous transfer contained data in a strict subset

of the data lanes, without the innermost sequence being terminated by a last bit, any new data being

sent will raise an exception.

“C<4: The last flag cannot be postponed until after the transfer of the last element.”

Again, this check is complicated if empty sequences are allowed. The rule is implemented as “If the last

flag of a certain dimension is set, while that dimension previously had data, and that dimension currently

has no data, an error is raised”.

“C<3: Innermost sequences must be transferred in consecutive cycles.”

This check is much simpler: if data has been sent without terminating the innermost sequence, any

NoTransfer invalidates the stream.

“C<2: Whole outermost instances must be transferred in consecutive cycles.”

The final check is similar, but needs an addendum for empty sequences. If data has been sent, or

any last flag has been set at a higher dimension level, without terminating the outermost sequence, a

NoTransfer invalidates the stream.

17.4. Inter-stream Dependencies
To avoid deadlocks, Tydi specifies an ordering for nested streams: streams are ordered depth-first,

left-to-right, in a preordering. Although data does not have to be transferred in this order, neither the

source nor the sink may rely on the other port supporting out of order data transfer.

The fact that ports may communicate out of order, yet are not allowed to depend on this behaviour

makes it difficult to check. This is further worsened by the fact these structures are very application-

dependent.

Rigorous analysis of Tydi’s inter-stream behaviors is still being worked on. Tydi-Clash currently does

not include any tools for asserting correct behavior of streamlets. It might be possible to add a layer

between ports that blocks physical streams from sending data out of order, but this would probably often

be less error-prone than out-of-order stream handling, and thus miss those bugs.

43

18
Shockwaves Integration

Although its use is far broader, the primary reason for the creation of Shockwaves was to be able to

visualize the Tydi types in Tydi-Clash. Due to their high complexity, Tydi streams would be nigh impossible

to debug using a waveform viewer that cannot interpret Haskell types. This chapter covers the integration

of Shockwaves for Tydi-Clash data types.

18.1. Tydi Data Types
The Shockwaves implementations for the Tydi data types, Group and Union, are straightforward, since

their equivalence to normal algebraic Haskell data types has already been established in Section 14.3,

and these types already have Shockwaves implementations (see Section 7.2). Groups are split into

their separate fields, while Unions are matched to their current variant, and only this variant is displayed.

Examples can be seen in Fig. 18.1.

1 coord :: Group ("x" >:: Unsigned 6 :&: "y" >:: Unsigned 6)
2 filter :: Union ("none" >:: () :|: "lessThan" >:: Int)

coord Group {x = 0, y… Group {x = 1, y… Group {x = 1, y…
x 0 1
y 5 6

filter Union {none = ()} Union {lessThan = 5}
none ()
lessThan 5

Figure 18.1: Shockwaves signals for Group and Union.

18.2. Slices and Prefixes
Slice and Prefix are similar to Clash’s Vec, and are thus displayed in a similar fashion. Two changes

are made: values outside of the sliced range are not displayed, and an extra signal is added to display

the end (for a prefix) or range (for a slice) values. Examples can be seen in Figs. 18.2 and 18.3.

1 dat :: Prefix 3 Int

dat 1 :> 5 :> 8 :> … 6 :> - :> - :> … 6 :> 3 :> - :> …
end 2 0 1
0 1 6
1 5 3
2 8

Figure 18.2: Shockwaves signals for Prefix.

44

1 dat :: Slice 3 Int

dat 1 :> 5 :> 8 :> … 6 :> 2 :> - :> … - :> 3 :> 7 :> …
range Range 0 2 Range 0 1 Range 1 2

start 0 1
end 2 1 2

0 1 6
1 5 2 3
2 8 7

Figure 18.3: Shockwaves signals for Slice.

18.3. Physical Streams
The final data types to integrate are those for physical streams. An example can be seen in Fig. 18.4.

PStream are rendered like Maybe values: there is a single subsignal for the transfer, if present. This

PStreamTransfer is displayed using the signals specified in Tydi. Most of these signals (last, user,
stai, endi) are displayed directly as stored internally. The strobe data is displayed as returned by

getStrb. The data signal is shown as obtained a vector, where, like in the implementations for Slice
and Prefix, the individual data values are only present if defined.

PStreamReady has a custom implementation of Display, coloring the NotReady constructor red. This

makes it easier to see when a stream is being blocked by the sink.

1 stream :: PStream (C 1) 2 0 () Int
2 ready :: PStreamReady (C 1) 2 0 () Int

stream Transfer (PStreamTransfer (4 :> - :> Nil) Nil () () 0 …
transfer PStreamTransfer (4 :> - :> Nil) Nil () () 0 True

data 4 :> - :> Nil
0 4
1

last Nil
user ()
stai ()
endi 0
strb True

ready NotReady Ready
NotReady NotReady
Ready Ready

Figure 18.4: Shockwaves signals for PStream and PStreamReady.

45

19
Example Implementation

To test Tydi-Clash, an example implementation of a streamed system was made. The goal of the system

in introduced in Section 19.1. The system and its implementation are described in Section 19.2 and

Section 19.3, and findings are covered in Section 19.4.

19.1. Problem Statement
The problem is about parsing JSON files containing Scrabble data. Each file contains a list of words, and

its number of occurances. Bonuses on the Scrabble board are ignored. The end goal is to, for each file,

sum up the total scores achieved.

The input format is a list of JSON objects, which each include a word. Optionally, if the word occured

more than once, a count field may be present. There may be other fields, which are only allowed to have

string and integer values, but these are to be ignored. It may be assumed that the count field always

precedes the word field. For simplicity, any strings, including field names, must be alphanumeric.

Some examples:

1 [
2 {
3 "count": 3,
4 "word": "ABRACADABRA"
5 },
6 {
7 "ignored": 5,
8 "word": "ONCE",
9 "ignored2": "X"

10 }
11]

1 [{"word":"A"}]

1 []

19.2. Tydi Streamlet Pipeline
The process of parsing this data is split into a number of stages, aimed at testing various Tydi features.

First, the files are streamed as loose characters. A state machine parses these into a higher dimension

sequence of field-value pairs. These are then grouped together to words with their counts. The next

stage computes the total score of each word, and the final state sums up all the scores per file.

The different modules and their outputs can be seen in Fig. 19.1 and Table 19.1.

19.3. Implementation
This section describes the pipeline modules in more detail.

46

memoryReader jsonParser wordGrouper

wordGraderscoreAccumulatorscorePrinter

[Char] [[(Field,Int|*)]]

[[[Char]]]

[(Int,*)] [[Char]]

[Int]Int

Single physical stream

Double physical stream (substream denoted with (*))

Figure 19.1: JSON parsing pipeline. Stream types are given in simplified notation.

Table 19.1: Modules of the JSON parsing pipeline.

Module Output Description

memoryReader Stream(c = 1, t = 16, e = Char) Read the input files.

jsonParser Stream(c = 5, d = 2, e =
Group(field: JsonField, value:
Union(int:Int, string:
Stream(t = 4, d = 1, e = Char))))

Parse the JSON and return a se-

quence of field-value pairs. Also re-

duce the number of lanes to 1 for the

fields, and 4 for any strings.

wordGrouper Stream(c = 5, d = 1, e =
Group(count: Int, word:
Stream(t = 4, d = 1, e = Char)))

Combine the field-value pairs for a

word into one single item with a sub-

stream for the word.

wordGrader Stream(c = 5, d = 1, e = Int) Calculate the score of each word, mul-

tiplied by its occurance.

scoreAccumulator Stream(c = 5, e = Int) Sum the scores of each word per file.

scorePrinter Maybe Int Output the stream of summed scores

as a Maybe signal.

Streams are giving in Tydi notation. Unless otherwise specified, streams take the default parameters

t = 1, d = 0, u = Null, r = Forward, s = Sync, and the complexity is inherited from the parent stream.

47

19.3.1. Memory reader
For testing purposes, the files are hardcoded. The memoryReader contains a small state machine that

loops over the different files, and transmits their contents in chunks. After all files have been read, the

reader stops transmission.

19.3.2. JSON parsing
The jsonParser module is by far the most complicated module. Not only does it parse the JSON, it

also reduces the data to fewer lanes. A state machine update function is applied to all lanes of the

input. Based on state transitions, four values are generated: data for the outer stream containing the

field, sequence termination bits for this stream, data for the word characters substream, and sequence

termination bits for this substream.

These values are compacted separately for both streams, and divided into blocks that can be

transmitted at once over one stream. A transfer may not have more data items than the number of data

lanes, and last bits must occur at the end of the transmission block. Combining consecutive compatible

last bits is not supported for simplicity. The transfer at the input is only completed when all data for both

streams has been transmitted to the next module successfully.

An example of this process can be seen in Fig. 19.2.

19.3.3. Word grouping
The wordGrouper module groups together field-value pairs into word-count pairs. Any count field with

an integer value is stored. When a word field with a string value arrives, the module sends an item

containing the count, and transmits the word string as a substream. For this, it is important that the count

field arrives before the word field. The count defaults to 1.

19.3.4. Word grading
The wordGrader looks up the Scrabble score for each letter in the word, and multiplies it with the word

count. Once a last bit is received for the innermost sequence, indicating the word has fully been processed,

the total score is transmitted. Any messages that do not contain data, but contain a last bit for the whole

file, directly create a transfer with the same last bit at the output.

19.3.5. Accumulator
The scoreAccumulator simply sums up the scores in each file, and transmits the total once a transfer

contains a last bit indicating the file is completed. This also resets the score.

19.3.6. Output
The scorePrinter ultimately functions as the sink of the whole pipeline. It is always ready to receive,

and any total scores received are sent to the output in the form of a simple Maybe value.

19.4. Results
The example Tydi-Clash project, consisting of 600 lines of code, was compiled into VHDL (6000 lines)

and Verilog (5000 lines). This might seem like a large improvement, but this is largely just due to the

way the Clash compiler works. It would be possible to write a design in these languages in fewer lines,

possibly as little as 1000. However, this code would be harder to write and understand due to the lack of

abstractions.

48

'r'

'd'

'"'

':'

'"'

'A'

'"'

'}'

update

update

state

update

update

update

update

update

update

data last data last

state'

word,string

'A'

0 0 1

0 1 00 1

word,string 'A'

0 0 1

0 1 0

0 1

compact and divide

Combining last bits

is not supported,

leading to two

separate transfers

outer stream string stream

One transfer

Figure 19.2: Data processing of the jsonParser module.

49

20
Discussion

All parts of Tydi-Clash were succesfully implemented, and the example implementation demonstrated a

subset of the functionality.

In writing the example implementation, it quickly became apparent that the Tydi specification suffers

from the existance of several edge cases that complicate interface design. For example, at the complexity

level used (5), last bits may arrive with or after data, complicating the implementation of modules that

only operate on the innermost sequence. This is not necessarily because of bad interface design, but

rather the inevitable result of the complexity supported by Tydi. In fact, reducing the complexity of the

interface would increase source complexity, only moving the problem.

The encapsulating data types acted as a double-edged sword. Though it certainly made it harder

to use the interface incorrectly, by preventing incorrect data access, it did little to ease correct usages.

Particularly, the intertwined nature of case detection and data access made the code harder to read. A

cleaner implementation style using Maybe for case detection was thought up to improve code quality (see

Appendix D), although much of the low-level work remains. To ease implementation of simple modules,

directly exposing the inner signals may be sensible.

Here, it is important to remember the goals of Tydi: it is not merely to make complex streams possible,

but to provide a standard that can be built upon. One could figure streaming out on a case-to-case

basis, and for each case come up with a different, more optimal solution, but this would induce a lot of

repeated effort. Currently, the basis of Tydi is there, but there is a shortcomning in the lack of standard

implementations of common functions.

Some functionality could be achieved by integrating Tydi-Clash with Clash Protocols, allowing the use

of Clash Protocols machinery to connect streamlets. Tydi-Clash can also be combined with Tydi-lang

to improve the high level design process - it may even be possible to combine the two. Additionally,

Tydi-Clash needs a collection of transformations and wrappers that take care of common functions

and edge cases at streamlet implementation level. For example, a wrapper might take care of lower

dimension information for a module that only operates on innermost data sequences, and much of the

complexity in Subsection 19.3.2 could be reduced by using high complexity output, coupled with a lane

and complexity reducer module. Such methods could greatly reduce the implementation effort, and

reduce the codebase size.

Finally, though it initially had some bugs, debugging the design was much easier due to the Shock-

waves integration. Without the integration, it would have been nigh impossible to find the bugs in the

desig. The largest signal used while debugging was 5117 bits long, and would not have had any value to

the programmer. This clearly demonstrates the value of Shockwaves.

50

21
Summary

Tydi is a streaming specification allowing associated multi-lane streams of multi-dimensional typed data.

Tydi-Clash is a Clash library for the full Tydi specification.

Tydi types have isomorphism with Haskell types. Conversion functions are in place to switch between

Haskell data types and different Tydi representations.

Tydi’s physical streams could be implemented directly, but the direct access to undefined data is

frowned upon. Therefore, the internal signals are primarily accessible through algebraic and abstract

data types. These types ensure that only data that is defined according to the Tydi specifications can be

accessed or written.

Several tests are provided to ensure the phsyical streams meet behavioral specifications. These

were designed to support empty sequences, which so far have not been explicitly defined in the Tydi

specification.

Logical streams are a bit different. Instead of flattening and splitting up the structure, the synthesis

produces a hierarchical structure, as this allows the stream bundle to be manipulated more freely.

Shockwaves instances were implemented for Tydi-Clash types to cleanly display Tydi streams and

data types in the waveform viewer. This was essential while debugging a simple example implementation.

The example implementation unfortunately highlighted several drawbacks in using Tydi-Clash. Due

to its complexity, Tydi is inherently prone to having edge cases that are difficult to cleanly resolve. The

encapsulation of data into safer data types makes it harder, though not impossible, to separate case

detection from data operations. Great care is required to keep the code clean. On the other hand, the

data encapsulation did protect the physical streams from incorrect usage, demonstrating the value of

capturing interface relations in types. Standardized modules, potentially also defined at Tydi specification

level, could resolve some of the implementation complexity. Finally, integration with Clash Protocols

seems very valuable, and would be a logical next step in the development. This might be combined with

integration with Tydi-lang.

Finally, the development of Tydi-Clash drew attention to the currently mostly overlooked effects of

empty sequences on several interface requirements. Tydi-Clash fully supports these empty sequences,

but further analysis at the Tydi level is encouraged.

51

Part III
Closure

52

22
Conclusion

This work details two systems meant to help raise abstraction of different aspects of the Haskell-based

HDL Clash: Shockwaves for typed waveforms, and Tydi-Clash for Tydi streams.

Shockwaves is a typed waveform viewing system for Clash. Unlike some other typed waveform

solutions, Shockwaves performs translation of values in the Haskell runtime and stores the results in a

lookup table, rather than translating them in the viewer itself. This gives the programmer full control over

the representation of data from inside the code, without needing to update Shockwaves itself, but also

introduces potential performance issues for large projects. Shockwaves has a replacement module for

Clash’s tracing library, which is fully functional, as well as code for translating values in designs compiled

to Verilog. The latter was partially implemented, but required compiler modification beyond the scope of

the project to fully work. Nevertheless, the system is functional and valuable, and the approach used

demonstrates the benefits of giving the programmer control over the waveform representation from within

their designs. Next steps would include performance optimizations, as well as compiler modifications to

support type annotation in compiled designs.

The Tydi-Clash implementation includes Tydi data types, physical streams, and logical streams, as

well as modules for type conversion and behavioral verification. Correct usage of the physical streams

is encouraged through encapsulated interface data types, which provide a new look on Tydi streams.

Furthermore, the behavioral verifications address the possibility of empty sequences - something not

covered by the current Tydi documentation. Since Tydi’s complexity and inherent edge cases can make

it difficult to write correct code despite these protective measures, the library would benefit greatly from a

set of standardized modules that take care of some of the details when using Tydi. The value of a such

collection would not be confined to Tydi-Clash, but extend to Tydi as a whole. Additionally, more work

will need to be done to integrate Tydi with Clash’s Protocols library as well as Tydi-lang to integrate it into

both the Clash and Tydi ecosystems.

53

References

[1] J. L. Hennessy and D. A. Patterson, “A new golden age for computer architecture,” Commun. ACM,

vol. 62, no. 2, pp. 48–60, Jan. 2019. DOI: 10.1145/3282307.

[2] S. Marlow et al., “Haskell 2010 language report,” 2010. [Online]. Available: https://www.haskell.
org/definition/haskell2010.pdf.

[3] C. P. R. Baaij, “Digital circuits in CλaSH: Functional specifications and type-directed synthesis,”

Ph.D. dissertation, University of Twente, Enschede, Jan. 2015.

[4] QBayLogic. “Clash: A modern, functional, hardware description language.” (2025), [Online]. Avail-

able: https://clash-lang.org/ (visited on 03/27/2025).

[5] F. Skarman, L. Klemmer, K. Laeufer, and O. Gustafsson, Surfer 0.2.0, version 0.2.0, Jun. 2024.

DOI: 10.5281/zenodo.11447243.

[6] F. Skarman, G. Sörnäs, and O. Gustafsson, Spade 0.12.0, Jan. 2025. DOI: 10.5281/zenodo.
14623297.

[7] R. Meloni, H. P. Hofstee, and Z. Al-Ars, “Tywaves: A typed waveform viewer for chisel,” in 2024 IEEE

Nordic Circuits and Systems Conference (NorCAS), 2024, pp. 1–6. DOI: 10.1109/NorCAS64408.
2024.10752465.

[8] J. Bachrach, H. Vo, B. Richards, et al., “Chisel: Constructing hardware in a Scala embedded

language,” in Proceedings of the 49th Annual Design Automation Conference, 2012, pp. 1216–

1225. DOI: 10.1145/2228360.2228584.

[9] LF Projects LLC. “Chisel: Software-defined hardware.” (2025), [Online]. Available: https://www.
chisel-lang.org/ (visited on 03/27/2025).

[10] A. Izraelevitz, J. Koenig, P. Li, et al., “Reusability is FIRRTL ground: Hardware construction

languages, compiler frameworks, and transformations,” in 2017 IEEE/ACM International Conference

on Computer-Aided Design (ICCAD), IEEE, 2017, pp. 209–216.

[11] IEEE, “IEEE Standard for Verilog Hardware Description Language,” IEEE Std 1364-2005 (Revision

of IEEE Std 1364-2001), pp. 1–590, 2006. DOI: 10.1109/IEEESTD.2006.99495.

[12] A. Lenharth and C. Lattner, “CIRCT: Lifting hardware development out of the 20th century,”

2021. [Online]. Available: https : / / llvm . org / devmtg / 2021 - 11 / slides / 2021 - CIRCT -
LiftingHardwareDevOutOfThe20thCentury.pdf (visited on 12/08/2024).

[13] J. Decaluwe, “MyHDL: A python-based hardware description language,” Linux Journal, vol. 2004,

p. 5, Jan. 2004.

[14] GTKWave. [Online]. Available: https://gtkwave.sourceforge.net/.

[15] QBayLogic, Clash.Signal.Trace, version 1.8.2, 2025. [Online]. Available: https : / / hackage -
content.haskell.org/package/clash-prelude-1.8.2/candidate/docs/Clash-Signal-
Trace.html.

[16] W. Snyder, P. Wasson, D. Galbi, et al., Verilator, version 5.001, 2022. [Online]. Available: https:
//verilator.org.

[17] C. Shao and R. Eisenberg. “Haskell dark arts, part I: Importing hidden values.” (2021), [Online].

Available: https://www.tweag.io/blog/2021-01-07-haskell-dark-arts-part-i/ (visited on

01/16/2024).

[18] S. Meyers, “The most important design guideline?” IEEE Software, vol. 21, no. 4, pp. 14–16, 2004.

DOI: 10.1109/MS.2004.29.

54

https://doi.org/10.1145/3282307
https://www.haskell.org/definition/haskell2010.pdf
https://www.haskell.org/definition/haskell2010.pdf
https://clash-lang.org/
https://doi.org/10.5281/zenodo.11447243
https://doi.org/10.5281/zenodo.14623297
https://doi.org/10.5281/zenodo.14623297
https://doi.org/10.1109/NorCAS64408.2024.10752465
https://doi.org/10.1109/NorCAS64408.2024.10752465
https://doi.org/10.1145/2228360.2228584
https://www.chisel-lang.org/
https://www.chisel-lang.org/
https://doi.org/10.1109/IEEESTD.2006.99495
https://llvm.org/devmtg/2021-11/slides/2021-CIRCT-LiftingHardwareDevOutOfThe20thCentury.pdf
https://llvm.org/devmtg/2021-11/slides/2021-CIRCT-LiftingHardwareDevOutOfThe20thCentury.pdf
https://gtkwave.sourceforge.net/
https://hackage-content.haskell.org/package/clash-prelude-1.8.2/candidate/docs/Clash-Signal-Trace.html
https://hackage-content.haskell.org/package/clash-prelude-1.8.2/candidate/docs/Clash-Signal-Trace.html
https://hackage-content.haskell.org/package/clash-prelude-1.8.2/candidate/docs/Clash-Signal-Trace.html
https://verilator.org
https://verilator.org
https://www.tweag.io/blog/2021-01-07-haskell-dark-arts-part-i/
https://doi.org/10.1109/MS.2004.29

[19] J. Auerbach, D. F. Bacon, P. Cheng, and R. Rabbah, “Lime: A Java-compatible and synthesizable

language for heterogeneous architectures,” SIGPLAN Not., vol. 45, no. 10, pp. 89–108, Oct. 2010.

DOI: 10.1145/1932682.1869469.

[20] J. Thomas, P. Hanrahan, and M. Zaharia, “Fleet: A framework for massively parallel streaming on

fpgas,” in Proceedings of the Twenty-Fifth International Conference on Architectural Support for

Programming Languages and Operating Systems, 2020, pp. 639–651. DOI: 10.1145/3373376.
3378495.

[21] M. Fragkoulis, P. Carbone, V. Kalavri, and A. Katsifodimos, “A survey on the evolution of stream

processing systems,” The VLDB Journal, vol. 33, no. 2, pp. 507–541, 2024.

[22] H. Isah, T. Abughofa, S. Mahfuz, D. Ajerla, F. Zulkernine, and S. Khan, “A survey of distributed

data stream processing frameworks,” IEEE Access, vol. 7, pp. 154 300–154 316, 2019.

[23] A. Hormati, M. Kudlur, S. Mahlke, D. Bacon, and R. Rabbah, “Optimus: Efficient realization of

streaming applications on FPGAs,” in Proceedings of the 2008 International Conference on Compil-

ers, Architectures and Synthesis for Embedded Systems, 2008, pp. 41–50. DOI: 10.1145/1450095.
1450105.

[24] Apache Software Foundation, Apache Kafka, 2024. [Online]. Available: https://kafka.apache.
org/1.

[25] Arm Limited, AMBA® AXI-Stream Protocol Specification, Apr. 2021. [Online]. Available: https:
//developer.arm.com/documentation/ihi0051/b.

[26] Intel Corporation, Avalon® Streaming Interfaces, Jan. 2022. [Online]. Available: https://www.
intel.com/content/www/us/en/docs/programmable/683091/20-1/streaming-interfaces.
html.

[27] J. Pontes, R. Soares, E. Carvalho, F. Moraes, and N. Calazans, “SCAFFI: An intrachip FPGA

asynchronous interface based on hard macros,” in 2007 25th International Conference on Computer

Design, IEEE, 2007, pp. 541–546.

[28] F. Schuiki, A. Kurth, T. Grosser, and L. Benini, “LLHD: A multi-level intermediate representation

for hardware description languages,” in Proceedings of the 41st ACM SIGPLAN Conference on

Programming Language Design and Implementation, 2020, pp. 258–271.

[29] J. W. Cutler, C. Watson, E. Nkurumeh, et al., “Stream Types,” Proc. ACM Program. Lang., vol. 8,

no. PLDI, Jun. 2024. DOI: 10.1145/3656434.

[30] J. Peltenburg, J. Van Straten, M. Brobbel, Z. Al-Ars, and H. P. Hofstee, “Tydi: An open specification

for complex data structures over hardware streams,” IEEE Micro, vol. 40, no. 4, pp. 120–130, 2020.

DOI: 10.1109/MM.2020.2996373.

[31] M. Brobbel, J. Peltenburg, and J. van Straten, Tydi. [Online]. Available: https://abs-tudelft.
github.io/tydi/.

[32] Y. Tian, M. Reukers, Z. Al-Ars, et al., “Tydi-lang: A language for typed streaming hardware,” in

Proceedings of the SC ’23 Workshops of the International Conference on High Performance

Computing, Network, Storage, and Analysis, 2023, pp. 521–529. DOI: 10.1145/3624062.3624539.

[33] C. Cromjongh, Y. Tian, P. Hofstee, and Z. Al-Ars, “Tydi-Chisel: Collaborative and interface-driven

data-streaming accelerators,” English, in Proceedings of the 2023 IEEENordic Circuits and Systems

Conference (NorCAS), IEEE, 2023. DOI: 10.1109/NorCAS58970.2023.10305451.

[34] A. Gundry, A. Löh, A. Rybczak, and O. Grenrus, Optics, version 0.4.2.1, May 2024. [Online].

Available: https://hackage.haskell.org/package/optics-0.4.2.1.

[35] QBayLogic, Clash Protocols, version 0.1, 2025. [Online]. Available: https://github.com/clash-
lang/clash-protocols (visited on 03/03/2025).

55

https://doi.org/10.1145/1932682.1869469
https://doi.org/10.1145/3373376.3378495
https://doi.org/10.1145/3373376.3378495
https://doi.org/10.1145/1450095.1450105
https://doi.org/10.1145/1450095.1450105
https://kafka.apache.org/1
https://kafka.apache.org/1
https://developer.arm.com/documentation/ihi0051/b
https://developer.arm.com/documentation/ihi0051/b
https://www.intel.com/content/www/us/en/docs/programmable/683091/20-1/streaming-interfaces.html
https://www.intel.com/content/www/us/en/docs/programmable/683091/20-1/streaming-interfaces.html
https://www.intel.com/content/www/us/en/docs/programmable/683091/20-1/streaming-interfaces.html
https://doi.org/10.1145/3656434
https://doi.org/10.1109/MM.2020.2996373
https://abs-tudelft.github.io/tydi/
https://abs-tudelft.github.io/tydi/
https://doi.org/10.1145/3624062.3624539
https://doi.org/10.1109/NorCAS58970.2023.10305451
https://hackage.haskell.org/package/optics-0.4.2.1
https://github.com/clash-lang/clash-protocols
https://github.com/clash-lang/clash-protocols

Appendix

56

A
Repositories

A.1. Shockwaves
Main Shockwaves repository: https://github.com/The-Redstar/shockwaves

Surfer fork: https://gitlab.com/The-Redstar/surfer-shockwaves

Clash compiler fork: https://github.com/The-Redstar/clash-shockwaves-compiler

A.2. Tydi-Clash
Tydi-Clash: https://github.com/The-Redstar/tydi-clash

Example system: https://github.com/The-Redstar/tydi-clash-demo

57

https://github.com/The-Redstar/shockwaves
https://gitlab.com/The-Redstar/surfer-shockwaves
https://github.com/The-Redstar/clash-shockwaves-compiler
https://github.com/The-Redstar/tydi-clash
https://github.com/The-Redstar/tydi-clash-demo

B
JSON Format

This appendix contains examples of the JSON lookup tables for Shockwaves.

B.1. Signal Type Table
1 {
2 "DUT.counter.x": "Clash.Sized.Internal.Unsigned 5",
3 "DUT.count": "GHC.Types.Bool"
4 }

B.2. Value Translation Table
In the actual data, "kind": "Normal" and "subfield":[] are omitted, and all fields have been shortened

to a single letter (for example, "Compound" becomes "C").

1

2 {
3 "(Clash.Sized.BitVector.Bit,Clash.Sized.BitVector.Bit)": [
4 { "Compound": {
5 "subfields": [
6 ["0","String"],
7 ["1","String"]
8]
9 }

10 },
11 {
12 "10": {
13 "val": {"String": "(1,0)"},
14 "kind": "Normal",
15 "subfields": [
16 {
17 "name": "0",
18 "result": {
19 "val": {"String": "1"},
20 "kind": "Normal",
21 "subfields": []
22 }
23 },
24 {
25 "name": "1",
26 "result": {
27 "val": {"String": "0"},
28 "kind": "Normal",
29 "subfields": []
30 }
31 }

58

32]
33 },
34 "00": {
35 "val": {"String": "(0,0)"},
36 "kind": "Normal",
37 "subfields": [
38 {
39 "name": "0",
40 "result": {
41 "val": {"String": "0"},
42 "kind": "Normal",
43 "subfields": []
44 }
45 },
46 {
47 "name": "1",
48 "result": {
49 "val": {"String": "0"},
50 "kind": "Normal",
51 "subfields": []
52 }
53 }
54]
55 },
56 "01": {
57 "val": {"String": "(0,1)"},
58 "kind": "Normal",
59 "subfields": [
60 {
61 "name": "0",
62 "result": {
63 "val": {"String": "0"},
64 "kind": "Normal",
65 "subfields": []
66 }
67 },
68 {
69 "name": "1",
70 "result": {
71 "val": {"String": "1"},
72 "kind": "Normal",
73 "subfields": []
74 }
75 }
76]
77 }
78 }
79]
80 }

59

C
Shockwaves Supported Types

The following types are implemented without subsignals:

(), Bool, Char, Bit, Int, Int8, Int16, Int32, Int64, Ordering, Word, Word8, Word16, Word32, Word64,
CUShort, Signed, Unsigned, Double, Float, Fixed, SNat, Proxy

Types with standard derived implementations:

tuples of up to 15 elements, Complex, Down, Identity, Const, Product, Sum, Compose

These types have custom implementations of Display and/or Split:
Maybe, Either, Vec, BitVector, RTree, Zeroing, Wrapping, Saturating, Overflowing, Erroring

60

D
Tydi Coding Styles

This appendix provides three different ways to write Tydi-Clash code.

D.1. Direct Control
The most direct way is to control all signals directly. While in many cases this results in fairly simple code,

there is no protection against incorrect usage. Case detection can be separated from data handling by

defining boolean values.

Since the inner signals of physical streams are private, this method of interfacing is currently not

actually possible in Tydi-Clash.

1 -- case detection using booleans
2 dataTransfer = inStream.valid && inStream.strb
3 lastTransfer = inStream.valid && not inStream.strb && any inStream.last
4 outTransfer = outStream.valid && outReady==Ready
5

6 -- output dependent on case
7 outStream = PStream
8 { valid = dataTransfer || lastTransfer
9 , dat = out

10 , last = inStream.last
11 }
12

13 inReady = convertReady outReady
14

15 (state', out) = go state inStream.dat
16 newState = if outTransfer then state'
17 else state

D.2. Intertwined Data
With the data encapsulated in special types, the data only becomes accessible with the data detection.

Unfortunately, mixing case detection and data generation results in less readable code.

1 -- combined case detection and output generation
2 (outStream ,inReady,state',outTransfer) = case inStream of
3 Transfer tf | Just d <- getDataSliced tf -> (fromSliced (Just out)
4 (getLast tf)
5 ()
6 , readyConvert outReady
7 , state''
8 , outStream==Ready)
9 where (state'',out) = statemachine state d

10 Transfer tf | any $ getLast tf -> (fromSliced Nothing
11 (getLast tf)
12 ()

61

13 , readyConvert outReady
14 , state
15 , outStream==Ready)
16 _ -> (NoTransfer ,Ready,state,False)
17

18 newState = if outTransfer then state'
19 else state

D.3. Case Detection Using Maybe
Instead of booleans, cases can be stored as Maybe values containing their relevant data. This style was

thought up as a solution to the implementation difficulties while writing the example implementation.

1 -- case detection
2 dataTransfer = case inStream of
3 Transfer tf | Just d <- getDataSliced tf -> Just (statemachine state d
4 , getLast tf)
5 _ -> Nothing
6 lastTransfer = case inStream of
7 Transfer tf | l <- getLast tf, any l -> Just l
8 _ -> Nothing
9

10 -- output generation
11 inReady = if | Just _ <- dataTransfer -> readyConvert outReady
12 | Just last <- lastTransfer -> readyConvert outReady
13 | otherwise -> Ready
14

15 outStream = if | Just ((_,d'),last) <- dataTransfer -> fromSliced (Just d')
16 last
17 ()
18 | Just last <- lastTransfer -> fromSliced Nothing
19 last
20 ()
21 | otherwise -> Ready
22

23 newState = if | ((s',_),_) <- dataTransfer , outReady==Ready -> s'
24 | otherwise -> state

62

	List of Figures
	List of Tables
	Introduction
	Common background
	Haskell
	Clash

	I Shockwaves
	Introduction
	Objectives
	Outline

	Background & Related Work
	Surfer
	Spade
	Chisel and Tywaves
	MyHDL and GTKWave
	Clash VCD Generation

	System Design
	Tracing and Compiling
	Value Decoding and Representation
	Selected Design

	Surfer Integration
	Translator Implementation
	Translation Data Format
	Lookup Tables in JSON
	Equivalent Haskell Types

	Data Representation
	The Haskell Classes Display and Split
	Algebraic Data Types
	Customized Representations and Abstract Data Types
	Builtin Types

	Translation
	Tracing
	Post-simulation Translation of Verilog Simulations

	Results
	Tracing
	Post-simulation Translation

	Discussion
	Pre-translation
	Haskell Library
	Tracing
	Post-compilation simulation

	Summary

	II Tydi
	Introduction
	Objectives
	Related Work
	Outline

	Background
	Tydi
	Tydi-lang
	Tydi-Chisel
	Haskell Optics
	Clash Protocols

	Tydi Data Types
	Group
	Union
	Translating Haskell Types
	Type Conversion

	Physical Streams
	Streams and Ports in Clash
	Representing Control Signals
	Interacting with Physical Streams
	Connecting Streams

	Logical Streams
	Representation of Logical Streams
	Synthesis into Phsyical Stream Bundles
	Interacting with Physical Stream Bundles

	Behavioral Verification
	Stable Data Transmission
	Correct Sequence Termination
	Complexity Level Restrictions
	Inter-stream Dependencies

	Shockwaves Integration
	Tydi Data Types
	Slices and Prefixes
	Physical Streams

	Example Implementation
	Problem Statement
	Tydi Streamlet Pipeline
	Implementation
	Results

	Discussion
	Summary

	III Closure
	Conclusion
	References

	Appendix
	Repositories
	Shockwaves
	Tydi-Clash

	JSON Format
	Signal Type Table
	Value Translation Table

	Shockwaves Supported Types
	Tydi Coding Styles
	Direct Control
	Intertwined Data
	Case Detection Using Maybe

