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On the Convergence of DEM’s Linear
Parameter Estimator

Ajith Anil Meera(B) and Martijn Wisse

Cognitive Robotics, Delft Institute of Technology, Delft, The Netherlands
a.anilmeera@tudelft.nl

Abstract. The free energy principle from neuroscience provides an effi-
cient data-driven framework called the Dynamic Expectation Maximiza-
tion (DEM), to learn the generative model in the environment. DEM’s
growing potential to be the brain-inspired learning algorithm for robots
demands a mathematically rigorous analysis using the standard control
system tools. Therefore, this paper derives the mathematical proof of
convergence for its parameter estimator for linear state space systems,
subjected to colored noise. We show that the free energy based parame-
ter learning converges to a stable solution for linear systems. The paper
concludes by providing a proof of concept through simulation for a wide
range of spring damper systems.

Keywords: Free energy principle · Dynamic expectation
maximization · Parameter estimation · Linear state space systems

1 Introduction

The free energy principle (FEP) models the brain’s perception and action as a
gradient ascend over its free energy objective [7]. The action side of FEP, known
as active inference [8], has already been applied to real robots including ground
robots for SLAM [5], humanoid robots for body perception [12] and manipulator
robots for pick and place operation [13]. Similarities with standard control tech-
nique like PID was also analyzed [3]. One of the variants of FEP, the Dynamic
Expectation Maximization (DEM) [9], provides a model inversion framework
for perception and system identification. DEM’s distinctive feature lies in its
capability to gracefully handle colored noise through the use of generalized coor-
dinates [6], thereby rendering it with the potential to be the learning algorithm
for robots. DEM was reformulated as a linear state and input observer under
colored noise [11] and was validated for quadrotor flights [4]. A DEM based
linear parameter estimator for system identification was developed by [2] and
was applied for the perception of quadrotor in wind [1]. Since an estimator with
convergence guarantees is preferred for safe robotics applications, we aim at
paving way to DEM’s practical use by mathematically analyzing it for its con-
vergence properties. Moreover, it is of interest to the active inference community
to develop active learning and control strategies with stability guarantees. The
c© Springer Nature Switzerland AG 2021
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presence of generalized coordinates, mean field terms and brain priors compli-
cates the convergence proof and makes it different from other estimators like
Expectation Maximization [10]. The goal of this paper is: 1) to show that DEM
has convergence guarantees for linear systems with colored noise, and 2) to show
that it can be applied to control system problems like the estimation of a mass-
spring-damper system.

2 Preliminaries

Consider the linear plant dynamics (generative process) given in Eq. 1, where A,
B and C are constant system matrices, x ∈ R

n is the hidden state, v ∈ R
r is

the input and y ∈ R
m is the output.

ẋ = Ax + Bv + w, y = Cx + z. (1)

Here w ∈ R
n and z ∈ R

m represent the process and measurement noise respec-
tively. The notations of the plant are denoted in boldface, whereas its estimates
are denoted in nonboldface letters. Since the brain has no access to the plant
dynamics except through the sensory measurements y, it maintains the copy
of an approximate model of the generative process called the generative model.
The noise color assumption (convolution of white noise with a Gaussian kernel)
facilitates the differentiated form of the generative model as [9]:

x′ = Ax + Bv + w

x′′ = Ax′ + Bv′ + w′

...

y = Cx + z

ẏ = Cx′ + z′

...

(2)

One of the key technique behind DEM to model the colored noise is to express the
time varying components in generalized coordinates, denoted by a tilde operator.
The colored noises can be expressed in generalized coordinates using their higher
derivatives as z̃ = [z, z′, z′′, ...]T and w̃ = [w,w′, w′′, ...]T . The generative model
in Eq. 2 can be compactly written as [9]:

˙̃x = Dxx̃ = Ãx̃ + B̃ṽ + w̃ ỹ = C̃x̃ + z̃ (3)

where Dx =

⎡
⎢⎢⎢⎢⎣

0 1
0 1

. .
0 1

0

⎤
⎥⎥⎥⎥⎦
(p+1)×(p+1)

⊗ In×n, Ã = Ip+1 ⊗ A, B̃ = Ip+1 ⊗ B

and C̃ = Ip+1 ⊗ C. Here ⊗ is the Kronecker tensor product. To facilitate the
convergence proof later in the paper, we introduce a redefinition for Eq. 3 with
all parameters grouped to the right side as θ:

˙̃x = Mθ + w̃, ỹ = Nθ + z̃, θ =

⎡
⎣

vec(AT )
vec(BT )
vec(CT )

⎤
⎦ , (4)
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where

M =

⎡
⎣

In ⊗ xT In ⊗ vT In ⊗ O1×m

In ⊗ x′T In ⊗ v′T In ⊗ O1×m

... ... ...

⎤
⎦ , N =

⎡
⎣

In ⊗ O1×n In ⊗ O1×r Im ⊗ xT

In ⊗ O1×n In ⊗ O1×r Im ⊗ x′T

... ... ...

⎤
⎦ .

(5)
The goal of this paper is to mathematically prove that the DEM’s estimate for
θ converges while maximizing the free energy objective.

3 Parameter Learning as Free Energy Optimization

DEM postulates the parameter learning algorithm as the gradient ascend over
the free energy action, which is the time integral of free energy F̄ =

∫
Fdt. The

parameter update equation can be expressed as the gradient [2,9]:

∂θ

∂a
= kθ ∂F̄

∂θ
= −P θ(θ − ηθ) +

∑
t

(−Eθ + WX
θ ), (6)

where kθ is the learning rate, Eθ = ∂E
∂θ is the gradient of precision weighed

prediction error, WX
θi = ∂WX

∂θ is the gradient of state mean field term, ηθ is the
prior parameters and P θ is the prior parameter precision. Subscripts will be used
for the derivative operator. Eθ for an LTI system can be simplified as:

Eθ = ε̃T
θ Π̃ε̃, where ε̃ =

⎡
⎣

ỹ − Nθ
ṽ − η̃v

Dxx̃ − Mθ

⎤
⎦ and ε̃θ =

⎡
⎣

−N
O

−M

⎤
⎦ (7)

are the prediction error and its gradient. Here η̃v is the prior on inputs with prior
precision P̃ v, Π̃ = diag(Π̃z, P̃ v, Π̃w) is the generalized noise precision with Πz

and Πw being the precisions (inverse covariance) for measurement and process
noise. Here diag() represents the block diagonal operation. Similarly, WX

θ for an
LTI system can be written as [2,9]:

WX
θi = −1

2
tr(ΣX ε̃T

XθiΠ̃ε̃X), ε̃ =

⎡
⎣

ỹ − C̃x̃
ṽ − η̃v

Dxx̃ − Ãx̃ − B̃ṽ

⎤
⎦ , ε̃X =

⎡
⎣

−C̃ O
O I

Dx − Ã −B̃

⎤
⎦ .

(8)

4 Proof of Convergence for Parameter Estimator

If Eθ and WX
θ can be expressed as linear in θ, in the form Eθ = E1θ + E2 and

WX
θ = W1θ + W2, Eq. 6 can be rewritten as:

∂θ

∂a
= −

[
P θ +

∑
t

(E1 − W1)
]
θ +

[
P θηθ +

∑
t

(−E2 + W2)
]
. (9)
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The differential equation given by Eq. 9 is of the form of a linear state space
equation (θ̇ = Aθθ + Bθ.1). From the basics of control theory, the solutions of
this equation converges exponentially (stabilise) if Aθ = −[P θ +

∑
t(E1−W1)] is

negative definite (negative eigen values). This section aims to prove this result.

Lemma 1. If A,B � O, then A + B � O.

As per Lemma 1, the positive definiteness of P θ − ∑
t W1 +

∑
t E1 can be

proved by proving the positive definiteness of the individual terms P θ, −W1

and E1. We know by definition that the prior parameter precision P θ is positive
definite. We now proceed to prove that E1 � O. Upon simplification of Eq. 7,
Eθ can be written as Eθ = E1θ + E2, where:

E1 = NT Π̃zN + MT Π̃wM and E2 = − [
NT Π̃z MT Π̃wD

] [
ỹ
x̃

]
. (10)

Lemma 2. If A � O, then BT AB � O.

Proof. By definition, if A � O, there exists a square root A
1
2 � O. Therefore,

xT (BT AB)x = xT (BT A
1
2 A

1
2 B)x = (A

1
2 Bx)T (A

1
2 Bx) ≥ 0, =⇒ BT AB � O.

Since Π̃z � O and Π̃w � O by definition, from Lemma 1 and 2, E1 = NT Π̃zN +
MT Π̃wM � O. Therefore, E1 is proved to be positive semi-definite.

The final term under consideration is W1. The rest of this section aims to
prove that W1 ≺ O, which will conclude the entire convergence proof of param-
eter estimation. We rewrite the mean field term for parameter θi from Eq. 8
as:

WX
θi = − 1

2
tr(ΣX ε̃T

XθiΠ̃ε̃X),

= − 1
2
tr

[ [
Σx̃x̃ Σx̃ṽ

Σṽx̃ Σṽṽ

] [
C̃T

θiΠ̃zC̃ − ÃT
θiΠ̃w(D − Ã) ÃT

θiΠ̃wB̃

−B̃T
θiΠ̃w(D − Ã) B̃T

θiΠ̃wB̃

]]

= − 1
2
tr

[ [
Σx̃x̃ Σx̃ṽ

Σṽx̃ Σṽṽ

] [
C̃T

θiΠ̃zC̃ + ÃT
θiΠ̃wÃ ÃT

θiΠ̃wB̃

B̃T
θiΠ̃wÃ B̃T

θiΠ̃wB̃

]]

− 1
2
tr

[ [
Σx̃x̃ Σx̃ṽ

Σṽx̃ Σṽṽ

] [−ÃT
θiΠ̃wD O

−B̃T
θiΠ̃wD O

] ]
.

(11)

Since the second trace term in Eq. 11 is independent of θi, it is lumped into the
W θi

2 term. Equation 11 is further simplified as:

WX
θi = −1

2

[
tr(Σx̃x̃C̃T

θiΠ̃zC̃) + tr(Σx̃x̃ÃT
θiΠ̃wÃ) + tr(Σx̃ṽB̃T

θiΠ̃wÃ)

+ tr(Σṽx̃ÃT
θiΠ̃wB̃) + tr(ΣṽṽB̃T

θiΠ̃wB̃)
]

+ W θi

2

(12)

We aim to separate θ out so that the mean field term can be expressed in the
form WX

θ = W1θ + W2. We proceed by first introducing the transpose of the
generalized parameter matrices Ã, B̃ and C̃ to Eq. 12 and then moving them out
of the trace terms.
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Lemma 3. If A, B, C and D are matrices, then tr(ABCD) = tr(CT BT AT DT )

Proof. tr(ABCD) = tr((ABCD)T ) = tr(DT CT BT AT ) = tr(CT BT AT DT ).

Lemma 4. If A, B and C are matrices, then tr(ABC) = vec(AT )T (I ⊗
B)vec(C).

Applying Lemma 3 throughout Eq. 12 results in:

WX
θi = −1

2

[
tr(Π̃zT C̃θiΣx̃x̃T C̃T ) + tr(Π̃wT ÃθiΣx̃x̃T ÃT ) + tr(Π̃wT B̃θiΣx̃ṽT ÃT )

+ tr(Π̃wT ÃθiΣṽx̃T B̃T ) + tr(Π̃wT B̃θiΣṽṽT B̃T )
]

+ W θi

2 ,

(13)
which upon further expansion using Lemma 4 and grouping yields:

WX
θi = −1

2

[(
vec(ÃT

θiΠ̃w)T (I ⊗ Σx̃x̃T ) + vec(B̃T
θiΠ̃w)T (I ⊗ Σx̃ṽT )

)
vec(ÃT )

+
(
vec(ÃT

θiΠ̃w)T (I ⊗ Σṽx̃T ) + vec(B̃T
θiΠ̃w)T (I ⊗ ΣṽṽT )

)
vec(B̃T )

+
(
vec(C̃T

θiΠ̃z)T (I ⊗ Σx̃x̃T )
)
vec(C̃T )

]
+ W θi

2 .

(14)
We have now separated all the generalized parameters out of the trace terms in
their vector forms. These vectors can be grouped such that the mean field term

is linear with respect to the generalized parameter vector θ̃ =

⎡
⎣

vec(ÃT )
vec(B̃T )
vec(C̃T )

⎤
⎦ as:

WX
θi = −1

2

[
vec(ÃT

θiΠ̃w)T (I ⊗ Σx̃x̃T ) + vec(B̃T
θiΠ̃w)T (I ⊗ Σx̃ṽT ),

vec(ÃT
θiΠ̃w)T (I ⊗ Σṽx̃T ) + vec(B̃T

θiΠ̃w)T (I ⊗ ΣṽṽT ),

vec(C̃T
θiΠ̃z)T (I ⊗ Σx̃x̃T )

]
θ̃ + W θi

2 .

(15)

Lemma 5. If A and B are matrices, then vec(AB)T = vec(A)T (B ⊗ I).

We use Lemma 5 to further simplify Eq. 15 as:

WX
θi = −1

2

[
vec(ÃT

θi)T (Π̃w ⊗ I)(I ⊗ Σx̃x̃T ) + vec(B̃T
θi)T (Π̃w ⊗ I)(I ⊗ Σx̃ṽT ),

vec(ÃT
θi)T (Π̃w ⊗ I)(I ⊗ Σṽx̃T ) + vec(B̃T

θi)T (Π̃w ⊗ I)(I ⊗ ΣṽṽT ),

vec(C̃T
θi)T (Π̃z ⊗ I)(I ⊗ Σx̃x̃T )

]
θ̃ + W θi

2 .

(16)
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Since the parameters A,B and C are independent of each other, their deriva-
tives with respect to each other are zeros, resulting in vec(ÃT

θi) = O,∀θi ∈
{B,C}, vec(B̃T

θi) = O,∀θi ∈ {A,C} and vec(C̃T
θi) = O,∀θi ∈ {A,B}. This

simplifies the expression for WX
θi in Eq. 16. The total mean field term WX

θ can
be computed by vertically stacking the individual mean field contributions WX

θi

from each parameter θi as:

WX
θ = −1

2
W3θ̃ + W2, (17)

where W3 =
[
W4 O
O W5,

]
with W5 = vec(C̃T )T

vecCT (Π̃z ⊗ I)(I ⊗ Σx̃x̃T ) and

W4 =
[
vec(ÃT )T

vecAT (Π̃w ⊗ I)(I ⊗ Σx̃x̃T ) vec(ÃT )T
vecAT (Π̃w ⊗ I)(I ⊗ Σṽx̃T )

vec(B̃T )T
vecBT (Π̃w ⊗ I)(I ⊗ Σx̃ṽT ) vec(B̃T )T

vecBT (Π̃w ⊗ I)(I ⊗ ΣṽṽT )

]
.

W3 can be simplified as:

W3 =
∂θ̃

∂θ

T
⎡
⎣

Π̃w ⊗ I O O

O Π̃w ⊗ I O

O O Π̃z ⊗ I

⎤
⎦

⎡
⎣

I ⊗ Σx̃x̃T I ⊗ Σṽx̃T O
I ⊗ Σx̃ṽT I ⊗ ΣṽṽT O

O O I ⊗ Σx̃x̃T

⎤
⎦ ,

(18)
where ∂θ̃

∂θ = diag(vecÃT
vecAT , vecB̃T

vecBT , vecC̃T
vecCT ). Since the generalized

parameter vector θ̃ is linear in parameter vector θ, we can write:

θ̃ =
∂θ̃

∂θ
θ =

⎡
⎣

vecÃT
vecAT O O

O vecB̃T
vecBT O

O O vecC̃T
vecCT

⎤
⎦ θ. (19)

Substituting Eq. 18 and 19 in Eq. 17 yields:

WX
θ = W1θ + W2,

W1 = −1
2

∂θ̃

∂θ

T
⎡
⎣

Π̃w ⊗ I O O

O Π̃w ⊗ I O

O O Π̃z ⊗ I

⎤
⎦

⎡
⎣

I ⊗ Σx̃x̃T I ⊗ Σṽx̃T O
I ⊗ Σx̃ṽT I ⊗ ΣṽṽT O

O O I ⊗ Σx̃x̃T

⎤
⎦ ∂θ̃

∂θ
.

(20)
Therefore, the mean field term WX

θ is linear in θ. For the parameter estimator
to provide a converging solution, we need to prove that W1 ≺ O. Lemma 2 could
be applied to the expression for W1 to prove that W1 ≺ O if:

W6 =

⎡
⎣

Π̃w ⊗ I O O

O Π̃w ⊗ I O

O O Π̃z ⊗ I

⎤
⎦

⎡
⎣

I ⊗ Σx̃x̃T I ⊗ Σṽx̃T O
I ⊗ Σx̃ṽT I ⊗ ΣṽṽT O

O O I ⊗ Σx̃x̃T

⎤
⎦ � O (21)

Lemma 6. If A,B � O and A is invertible, then AB � O .

Proof. AB = A
1
2 (A

1
2 BA

1
2 )A− 1

2 , implies AB and A
1
2 BA

1
2 are similar matrices,

sharing all eigen values. Using Lemma 2, since B � O, A
1
2 BA

1
2 � O =⇒

AB � O.



698 A. A. Meera and M. Wisse

Using Lemma 6 it is straightforward to see that W6 � O because: Π̃z �
O, Π̃w � O, =⇒ Π̃z ⊗I � O and Π̃w⊗I � O, I⊗ΣX � O. Therefore, W1 
 O.
This completes the proof that the parameter estimation of DEM converges for
an LTI system with colored noise.
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Fig. 1. The parameter estimates of DEM converges to the correct value of θ3 = − k
m

=
−0.5714, θ4 = − b

m
= −0.2857 and θ6 = 1

m
= 0.7143, marked in black, for a set

of 25 experiments, despite being initialized by randomly sampled priors such that

ηθi ∈ [−2, 2] and that the prior A matrix is stable. The parameter estimation proceeds
by maximizing the free energy objective as shown on the right (sample realization).

5 Proof of Concept: Mass-Spring-Damper System

This section aims at providing a proof of concept for the convergence of DEM’s
parameter estimator, through realistic simulations. A mass-spring-damper sys-
tem with mass m = 1.4 kg, spring constant k = 0.8N/m and damping coefficient
b = 0.4Ns/m, is considered in the state space form given by:

[
ẋ
ẍ

]
=

[
0 1

− k
m − b

m

] [
x
ẋ

]
+

[
0
1
m

]
v, y =

[
1 0

] [
x
ẋ

]
. (22)

A Gaussian bump input v = e−0.25(t−12)2 , centred around 12 s and sampled at
dt = 0.1 s for T = 32 s was used. To generate the colored noise, the white noise
(Πw = e6I2 and Πz = e6) was convoluted using a Gaussian kernel with a width
of σ = 0.5 s. A partially known system with unknown θ3 = − k

m , θ4 = − b
m and

θ6 = 1
m was considered. Using the output y generated from the spring damper

system, parameter estimation was performed using DEM for 25 experiments with
different ηθ. The parameter priors ηθ for unknown parameters were randomly
sampled from [–2,2] such that the resulting prior A matrix is stable. A low prior
precision (P θi = e−4) was used for known parameters, and a high precision
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(P θi = e32) was used for unknown parameters. The order of generalized motion
of p = 6 and d = 2 were used for the states and inputs respectively. The result
for DEM’s parameter estimation is shown in Fig. 1. Despite being initialized by
random wrong priors, DEM’s parameter estimates exponentially converges to
the correct values, by maximizing the free energy objective.

Next, we proceed to show that the estimate converges for a wide range of
systems. The same experiment was repeated for 25 different randomly selected
stable mass-spring-damper systems. Although the convergence applies to unsta-
ble systems, sampling was restricted to stable systems within the range [–1,1]
(θ3, θ4 ∈ [−1, 0] and θ6 ∈ [0, 1]) for better visualization. DEM was initialized
with the same priors for all experiments (ηθ6 = 2, ηθ4 = −1 and ηθ3 = −2).
Figure 2 shows that DEM is capable of providing converging solutions for a wide
range of stable spring-damper systems, that are influenced by colored noise.
Note that the numerical analysis is restricted to the dynamics of spring damper
systems for demonstrative purposes, and can be extended to other systems. In
summary, DEM can provide converging parameter estimates for linear systems
with colored noise, by maximizing the free energy objective.
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Fig. 2. DEM’s parameter estimates for 25 different randomly sampled stable mass-
spring-damper systems. The estimates for all the experiments started from the same
prior of ηθ6 = 2, ηθ4 = −1 and ηθ3 = −2, and converged, while maximizing the free
energy objective. Therefore, the estimator converges for a wide range of systems.

6 Conclusion

DEM has the potential to be a bioinspired learning algorithm for future robots,
due to its capability to robustly handle colored noise. Its superior performance in
state estimation under colored noise was proven by [11] and was experimentally
validated by [4]. In this paper, we derived a mathematical proof of convergence
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for DEM’s parameter estimator, applied to linear systems with colored noise. We
proved that a perception scheme based on the gradient ascend of the free energy
action, provides a converging solution. Since a convergence proof is mandatory
for the safe and reliable application of DEM on real robots, this work widens its
applicability in robotics. The applicability of DEM for real control system prob-
lem was demonstrated through rigorous simulations on the estimation problem
for mass-spring-damper systems. The future research will focus on the conditions
for unbiased estimation and on applying DEM to real robots.
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