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Abstract
Remote retrieval of Normalized Difference Vegetation Index (NDVI) over the Earth’s surface is a critical
component of monitoring the surface processes of our planet. NDVI is a widely used and useful indicator
of vegetation health and quantity ­ however its retrieval using satellite data is hindered by the frequent
presence of clouds in the Earth’s atmosphere. These can block or severely contaminate measurements
of the red and near­infrared (NIR) band reflectances, the bands on which NDVI is based. A common
method to avoid this is to create a composite value from multiple observations retrieved over several
days, by reconstructing the surface’s bidirection reflectance distribution function (BRDF) and using it
to calculate the NDVI at a standardized geometry.

Zeng et al. [61] developed a novel technique that estimates a susrfaces’s Bidirectional Reflectance
Distribution Function (BRDF) with a Ross­Li­Maignan (RLM) model from a set of observations. This
method, the Changing­Weight Iterative (CWI) method, use iterative a posteriori estimation of observa­
tions errors to reduce the impact of cloud­contaminated measurements in the sample. Its performance
was comapred to two conventional methods, ordinary­least squares (OLS) and Li­Gao[11] methods.

The three different BRDF­fitting methods and their ability to reduce the impact of noisy observations
were compared in a numerical experiment. 6,000 surfaces covering a broad range of surface types
were modeled using the canopy radiative transfer model PROSAIL. For each surface, sets of pseudo­
observations of the surface’s red and NIR band reflectance were generated using realistic sun­target­
view geometries from the MODIS and MERSI satellite sensors.

The effects of cloud­contamination were simulated by adding different numbers of cloud­contaminated
observation (𝛼) to the sample, with varying degrees of contamination (𝑓𝑐). The RLM BRDF model was
fitted to these samples using the three different methods. These were subsequently used to calculate
a NDVI composite value.

Each method’s estimate was compared to a reference­value generated by PROSAIL. Results for
the 6,000 surfaces confirmed that the CWI method is more noise­resistant than OLS and Li­Gao in
situations with many observations (i.e. a large sample), and resulted in estimates that more closely
matched the reference values from PROSAIL, compared to the conventional Li­Gao and OLSmethods.

In scenarios of low­cloud contamination, all three methods failed to detect and significantly suppress
the impact of noisy observations, which was expected from existing literature [11].

For a large­sized sample of 13 pseudo­observations studied for the validation site Mongu, Zambia,
the CWI method was observed to have a very accurate performance, for up to 5 contaminated obser­
vations (𝛼 = 5) in the sample. With smaller sized samples of 8 and 10 for two other validation sites,
it was found that the RMSE of the CWI method would suddenly increase approximately tenfold when
𝛼 increased beyond 2 and 3, respectively. After these ’tipping points’, the Li­Gao method was more
accurate and outperformed CWI.

The CWI method therefore performed promisingly when given a large enough sample size, and in
these cases it was more accurate than the conventional Li­Gao and OLS methods. However, when
it fails to correctly identify noisy observations, its accuracy could decrease suddenly, which should be
taken into consideration for operational use. Since the results of the experiment were averaged over
6,000 different sampling points of the PROSAIL model’s parameter space, it is suggested that the
conclusions apply to a wide range of surface types found all over the Earth.

v





Contents

List of Figures ix

List of Tables xiii

Nomenclature xv

1 Introduction 1

2 Theory: NDVI Retrieval and Surface BRDF Estimation 5
2.1 Surface reflectance anisotropy. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

2.1.1 Atmospheric effects . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
2.2 NDVI and clouds . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

2.2.1 Cloud cover and cloud masking . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
2.3 NDVI compositing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

2.3.1 Compositing by BRDF reconstruction . . . . . . . . . . . . . . . . . . . . . . . . . 11
2.4 MuSyQ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

2.4.1 Estimating the BRDF­effect parametric models . . . . . . . . . . . . . . . . . . . . 12
2.4.2 Ross­Li­Maignan BRDF model . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

2.5 BRDF fitting methods. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
2.5.1 Ordinary Least Squares fitting method . . . . . . . . . . . . . . . . . . . . . . . . 14
2.5.2 Li­Gao fitting method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
2.5.3 Changing­Weight Iterative (CWI) fitting method. . . . . . . . . . . . . . . . . . . . 16

2.6 Validating BRDF estimates. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
2.6.1 PROSAIL radiative transfer model. . . . . . . . . . . . . . . . . . . . . . . . . . . 19

2.7 Theory ­ conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

3 Methodology: Numerical Experiment Using PROSAIL 23
3.1 Roadmap . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
3.2 Assumptions made . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
3.3 Creating a set of representative surfaces . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

3.3.1 Removing unrealistic surfaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
3.4 Extracting actual geometry. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

3.4.1 Pre­screening. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
3.5 Simulating pseudo­observations and determining reference BRDF model parameters. . . 29

3.5.1 Baseline Ross­Li­Maignan BRDF model fitting . . . . . . . . . . . . . . . . . . . . 29
3.6 Cloud noise contamination scenarios / Noise contamination. . . . . . . . . . . . . . . . . 30
3.7 Estimating Ross­Li­Maignan model with OLS, LiGao and CWI methods . . . . . . . . . . 32
3.8 Methodology ­ conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

4 Results and Discussion 35
4.1 Clear­sky conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

4.1.1 Suitability of RLM model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
4.1.2 Baseline BRDF model estimates . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
4.1.3 NDVI estimates under clear­sky conditions ­ baseline scenario . . . . . . . . . . . 39

4.2 Estimating from noisy samples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
4.2.1 BRDF model estimates from noisy samples . . . . . . . . . . . . . . . . . . . . . 41
4.2.2 Nadir­normalised NDVI estimates from noisy samples ­ low cloud fraction . . . . . 42
4.2.3 Nadir­normalised NDVI estimates from noisy samples ­ high cloud fraction . . . . 43
4.2.4 Discussion of NBAR NDVI estimates . . . . . . . . . . . . . . . . . . . . . . . . . 46

vii



viii Contents

4.3 Evaluating the experiment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
4.3.1 Multi­sensoral dataset calibration and corrections . . . . . . . . . . . . . . . . . . 48
4.3.2 Simulation conditions and constraints . . . . . . . . . . . . . . . . . . . . . . . . . 49
4.3.3 General discussion on methodology. . . . . . . . . . . . . . . . . . . . . . . . . . 50

4.4 Results and discussion ­ conclusion. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

5 Conclusion and Recommendations 53
5.1 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

5.1.1 Concluding statements related to research questions . . . . . . . . . . . . . . . . 53
5.1.2 Final thoughts. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

5.2 Recommendations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

I Appendices 57

A PROSAIL input variables 59

B Variance of RLM model parameters 62

C Comparison of estimated nadir­normalised NDVI to reference ­ noisefree case 63

D BRDF parameters estimates 65

E Comparison of estimated nadir­normalised NDVI to reference ­ Low cloud contamina­
tion 66

F Comparison of estimated nadir­normalised NDVI to reference ­ Medium cloud contam­
ination 71

G Comparison of estimated nadir­normalised NDVI to reference ­ High cloud contamina­
tion 76

H Tables of RMSE analysis results 81

Bibliography 83



List of Figures

2.1 Scattered radiation by a perfectly Lambertian surface and a non­Lambertian surface. . . 6
2.2 Diagram of the bidirectional reflectance factor BRF, adapted from [19]. . . . . . . . . . . 7
2.3 Red band reflectance of a surface covered with vegetation canopy, simulated by radiative

transfer model PROSAIL. The directionality effect is clearly visible as the reflectance
varies with viewing zenith angle. Including background soil in the simulation (blue line)
further adds a directionality effect, as the proportion of soil reflectance in the signal varies
with viewing angle. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

2.4 Spectrum of solar radiation for Earth. Comparison of the irradiance of sunlight as ob­
served at the top of the atmosphere (yellow line), and at sea level (red line). Taken from
[7]. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

2.5 Atmospheric effect and TOA reflectance illustrated. Figure taken from [36]. . . . . . . . 8
2.6 Reflectance in the red and NIR bands and corresponding NDVI value for healthy veg­

etation compared to stressed vegetation. The stressed vegetation exhibits a lower ab­
sorption in the red band, and higher reflectance in the NIR, resulting in a lower NDVI. . 9

2.7 Model map of cloud­free, cloud shadow, and cloud pixels taken from [58]. . . . . . . . . 9
2.8 3­year time series of MODIS sensor NDVI data, overlaid with two different smoothened

trends. A seasonal variation in NDVI is observed, as is expected for most surfaces, with
higher NDVI values in warmmonths and lower values in the colder months. Noise due to
cloud­contamination and other atmospheric effects lead to lower measured NDVI values,
causing temporal discontinuities that cannot be attributed to smooth seasonal changes.
Taken from [6]. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

2.9 Diagram of multiple observations of the same surface, taken at different points in time,
and at different sun­target­view geometries. . . . . . . . . . . . . . . . . . . . . . . . . . 11

2.10 A single NDVI composite value is formed from a sample. In this case, the NDVI is
standardised to a sun­target­view geometry with nadir­viewing, fixed solar zenith angle
(𝜃𝑆 = 30∘). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

2.11 Number of valid observations available for BRDF inversion, taken from [21]. . . . . . . . 12
2.12 BRF anisotropy of an example surface modelled using the Ross­Li parametric BRDF

model. Shown here for the wavelengths of the MODIS sensor’s band 3 𝜆 = 459–479𝑛𝑚.
Left: Variation in reflectance along the principal plane (illumination direction and viewing
direction in same vertical plane), with varying 𝜃𝑉. Right: polar plot of surface reflectance
for fixed illumination zenith angle 𝜃𝑆 = 30∘, 𝜃𝑉 between 0∘ and 45∘ and 𝜙𝑟 between 0∘
and 360∘. Taken from [28]. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

2.13 Weights assigned to each observation in a sample according to the Li­Gao BRDF fitting
method. The NDVI value highlighted in red is a cloud­contaminated observation with
a NDVI significantly lower than the mea NDVI value of all observations. Its weight is
reduced according to equations 2.10 and 2.12. Adapted from Gao et al. (2002)[11]. . . 16

2.14 Flowchart of the Changing­Weight Iterative (CWI) BRDF fitting method . Adapted from
[61]. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

2.15 Dual­view goniometer system used to take field BRDF measurements. Adapted from [40]. 19
2.16 Simulating bidirectional reflectance factor for a canopy using the PROSAIL model. Leaf

transmittance and scattering as modelled by PROSPECT is passed on as input to the
SAIL canopy model to which it is coupled [5]. . . . . . . . . . . . . . . . . . . . . . . . . 21

ix



x List of Figures

3.1 Conceptual roadmap of the numerical experiment’s methodology. The three groups
in the top row are the types of variables used: variables describing the canopy and
background soil types (inputs for PROSPECT and SAIL), variables describing the sun­
target­view observation geometry (input for SAIL) and variables describing the different
cloud contamination scenarios. The pseudo­observations simulated with PROSAIL form
noise­free samples of the surfaces’ BRDFs, and these are combined with the reflectance
of cloudy pixels using a linear spectral mixing model (not shown here, see subsection
3.6 for details on simulated noise). For each surface in total 15 noisy samples are sim­
ulated, and for each one the Ross­Li­Maignan BRDF model parameters are estimated
using the OLS, Li­Gao, and CWI fitting methods. . . . . . . . . . . . . . . . . . . . . . . 25

3.2 Joint distribution density function of biophysical variables 𝐿𝐴𝐼 and 𝐶𝑎𝑏. An exponential
curve was drawn in the ’corners’ of the joint distribution, selecting surfaces at the edges
of the bi­variate parameter space to be removed. . . . . . . . . . . . . . . . . . . . . . . 27

3.3 Grayscale image of band 1 of a single MODIS image tile, overlaid on a Google Earth
image of northeastern China. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

3.4 Reflectance spectrum from 400 to 2500 (𝑛𝑚) for a vegetated surface with 𝑁𝐷𝑉𝐼 = 0.9
and acquisition geometry of (𝜃𝑉 , 𝜃𝑆 , 𝜙𝑟) = (0, 30, 0), as simulated by PROSAIL. . . . . . 30

3.5 Spectral Response Function (SRF) of MODISAqua sensor overlaid on surface reflectance
spectrum as simulated by PROSAIL. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

3.6 Comparison of noise­free (blue points) pseudo­observations in sample and contami­
nated observations (red points). Generated along principal plane (𝜙𝑟 = 0) so that the
v­shaped directionality is clearly visible, as well as the red points deviation from it. The
observations are contaminated with a low cloud fraction of 𝑓𝑐 = 0.5% using the linear
spectral mixing model. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

3.7 Spread of BRDF model parameters (𝑓𝑖𝑠𝑜 , 𝑓𝑣𝑜𝑙 , 𝑓𝑔𝑒𝑜)𝐶𝑊𝐼 estimated using the CWI method.
For each permutation of 2 noisy measurements, a noisy sample was calculated accord­
ing to the method described in section 3.6. The histogram visualises the distribution of
possible estimates, depending on which random 2 pseudo­obervatios are contaminated.
The median value of each coefficient was used as the resulting estimate for the given
surface and scenario. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

4.1 Skyplot of all valid MODIS and MERSI measurements for a single pixel containing the
study site. 8 observations were extracted for the site Chang Baishan (China), 10 for
Harvard Forest (USA), and 13 for Mongu (Zambia). The pixel closest to the site was
used. Red squares indicate retrievals from the MODIS sensor, while blue triangles are
from the MERSI sensor. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

4.2 Histogram of possible RLM model parameter estimates from noise­free sample for the
NIR band. Shown here for a single surface, for site Harvard Forest. Each triplet of
observations within the sample yielded one set of solutions (𝑓𝑖𝑠𝑜 , 𝑓𝑣𝑜𝑙 , 𝑓𝑔𝑒𝑜)𝑒. The coeffi­
cients are all focused on narrow bands of values with some outliers, with low variances
of (𝜎2𝑓𝑖𝑠𝑜 , 𝜎

2
𝑓𝑣𝑜𝑙 , 𝜎

2
𝑓𝑔𝑒𝑜) = (3.55e−8, 2.15e−6, 2.99e−7) . . . . . . . . . . . . . . . . . . . . . 37

4.3 Variance of the possible RLM model parameter estimates for the NIR band, shown for
a subset of 1000 randomly selected surfaces. The distributions are strongly centered
around variance values of 0, indicating that for the majority of surfaces, the RLM model
estimates converge to a narrow set of solutions. . . . . . . . . . . . . . . . . . . . . . . 38

4.4 Side by side comparison of a noise­free sample as simulated by PROSAIL, compared
to same observations as calculated by a fitted RLM model. The model parameters used
are the median of the spread shown in figure 4.2, which had a narrow spread within the
estimates. The RMSE of the estimated NDVI is 0.0083. . . . . . . . . . . . . . . . . . . 38

4.5 Side by side comparison of surface reflectance pseudo­observations as simulated by
PROSAIL, compared to reflectance as calculated by the RLM model fitted to the noise­
free sample. The model parameters used are for a surface with high variance in the
estimated kernel coefficients. The RMSE of the estimated NDVI is 0.0942. . . . . . . . 38

4.6 Distribution of RLM BRDF model parameters from noise­free samples, for 6,000 sur­
faces. Angular sampling is for the site Harvard Forest. . . . . . . . . . . . . . . . . . . . 39



List of Figures xi

4.7 Scatter plot of estimated NDVI compared to reference NDVI value from PROSAIL, for
site Harvard Forest. Shown here are NDVI values calculated using BRDF parameters
estimated from noise­free samples using OLS, Li­Gao, and CWI methods. Dotted line
is 1:1 line, green lines are ±5%. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

4.8 Direct validation of CWI method using imagery from the ETM+ sensor, Harvard Forest
site, as reported by Zeng et al. [61]. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

4.9 Estimates of the red band kernel coefficients, for the scenario (𝛼, 𝑓𝑐) = (2, 3.0%) at site
Harvard Forest. Top: distributions of the baseline 𝑓𝑖𝑠𝑜 parameters and OLS, Li­Gao, and
CWI estimates. Bottom: distributions of deviations from baseline 𝑓𝑖𝑠𝑜 values for OLS,
Li­Gao, and CWI estimates. Note the scale of the x­axis. . . . . . . . . . . . . . . . . . 42

4.10 Same as figure 4.9, for 𝛼 = 5, at site Harvard Forest. Top: distributions of the baseline
𝑓𝑖𝑠𝑜 parameters andOLS, Li­Gao, andCWI estimates. Bottom: distributions of deviations
from baseline 𝑓𝑖𝑠𝑜 values for OLS, Li­Gao, and CWI estimates. Note the scale of the x­axis. 43

4.11 Estimated nadir­normalised NDVI versus reference PROSAIL values for study site Har­
vard Forest ­ for the case of low noise 𝑓𝑐 = 0.5%. Fitted RLM BRDF models were used
to calculate the NDVI values, using the fitting methods OLS (left), LiGao (middle), CWI
(right). Angular spread of the 10 observations used for the BRDF fitting can be seen in
4.1b.
Each point represents the calculated values for one surface type, the black dotted line
a 1:1 relationship and the green dotted indicates the threshold for the references values
±5%. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

4.12 Estimated nadir­normalised NDVI versus reference PROSAIL values for study site Har­
vard Forest ­ for the case of high noise 𝑓𝑐 = 3.0%. Fitted RLM BRDF models were used
to calculate the NDVI values, using the fitting methods OLS (left), LiGao (middle), CWI
(right). Angular spread of the 10 observations used for the BRDF fitting can be seen in
4.1b.
Each point represents the calculated values for one surface type, the black dotted line
a 1:1 relationship and the green dotted indicates the threshold for the references values
±5%. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

4.13 Side by side of results from this experiment (upper), and Zeng et al. (2016) [61] (lower).
Zeng et al. (2016) performed direct validation of CWI method using imagery from the
ETM+ sensor as a reference, while this experiment used NDVI values modelled by PRO­
SAIL as a reference.
The sample used by Zeng et al. (2016). to calculate the estimates contained an average
of 16 observations, with 6 being suspected contaminated outliers. In the results of this
experiment, for site Harvard Forest the simulated sample contained 10 observations, 3
of which are contaminated in this particular scenario. . . . . . . . . . . . . . . . . . . . . 48

4.14 Intercomparison of the red and NIR spectral response functions (SRF) of the MODIS,
AVHRR and VIRR sensors. X­axis is the wavelength in nanometers, y­axis is the re­
sponsivity. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

A.1 Pair plot of the sampling of the surface parameter space. Along the diagonal axis are the
uni­variate distributions (i.e. histograms) of individual variables, and along the horizontal
and vertical axes are the joint distribution density functions (JDDFs) per variable pair. . 60

A.2 ’Trimmed’ pair plot of the sampling of the surface parameter space. Unrealistics pairings
of variables were removed according to the methodology section 3.3.1. . . . . . . . . . 61

B.1 Variance of the possible RLM model parameter estimates for each surface, for a subset
of 1000 randomly selected surfaces. Red band, study site Harvard Forest. . . . . . . . 62

C.1 Scatter plot of estimated NDVI compared to reference NDVI value from PROSAIL, for
site Harvard Forest. Shown here are NDVI values calculated using BRDF parameters
estimated from noise­free samples using OLS, Li­Gao, and CWI methods. Dotted line
is 1:1 line, green lines are ±5%. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63



xii List of Figures

C.2 Scatter plot of estimated NDVI compared to reference NDVI value from PROSAIL, for
site Harvard Forest. Shown here are NDVI values calculated using BRDF parameters
estimated from noise­free samples using OLS, Li­Gao, and CWI methods. Dotted line
is 1:1 line, green lines are ±5%. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

D.1 Distribution of estimated red band BRDF parameters, for site Harvard Forest. Left­most
histogram is the baseline distribution of parameters from the noise­free sample, and the
remaining histograms are estimates for the scenario of (𝛼 = 2, 𝑓𝑐 = 1.5%), with a total
sample size of 10 observations. Angular spread of the 10 observations used for the
BRDF fitting can be seen in 4.1b. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

E.1 Estimated nadir­normalised NDVI versus reference PROSAIL values for study site Har­
vard Forest, for sun­target­view geometry see fig.4.1b. . . . . . . . . . . . . . . . . . . . 68

E.2 Estimated nadir­normalisedNDVI versus reference PROSAIL values for study siteMongu,
for sun­target­view geometry see fig.4.1c. . . . . . . . . . . . . . . . . . . . . . . . . . . 69

E.3 Estimated nadir­normalisedNDVI versus reference PROSAIL values for study site Chang
Baishan, for sun­target­view geometry see fig.4.1a. . . . . . . . . . . . . . . . . . . . . . 70

F.1 Estimated nadir­normalised NDVI versus reference PROSAIL values for study site Har­
vard Forest, for sun­target­view geometry see fig.4.1b. . . . . . . . . . . . . . . . . . . . 73

F.2 Estimated nadir­normalisedNDVI versus reference PROSAIL values for study siteMongu,
for sun­target­view geometry see fig.4.1c. . . . . . . . . . . . . . . . . . . . . . . . . . . 74

F.3 Estimated nadir­normalisedNDVI versus reference PROSAIL values for study site Chang
Baishan, for sun­target­view geometry see fig.4.1a. . . . . . . . . . . . . . . . . . . . . . 75

G.1 Estimated nadir­normalised NDVI versus reference PROSAIL values for study site Har­
vard Forest, for sun­target­view geometry see fig.4.1b. . . . . . . . . . . . . . . . . . . . 78

G.2 Estimated nadir­normalisedNDVI versus reference PROSAIL values for study siteMongu,
for sun­target­view geometry see fig.4.1c. . . . . . . . . . . . . . . . . . . . . . . . . . . 79

G.3 Estimated nadir­normalisedNDVI versus reference PROSAIL values for study site Chang
Baishan, for sun­target­view geometry see fig.4.1a. . . . . . . . . . . . . . . . . . . . . . 80



List of Tables

2.1 Input leaf biophysical parameters for the PROSPECT­5 model, with associated descrip­
tions and units. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

2.2 Input canopy and background soil parameters for the SAIL model, with associated de­
scriptions and units. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

3.1 Input biophysical parameters of PROSPECT­5 model, with associated descriptions and
units . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

3.2 Name and location of EOS validation sites used as study sites for accuracy evaluation. 27
3.3 Summary of sub­datasets used from MODIS and MERSI sensors. . . . . . . . . . . . . 28
3.4 Acquisition geometry of all valid MODIS and MERSI measurements of the study site in

Changbai, China. Observations collected over a 5­day period from June 27 2015 to July
1st 2015. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

3.5 Table of all cloud contamination scenarios, defined by varying the fraction of cloud con­
tamination 𝑓𝑐, and the number of contaminated observations 𝛼. . . . . . . . . . . . . . . 31

4.1 Mean error for each scenario, quantified by the RMSE using PROSAIL as a reference
value. Summarized here for 𝛼 from 1 to 5 for the case of low cloud contamination
𝑓𝑐 = 0.5%, which results in a mean relative NDVI noise of 15.5% in the contaminated ob­
servations. Greener boxes indicate lower RMSE value, and red indicates higher. Note:
all tables are standardised to the same scale of RMSE­colour. . . . . . . . . . . . . . . 44

4.2 Mean error for each scenario, quantified by the RMSE using PROSAIL as a reference
value. Summarized here for 𝛼 from 1 to 5 for the case of low cloud contamination
𝑓𝑐 = 3.0%, which results in a mean relative NDVI noise of 53.2% in the contaminated
observations. The simulated samples have size 8 (Chang Baishan), 10 (Harvard Forest)
and 13 (Mongu). Greener boxes indicate lower RMSE value, and red indicates higher.
Note: all tables are standardised to the same scale of RMSE­color. . . . . . . . . . . . . 44

H.1 Mean error for each scenario, quantified by the RMSE using PROSAIL as a reference
value. Summarized here for 𝛼 from 1 to 5 for the case of low cloud contamination
𝑓𝑐 = 0.5%, which results in a mean relative NDVI noise of 15.5% in the contaminated ob­
servations. Greener boxes indicate lower RMSE value, and red indicates higher. Note:
all tables are standardised to the same scale of RMSE­color. . . . . . . . . . . . . . . . 81

H.2 Mean error for each scenario, quantified by the RMSE using PROSAIL as a reference
value. Summarized here for 𝛼 from 1 to 5 for the case of low cloud contamination
𝑓𝑐 = 1.5%, which results in a mean relative NDVI noise of 35.8% in the contaminated ob­
servations. Greener boxes indicate lower RMSE value, and red indicates higher. Note:
all tables are standardised to the same scale of RMSE­color. . . . . . . . . . . . . . . . 82

H.3 Mean error for each scenario, quantified by the RMSE using PROSAIL as a reference
value. Summarized here for 𝛼 from 1 to 5 for the case of low cloud contamination
𝑓𝑐 = 3.0%, which results in a mean relative NDVI noise of 53.2% in the contaminated ob­
servations. Greener boxes indicate lower RMSE value, and red indicates higher. Note:
all tables are standardised to the same scale of RMSE­color. . . . . . . . . . . . . . . . 82

xiii





Nomenclature

BRDF Bi­directional Reflectance Distribution Function

HDF Hierarchical Data Format

MVC Maximum Value Composite

NBAR Nadir BRDF­Adjusted Reflectance

NIR Near­infrared

RMSE Root­Mean­Square Error

TOA Top of Atmosphere

CWI Changing­Weight Iterative

ETM+ Enhanced Thematic Mapper Plus

MERSI Medium Resolution Spectral Imager

MODIS MODerate Resolution Imaging Spectroradiometer

MuSyQ Multi­source Data Synergized Quantitative Remote Sensing Production System

OLS Ordinary Least Squares

PROSAIL Coupled PROSPECT and SAIL models

RLM Ross­Li­Maignan parametric BRDF model

SLC Soil­leaf­canopy model

𝜙𝑟 Relative azimuth angle (RAA)

𝜙𝑆 Solar azimuth angle (SAA)

𝜙𝑉 Viewing azimuth angle (VAA)

𝜃𝑆 Solar zenith angle (SZA)

𝜃𝑉 Viewing zenith angle (VZA)

𝜆 Wavelength

𝜌 Observed reflectance

𝜌𝑒 Estimated reflectance

(𝑓𝑖𝑠𝑜 , 𝑓𝑣𝑜𝑙 , 𝑓𝑔𝑒𝑜)𝑒 Estimated kernel coefficients/BRDF parameters

𝑓𝑔𝑒𝑜 Coefficient of geometric scattering kernel

xv



xvi Nomenclature

𝑓𝑖𝑠𝑜 Coefficient of isometric scattering kernel

𝑓𝑣𝑜𝑙 Coefficient of volumetric scattering kernel

𝛼 Number of noisy/contaminated observations in sample

𝑓𝑐 Fractional cloud cover/degree of contamination



1
Introduction

The Earth’s surface is constantly changing; these are changes seen both seasonally due to our orbit
around the sun, and long­term inter­annual changes due to anthropogenic climate forcing. Understand­
ing these dynamic changes necessitates regular and repeated measurements, with an understanding
of the associated uncertainties. The development and use of methods for monitoring the Earth’s sur­
face was therefore deemed of critical importance by the International Panel on Climate Change (IPCC)
[2].

The field of satellite­based remote sensing has grown tremendously to support the geosciences,
offering cost­efficiency with respect to the amount of data collected, global coverage, and long­term
consistency. Quantitative remote sensing in geoscience is engaged with estimating surface and atmo­
spheric variables through the measurement of propagated electromagnetic signals ­ in effect, retrieving
information from a surface at a distance, without physical interaction. From this data stems a wide
range of applications, from surface temperature monitoring, crop yield modelling, and vegetation and
land cover changes.

Spectral vegetation index data have been used to study, among other things, vegetation activity and
health, with one of the conventionally used and robust indicators being the Normalised Difference Veg­
etation Index (NDVI) [48]. As a spectral index, NDVI is physically based on how a surface’s reflectance
varies within the electromagnetic spectrum. A contrast between the reflectance in the red and NIR
bands has been observed for surfaces covered with healthy vegetation, with a high level of absorption
in the red band, at wavelengths of 400−700𝑛𝑚, and a high level of scattering in the near­infrared (NIR)
band, at wavelengths of 750 − 1400𝑛𝑚 [26] [52].

This contrast is therefore a useful land surface variable, that can be remotely observed and quan­
tified using sensors aboard satellites orbiting the Earth. Mathematically, it is defined as the ratio of
the difference between the reflectance in the red and NIR bands, 𝜌𝑟𝑒𝑑 and 𝜌𝑁𝐼𝑅, over the sum of the
two band reflectances: [52] 𝑁𝐷𝑉𝐼 = 𝜌𝑁𝐼𝑅−𝜌𝑟𝑒𝑑

𝜌𝑁𝐼𝑅+𝜌𝑟𝑒𝑑
. A higher, positive NDVI value generally indicates more

’greenness’ [48]. It is crucial to achieve the highest possible accuracy for NDVI time­series, to bring
the field of geoscience closer to reliably and consistently map and understand the Earth’s surface and
its processes.

NDVI retrieval and its challenges
Measuring surface reflectance, and subsequently calculating NDVI, comes with its challenges and
practical considerations. The recorded surface reflectance value is a function of multiple factors, which
can be broadly classified into the surface’s scattering properties, which is the signal of interest, and
everything else, which is noise.

Perhaps the most prevalent source of noise is the Earth’s atmosphere. Due to the presence of
clouds in a sensor’s line­of­sight, it may record a combination of both the surface and the cloud’s
reflectance, or only the top of cloud reflectance. Approximately 55% of the Earth’s surface is covered
in clouds on average [24] ­ and there is an enormous variability in types and thickness, leading to many
different possible cloud cover scenarios. In general, however, all clouds have a NDVI value close to
0 or negative, because they reflect nearly equally in the red and NIR band [33]. The impact of this is

1
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two­fold: firstly, surface reflectance retrievals often fail or are heavily contaminated (noisy) due to cloud
cover; and secondly, it’s not always possible to discriminate contaminated and clear­sky retrievals,
especially for thin cirrus clouds [54].

Cloud­contamination, its detection, and the minimisation of its impact is a longstanding obstacle
in earth observation. As a consequence it is nearly impossible to achieve daily retrievals of clear­
sky surface reflectance, and noise in a mixed­pixel retrieval 1 can severely impact the accuracy of a
retrieval.

Furthermore, the variable of interest, surface reflectance, is inherently anisotropic ­ it varies both
with viewing direction and illumination direction. The scattering properties of a vegetated surface is the
net result of the leaves, stems, and other plant material transmitting, absorbing, and reflecting incoming
solar radiation to varying degrees, with an element of interaction between the objects as well [50]. For
a soil­vegetation mixture, the apparent fraction of background soil and vegetation differs depending on
the observation angle, further adding to the surface reflectance anisotropy [34]. Each surface type has
a different directionality effect as described by its Bidirectional Reflectance Function (BRDF).

Due to the BRDF, observing a surface with different sun­target­view geometry results in different
measured reflectance values. A surface may be observed several times in a short timeframe and yield
different values for each retrieval as a result of this, cloud­cover aside. It is considered to be an inherent
property of a surface [32], and an essential consideration in remote sensing if creating a time­series of
NDVI data for geoscientific purposes.

These are thus some of the major challenges to creating a continuous and accurate dataset: failed
surface reflectance retrievals due to clouds, undetected cloud­contamination introducing noise into
retrievals, and the anisotropic scattering properties of surface, also known as the BRDF.

NDVI compositing
An option for working around failed or heavily contaminated retrievals in a time series is to use gap­filling
techniques. The NDVI value on cloudy days is estimated by making a projection based on clear­sky re­
trievals adjacent in time, known as gap­filling, in order to create (daily) time­series from a discontinuous
dataset. However, these are prone to being inaccurate when the gaps between usable data points are
large, and when cloud masks fail to detect noisy observations [55]. Another option is to assume that
the surface remained unchanged over a period of several days, and combine the observations from
different moments in time into a single so­called composite value. One compositing technique is the
Maximum­Value Composite (MVC), which for each pixel selects the maximum NDVI value observed
during a period of time. As clouds generally have a lower NDVI than clear­sky retrievals, this method
avoids cloud­contaminated observations [49]. However, it doesn’t consider the surface’s anisotropy,
and simply selecting the highest NDVI value would mis­represent the observations.

A better approach to extract meaningful information on a surface’s scattering properties is to esti­
mate the surface’s Bidirectional Reflectance Distribution Function. As a physical concept, the BRDF
can never be directly measured, but a surface’s anisotropy can be approximated using parametric
BRDF models [45]. Parametric BRDF models are typically kernel­driven: meaning that multiple func­
tions (kernels) that describe different scatteringmodes are superposed, each one’s contribution weighted
with a coefficient [31] [11]. Within a set of multiple observations, each one taken at different sun­target­
view geometries, the reflectance anisotropy behaviour is observed ­ the set of observations therefore
forms a finite sample of the surface’s BRDF. The process of estimating a surface’s BRDF from a sample
is known as BRDF reconstruction, and a part of this process is to reduce the impact of noisy observa­
tions.

Reconstruction of a BRDF using a kernel­driven model is performed by inverting said model to
find the coefficients, or model parameters, that result in the best description of the sample. Fitting
is done separately for both the red and NIR band, as the BRDF is spectrally dependent. When the
BRDFs models have been estimated, the red and NIR band reflectance can be calculated at nadir­
viewing geometry ­ a normalised value that is called Nadir BRDF­Adjusted Reflectance (NBAR). A
NDVI timeseries is more consistent and physically meaningful when directionality effect is accounted
for, which is why the composite is calculated for this standardized geometry.

1A mixed­pixel occurs when there are multiple features or surface types present in an area smaller than the spatial resolution of
a sensor [33].
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The Changing­Weight Iterative BRDF fitting method
This is the approach to NDVI compositing by the Changing­Weight Iterative (CWI) method [61][22],
a BRDF­fitting algorithm that reduces the impact of cloud­contaminated observations. CWI iteratively
fits a Ross­Li­Maignan (RLM) BRDF model to a set of observations, while using a posteriori variance
estimation to reduce the impact of inaccurate observations in the sample [61]. In this way the estimated
model parameters and NDVI composite should be less sensitive to noisy observations in the sample.

CWI is at the heart of the Multi­Source Data Synergized Quantitative Remote Sensing Production
System (MuSyQ) algorithm, a multi­sensoral satellite product developed by RADI’s State Key Labora­
tory of Remote Sensing Science. It is a 1km resolution NDVI composite product with global coverage
2, covering a range of ecosystems, with a composite cycle or temporal resolution of 5 days [21]. Per
5­day period, MuSyQ combines surface reflectance observations from multiple sensors: the MODerate
Resolution Imaging Spectroradiometer (MODIS) sensor aboard NASA’s Terra and Aqua satellites, as
well as the Medium Resolution Spectral Imager (MERSI) sensor on the Chinese satellites FY­3A and
FY­3B. It can make use of additional datasets as well, though not in the version that was accessed for
this research project.

The benefit of a multi­sensoral approach allows for a larger sample size, and also increases the
chance of retrieving clear­sky observations. MuSyQ’s operational algorithm involves additional pre­
processing steps to normalise these different datasets (i.e. geolocationm, sensor cross­calibration)
and correct for atmospheric effects, however these are not addressed here. The focus of this thesis
is the Changing­Weight Iterative method, and evaluating its performance in reducing the impact of
cloud­contaminated surface reflectance observations.

Problem statement
The proposed improved method CWI requires thorough study and comparison to existing techniques.
CWI was published in Zeng et al. (2016) [61], in which it was stated that: ”[...] the effect of the con­
taminated observations is suppressed in the BRDF retrieval by the CWI approach, and the inversion
results are less affected by the un­detected clouds or high aerosols”. However, the primary method of
evaluation was comparing the CWI estimate to near­nadir reflectance images from the Landsat 7 satel­
lite mission, as well as to similar composite products from the MODIS sensors. When validating with
satellite imagery there is limited insight into the ground truth and the actual noise conditions, leaving
some uncertainty as to the actual performance of the BRDF fitting algorithm.

The objective of this thesis is to use a numerical experiment to confirm that the CWI BRDF esti­
mation method is more effective at suppressing the impact of cloud­contaminated observations than
conventional methods. These are namely Ordinary Least Squares (OLS) model inversion, and the
Li­Gao method [11]. OLS assumes the observations have Gaussian, zero­mean noise, while Li­Gao
accounts for the fact that the noise is actually negatively­biased in the NDVI [11] by using a NDVI­
based indicator to assign weights to each observation. CWI improves on both of these by combining
the Li­Gao method and a novel a posteriori variance estimation approach to quantify the noise in each
observation, and reduce the weight of inaccurate observations.

Scope and approach
The accuracy of a BRDF reconstruction is influenced by other factors than noise, such as the number of
observations, their angular distribution, or the choice of parametric model used to describe the BRDF.
Due to time constraints, this experiment therefore primarily addresses the effect that noise from cloud
contamination has on the accuracy of the BRDF reconstruction, and how this compares to the OLS
and Li­Gao fitting methods.

For this, it was decided to design a numerical experiment: it allows us to synthesize pseudo­
observations for any surface type, and we can pre­define which observations in the sample are con­
taminated and by how much. Furthermore, to be able to compare the accuracy of the method, there
should be a reference value. In a numerical experiment, this ’true’ value is known and can be used for
validation purposes.

The approach of this thesis centers on the use of an advanced radiative transfer model to simulate
pseudo­observations. Using the leaf optical propertiesmodel PROSPECT [15] and canopy bidirectional
2The cover page of this report is a map of this NDVI composite over South­East Asia.
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reflectance model SAIL [50] (together, PROSAIL), a single pixel of a mixed vegetation­soil surface can
be simulated. The bidirectional reflectance factor (BRF) of this physical model is then evaluated at
multiple sun­target­view geometries, creating a sample of the surface’s BRDF. Synthetic noise can
selectively be added to observations in the sample to create a contamination scenario. Then, the three
different methods are used to fit a Ross­Li­Maignan model to the observations and the results are
compared to reference values.

In order to be a globally representative analysis, the numerical experiment must be repeated many
times. The explained approach applied for the entire parameter space of PROSAIL, covering every
possible type of vegetated surface and background soil brightness. Additionally, cloud contamination
scenarios of low, medium and high cloud mixing are considered, with the number of noisy pseudo­
observations in the sample being varied between 1 and 5. In this way we can thoroughly compare the
accuracy of CWI to existing methods for a globally­representative set of surface types, each with their
respective BRDFs, for variable noise conditions.

Key research questions
This numerical experiment encompasses various cloud contamination scenarios, a globally represen­
tative set of surface types and their respective BRDFs, and realistic angular sampling conditions. With
the large amount of data gathered, this thesis aims to answer the following research questions about
the performance of the novel CWI BRDF­fitting and compositing algorithm at the heart of MuSyQ:

1. Can the Ross­Li­Maignan parametric BRDF model be an accurate representation of the surface
BRDF?

2. How accurate is the nadir­normalised NDVI value, calculated using the fitted RLM model, for the
noise­free scenario?

3. How accurate is the CWI BRDF fitting method, as compared to the OLS and Li­Gao methods. at
reconstructing the BRDF model from a sample containing cloud­contaminated observations?

Report structure
In order to document the approach taken to answer the above research questions, this thesis adopts
a conventional report structure as follows: firstly, in chapter 2 ’Theory’ the relevant principles on the
topic of surface reflectance retrieval and NDVI compositing are reviewed. With an understanding of the
underlying concepts, the methodology of the numerical experiment is presented in chapter 3 ’Method­
ology’. Following this, in chapter 4 ’Results and Discussion’ the findings from the large amount of data
simulated are analysed, and discussed, and related to existing literature. Finally in chapter 5 ’Conclu­
sion and Recommendations’ the research questions are answered and conclusions are drawn on the
outcome of the study. Some recommendations for further research are also given at the end of this
thesis.



2
Theory: NDVI Retrieval and Surface

BRDF Estimation
The principle of remote sensing is to observe and record information about a target using propagated
signals and without physically interacting with it. Broadly speaking, there are two types of remote
sensing: active remote sensing and passive remote sensing.

Active sensors emit an electromagnetic signal at the target, andmeasure the resulting back­scattered
and/or reflected radiation. Passive sensors detect radiation that is naturally backscattered and/or re­
flected by a target, without adding energy to the system. As an object backscatters incoming radiation,
the reflected signal’s spectral characteristics contain valuable information on the object [59]. The NASA
EarthData website [1] provides a comprehensive overview of the different types of remote sensors.

Remote sensing is therefore a powerful tool that has been used to observe targets on different
scales: at different spatial, temporal, and spectral resolutions, and in different ranges of the electro­
magnetic spectrum. Of particular interest for this thesis is satellite­based sensors with the purpose of
monitoring vegetated terrestrial surfaces, such as MODIS1 and MERSI2.

The observations of these two sensors are used together in the MuSyQ algorithm developed by the
State Key Laboratory of Remote Sensing Science’s3. This algorithm was designed to create a NDVI
composite from a multi­sensoral dataset of surface reflectance measurements, while most composites
rely on data from a single sensor. At its heart the CWI BRDF­fitting method [61], a novel method which
has not yet been studied extensively, and the main focus of this thesis.

This chapter covers the underlying theory necessary to understand the concepts of surface re­
flectance, NDVI compositing, the BRDF, and the CWI method. The aim is to first inform the reader
on the concepts of surface reflectance retrieval and the estimation of the BRDF with parametric BRDF
models. Then, the concept of NDVI and challenges to retrieving it are presented. Following this the
MuSyQ algorithm is outlined, with a focus on the CWI method which it employs. This method is ex­
plained in detail, along with more conventional BRDF fitting methods. Finally, the theory behind the
radiative transfer model PROSAIL is reported ­ this model is used to simulate pseudo­observations
which are ultimately used to assess the accuracy of the CWI BRDF­fitting method.

2.1. Surface reflectance anisotropy
A surface is described as being a Lambertian scatterer when its reflectance factor is independent of illu­
mination and viewing geometry. This means that it is perfectly isotropic, as illustrated in figure 2.1a, and
reflects equally in all directions. However, terrestrial surfaces are virtually never Lambertian scatterers,
and typically exhibit anisotropic reflectance as illustrated in figure 2.1b.

The bidirectional reflectance factor (BRF) is defined as the ratio of the reflected flux from a surface
in a particular viewing direction, to the reflected flux by an ideal Lambertian surface for the same illumi­
1More information on the MODIS sensor can be found on https://modis.gsfc.nasa.gov/
2More information on the MERSI sensor can be found on http://www.nsmc.org.cn/en/NSMC/Channels/FY_3A.html
3Part of the Chinese Academy of Science’s Remote Sensing and Digital Earth Institute. For more information the reader is
referred to http://english.radi.cas.cn/

5
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(a) Lambertian surface. (b) Non­Lambertian surface.

Figure 2.1: Scattered radiation by a perfectly Lambertian surface and a non­Lambertian surface.

nation and viewing angles [32]. From its definition we see that the BRF is not a fixed value, but varies
for each combination of illumination and viewing angles ­ this is called anisotropic behaviour. As a ratio
it is unitless, and is a measure of the anisotropy feature of a surface’s reflectance [45]. In figure 2.3,
the directionality of surface reflectance is clearly visible as the viewing zenith angle is varied.

This surface scattering behaviour is specified for any given illumination direction and scattering
direction by its Bidirectional Reflectance Distribution Function (BRDF) [32]. Each wavelength, or band
of wavelengths, has its own BRDF ­ light interacts differently with a target depending on its wavelength.

The concept of a BRDF was first defined in 1977, by Nicodemus et al. (1997) [37], and is mathe­
matically described by equation 2.1.

𝑓𝑟(𝜃𝑖 , 𝜙𝑖; 𝜃𝑣 , 𝜙𝑣; 𝜆) =
𝑑𝐿𝑟(𝜃𝑖 , 𝜙𝑖; 𝜃𝑣 , 𝜙𝑣; 𝜆)

𝑑𝐸𝑖(𝜃𝑖 , 𝜙𝑖; 𝜆)
(2.1)

Where 𝑑𝐸𝑖 is the irradiance from a particular illumination direction described by the zenith and
azimuth angles 𝜃𝑖 , 𝜙𝑖, and 𝑑𝐿𝑟 is the radiance reflected into differential solid angle 𝜃𝑣 , 𝜙𝑣. 𝜆 is the
wavelength or band of wavelengths which the BRDF describes, as it is a spectrally dependent function.

This angular convention is illustrated in figure 2.2. As phrased by Schaepman­Strub et al. (2006)
[41], it ”describes the scattering of a parallel beam of incident light from one direction in the hemisphere
into another direction in the hemisphere”.

The incident irradiance 𝑑𝐸𝑖 and the reflected radiance 𝑑𝐿𝑟 are defined for infinitesimally small solid
angles, so it is in principle impossible to directly measure the BRDF. However, BRFmeasurements are a
result of the surface’s anisotropic reflectance, and therefore contain its characteristics. This information
can be used to estimate the BRDF, as will be explained further in section 2.3.1.

Furthermore, the BRDF of a surface is linked to its physical and chemical properties. It is the
net result of the transmission, absorption, and scattering of the objects within a pixel of surface, and
the resulting interactions in between them. As a result, each surface exhibits a different anisotropical
behaviour ­ and hence the challenge for NDVI retrieval.

2.1.1. Atmospheric effects
The atmosphere, themedium for electromagnetic radiation as it is measured from space, is not a perfect
transmitter. The measured radiance at the satellite sensor is therefore different to the surface­leaving
radiation. It is called top of atmosphere (TOA) radiance, and the atmospheric effects are compensated
for with what is known as atmospheric correction.

Gases such as water vapor, 𝐶𝑂2 and aerosols in the atmosphere absorb, emit, and scatter radiation
in varying degrees across the electromagnetic spectrum. The measurement recorded by a sensor is
the sum of all these effects, which is simplified and shown in diagram 2.5.

Atmospheric absorption is shown in figure 2.4, for wavelengths 250−2500𝑛𝑚. Here we can see that
specific atmospheric composition at the time of a sensor’s measurement must therefore be accounted
for and corrected.

There are multiple methods for peforming correction, and it is an active subject of research. An
inappropriate or failed atmospheric correction can negatively impact the accuracy of surface reflectance
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Figure 2.2: Diagram of the bidirectional reflectance factor BRF, adapted from [19].

Figure 2.3: Red band reflectance of a surface covered with vegetation canopy, simulated by radiative transfer model PROSAIL.
The directionality effect is clearly visible as the reflectance varies with viewing zenith angle. Including background soil in the
simulation (blue line) further adds a directionality effect, as the proportion of soil reflectance in the signal varies with viewing

angle.

retrieval, and is therefore an important consideration4.
Surface­leaving radiation is scattered by the atmosphere, leading to a diffuse component of ob­

served radiance. So, i.e. TOA measurements cannot capture surface anisotropy completely. The
CWI algorithm studied for this thesis focus on surface BRDFs and their estimation, which is a separate
process to atmospheric correction. It was therefore chosen chosen to neglect the impact of imperfect
atmospheric correction.

2.2. NDVI and clouds
The Normalized Difference Vegetation Index (NDVI) is a nonlinear combination of two spectral bands:
the visible red band, which is in the optical region, and the near­infrared band, in the infrared region. It
is based on the contrast in reflectance between these two bands, which can be used as an indicator of
vegetation parameters such as biomass and plant health.

Healthy green vegetation has a relatively high absorption of solar radiation in the visible portion of

4See [3] [54] [52] for more information on operational atmospheric correction of TOA reflectance data. Additionally, two common
algorithms used are FLAASH [8] and 6S [53].
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Figure 2.4: Spectrum of solar radiation for Earth. Comparison of the irradiance of sunlight as observed at the top of the
atmosphere (yellow line), and at sea level (red line). Taken from [7].

Figure 2.5: Atmospheric effect and TOA reflectance illustrated. Figure taken from [36].

the electromagnetic spectrum with wavelengths of 400−700𝑛𝑚 due to the presence of chlorophyll [11].
Meanwhile, the spongymesophyll leaf structure is a relatively strong scatterer in the Near­Infrared (NIR)
band, which has wavelengths of 700−1000𝑛𝑚. This is illustrated in figure 2.6. The NDVI indicator was
developed to exploit this contrast by making a non­linear combination of these two bands. It is defined
as the ratio of the difference between the NIR and red band reflectance, over the sum of the two band
reflectances [52] ­ in this way normalised to values between −1.0 and 1.0. It is shown in equation form
in 2.2:

𝑁𝐷𝑉𝐼 = 𝑁𝐼𝑅 − 𝑅𝑒𝑑
𝑁𝐼𝑅 + 𝑅𝑒𝑑 (2.2)

2.2.1. Cloud cover and cloud masking
A challenge of NDVI retrieval is the presence of clouds. This is a widely recognized issue, as clouds
are nearly completely optically opaque for wavelengths from 400 to 1300𝑛𝑚 [42], meaning they are
very strong reflectors in the visible and NIR regions. Hence why they are optically bright and have the
color white. This can cause a failure of red and NIR reflectance retrievals when entirely blocking the
view of a surface, as shown in figure 2.7.

Due to the high reflectivity of clouds in the visible region, if a cloud obstructs a sensor’s line­of­
sight then instead of only the surface reflectance being measured, the top of cloud reflectance, or a
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Figure 2.6: Reflectance in the red and NIR bands and corresponding NDVI value for healthy vegetation compared to stressed
vegetation. The stressed vegetation exhibits a lower absorption in the red band, and higher reflectance in the NIR, resulting in

a lower NDVI.

combination of both the surface and the cloud’s reflectance, is retrieved. It is also possible that the
surface is observed by a satellite sensor through a thin layer of high­altitude clouds.

In either case, this introduces a noise signal into the red and NIR BRF retrieval. It has been shown
in literature and from past studies that the noise introduced by clouds is positively biased in the red
and NIR bands, and negatively biased in NDVI [61] [12]. As stated in [12]: ”Indeed, the negative bias
caused by unfavourable atmospheric conditions and anisotropic bidirectional effects are a prevalent
and well­recognised feature of noisy NDVI data sets.”

Figure 2.7: Model map of cloud­free, cloud shadow, and cloud pixels taken from [58].

Due to the presence of clouds blocking a retrieval or introducing a negatively­biased noise in the
NDVI, outliers may be introduced into a dataset, as shown in figure 2.8. Sudden dips are observed in
the retrieved NDVI, instead of the expected smooth seasonal change. This temporal discontinuity has
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negative implications for the monitoring of both long­term as well as sudden spatiotemporal vegetation
changes [48] [59].

Figure 2.8: 3­year time series of MODIS sensor NDVI data, overlaid with two different smoothened trends. A seasonal variation
in NDVI is observed, as is expected for most surfaces, with higher NDVI values in warm months and lower values in the colder

months. Noise due to cloud­contamination and other atmospheric effects lead to lower measured NDVI values, causing
temporal discontinuities that cannot be attributed to smooth seasonal changes. Taken from [6].

To prevent this, satellite data products come with associated cloud masks. The MOD35 cloud mask
product of the MODIS sensor uses an advanced algorithm which takes empirical data, ancillary data
and statistics to identify cloudy pixels [10]. End­users may then use this information to select cloud­free
retrievals, with the possible mask values being ”confident clear”, ”probably clear”, ”uncertain/probably
cloudy”, or ”cloudy”. These are based on statistical tests and thresholds used in the algorithm [10], and
therefore have a degree of uncertainty.

Consequently, cloud masks such as MOD35 can fail, especially in cases of light contamination
[61]. And although improvements have been suggested [56], sub­pixel clouds in particular can be left
undetected in surface reflectance measurements5.

In summary, it is often impossible to retrieve daily cloud­free red and NIR band measurements.
This is due to cloud cover either heavily contaminating or blocking observations, which cloud detection
algorithms attempt to detect on a per­pixel basis. In practice, challenging scenarios arise where the
algorithms fail, leading to undetected cloud contamination in a set of observations.

2.3. NDVI compositing
To work around the discontinuity in NDVI datasets due to clouds and noisy observations, methods
have been developed to improve temporal coverage. These are primarily NDVI­compositing, or gap­
filling. The latter estimates the NDVI value of failed or noisy retrievals by extrapolating it from adjacent
periods6. However, due to the anisotropic reflectance of surfaces explained in section 2.1, gap­filling
is susceptible to misrepresenting a surface’s NDVI.

Another option is to combine observations from different moments in time to obtain a so­called
composite observation. Over a period between 5 and 16 days or more, known as a composite cycle,
a single NDVI value is estimated from all the measured values. In figure 2.9 we see an illustration of
multiple observations of the same surface.

One class of composites is called maximum­value compositing (MVC) [49]. Since cloud contam­
ination is negatively biased in the NDVI, an MVC simply selects the highest NDVI value from a set
of observations, assuming it’s the most likely one to be a clear­sky retrieval. However, this method
is prone to failure if all the observations are noisy, and furthermore fails to consider the directionality
effect. The MVC method may calculate a change in NDVI between composite cycles when there is no
actual change in vegetation cover, but only an apparent change due to differences in sun­target­view
geometry. This highlights the importance of correcting for the BRDF of surface reflectance.

5For further reading see [23].
6See [27] for further reading on gap­filling techniques.
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Figure 2.9: Diagram of multiple observations of the same surface, taken at different points in time, and at different
sun­target­view geometries.

2.3.1. Compositing by BRDF reconstruction
The favourable method for NDVI compositing is by estimating the surface’s BRDF and correcting for it.
This method estimates the BRDF characteristics of a surface from the observations ­ which together
form a sample of the surface’s anisotropic behaviour ­ then calculate the NDVI value for a standardised
geometry. Estimating a BRDF is done by first choosing a model for the surface’s BRDF, and then re­
constructing that model’s parameters to best describe the observed surface reflectancemeasurements.
This is explained in section 2.4.1.

By normalising the set of observations to a single sun­target­view geometry, variations in sun and
view geometry between composite cycles are corrected for. A simplified diagram of normalising a set of
observations to a standard geometry is seen in figure 2.10. The convention is to use a fixed­sun, nadir­
viewing geometry, with the illumination source and viewing angle in the same horizontal plane ­ i.e. at
(𝜃𝑆 , 𝜃𝑉 , 𝜙𝑟) = (30∘, 0∘, 0∘). This has the benefit of allowing NDVI composite values to be comparable
with each other.

During reconstruction of the BRDF, there remains a need to account for noisy observations either
through pre­screening, methods to mitigate the impact of noisy observations, or both. In any case, it
is beneficial to have as many observations as possible available. Together, these observations form a
sample of the surface reflectance’s anisotropy. A larger sample has a higher likelihood of containing
clear­sky measurements, making it easier to distinguish contaminated observations, and contains more
information on the anisotropical feature of the surface. However, there is a tradeoff with temporal
resolution ­ with longer composite cycles, short­term variations in NDVI cannot be detected.

The main problem with BRDF­composites identified by MuSyQ in [21] and [22], is that the current
global synthetic NDVI products have a composite cycle that is too long, with the MODIS NDVI product
being 16 days. They state that the change of vegetation can not be identified accurately and effectively
with these NDVI products, while acknowledging that aminimum amount of valid (i.e. clear) observations
are necessary to ensure the accuracy of synthesis. This was one of the reasons that the MuSyQ
algorithm, presented in section 2.4, combines retrievals from multiple sensors to increase the sample
size in a shorter period of time.

2.4. MuSyQ
The MuSyQ NDVI product7 was developed to be an improvement over existing NDVI products by using
a multi­satellite dataset to increase the number of observations per composite cycle.

In the MuSyQ algorithm, observations from the MODIS andMERSI sensors are used8, with a frame­

7Developed by the State Key Laboratory of Remote Sensing Science, Remote Sensing andDigital Earth Institute (RADI), Chinese
Academy of Sciences (CAS)

8At the start of this thesis the algorithm was only operational for the MODIS and MERSI sensors, later AVHRR sensor measure­
ments were also incorporated. The MuSyQ algorithm is in principle able to accomodate even more sensors still.
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Figure 2.10: A single NDVI composite value is formed from a sample. In this case, the NDVI is standardised to a
sun­target­view geometry with nadir­viewing, fixed solar zenith angle (𝜃𝑆 = 30∘).

work for including even more sensors. A multi­sensoral approach therefore allows for the minimum
sample size to be achieved in a shorter time­frame. In figure 2.11 the number of valid observations
averaged over all pixels in a test area is shown ­ over a 5­day period more than 70% of pixels were
found to have at least 5 valid observations.

Figure 2.11: Number of valid observations available for BRDF inversion, taken from [21].

Due to the nature of usingmulti­sensoral data, MuSyQ’s algorithm involves additional pre­processing
steps, such as geolocation, pre­processing, and cross­calibrating measurements between sensors.
However, these aspects are not addressed in this thesis. The focus is on a novel BRDF fitting tech­
nique at the core of MuSyQ: the Changing­Weight Iterative (CWI) method that reduces the impact of
cloud­contaminated observations. This is presented in section 2.5.3. To better understand the CWI
method and it’s nuances, conventional BRDF fitting is firstly explained.

2.4.1. Estimating the BRDF­effect parametric models
As stated in section 2.1, the BRDF of a surface cannot be directly measured. It is possible, however, to
estimate the BRDF using a model. There exists three types of BRDF models: physical, empirical, and
semi­empirical. Physical models describe the physical processes that lead to a surface’s anisotropy,
and empirical models take a mathematical approach and characterise the BRDF using functions that
describe the observed surface reflectances [28].
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Semi­empirical models describe the BRDF as a linear combination of empirical functions that ap­
proximate scattering behaviours. Weights are given to each function in the linear combination, in this
way there are as many variables as there are empirical functions. These are the most commonly used
in the field of remote sensing, due to their relative ease of use and practicality. The physical and em­
pirical models require a larger amount of observations than is possible in space­based remote sensing
in order to be inverted.

By inverted, what is meant is as follows: a set of bidirectional reflectance factor observations are
retrieved for different viewing and illumination angles. An anisotropic feature is present in these obser­
vations due to the variation in angles, and together they form a sample of the surface’s BRDF. A BRDF
model is chosen that sufficiently approximates the surface’s BRDF, and an attempt is made to find a
solution for the model’s variables which best describes the directional signature of the observed BRFs.
This is known as an inverse problem.

With this method, we can get analytical inversion results using observed surface reflectance. How­
ever, for there to be at least one non­trivial solution to the BRDF inverse problem, there must be at least
as many observations as there are unknown function weights. The most commonly used BRDF mod­
els are variations of the three kernel RossThick ­ LiSparse model, which requires a minimum of three
observations to be inverted. However, as has been outlined, in practice observations have a chance
of being contaminated and noisy, which can cause the BRDF inversion to fail or be highly inaccurate.

Therefore most operational BRDF inversion algorithms used in practice require a minimum of be­
tween 5 and 7 observations, and apply various methods to mitigate the impact of suspected noisy
observations in the sample, while estimating the BRDF from the ’good’ BRF retrievals [11]. An existing
method for this is the Li­Gao approach, described in section 2.4.2, which infers that observations with
a lower NDVI than the rest of the sample are noisy, and their impact should be reduced in the inversion
process. This thesis focuses on an improvement on this method, the CWI method, which also esti­
mates the variance of the observations in the sample to adjust their weight. This is explained in section
2.5.3.

2.4.2. Ross­Li­Maignan BRDF model
The BRDF model used in the MuSyQ algorithm to create a global NDVI composite product is a hotspot­
corrected variation of the RossThick ­ LiSparse model, hereafter referred to as the Ross­Li­Maignan
(RLM) model [31]. The hotspot effect is a peak in reflected radiation in the backwards direction, ob­
servable in figure 2.12, caused by the effect of shadows being reduced when viewing a canopy from
the same direction as the illumination source [25] 9.

As a kernel­driven model, the RLM model is a linear combination of three terms, and is formulated
as:

𝜌(𝜃𝑆 , 𝜃𝑉 , 𝜙𝑟 , 𝜆) = 𝑓𝑖𝑠𝑜(𝜆) + 𝑓𝑣𝑜𝑙(𝜆)𝐾𝑣𝑜𝑙(𝜃𝑆 , 𝜃𝑉 , 𝜙𝑟)
+ 𝑓𝑔𝑒𝑜(𝜆)𝐾𝑔𝑒𝑜(𝜃𝑆 , 𝜃𝑉 , 𝜙𝑟)

(2.3)

Where 𝜃𝑆 is the solar/illumination zenith angle, 𝜃𝑉 the view zenith angle, and 𝜙𝑟 the relative azimuth
angle (𝜙𝑠𝑢𝑛 − 𝜙𝑣𝑖𝑒𝑤). 𝑓𝑖𝑠𝑜 , 𝑓𝑣𝑜𝑙 and 𝑓𝑔𝑒𝑜 are the weight coefficients of each of the three kernels, which
empirically approximate different scattering modes. 𝜆 is the wavelength or waveband for which the
BRDF is describing the anisotropical surface reflectance.

The first kernel of the Ross­Li­Maignanmodel describes isometric scattering: the general brightness
of a surface. It is non­directional and mathematically equal to unity 1. 𝐾𝑣𝑜𝑙(𝜃𝑆 , 𝜃𝑉 , 𝜙𝑟) is based on the
Ross­thick function and describes volumetric scattering caused by multiple scattering of objects within
a canopy (e.g. leaf surfaces) [62] [30]. The kernel 𝐾𝑔𝑒𝑜(𝜃𝑆 , 𝜃𝑉 , 𝜙𝑟) is based on the Li­sparse­reciprocal
function which describes geometric­optical scattering associated with the three­dimensional structure
of the canopy [62] [61] [30]. Compared to the normal RossThick ­ LiSparse kernel, the BRDF model
used by MuSyQ uses a version of the kernel 𝐾𝑔𝑒𝑜 that is modified according to Maignan et al. (2004)
[31] to better account for the hotspot effect.

As we can see from the wavelength term (𝜆) in equation 2.3, surface BRDFs differ with wavelength
due to the different scattering and absorption properties. This is the reason for the observed contrast
9For further reading on the hotspot effect (which is also observed outside of vegetation canopies in meteorology, astronomy, and
photography, see The Hot Spot Effect in Plant Canopy Reflectance by A. Kuusk [25]
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in red and NIR reflectance for healthy vegetation, which NDVI is based on. A BRDF can also be used
to describe the scattering properties for an entired band, rather than a single wavelength. The BRDF
of a surface is shown in figure 2.12 for MODIS band 3 (blue band), modelled using the conventional
Ross­Li kernel model.

Figure 2.12: BRF anisotropy of an example surface modelled using the Ross­Li parametric BRDF model. Shown here for the
wavelengths of the MODIS sensor’s band 3 𝜆 = 459–479𝑛𝑚. Left: Variation in reflectance along the principal plane

(illumination direction and viewing direction in same vertical plane), with varying 𝜃𝑉. Right: polar plot of surface reflectance for
fixed illumination zenith angle 𝜃𝑆 = 30∘, 𝜃𝑉 between 0∘ and 45∘ and 𝜙𝑟 between 0∘ and 360∘. Taken from [28].

2.5. BRDF fitting methods
The estimation of a surface’s BRDF using a kernel­driven BRDF model is done by estimating the
weights of each kernel type, also known as the BRDF model parameters. The intent is to vary these
such that the reflectance values computed by the estimated BRDF model match the observed values
as closely as possible, when being evaluated at the same acquisition geometries (𝜃𝑆 , 𝜃𝑉 , 𝜙𝑟) as the
observations. Hence the need to reduce the impact of noisy observations in the sample, as they can
lead to BRDF model parameters that are fitted to measurements that do not accurately describe the
actual surface BRDF.

For a three­kernel model such as the Ross­Li­Maignan model, three parameters must be estimated.
This process is called BRDF reconstruction, or BRDF­fitting, and there exist different mathematical
approaches to perform it. In this section, the OLS, Li­Gao and CWI methods that are compared to
each other by this thesis will be explained.

2.5.1. Ordinary Least Squares fitting method
Model inversion for estimating the BRDF model parameters 𝑓𝑖𝑠𝑜 , 𝑓𝑣𝑜𝑙 , 𝑓𝑔𝑒𝑜 is often performed using
Ordinary Least Squares (OLS). The three­parameter Ross­Li­Maignan kernel model from equation 2.3
can be written in matrix form for a single wavelength or band as:

𝑀𝑛×1 = 𝐾𝑛×3𝑋3×1 + 𝐸𝑛×1 (2.4)

Where𝑀𝑛×1 is the observation vector, with 𝑛 BRF observations at different sun­target­view geome­
tries. 𝐾𝑛×3 is the kernel matrix, evaluated at the 𝑛 different sun­target­view geometries (as the kernels
are functions of 𝜃𝑆 , 𝜃𝑉 and 𝜙𝑟). 𝑋3×1 is a matrix of the three kernel weights 𝑓𝑖𝑠𝑜 , 𝑓𝑣𝑜𝑙 , 𝑓𝑔𝑒𝑜, and 𝐸𝑛×1 is
the observation error.

For this inverse, the cost function is based on the measurement noise vector 𝐸, and in matrix form
is [61]:

(𝑀𝑛×1 − 𝐾𝑛×3𝑋3×1)𝑇Σ−1𝑛×𝑛(𝑀𝑛×1 − 𝐾𝑛×3𝑋3×1) (2.5)
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The ordinary least squares solution for the kernel weights vector 𝑋 then is calculated as:

𝑋3×1 = (𝐾𝑇3×𝑛Σ−1𝑛×𝑛𝐾𝑛×3)−1(𝐾𝑛×3Σ−1𝑛×𝑛𝑀𝑛×1) (2.6)

In this equation, Σ𝑛×𝑛 is the observation error covariance matrix. For the OLS solution, the criterion
of noise being Gaussian and having zero­mean is assumed during the inversion of BRDF model pa­
rameters. This signifies an equal variance for all observations ­ under this assumption, the covariance
matrix Σ simplifies to the identity matrix:

Σ𝑂𝐿𝑆 = 𝐼
Σ−1𝑂𝐿𝑆 = 𝐼

(2.7)

So with independent observations, with zero­mean, and all of equal variance, the OLS solution to
the BRDF model parameters simplifies to [61][20]:

𝑋3×1 = (𝐾𝑇3×𝑛Σ−1𝑛×𝑛𝐾𝑛×3)−1(𝐾𝑛×3Σ−1𝑛×𝑛𝑀𝑛×1) (2.8)

2.5.2. Li­Gao fitting method
The Li­Gao BRDF fitting method improves on OLS inversion by using a NDVI­based indicator to ac­
count for the asymmetric distribution of noise [61] [11]. Since the noise due to clouds and atmospheric
contamination is negatively biased in the NDVI, this is accounted for by assigning lower weights to
suspected cloudy observation with a weight matrix 𝑊𝑘. It addresses the fact that the OLS criterion
is violated by the presence of clouds and aerosols, and that the noise in the measurements is not
Gaussian [61].

The Li­Gao approach is iterative, where 𝑘 is the iteration number. At each iteration the observations
are weighted while inverting the Ross­Li­Maignan models, by setting the error covariance matrix Σ−1𝐿𝑖𝐺𝑎𝑜
as:

Σ−1𝐿𝑖𝐺𝑎𝑜 = 𝑊𝑘 (2.9)

Recall that for the OLS solution of section 2.5.1, where the criterion of independent errors with equal
variance and zero­mean was assumed, Σ−1 was treated as an identity matrix [20] [61].

The main steps of the Li­Gao approach are as follows. For the first iteration 𝑘 = 0, the initial weights
are set as:

𝑊𝑘=0
𝑖𝑖 (𝜃𝑆 , 𝜃𝑉 , 𝜙𝑟) = (

𝑁𝐷𝑉𝐼𝑖,𝑜𝑏𝑠(𝜃𝑆 , 𝜃𝑉 , 𝜙𝑟)
𝑁𝐷𝑉𝐼𝑚𝑒𝑎𝑛

)
2

(2.10)

Where 𝑖 is the observation number, 𝑘 is the iteration number, and the weight matrix is only filled
along the principal diagonal at indices 𝑖𝑖. During this first iteration of solving the inverse problem, no
NDVI values have been calculated, so the surface anisotropy cannot be accounted for. From the weight
matrix in 2.10 higher NDVI values are assigned a higher weight than low NDVI ones. The red and NIR
BRDF models are then inverted with (Σ−1)𝑘𝑖𝑖 = 𝑊𝑘

𝑖𝑖 , the solution for the BRDF model parameters vector
being:

𝑋𝑟𝑒𝑑 = (𝐾𝑇Σ−1𝐾)−1(𝐾Σ−1𝑀𝑟𝑒𝑑)
𝑋𝑁𝐼𝑅 = (𝐾𝑇Σ−1𝐾)−1(𝐾Σ−1𝑀𝑁𝐼𝑅)

(2.11)

Then, the red and NIR BRFs are calculated using the estimated red and NIR BRDF model param­
eters, using equation 2.3. They are computed at the same sun­target­view geometry as each of the
observations in the sample. As opposed to the initial iteration, the directionality effect is now accounted
for in the weight matrix, because the calculated NDVI values are used to determine the weights of each
observation:

𝑊𝑘≥1
𝑖𝑖 (𝜃𝑆 , 𝜃𝑉 , 𝜙𝑟) = (

𝑁𝐷𝑉𝐼𝑖,𝑜𝑏𝑠(𝜃𝑆 , 𝜃𝑉 , 𝜙𝑟)
𝑁𝐷𝑉𝐼𝑖,𝑐𝑎𝑙𝑐(𝜃𝑆 , 𝜃𝑉 , 𝜙𝑟)

)
2

(2.12)
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Where 𝑁𝐷𝑉𝐼𝑖,𝑐𝑎𝑙𝑐 is the calculated NDVI using the first BRDF model solution, which has an anisotropic
feature due to the Ross­Li­Maignan model. The BRDF model is once again inverted, using the new
weight matrix𝑊𝑘

𝑖𝑖 , to find the solutions for the red and NIR BRDFS 𝑋𝑟𝑒𝑑 and 𝑋𝑁𝐼𝑅.
This process is iterated a maximum of 5 times, or until the change in weights between subsequent

iterations is less than 0.001, as determined to be sufficient by Gao et al. (2002)[11].
The iteratively calculated weights are demonstrated in 2.13. For a sample of 10 observations with

one obviously contaminated observation, the heavily contaminated observation was successfully de­
tected. The final estimated BRDF model parameters were found by Gao et al. (2002)[11] to be more
accurate than the traditional OLS approach. However, one of the conclusions was that their approach
works well in situations with few, heavily contaminated observations, but that the improvement over
OLS is reduced in situations with light atmospheric/cloud contamination in over 60% of the sample.

Figure 2.13: Weights assigned to each observation in a sample according to the Li­Gao BRDF fitting method. The NDVI value
highlighted in red is a cloud­contaminated observation with a NDVI significantly lower than the mea NDVI value of all

observations. Its weight is reduced according to equations 2.10 and 2.12. Adapted from Gao et al. (2002)[11].

2.5.3. Changing­Weight Iterative (CWI) fitting method
The Changing­Weight Iterative (CWI) BRDF­fitting method presented in Zeng et al. (2016) [61] was de­
signed to explicitly consider both the asymmetric distribution of noise (adopted from the Li­Gao method)
and also the unequal accuracy of the observations within the sample. It uses a posteriori variance
estimation combined together with the NDVI indicator presented in 2.4.2 to iteratively estimate the
Ross­Li­Maignan BRDF model, adjusting the weight of each observation in the sample according to its
suspected noise level.

The implication of considering observation errors is that the sample contains an anisotropic feature
that can be described using the Ross­Li­Maignan BRDF model. Observations that contain a large
amount of noise will no longer be well­described using a surface BRDF model, and hence will have
a larger observation error when the sample is fitted with such a model. Hence, CWI considers that
observations have an unequal accuracy within the sample,

CWI is at the core of the MuSyQ NDVI composite algorithm and is employed to estimate the red and
NIR band BRDF model parameters, and subsequently calculate the NDVI at standardised geometry.
Zeng et al. (2016) [61] states that although the Li­Gao method assigns variables weights to observa­
tions based on their NDVI value, it does not quantitatively estimate the noise of each observation. As
such, heavily contaminated observations can still have an impact.

The iterative procedure for CWI is similar to that of Li­Gao, and can be seen in flowchart 2.14. A
key difference is that the observations are weighted by taking into account their a posteriori calculated
variance in a weight matrix 𝑃.

At each iteration, CWI calculates an F­test on a statistic based on the computed variance to detect
suspected heavily­contaminated observations. From this, a weight matrix 𝑃𝑘 is calculated, with weights
for each observation along its principal diagonal. 𝑃 accounts for the estimated observation errors,
however it does not consider the asymmetric noise distribution from clouds. Therefore, the weight
matrix from the Li­Gao approach 𝑊𝑘 is also adopted in the CWI approach, with the covariance matrix
being:
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(Σ−1𝐶𝑊𝐼)𝑘 = 𝑃𝑘 ⋅ 𝑊𝑘 (2.13)
Where the calculation of the weight matrix 𝑊 was explained in 2.4.2. The main steps of the CWI

method to invert the Ross­Li­Maignan BRDF model are as follows, taken from [61]:

Figure 2.14: Flowchart of the Changing­Weight Iterative (CWI) BRDF fitting method . Adapted from [61].

For the initial iteration, the weight matrix 𝑃 can not be calculated using a posteriori variance, because
no estimate has been made yet. It is therefore set to unity, making the inital error covariance matrix for
iteration 𝑘 = 0:

(Σ−1)𝑘=0 = 𝐼 ⋅ 𝑊𝑘=0 (2.14)
In the CWI approach, the Li­Gao weight matrix 𝑊 is calculated as a first order metric, instead of a

second order one. It is in principle the same, only the NDVI­based indicator is not squared, so 𝑊 is
written nearly identical to 2.10 as:

𝑊𝑘=0
𝑖𝑖 (𝜃𝑆 , 𝜃𝑉 , 𝜙𝑟) =

𝑁𝐷𝑉𝐼𝑖,𝑜𝑏𝑠(𝜃𝑆 , 𝜃𝑉 , 𝜙𝑟)
𝑁𝐷𝑉𝐼𝑚𝑒𝑎𝑛

(2.15)

The BRDF inversion is then performed with (Σ−1)𝑘=0𝑖𝑖 = 𝑊𝑘=0
𝑖𝑖 , with the least­squares solution for

the kernel coefficients vector once again being written as:

𝑋𝑟𝑒𝑑 = (𝐾𝑇Σ−1𝐾)−1(𝐾Σ−1𝑀𝑟𝑒𝑑)
𝑋𝑁𝐼𝑅 = (𝐾𝑇Σ−1𝐾)−1(𝐾Σ−1𝑀𝑁𝐼𝑅)

(2.16)

With a first estimate of the BRDF model parameters, the bidirectional reflectance of the red and NIR
bands can now be calculated. The estimated bidirectional reflectances 𝑀𝑒 are in effect calculated as
𝑀𝑒 = 𝐾𝑋𝑒, where 𝑋𝑒 is the vector of estimated BRDF model parameters (in this case after the initial
fitting). The error equation is then defined as:

𝑉𝑛×1 = 𝑀𝑒,𝑛×1 −𝑀𝑛×1
𝑉𝑛×1 = 𝐾3×𝑛𝑋3×1 −𝑀𝑛×1

(2.17)

Where 𝑉 is the inverse of the measurement noise vector 𝐸 from equation 2.4.This is then used to
compute the a posteriori variance over all the observations in the sample, using:

𝜎20 =
𝑉𝑇Σ−1𝑉
𝑟

𝑟 = 𝑛 − 𝑡
(2.18)



18 2. Theory: NDVI Retrieval and Surface BRDF Estimation

𝑟 is the degree of freedom, 𝑛 is the number of observations, and 𝑡 is the number of coefficients to
be derived. We then also calculate the a posteriori variance per individual observation 𝑖. For the 𝑖th
observation, its error 𝑣𝑖 is the 𝑖th element of the error vector 𝑉, and its variance is:

𝜎2𝑖 =
𝑣2𝑖
𝑟𝑖

𝑟𝑖 = 𝑅𝑖𝑖
(2.19)

Here, 𝑟𝑖 is the redundant component of the 𝑖th observation, and the 𝑖th element of the principal diag­
onal of reliability matrix 𝑅. The trace of 𝑅 represents the redundant component of all the observations,
while 𝑟𝑖 represents the 𝑖th observation’s component in the total redundant observations.

𝑟 =
𝑛

∑
𝑖=1
𝑟𝑖 = tr(𝑅) (2.20)

With the a posteriori calculated variance for all observations, and for each individual observation,
a statistic 𝑇𝑖 is calculated. CWI employs a standard F­test to identify suspected outliers among the
observations, based on their calculated variance. The null hypothesis is that the 𝑖th observation is not
an outlier, and the alternative hypothesis is that it is a heavily contaminated observation. So with the
test statistic being defined as:

𝑇𝑖 =
𝜎2𝑖
𝜎20

(2.21)

We can now compute the CWI a posteriori variance­based weight matrix 𝑃, where the weight of the
𝑖th observation is set as:

𝑃𝑘+1𝑖𝑖 = {
1 if 𝑇𝑖 ≤ 𝐹𝛼,1,𝑟
𝜎20
𝜎2𝑖

if 𝑇𝑖 > 𝐹𝛼,1,𝑟
(2.22)

Where the test statistic 𝑇𝑖 for the 𝑖th observation has an 𝐹­distribution under the null hypothesis,
where 𝛼 is the significance level, and 𝑟 is the degree of freedom. If 𝑇𝑖 ≤ 𝐹𝛼,1,𝑟 holds, then the null
hypothesis is valid for the 𝑖th observation, and 𝑇𝑖 > 𝐹𝛼,1,𝑟, there is sufficient evidence to reject the null
hypothesis, and the 𝑖th observation is a suspected outlier. A suspected outlier’s weight is then set as
the ratio of the variance of all observations 𝜎20 , and that observation’s variance 𝜎2𝑖 .

So after the first estimate from the initial iteration 𝑘 = 0, the CWI­weight matrix 𝑃𝑘 was calculated
using equation 2.22, based on the a posteriori variance estimation. The model is once again inverted
using equation 2.16, now with both the asymmetric noise distribution as well as the unequal observation
accuracies accounted for, with the error covariance matrix:

(Σ−1)𝑘≥1 = 𝑃𝐶𝑊𝐼 ⋅ 𝑊𝐿𝑖𝐺𝑎𝑜 (2.23)

After the model inversion, a new estimate for the red and NIR BRDF model parameters 𝑋𝑒,𝑟𝑒𝑑 and
𝑋𝑒,𝑁𝐼𝑅 is obtained. The a posteriori variance of the observation errors can then again be calculated
from equations 2.17, 2.18, and 2.19, with matrices 𝑊𝑘 and 𝑃𝑘 being newly computed from equations
2.15 and 2.22.

This process is repeated for a maximum of 10 iterations, or until the change in weights between
subsequent iterations is less than 0.001 [61]. With this iterative approach to computing the covariance
matrix Σ using both a posteriori variance estimation and the Li­Gao NDVI­based indicator, the CWI
method adjusts the weights of each observation during the inversion of the red and NIR kernel coeffi­
cients vector. So from a set of observations taken during a composite cycle, this results in estimates
𝑋𝑟𝑒𝑑𝑒 and 𝑋𝑁𝐼𝑅𝑒 .

As was explained in section 2.3.1, the surface’s red and NIR bidirectional reflectance factors can be
calculated for any sun­view­target geometry using 𝑋𝑟𝑒𝑑𝑒 and 𝑋𝑁𝐼𝑅𝑒 and the Ross­Li­Maignan model. In
equation form, for a a sun­target­view geometry of (𝜃𝑆 , 𝜃𝑉 , 𝜙𝑟) = (30∘, 0∘, 0∘), this is calculated for the
red and NIR bands as:
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𝜌𝑟𝑒𝑑(30, 0, 0, 𝜆𝑟𝑒𝑑) = 𝑓𝑟𝑒𝑑,𝑖𝑠𝑜(𝜆𝑟𝑒𝑑) + 𝑓𝑟𝑒𝑑,𝑣𝑜𝑙(𝜆𝑟𝑒𝑑)𝐾𝑣𝑜𝑙(30, 0, 0)
+ 𝑓𝑟𝑒𝑑,𝑔𝑒𝑜(𝜆𝑟𝑒𝑑)𝐾𝑔𝑒𝑜(30, 0, 0)

𝜌𝑁𝐼𝑅(30, 0, 0, 𝜆𝑁𝐼𝑅) = 𝑓𝑁𝐼𝑅,𝑖𝑠𝑜(𝜆𝑁𝐼𝑅) + 𝑓𝑁𝐼𝑅,𝑣𝑜𝑙(𝜆𝑁𝐼𝑅)𝐾𝑣𝑜𝑙(30, 0, 0)
+ 𝑓𝑁𝐼𝑅,𝑔𝑒𝑜(𝜆𝑁𝐼𝑅)𝐾𝑔𝑒𝑜(30, 0, 0)

(2.24)

2.6. Validating BRDF estimates
In section 2.4.1 the theory behind modeling a surface’s BRDF using parametric kernel­driven models
was explained. These semi­empirical models were shown to be invertible, doing so allows a surface’s
BRDF to be estimated by fitting such a BRDF model to its sample. Estimation of the BRDF parameters
to get the best fit is done using the methods explained in section 2.5, which use different approaches
to reduce the impact of noise in the sample.

Validating novel methods or data products presents many challenges ­ first and foremost is evaluat­
ing the estimated BRDF model parameters and calculated reflectance and NDVI values. Retrieving in
situ­measurements at the same time as satellite retrievals using a spectroradiometer combined with a
goniometer like in figure 2.15 is one option, and would allow for a direct comparison of the ground truth
with the estimated NDVI composite. But ground validation is costly, time­consuming, and is limited to
the surface types present at the site. Furthermore, there are limitations to the tools used to measure
surface reflectance, as well as measurement errors, as deliberated by Aosier et al. (2007) [4].

Figure 2.15: Dual­view goniometer system used to take field BRDF measurements. Adapted from [40].

For validation purposes it is beneficial to know exactly which observations in a sample are contam­
inated, and to what degree. An alternative to using ground data is to use a physical model to simulate
pseudo­observations. As briefly mentioned in 2.4.1, these types of models describe the physical pro­
cesses that lead to a surface’s anisotropy, and can be used to approximate the scattering of a surface.
In the case of a vegetated surface, canopy reflectance models are used 10. The benefit of using a
simulation system is that pseudo­observations can be simulated for arbitrary conditions. Therefore
when testing BRDF fitting techniques, we have before­hand knowledge on the noise conditions of the
sample, and can use the simulation system to calculate NDVI at normalised conditions as a reference
for the NDVI composite estimated using the RLM model.

2.6.1. PROSAIL radiative transfer model
Of the existing canopy models, PROSAIL is one of the most researched and has been validated by
numerous experiments [16] [17] [18], and is often considered the standard for simulating vegetation
canopies.

Hence it was chosen for this thesis as the most appropriate radiative transfer model for simulating
canopy reflectance. PROSAIL is a coupling of two separate models: the PROSPECT leaf optical
properties model [15], and the SAIL canopy bidirectional reflectance model [50]. This combines the
10See [5] for a review of canopy reflectance models.
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Symbol Parameter Unit
𝐶𝑎𝑏 Chlorophyll a+b 𝜇g/cm2
𝐶𝑤 Equivalent water thickness cm
𝐶𝑚 Dry Matter content 𝜇g/cm2
𝐶𝑏 Brown pigment content ­
𝐶𝑐𝑎𝑟 Leaf carotenoid 𝜇g/cm2
𝐶𝑎𝑛𝑡ℎ Leaf anthocyanins 𝜇g/cm2
𝑁 Leaf structure parameter ­

Table 2.1: Input leaf biophysical parameters for the PROSPECT­5 model, with associated descriptions and units.

Symbol Parameter Unit
𝑟𝑠𝑜𝑖𝑙 Soil brightness factor ­
𝜌𝑠𝑜𝑖𝑙 Dry/wet soil ratio ­
𝐿𝐴𝐼 LAI green+brown ­
𝐴𝐿𝐴/𝐿𝐼𝐷𝐹𝑎 Average leaf slope deg
ℎ hotspot parameter ­
𝑆𝑍𝐴 Solar zenith angle deg
𝑉𝑍𝐴 Viewing zenith angle deg
𝑅𝐴𝐴 Relative azimuth angle deg

Table 2.2: Input canopy and background soil parameters for the SAIL model, with associated descriptions and units.

spectral variation of canopy reflectance as modelled by PROSPECT, linked to the biochemical contents
of leaves, with the anisotropic feature associated with canopy architecture, modelled by SAIL.

As reviewed by Jacquemoud et al. (2009) [18], thanks to its popularity many variations and ex­
tensions of the PROSPECT and SAIL models exist. For the purpose of this thesis, the versions
’PROSPECT 5’ and ’FourSAIL’ were chosen, respectively. A diagram of the inputs of each half of
the coupled model can be seen in figure 2.16.

Certain aspects of these models should be highlighted to understand the types of surfaces they
simulate together. PROSPECT represents a leaf using a flat plate model: the leaf is simulated as
a single layer or several stacked layers of flat, Lambertian scatterers [15]. The leaf’s biochemical
composition, as specified with the input parameters summarised in table 2.1, determine its simulated
optical properties.

As leaves form the main surface of the canopy, the leaf properties from PROSPECT are the main
input for SAIL to model the canopy reflectance [16]. The canopies modelled by SAIL are a semi­
infinite and homogeneous cluster of leaves (same leaf type throughout), and with random leaf azimuth
distribution (randomly rotated in the horizontal plane) [14]. Additionally, SAIL also accounts for the
background soil’s reflectance properties. In the version of PROSAIL used for this thesis, the soil’s
reflectance is calculated as a linear mixture of a wet and dry soil spectra, scaled by a brightness term
𝑟𝑠𝑜𝑖𝑙. The canopy variables and sun­target­view geometry used as inputs by SAIL are summarised in
table 2.2.

These two models were re­written in Python and paired together by J. Gomez­Dans 11, making it
relatively convenient to simulate canopy reflectance repeatedly for different surfaces. The pairing of the
two allows for a broad range of surface types to be simulated, within the physical assumptions made
by the PROSAIL model that were detailed above.

11https://pypi.org/project/prosail/
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Figure 2.16: Simulating bidirectional reflectance factor for a canopy using the PROSAIL model. Leaf transmittance and
scattering as modelled by PROSPECT is passed on as input to the SAIL canopy model to which it is coupled [5].

2.7. Theory ­ conclusion
Surface reflectance retrieval from space comes with its challenges, namely limited temporal and an­
gular sampling, compensating for the BRDF effect, and heavily­noisy or blocked retrievals. This is the
reason that different types of compositing techniques have been developed, in order to create usable
time­series of data. Contaminated observations are not always straight­forward to detect and surpress,
although it is certain that they are negatively­biased in NDVI for the case of sub­pixel cloud contamina­
tion. That is the case which this research focuses on, and the CWI BRDF­fitting method which intends
to reconstruct the RLM BRDF model while suppressing the effect of these noisy observations. To be
able to evaluate CWI’s performance for a variety of surface types, PROSAIL proves to be a powerful tool
that simulates surface reflectance retrievals by pairing the leaf optical properties model PROSPECT,
and the canopy reflectance model SAIL.

With an understanding of the fundamental principles of remote sensing, NDVI retrieval, and the
effect of clouds and atmospheric contamination, the context has been set for the research methodology.





3
Methodology: Numerical Experiment

Using PROSAIL
MuSyQ’s CWI BRDF­fitting method is evaluated by means of a numerical experiment, that simulates
the surface reflectance of vegetation canopies using a radiative transfer model.

In order to be able to compare the CWI method to the more conventional OLS and Li­Gao methods,
PROSAIL is used to simulate pseudo­observations of a surface’s BRDF. This set of synthetic measure­
ments forms a sample of the surface BRDF, to which the Ross­Li­Maigan model can be fitted, using
three different methods to obtain estimates of the kernel coefficients. Resulting estimates are used
to calculate nadir­normalised NDVI composite values ­ which are compared to reference values from
PROSAIL. In this way, an understanding of the accuracy of the estimates can be obtained.

The simulated pseudo­observations form a sample of a given surface’s BRDF, as modelled by PRO­
SAIL. Different values can be set for the PROSAIL parameters to describe different surface types, and
the sun­view­target geometries of the pseudo­observation can also be changed. Additionally, synthetic
noise due is also added to simulate undetected cloud­contamination of the observation, varying both in
amount of contaminated observations and in cloud fraction. Depending on which cloud contamination
scenario is simulated, a different noisy sample is created and used by the different methods to estimate
the BRDF model parameters.

A key advantage of a numerical experiment is control over the simulation conditions. Since CWI was
designed and intended to be used as a global NDVI product, the experiment varies the surface types,
acquisition geometry, and cloud contamination scenarios to cover a globally­representative broad range
of cases.

In this chapter the design of this system, as well as the various input variables, are documented
and presented to the reader. Beginning with a roadmap of the methodology, it continues with a detailed
explanation of the work performed at each step. Each step is concluded with a small summary, to
maintain an overview of the process.

3.1. Roadmap
The methodology of the simulation system is summarised on a conceptual level in figure 3.1. There
are three groups of input variables that describe the simulation conditions: biophysical variables that
describe the leaf, canopy, and background soil properties of the surface, the sun­view­target geometry
of each observation, and the cloud­contamination scenario variables. How these variables are used in
the simulation system is outlined as follows:

For the surface variables, nearly the entire parameter space of PROSAIL was sampled, simulating
a broad range of vegetation canopies and background soils. This was done using Sobol sampling, a
sampling strategy for multivariate parameter spaces that doesn’t produce clusters or gaps 1. A list of
6,000 different sets of surface variables was produced in this way, covering the entire parameter space
of the PROSAIL model’s input biophysical variables. This is reported in section 3.3.
1See [46], [39] for further reading.

23
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To link the experiment to real­life conditions, the sun­target­view geometry of actual observations
is used when simulating the pseudo­observations ­ which is explained in section 3.4. For this, images
are used from the sensors Terra and Aqua, aboard NASA’s MODIS satellites, and the sensors MERSI­I
and MERSI­II, aboard China’s FengYun 3 satellites. For 3 globally­distributed locations, each with a
different ’view’ from these sensors, 3 sets of sun­target­view geometries were determined from these
images. In ths way the angular sampling is derived from actual operational conditions, and is used as
an input for PROSAIL when simulating the pseudo­observations.

With one set of variables describing the canopy and background soil, and a set describing the
geometry of the satellite measurements, pseudo­observations are simulated with PROSAIL. This step
is described in section 3.5. For each surface, three noise­free sample of the surface’s BRDF are created
­ one for each study site and its associated sun­target­view geometry.

These are then used to create noisy samples, by using a linear spectral mixing model to introduce
noise due to cloud contamination ­ which is explained in section 3.6. Using this model, the presence
of sub­pixel clouds in measurements is modelled. For each simulated surface noisy samples were
created in this way for each cloud contamination scenarios. Scenarios varied by looking at cases of
low, medium and high cloud fractions (𝑓𝑐 = (0.01%, 0.015%, 0.03%), respectively), and by varying the
number of contaminated observations between 1 and 5 (𝛼 = (1, 2, 3, 4, 5)).

Using the created noisy samples, the Ross­Li­Maignan model was reconstructed by estimating the
kernel coefficients. This BRDF model’s parameters were estimated using three different methods:
ordinary least squares (OLS), Li­Gao weighted least squares, and CWI weighted least squares. Esti­
mating the parameters with three different methods allows for the impact of the noisy observations in
the sample to be compared across the methods.

3.2. Assumptions made
The above roadmap outlines the workflow of the simulation experiment. However, due to the com­
plexity of surface reflectance simulation, the MuSyQ algorithm, and BRDF estimation, the following
assumptions were made:

• The PROSAIL model simulates reflectance spectra from 400 to 2500 nm. Red and NIR band
reflectances were derived from these using the spectral response of MODIS Aqua bands 1 and
2, with bandwidths of 620 − 670 nm and 841 − 876 nm, respectively. The same bandwidths and
spectral response were assumed for all observations.

• Noise due to sources other than cloud contamination in the observations is not considered 2.

• Undetected cloud contamination of an observation is simulated as a mixed­pixel retrieval, using
a linear spectral mixing model.

• The surface types simulated are restricted to the lower and upper limits set on the PROSAIL input
variables, and the number of surfaces simulated was limited to 6,000 due to computational cost3.

3.3. Creating a set of representative surfaces
One half of the parameters required for simulating a surface’s reflectance with PROSAIL is the sun­
target­view geometry, and the other half is the surface type. A surface type is in this case the coupling
of a vegetation canopy, and background soil under the canopy.

The purpose of this step was to creat a set of surface types that covers a broad range ­ in this way
making the experiment globally representative in terms of realistic surface types. Therefore, the set of
surfaces should cover the entire parameter space of PROSAIL within defined upper and lower limits,
without clusters or gaps.

The sampling of the surfaces was performed using a script provided by the authors of [34], and
is based on a quasi random number generator. Sobol’s sequence generator draws an initial sample
from a multivariate uniform distribution, and on subsequent loops fills in unsampled gaps, maximising

2Side studies showed that sensor noise did not have a noticeable impact on the BRDF reconstruction.
3See section 3.3 for details on the sampling of PROSAIL’s input parameter space.
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Figure 3.1: Conceptual roadmap of the numerical experiment’s methodology. The three groups in the top row are the types of
variables used: variables describing the canopy and background soil types (inputs for PROSPECT and SAIL), variables

describing the sun­target­view observation geometry (input for SAIL) and variables describing the different cloud contamination
scenarios. The pseudo­observations simulated with PROSAIL form noise­free samples of the surfaces’ BRDFs, and these are
combined with the reflectance of cloudy pixels using a linear spectral mixing model (not shown here, see subsection 3.6 for
details on simulated noise). For each surface in total 15 noisy samples are simulated, and for each one the Ross­Li­Maignan

BRDF model parameters are estimated using the OLS, Li­Gao, and CWI fitting methods.

uniformity and reducing gaps and clusters [34]. Each individual biophysical parameter was varied one
at a time, creating a new sampling point each time.

PROSAIL has a large amount of input variables, with 3 acquisition geometry variables and 15 leaf
and canopy variables (as explained in section 2.6.1). Therefore the total number of permutations had
to be limited for the numerical experiment to be computationally feasible. Based on papers that either
implemented PROSAIL or studied its sensitivity to input variables [60] [13] [34] [35], measures were
taken to constrain the scope of the surface portion of the study. This was done in order to focus on the
variables which had a strong influence on reflectance in the red and NIR bands, and neglect variables
with little or no effect. The following assumptions were made:

1. Parameter values were given lower and upper limits, encompassing the surface types seen glob­
ally.

2. Certain biophysical parameters were kept fixed, as they have a negligible influence on the re­
flectance in the red and NIR regions, based on [34].
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Parameter Unit Min Max Sampling
𝐶𝑎𝑏 ­ Chlorophyll a+b 𝜇g/cm2 20 80 Sobol
𝐶𝑤 ­ Equivalent water thickness cm 0.005 0.04 Sobol
𝐶𝑚 ­ Dry Matter content 𝜇g/cm2 0.005 0.005 Fixed
𝐶𝑏 ­ Brown pigment content ­ 0.5 0.5 Fixed
𝐶𝑐𝑎𝑟 ­ Leaf carotenoid 𝜇g/cm2 1 1 Fixed
𝐶𝑎𝑛𝑡ℎ ­ Leaf anthocyanins 𝜇g/cm2 0 0 Fixed
𝑁 ­ Leaf structure parameter ­ 1.75 1.75 Fixed
𝑟𝑠𝑜𝑖𝑙 ­ Soil brightness factor ­ 0.0 1.0 Sobol
𝜌𝑠𝑜𝑖𝑙 ­ Dry/wet soil ratio ­ 0.01 0.3 Sobol
𝐿𝐴𝐼 ­ LAI green+brown ­ 0.5 7 Sobol
𝐴𝐿𝐴/𝐿𝐼𝐷𝐹𝑎 ­ Average leaf slope deg 5 85 Sobol
ℎ ­ hotspot parameter ­ 0.05 0.05 Fixed

Table 3.1: Input biophysical parameters of PROSPECT­5 model, with associated descriptions and units

3. Sobol sampling, a more efficient method for sampling the parameter space, was applied4 [46]
[34].

In table 3.1 the scope of biophysical variables that were used can be found. According to Mousivand
et al. 2014 [34], the parameters of greatest influence to the reflectance in the red and NIR band are
𝐶𝑎𝑏, 𝐶𝑤, 𝑟𝑠𝑜𝑖𝑙, 𝜌𝑠𝑜𝑖𝑙, LAI and ALA. Remaining parameters with little to no influence on the red and NIR
band reflectance were set at fixed values. This parameter space was sampled 6,000 times using Sobol
sampling [46], varying individual biophysical parameters within their range, to create a set of surfaces
to be synthesised with the PROSAIL model.

3.3.1. Removing unrealistic surfaces
In figure A.1 (appendix A) we see a representation of the original sampling of the parameters space.
Due to the sampling being uniform across the parameter space, there are certain surfaces with a near­
maximum value for one variable combined with a near­minimum value for another. For certain variable
pairs, these surfaces at the edges of the parameter space have little physical meaning. For example, a
high LAI value implies a relatively high amount of vegetation, which is unlikely to have a low chlorophyll
content.

Surfaces with these unlikely pairings were ‘trimmed’ and removed from the parameter space, in
order not to affect the sensitivity analysis. This was done by drawing an exponential line through
the top left and bottom right corners of the joint distributions of these linked variables. The inversely
related variable pairs were 𝐿𝐴𝐼 − 𝐶𝑎𝑏, 𝐿𝐴𝐼 − 𝐶𝑤 and 𝐿𝐴𝐼 − 𝜌𝑠𝑜𝑖𝑙. In figure 3.2 we see the surfaces at
the extreme ranges for the 𝐿𝐴𝐼 −𝐶𝑎𝑏 pairing. In total 800 surfaces, approximately 15%, were removed
by this method.

In summary
In summary, a realistic and computationally manageable set of surfaces uniformly covering the param­
eter space was created. Biophysical variables that are irrelevant to the red and NIR bands’ reflectance
were kept at fixed values, and the remaining variables were constrained to realistic ranges. Using Sobol
sampling, the parameter space was uniformly sampled without clusters and gaps to create 6,000 com­
binations of PROSAIL input parameters. 800 surfaces with unrealistic combinations of variables were
removed so as not to influence the sensitivity analysis. A globally representative set of combinations of
biophysical parameters remained, that can individually be paired with the geometry described in step
3.4 to simulate surface reflectance retrievals.

4See [34] for further reading on Sobol sampling.
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Figure 3.2: Joint distribution density function of biophysical variables 𝐿𝐴𝐼 and 𝐶𝑎𝑏. An exponential curve was drawn in the
’corners’ of the joint distribution, selecting surfaces at the edges of the bi­variate parameter space to be removed.

3.4. Extracting actual geometry
MuSyQ’s CWI algorithm is designed to be used on a multi­sensoral dataset comprising of images from
the MODIS5 and MERSI6 sensors, which can potentially be expanded to include more sensors. There­
fore, images from these sensors were studied for three study sites chosen for their global distribution,
summarised in table 3.2. The latitude, longitude, and MODIS grid tile number for each location was
found on the EOS land validation website. All MODIS and MERSI images that measured these sites
in the 5­day time period from 27/6/2015 to 1/7/2015 were downloaded.

Site name Country Latitude (∘) Longitude (∘)
Chang Baishan Jilin, China 42.403 128.096
Mongu Western Prov., Zambia ­15.438 23.253
Harvard forest Massachussets, USA 42.540 ­72.178

Table 3.2: Name and location of EOS validation sites used as study sites for accuracy evaluation.

For MOD09GA the scenes were downloaded using the Python package ’pyModis’ 7, an example of
which can be seen in figure 3.2. The MERSI images from the FY3A and FY3B satellite platforms were
provided through direct contact with colleagues at the Chinese Academy of Sciences. A sample of one
MODIS image tile can be seen in figure 3.3.

Satellite scenes are typically stored as HDF (Hierarchical Data Format) files, which is comprised of
multiple sub­datasets. Each sub­dataset contains different data rasters, such as surface reflectance,
quality flags, or cloud masks, for example. For this study, the information needed from the scenes are
the viewing and illumination geometry, the cloud quality flag, and the red and NIR band reflectance
(used for the cloud study, discussed in section 5.3.4). The bands used from the MODIS and MERSI
images are summarised in table 3.3.

Using the python package ’pyHDF’ for MODIS scenes and GDAL for C for the MERSI scenes, the
relevant sub­datasets were extracted as rasters from the original HDF files. See table 3.3 for the satellite
products and the respective sub­datasets used. With the required rasters extracted, the sub­datasets’
5𝑀𝑂𝐷09𝐴1.006 MODIS image accessed at https://doi.org/10.5067/MODIS/MOD09A1.006
6MERSI images shared by colleagues at RADI.
7http://www.pymodis.org/

https://doi.org/10.5067/MODIS/MOD09A1.006
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Figure 3.3: Grayscale image of band 1 of a single MODIS image tile, overlaid on a Google Earth image of northeastern China.

Product name MxD09GA FY3x MERSI
Resolution (𝑚) 500 500
Sub­datasets used ’state_1km_1’ ’Latitude’

SensorZenith_1 ’Longitude’
SolarZenith_1 solar_azimuth
SensorAzimuth_1 solar_zenith
SolarAzimuth_1 view_azimuth
’sur_refl_b01_1’ view_zenith
’sur_refl_b02_1’ DataSet_CloudMask

Table 3.3: Summary of sub­datasets used from MODIS and MERSI sensors.

values at the pixel containing the study site was selected.

3.4.1. Pre­screening
The extracted bands were analysed at the pixels containing the study sites. For MODIS, the band
’state_1km_1’ which describes the ’Reflectance Data State’ was inspected, and for MERSI data the
band ’DataSet_CloudMask was used.

Each observation was inspected and tested on several criteria to determine if they would be valid
retrievals. Observations were invalid when captured during nighttime, when retrieval failed, when the
angle was too far off­nadir, and when clouds were detected. In effect, they were invalid if:

1. Cloud mask band value was ‘1’ (MERSI) or ’Cloudy’ (MODIS).

2. Retrieval failed due to sensor malfunction, lack of sunlight, or othe reasons..

3. The viewing angle was too far off­nadir (VZA < 60).

Extraction of acquisition geometry was performed for all 3 study sites. For each observation, a set
of angle tuples was created, defining its viewing and illumination angle. Each set defines the nominal
observations available for a composite, assuming no cloud contamination. In table 3.4 we see the
angular sampling for study site Changbai, China.

In summary
To summarise: All MODIS and MERSI scenes which captured the study site(s) were collected for a
5­day period from June 27th 2015 to July 1st 2015. The pixel containing the study site was identified
in each scene, and the sub­datasets were studied to see if the observation was valid for that pixel.
It was considered valid when the VZA was not too high (< 60∘), it was taken during the day (based
on SZA), was identified as cloud­free by the MODIS and MERSI cloud masks, and the sensor did not
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Platform Year and day 𝜃𝑉(∘) 𝜃𝑆(∘) 𝜙𝑉(∘) 𝜙𝑆(∘) 𝜙𝑟(∘)
MODIS Terra 2015­178 55.5 19.5 ­71.6 166.4 58.0
MODIS Terra 2015­181 38.9 26.4 97.3 129.8 32.5
MODIS Aqua 2015­178 30.9 25.5 ­98.1 132.1 34.0
MODIS Aqua 2015­182 10.9 22.5 79.5 ­144.5 44.0
FY3B 2015­179 42.1 25.1 73.0 ­133.6 26.5
FY3B 2015­181 48.6 36.2 ­95.6 ­110.1 14.5
FY3B 2015­178 25.2 27.2 75.9 ­127.3 23.1
FY3B 2015­182 33.2 33.6 ­98.3 ­114.5 16.2

Table 3.4: Acquisition geometry of all valid MODIS and MERSI measurements of the study site in Changbai, China.
Observations collected over a 5­day period from June 27 2015 to July 1st 2015.

malfunction. In this way, a list with the geometry of nominally valid observations of the study site(s)
was created.

3.5. Simulating pseudo­observations and determining referenceBRDF
model parameters

The two elements required to define and simulate a cloud­free surface reflectance retrieval were brought
together – the biophysical variables required to describe the surface, and the acquisition geometry ex­
tracted from 5­days of actual MODIS and MERSI imagery. The radiative transfer model PROSAIL was
chosen for this task of simulating the anisotropy of a surface’s reflectance 8.

It was assumed that the leaf and canopy radiative transfer model PROSAIL characterises a surface’s
reflectance anisotropy well. This decision was based on themany existing papers [62] [5] [47] that either
implemented or studied the PROSAIL model.

Firstly, the set of approx. 6,000 surface types from step 3.3 and on­average 10 valid observations
over the composite period from step 3.4 were paired together. PROSAIL was used to evaluate the
different surface reflectance retrievals for each given surface. This resulted in approx. 60,000 simulated
retrievals, and for each simulation the output was the reflectance spectrum, an example of which is
shown in figure 3.4.

To derive red and NIR band­specific reflectances from a spectrum, the response of the sensor for
which the retrieval is being simulated must be taken into account. The Spectral Response Function
(SRF) of a sensor describes hows a particular sensor responds to, and records, the incoming irradiance.
As an example, the SRF overlaid with the input reflectance spectrum is shown in figure 3.5.

The SRF of the MODIS Aqua sensor was applied to the spectrum to derive the red and NIR band
reflectances. It was assumed that MODIS Terra, FY3A MERSI and FY3B MERSI all had virtually the
same SRF as MODIS Aqua. The scope of research was limited to the surface BRDF and its estimation,
and the effect of differences between the sensors on was not considered.

The end result of using PROSAILwas cloud­free, synthetic surface reflectance pseudo­observations.
With 10 different retrievals being simulated per surface, the set of pseudo­obsevations together formed
a noise­free sample of the surface’s BRDF. The surface input variables, sun­target­view geometries
of the pseudo­observations, and noise­free red and NIR band reflectances were recorded to a flat­text
file.

3.5.1. Baseline Ross­Li­Maignan BRDF model fitting
From this noise­free sample, the weights of each kernel in the Ross­Li­Maignan (RLM) model were
estimated using Ordinary Least Squares (see explanation of methods in section 2.5). These kernel
coefficients formed the best case estimate from a noisefree sample, to which the estimates from cloud­
contaminated samples could be compared.

For each surface, the best­estimate RLM model parameters were denoted as (𝑓𝑖𝑠𝑜 , 𝑓𝑣𝑜𝑙 , 𝑓𝑔𝑒𝑜)𝑟𝑒𝑓,
and were recorded for future reference. The BRDF model estimates resulting from noise­contaminated
samples, performed later in step 3.7, could then be compared to these as reference values.

8The reasons for choosing PROSAIL are explained in 2.6.1
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Figure 3.4: Reflectance spectrum from 400 to 2500 (𝑛𝑚) for a vegetated surface with 𝑁𝐷𝑉𝐼 = 0.9 and acquisition geometry of
(𝜃𝑉 , 𝜃𝑆 , 𝜙𝑟) = (0, 30, 0), as simulated by PROSAIL.

In summary
For a given set of leaf and canopy parameters (i.e. a surface), and acquisition geometry, the PROSAIL
model was used to simulate the entire spectrum of the surface reflectance, from 400­2500 nm. The
red and NIR band reflectances were derived from these spectra, assuming all sensors had the spectral
response function as the MODIS Aqua sensor.

For each surface 10 red and 10 NIR band pseudo­observations were synthesised, depending on
which site was studied. This was done for 6,000 surface types, paired with on average 10 observations
per surface, meaning approx. 60,000 simulations were performed per study site. The results were
noise­free samples of the surface’s BRDF, as modelled by PROSAIL.

A noisefree estimate of the Ross­Li­Maignan model’s kernel coefficients was also calculated using
ordinary least squares and recorded to be used a reference.

3.6. Cloud noise contamination scenarios / Noise contamination
Due to the large variety in cloud types, and different ways in which they can contaminate observations
without being detected, a practical approach was taken to quantify the effect of clouds. Based on related
literature, a linear spectral mixing model defined by 3.1 [33] [44] was used to simulate the effects of
sub­pixel cloud contamination.

Sub­pixel clouds can be present in a surface reflectance retrieval, typically decreasing the NDVI of
the pixel [33]. Equation 3.1 defines the reflectance of such a mixed pixel as the linearly proportional
contributions of the top of cloud reflectance 𝜌𝑐,𝑖, and the reflectance of the actual surface 𝜌𝑔,𝑖.

𝜌𝑖 = 𝑓𝑐,𝑖 ⋅ 𝜌𝑐,𝑖 + (1 − 𝑓𝑐,𝑖) ⋅ 𝜌𝑔,𝑖 (3.1)

In order to quantify the top of cloud reflectance, a minor side­study was performed 9. Using the same
sample of observations from which data was extracted in 3.4, a study was performed using MOD09GA
surface reflectance scenes from EOS land validation site ChangBai. From the 10 images, the following
steps were performed:
9put any additional details in appendix



3.6. Cloud noise contamination scenarios / Noise contamination 31

500 1000 1500 2000 2500
Wavelength [nm]

0.0

0.2

0.4

0.6

0.8

1.0

Re
fle

ct
an

ce
 [−

]

Output reflectance spectrum
Reflectance spectrum
red band
NIR band

Figure 3.5: Spectral Response Function (SRF) of MODIS Aqua sensor overlaid on surface reflectance spectrum as simulated
by PROSAIL.

𝛼
𝑓𝑐 𝑓𝑐 = 0.5% 𝑓𝑐 = 1.5% 𝑓𝑐 = 3%

𝛼 = 1 (1, 0.5%) (1, 1.5%) (1, 3%)
𝛼 = 2 (2, 0.5%) (2, 1.5%) (2, 3%)
𝛼 = 3 (3, 0.5%) (3, 1.5%) (3, 3%)
𝛼 = 4 (4, 0.5%) (4, 1.5%) (4, 3%)
𝛼 = 5 (5, 0.5%) (5, 1.5%) (5, 3%)

Table 3.5: Table of all cloud contamination scenarios, defined by varying the fraction of cloud contamination 𝑓𝑐, and the number
of contaminated observations 𝛼.

1. Selected all pixels in each image with a quality state flag of ‘definitely cloudy’.

2. Filtered out all pixels with a land cover flag of ‘water’.

3. Filtered out all pixels with a positive NDVI value.

4. Calculated the average red and NIR band reflectances for all 3,000,000 remaining pixels.

The result was a ‘generic cloud’ pixel with 𝜌𝑟𝑒𝑑 = 0.813, 𝜌𝑁𝐼𝑅 = 0.789 and 𝑁𝐷𝑉𝐼 = −0.015. With
this information and the linear spectral mixing model 3.1, noisy samples representing several types of
contamination scenarios could be calculated.

A range of possible scenarios that could occur were defined. Two variables were varied per com­
posite scenario: the fraction of cloud contamination 𝑓𝑐, and the number of contaminated observations
𝛼. 𝑓𝑐 was varied between cases of low (0.5%), medium (1.5%) and high (3.0%) cloud contamination,
and 𝛼 was varied from 𝛼 = 1 to 𝛼 = 5 (1 to 5 noisy observations). All permutations of 𝑓𝑐 and 𝛼 were
used to define a grid of possible scenarios, shown in table 3.5.

For each noise­free sample simulated in 3.5, all of the noise scenarios in table 3.5 were applied using
equation 3.1. In figure 3.6 an example of noise­free retrievals versus those from the cloud contamination
scenario (𝛼, 𝑓𝑐) = (3, 1.0%) can be seen.
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Figure 3.6: Comparison of noise­free (blue points) pseudo­observations in sample and contaminated observations (red points).
Generated along principal plane (𝜙𝑟 = 0) so that the v­shaped directionality is clearly visible, as well as the red points deviation

from it. The observations are contaminated with a low cloud fraction of 𝑓𝑐 = 0.5% using the linear spectral mixing model.

To account for the fact that the accuracy of the BRDF reconstruction may be affected differently
depending on which pseudo­observations out of the sample were contaminated, a noisy sample was
created for each possible combination of noisy observations and clear­sky observations. In this way,
the BRDF reconstructions performed in 3.7 could be repeated for each variation of the noisy sample.

In summary
A linear spectral mixing model was used to simulate the effect of noise due to cloud contamination. Us­
ing this method, the top of cloud reflectance was combined with observations in the noise­free surface
reflectance simulated in step 3.5. In order to do this a minor side­study was performed to compute the
average red and NIR cloud reflectance 𝜌𝑐,𝑟𝑒𝑑 and 𝜌𝑐,𝑁𝐼𝑅 for a ’generic cloud’ for each site. Furthermore,
a grid of cloud contamination scenarios was defined, with the number of contaminated observations 𝛼
on one axis, and degree of contamination 𝑓𝑐 on the other.

For a scenario of e.g. two noisy pseudo­observations (𝛼 = 2), all combinations of two contaminated
measurements and remaining clear­sky measurements were found and used to create noisy samples.
This was done for each scenario in table 3.5.

3.7. Estimating Ross­Li­Maignan model with OLS, LiGao and CWI
methods

The final step of the numerical experiment was using three different methods to fit a Ross­Li­Maignan
BRDF to the sample. These were the conventional OLS fitting, the iterative LiGao method which uses
a NDVI­based indicator to reduce the weight of noisy observations, and the novel CWI method which
improves on LiGao’s approach by also using a posteriori calculated variance of the observations in the
weighting process.

Using these three different methods, the RLM model’s kernel coefficients were estimated using the
noisy samples of each surface’s BRDF. As explained in section 3.6 this was repeated for each combi­
nation of noisy and noise­free observations per scenario. In this way, a range of possible estimates was
produced for each scenario, with contamination of each observation being considered. As an example,
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Figure 3.7: Spread of BRDF model parameters (𝑓𝑖𝑠𝑜 , 𝑓𝑣𝑜𝑙 , 𝑓𝑔𝑒𝑜)𝐶𝑊𝐼 estimated using the CWI method. For each permutation of
2 noisy measurements, a noisy sample was calculated according to the method described in section 3.6. The histogram
visualises the distribution of possible estimates, depending on which random 2 pseudo­obervatios are contaminated. The

median value of each coefficient was used as the resulting estimate for the given surface and scenario.

the variability within the estimates is shown in figure 3.7 for the CWI method.
The median value of each kernel coefficient was taken as the result for a given cloud contamination

scenario (𝛼, 𝑓𝑐). So, from the three different methods, this resulted in three different estimates of the
RLM BRDF model to characterise a surface’s anisotropy:

(𝑓𝑖𝑠𝑜 , 𝑓𝑣𝑜𝑙 , 𝑓𝑔𝑒𝑜)𝑂𝐿𝑆
(𝑓𝑖𝑠𝑜 , 𝑓𝑣𝑜𝑙 , 𝑓𝑔𝑒𝑜)𝐿𝑖𝐺𝑎𝑜
(𝑓𝑖𝑠𝑜 , 𝑓𝑣𝑜𝑙 , 𝑓𝑔𝑒𝑜)𝐶𝑊𝐼

(3.2)

In summary
The OLS, Li­Gao and CWI BRDF­fitting methods were used to estimate the Ross­Li­Maignan BRDF
parameters from noisy samples of the surface BRDF. All noise scenarios from table 3.5 were consid­
ered, and in each case the median result of each possible combination of noisy/noise­free observations
in the sample was selected. The resulted in three different estimates of the same surface’s BRDF, for
a given surface and cloud contamination scenario.

3.8. Methodology ­ conclusion
The anisotropical behaviour of surface reflectance varies with canopy architecture, leaf type, and back­
ground soil type. As an alternative to validating estimated NDVI composite values with ground data,
which is expensive and inherently limited to the surface types present on site, a numerical experiment
was designed using the radiative transfer model PROSAIL.

With this experiment, the performance of the Changing­Weight­Iterative (CWI) BRDF­fitting method
could be tested on pseudo­observations of many different types of surfaces. Noise in the measure­
ments is a big challenge in NDVI compositing, so it was important to consider situations of cloud con­
tamination. As it intended to be used as a part of theMuSyQ algorithm to createa a global NDVI­product,
as many possible surface types and retrieval conditions needed to be considered.

Using the methodology explained in this chapter, samples of surface BRDFs in the red and NIR
bands were simulated using the PROSAIL model. In order to cover a broad range of globally repre­
sentative conditions, the parameter space of PROSAIL was sampled 6,000 times, each sampling point
yielding a different surface type.

Firstly, noise­free samples on the basis of sun­view­target geometry collected from actual study
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sites were created. Synthetic noise was added the observations in the sample, using a linear spectral
mixing model to simulate the effects of sub­pixel cloud contamination. Cloud­contaminated observation
were synthesised by mixing the noise­free red and NIR surface reflectance measurements, with the
reflectance of a ’generic’ cloudy pixel ­ which has a far smaller (negative) NDVI. This led to noisy
samples, containing both noise­free and contaminated observations. These samples ranged in amount
of noisy observations (𝛼) from 1 to 5, and varied in fraction of cloud mixing (𝑓𝑐) from 0.5% to 3.0%.

Finally, the Ross­Li­Maignan BRDF model was fitted to these samples, using the OLS, Li­Gao,
and Changing­Weight Iterative (CWI) methods. For each of the 6,000 surface types, three estimates
were made of the surface BRDF, under each cloud­contamination scenario in table 3.5. With the large
amount of experimental data produced, the performance of the CWI method could be evaluated and
compared to the alternative, more conventional methods of OLS and LiGao.



4
Results and Discussion

The large amount of data generated by the numerical experiment covers a broad range of noise sce­
narios, a large set of vegetation canopies, and three different geometries based on the chosen study
sites. As CWI was designed to be used in the production of a global NDVI product, this was necessary
to cover many different types of conditions. In this chapter, three different BRDF­estimation meth­
ods, OLS, Li­Gao, and CWI, are evaluated and compared against each other, using reference values
calculated from the PROSAIL model.

The results have been grouped by study site, and sky plots of the sun­view­geometry extracted
from each site can be see in figure 4.1. In this chapter the information is summarised, analysed and
discussed, in order to be able to evaluate the performance of the Changing­Weight Iterative BRDF­
fitting method compared to the conventional OLS and LiGao methods.

In the first part of the results chapter, section 4.1, the noise­free scenario is considered. First, for
ideal­conditions, the suitability of the RLM BRDF model is evaluated. As kernel­driven BRDF models
are parametric models that only approximate a surface’s BRDF, the RLM model’s ability to describe the
anisotropical surface reflectance must be studied. For these clear­sky conditions, baseline estimates
of the BRDF model parameters are also reported ­ these are the best­achievable results for estimates
made from noisy samples. The term BRDF model parameters and kernel coefficients may be used
interchangeably, as they are essentially the same.

In section 4.2, the estimates resulting from noisy samples are considered. The results of the esti­
mated BRDF parameters, as well as the NDVI composites calculated using these parameters, are both
presented. OLS, LiGao, and CWI NDVI composites are compared to the baseline estimates, and also
compared to reference values from PROSAIL.

Finally, the methodology implemented by this experiment and the implications of some design
choices are presented in section 4.3. Results from the experiment are also related to existing liter­
ature where possible, and similarities or differences with other research are discussed.

35
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(a) Site Chang Baishan, geographic location: 42∘4′𝑁127∘36′𝐸.
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(b) Site Harvard Forest, geographic location: 42∘37′𝑁70∘51′𝑊.
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(c) Site Mongu, geographic location: 58∘17′𝑁14∘49′𝐸.

Figure 4.1: Skyplot of all valid MODIS and MERSI measurements for a single pixel containing the study site. 8 observations
were extracted for the site Chang Baishan (China), 10 for Harvard Forest (USA), and 13 for Mongu (Zambia). The pixel closest
to the site was used. Red squares indicate retrievals from the MODIS sensor, while blue triangles are from the MERSI sensor.

4.1. Clear­sky conditions
MODIS and MERSI viewing geometry over 5 days was extracted for the study sites at St. Petersburg,
Chang Baishan, and Mongu. Only valid observations were considered, meaning there were no obvious
clouds based on the cloud masks, no sensor failures, or night­time measurements. This was done in
the same way as the MuSyQ algorithm [21] and CWI paper [61], as explained in section 3.4.1.

The extracted geometry showed variability between the study sites, both in the total number of
retrievals, and the amount of observations ultimately being deemed valid. These are visualised in
figure 4.1, with 8 valid observations for site Chang Baishan, 10 for Harvard Forest, and 13 for Mongu.

This variability in sample size between sites is not only due to weather conditions and sensor fail­
ures, but due to the orbital tracks of the satellite platforms on which the sensors are installed. Coverage
and geometry therefore vary depending on the latitude of the study site, as well as how far off­nadir the
site is (the latter determins the viewing zenith angle 𝜃𝑉).

Noise­free samples were simulated for each surface generated in section 3.3, according to the
methodology of chapter 3, using the sun­target­view geometries shown in figure 4.1. These were used
to evaluate the RLMmodel and composite NDVI estimates under ideal conditions, which are presented
in this chapter.
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Figure 4.2: Histogram of possible RLM model parameter estimates from noise­free sample for the NIR band. Shown here for a
single surface, for site Harvard Forest. Each triplet of observations within the sample yielded one set of solutions

(𝑓𝑖𝑠𝑜 , 𝑓𝑣𝑜𝑙 , 𝑓𝑔𝑒𝑜)𝑒. The coefficients are all focused on narrow bands of values with some outliers, with low variances of
(𝜎2𝑓𝑖𝑠𝑜 , 𝜎

2
𝑓𝑣𝑜𝑙 , 𝜎

2
𝑓𝑔𝑒𝑜 ) = (3.55e−8, 2.15e−6, 2.99e−7)

4.1.1. Suitability of RLM model
The RLM model was studied using noise­free samples with the angular sampling of just one site, Har­
vard forest (see figure 4.1b). If the RLM model is a good descriptor of the surface BRDF, there should
be a single set of kernel cofficients that closely describes the shape of all pseudo­observations in the
sample. By taking subsets of observations from the sample, and fitting the RLM model to each subset,
we can study how the estimated parameters vary. All the pseudo­observations are resultant from the
same surface BRDF and its anisotropy, so in the ideal case this variability is minimal or zero.

This was studied as follows: the RLM model was fitted to different combinations of three observa­
tions within the sample. With three unknowns in the inverse problem (the kernel coefficients), each
triplet of observations was sufficient to estimate a solution for the RLM model. Every triplet therefore
yielded one estimate of the RLM kernel cofficients 𝑓𝑖𝑠𝑜, 𝑓𝑣𝑜𝑙 and 𝑓𝑔𝑒𝑜. For this set of different possible
solutions, the variances (𝜎2𝑓𝑖𝑠𝑜 , 𝜎

2
𝑓𝑣𝑜𝑙 , 𝜎

2
𝑓𝑔𝑒𝑜) of each coefficient was calculated.

The histogram in figure 4.3 shows the distribution of these variances, limited to a subset of 1,000
surfaces due to high computational cost. In order to judge the significance of this variance, we select
a surface which had a variance near the median of these distributions.

The spread of these estimated kernel coefficients is demonstrated for this single surface in figure
4.2. A relatively narrow spread of estimates indicates that the estimates are generally converging to a
narrow set of solutions (see variance of the coefficients in the caption of figure 4.2).

Taking the median of this spread to get a unique set of RLMmodel parameters, we can use the RLM
model to calculate the reflectance values of the pseudo­observations, and compare them to the actual
pseudo­observations. In figure 4.4, we see that the RLM model matches the shape of the pseudo­
observations very closely. The RMSE of the NDVI values is low, at 0.00829.

Looking at the distributions in figure 4.3, we see that for most surfaces the variance of estimates is
minimal. The results indicate that the Ross­Li­Maignan model is reasonably accurate descriptor of a
surface’s BRDF, for most surface types.

The low variance of most surfaces’ estimates suggests that the BRDF parameters fitted to one triplet
of observations in a sample could also closely match another triplet in the sample ­ indicating a good
description of the samples surface BRDF. A demonstration of this high closeness of fit between the
calculated and observed reflectance values was shown for a single case in 4.4 as an example.

This conclusion is also supported by existing literature Li Gao et al. (2002) [11] which considers the
RLM model it to have a high accuracy among the existing kernel­models available 1, and it has been
used operationally for the creation of other existing satellite products as well.

1As was discussed in section 2.4.2, there exist a variety of parametric BRDF models.
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Figure 4.3: Variance of the possible RLM model parameter estimates for the NIR band, shown for a subset of 1000 randomly
selected surfaces. The distributions are strongly centered around variance values of 0, indicating that for the majority of

surfaces, the RLM model estimates converge to a narrow set of solutions.

Figure 4.4: Side by side comparison of a noise­free sample as simulated by PROSAIL, compared to same observations as
calculated by a fitted RLM model. The model parameters used are the median of the spread shown in figure 4.2, which had a

narrow spread within the estimates. The RMSE of the estimated NDVI is 0.0083.

Figure 4.5: Side by side comparison of surface reflectance pseudo­observations as simulated by PROSAIL, compared to
reflectance as calculated by the RLM model fitted to the noise­free sample. The model parameters used are for a surface with

high variance in the estimated kernel coefficients. The RMSE of the estimated NDVI is 0.0942.
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Figure 4.6: Distribution of RLM BRDF model parameters from noise­free samples, for 6,000 surfaces. Angular sampling is for
the site Harvard Forest.

Some high variance cases were also observed, and the RLM’s fit for these cases is demonstrated
in figure 4.5 ­ where it performs less adequately. A review of parametric BRDF modelling by Lucht et al.
(2000) [29] noted that it was unclear if a single BRDF model exists which can be fitted to the majority
of the BRDF shapes observed in ground­measured field data. In this case, with 6,000 different surface
types being simulated, these outliers are surfaces that are not well approximated by the RLM model.
With this limitation of parametric BRDF models in mind, both Lucht et al. (2000) [29] as well as Wanner
et al. (1995) [57] drew similar conclusions that the RLM model is applicable to a broad variety of BRDF
shapes.

The above discussion is based on the results for the surface’s NIR band BRDF, and similar results
were observed with the red band, with no notable differences. The closeness off fit of an example red
band estimate can also be seen in figure 4.4. In the appendix, figure B.1, the distribution of the variance
for the red band can be seen. Furthermore, the results of this section were also reproduced for the
other sites Mongu and Chang Baishan and were very similar.

4.1.2. Baseline BRDF model estimates
As discussed in section 2.3.1, a surface’s BRDF can not be perfectly described, only estimated a group
measurements, which together for a sample. In this case, a Ross­Li­Maignan BRDF model is fitted to
the measurements, in an attempt to describe the surface anisotropy.

The suitability of this model and ability to describe the surface BRDF was already described in
section 4.1.1, and here the spread of estimated RLM BRDF parameters from noise­free samples are
briefly presented, to be used as a reference in section 4.2.1 for the estimates from noisy samples.

Figure 4.6 shows the distributions of the three individual kernel coefficients 𝑓𝑖𝑠𝑜, 𝑓𝑣𝑜𝑙 and 𝑓𝑔𝑒𝑜. These
distributions do not contain any information on their own, but represent the ideal scenario for the BRDF
estimates. If the studied methods reduce the impact of noise perfectly, the estimates from noisy sam­
ples can be expected to match these closely. Figure 4.6 shows the baseline scenario for Harvard forest,
as each site’s estimates should be compared to its respective ideal estimate.

4.1.3. NDVI estimates under clear­sky conditions ­ baseline scenario
Using the RLM BRDF parameters estimated from noise­free samples of the surfaces, the composite
NDVI value was calculated for standardized geometry. This was at nadir­viewing, fixed sun conditions
of (𝜃𝑉 , 𝜃𝑆 , 𝜙𝑟) = (0, 30, 0). As this calculated using an estimated BRDF model, this nadir­normalised
value will be referred to as the NBAR NDVI (Nadir BRDF­Adjusted Reflectance NDVI).

In figure 4.7 these estimated NBAR NDVI values are seen to the reference values from PROSAIL,
for site Harvard Forest. For all the sites the main cluster is centered on the 1:1 line, indicating the
PROSAIL reference values are matched closely, with some NDVI values outside of the main cluster
that are being overestimated.
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Figure 4.7: Scatter plot of estimated NDVI compared to reference NDVI value from PROSAIL, for site Harvard Forest. Shown
here are NDVI values calculated using BRDF parameters estimated from noise­free samples using OLS, Li­Gao, and CWI

methods. Dotted line is 1:1 line, green lines are ±5%.

A significant linear agreement is noted between the estimated and reference NBAR NDVI values,
for all three methods, with low RMSE values. While they are low, it is noted that the LiGao and CWI
methods have slightly higher RMSE values of 0.013 and 0.014, respectively, compared to 0.012 for
OLS. As the LiGao and CWI methods iteratively attempt to reduce the weight of noisy observations in
the BRDF fitting process, the use of weight matrices appears to have a small negative impact on the
accuracy of the estimate, for the noise­free case. The results suggest that observations which are in
fact noise­free, have their weight reduced erroneously.

The findings suggest that for the ideal scenario, the Ross­Li­Maignan model matches PROSAIL
NBARS for all surfaces very closely, with RMSE values below 0.02 regardless of the estimation method.
For reference, we saw in section 4.1.1 and figure 4.2 that a very close fitting NDVI estimate has an
RMSE of 0.0083. The majority of surfaces are within 5% of the reference PROSAIL value, suggesting
that the (synthetic) surface BRDFs can all be described well using the RLM model. Similar results
were observed for sites Chang Baishan and Mongu (see appendix, figures C.1 and C.2) and are not
discussed further here.

Looking at Zeng et al. (2016) [61], a similar validation of the CWI method was performed, but on the
basis of imagery from the ETM+ sensor aboard the Landsat 7 satellite. These reference images from
the ETM+ sensor were near­nadir viewing, and due to this sensor being used in multiple other papers
it was deemed by Zeng et al. (2016)[61] to be a reasonable validation source.

In figure 4.8 a scatter plot of NBAR NDVI estimated from MODIS imagery using the CWI method
is seen. Zeng et al. (2016) performed it’s validation for the same study site of Harvard Forest, but
using only MODIS surface reflectance observations, not including data from multiple sensors as this
experiment does. Furthermore, 16 days of images were used, instead of 5 days as was done in this ex­
periment. Zeng et al. (2016) [61] performed a careful screening of the observations used and deemed
them to be free of cloud­contamination, as was also done for the results presented in figure 4.7 of this
experiment

With the differences in mind, similar results are nevertheless observed as in figure 4.7. The results
shown in figure 4.8 also show a significant linear relationship between the estimated and reference
NBAR NDVI values. The agreement between these two studies further supports that the RLM model,
as fitted using the CWI method, is a reasonably accurate descriptor of the surface BRDF.

However, for this experiment, each point in figure 4.7 represents a surface, whereas for Zeng et al.
(2016)[61], actual surface reflectance measurements of Harvard Forest were used, meaning each point
represents one pixel in the images of the Harvard Forest site. Their findings are therefore restricted to
biome of the study site, in this case of a broadleaf forest.
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Figure 4.8: Direct validation of CWI method using imagery from the ETM+ sensor, Harvard Forest site, as reported by Zeng et
al. [61].

4.2. Estimating from noisy samples
With an understanding of the suitability of the Ross­Li­Maignan model at the centre of the CWI method,
and the CWI’s performance using noise­free samples, the three methods are compared here for the
various cases of noise samples due to cloud­contamination. Firstly the results of estimating the BRDF
model parameters are discussed. From these estimates, NBAR NDVI values are calculated, and com­
pared to the reference PROSAIL values.

The results are not directly comparable between sites due to the different sun­target­view geometry
and number of observations, and so are grouped by study site. The sky plots of sites Mongu, Chang
Baishan and Harvard Forest can be seen in figures 4.1c, 4.1a and 4.1b respectively.

4.2.1. BRDF model estimates from noisy samples
For the 6,000 surfaces, the RLM BRDF parameters were estimated using each of the noisy samples
resulting from each of the cloud contamination scenarios. The same was already done in section 4.1.2,
but with with noise­free samples, creating a baseline scenario.

Distributions of the estimated parameters are shown for two scenarios in figure 4.9, compared with
the baseline parameters. If the effect of noisy obserations is effectively suppressed, the estimates of
the kernel coefficients, in this case 𝑓𝑖𝑠𝑜, are expected to have a similar distribution as the baseline,
noise­free case.

The cloud­contamination scenario for figure 4.9 is 𝑓𝑐 = 3.0%, with 𝛼 = 2 and 𝛼 = 5. For this
scenario, the distribution of the CWI estimate appears to be closest to the baseline scenario. When
calculating the deviation from the baseline and inspecting the result (bottom figure), this is confirmed
to be the case.

Looking at another scenario, a different distribution is noted. In figure 4.10, the Li­Gao estimates
have a closer shape to the baseline compared to the CWI estimates, although all three methods show
significant differences. This is a case of severe cloud contamination, with 5 contaminated observations
in a sample of size 10, where all the estimates are significantly negatively impacted.

From these distributions it can be concluded that for some scenarios, for the 6,000 surfaces sim­
ulated, the CWI method closely matches the BRDF parameters fitted to the noise­free samples (i.e.
the baseline). In other cases, such as in figure 4.10, the impact of noisy observations is not effectively
reduced by any of the methods, with CWI appearing to show larger differences than Li­Gao.

The impact of cloud­contamination appears to lead to an overestimation the isometric scattering
kernel coefficient 𝑓𝑖𝑠𝑜 of the RLM model in the case of cloud contaminated observations. Isometric
scattering is an isotropic feature, and describes the general ’brightness’ of a surface. Since pixels with
sub­pixel cloud contamination are generally brighter in the red band, these noisy observations lead to
an overestimation of the brightness in the red band when their impact is not suppressed.

Due to time constraints, the results for the volumetric scattering and geometric scattering kernel
coefficients 𝑓𝑣𝑜𝑙 and 𝑓𝑔𝑒𝑜 are outside of the scope of this research 2. However, as estimating a NDVI

2In appendix D some results for the other coefficients can be viewed.



42 4. Results and Discussion

0.005 0.010 0.015

fiso

0

200

400

600

800

1000

1200

1400

1600

F
re

q
u

e
n

c
y

0.005 0.010 0.015

fisoe OLS

0.005 0.010 0.015

fisoe LiGao

0.005 0.010 0.015

fisoe CWI

0.00440 0.00442 0.00444

Difference

0

250

500

750

1000

1250

F
re

q
u

e
n

c
y

fisoe OLS

−0.0005 0.0000 0.0005

Difference

0

500

1000

1500

fisoe LiGao

−0.0006 −0.0004 −0.0002 0.0000

Difference

0

2000

4000

6000

fisoe CWI

Figure 4.9: Estimates of the red band kernel coefficients, for the scenario (𝛼, 𝑓𝑐) = (2, 3.0%) at site Harvard Forest. Top:
distributions of the baseline 𝑓𝑖𝑠𝑜 parameters and OLS, Li­Gao, and CWI estimates. Bottom: distributions of deviations from

baseline 𝑓𝑖𝑠𝑜 values for OLS, Li­Gao, and CWI estimates. Note the scale of the x­axis.

composite value is the major application of CWI in this context, the focus is on the impact of the esti­
mated BRDF parameters on the resulting NDVI estimates ­ which is discussed in the following sections.

4.2.2. Nadir­normalised NDVI estimates from noisy samples ­ low cloud fraction
The estimates resulting from the noisy samples showed varying results, depending on the degree of
contamination and number of contaminated observations 𝛼. First, the case of low cloud contamination
𝑓𝑐 = 0.5% in the sample is considered. The estimated NBAR NDVI values were plotted against the
reference PROSAIL values, similar to the clear­sky estimates figure 4.7, in figure 4.11.

With a cloud fraction of 𝑓𝑐 = 0.5%, the mean reduction in NDVI value of contaminated observations
was 15.5%. However, this varies greatly between different surfaces and their measurements, as the
linear spectral mixing model used to add sub­pixel cloud noise combines surface reflectance (which
varies per surface type) with the top of cloud reflectance.

In figure 4.11, for site Harvard Forest, we notice that the accuracy of each estimation method suffers
from the presence of lightly contaminated observations in the sample. For all methods, the RMSE grad­
ually increases with 𝛼, and the fitted BRDFs under­estimate the NDVI values compared to PROSAIL
(reference values on x­axis).

With 𝛼 = 1 the RMSE values for all three methods are equal or nearly equal to the baseline, ideal
scenario, ranging from 0.011 for CWI to 0.015 for OLS. At 𝛼 = 5, the RMSE is significantly higher than
the baseline for all three scenarios, with CWI having an RMSE of 0.084 compared to 0.017 when 𝛼 = 0.
Bases on these RMSE values, it is observed that both Li­Gao and CWI methods outperform OLS, but
not by a large margin on average. The impact of noisy observations does not appear to be significantly
reduced by any of the methods, however the impact is also not very high for low 𝛼 values of 1 or 2.

Table 4.1 summarises the results for the low cloud contamination scenario, also for the Mongu and
and Chang Baishan sites. Similar results are observed for these other sites, however the reduction
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Figure 4.10: Same as figure 4.9, for 𝛼 = 5, at site Harvard Forest. Top: distributions of the baseline 𝑓𝑖𝑠𝑜 parameters and OLS,
Li­Gao, and CWI estimates. Bottom: distributions of deviations from baseline 𝑓𝑖𝑠𝑜 values for OLS, Li­Gao, and CWI estimates.

Note the scale of the x­axis.

in accuracy is lower for the site Mongu (which has a sample size of 13 compared to Harvard Forest’s
10) and higher for the site Chang Baishan (sample size of 8). The number of pseudo­observations,
or sample size, varied per site due to differences in geography and weather conditions. Differences in
sample size lead to differences in the impact of noisy observations for a given 𝛼, as evidenced by table
4.1.

4.2.3. Nadir­normalisedNDVI estimates fromnoisy samples ­ high cloud fraction
For the case of contaminated observations having a high degree of cloud contamination, the impact
of noisy observations was considerably higher. With the case 𝑓𝑐 = 0.5%, the mean reduction in NDVI
value of contaminated observations was 53.2%, therefore noisy measurements had a significantly lower
NDVI value.

In figure 4.12, for site Harvard Forest, we notice that the accuracy of each estimation method re­
sponds differently to the increasing amount of contaminated observations in the sample. As was sug­
gested by the findings of section 4.2.1, sub­pixel clouds have a negative NDVI and increase the mea­
sured red reflectance, leading to an overestimated 𝑓𝑖𝑠𝑜 and underestimated NBAR NDVI. This appears
to be the case for the OLS­reconstructed Ross­Li­Maignan BRDF model, which does not effectively
reduce the impact of noisy observations. It has the highest RMSE of the three methods, and hence the
lowest accuracy, which decreases further and further as 𝛼 increases.

For the Li­Gao and CWI methods, the impact of noisy observations is more subtle. From the spread
of the estimates in figure 4.12, we see that a significant linear relationship is maintained between the
estimates and the reference PROSAIL value with just one or two contaminated observations in the
sample, with RMSE values close to the baseline scenario of 0.013 and 0.014.

From the RMSE values summarised in table 4.2, the CWI and Li­Gao methods both appear to
perform as intended, identifying and reducing the impact of the two cloud­contaminated measurements.
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Table 4.1: Mean error for each scenario, quantified by the RMSE using PROSAIL as a reference value. Summarized here for 𝛼
from 1 to 5 for the case of low cloud contamination 𝑓𝑐 = 0.5%, which results in a mean relative NDVI noise of 15.5% in the

contaminated observations. Greener boxes indicate lower RMSE value, and red indicates higher. Note: all tables are
standardised to the same scale of RMSE­colour.

Table 4.2: Mean error for each scenario, quantified by the RMSE using PROSAIL as a reference value. Summarized here for 𝛼
from 1 to 5 for the case of low cloud contamination 𝑓𝑐 = 3.0%, which results in a mean relative NDVI noise of 53.2% in the
contaminated observations. The simulated samples have size 8 (Chang Baishan), 10 (Harvard Forest) and 13 (Mongu).

Greener boxes indicate lower RMSE value, and red indicates higher. Note: all tables are standardised to the same scale of
RMSE­color.
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(a) low cloud fraction, one noisy pseudo­observation.

(b) low cloud fraction, two noisy pseudo­observations.

(c) low cloud fraction, three noisy pseudo­observations.

(d) low cloud fraction, four noisy pseudo­observations.

Figure 4.11: Estimated nadir­normalised NDVI versus reference PROSAIL values for study site Harvard Forest ­ for the case of
low noise 𝑓𝑐 = 0.5%. Fitted RLM BRDF models were used to calculate the NDVI values, using the fitting methods OLS (left),

LiGao (middle), CWI (right). Angular spread of the 10 observations used for the BRDF fitting can be seen in 4.1b.
Each point represents the calculated values for one surface type, the black dotted line a 1:1 relationship and the green dotted

indicates the threshold for the references values ±5%.



46 4. Results and Discussion

Taking 𝛼 = 3 as an example, the CWI estimates have a mean RMSE of 0.009, while those of Li­Gao
have a mean of 0.05. Both CWI and Li­Gao outperform OLS, which at this point has an RMSE value
nearly 20 times higher than the baseline, at 0.22.

When the proportion of contaminated observations passes a certain point, in the case of Harvard
Forest the point being 𝛼 = 4, the accuracy of the CWI method rapidly drops off. From 𝛼 = 3 to 𝛼 = 4
RMSE increases tenfold from 0.009 to 0.11. From table 4.2 this point can be clearly seen, also for
site Chang Baishan where it occurs earlier, at 𝛼 = 3. We note once again that Chang Baishan has a
smaller sample size of 8 pseudo­observations compared to Harvard Forest which has 10 and Mongu
which has 13.

At this ’tipping’ point and as 𝛼 increases (see full set of figures in appendix G.1), the CWI method
fails to accurately adjust the weight matrix as defined in equation 2.23. As such the impact of the
contaminated observations is not effectively reduced and the RMSE increases.

This sudden drop­off isn’t observed for the Li­Gao estimates, which decrease gradually in mean
accuracy as quantified by the RMSE values presented in table 4.2. Therefore, after the observed
sudden drop­off in the accuracy of the CWI method, the Li­Gao method outperforms CWI. For example,
for site Chang Baishan, when 𝛼 = 3 the RMSE of the Li­Gao estimates is lower 0.083 compared to
0.114 for CWI.

This isn’t observed for the site Mongu, where the CWImethod very effectively suppresses the impact
of the noisy observations for every 𝛼 tested in the simulation. The (mean) RMSE of the estimates is
even lower than the baseline scenario at 0.022, whereas the Li­Gao RMSE goes as low as 0.259.

4.2.4. Discussion of NBAR NDVI estimates
The findings suggest that low levels of sub­pixel cloud contamination are challenging to detect and
mitigate in a sample, with all three methods effectively failing to do so. Gao et al. (2002) [11] made a
similar observation, stating that: ”if all observations are slightly contaminated, it is almost impossible to
retrieve a true value from those observations without proper ancillary information”.

This quote was made in reference to the Li­Gao method in particular, but is applicable to other
methods as well. As was explained in the literature review, section 2.1, a surface’s BRDF leads to
variations in the observed surface reflectance. When light degrees of contamination are introduced,
this noise is challenging to distinguish from directional variations. As such, the negative impact of these
slightly contaminated observations is expected, with little difference between the reduced accuracy for
the OLS, Li­Gao, and CWI methods as shown in table 4.1.

In cases where the degree of cloud contamination was high (𝑓𝑐 = 3.0%), Li­Gao and CWI showed
more promising results. Both showed significant reduction of the impact of noise, when compared to
OLS, with CWI out­performing Li­Gao when the number of contaminated observations was sufficiently
low. These findings are corroborated by Zeng et al. (2016) [61], which also performed a validation of
the CWI method, shown side by side with the results of this numerical experiment in figure 4.13.

The results from Zeng et al. (2016) [61] assumes data from a (validated) sensor 3 as a reference,
and fitted the BRDF model to a sample consisting of only MODIS surface reflectance observations.
This was done for 441 pixels at the site Harvard Forest.

The MODIS images used were collected over a 16­day composite cycle as opposed to a 5­day
one, therefore the sample was larger, at 16 observations on average. Of these 16, an average of 6
were suspected to be noisy per pixel, according to Zeng et al. (2016) [61]. On the other hand, the
estimates shown in figure 4.13b are for a sample of only 10 observations, with 3 contaminated ones.
Additionally, this numerical experiment considers a globally representative set of 6,000 surface types,
whereas Zeng et al. (2016) [61] is limited to the surface types present at the validation site of the
Harvard Forest, which is a broadleaved forest.

Despite the differences, it is promising that the result from this experiment are qualitatively similar to
existing literature on CWI. Both experiments also used the same Ross­Li­Maignan model to estimate
the surface BRDFs. The results agree that the CWI method outperforms Li­Gao and OLS for this
scenario, yielding higher accuracy NDVI composite estimates. But considering what was presented in
sections 4.2.2 and 4.2.3, and at tables 4.1 and 4.2, it is clear that the highly accurate performance of
the CWI estimate does not apply to all scenarios.

When the proportion of ’good quality’ clear sky observations to contaminated ones is too low, the

3Enhanced Thematic Mapper Plus (ETM+), aboard the Landsat 7 satellite mission.
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(a) High cloud fraction, one noisy pseudo­observation.

(b) High cloud fraction, two noisy pseudo­observations.

(c) High cloud fraction, three noisy pseudo­observations.

(d) High cloud fraction, four noisy pseudo­observations.

Figure 4.12: Estimated nadir­normalised NDVI versus reference PROSAIL values for study site Harvard Forest ­ for the case of
high noise 𝑓𝑐 = 3.0%. Fitted RLM BRDF models were used to calculate the NDVI values, using the fitting methods OLS (left),

LiGao (middle), CWI (right). Angular spread of the 10 observations used for the BRDF fitting can be seen in 4.1b.
Each point represents the calculated values for one surface type, the black dotted line a 1:1 relationship and the green dotted

indicates the threshold for the references values ±5%.
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(a) Results from numerical experiment at site Harvard Forest.

(b) Validation results at site Harvard Forest from Zeng et al. [61].

Figure 4.13: Side by side of results from this experiment (upper), and Zeng et al. (2016) [61] (lower). Zeng et al. (2016)
performed direct validation of CWI method using imagery from the ETM+ sensor as a reference, while this experiment used

NDVI values modelled by PROSAIL as a reference.
The sample used by Zeng et al. (2016). to calculate the estimates contained an average of 16 observations, with 6 being

suspected contaminated outliers. In the results of this experiment, for site Harvard Forest the simulated sample contained 10
observations, 3 of which are contaminated in this particular scenario.

accuracy of the CWI method drops off significantly. This point is strongly dependent on the sample
size and the number of contaminated observations 𝛼, as was determined by repeating the experiment
for different study sites. For high levels of cloud contamination 𝑓𝑐 = 3.0%, this ’tipping point’ occurs at
𝛼 = 3 for site Chang Baishan with sample size 8, 𝛼 = 4 for site Harvard Forest with sample size 10,
and 𝛼 = 6 for site Mongu with sample size 13.

For the situations successfully detects and reduces the impact of noisy observations, such as in
figure 4.13b, the CWI estimates are very similar to the noise­free scenario in figure 4.7, with a very low
RMSE. This implies that the weights of the contaminated observations in the sample are effectively
being reduced to nearly 0, virtually completely suppressing their impact. The Li­Gao method assigns
non­zero, non­negligible weights to these outliers, leading to less accurate estimates compared to
CWI. Zeng et al. (2016) [61] observed the same behaviour, stating that ”...by Li­Gao, the heavily con­
taminated observations still had non­negligible weights which had a considerable effect on the BRDF
retrieval results” and ”In contrast, by CWI, the weights [...] were all less than 0.01” [61].

4.3. Evaluating the experiment
The final aspect of the results is an evaluation of the methodology described in chapter 3, which was
used to generate the experimental data. The design choices made in the design of the numerical
experiment, and their implications, are discussed here. These are grouped by the themes of: process­
ing of a multi­sensoral dataset, the conditions and constraints selected for the experiment, and the
experiment’s design as a whole.

4.3.1. Multi­sensoral dataset calibration and corrections
The combining of dataset frommultiple sensors is a broad and active field of research and development
in itself. Methods for quantifying sensor SRFs and the accuracy of cross­calibration are specific to the
reflectance bands, sensor types, land surface processes, and sensor degradation over time. Addition­
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Figure 4.14: Intercomparison of the red and NIR spectral response functions (SRF) of the MODIS, AVHRR and VIRR sensors.
X­axis is the wavelength in nanometers, y­axis is the responsivity.

ally, geo­locating and normalizing pixels between images is another necessary step in normalising a
group of datasets.

The two sensors (MODIS and MERSI 4) used in this experiment have their own specific character­
istics, yet the surface reflectance spectra simulated by PROSAIL were all convoluted with the same
SRF, that of MODIS Aqua. This convolution converts the spectra to a single band measurement, based
on the experimentally­determined responsivity of the sensor.

In effect, although the sun­target­view geometry of different sensors are considered, the same sen­
sor characteristics were assumed between them when synthesising the red and NIR band reflectance
measurements. For actual operational conditions, as done in the MuSyQ algorithm which implements
CWI [22] [21] on a multi­sensoral dataset at its core, cross­calibration between the datasets of differ­
ent sensors must be performed to correct for these differences. In figure 4.14 these differences are
demonstrated for a different sensor aboard the same satellite as MERSI, where for example the red
band of MODIS (red line) has a different spectral response to VIRR (pink line), and has a narrower
effective bandwidth.

Similarly, perfect atmospheric correction was assumed. As was briefly explained in section 2.1.1,
the atmosphere is the propagation medium between the surface and the sensor, and its (anisotropic)
scattering and absorption properties also affect the signal measured by the sensor. This is why the top
of atmosphere (TOA) reflectance measured by a sensor must be converted to a surface reflectance
measurement.

Atmospheric correction introduces a dimension of variability and error propagation not directly re­
lated to surface BRDFs and their estimation, which is the focus of this research, and was therefore only
briefly discussed and not accounted for. Likewise, and due to time constraints, perfect cross­calibration
and geolocation was assumed, and all pseudo­observations were generated with the same SRF.

4.3.2. Simulation conditions and constraints
A design choice was made on the angular sampling to be simulated. As reported in section 2.1.1, the
Ross­Li­Maignan BRDF model calculates the surface reflectance as a function of the acquisition ge­
ometry variables 𝜃𝑆 , 𝜃𝑉 and 𝜙𝑟 according to equation 2.3. If each variable were sampled at a resolution
of 10∘ for example, and the maximum off­nadir viewing zenith angle and maximum solar zenith angle

4The two MODIS sensors and two MERSI sensors are aboard the Earth­orbiting satellites Terra & Aqua and FY3A & FY3B,
respectively.
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were constrained to 𝜃𝑉 = 50∘ and 𝜃𝑆 = 60∘, there would be 540 different possible sun­target­view
geometries. Then, to consider the combinations of different observations in a sample, this number is
multiplied by the sample size to get the total number of angular sampling scenarios ­ which must then
be simulated for 6,000 surfaces and 15 cloud­contamination scenarios.

This would be computationally challenging and would generate an enormous amount of data to
analyse. The choice was made to constrain the sun­target­view geometries to those of actual validation
sites, as was illustrated in 4.1. A benefit of this choice was linking the numerical experiment to actual
operational conditions, and being certain that the angular sampling isn’t unrealistic. A more analytical
approach could have been to analyse the orbital tracks of the satellites hosting the studied sensors, in
order to build a database of possible sun­target­view geometries.

Furthermore, as explained in section 2.6.1, the input variables of PROSAIL can be divided into
acquisition geometry variables and surface biophysical variables. The latter was varied by generating
6,000 sampling points with the aim to get an even representation of all surface types as simualted
by PROSAIL. A limit of 6,000 surfaces was chosen due to the high computational cost of running the
simulation system in Python (in particular the PROSAIL module).

The current results and conclusions (such as the RMSE findings in table 4.1) may change if the
amount of surfaces were to be increased, or if the upper and lower limits of the input variables were
extended. For example, in section 4.1.1 the Ross­Li­Maignan model was found to be a suitable ap­
proximator for the majority of terrestrial surface BRDFs. This only holds for the set of surface types
defined in section 3.3, and only for the PROSAIL model’s representation of these surfaces.

Therefore, the use of a different model could also affect the results of the experiment. For this
experiment, FourSAIL’s built­in Lambertian soil model was used, which describes the background soil’s
reflectance spectra as a linear combination of twowet and dry soil reflectance spectra [17][18]. Although
the mixing ratio 𝜌𝑠𝑜𝑖𝑙 and brightness factor 𝑟𝑠𝑜𝑖𝑙 of this model were varied, a more complex soil model
could have been implemented.

An extensively used alternative is the soil­leaf­canopy SLC model published in Verhoef et al. (2007)
[51]. SLC uses a soil BRDF model instead of assuming the background soil to be a Lambertian scat­
terer, and uses a two­layer version of the canopy model SAIL, 4SAIL2. Using a (semi­)physical soil
model or defining a list of soil spectra would allow for either a more comprehensive list of surfaces to
be defined, or a more targeted list representative of particular surface types of interest. Berger et al.
(2018) [5] provides a further review of the different canopy models developed until now.

4.3.3. General discussion on methodology
The results of this numerical experiment had been compared in sections 4.1.3, 4.2.2 and 4.2.3 to the
validation of CWI performed by Zeng et al. (2016) [61], which used comparative validated satellite
imagery.

The advantage of the methodology used here over using comparative satellite data, is the ability
to control the simulation conditions, the noise conditions, and have a reference value with which to
compare the reference too. As discussed above, the freedom allowed by a numerical experiment
demands design choices to be made ­ some of which have may have considerable consequences. The
findings presented, eventual ground validation, and the validation performed by Zeng et al. (2016) [61]
are therefore not directly comparable, but complement each other. Furthermore, several assumptions
weremade for this experiment. However, similar experiments have also been conducted with amore in­
depth consideration of atmospheric effects and sensor characteristics. For example, Segl et al. (2015)
[43], developed an end­to­end simulation of Sentinel­2 images, with reportedly accurate representation
of the image acquisition, sensor calibration and preprocessing steps.

Due to time constraints, the focus for this reserach has been solely on surface reflectance anisotropy
and BRDF estimation techniques. However, the design of the experiment can potentially accomodate
more steps to make a more representative simulation. Additionally, it can easily be made applicable
for other BRDF models, other sensor SRFs, with the benefit of considering a broad range of surface
types.

4.4. Results and discussion ­ conclusion
As a first step to understanding the data produced by the numerical experiment, the suitability of the
RLM BRDF model and its ability to describe a surface BRDF was analysed. It was found that the model
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could be adequately fitted to the BRDF of most surfaces, converging to a narrow set of solutions. For
these cases, the surface reflectance as calculated by RLM matched the samples accurately. Existing
literature such as Lucht et al. (2000) [29] also supported the assertion that the RLM model is widely
applicable for various surface types.

Then, a baseline scenario was considered. The BRDF parameters estimated from noise­free sam­
ples and the resulting nadir­normalised NDVI composites were presented. NDVI values generated by
PROSAIL were used as a reference for the NDVI values calculated by the fitted RLM BRDF model.
These were shown to have low RMSE values of around 0.01 for Chang Baishan, and 0.023 for Mongu,
while no significant differences in accuracy were found between the different methods for the ideal,
clear­sky scenario.

These findings were used as a baseline for the estimates from noisy samples, for each site. Com­
parisons with the baseline showed that in particular the isometric kernel coefficient 𝑓𝑖𝑠𝑜 was prone to
being overestimated due to noise in the sample. In the case of high cloud fraction 𝑓𝑐 = 3.0%, it was
noted that the distribution of 𝑓𝑖𝑠𝑜𝑒−𝐶𝑊𝐼 closely matched the baseline scenario when 𝛼 = 2, with smaller
differences than 𝑓𝑖𝑠𝑜𝑒−𝐿𝑖𝐺𝑎𝑜. However, when 𝛼 = 5 it was noted that the Li­Gao estimated 𝑓𝑖𝑠𝑜 had a
better fit than CWI.

For the NDVI estimates, it was found that low sub­pixel contamination of 𝑓𝑐 = 0.5% is challenging to
distinguish from BRDF­related directional variations, and it’s impact was not effectively suppressed by
any of the methods. However, due to the low degree of contamination, this impact was also relatively
small. These are summarised in table 4.1.

When the degree of contamination was high at 𝑓𝑐 = 3.0%, and 𝛼 was relatively low, the CWI es­
timates were highly accurate, and very closely matched the reference PROSAIL values. This was
strongly dependent on the sample size and the value of 𝛼, as if the proportion of highly contaminated
observations was too high, the CWI method’s accuracy would drop significantly. For the site Mongu,
with a large sample size of 13 observations, the CWI estimates RMSE of 0.022 was close and evenly
slightly lower than the baseline of 0.028. Since there is no physical reason for the CWI estimate to ac­
tually be more accurate than the baseline scenario, the reduction in RMSE is assumed to be an artifact
due to averaging over 6,000 surfaces.

For the site Chang Baishan, CWI failed to produce an accurate estimate at 𝛼 = 3 already. The
Li­Gao method then yielded a more accurate NDVI estimate with a comparatively lower RMSE. The
accuracy of the Li­Gao method was found to decrease gradually as 𝛼 increased. The contrast between
the two performance of the two methods is caused by the different approaches to calculating the weight
matrices. These are iteratively calculated and used to reduce the impact of contaminated observations
in the sample.

Few experiments comparable to this research exist, and English­langauge literature on the MuSyQ
and CWI algorithms is very sparse, making it challenging to corroborate the reported results. However,
we were able to link the above results to the publications of the Li­Gao method Gao et al. (2002) [11]
and CWI method Zeng et al. (2016) [61]. Although they used different methodologies and had different
scopes, their conclusions qualitatively supported this experiment’s findings on the performance of the
OLS, Li­Gao, and CWI methods for estimating NDVI composites from noise­contaminated samples.
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Conclusion and Recommendations

5.1. Conclusion
In this thesis, a simulation system was designed and executed to analyse the performance of the novel
CWI BRDF­fitting method. With the CWImethod being implemented and suggested as an improvement
over the LiGao method by Zeng et al. (2016) [61], it was evaluated for its accuracy in estimating the
BRDF parameters, and creating a NDVI composite. The same experiment was performed for the more
conventional methods, OLS and Li­Gao.

For a composite cycle of 5 days, pseudo­observations were generated using the PROSAIL canopy
radiative transfer model. These were then used to create noisy samples for different contamination
scenarios, varying in number of cloudy observations 𝛼 and magnitude of contamination 𝑓𝑐. The OLS,
LiGao and CWI fitting methods were implemented to reconstruct the Ross­Li­Maignan BRDF model
from noisy samples, yielding estimates of the RLM model’s kernel coefficients 𝑓𝑖𝑠𝑜 , 𝑓𝑣𝑜𝑙 and 𝑓𝑔𝑒𝑜.

The experiment was conducted for three different locations around the globe: Chang Baishan,
China; Mongu, Zambia, and Harvard Forest, USA. Each site was observed with different MODIS and
FY acquisition geometry due to their varying locations, as was shown in figure 4.1. Additionally, the
experiment was repeated for 6,000 surface types, covering a broad range of vegetation structure and
conditions, since the CWI method was designed to be used in a global MuSyQ NDVI product.

5.1.1. Concluding statements related to research questions
At the beginning of this report, three research questions were stated. These provided structure to guide
the design experiment and the analysis of its results, in order to be able to comment on the performance
of the novel CWI method. From the results of this experiment, which were presented and discussed in
detail in chapter 4, the following conclusions were drawn and linked to each question:

Can the Ross­Li­Maignan parametric BRDF model be an accurate representation of the surface
BRDF?

• For the majority of surfaces, the RLMmodels converge to a narrow set of solutions that described
the surface BRDF well. It was also found in existing literature Lucht et al. (2000) [29] that although
it is unlikely any kernel­driven parametric model could describe all possible surface BRDFs, the
RLM model describes most surface types with a high accuracy.

How accurate is the nadir­normalised NDVI value, calculated using the fitted RLMmodel, for the
noise­free scenario?

• In the clear­sky case, where no noise due to cloud contamination was present in the sample, the
Ross­Li­Maignan BRDF model accurately describes the surface BRDF for the vast majority of
surface types. This finding was supported by the validation work performed by Zeng et al. (2016)
[61], and existing literature Lucht et al. (2000) [29]. Furthermore, in these cases, no significant
differences were observed between the three methods, which all performed similarly. The CWI
BRDF­fitting method therefore performs accurately for the noise­free scenario.
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How accurate is the CWI BRDF fitting method, as compared to the OLS and Li­Gao methods. at
reconstructing the BRDF model from a sample containing cloud­contaminated observations?

• For the case of low cloud­contamination conditions (𝑓𝑐 = 0.05%), all methods failed to reduce
the impact of the noisy observations, regardless of 𝛼, resulting in increased RMSE values. This
impact was relatively low, however. This is due to low amounts of noise in the sample being
difficult to distinguish from surface anisotropy, as also suggested by Gao et al. (2002) [11].

• CWI is very resistant to the impact of highly contaminated observations (𝑓𝑐 = 3.0%) when the
ratio of contaminated to clear­sky observations is low. This ratio was sufficiently low when 𝛼 < 3
for a sample size of 8 pseudo­observations (site Chang Baishan) and 𝛼 < 4 for 10 observations
(Harvard Forest). For the site Mongu the CWI estimates were highly accurate for all values of 𝛼
tested, which was up until 𝛼 = 5. For these cases the estimated NDVI composites had a very
low RMSE that was approximately the same as the baseline estimate, and lower than the Li­Gao
RMSE.

• Once a certain threshold of noisy observations was passed, the accuracy of the CWI method was
noted to drop off rapidly, with the RMSE of the estimate increasing approximately ten­fold after the
addition of one contaminated observation. For these scenarios/sites with a higher proportion of
noisy observations, the NDVI value as estimated by LiGao is more accurate than CWI. The CWI
method relies on the a posteriori calculated observation error to reduce the weights of suspected
outliers. When this calculation is erroneous, the CWI method assigns non­negligible weights to
the contaminated observations in the sample and the accuracy of the estimates are significantly
reduced.

In conclusion, this numerical experiment has confirmed that the CWI method is effective at reducing
the impact of noisy observations on the RLM BRDF model reconstruction, given a sufficiently large
sample size, and a high contamination level that can be successfully corrected by the algorithm. In
these cases, the weights of these contaminated observations are reduced to nearly 0, so that the RLM
BRDF model is fitted to only the remaining, noise­free observations. This results in an estimate of
the BRDF parameters that closely match the ideal, noise­free case. The conventional Li­Gao method
performs worse than CWI in these scenarios, as it assigns non­negligible weights to the contaminated
observations in the sample, whereas the OLS method performs worse than both methods in virtually
all regards.

However, when there are too many contaminated observations in the sample, the CWI method
can yield significantly inaccurate BRDF estimates and NDVI composite estimates, with a higher RMSE
than the Li­Gao method. The findings suggest that the CWI method is prone to a sudden drop­off in
accuracy under worsening noise conditions, while the accuracy of the estimates calculated from the
Li­Gao method decrease more gradually. In virtually all cases, both methods outperform OLS, likely
due to it assuming Gaussian noise, whereas noise due to undetected clouds is negatively biased in the
NDVI [61].

5.1.2. Final thoughts
Although the MuSyQ algorithm [21] chooses to use the CWI algorithm when 5 or more valid, clear­
sky observations are available, the results of the simulation might suggest that a more conservative
threshold should be chosen under operational conditions. If pre­screening and/or cloud mask failures
lead to detect too many highly­contaminated observations, the CWI estimate would be significantly
impacted.

Parametric linear kernel­driven models are favourable due to their high­calculation speed, and are
therefore frequently used in the production of satellite products. A single MODIS image tile 1 contains
approximately 5,760,000 pixels covering an area of 1,200 by 1,200 kilometers ­ and the surface BRDF
for each pixel must be estimated. If this high rate of production required to create daily global cover­
age is to be maintained while simultaneously increasing its accuracy, improvements on BRDF­fitting
methods such as CWI are of crucial importance.

1Considering the MOD09GA global daily surface reflectance product at a resolution of 500m as an example. See
https://lpdaac.usgs.gov/products/mod09gav006/ for details on this satellite product.
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As a newly proposed BRDF­fitting method, the Changing­Weight Iterative method showed promis­
ing results. Increasing the coverage and accuracy with which we monitor the Earth’s is paramount to
mapping out and mitigating the effects of climate change. Therefore studying and validating such new
methods is a necessary, continuous process, furthering the field of terrestrial remote sensing step by
step. And with each small step, the picture becomes just a little bit sharper.
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5.2. Recommendations
The findings of this thesis, and the method designed to create them, may prove to be a basis for further
research on CWI and its applications. Additionally, it may be of interest to improve certain aspects of
the methodology, as has already been briefly discussed in section 4.3.3.

From the results and discussion presented in this report, the following recommendations for future
work are made:

Developing an improved quality flag
When the MuSyQ algorithm is used to produce a NDVI product by implementing CWI, it assigns quality
flags to each resulting estimate. These are detailed in the MuSyQ ATBD v1.0 [21], and are performed
on a per pixel basis.

Determination of this quality flag is based on input data quality, weather, BRDF inversion method
(CWI is the main algorithm) and other factors that affect the quality of the composite.

With further development, this numerical experiment could be used to define a confidence interval
for the quality of the estimated NDVI composite. As was reported, there appears to be a ’tipping point’
after which the CWI method’s accuracy to drastically fail.

With further study, a relationship betwen this point and the spread of the angular sampling could
be explored. For example, if two observations are clustered very close together in angular space, it’s
hypothetically possible that CWI is then more likely to detect if one of the two is contaminated.

The risk of of CWI failing could be incorporated in the determination of the product’s quality flag,
perhaps as a function of sample size and some factor that describes how widely the observations
are spread out within the sample. This information could also be appended as an additional flag or
confidence indicator.

Numerical experiment with SLC model
The canopy model chosen for this experiment, PROSAIL, is especially suited for simulating homo­
geneous vegetation canopies [18]. Therefore this study’s results hold primarily for the surface types
simulated under this assumption, as well as other assumptions made by the PROSAIL model.

An alternative research project could be to repeat the numerical experiment using the soil­leaf­
canopy (SLC) model to simulate canopies instead. As was briefly discused in section 4.3, one of the
major differences of SLC is the use of a more advanced soil BRDF model. Another is that SLC is one
of the few canopy models that models clumping, which is the clustering of canopy foliages [51].

These two differences have implications on themodeling of the surface BRDF, essentially simulating
different surfaces compared to this experiment. However, the methodology of this experiment could be
maintained, except that the sampling of SLC’s parameter space must be carefully designed to create
a set of surfaces. Further research using SLC would lead to interesting results, and perhaps be more
globally representative of the surface types on Earth.

Relating results to other vegetation parameters
Another possible research topic is to link the NDVI estimation errors to variables that are derived from
NDVI. Various relationship exist to calculate for example Leaf Area Index (LAI) from NDVI measure­
ments. From Zhou et al. (2017) [63], one such empirical relationship for rice crops is equation 5.1.

𝐿𝐴𝐼 = 0.361 ⋅ 𝑒3.69𝑁𝐷𝑉𝐼 (5.1)

In this case an error in the NDVI estimate would lead to a propagated error in the LAI estimate. This
could be further investigated and quantified, for other LAI­NDVI relationships as well.

Furthermore, there also exists room for interesting research into the estimation of vegetation param­
eters from a BRDF model. This thesis has focused on NDVI composites calculated from an estimated
BRDF model, but the RLM BRDF parameters can also be used on their own to estimate LAI, among
other vegetation parameters.

An additional topic could therefore be to quantify the relevance of a more accurate BRDF estimate
on its derived vegetation parameters. Two potentially useful papers are ”Leaf Area Index Estimates
Using Remotely Sensed Data and BRDF Models in a Semiarid Region” by Qi et al. (2017) [38], and
”Potentials and limits of vegetation indices for LAI and APAR assessment” by Baret et al. 1991 [9].
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Figure A.1: Pair plot of the sampling of the surface parameter space. Along the diagonal axis are the uni­variate distributions
(i.e. histograms) of individual variables, and along the horizontal and vertical axes are the joint distribution density functions

(JDDFs) per variable pair.
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Figure A.2: ’Trimmed’ pair plot of the sampling of the surface parameter space. Unrealistics pairings of variables were removed
according to the methodology section 3.3.1.
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Variance of RLM model parameters
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Figure B.1: Variance of the possible RLM model parameter estimates for each surface, for a subset of 1000 randomly selected
surfaces. Red band, study site Harvard Forest.
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Comparison of estimated

nadir­normalised NDVI to reference ­
noisefree case

Figure C.1: Scatter plot of estimated NDVI compared to reference NDVI value from PROSAIL, for site Harvard Forest. Shown
here are NDVI values calculated using BRDF parameters estimated from noise­free samples using OLS, Li­Gao, and CWI

methods. Dotted line is 1:1 line, green lines are ±5%.
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Figure C.2: Scatter plot of estimated NDVI compared to reference NDVI value from PROSAIL, for site Harvard Forest. Shown
here are NDVI values calculated using BRDF parameters estimated from noise­free samples using OLS, Li­Gao, and CWI

methods. Dotted line is 1:1 line, green lines are ±5%.



D
BRDF parameters estimates

(a) Coefficient 𝑓𝑖𝑠𝑜 for isometric scattering kernel.

(b) Coefficient 𝑓𝑣𝑜𝑙 for volumetric scattering kernel.

(c) Coefficient 𝑓𝑔𝑒𝑜 for geometric scattering kernel.

Figure D.1: Distribution of estimated red band BRDF parameters, for site Harvard Forest. Left­most histogram is the baseline
distribution of parameters from the noise­free sample, and the remaining histograms are estimates for the scenario of (𝛼 = 2,
𝑓𝑐 = 1.5%), with a total sample size of 10 observations. Angular spread of the 10 observations used for the BRDF fitting can be

seen in 4.1b.
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68 E. Comparison of estimated nadir­normalised NDVI to reference ­ Low cloud contamination

Figure E.1: Estimated nadir­normalised NDVI versus reference PROSAIL values for study site Harvard Forest, for
sun­target­view geometry see fig.4.1b.
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Figure E.2: Estimated nadir­normalised NDVI versus reference PROSAIL values for study site Mongu, for sun­target­view
geometry see fig.4.1c.
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Figure E.3: Estimated nadir­normalised NDVI versus reference PROSAIL values for study site Chang Baishan, for
sun­target­view geometry see fig.4.1a.
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Figure F.1: Estimated nadir­normalised NDVI versus reference PROSAIL values for study site Harvard Forest, for
sun­target­view geometry see fig.4.1b.
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Figure F.2: Estimated nadir­normalised NDVI versus reference PROSAIL values for study site Mongu, for sun­target­view
geometry see fig.4.1c.
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Figure F.3: Estimated nadir­normalised NDVI versus reference PROSAIL values for study site Chang Baishan, for
sun­target­view geometry see fig.4.1a.
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78 G. Comparison of estimated nadir­normalised NDVI to reference ­ High cloud contamination

Figure G.1: Estimated nadir­normalised NDVI versus reference PROSAIL values for study site Harvard Forest, for
sun­target­view geometry see fig.4.1b.
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Figure G.2: Estimated nadir­normalised NDVI versus reference PROSAIL values for study site Mongu, for sun­target­view
geometry see fig.4.1c.
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Figure G.3: Estimated nadir­normalised NDVI versus reference PROSAIL values for study site Chang Baishan, for
sun­target­view geometry see fig.4.1a.



H
Tables of RMSE analysis results

Table H.1: Mean error for each scenario, quantified by the RMSE using PROSAIL as a reference value. Summarized here for
𝛼 from 1 to 5 for the case of low cloud contamination 𝑓𝑐 = 0.5%, which results in a mean relative NDVI noise of 15.5% in the

contaminated observations. Greener boxes indicate lower RMSE value, and red indicates higher. Note: all tables are
standardised to the same scale of RMSE­color.
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Table H.2: Mean error for each scenario, quantified by the RMSE using PROSAIL as a reference value. Summarized here for
𝛼 from 1 to 5 for the case of low cloud contamination 𝑓𝑐 = 1.5%, which results in a mean relative NDVI noise of 35.8% in the

contaminated observations. Greener boxes indicate lower RMSE value, and red indicates higher. Note: all tables are
standardised to the same scale of RMSE­color.

Table H.3: Mean error for each scenario, quantified by the RMSE using PROSAIL as a reference value. Summarized here for
𝛼 from 1 to 5 for the case of low cloud contamination 𝑓𝑐 = 3.0%, which results in a mean relative NDVI noise of 53.2% in the

contaminated observations. Greener boxes indicate lower RMSE value, and red indicates higher. Note: all tables are
standardised to the same scale of RMSE­color.
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