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Abstract. This paper considers the problem of optimal rank approximations of multilin-
ear functions. A new notion of modal singular values is introduced for an arbitrary tensor
and it is shown how optimal lower rank approximations of a tensor can be inferred from
these singular values, without resorting to orthogonal tensor decompositions. Results in
this paper are primarily motivated by the problem to find optimal projection spaces for
model reduction purposes. It is shown that the approximation results outperform earlier
singular value based techniques of lower rank approximations of tensors.

1 INTRODUCTION

Spectral decompositions of signals by (infinite) sequences of orthogonal functions un-
derlie many numerical techniques of approximation and are particularly useful for model
or signal approximation methods in computational fluid dynamics. A central theme in
many reduction frameworks is therefore the construction of an (empirical) orthonormal
basis that proves useful for the representation and approximation of signals. Indeed, most
techniques of signal and model compression amount to determining a suitable projection
space so as to approximate signals and models on a projective manifold. Especially for
signals that evolve over higher dimensional domains, the computation of suitable basis
functions may be a formidable task, and it is for this reason that we aim to derive more
efficient algorithms for the computation of projection spaces for signal and systems.

Singular value decompositions (SVD’s) of matrices have proven to be a key algebraic
tool in the construction of projection basis for an enormous class of problems in signal
and system approximation. As such, the SVD has found widespread applications. Nev-
ertheless, the classical notion of a singular value decomposition is restricted to matrices
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or linear mappings on finite dimensional vector spaces and does not allow an immedi-
ate or obvious generalization to multi-linear mappings. Only few papers have proposed
such generalizations [8, 9, 4] with the aim to find lower rank approximations of multi-way
arrays. The complexity and importance of this problem is evidenced in e.g. [5, 12, 13, 10].

This paper focuses on the development of a number of singular value concepts that
serve to define singular values of multi-linear functionals (tensors). As a main result it
is shown that optimal (modal) rank approximations of a tensor can be characterized by
(modal) singular values and in terms of suitable projective subspaces in a multilinear
space.

The problem to find optimal lower rank tensors is primarily motivated by the question
to define empirical orthonormal basis functions on an N -dimensional domain that lead
to spectral expansions of signals for which lower rank approximations are optimal. Many
model reduction methods in computational fluid dynamics and particularly the method
of proper orthogonal decompositions [1, 3, 11, 6] derive reduced order models on the basis
of such empirical basis functions.

2 CONCEPTS FROM MULTI-LINEAR ALGEBRA

Let W1, . . . ,WN be inner product spaces of dimension dim(Wn) = Ln and denote by
〈·, ·〉 and ‖·‖ the corresponding inner product and norm in Wn. An order-N tensor on the
inner product spacesWn, n = 1 . . . , N , is a multi-linear functional T : W1×. . .×WN → R.
That is, T is a linear functional in each of its N arguments. The set of all order-N tensors
becomes a vector space, denoted W1 ⊗ · · · ⊗ WN , when equipped with the standard
definitions of addition and scalar multiplication:

(αT1 + βT2)(w1, . . . , wN) := αT1(w1, . . . , wN) + βT2(w1, . . . , wN).

For fixed elements vn ∈ Wn, n = 1, . . . , N , the functional T : W1× . . .×WN → R defined
by

T (w1, . . . , wN) = 〈v1, w1〉 · · · 〈vN , wN〉
defines an order-N tensor which will be denoted by v1 ⊗ · · · ⊗ vN . If the collection
{e`n

n , `n = 1, . . . , Ln} is a basis of Wn, 1 ≤ n ≤ N , then T admits a representation

T (w1, . . . , wN) =

L1∑
`1=1

· · ·
LN∑

`N=1

t`1,...,`N
e`1
1 ⊗ · · · ⊗ e`N

N

in which the coefficients are encoded in the N -way array [[ti1,...,iN ]] ∈ RL1×···×LN . As such,
an order-1 tensor is encoded as a vector, an order-2 tensor as a matrix, and an order-N
tensor as an N -way array.

The matrix unfolding of a tensor T is a matrix representation of an N -way array
[[t`1,...,`N

]] ∈ RL1×···×LN and is defined for each n = 1, . . . , N by the matrix

Tn ∈ RLn×(L1···Ln−1Ln+1···LN )
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that contains on its `n-th row all elements t`1,...,`n,...`N
where `m ranges from 1 till Lm with

m 6= n (the precise ordering of the columns in Tn will prove irrelevant in the sequel). We
refer to Tn as the n-mode unfolding of T .

To discuss the problem of low rank approximations of tensors, the concept of tensor
rank is of crucial importance. This concept is by no means a trivial extension of the
usual notion of matrix rank, and has been discussed in quite a number of papers. See, for
example, [4, 5, 10, 8, 9].

Definition 2.1 The rank of a nonzero tensor T , denoted rank(T ), is the minimum integer
R such that T can be decomposed as T =

∑R
r=1 v

r
1 ⊗ · · · ⊗ vr

N for a suitable collection
of elements vr

n ∈ Wn, 1 ≤ n ≤ N , 1 ≤ r ≤ R. The n-mode rank of a nonzero tensor
T , denoted rankn(T ), is the rank of the n-mode unfolding Tn of T . The modal rank of
T , denoted modrank(T ), is the ordered sequence (R1, . . . , RN) of n-mode ranks Rn =
rankn(T ).

The rank and modal rank are well defined in that there exist unique numbers R =
rank(T ) and Rn = rankn(T ) for any T ∈ W1 ⊗ . . . ⊗ WN . If N = 2 we have that
R = R1 = R2 = rank(T ) and the rank coincides with the usual notion of rank of a
matrix. For the general case where N > 2, it follows that rankn(T ) ≤ rank(T ) for all n,
where strict inequality may actually hold for all n [8].

The operator norm of a tensor T is defined by

‖T‖ := sup
wi∈Wi, ‖wi‖=1

|T (w1, . . . , wN)

The Frobenius norm of a rank R tensor T is

‖T‖F := inf

{
R∑

r=1

‖vr
1‖ · · · ‖vr

N‖ | T =
R∑

r=1

vr
1 ⊗ · · · ⊗ vr

N

}

where vr
n ∈ Wn assumes the norm ‖vr

n‖ induced by the inner product in Wn. It is well
known that

‖T‖2
F =

L1∑
`1=1

· · ·
LN∑

`N=1

t2`1...`N
= ‖[[t`1...`N

]]‖2
F

in any basis representation of T .
We associate a number of singular values with an order N tensor as follows.

Definition 2.2 Let T ∈ W1 ⊗ · · · ⊗WN be an order-N tensor.

1. The singular values of T , denoted σk(T ), with k = 1, 2, . . . , K, with K = minn(Ln)
are defined recursively as follows:

• Mn,0 = Wn, 1 ≤ n ≤ N .
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• the kth singular value is

σk(T ) = sup
wn∈Mn,k−1,1≤n≤N

|T (w1, . . . , wN)| (1)

• Mn,k = {wn ∈ Mn,k−1 | 〈wn, w
k
n〉 = 0} where wk

n are elements that satisfy
σk(T ) = T (wk

1 , . . . , w
k
N) with ‖wk

n‖ = 1, 1 ≤ n ≤ N .

2. The modal singular values of T , denoted σk(T ), with k = (k1, . . . , kN), 1 ≤ kn ≤ Ln

are defined as follows

• the k = (k1, . . . , kN)th singular value is

σk1,...,kN
= inf

dimLn≤Ln−kn+1
sup

wn∈Ln,‖wn‖=1

T (w1, . . . , wN) (2)

• Ln,kn is the subspace of Wn of dimension dimLn,kn ≤ Ln − kn + 1 for which
σk1,...,kN

= supwn∈Ln,kn ,‖wn‖=1 T (w1, . . . , wN)

3. The n-mode singular values of T are the singular values τ 1
n, . . . , τ

Rn
n of the n-mode

unfolding Tn of T , i.e., τ i
n are the elements on the pseudo-diagonal matrix Σn in a

singular value decomposition Tn = UnΣnV
>
n of Tn.

The definition of n-mode singular values in item 3 has been proposed in [8, 9]. These
papers also provide an algorithm for the computation of the n-mode singular values τ i

n.
The concepts in item 1 and 2 are new and have the main advantage that they are defined
without reference to a specific basis of the tensor T . Note that we introduced singular
values σk(T ) both for integers k ∈ N as well as for ordered integer sequences k ∈ NN .

The following theorem is the main result of the paper and provides a number of char-
acterizations of the singular values introduced in Definition 2.2.

Theorem 2.3 Let T ∈ W1 ⊗ · · · ⊗WN be an order-N tensor.

1. ‖T‖ = σ1(T ) = σ1,1,...,1(T )

2. ‖T‖F =
∑K

k=1 σ
2
k(T ).

3. σ1(T ) ≥ σ2(T ) ≥ · · · ≥ σK(T )

4. For any integer k, σk,k,...,k(T ) ≤ σk(T )

5. For all integer ki we have σk1,...,kN
(T ) ≤ σ1(T )

6. If k′i ≤ k′′i then σk1,...,k′i,...,kN
(T ) ≤ σk1,...,k′′i ,...,kN

(T )

7. For all n = 1, . . . , N we have the nesting Mn,0 ⊃Mn,1 ⊃ · · · ⊃ Mn,Ln .
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8. If N = 2 then σk1,k2 = σk2,k1 ,

σk,k = τ k
1 = τ k

2 = σk

coincides with the kth singular value of the unfolded matrix T1 = T>2 and we have
the nesting Ln,1 ⊃ · · · ⊃ Ln,Ln for n = 1, 2.

The proof of the theorem mainly follows from the definitions. We conjecture that the
nesting property in the last item only holds for order-2 tensors and not for higher order
tensors. Note also that the last item is simply the ‘ordinary’ singular value decomposition
of the 2-way arrays or matrices T1 = T>2 that is associated with the unfolding of T .

3 LOW RANK APPROXIMATION OF TENSORS

The problem to find a tensor Tr of rank(Tr) = r such that ‖T − Tr‖ or ‖T − Tr‖F is
generally referred to as the Eckart-Young low rank approximation problem and has been
studied in [4, 5, 10, 12]. It was found that lower rank approximations do not need to
exist, may not be unique and that the space of rank r tensors is non-compact.

In [8] the authors derive that the approximation error ‖T − Tr‖F is bounded by

‖T − Tr‖2
F =

∑
i1>r1

(τ i1
1 )2 + · · ·+

∑
iN>rN

(τ iN
N )2

whenever Tr = Tr1,...,rN
is the modal rank r = (r1, . . . , rN) tensor defined by

Tr1,...,rN
:=

r1∑
i1=1

· · ·
rN∑

iN=1

si1,...,iNϕ
i1
1 ⊗ · · · ⊗ ϕiN

N (3)

where ϕin
n , n = 1, . . . , N , in = 1, . . . , rn denote the inth column of Un in a singular value

decomposition Tn = UnΣnV
>
n of the n-mode unfolding Tn of T . It is known that this

upperbound may be a strict one. The following result shows that the modal singular
values completely characterize the optimal modal rank approximations of a tensor in the
operator norm.

Theorem 3.1 For any order-N tensor T ∈ W1 ⊗ · · · ⊗WN ,

σr1+1,...,rN+1(T ) = min{‖T − Tr‖ | modrank (Tr) = (r1, . . . , rN)}.

Moreover, an optimal approximant Tr of T is given by (3) if ϕin
n is chosen as an ortho-

normal basis of the orthogonal complement L⊥n,rn+1 of Ln,rn+1 in Wn, 1 ≤ n ≤ N .

Proof: The tensor Tr defined by (3) for the given basis has modal rank (r1, . . . , rN) and
has the property that Tr(w1, . . . , wN) = 0 whenever wn ∈ Ln,rn+1. Since Ln,rn+1 has
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dimension at most Ln − rn it follows that

σr1+1,...,rN+1(T ) = inf
dimLn≤Ln−rn

sup
wn∈Ln,‖wn‖=1

T (w1, . . . , wN)

≤ sup
wn∈Ln,rn+1,‖wn‖=1

(T − Tr)(w1, . . . , wN)

≤ sup
wn∈Wn,‖wn‖=1

|(T − Tr)(w1, . . . , wN)|

= ‖T − Tr‖

which shows that σr1+1,...,rN+1(T ) is a lower bound on the approximation error for any
tensor Tr of modal rank (r1, . . . , rN). To show that σr1+1,...,rN+1(T ) is also an upper-
bound for ‖T − Tr‖, observe that

‖T − Tr‖2 = ‖(T − Tr)|L1,r1+1×···LN,rN +1
‖2 + ‖(T − Tr)|⊥L⊥1,r1+1×···LN,rN +1

‖2

= ‖T |L1,r1+1×···LN,rN +1
‖2 + 02

= sup
wn∈Ln,rn+1,‖wn‖=1

T (w1, . . . , wN)

= σr1+1,...,rN+1(T )

where the last equality follows from the definition of Ln,rn+1. The result then follows. 2

Hence, this theorem provides a characterization of the minimal operator norm that
can be obtained by approximating T by a lower modal rank tensor in terms of the the
modal singular values. Moreover, the result gives an explicit expression for the optimal
approximant.

4 APPLICATION IN N-d MODEL REDUCTION

As an application of the results of the previous section, we consider an arbitrary linear
N -dimensional system described by the partial differential equation

R

(
∂

∂x1

, . . . ,
∂

∂xN

)
w = 0 (4)

in which w : X → W evolves over a domain X ⊂ RN and produces outcomes in a q
dimensional real vector space W = Rq. Here, R ∈ R·×q[ξ1, . . . , ξN ] is a real matrix valued
polynomial in N indeterminates. Suppose that the domain X admits the structure of a
Cartesian product X = X1× . . .×XN of N subsets of RN . A finite element discretization
consists of selecting a finite number of functions ψ1, . . . , ψL in a separable Hilbert space
W in which solutions of (4) reside. Approximate solutions of (4) are then elements wL of
WL = span{ψ1, . . . , ψL} such that the variational expression

〈R
(

∂

∂x1

, . . . ,
∂

∂xN

)
wL, ψ〉V = 0
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is satisfied for all ψ ∈ WL where V is an inner product space contained in W . This
method is generally referred to as the Galerkin projection method.

Model reduction based on proper orthogonal decomposition (POD) involve empirical
basis functions {ϕ`, ` = 1, . . . , r} of W (or WL) that are chosen to minimize the cost
function

Jr :=
K∑

k=1

‖wk −
r∑

`=1

〈wk, ϕ`〉ϕ`‖2

subject to the orthonormality constraint

〈ϕi, ϕj〉 = δi,j, 1 ≤ i, j ≤ r

where wk ∈ W, 1 ≤ k ≤ K, is a given ensemble of observations or data and where r
denotes the approximation degree. Here, ‖ · ‖ denotes the norm induced by the inner
product on W .

If W is finite dimensional, say of dimension L, then a POD basis is given by the left
singular vectors in a singular value decomposition of the data ensemble matrix

A =

w1
1 · · · wK

1
...

...
w1

L · · · wK
L

 = UΣV >

where wk
` is the `th coefficient of wk in an arbitrary basis of W , U and V are unitary

matrices of dimension L×L and K ×K, respectively, and Σ is a pseudo-diagonal matrix
of dimension L×K with ordered positive numbers σ1 ≥ · · · ≥ σR, the singular values of
A on its main diagonal. Here, R = rankA. In any such decomposition the first r columns
{ϕ`, ` = 1, . . . , r} of U define a POD basis and the minimal value of the cost Jr is given
by

Jr =
∑
`>r

σ2
` .

which coincides with the minimal Frobenius norm ‖A − Ar‖F when Ar ranges over all
rank r matrices of dimension L ×K. Alternatively, the POD basis can be inferred from
the normalized eigenvectors corresponding to the r largest eigenvalues of A>A.

In such a construction, the data ensemble matrix A requires a ‘vectorization’ of elements
in W in which any possible Cartesian structure that may be present in X is ignored.
Indeed, a finite element discretization of D elements in each of the N coordinates of the
spatial domain X requires a stacking of L = DN coefficients in the construction of A.
Hence the number of rows of A is typically an exponential function of N , which may
render the calculation of POD bases prohibitive for higher dimensional systems.

Theorem 3.1 provides an N -d spectral expansion of an element w ∈ W is an expression
of the form

w(x1, . . . , xN) =

L1∑
`1=1

· · ·
LN∑

`N=1

a`1···`N
ϕ`1

1 (x1) · · ·ϕ`N
N (xN) (5)
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where {ϕ`n
n , `n = 1, . . . , Ln} are orthonormal basis functions in a Hilbert space Wn of

functions on Xn and where the coefficients a`1···`N
define an order-N tensor A.

5 CONCLUSIONS

In this paper we proposed a number of definitions of singular values for multilinear
functionals (tensor) defined on finite dimensional inner product spaces and derived a
number of properties. The notions of singular values that we introduced here are inspired
by the minimax property of singual values of matrices, and nicely generalize to multi-linear
functions. As a main result it is shown that the minimal error that can be achieved by
approximating an order N tensor T by a modal rank r = (r1, . . . , rN) tensors Tr is given by
the (r1+1, . . . , rN +1)st modal singular value σr1+1,...,rN+1. This result generalizes the well
known relation between lower rank approximations of matrices to arbitrary multilinear
functions and improve the error bound in [8, 9] for lower rank approximations of tensors.
We derived an analytical expression for the optimal loer rank approximation Tr of T ,
but we did not yet develop an efficient computational scheme to actually compute Tr.
A possible application of the main result in the construction of POD basis function for
model reduction purposes has been discussed.
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