
Quantum Computing for Struc-
tural Optimization

K. A. Wils

MSc. Thesis

Quantum Computing
for Structural
Optimization

by

K. A. Wils

to obtain the degree of Master of Science
at the Delft University of Technology,

to be defended publicly on Friday October 30, 2020 at 13:30 o’clock.

Student number: 4150929
Project duration: September 2, 2019 – October 30, 2020
Thesis committee: Dr. ir. R. de Breuker - TU Delft, Aerospace Engineering, chair holder

Dr. B. Chen - TU Delft, Aerospace Engineering, supervisor
Dr. M. Möller - TU Delft, EEMCS Faculty, examiner

An electronic version of this thesis is available at http://repository.tudelft.nl/.

Cover image: An optimization problem embedded onto the Chimera graph structure of the D-Wave quantum annealer.
Figure produced using the D-Wave Inspector tool [25].

http://repository.tudelft.nl/

Preface

Approximately one year ago, I had the luxury of being able to choose from many different thesis topics.
Amongst some of the more traditional ASCM topics was one particularly unorthodox option: an exploration
into the feasibility of using quantum computing for finite-element applications. The risk-reward tradeoff that
I was facing was best worded by Dr. Boyang Chen himself:

This work is explorative in nature. It is for the adventurous souls. The field is wide open, whatever
you establish could potentially be ground-breaking. The risk is of course also high: it is possible to
end up being completely lost. I will be there to support you as far as I can. – Dr. Boyang Chen, 2019

I decided to take the risk. It was daunting and confusing at first, because I was delving into a topic on
which I had essentially no prior knowledge. However, the more I learned, the more I started to become pas-
sionate and enthusiastic about the possibilities that laid ahead of me. A great starting point for my research
turned out to be the book Quantum Computing for Everyone, by Chris Bernhardt. The book was not only an
enjoyable read, but did an excellent job of explaining the basic principles behind quantum computing, and
even showed some of the math that is involved. For anyone that is intimidated by quantum computing, has
no prior knowledge on the topic, but wants to learn more, I highly recommend this book.

Of course, throughout the project, it certainly helped to have an equally passionate and supportive su-
pervisor joining me on this adventure. Important decisions had to be made, discussions and brainstorming
sessions were had, and there were even some nasty bugs in the code which had to be fixed. Boyang was there
to support me and give advice every step of the way. I want to extend my utmost thanks to him for being so
understanding and patient with me while I worked my way through this project.

One of the unexpected challenges faced in this project had nothing to do with quantum computing,
QUBO formulations, Python codes, or any of the other fancy technical terms I have come across. For me
personally, one of the hardest parts of the project was having to finish the thesis during the Coronavirus epi-
demic. It certainly took time to get used to the sudden mandated work-from-home situation. Fortunately,
my family and friends, my lovely girlfriend, and my brilliant ASM classmates were there to support me when
I needed them. I would not have been able to finish my thesis without you. To the scientists who are working
tirelessly to develop a vaccine: you have my thanks, and may you swiftly find success.

Looking back to last year, I can honestly say that choosing this thesis topic has been one of the best deci-
sions I have ever made. It was worth it to take the risk. I have found a passion that I didn’t know I had, and
this project may have even opened doors to career opportunities that I would never have considered. My
eyes have opened to a whole new world of possibilities, and I can’t wait to see what the future of quantum
computing brings. Although parts of the project have been somewhat of a rollercoaster, I wouldn’t have done
it in any other way. I hope you enjoy reading about my work.

K. A. Wils
Delft, September 2020

iii

Abstract

Quantum computing is a new form of computational technology, which can potentially be used to solve cer-
tain problems faster than is possible using classical computers. For this reason, there is an industry drive
to develop early quantum computing applications. In this thesis, an overview of quantum computing tech-
nologies is provided, along with a practical discussion of the Traveling Salesman Problem, making use of the
D-Wave quantum annealer. Subsequently, the main objective of the thesis can be investigated, which is to
explore how quantum computing can be used to aid in solving structural optimization problems.

Two methods are developed with which simple 2-dimensional truss systems can be optimized using
the D-Wave quantum annealer. The methods aim to find the most lightweight choices for the truss cross-
sectional areas while complying with material limit stress constraints. The first method directly casts such
an optimization problem into a QUBO format. However, due to difficulties with formulating the stress con-
straint, this method was found to produce a trivial optimization problem. The second method attempts to
symbolically solve a truss finite-element problem, using the resulting symbolic expressions to set up an op-
timization objective function. Although these objective functions are confirmed to work via classical brute-
force analysis, the quantum annealer is shown to have difficulty finding the global optimum solution for truss
systems with three or more elements. These results indicate that it is not currently beneficial to use quantum
annealing for these structural optimization problems. Nevertheless, some improvements to the method for
setting up the objective functions are suggested. The next generation of quantum annealers is expected to
perform better for these practical applications, potentially becoming a useful tool in the engineering toolbox.

v

Contents

Abstract v

List of Abbreviations ix

1 Introduction 1

1.1 Aim and Scope . 2

1.2 Thesis Layout . 3

2 Literature Study 5

2.1 General Purpose Quantum Computers . 5

2.1.1 Quantum Bits . 5

2.1.2 Hardware Overview . 6

2.1.3 Applications . 6

2.2 Quantum Annealers. 8

2.2.1 Overview and Applications. 8

2.2.2 Problem Formulation . 9

2.2.3 Hardware Limitations . 10

2.3 Selecting a Quantum Computer for Practical Applications . 11

2.4 Optimization Problems . 13

2.4.1 Optimization Applications . 13

2.4.2 Quantum Assisted Genetic Algorithm . 15

2.4.3 Finite-Element Shape Optimization . 15

2.5 Conclusion . 15

3 Introduction to Practical QUBO Problems 17

3.1 Quadratic Unconstrained Binary Optimization . 17

3.2 Traveling Salesman Problem . 18

3.2.1 Beginnings of a TSP QUBO. 18

3.2.2 Distances . 19

3.2.3 Constraints . 20

3.2.4 Embedding the TSP . 23

3.2.5 Results . 24

3.2.6 Final Comments . 25

4 Truss Sizing Optimization: Direct QUBO Method 27

4.1 Overview . 27

4.2 Direct QUBO Formulation . 27

4.2.1 Design Variables and Objective Function . 28

4.2.2 Unary Constraint . 29

4.2.3 Stress Constraint: Preliminary Information . 30

4.2.4 Stress Constraint: RF Dependent Preference in an Optimization Scheme 31

4.3 Testing of Optimization Procedure . 33

4.4 Results . 34

4.4.1 Box Truss System. 34

4.4.2 Bridge Truss System . 38

4.5 Triviality of the QUBO Formulation and Classical Reproduction 41

4.6 Possible Extensions . 42

vii

viii Contents

5 Truss Sizing Optimization: Symbolic Finite-Element Method 45

5.1 Phase 1: Preparation . 45
5.1.1 QUBO Basics and Plan . 45
5.1.2 Sample Problems . 46
5.1.3 Challenge: Symbolic Matrix Inversion and Setup of Symbolic Expressions 48

5.2 Phase 2: Setup of the QUBO Problem . 49
5.2.1 Objective Function Evaluation Method . 50
5.2.2 Expected Optimization Outcomes . 50
5.2.3 Challenge: Setting up an Objective Function. 51
5.2.4 Challenge: Fractional Objective Functions . 59
5.2.5 Practical Implementation of Truss Sizing Optimization 66

5.3 Phase 3: Solving the QUBO Problem . 72
5.3.1 Analysis Procedures . 72
5.3.2 Parameter Tuning . 73
5.3.3 Results: Two-Truss Problem . 74
5.3.4 Results: Three-Truss Problem . 77
5.3.5 Results: Four-Truss Problem . 79

5.4 Final Discussion . 81
5.5 Chapter Summary . 84

6 Conclusion 87

6.1 General Findings and Conclusions . 87
6.2 Answering the Research Questions . 88

6.2.1 Research Question 1 . 88
6.2.2 Research Question 2 . 89
6.2.3 Research Question 3 . 90
6.2.4 Main Research Question and Research Objective . 91

7 Recommendations and Future Work 93

7.1 Improvements to the Current Methodology . 93
7.2 Suggestions for Future Work . 94

Bibliography 97

List of Abbreviations

FEM Finite-Element Method
GPQC General Purpose Quantum Computer
HHL Harrow, Hassidim, and Lloyd
LFP Linear Fractional Programming
LP Linear Programming
NA Not Applicable
QA Quantum Annealer
QPU Quantum Processing Unit
QUBO Quadratic Unconstrained Binary Optimization
RF Reserve Factor
RT Real Time
ST Solve Time
TSP Traveling Salesman Problem

ix

1
Introduction

Imagine you find yourself standing in the middle of a vast landscape. Hills and valleys surround you in all
directions, and someone has promised to give you cake if you can find which of the valleys is the deepest.
Naturally, you want the cake, but how are you going to find the deepest valley if you don’t know where it lies?
You could start exploring the landscape, taking measurements of your altitude along the way. Investigating a
valley is easy, since you will be walking downhill. However, once you’ve performed your measurement, you
will have to go all the way back uphill again, just so you can make your way to the next valley. Furthermore,
it is difficult to know with certainty which valley is the deepest, unless the depth of each and every one is
measured. If only there were tunnels between each of the valleys!

If there were tunnels you could simply travel downhill between each of the valleys, until you find the one
from which all tunnels lead uphill. Sometimes it may be difficult to tell if tunnels are sloping downwards or
upwards, but eventually you would be fairly confident to have arrived at the lowest valley in the landscape,
allowing you to claim your sweet reward. However, this plan would only work if such tunnels existed, which
is unfortunately not the case.

Or is it? A clever person may invent a computer-powered robot that will do the exploration for them,
simply waiting for the robot to return with its findings. However, it could take a very long time for the robot
to return if it was asked to measure each and every valley, and the cake might go stale. But what if a quantum
computer was used to power the robot? By using a quantum computer to guide its way, suddenly, the robot
would be able to find the tunnels between the valleys. It turns out, they were there all along but were hidden
from plain sight. Because the quantum computer enables the use of the tunnels, the task of finding the lowest
valley becomes much easier, and the cake can be enjoyed in a much more timely manner.

Of course, this silly story is a metaphor for the potential that quantum computers offer, with their ability
to quickly solve some of the most difficult problems that people have devised. The landscape represents ev-
ery possible solution to an optimization problem, with the location of the lowest point corresponding to the
most optimal solution. It also demonstrates some of the difficulties that classical computers can have when
solving optimization problems. Namely, once a valley has been found, it can be difficult to escape, in order to
search for potentially even lower points. This corresponds to the problem where classical solution algorithms
might get trapped in local minimum solutions, being unable to further explore in search of the global mini-
mum solution. One simple method to guarantee finding the global optimum solution is to test every possible
solution to the optimization problem using a brute-force approach. However, such an approach is generally
very inefficient, since, every additional variable in the optimization problem causes the total number of pos-
sible solutions to increase exponentially. This issue is known as the curse of dimensionality, and means that
this approach is eventually intractable for large optimization problems. So how can quantum computers help
us?

Quantum computers are rather unique devices that, by leveraging quantum mechanical principles, en-
able certain types of problems to be solved much more efficiently than is possible with classical computers.
While classical computers use binary bits, 1s and 0s, to perform their computations, quantum computers
make use of quantum bits. Quantum bits, or qubits, can not only represent the classical 0 and 1 states, but
can also be in both of these states simultaneously. This quantum mechanical phenomenon is known as su-
perposition, and when leveraged effectively, is one of the reasons why quantum computers promise better
performance in certain applications.

There are two main types of quantum computers currently in development, being the General Purpose
Quantum Computer (GPQC) and the Quantum Annealer (QA). With the GPQC, most of the potential im-
provements stem from the fact that these systems can run complex quantum algorithms, allowing for much

1

2 1. Introduction

more efficient problem-solving methods to be devised. On the other hand, a QA can only use the quantum
annealing algorithm to solve very specific types of optimization problems, known as quadratic unconstrained
binary optimization (QUBO) or Ising model problems. However, as hinted at in the initial story, the QA is able
to leverage quantum tunneling to aid in finding optimal solutions in the energy landscapes of the problems
that it can solve. This effect helps the QA in quickly traversing the energy landscape, allowing for low-energy
solutions to large optimization problems to be found.

Both quantum computing technologies are still quite novel, and quantum computing hardware is still
in its infancy compared to the advanced state of classical computing technologies. Research into practical
applications of quantum computing stem only from the last several years, however, some studies have already
shown promising results [62, 81, 85, 97]. Furthermore, in industry, some companies are already pushing for
the development of early practical applications of quantum computing. For example, Airbus has posted the
Airbus Quantum Computing Challenge. One of the challenges is to optimize a wingbox structure, the main
load-bearing component in aircraft wings, using a quantum computer [2]. Another example comes from
Volkswagen, who have researched how a QA can be used to optimize a traffic flow problem [62]. Volkswagen
has already applied this research for the real-time optimization of public transport routes in Lisbon [87].

Considering these early applications, there must certainly be some problems in aerospace engineering
for which the application of quantum computing technologies will be beneficial. In the aerospace industry
there is a continuous demand to develop the most lightweight structures, as this can lead to increased fuel
efficiency, or increased payload capacity, both of which can lead to higher profits. To analyze structures, the
finite-element method (FEM) is often used to calculate various structural properties, such as the structural
stiffness or strength. Because aircraft must be extensively analyzed to determine if they meet safety standards,
this means that finite-element problems are ubiquitous in the aerospace industry. However, such problems
can be slow to solve, which is especially inconvenient when structures are iteratively changed and analyzed in
an effort to optimize the structural weight. A quantum computer may be able to help solve FEM problems or
structural optimization problems more quickly than is possible using the classical methods. Thus, the main
idea that prompted this thesis is formed: let us investigate how quantum computing can be used to aid in
solving the problems found in aerospace engineering.

1.1. Aim and Scope
This thesis aims to provide a practical look at quantum computing technology and investigate the feasibility
of using this technology to aid in solving engineering problems. Of the two types of quantum computers,
the main focus for this thesis will be on the quantum annealer. The QA is chosen due to the higher level of
technological maturity compared to GPQC, offering significantly more qubits of processing power. Because
the QA can only solve specific types of optimization problems, the objective in this thesis will be to investigate
how a practical engineering optimization problem can be made compatible with the QA.

The main commercial supplier of QA technology is the company D-Wave Systems Inc. D-Wave pro-
duces the D-Wave 2000Q, which represents the state-of-the-art in QA hardware. D-Wave has developed many
Python packages to interface with their QA [19]. Furthermore, the company provides various example prob-
lems and hosts community forums, giving ample opportunity to learn how their QA system works [24]. Thus,
these tools make the D-Wave 2000Q an attractive platform to use for practical investigation into optimization
problems from the aerospace engineering industry. More details will be provided in Chapter 2.

Due to the novelty of this particular topic of research, the optimization problems that will be investigated
are limited to the optimization of simple 2-dimensional truss structures. Optimization of truss structures usu-
ally targets minimal structural weight, while aiming to comply with various displacement, stress, or stability
requirements. To evaluate compliance with such requirements linear finite-element analysis techniques will
be used. If a truss system structural optimization can be effectively performed using QA technology, this
thesis could serve as a foundation for future work related to the more complicated structures found in the
aerospace industry.

The goal of this project can thus be formalized with the following research objective:

Within the time-span of the thesis, the objective is to investigate the practical application of quan-
tum computing to aerospace structural optimization problems, by developing a method to cast the
problem into code that can be interpreted by the quantum computer, and evaluate the performance
and reliability compared to classical methods.

1.2. Thesis Layout 3

To guide the process of achieving this research objective a number of research questions have been for-
mulated. The main research question will be:

What method can be used to solve practical structural optimization problems using a quantum
computer, and how well does it perform compared to classical methods?

This main research question may be supported by answering the following sub-questions:

1. What typical optimization problem can be formulated and solved classically, such that it can act as a
reference for the performance of quantum solution algorithms?

(a) What is a typical problem in aerospace engineering that is suitable for solving on both classical
and quantum computers?

(b) What method is used to classically solve this problem?

(c) What performance metric can be used to compare the performance of classical and quantum
solution algorithms?

2. What method can be used to cast an optimization problem into a formulation that the quantum com-
puter can understand?

(a) What programming interface exists that allows for problems to be submitted to the quantum com-
puter?

(b) How can the optimization problem be cast into a QUBO or Ising model formulation?

(c) What parameters or settings in the quantum computer will influence the time-to-solution, and
which settings give the best computational performance?

3. How does quantum computing compare to classical computing for solving practical optimization prob-
lems?

(a) For the reference problem, what is the computational performance of both classical and quantum
solution procedures?

(b) What reliability issues exist with quantum computation, and how may these issues be addressed?

(c) If the size of the problem is increased, how does this affect computational performance?

(d) If the quantum computing hardware would be improved in the future, how would this affect com-
putational performance?

(e) At this point in time, is it beneficial to apply quantum computing to practical aerospace engineer-
ing problems?

By finding answers to these research questions, the research goal can be achieved in a structured manner.

1.2. Thesis Layout
This thesis is laid out in the following manner. Directly following this introduction, in Chapter 2, an overview
of quantum computing and related literature is provided. This is a somewhat shortened version of a previ-
ously completed literature study. The literature study introduces both GPQC and QA technologies, discusses
the applications, and provides the background for the choice to limit this project to using the quantum an-
nealer for optimization problems. After the literature study, a deeper dive into practical quantum annealing
is taken by exploring the Traveling Salesman Problem (TSP) in Chapter 3. Starting from basic knowledge on
QUBO problem formulations, an intuitive method is shown for defining a quantum-compatible version of
the TSP. The goal for this chapter is to further introduce quantum annealing to readers who may be new to
the topic and provide insight into the underlying mathematical structure of QUBO problems.

Chapter 4 describes the first attempt at formulating a truss sizing optimization problem for use with the
QA. Building on previous knowledge, this method attempts to directly formulate the truss optimization prob-
lem in a QUBO format. Hence, this method is referred to as the direct method. However, it will be seen that
the method does not make beneficial use of the quantum annealer. Thus, in Chapter 5, a second attempt to
formulate a truss sizing optimization problem is taken, using a completely different approach. In this case,
symbolically defined finite-element truss problems are solved, eventually leading to objective functions that

4 1. Introduction

the QA can minimize. This method is therefore referred to as the symbolic finite-element method. It will be
seen that this method is much more successful than the initial direct method, however, it also comes with
significant limitations on its practical usability.

In Chapter 6, the conclusion to the thesis project is offered, summarizing the major findings of the previ-
ous chapters. Furthermore, answers to the research questions will be provided. Finally, Chapter 7 discusses
the possible improvements to the methods shown in this thesis and gives some recommendations for future
research on the topic of quantum annealing for practical engineering optimization purposes.

2
Literature Study

In this chapter, some of the background and scientific literature relevant to quantum computing and opti-
mization problems is discussed. An overview of both general purpose quantum computer (GPQC) and quan-
tum annealer (QA) technologies is given, as well as some of the problems that these technologies might help
to solve. From this review, it is decided that, based on the current state of both quantum computing tech-
nologies, QA is more likely to be useful to current practical optimization applications. Hence, a review of the
applications of QA to optimization problems is also provided.

2.1. General Purpose Quantum Computers
In this section an overview of general purpose quantum computers is given. The foundation for quantum
computers, the quantum bit, is first discussed. Then, some information on GPQC hardware, and some of
the applications of the technology are highlighted. One of the most relevant algorithms that might be useful
for engineering problems is the HHL algorithm, which is discussed more thoroughly. However, since the
eventual focus of the thesis will be on quantum annealing, the information in this section will be presented
in a rather brief manner.

2.1.1. Quantum Bits
In classical computing, information is always stored and processed in the form of bits. The bit is the smallest
piece of information the computer can process, and is always in one of two possible states, being either in
the 0 state or the 1 state. The computer can control and manipulate the state of these bits through the use
of logical Boolean operators, such as the AND-, OR-, and NOT-gates. For example, the NOT-gate can flip a
bit from a 0 state to a 1 state, or vice versa. The AND-gate acts as a comparison between two input bits. If
the input bits are both in the 1 state, the AND-gate will output a 1-bit. When the input bits have opposite
values, or are both in the 0 state, the AND-gate will output a 0-bit. The OR-gate also performs a comparison
between two input bits. It will output a 1-bit when the two input bits have opposite values, or when the input
bits are both in the 1 state. Otherwise, if both input bits are in the 0 state, the OR-gate will output a 0-bit. At
the most basic level, all computer programs and operations are run by manipulating bits using these logical
operations. For more information on this topic, and a comprehensive introduction to quantum computing,
the book by Bernhardt can be referenced [9].

General purpose quantum computers (GPQC) attempt to extend computing technologies into the quan-
tum realm by building a computer in which every quantum bit, or qubit, is fully controllable in a similar
manner to how classical bits are controlled. However, the main difference between classical bits and qubits
is that qubits can also have any arbitrary state between 0 and 1. More specifically, the qubits can be in any
arbitrary quantum superposition of the 0 and 1 states.

Although qubits can be in a quantum superposition of the 0 and 1 states, when an attempt is made to
measure the state of the qubit, a classical 0 or 1 state is always found. This is because the act of measuring the
qubit state causes the quantum superposition to collapse. Whether either a classical 0 or 1 state is measured
depends on what the exact quantum state of the qubit was. Since, the quantum state is defined by the prob-
abilities of measuring each classical outcome state. For example, a qubit might be in a quantum state where
it has a 40% chance of yielding a 0 state, and a 60% chance of yielding a 1 state upon performing a measure-
ment. These probabilities of measuring either classical state are what the quantum computer can control and
manipulate. However, the fact that qubits can be in a quantum superposition state before being measured is

5

6 2. Literature Study

part of what allows quantum computers to theoretically perform certain tasks faster than is possible using a
classical computer.

In a GPQC, the quantum states of the qubits are manipulated using so-called quantum gates, hence the
GPQC is also referred to as a gate-based or gate-model quantum computer. Quantum programs or algorithms
generally consist of sequences of various quantum gates acting on multiple qubits, to achieve some desired
output quantum state. Such quantum programs are typically referred to as quantum circuits. In principle,
GPQC would not only be able to run quantum algorithms, but also be used to perform classical algorithms.
This is because qubits are also able to represent the pure classical 0 and 1 states, in addition to being able to
express any superposition thereof. Therefore, a GPQC is able to emulate the behavior of a classical computer.
In other words, classical computing is simply a subset of quantum computing, where bits are limited to the
values of 0 and 1 [9].

2.1.2. Hardware Overview
There are a number of different approaches to creating GPQC hardware. Although the most easily scalable are
the superconducting quantum circuits [97], certain publications have also relied on GPQC based on photonic
quantum circuitry, and nuclear magnetic resonance devices [8, 13, 67]. When it comes to running a program
on the quantum computer, every hardware implementation can perform the same operations. However, it
is expected that the superconducting quantum circuit GPQC is the most suitable for practical applications
due to its scalability, thus having an increased capability of solving larger problems than the other hardware
types.

Notable efforts in the production and operation of GPQC hardware were made by IBM, Intel, Rigetti,
Google, and others [72]. Current state-of-the-art GPQC, such as the quantum processor by Google, have
in the order of 50 qubits [7]. IBM’s recent efforts have led to the launch of the IMB Q System One commercial
hardware, which is the first commercial GPQC, having a 20-qubit processor [44]. Furthermore, IBM hosts
the IMB Q Experience cloud-based quantum computing service that gives users several options from 5 to 14
qubits of computing power [43]. Rigetti offers a similar quantum computing cloud service which was recently
updated to offer 31 qubits of processing capability, using their Aspen-8 QPU platform [73].

In the last year, a collaboration between NASA and Google has created some buzz in the news media [90].
A paper was published that claimed that Google and NASA had achieved a major milestone in the quan-
tum computing industry. Namely, the paper indicated that quantum supremacy had been achieved. Quan-
tum supremacy is defined as the point in time where state-of-the-art quantum computers can perform a
calculation or simulation that no classical computer could possibly perform in a feasible amount of time.
Google’s quantum processing unit (QPU), Sycamore, contains 54 qubits. However, in the QPU that was used
to demonstrate quantum supremacy, one qubit was defective, leaving 53 functional qubits. On this QPU
the researchers were able to sample a quantum circuit one million times in approximately 200 seconds. The
equivalent task would take approximately 10,000 years to simulate on a state-of-the-art supercomputer [7].
Since this is an infeasible amount of time, quantum supremacy has supposedly been achieved. In response,
IBM has claimed that this simulation can be performed in only 2.5 days, rather than 10,000 years, and that
therefore quantum supremacy has not yet been achieved [69].

As an alternative to GPQC hardware, there are also companies that offer quantum computing simulation
capabilities. For example, the Quantum Inspire platform, provided by QuTech, allows users to build quantum
circuits using up to 31 qubits. The quantum circuits are simulated on a classical computer system in order to
produce the results of the ‘quantum computation’ [71]. The drawback to GPQC simulation is that it quickly
becomes infeasible to perform simulations as the number of qubits increases. Since every qubit may end
up in one of two possible states, and every additional qubit doubles the number of possible outcomes, the
computational requirement increases exponentially with every additional qubit. In the absence of physical
GPQC hardware, quantum computing simulation tools can be usefully applied for the theoretical develop-
ment and testing of new quantum algorithms. However, the capabilities are limited due to the small number
of simulated qubits.

2.1.3. Applications
There are some problems that are particularly well suited for general purpose quantum computing. There are
three particularly important algorithms that have been proposed for solving problems on a GPQC in a faster
manner than is classically possible. Namely, Shor’s algorithm, Grover’s algorithm, and the HHL algorithm.

Perhaps the most infamous of the quantum algorithms is Shor’s algorithm, which has the potential of
overthrowing the RSA encryption method that is currently ubiquitously used for internet security applica-

2.1. General Purpose Quantum Computers 7

tions. Given a large number N , Shor’s algorithm provides a method to find the factors p and q such that
pq = N [18]. Classically, this factoring problem becomes exponentially more difficult as the size of N in-
creases. The fact that this is classically a difficult task forms the basis of the RSA encryption method [18, 96].
However, using Shor’s algorithm the problem may be solved in time that scales roughly cubically with the
size of the problem [18]. As such, for sufficiently large numbers, Shor’s algorithm becomes much more effi-
cient than classical methods. The recent work by Amico et al. demonstrates Shor’s algorithm on the IBM Q
Experience GPQC, for factoring the numbers 15, 21, and 35, using at most 7 qubits [6].

One task people commonly perform with computers is searching for information within a database. Con-
sider for example the internet search engine that Google provides. Grover’s algorithm may be useful for such
purposes. The algorithm allows for a specific data entry within a randomly ordered database to be found
more efficiently than is classically possible. Given a database of size N , it would classically take up to N at-
tempts to find the desired data entry in the database. However, Grover’s algorithm will allow for the correct
entry to be found, with a probability greater than 50%, in only

p
N steps [18]. An illustrative example of the

application of this algorithm would be the following. Imagine a deck of playing cards lying face down on a
table. If one wishes to find a specific card, such as the ace of spades, the classical approach would be to se-
quentially turn over cards at random until the target has been found. Given N cards on the table, in the worst
possible case, it would classically take N attempts to find the desired card. Grover’s algorithm has a greater
than 50% chance of finding the correct card in

p
N steps.

The HHL algorithm is related to solving linear systems of equations, which is relevant to many engineer-
ing problems, including structural finite-element problems [18, 39, 61]. A linear system of equations, in the
context of finite-element problems, is typically defined as shown in Eq. (2.1). In this case, the matrix [K] is
known, and represents the global stiffness matrix. This matrix defines the stiffness behavior of the finite-
element structure. Furthermore, the vector f is also usually known, as this vector defines the forces which
are applied to the structure. The goal for the finite-element problem is to find the solution vector u, which
contains the displacement of every node in the structure. By knowing the displacements of all nodes in the
structure, other metrics such as the element stress and strain can also be calculated. This allows engineers
to determine if the structure is compliant with requirements on the structural stiffness and strength, and can
help identify structural weaknesses.

[K]u = f (2.1)

The first method that was proposed for using quantum computers to aid in solving linear systems of
equations was by Harrow, Hassidim and Lloyd, in 2009. This method is now known as the HHL algorithm. If
the number of equations in the linear system is defined as N, the HHL algorithm aims to solve certain types of
linear systems in an amount of time that scales only logarithmically in N. This is an exponential improvement
over the best known classical algorithm [39]. The HHL algorithm would rely on a GPQC, using quantum gates
to manipulate qubits.

The HHL algorithm comes with a number of caveats, which were clearly explained by Aaronson in 2015 [1].
Since these issues with the algorithm are particularly important, they will be briefly explained here, in the
context of the finite-element equation that was shown in Eq. (2.1).

1. The HHL algorithm, with its exponential speedup relative to the classical algorithm, assumes that the
vector f can efficiently be prepared as a quantum state.

2. The matrix [K] must be a sparse matrix, containing mostly zero entries. If the matrix is not sparse
enough, the exponential speedup is lost.

3. The matrix [K] must be well-conditioned, meaning that the difference between the largest and the
smallest eigenvalues of the matrix should be minimal.

4. The HHL algorithm does not find the full solution vector u. Instead, a quantum state solution vector is
prepared which contains entries proportional to the entries of the solution vector u. The user can only
extract one scalar quantity of interest from this quantum state. The user cannot find the full solution
vector u without destroying the promised exponential speedup.

Particularly the last point is critical to understand. The HHL algorithm is not able to find the full solution
vector to the linear system of equations. This does not necessarily mean that the algorithm is useless in the
context of finite-element problems. However, it does imply that for solving a finite-element problem on a
general purpose quantum computer, a change in perspective and solution strategy is necessary.

8 2. Literature Study

In years subsequent to the publication of the HHL algorithm, there have been numerous attempts at
practical implementations of the algorithm, as well as finding further speed improvements. Notable runtime
improvements to the HHL algorithm were found by Ambainis in 2010, and in 2015 by Childs et al. [5, 15]. An
extension of the HHL algorithm is shown in [16], which allows for the linear system to be preconditioned,
making the system easier to solve. An adaptation by Wossnig et al. allows for dense linear systems to be
solved [94]. Another adaptation of the HHL algorithm is given in [54], showing a hybrid computation method
that relies on both quantum and classical computer systems in order to solve the system of equations. An
extensive overview and explanation of the HHL algorithm and the improved versions can be found in [31].
With specific regard to finite-element problems, a review given in [95] indicates that two of the caveats for the
HHL algorithm, matrix sparsity and conditioning, are often not an issue. A general overview of many different
quantum algorithms, including the HHL algorithm, is provided in [18].

Concerning practical implementations, the first attempt at designing a quantum circuit that would run
the HHL algorithm was by Cao et al. in 2012 [14]. This circuit design was recently investigated, adapted, and
implemented on GPQC simulation software in [84]. Earlier work on the implementation of the HHL algo-
rithm and experimental results are shown in [8, 13, 67]. The first work to consider the implementation of the
HHL algorithm on a superconducting quantum circuit is shown in [97]. In this implementation, Zheng et al.
solve a 2×2 linear system of equations using four qubits. The improved HHL algorithm that was proposed
in [15] was reviewed in the context of finite-element problems by Montanaro and Pallister [61]. It was found
this algorithm can indeed lead to a speedup for solving FEM problems, but the speedup is polynomial, not
exponential.

2.2. Quantum Annealers
In this section quantum annealers will be discussed. These are a fundamentally different type of quantum
computer, and have different capabilities compared to GPQC.

2.2.1. Overview and Applications
An alternative to the general purpose quantum computer is the quantum annealer type of quantum com-
puter. Quantum annealers are special purpose quantum computers that are particularly well suited to solv-
ing a specific type of optimization problem [57]. They are less suited to general purpose calculations, since
qubits are not fully controllable in the same way as with GPQC.

By far the most prevalent hardware implementation of QA type quantum computers is provided by the
company D-Wave Systems Inc. Currently, D-Wave commercially offers the D-Wave 2000Q QA system. This
system has 2048 qubits, which is a very large increase from the roughly 50 qubits that the state-of-the-art
GPQC offers [24, 58]. Furthermore, D-Wave provides access to this quantum computer through a cloud ser-
vice, meaning that the state-of-the-art in QA technology can be used by the general public [24].

The QA has been a technology of interest for both Google and NASA since 2012, when NASA started host-
ing a collaborative effort to investigate potential applications of quantum annealing. Compared to GPQC,
quantum annealing is a more mature technology, allowing for higher numbers of qubits to be utilized for
computations [10]. Furthermore, for specific types of problems, there is some evidence to suggest that a
quantum speedup is possible compared to classical methods [48, 75, 80]. However, as of yet, the quantum
speedup for practical problems that may be offered by the QA remains somewhat of an open question.

The range of applications for quantum annealers is quite diverse. Due to the manner in which they solve
problems, they are good at finding optimal or near-optimal solutions to problems involving many possible
combinations of parameters. One example of a problem well-suited for quantum annealing is the Traveling
Salesman Problem, with the aim of minimizing the distance traveled between a set of destinations [21]. The
Traveling Salesman Problem will be discussed in more detail in Chapter 3. The work by Lucas shows many of
the typical academic problems that can be solved using the QA [55].

Another problem that is often referred to in the context of quantum computers is the prime factorization
problem, in which a method is sought to find the prime factors of a large number. In other words, given
a number N , the task is to find the prime numbers p and q , such that pq = N . This is a difficult problem
to solve classically. For this problem one would typically consider Shor’s algorithm, but this algorithm was
developed for use with GPQC. A method that achieves the same goal has been developed by Jiang et al. for
use with the QA [46]. Using their method, Jiang et al. were able to factor the number 249919 into its prime
factors 509 and 491. This process used 1803 qubits of the 2048 qubits available in the D-Wave 2000Q quantum
annealing processor.

2.2. Quantum Annealers 9

An interesting application of quantum annealing was shown by Van Vreumingen et al. [85]. The research
showed that a QA could be used for design optimization purposes. Given a 3-dimensional sphere, a method
was developed that allowed the QA to alter the shape of the sphere such that it reflects a minimal number
of rays towards a certain plane. The sphere was defined using finite-elements, the use of which is common
practice in many fields of engineering. Since the design optimization method showed promising results, and
the authors are aiming for further improvements, it is clear that the QA has the potential to be a valuable tool
for engineers in the future.

2.2.2. Problem Formulation
Problems that can be solved by a QA need to be formulated in either an Ising model form, or as a Quadratic
Unconstrained Binary Optimization (QUBO) problem. These two mathematical formulations are very simi-
lar. The Ising or QUBO problem formulation represents a total system energy, and the optimal solution to the
problem will be the configuration of classical qubit states that yields the lowest total system energy. In the
Ising form, the system energy is given by a Hamiltonian function, as shown in Eq. (2.2) [10–12, 21, 47, 55, 57,
58, 78].

Hp (s) =
N∑

i=1
hi si +

∑
i< j

Ji j si s j (2.2)

In this equation, s = [s1, s2, . . . , sN] are Ising spins, which can take values of -1 or 1, i.e. si ∈ {−1,1}. The role
of the Ising spins is fulfilled by the individual qubits in the QPU. The parameters hi and Ji j are qubit biases
(self-interaction) and coupling strengths (qubit-qubit interaction) respectively. The summation as defined
in Eq. (2.2) then yields the Ising Hamiltonian Hp [12, 21]. The Ising Hamiltonian is also referred to as the
problem Hamiltonian, hence, the subscript p is used. By cleverly manipulating the qubit biases and coupling
strengths, problems can be encoded onto the QPU, which will then find the optimal configuration of spins in
s for which the problem Hamiltonian function is minimized.

The QUBO form of the problem definition is incredibly similar to the Ising form given in Eq. (2.2). The
main difference between the two formulations is that in the Ising form the qubit states are representative of
the values -1 and 1, while in the QUBO form qubit states are representative of the traditional binary states 0
and 1. If the problem is formulated in any of the two forms, it can freely be converted to the other. To this
end, an Ising formulation can be converted to a QUBO formulation by substituting the relation from Eq. (2.3)
into Eq. (2.2) [10, 12, 21].

si = 2qi −1 (2.3)

To solve problems, the QPU is usually first initialized in a state of equal superposition, which defines the
initial Hamiltonian, Hi . Then, over a period of time, the problem Hamiltonian is gradually introduced, while
the influence of the initial Hamiltonian is gradually faded out. This is shown in Eq. (2.4) [4, 10, 55].

H (s) = (1− s) Hi + sHp (2.4)

for which typically:

s (t) = t

T
(2.5)

with t being current time, and T being a predefined total annealing time [10, 21, 55]. The value of the dimen-
sionless time, s, will vary from 0 at t = 0, to a value of 1 at t = T . Therefore, this allows a smooth Hamiltonian
evolution to take place.

Following the adiabatic theorem, if the evolution from initial Hamiltonian to problem Hamiltonian is
performed slowly enough, the system will tend to remain in the lowest energy ground state, thus finding the
optimal solution to the problem [4, 10, 55]. The practical implementation of this procedure, when transi-
tioning from an initial Hamiltonian to a problem Hamiltonian, is called quantum annealing. Hence, the term
quantum annealer is used for this type of quantum computer. In the idealized scenario, in a perfectly isolated
system, the behavior is exactly described by the adiabatic theorem, thus the term adiabatic quantum comput-
ing is also commonly used [52, 78]. In practice, since the QA operates in a finite-temperature environment,
around 15 mK [24], the behavior is not perfectly adiabatic.

While the Hamiltonian evolution takes place, qubits gradually fall into their final classical states, whilst
benefiting from the quantum tunneling phenomenon [52, 78]. The Hamiltonian function can be thought

10 2. Literature Study

of as representing an energy landscape. The optimal solution will be found at the lowest point in this en-
ergy landscape. During the evolution the qubit states are traversing this energy landscape to find the lowest
point. To arrive at a low energy solution, the qubit states may need to overcome a local peak in the energy
landscape. In classical annealing these energy barriers are overcome using additional energy in the form of
thermal fluctuations. However, for quantum annealing, through the process of quantum tunneling, qubits
can tunnel through peaks in the energy landscape, in order to fall into lower energy states [12, 52]. This pre-
vents the QA from getting stuck in a local minimum of the problem Hamiltonian, but instead allows for the
global minimum of the function to be found.

Practically, there are large differences between the GPQC and the QA in the way that problems are solved.
For the GPQC, quantum circuits are built using quantum gates, which are then applied to individual qubits.
For the QA, problems need to be formulated as Ising model or QUBO problems. However, in [59] a proof is
shown which indicates that adiabatic quantum computing and gate-based quantum computing are funda-
mentally equivalent. In this case however, adiabatic quantum computing refers to the idealized version of
quantum computing that strictly follows the adiabatic theorem. In general this is not the case for quantum
annealers, which behave similarly, but do not strictly follow the adiabatic theorem [57]. Nevertheless, some
of the common GPQC gates are translated for use with the D-Wave QA in [89]. As such, in the future it may be
possible to convert GPQC algorithms to work with quantum annealers, and vice versa.

2.2.3. Hardware Limitations
Though the number of qubits in the D-Wave 2000Q QA is relatively large, not every qubit is connected to
every other qubit. The hardware has a layout that can be represented using a Chimera graph [65]. Qubits are
arranged in bipartite unit cells of eight qubits, containing two subsets of four qubits. Every qubit in a subset
of four is connected to every other qubit in the opposite subset. Furthermore, unit cells of eight qubits are
connected to neighboring unit cells, to a degree where individual qubits will have at most six connections. In
total, the D-Wave 2000Q QPU contains an arrangement of 16×16 unit cells of eight qubits, thus having 2048
qubits in total [21]. In Fig. 2.1a a single unit cell of the Chimera graph is shown. In Fig. 2.2 the full arrangement
of qubits in the D-Wave 2000Q QPU is shown.

(a) Single Chimera unit cell consisting of 8 qubits. (b) Pegasus graph [83].

Figure 2.1: Quantum annealer hardware architectures.

The way in which the physical qubits are connected represents a disadvantage. For certain problems,
such as in the work demonstrated in [74], full qubit connectivity is required. This means that every qubit
must have a connection with every other qubit, in order to define the problem properly. Mathematically
this would mean that the qubit coupling strengths Ji j from Eq. (2.2) would be non-zero for every possible
combination of i and j . The Chimera graph, with its sparse connectivity between qubits, naturally forces
many of the coupling strengths to be zero.

The process of mapping a problem onto the physical hardware of the QA is called embedding. Since the
Chimera graph provides limited connectivity, certain problems are more difficult to embed onto the physical
hardware [65]. This problem can partially be overcome by chaining together multiple physical qubits to form

2.3. Selecting a Quantum Computer for Practical Applications 11

logical qubits with higher degrees of connectivity [33, 35]. This approach is rather inefficient, and quickly
reduces the size of the problem that can be solved. The problem could be alleviated altogether by imple-
menting a hardware architecture with all-to-all connectivity, as has been proposed in [53]. Having full qubit
connectivity can also speed up the solution time by several orders of magnitude for certain problems [38]. At
the time of writing, rather than full connectivity hardware, the next generation of quantum processors being
developed by D-Wave promise increased qubit connectivity with up to 15 possible connections per qubit.
This hardware layout is known as a Pegasus graph [30, 58], part of which is shown in Fig. 2.1b [83].

Another problem, as with GPQC, is that not every QPU is perfect, and some qubits may not be functional.
As is evident through D-Wave’s online quantum computing service Leap, the two QPUs available for public
use at the time of writing have 2030 and 2038 functional qubits respectively [24]. The malfunctioning qubits
can inhibit the embedding of particularly large problems, that could otherwise be embedded onto a 100%
functional QPU [35]. However, to circumvent this issue, methods are available for dividing large problems
into smaller sub-problems which are then solvable on the QPU hardware [66, 76].

In a recent review by Coffrin et al. [17], the challenges that current quantum annealers have, such as the
limited qubit connectivity, are further elaborated upon. The authors suggest the idea that quantum anneal-
ers may become useful as co-processors for classical computing systems, in a similar manner to how many
modern computers now have dedicated graphics co-processors. Furthermore, the methods used to bench-
mark the performance of quantum annealers are reviewed. Coffrin et al. expect that, with improvements, the
technology could become valuable for hybrid quantum-classical application to optimization problems.

2.3. Selecting a Quantum Computer for Practical Applications
So far, an overview of the two major quantum computing technologies has been given, being general pur-
pose quantum computers and quantum annealers respectively. For GPQC, topics such as qubits and qubit
manipulation were briefly discussed, as well as some of the basic applications for which the GPQC might
be useful. Specifically, the HHL algorithm was discussed in some depth, as this algorithm promises a much
faster method of solving linear systems of equations. This makes the algorithm extremely relevant to the typ-
ical finite-element problems that are solved in engineering applications. However, it was also seen that the
HHL algorithm has a number of caveats that limit its direct usability. Practical implementations of the HHL
algorithm, such as the work by Zheng et al., have been successful at solving very small linear systems, relying
on a small number of qubits. Overall, it has been found that state-of-the-art GPQC have approximately 50
qubits of computing power, but that easily accessible options from IBM and Rigetti offer in the range of 5 to
31 qubits [43, 73].

Compared to GPQC, the QA appears to be much more suitable for solving practical optimization prob-
lems. Mostly, this is because the technology has a far greater number of qubits available, with the current
D-Wave 2000Q system offering up to 2048 qubits. An interesting application of the QA was shown by Van
Vreumingen et al., showing that the technology can be used to perform a shape optimization of a finite-
element sphere. This indicates that the technology may also be useful for other typical engineering optimiza-
tion problems. The drawback is that such optimization problems must be formulated using an Ising or QUBO
problem framework, meaning that practical problems might need to be reformulated to be compatible with
the QA.

Overall, due to the more advanced state of the QA hardware, as well as the easy availability through an
online cloud service, it is from this point forward clear that the QA offers the most promising path towards
the practical utilization of quantum computing technology. Since the technology is specifically well suited to
solving optimization problems, this will be the focus of the next sections of the literature review. An overview
of optimization problems and applications of quantum annealing will be provided.

12 2. Literature Study

Figure 2.2: Full D-Wave 2000Q Chimera graph.

2.4. Optimization Problems 13

2.4. Optimization Problems
In aerospace engineering, a common problem is to find optimal designs for airframes, or other load-bearing
structures. Usually the target for the optimization is that the weight of the structure should be minimized.
Typical constraints on this type of optimization are the maximum stress in the structure, which gives a mea-
sure for how close the material is to failure under a given load, and the maximum allowed deflection, which
gives a measure for the stiffness of the structure. By optimizing the weight, costs can be saved due to increased
fuel-efficiency, or larger profits can be earned due to increased payload capacity. The Airbus Quantum Com-
puting Challenge poses exactly this problem, with respect to the optimization of a wingbox structure [2].

There can be many different variables that play a role in optimization problems. For structural parts,
some examples of these variables would be: the material used, the physical shape or design of the part, or the
thickness of specific regions. An optimal structural design will aim to make the optimal choice in all of these
aspects to achieve the lowest possible structural weight. When the most optimal set of values must be chosen
from a set of predefined candidate values, the problem is called a combinatorial optimization problem. A
recent book on the many different classical methods for optimization problems, including combinatorial
optimization problems, was written by Kochenderfer and Wheeler [51].

The typical issue with optimization problems is that, as the number of variables increases, the number
of possible solutions, i.e. the size of the solution space, drastically increases. At a certain point, the solution
space can get so large that it becomes infeasible to search for an optimal solution within a reasonable amount
of time. This is known as the curse of dimensionality [60]. Although there are many classical optimization
algorithms with different benefits, drawbacks, and computational requirements [51], there are indications
that quantum computing may be able to help solve optimization problems more quickly than is classically
possible [60]. Since the most promising candidate for solving practical optimization problems is the D-Wave
2000Q QA system, this will be the focus from this point forward.

Quantum annealers are only suitable for solving QUBO or Ising model problems. However, in essence,
these problems can be interpreted as general optimization problems, since the QA attempts to find an opti-
mal solution. Usually, the key point is to find a way to cast a practical optimization problem into the correct
mathematical form, so that it can be solved by the QA. The method to do so tends to be unique for every dif-
ferent type of problem or application. Thus, in the next section, more applications of the QA that were found
in literature will be discussed. A novel optimization algorithm was found in literature [49], and is also dis-
cussed. In the context of aerospace engineering and finite-element problems, the most relevant procedure,
as given in [85], is described in more detail.

2.4.1. Optimization Applications
A relatively early implementation and experimental test of combinatorial optimization using a QA is given
by Djidjev et al. [32]. Specifically, they investigate the maximum clique problem and the graph partitioning
problem. The former problem aims to find the maximum group of all-to-all connected vertices in a given
graph of vertices and edges. The latter problem aims to divide a graph into two subsets containing equal
numbers of vertices while minimizing the number of edges that are cut through. The paper elaborates on
some of the programming and solving features that are offered by the D-Wave QA. They conclude that, at the
time, a quantum advantage is only seen on problems specifically tailored to the capabilities of the QA. For
general problems the QA was not competitive with classical methods.

Quantum annealing has also been applied to financial asset exchange, typically in the context of cryp-
tocurrencies. The asset exchange problem has been analyzed in [37]. An example of a simple asset exchange
problem is the following. Given three investors, Investor 1 holds Bitcoin and wishes to trade for exactly 100
Ethereum, while Investor 2 and Investor 3 both hold 60 Ethereum and wish to trade for Bitcoin. A straight-
forward solution would be to have Investor 2 and 3 both trade 50 Ethereum, but there are many different
possible ways to satisfy the problem. The aim of the asset exchange problem is to find the most profitable
trade that still satisfies every investor’s wishes [37].

Another finance related optimization application of quantum annealing is described by Venturelli and
Kondratyev [86]. In this case, a method is described for portfolio optimization, which entails making the
most optimal investment choices given a number of assets, their expected returns, and the covariance be-
tween assets, such that a desired target return can be achieved. Interestingly, aside from describing a forward
annealing approach, which is the standard method by which the QA solves problems, Venturelli and Kon-
dratyev also describe a reverse annealing approach. Reverse quantum annealing is a method by which, in
simple terms, the QA is initialized in a classical candidate solution, after which the reverse annealing step
brings some of the qubits back into a quantum superposition state. From this partial quantum state, the

14 2. Literature Study

QA proceeds with the standard forward annealing step to find a new solution to the problem. This procedure
should allow for the QPU to find solutions that are more optimal than the initially assumed solution, although
the technique is extremely novel and has not been the subject of much research. A study by Ohkuwa et al.
aimed to establish an analytical framework for the reverse annealing process, such that its performance could
be studied [64]. The reverse annealing approach may prove to be a valuable process in iteratively solving op-
timization problems.

Aside from financial applications, Lucas presents an overview of more traditional optimization prob-
lems [56]. Lucas is also known for his earlier work on the Ising formulations of many different optimization
problems [55]. However, in the more recent work, Lucas provides more detail on QUBO derivations for the so-
called knapsack and number partitioning problems, and further discusses combinatorial optimization prob-
lems, such as the graph coloring problem. One issue that is alluded to, however, is that embeddings which
require long chains of physical qubits to represent logical variables tend to perform poorly [56]. This issue
is also discussed in [70], in which Perdomo-Ortiz et al. discuss the readiness of QA technology for real-world
practical industrial applications. The authors indicate that increasing connectivity between qubits, com-
pared to the current Chimera hardware architecture, can have a large impact on the practical applications
of QA technology. However, the main point of the study by Perdomo-Ortiz et al. is to function as a baseline
for future studies, by providing insight into how QA performance benchmarking should be done. The au-
thors go into both the physics of quantum annealing, as well as the potential optimization applications of the
technology. It is concluded that hybrid classical-quantum strategies will likely yield the most useful results
for optimization problems. However, there is a need for higher qubit connectivity and higher-order qubit
interactions (cubic or even quartic) to solve more complex practical problems.

Two more practical optimization problems which were studied using quantum annealing are related to
air traffic management [81] and to traffic flow optimization [62]. In the first case, Stollenwerk et al. [81] use
the QA to resolve conflicting aircraft flight-paths. A method is proposed by which this problem is mapped
into a QUBO problem, which can be solved on the QA. A simplified version of the problem, where conflicts
can only be resolved by applying a time delay at the start of the flights, is solved on the D-Wave QA [81].

The traffic flow optimization problem that was studied by Neukart et al. aims to minimize traffic conges-
tion [62]. Given a number of cars, each of which having a specific origin and destination point, can take one
of three proposed routes towards their destination. The optimal solution that minimizes congestion is then
the selection of routes for every car such that the number of cars using the same route segments is mini-
mized. The authors used a dataset consisting of 418 cars, traveling to or from the Beijing city center and the
airport [62]. This results in a problem that contains too many variables for the QA to directly solve. Therefore,
the authors implement a method of dividing the problem into solvable subproblems, and iterate the solving
procedure until no further improvement of the general solution is found. The results of the study are promis-
ing, showing a clear improvement of the traffic flow. The constraint that was used to enforce that every car can
take only one route may be adapted to other contexts, as evidenced in [85], and could be an extremely useful
technique for further studies. This constraint is known as the unary constraint and is also briefly discussed
by Lucas [56].

An alternative approach to formulating constraints was given by Hen and Spedalieri [42]. The approach
in [62] uses a penalty function to enforce a constraint, and is relatively simple to introduce in the QUBO
problem formulation. However, this penalty function approach, according to Hen and Spedalieri, comes
with numerous disadvantages. Namely, the penalty function necessitates all-to-all qubit connectivity, which
in turn makes embedding the problem onto the QPU hardware more difficult. The approach by Hen and
Spedalieri aims to construct a so-called driving Hamiltonian, which takes the constraint into account in a
formulation that is more naturally usable with the QA, and eliminates the need for penalty functions. This
approach allows for more efficient use to be made of the limited hardware resources of the QA. In [41], Hen
and Sarandy set up guidelines on how to construct driver Hamiltonian functions.

Another recent study by Ajagekar et al. [3] investigates four different optimization problems. The most
difficult problem that was studied was a vehicle routing problem. The problem can be described as having a
fleet of vehicles, which depart from a depot, must pass by specific locations to pick up passengers, and finally
return to the depot. In this case, the novelty of the study is that the target for the optimization is a ratio of
two functions, rather than a single objective function. This ratio is defined as the traveling cost divided by
the working time, which is to be optimized for a fleet of vehicles, leading to the most cost-effective set of
routes. Using classical methods, large-scale vehicle routing problems could not be solved within 24 hours.
The proposed method that uses the QA could solve even the largest-scale problem in less than 10 hours. The
results therefore indicate a clear quantum advantage for large-scale problems.

2.5. Conclusion 15

2.4.2. Quantum Assisted Genetic Algorithm
A novel hybrid quantum-classical optimization algorithm is described by King et al. [49]. In the study, a
quantum-assisted genetic algorithm is proposed, which additionally makes use of reverse annealing. Ge-
netic algorithms can be used to solve optimization problems iteratively. In general, an initial population of
random candidate solutions is generated, after which every candidate is randomly recombined, mutated,
and selected according to ‘survival of the fittest’ principles. In this case, the mutation operation of the genetic
algorithm is being performed through reverse annealing. The algorithm was tested using randomly gener-
ated Ising model problems, rather than attempting to solve real practical problems. Nevertheless, the results
were promising and indicated that the reverse annealing procedure is a viable choice for the mutation step in
genetic algorithms. Furthermore, in most cases the theoretical time-to-solution was better than for standard
quantum annealing and a number of classical solution methods. However, for this algorithm there is a dis-
parity between the theoretical time-to-solution and the actual wall-clock time needed to solve the problem,
due to QPU access overhead, network latency, and other reasons. These issues may partially be solved as QA
hardware become more easily accessible in the future [49].

2.4.3. Finite-Element Shape Optimization
The most relevant application of quantum annealing to an optimization problem, in the context of aerospace
engineering, is found in the work by Van Vreumingen et al. [85]. It was already briefly reviewed in a previous
section, but will now be discussed in more depth. The authors show a method for optimizing the shape of a 3-
dimensional finite-element sphere, such that the number of rays, emitted from a point-source and reflected
towards a certain plane, is minimized. To achieve this goal, the approach is to iteratively consider different
candidate positions of the vertices that define the sphere, and allow the QA to find the optimal arrangement.

The algorithm proposed by Van Vreumingen et al. proceeds as follows. A partial loss function is defined
that will calculate, for a single simplex, the fraction of rays reflected towards the plane that must be avoided.
This partial loss function requires the three vertices of the simplex to have specific assumed mutations, which
are randomly generated. The total loss function for the sphere is then calculated by summing the partial loss
functions for every simplex in the discretization, which is the target for minimization. A constraint is added
to the total loss function to ensure that every vertex can only exhibit one mutation. As such, the total loss
function is defined as:

L̃ (S,x) =L (S,c (x))+λ
∑

i

(
K∑

j=1
xi j −1

)2

(2.6)

with L̃ (S,x) being the total loss function, which is to be minimized. Furthermore, L (S,c (x)) is the sum of the
partial loss functions of every simplex s ∈ S, for the configuration of mutations c (x) with the binary solution
vector x. The latter term in the total loss function defines the unary constraint, enforcing that every vertex
can have only one mutation. Thus, λ is a penalty coefficient, acting on the binary entries xi j of the solution
vector, for every simplex i , and for every assumed mutation j ∈ {1 . . .K }.

To run the optimization routine, the initial discretized sphere is generated. Then starting the iteration
loop, K possible random mutations per vertex are assumed, with the radius of the mutation decreasing for
every iteration of the algorithm so that the solution eventually converges. The total loss function is calculated
and is used to generate the appropriate QUBO matrix. The QA uses the QUBO matrix to find the solution
bitstring x, which indicates which mutation, if any, gives the most optimal shape of the discretized sphere.
This procedure is iterated until the desired result is achieved [85]. Given that a suitable loss function can be
formulated, this procedure can potentially be adapted to other finite-element related optimization problems.

2.5. Conclusion
In this literature study, an overview of GPQC and QA technologies was given. Based on an initial investigation
into the current state of these technologies and the types of problems these might help to solve, it was decided
that the most promising path towards practical applications of quantum computing technology would be
through the quantum annealer. This is because the QA offers vastly more qubits, having roughly 2000 qubits
as opposed to the roughly 50 qubits present in state-of-the-art GPQC. Aside from the increased number of
qubits, the state-of-the-art QA is also conveniently accessible through online means, while for GPQC this is
not the case. Since the QA offers more qubits, and is suited to solving optimization problems, this topic has
been further researched.

16 2. Literature Study

The QA can only solve optimization problems that are defined using a QUBO or Ising model formulation.
When presented with such a problem, the QA will attempt to find the solution state for which the Hamiltonian
energy is minimized. To prevent the proposed solution from getting stuck in local minimum solutions, the
QA relies on quantum tunneling to aid in finding the global minimum solution. There is some evidence to
suggest the QA could achieve a quantum speedup compared to classical methods [48, 75, 80], however, for
practical problems such a speedup remains an open question.

Nevertheless, numerous studies have used the QA to solve practical problems. In particular, the work
by Van Vreumingen et al. [85] shows that the QA might be useful in the context of finite-element problems.
Their work shows that the shape of a finite-element sphere can be optimized to minimize the number of rays
that, when emitted from a point-source, reflect towards a certain plane. This is not a typical finite-element
problem as they are known within aerospace engineering, where the finite-element model is used to calculate
the displacements and stresses within load-bearing structures. However, the fact that a sphere was defined
using finite-elements, and a shape optimization was performed, indicates that perhaps the QA may also be
useful within more typical aerospace optimization problems.

Since the QA shows promise for practical optimization problems, this thesis will focus on this topic. In
aerospace engineering, finite-element problems are quite common and there is a demand for optimized
lightweight structures, as these help to increase fuel efficiency and reduce operational costs. Thus, the goal is
set to investigate a method to optimize simple finite-element structures using the QA. Since quantum com-
puting, in general, is still a novel technology, the simplest type of finite-element structure will be investigated.
As such, simple 2-dimensional truss structures are considered, and methods to cast an optimization of such
structures into a QUBO form are presented in this thesis. Before this work is shown however, the upcoming
chapter will start with an introduction to practical optimization problems, by showing how the QA can be
used to solve the Traveling Salesman Problem.

3
Introduction to Practical QUBO Problems

In this chapter, the application of quantum annealing to practical problems will be discussed. As an intro-
duction to the method of formulating QUBO problems, the well-known Traveling Salesman Problem (TSP)
will be shown.

3.1. Quadratic Unconstrained Binary Optimization
For any problem that one wishes to solve using a QA, the first step is to recast the problem into either a QUBO
or Ising formulation. Throughout this report, the QUBO formulation is preferred, since its binary nature
allows for problems to be defined using a single matrix. In turn, this leads to a more intuitive understanding
of the nature of QUBO problems. The goal for this chapter is to familiarize the reader with simple QUBO
problems and attempt to instill some intuitive understanding of the nature of these problems.

A QUBO problem can be wholly defined through an N ×N matrix Q. The QA attempts to find the optimal
bitstring x of length N that minimizes the Hamiltonian energy H , as shown in Eq. (3.1) [36].

min(H) = xT Qx

s.t . xi ∈ {0,1}∀i ∈ {1,2, . . . , N }
(3.1)

To set up an optimization problem for use with the QA, the main challenge is therefore to find a way to
define an objective function that fits in the square matrix Q. The diagonal entries of the QUBO matrix are the
linear terms of the objective function, while all off-diagonal entries define quadratic terms in the objective
function. Although not strictly necessary, it is convenient to write Q as an upper-diagonal matrix, with all
entries below the diagonal set equal to zero.

As an example of a small arbitrary QUBO problem, consider the objective function defined in Eq. (3.2).

H = 1x1 +2x2 +3x3 −4x1x2 +5x1x3 −6x2x3 (3.2)

The matrix Q that corresponds to the objective function in Eq. (3.2) must then be defined as shown in
Eq. (3.3). Correspondingly, the bitstring of unknown variables is defined as in Eq. (3.4).

Q =
1 −4 5

0 2 −6
0 0 3

 (3.3)

x =
x1

x2

x3

 (3.4)

The Hamiltonian energy is then calculated by performing xT Qx. Performing this calculation will tech-
nically yield H = 1x2

1 + 2x2
2 + 3x2

3 − 4x1x2 + 5x1x3 − 6x2x3. However, since the variables in x are binary, and
therefore must be in {0,1}, it follows that x2

i = xi . This simplification is what enables the use of both ‘lin-
ear’ and ‘quadratic’ terms in the QUBO matrix. Coefficients on the matrix diagonal are multiplied twice by
the same variable, yielding a linear contribution to the objective function, and off-diagonal coefficients are
multiplied with two different variables, therefore giving a quadratic contribution.

17

18 3. Introduction to Practical QUBO Problems

A convenient way to show QUBO matrices, and aid in interpreting them directly, is to include the set of
variables along the top and side of the matrix. This allows for quick identification of linear and quadratic
terms. An example is shown in Eq. (3.5).

Q =

x1 x2 x3 1 −4 5 x1

0 2 −6 x2

0 0 3 x3

(3.5)

In the next section, an introduction to practical applications of QUBO problems is discussed, based on
the well-known Traveling Salesman Problem.

3.2. Traveling Salesman Problem
The Traveling Salesman Problem (TSP) is a well-known problem that is difficult to solve classically. The TSP
can be phrased as a question:

Given a number of cities, what is the shortest possible route through all cities that returns to the
starting location?

The TSP is known to be an NP-complete problem [55]. This means that, to find a solution to the problem,
it will take a Non-deterministic Polynomial (NP) amount of time. Put simply, it is a problem for which clas-
sical solution methods are inefficient, and once the problem has grown beyond a certain scale, it becomes
practically impossible to solve. However, it will be shown that the TSP lends itself well to being formulated as
a QUBO problem, which means that it can be solved quite straightforwardly using the QA.

A mathematical formulation for the TSP is given by Lucas, and is an extension of the Hamiltonian cycle
problem [55]. The Hamiltonian cycle problem asks whether, for a connected graph of nodes, a route exists
that visits every node only once, and returns to the origin. The only difference between the Hamiltonian cycle
problem and the TSP is that the TSP includes the distances between nodes, and asks for the shortest possible
route. An application of the mathematical formulation provided by Lucas is given by Feld et al. [34].

However, for this chapter, it is more useful to set up a QUBO formulation for the TSP using a more intuitive
approach. Rather than investigating the exact mathematical definitions, it will be shown that the TSP can also
directly be cast into a QUBO matrix. By setting up the TSP from first principles, a foundation will be laid for
the basic understanding of QUBO problems, which will be useful for the following chapters in this thesis.

3.2.1. Beginnings of a TSP QUBO
When setting up a QUBO problem, by directly creating a QUBO matrix, the first step is to consider the number
of variables needed to define the problem. Furthermore, it is important to consider what the desired output
of the optimization should be, and how the solution bitstring should be interpreted. To this end, the basic
information for a simple TSP is first given, as shown in the map in Fig. 3.1.

A fully connected set of four cities is used to define the TSP. These cities will be named A, B, C, and D. The
route that the salesman will use to travel through these cities can be defined in four steps, by sequentially
indicating which city the salesman visits. For example, a route might be (B, A, C, D), indicating that the
salesman starts in city B, and travels through A, C, and D. It is a given that the salesman must return to the
origin city, city B, so there is no need to explicitly include this in the route (B, A, C, D).

The presence of the salesman in a particular city is to be indicated with a binary variable. If the salesman
can be in any of the four cities at each of the four points that define his route, then four sets of four binary
variables could be used to define his route. Therefore, the QUBO problem can be defined using a total of 16
variables, resulting in a 16×16 QUBO matrix. The solution bitstring can then be set up as shown in Eq. (3.6).
A set of four bits defines the salesman’s presence in a particular city, with four sequential sets defining his
route. For example, the route (B, A, C, D) would be defined by the bitstring shown in Eq. (3.7).

x = [
xA1 xB1 xC 1 xD1 xA2 xB2 xC 2 xD2 xA3 xB3 xC 3 xD3 xA4 xB4 xC 4 xD4

]T
(3.6)

x = [
0 1 0 0 1 0 0 0 0 0 1 0 0 0 0 1

]T
(3.7)

3.2. Traveling Salesman Problem 19

−4 −3 −2 −1 0 1 2 3 4 5
X-Coordinate

−5

−4

−3

−2

−1

0

1

2

3

Y-
Co

or
di

na
te

3.00

4.24

6.40

6.71

8.94

7.28

A

B

C

D

Traveling Salesman Problem

Figure 3.1: Example TSP

It is important to know what the solution bitstring represents when setting up QUBO problems. Now that
this has been discussed, and the desired output format has been chosen, the next task is to start defining the
TSP by filling in the QUBO matrix.

3.2.2. Distances
The main objective of the TSP is to find the shortest possible cycle that connects all cities. As such, the defin-
ing feature of the TSP, the distances between cities, must be added to the QUBO matrix. The next question is
where these distances should be placed in the QUBO matrix.

Considering that the solution bitstring is interpreted as four sets of four variables, the QUBO matrix as a
whole can also be interpreted in 4×4 sized submatrix sections. The submatrices on the diagonal then relate to
a choice of a particular city, while the off-diagonal submatrices relate two choices of cities to each other. Since
the off-diagonal submatrices relate two choices of cities to each other, these provide the ideal opportunity to
include the distances between cities.

The distances will not need to be added to all of the off-diagonal submatrices in the QUBO matrix. In-
stead, the distance must only be added to the off-diagonal that relates two consecutive choices of cities. For
example, the off-diagonal submatrix that relates the first and second cities to each other should contain the
information about the distance between these two cities. However, the off-diagonal submatrix that relates
the first and third cities to each other does not represent a portion of the route that the salesman will travel.
Since, the salesman will be traveling consecutively from the first to second city, from the second to third city,
from the third to fourth city, and returning from the fourth to first city. Therefore, off-diagonal submatrices
that relate non-consecutive cities cannot contribute useful information about the route. Note that this means
that the distances for the last step of the TSP, traveling from the last city back to the origin, must be placed in
the upper-right corner of the QUBO matrix. A schematic representation of the full QUBO matrix, divided into
submatrices, is shown in Eq. (3.8).

Choice 1 Distance 1 → 2 0 Distance 4 → 1
0 Choice 2 Distance 2 → 3 0
0 0 Choice 3 Distance 3 → 4
0 0 0 Choice 4

 (3.8)

The distances between cities will therefore be defined using a 4×4 matrix. This distance matrix must then
be added to the QUBO matrix at the four relevant off-diagonal positions, as indicated in Eq. (3.8). The distance
matrix, which includes the distances between all possible combinations of cities, can then be defined as
shown in Eq. (3.9). Note, the diagonal entries in this matrix represent the distance from a city to itself, and
will therefore be zero. Furthermore, the matrix will be symmetric, since, for example, the distance from City
A to City B is the same as the distance from City B to City A. Filling in the distance matrix for the example TSP,
as was shown in Fig. 3.1, gives the distance matrix in Eq. (3.10).

20 3. Introduction to Practical QUBO Problems

D =

A B C D


dA A dAB dAC dAD A
dB A dBB dBC dBD B
dC A dC B dCC dC D C
dD A dDB dDC dDD D

(3.9)

D =

A B C D


0 3.00 4.24 6.40 A
3.00 0 6.71 8.94 B
4.24 6.71 0 7.28 C
6.40 8.94 7.28 0 D

(3.10)

Adding the distance matrix to the QUBO matrix in the four correct positions yields the QUBO matrix
shown in Eq. (3.11), which defines the distances between cities, for each step in the route for the TSP.

Q =



0 0 0 0 0 3.00 4.24 6.40 0 0 0 0 0 3.00 4.24 6.40
0 0 0 3.00 0 6.71 8.94 0 0 0 0 3.00 0 6.71 8.94

0 0 4.24 6.71 0 7.28 0 0 0 0 4.24 6.71 0 7.28
0 6.40 8.94 7.28 0 0 0 0 0 6.40 8.94 7.28 0

0 0 0 0 0 3.00 4.24 6.40 0 0 0 0
0 0 0 3.00 0 6.71 8.94 0 0 0 0

0 0 4.24 6.71 0 7.28 0 0 0 0
0 6.40 8.94 7.28 0 0 0 0 0

0 0 0 0 0 3.00 4.24 6.40
0 0 0 3.00 0 6.71 8.94

0 0 4.24 6.71 0 7.28
0 6.40 8.94 7.28 0

0 0 0 0
0 0 0

0 0
0



(3.11)

3.2.3. Constraints

Although the QUBO matrix for the TSP as given in Eq. (3.11) defines the distances to all cities, along every part
of the route, the QA would still not successfully yield a valid solution to the problem. This is because there
are not yet any constraints in place that help the QA to find valid solutions. In this section, the constraints
necessary for creating a functional QUBO formulation of the TSP will be discussed and shown.

One can observe that the QUBO matrix in Eq. (3.11) only contains positive terms. This means that the
Hamiltonian energy can only have values greater than, or equal to zero. The minimum energy solution would
in this case therefore have exactly zero Hamiltonian energy. However, it can also be seen that many different
solutions could yield zero-energy solutions. To see this, it is only necessary to identify pairs of variables
that point towards zero-valued coefficients in the QUBO matrix. For example, using the arbitrary bitstring
from Eq. (3.12) and performing xT Qx can be seen to yield a zero-energy solution. Using this bitstring, the
relevant terms that ‘contribute’ to the zero-energy solution are bolded and underlined in the QUBO matrix in
Eq. (3.13).

x = [
1 0 1 0 0 0 0 0 0 1 0 1 0 0 0 0

]T
(3.12)

3.2. Traveling Salesman Problem 21

1 0 1 0 0 0 0 0 0 1 0 1 0 0 0 0



0 0 0 0 0 3.00 4.24 6.40 0 0 0 0 0 3.00 4.24 6.40 1
0 0 0 3.00 0 6.71 8.94 0 0 0 0 3.00 0 6.71 8.94 0

0 0 4.24 6.71 0 7.28 0 0 0 0 4.24 6.71 0 7.28 1
0 6.40 8.94 7.28 0 0 0 0 0 6.40 8.94 7.28 0 0

0 0 0 0 0 3.00 4.24 6.40 0 0 0 0 0
0 0 0 3.00 0 6.71 8.94 0 0 0 0 0

0 0 4.24 6.71 0 7.28 0 0 0 0 0
0 6.40 8.94 7.28 0 0 0 0 0 0

0 0 0 0 0 3.00 4.24 6.40 0
0 0 0 3.00 0 6.71 8.94 1

0 0 4.24 6.71 0 7.28 0
0 6.40 8.94 7.28 0 1

0 0 0 0 0
0 0 0 0

0 0 0
0 0

(3.13)

The arbitrary zero-energy solution bitstring from Eq. (3.12) is actually an invalid result. Since, for the first
and third step of the route two cities are simultaneously chosen, while for the second and fourth steps in the
route no choice is made at all. This type of behavior is undesirable, as the lowest energy solution should be a
valid solution, where exactly one city is chosen for each stop along the route. This problem can be amended
by using a penalty function that causes the Hamiltonian energy of invalid solutions to become unfavorable
compared to valid solutions. The first penalty function that will be added to the TSP QUBO is one that will
ensure exactly one city is chosen for every stop in the route.

Unary Constraint

The penalty function that helps the QA select exactly one variable from a given set is sometimes known as
the unary constraint. The unary constraint and its mathematical background are discussed in more detail in
Section 4.2.2 of this thesis. However, the essence of the unary constraint, in matrix form, is straightforward
to understand. For this particular TSP, one of the four cities must be chosen, for each stop along the route.
This means that for each set of four binary variables, only one may have a value of 1, while the others must
have a value of 0. The penalty matrix for the unary constraint that would promote this behavior is shown
in Eq. (3.14). With the strength of the unary constraint set to a value of λ, note the structure of this penalty
matrix: −λ is written on the diagonal, while all off-diagonal terms have a value of 2λ.

U =

A B C D


−λ 2λ 2λ 2λ A
0 −λ 2λ 2λ B
0 0 −λ 2λ C
0 0 0 −λ D

(3.14)

The lowest energy state for this penalty matrix, with a Hamiltonian energy of −λ, is found when exactly
one of the four variables is equal to 1, with the remaining variables being 0. Given that this unary constraint
submatrix acts on four binary variables, it has a total of 24 = 16 unique possible solution states. These are
indicated in Table 3.1, including the corresponding Hamiltonian energy. It can be seen that the non-valid
(NV) solution states lead to higher Hamiltonian energies than the valid (V) solution states, making the non-
valid solutions less favorable. Thus, this 4×4 submatrix can be added to the main TSP QUBO matrix along the
diagonal, to ensure that at each point along the route only one of the four cities is selected. This then yields
the TSP QUBO matrix shown in Eq. (3.15).

22 3. Introduction to Practical QUBO Problems

Validity NV V V NV V NV NV NV V NV NV NV NV NV NV NV
x1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1
x2 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1
x3 0 0 0 0 1 1 1 1 0 0 0 0 1 1 1 1
x4 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1
H 0 -1 -1 0 -1 0 0 3 -1 0 0 3 0 3 3 8

Table 3.1: Table containing every solution of the unary constraint acting on four variables, with a constraint strength of λ= 1.

Q =



−λ 2λ 2λ 2λ 0 3.00 4.24 6.40 0 0 0 0 0 3.00 4.24 6.40
−λ 2λ 2λ 3.00 0 6.71 8.94 0 0 0 0 3.00 0 6.71 8.94

−λ 2λ 4.24 6.71 0 7.28 0 0 0 0 4.24 6.71 0 7.28
−λ 6.40 8.94 7.28 0 0 0 0 0 6.40 8.94 7.28 0

−λ 2λ 2λ 2λ 0 3.00 4.24 6.40 0 0 0 0
−λ 2λ 2λ 3.00 0 6.71 8.94 0 0 0 0

−λ 2λ 4.24 6.71 0 7.28 0 0 0 0
−λ 6.40 8.94 7.28 0 0 0 0 0

−λ 2λ 2λ 2λ 0 3.00 4.24 6.40
−λ 2λ 2λ 3.00 0 6.71 8.94

−λ 2λ 4.24 6.71 0 7.28
−λ 6.40 8.94 7.28 0

−λ 2λ 2λ 2λ
−λ 2λ 2λ

−λ 2λ
−λ



(3.15)

Repeated Visit Constraint

With the QUBO matrix given in Eq. (3.15), the distances between cities have been defined, and thanks to the
unary constraint the QA should choose only one city for each point along the route of the traveling salesman.
However, one problem remains: nothing is preventing the traveling salesman from just staying in the same
city all the time, and not traveling to any of the other cities. Phrased differently, a constraint is needed that
prevents the traveling salesman from visiting the same city multiple times along his route.

Recall that distances are defined using off-diagonal 4×4 submatrices. When the distances between the
cities were defined, with the submatrix shown in Eq. (3.10), the distance from a city to itself was left at a
value of zero. However, these zero entries on the submatrix diagonal can be changed to prevent the traveling
salesman from visiting the same city multiple times. Setting the repeated visitation penalty strength to a value
of γ, the penalty submatrix would take the form as shown in Eq. (3.16). This repeated visitation submatrix
must be added to all off-diagonal submatrices in the main QUBO matrix, since a repeated visitation must
be prevented at all points in the route. Therefore, adding the repeated visitation constraint to the main TSP
QUBO matrix, the final QUBO matrix shown in Eq. (3.17) is found.

V =

A B C D


γ 0 0 0 A
0 γ 0 0 B
0 0 γ 0 C
0 0 0 γ D

(3.16)

3.2. Traveling Salesman Problem 23

Q =



−λ 2λ 2λ 2λ γ 3.00 4.24 6.40 γ 0 0 0 γ 3.00 4.24 6.40
−λ 2λ 2λ 3.00 γ 6.71 8.94 0 γ 0 0 3.00 γ 6.71 8.94

−λ 2λ 4.24 6.71 γ 7.28 0 0 γ 0 4.24 6.71 γ 7.28
−λ 6.40 8.94 7.28 γ 0 0 0 γ 6.40 8.94 7.28 γ

−λ 2λ 2λ 2λ γ 3.00 4.24 6.40 γ 0 0 0
−λ 2λ 2λ 3.00 γ 6.71 8.94 0 γ 0 0

−λ 2λ 4.24 6.71 γ 7.28 0 0 γ 0
−λ 6.40 8.94 7.28 γ 0 0 0 γ

−λ 2λ 2λ 2λ γ 3.00 4.24 6.40
−λ 2λ 2λ 3.00 γ 6.71 8.94

−λ 2λ 4.24 6.71 γ 7.28
−λ 6.40 8.94 7.28 γ

−λ 2λ 2λ 2λ
−λ 2λ 2λ

−λ 2λ
−λ



(3.17)

The last step before the TSP QUBO matrix is complete is to choose appropriate values for the strength
of the unary and repeated visit constraints. Since these two constraints are considered equally important
[34], the values of λ and γ will be chosen equal to each other. The constraint strength must be chosen to be
high enough that the constraints are always obeyed. However, choosing constraint strength values that are
excessively high can cause the distances for the TSP to become relatively less significant. This can make it
more difficult for the QA to find the optimal solution. Therefore, fine-tuning the constraint strength can be
a trial-and-error process. Typically the constraint strength must be higher than the highest valued entry in
the QUBO matrix. An initial guess for the constraint strength of λ= γ= 20, which is approximately twice the
maximum road length, was seen to provide satisfactory results.

3.2.4. Embedding the TSP
Once the final QUBO matrix has been produced, the problem is nearly ready to be submitted to the QA. The
last remaining step is to find an embedding that will fit the problem described by the QUBO matrix from
Eq. (3.17) onto the hardware of the QPU. By counting the number of off-diagonal non-zero entries in, for
example, the top row of the QUBO matrix, it can be seen that the first binary problem variable must form
connections with 12 other problem variables. Since the quantum annealing hardware only supports up to
six connections per qubit, this leads to the troublesome situation where the problem will not directly fit on
the QPU. To remedy this issue, an embedding must be found that uses chains of physical qubits to represent
the individual logical problem variables. By using physical qubit chains to represent single logical problem
variables, the total connectivity of the embedded logical variables can be increased to meet the demands of
the problem at hand. For this small TSP such an embedding can be found easily, and in a fraction of a second,
by using the minorminer Python tool provided by D-Wave, which is openly available online [19].

A schematic of the logical variable connectivity structure of the TSP is shown Fig. 3.2a. This schematic was
produced from the results of a quantum annealing attempt, using the D-Wave Inspector tool [25]. Each circle
in the lower portion of the schematic represents one of the logical problem variables, of which there are 16 in
total. The circles are filled in with either white or orange coloring, depending on the solution that QA found,
with white and orange corresponding to 0-bits and 1-bits respectively. This solution will be discussed later.
The variables are (unfortunately) presented in a seemingly arbitrary ordering. The lines connecting logical
variables represent the non-zero off-diagonal terms in the QUBO matrix, where the color intensity of the line
(dark or bright orange) corresponds to the magnitude of the QUBO matrix term. It can be seen that nearly all
variables are connected, but there are still a number of gaps in the connectivity structure.

The physical embedding that was found for the logical problem structure is shown in Fig. 3.2b. This
schematic shows the physical layout of the QPU, with each of the circles in the schematic representing physi-
cal qubits. The color that these circles are filled with relates to the solution that the QA found to the problem,
which will be discussed later, with white and blue corresponding to the Ising states -1 and +1 respectively.
Even though a QUBO problem was submitted, the software shows the results in the schematic of the physi-
cal embedding in an Ising form. The physical qubits are connected with either blue or white lines, with the
color intensity corresponding to the strength of the coupling. Negative couplings are white, and help coupled
qubits fall into similar final states. There are no negative off-diagonal terms in the QUBO matrix, so it can

24 3. Introduction to Practical QUBO Problems

be concluded that all white lines in this schematic belong to chained qubits, which are collectively acting
as individual logical variables. Positive couplings are shown as blue lines between qubits, and steer coupled
qubits toward opposite states. The blue lines therefore correspond to the positive off-diagonal values in the
QUBO matrix.

When the QA solves problems it is possible that qubit chains are ‘broken’. This means that not every qubit
in the chain has the same final solution state. Broken qubit chains are not desirable, since the solution state
for the logical variable that they represent then becomes ambiguous. Thus, the chain strength parameter of
the QPU must be set to a value that ensures that chain breaks do not occur. In this case, the chain strength
was set to a value of 2λ= 40. This value was chosen since it is the same as the maximum value in the QUBO
matrix.

A single logical problem variable has been highlighted in purple in Fig. 3.2a. The embedded physical
chain of qubits that represent this logical variable is also highlighted in purple in Fig. 3.2b. It is clear that the
physical embedding of this small TSP is already quite complicated, and uses far more physical qubits than
the number of logical problem variables might initially suggest. To be exact, while the logical problem only
has 16 variables, the embedding uses 81 physical qubits. However, having finally also set up an embedding
for the TSP, the problem can indeed be solved by the QA.

(a) Logical problem connectivity structure. (b) Physical embedding.

Figure 3.2: A highlighted logical problem variable and its physically embedded counterpart. Figures produced using the D-Wave
Inspector tool [25].

3.2.5. Results
Submitting the TSP to the QA, using an embedding that ensures the problem fits onto the QPU hardware,
a solution to the problem is found. The QA finds the solution bitstring given in Eq. (3.18). This solution
represents the route (C, D, A, B), shown in Fig. 3.3. The route has a total length of 23.39 units. Although the
proposed route starts and ends in city C, traveling the cycle counterclockwise, alternate solutions can also be
found that consist of the same cycle, but start with different cities or travel the cycle in the clockwise direction.

x = [
0 0 1 0 0 0 0 1 1 0 0 0 0 1 0 0

]T
(3.18)

To confirm the result of the QA, a simple exhaustive analysis is also performed, calculating the total length
of every possible route. This analysis confirms that the QA has indeed found the minimum length cycle, and
that there are eight variations of this cycle in total, each with different starting positions and travel directions.
The Python code that was used to produce the quantum annealing and exhaustive analysis results is available
online [93].

3.2. Traveling Salesman Problem 25

−4 −3 −2 −1 0 1 2 3 4 5
X-Coordinate

−5

−4

−3

−2

−1

0

1

2

3

Y-
Co
or
di
na
te

TSP Solution Route

7.28

A

6.40

B

3.00

C

6.71

D

Figure 3.3: Optimal route for the TSP.

3.2.6. Final Comments
To close this chapter, some final comments are offered regarding the Traveling Salesman Problem and the
QUBO formulation that was presented.

It has been mentioned that a mathematical foundation for the TSP QUBO has been laid out by Lucas,
which has been implemented by Feld et al. Yet, in this chapter, a different formulation was provided based
purely on an intuitive understanding of QUBO problems. The reason for providing this alternative formula-
tion was to instill a similar intuitive understanding of QUBO problems in a reader who might be relatively new
to this topic. Nevertheless, comparing the formulations provided in this chapter and the one implemented by
Feld et al. reveals that the final QUBO matrices have many similarities. The main difference between the two
methods is that the solution bitstring is interpreted differently, which in turn causes the data in the QUBO
matrix to be structured differently.

The approach taken in the intuitive formulation leads to a solution bitstring that is interpreted as four
sequential choices of different cities. In other words, the bitstring consists of groups of 4 variables that each
represent a different city, and the bitstring is interpreted sequentially. This leads to a solution bitstring as
shown in Eq. (3.19). However, the solution bitstring used by Feld et al. is ordered in the manner shown in
Eq. (3.20). In their implementation, the bitstring consists of groups of 4 variables that each represent the
same city, and the ordering of the cities is determined within these groups. Overall, the differences between
the two methods are mostly superficial, and both methods lead to functional QUBO formulations of TSP
problems. In the opinion of this author, the intuitive method described in this chapter yields a QUBO matrix
that is easier to understand.

x = [
xA1 xB1 xC 1 xD1 xA2 xB2 xC 2 xD2 xA3 xB3 xC 3 xD3 xA4 xB4 xC 4 xD4

]T
(3.19)

x = [
xA1 xA2 xA3 xA4 xB1 xB2 xB3 xB4 xC 1 xC 2 xC 3 xC 4 xD1 xD2 xD3 xD4

]T
(3.20)

One aspect that was excluded from the formulation, for simplicity, is a constraint that allows for certain
road sections to be considered invalid. For this simple TSP, with only four cities, it was assumed that all cities
are connected to each other via roads. However, this may not realistically be the case, as certain roads might
simply not exist, or are perhaps blocked by traffic. If this is the case, such roads can be penalized by simply
artificially increasing their length. If there are shorter valid routes available, the QA will try to find these
instead. The work by Feld et al. provides some additional mathematical detail, although this penalization
was also not relevant to their fully connected network of cities.

4
Truss Sizing Optimization: Direct QUBO

Method

Truss structures are considered one of the simplest types of structures that an engineer may want to analyze
and optimize. Typically, a truss structure is optimized to have minimal total mass, while being compliant
with various stiffness or strength requirements. In this chapter, the truss structure optimization is discussed,
and a method of casting this problem into the QUBO formulation is proposed.

4.1. Overview
One of the most basic types of structures that engineers learn to analyze are truss structures. Various opti-
mization problems can be imagined for truss systems. Typically, an objective will be to minimize the total
mass of the truss system, whilst obeying constraints on the allowable stress, displacement, or stability of the
structure. In general, there are three different types of optimization frameworks that can be applied, namely,
sizing optimization, shape optimization, and topology optimization. In the context of a truss structure opti-
mization, a sizing optimization will aim to uncover the optimal solution by allowing the truss cross-sections
to be altered. A shape optimization will aim to optimize the objective by moving the position of the nodes
upon which trusses are defined. Topology optimization would aim to find the optimal set of trusses by allow-
ing certain members to disappear altogether [77].

Classically, the truss optimization problem is well-studied. Especially the truss sizing optimization has re-
ceived much attention, with many different approaches being formulated. One distinction between methods
is that some rely on continuous design variables, while others attempt to find an optimum by considering a
set of discrete design variables. An overview of classical truss optimization methods, relying on discrete de-
sign variables been provided by Stolpe [82].

In the case of quantum annealing, the only variables that the annealer can use are binary variables. In
classical computing, sets of binary variables can be used to represent continuous design variables using
floating-point numbers. However, common floating-point number schemes require 32 or 64 bits to encode
a single number. Due to the limited number of qubits available in the QA, it would be very impractical to
implement a method that attempts to use continuous variables. Given that the state-of-the-art QA only has
roughly 2000 qubits, and that these qubits are only sparsely connected to each other, it would be impossible
to encode more than one or two actual floating-point numbers. Since, the floating-point numbers require
full qubit connectivity [74], and the maximum sized fully connected problem could have only 64 variables
at most on the D-Wave 2000Q QA [38]. A more efficient use of qubit resources would therefore be to formu-
late the problem by using binary variables that, in turn, relate to a set of discrete design variables. Certain
classical methods also take this approach [82]. Seemingly, a good place to start with solving a practical truss
optimization problem using a QA would therefore be to do a sizing optimization with discrete variables for
the allowed cross-sectional areas for every truss.

4.2. Direct QUBO Formulation
In this section, the first attempt at formulating a truss sizing optimization method for the QA is described.
This process will involve the definition of design variables, setting up an optimization objective, and adding
constraints. Through these steps, the QUBO matrix that defines the optimization problem will be assembled
directly.

27

28 4. Truss Sizing Optimization: Direct QUBO Method

4.2.1. Design Variables and Objective Function
When setting up a QUBO problem, it is critical to define the design variables in terms of the binary variables
that the QA will use. Consider a sizing optimization for a system of N trusses, with each truss having a discrete
choice of C different cross-sectional areas. Then defining c ∈ {1,2, . . .C } and n ∈ {1,2, . . . N }, a set of possible
cross-sections for truss n can be defined as shown in Eq. (4.1). In this manner, every truss in the truss system
can have its own uniquely defined set of C discrete choices.

An,set =
{

An,1, An,2, . . . , An,C
}

(4.1)

Correspondingly, to define the design variable, i.e. the cross-sectional area of truss n, we also need a set
of qubits that each correspond to one of the possible choices of cross-sectional area, giving:

qn,set =
{

qn,1, qn,2, . . . , qn,C
}

With: qn,c ∈ {0,1}∀c ∈ {1,2, . . .C }
(4.2)

Multiplying the entries in these sets, and performing a summation will allow for an expression of the total
cross-sectional area of truss n to be defined.

An =
C∑

c=1
qn,c An,c (4.3)

In the case that, for truss n, only one of the qubits in qn,set is equal to 1, and the others are equal to 0, then
this binary variable would correspond directly to a particular choice in cross-sectional area. Furthermore, if
this is the case, the total truss system mass can be calculated by:

M =
N∑

n=1
ρnLn

(
C∑

c=1
qn,c An,c

)
(4.4)

In this expression, Ln and ρn are, respectively, the length and the material density of truss n. The total
mass of the system, M , can then be used as the objective function for minimization. This objective function
can also be written in a matrix format, for use within the QUBO problem formulation. The individual mass
terms of every truss will then be located on the matrix diagonal, and correspond with the different choices in
cross-sectional area.

As an example, allowing three different choices for the cross-sectional area, giving c ∈ {1,2,3}, the mass
objective function matrix for a system with trusses n ∈ {1,2, . . .} would generally look like the form given
in Eq. (4.5). Note that the q1,1, q1,2, . . . indicated above and to the side of the matrix are simply to help vi-
sualize to which qubit variable that particular row or column pertains, and have no mathematical meaning
in this case.

QM =

q1,1 q1,2 q1,3 q2,1 q2,2 q2,3 · · ·



ρ1L1 A1,1 0 0 0 0 0 · · · q1,1

0 ρ1L1 A1,2 0 0 0 0 · · · q1,2

0 0 ρ1L1 A1,3 0 0 0 · · · q1,3

0 0 0 ρ2L2 A2,1 0 0 · · · q2,1

0 0 0 0 ρ2L2 A2,2 0 · · · q2,2

0 0 0 0 0 ρ2L2 A2,3 · · · q2,3
...

...
...

...
...

...
. . .

...

(4.5)

In practice, the QA is limited in the precision and magnitude of the terms in the QUBO matrix that it can
take into account. Specifically, the terms on the matrix diagonal, which in the physical QA correspond to
linear qubit biases, must be scaled to fit within the range [−2,2]1. Out of convenience, and to fit the mass
terms into the valid qubit bias range, the values in the mass objective function matrix can all be scaled such
that the maximum becomes a dimensionless ‘mass’ term with a value of 1. This can be achieved simply by
dividing all terms in the matrix by the maximum value from the set of all masses for all trusses. Thus the
scaled mass objective QUBO matrix would be found as shown in Eq. (4.6).

1The valid range of qubit biases can be obtained directly by submitting a query to the D-Wave QA via:
DWaveSampler().properties[`h_range']

4.2. Direct QUBO Formulation 29

QM∗ = 1

max(QM)

q1,1 q1,2 q1,3 q2,1 q2,2 q2,3 · · ·



ρ1L1 A1,1 0 0 0 0 0 · · · q1,1

0 ρ1L1 A1,2 0 0 0 0 · · · q1,2

0 0 ρ1L1 A1,3 0 0 0 · · · q1,3

0 0 0 ρ2L2 A2,1 0 0 · · · q2,1

0 0 0 0 ρ2L2 A2,2 0 · · · q2,2

0 0 0 0 0 ρ2L2 A2,3 · · · q2,3
...

...
...

...
...

...
. . .

...

(4.6)

An abbreviated notation for the scaled mass terms will be assumed. Since all mass terms are located
simply on the diagonal of the mass objective function QUBO matrix, and each term corresponds directly to
the qubit qn,c , the scaled mass terms on the diagonal of the matrix will be written simply as M∗

n,c .

4.2.2. Unary Constraint
With just the objective function, the setup of the problem is not yet complete. It was already briefly mentioned
that, for every truss, only one of the possible cross-sections should be chosen. To accomplish this, a constraint
must be added for every truss to ensure that exactly one cross-sectional area is chosen. However, since QUBO
problems are, per definition, unconstrained, this instead involves the setup of a penalty function. The goal
for the penalty function is then to penalize solutions that do not comply with the requirement of choosing
only one cross-sectional area.

The constraint that must be satisfied, for every truss n in the system, can mathematically be expressed as:

C∑
c=1

qn,c = 1 (4.7)

Since only one of the qubits on which this constraint acts must take a value of 1, while the others must
all equal 0, this constraint is sometimes referred to as the unary constraint. Further elaboration on the unary
constraint is given in [56]. In the context of the truss optimization problem, it enforces that only one cross-
section is chosen per truss. However, in the form shown in Eq. (4.7), the constraint cannot be applied in
the QUBO problem framework. This is because the constraint is currently written as an equality constraint,
which per definition is incompatible with quadratic unconstrained binary optimization problems. For the
constraint to become compatible with QUBO problems it must be rewritten as a minimization problem.
A common method is to rewrite the equality constraint as a penalty function, using a ‘squared-error’ ap-
proach [50, 88]. This approach is also used, for example, in the works by Van Vreumingen et al. and Neukart
et al. [62, 85]. Thus, the constraint can be rewritten as a minimization problem as shown in Eq. (4.8).

(
C∑

c=1
qn,c

)
−1 = 0

((
C∑

c=1
qn,c

)
−1

)2

= 0

(4.8)

Now, adding in a penalty scaling factor λ, the penalty function for the unary constraint becomes:

HU =λ
((

C∑
c=1

qn,c

)
−1

)2

(4.9)

For solutions that comply with the unary constraint, the penalty function from Eq. (4.9) will have a mini-
mum value of HU = 0. To show how to implement the unary constraint penalty function, an example is given.
Imagine for every truss a choice out of three possible cross-sectional areas must be made. In that case, C = 3,
and the penalty function can be expanded as shown in Eq. (4.10).

30 4. Truss Sizing Optimization: Direct QUBO Method

HU =λ
((

3∑
c=1

qn,c

)
−1

)2

HU =λ(
qn,1 +qn,2 +qn,3 −1

)(
qn,1 +qn,2 +qn,3 −1

)
HU =λ(

q2
n,1 +qn,1qn,2 +qn,1qn,3 −qn,1

+qn,1qn,2 +q2
n,2 +qn,2qn,3 −qn,2

+qn,1qn,3 +qn,2qn,3 +q2
n,3 −qn,3

−qn,1 −qn,2 −qn,3 +1
)

(4.10)

Knowing that qn,c ∈ {0,1} the expression can be simplified, since q2
n,c = qn,c . Thus:

HU =λ(
2qn,1qn,2 +2qn,2qn,3 +2qn,1qn,3 −qn,1 −qn,2 −qn,3 +1

)
(4.11)

Lastly, the final constant term can be dropped, since it is independent of the qubit variables, and does not
affect the minimization problem. Doing so makes the unary constraint penalty function compatible with the
QUBO problem framework. Since, the penalty function can now be written as a pure summation of linear
and quadratic terms, as shown in Eq. (4.12).

HU =λ(
2qn,1qn,2 +2qn,1qn,3 +2qn,2qn,3 −qn,1 −qn,2 −qn,3

)
(4.12)

Ideally, the penalty function from Eq. (4.12) will prevent the QA from yielding invalid results. This means
that, with this penalty function, the problematic situation can be avoided where the QA selects more than
one, or none of the proposed cross-sectional areas for any of the trusses in the structure. For convenient
implementation with QUBO problems, the penalty function can be rewritten into a matrix form. The unary
constraint penalty function matrix QU will then have terms of −λ on the diagonal, and the off-diagonals will
have a value of 2λ.

QU =
−λ 2λ 2λ

0 −λ 2λ
0 0 −λ

 (4.13)

In this case, this penalty function matrix has dimensions 3×3, because it was initially assumed that there
were three possible choices for the cross-sectional area of every truss. However, in the general case, with C
possible choices, the unary constraint penalty matrix becomes a C ×C matrix, with values of −λ on the di-
agonal, and 2λ for the off-diagonal terms. In this form, the penalty matrix can straightforwardly be added to
the main objective function QUBO matrix, for every truss in the truss optimization problem.

Giving a practical example, for a system of N trusses with n ∈ {1,2, . . .}, and having three different choices
in cross-sectional area, giving C = 3 and c ∈ {1,2,3}, the QUBO matrix would take form shown in Eq. (4.14).
This matrix includes the scaled mass terms M∗

n,c from the mass objective function, as well as theλ terms from
the unary constraint, which is taken into account individually for every truss.

QM∗+U =

q1,1 q1,2 q1,3 q2,1 q2,2 q2,3 · · ·



M∗
1,1 −λ 2λ 2λ 0 0 0 · · · q1,1

0 M∗
1,2 −λ 2λ 0 0 0 · · · q1,2

0 0 M∗
1,3 −λ 0 0 0 · · · q1,3

0 0 0 M∗
2,1 −λ 2λ 2λ · · · q2,1

0 0 0 0 M∗
2,2 −λ 2λ · · · q2,2

0 0 0 0 0 M∗
2,3 −λ · · · q2,3

...
...

...
...

...
...

. . .
...

(4.14)

4.2.3. Stress Constraint: Preliminary Information
The last constraint necessary for a useful sizing optimization of a truss structure would be a constraint on one
of the structural responses when the structure is subjected to a particular load. This could be a constraint on
the allowed displacement of the structure, the maximum allowed stress, or structural stability. However, for a

4.2. Direct QUBO Formulation 31

simple truss problem based on a linear finite-element method, an initial starting point would be to constrain
the maximum stress.

Given a maximum allowable stress, the stress in each truss can be used to calculate the reserve factor. The
reserve factor (RF) gives a measure of how close a structural member is to failure, and is calculated simply by
dividing the allowable stress by the applied stress in the member, as shown in Eq. (4.15).

RF = σallowable

σapplied
(4.15)

The RF indicates structural failure when its value goes below 1. Structures for which all reserve factors
are above 1 can be considered safe. However, if the RF is much higher than 1, it essentially indicates that the
structure is overdesigned, and there is an opportunity to save weight.

For truss structures it is assumed that trusses can only carry axial loads, being either tensile or compres-
sive in nature. Furthermore, most materials have different allowables for tensile and compressive stresses.
Therefore, if possible, a constraint on the reserve factor that takes separate allowables into account for tensile
and compressive stresses would be ideal. However, a simplification is possible if the same value is assumed
for both cases.

Nevertheless, the question remains, how would one implement a constraint on the truss reserve factors
in a QUBO problem formulation? This is a deceptively difficult question to answer. Ideally, a mathematical
expression for the reserve factor, written entirely in terms of binary qubit variables is desired. The expression
should contain only linear and quadratic terms, such that it can straightforwardly be written in a matrix
form, similar to that of the unary constraint. Such an approach is discussed in Chapter 5. However, the
upcoming section shows a simpler and more direct method of implementing an RF constraint into the QUBO
formulation.

4.2.4. Stress Constraint: RF Dependent Preference in an Optimization Scheme
The reserve factor, based on the stress the truss is experiencing, is calculated using the results of a finite-
element analysis. However, it can be quite time-consuming to complete the process of setting up a finite-
element problem, finding the solution, and post-processing the results to get a list of RFs. In an optimization
procedure, which is often iterative in nature, it would therefore be desirable to perform as few FEM analy-
ses as possible. This may be one way to reduce the total amount of time needed to find an optimal design
for the truss structure. This section elaborates on a method of constraining the truss RFs, within an itera-
tive optimization scheme, in a way that relies on only one FEM analysis per iteration. This method is also
chronologically the first that was implemented and tested.

Given an iterative optimization scheme, the procedure is started by setting up and classically solving a
finite-element problem for a system of trusses. The output of this analysis is a reserve factor value for every
truss in the initial configuration. Then, it is assumed that there are three different discrete choices for the
cross-sectional area of every truss. Namely, a smaller cross-sectional area, a larger area, or simply the same
area as the truss already has. Thus, with C = 3, the following set for the possible choices of cross-sectional
area, for truss n, can be defined:

An,set =
{

An,1, An,2, An,3
}

(4.16)

The set of corresponding qubits then also becomes:

qn,set =
{

qn,1, qn,2, qn,3
}

With: qn,c ∈ {0,1}∀c ∈ {1,2,3}
(4.17)

It is convenient to define the set of allowed choices for the cross-sectional area based on the currently
assumed cross-sectional area, with the smaller and larger options differing by a constant amount dA. The set
of possible choices for the cross-sectional area therefore becomes:

An,set = {An −dA, An , An +dA} (4.18)

Based on the known RF for every truss, a guess can be made as to what the most logical choice would be
for the next iteration of the optimization procedure. Given a truss n, with area An , area increment dA, reserve
factor RFn , and a predefined margin for the reserve factor RFmargin, the scheme in Eq. (4.19) is defined:

32 4. Truss Sizing Optimization: Direct QUBO Method

If RFn < 1 → prefer An +dA

If 1 ≤ RFn ≤ 1+RFmargin → prefer An

If RFn > 1+RFmargin → prefer An −dA

(4.19)

By following the steps in this scheme, it is expected that the truss cross-sectional areas can be steered
towards the configuration where all trusses approach RF = 1, thereby complying with the stress constraint.
A basic QUBO problem has already been set up that defines the truss system weight as the objective, and
utilizes the unary constraint to force the QA to choose one of the suggested cross-sectional areas. Because
the QA naturally tends to seek solutions with a low Hamiltonian energy, the RF constraint preference for
certain solutions can be added to the QUBO matrix by adding a negative term −γ to specific matrix entries.
The exact position in the QUBO matrix to which the RF preference term is added is then based on the three
decision-making rules stated above.

As an example, suppose the reserve factor for the first truss is less than 1, while for the second truss it
is much greater than 1. This therefore gives that RF1 < 1 and RF2 > 1+RFmargin. According to the scheme
presented above, a preference for the A1 +dA and A2 −dA choices should be added. This, in turn, means that
in the QUBO matrix, the negative term −γ can be added to the terms that correspond with these choices,
namely the linear terms for qubits q1,3 and q2,1. This is shown in Eq. (4.20). The magnitude of this prefer-
ence component, relative to all other terms in the QUBO matrix represents how strongly the RF constraint
preference is enforced.

QM∗+U+RF =

q1,1 q1,2 q1,3 q2,1 q2,2 q2,3 · · ·



M∗
1,1 −λ 2λ 2λ 0 0 0 · · · q1,1

0 M∗
1,2 −λ 2λ 0 0 0 · · · q1,2

0 0 M∗
1,3 −λ−γ 0 0 0 · · · q1,3

0 0 0 M∗
2,1 −λ−γ 2λ 2λ · · · q2,1

0 0 0 0 M∗
2,2 −λ 2λ · · · q2,2

0 0 0 0 0 M∗
2,3 −λ · · · q2,3

...
...

...
...

...
...

. . .
...

(4.20)

In the previous example, it was seen that RF1 < 1 and RF2 > 1+RFmargin, yielding the preference for the
choices A1 +dA and A2 −dA. This meant that a preference was added to the linear terms in the QUBO matrix
that correspond to the qubits q1,3 and q2,1. However, these two qubits can communicate with each other
through the off-diagonal quadratic coupling term. Thus, the constraint can be enforced more strongly if a
preference is also added to the coupling term q1,3q2,1. This would then yield the QUBO matrix as shown in
Eq. (4.21).

QM∗+U+RF =

q1,1 q1,2 q1,3 q2,1 q2,2 q2,3 · · ·



M∗
1,1 −λ 2λ 2λ 0 0 0 · · · q1,1

0 M∗
1,2 −λ 2λ 0 0 0 · · · q1,2

0 0 M∗
1,3 −λ−γ −γ 0 0 · · · q1,3

0 0 0 M∗
2,1 −λ−γ 2λ 2λ · · · q2,1

0 0 0 0 M∗
2,2 −λ 2λ · · · q2,2

0 0 0 0 0 M∗
2,3 −λ · · · q2,3

...
...

...
...

...
...

. . .
...

(4.21)

By adding these preference terms to the QUBO matrix, an RF constraint formulation is achieved. The
formulation is not based on analytical relations from the finite-element analysis and depends on the results
of only one finite-element analysis to fill in the QUBO matrix. By filling in the QUBO matrix, based on the
rules for adding a preference term to certain qubit biases, the QA can find the optimal choice of truss cross-
sectional areas that minimizes the objective function while preferring solutions that steer all truss RFs to-
wards a value of 1. It is expected that iteratively solving the FEM problem, setting up the QUBO, and finding
the optimal choice of cross-sectional areas, while adaptively controlling the allowed change in cross-sectional

4.3. Testing of Optimization Procedure 33

area dA, a weight-optimal truss structure design can be found for which all RFs are near 1. Such an optimiza-
tion routine is described in the next section.

4.3. Testing of Optimization Procedure
To test the procedures outlined in the previous section, sample problems are necessary. To this end, the
truss-structures shown in Figs. 4.1a and 4.1b are defined.

200 0 200 400 600 800 1000 1200
X-Coordinate [mm]

1000

800

600

400

200

0

Y-
Co

or
di

na
te

 [m
m

]

E1

E2

E3

E4

E5 E6

E7 E8

E9

N1 N2

N3

N4 N5

Original

(a) Box truss system.

0 200 400 600 800 1000 1200 1400 1600
X-Coordinate [mm]

0

200

400

600

800

1000

Y-
Co

or
di

na
te

 [m
m

]

E1 E2

E3

E4

E5E6 E7E8

E9N1

N2 N3

N4N5

Original

(b) Bridge truss system

Figure 4.1: Sample truss optimization problems.

For both truss systems, the following points are relevant:

• Pinned support boundary conditions are applied to nodes N1 and N4.

• A vertical downward (↓) load of 20 kN is applied at node N5.

• The truss system is fully connected, with the exception of between boundary condition nodes. This
means that every node is connected to every other node with a truss, but there is no truss in between
the boundary condition nodes.

• The initial cross-sectional area for every truss is set to 2500 mm2.

• The material properties assumed are for a fictitious material with a tensile limit stress of σt = 10 MPa
and a compressive limit stress of σc = 5 MPa. The Young’s modulus is set to a value of 200 GPa.

The procedure that is followed to optimize the truss structures is:

1. Set up the finite-element problem with a specific selection of cross-sectional areas.

2. Classically solve the finite-element problem to obtain the RFs for every truss.

3. Set up the QUBO for the optimization, allowing a change in cross-sectional area of dA.

4. Solve the QUBO problem to obtain the optimal selection of cross-sectional areas.

5. Set the optimal cross-sectional areas as the new starting point for a new iteration.

6. Repeat steps 1 through 5. If oscillating results are observed, i.e. when a truss area oscillates between
smaller and larger choices, reduce the step size dA, until the desired accuracy is obtained.

The Python code that performs this procedure is available online [92]. The code allows for individual
control of the dA variable on a per-truss basis. Furthermore, when many iterations of the procedure are
performed, oscillating results and dA step size reduction are also automatically detected. The optimization
process stops when sequential iterations produce identical results, or when the maximum allowed number of
iterations has been reached. The maximum number of iterations can be reached, for example, when results
oscillate at the smallest allowable scale of dA. A failsafe was built in to prevent cross-sectional areas from

34 4. Truss Sizing Optimization: Direct QUBO Method

reaching negative or zero values, by simply setting the area to 1 mm2 whenever this situation arises. This was
necessary to prevent singular matrix errors from occurring in the finite-element analysis.

To solve the QUBO problem itself, as represented by step 4 in the iterative scheme, two different options
are available. The QUBO problem can be solved using either quantum annealing, or by using D-Wave’s im-
plementation of the classical simulated annealing (SA) method [19]. The choice between either method can
be made simply by changing one Boolean variable (True/False) in the Python code. Throughout the develop-
ment of the Python code, SA has proven to be a convenient classical solution method. The main benefit is that
it allows for QUBO problems to be solved without relying on the quantum computing hardware. Therefore,
SA will be used as a classical reference, against which the performance of the QA can be compared.

After the iterative optimization is complete, a classical post-processing procedure is also performed to
simplify the result of the optimization. If the optimization procedure yields trusses with very small cross-
sectional areas, such trusses are removed from the structure. Given that the starting point for each truss is
to have an area of 2500 mm2, the cutoff area is set at 50 mm2, which is a factor 50 reduction in area com-
pared to the initial configuration. Once the small trusses have been removed from the truss system, the
post-processing also checks for overlapping trusses and whether any redundant nodes are present. In this
context, redundant nodes are those nodes that only connect to two trusses, with those two trusses being ex-
actly collinear. The redundant nodes are removed, with the two collinear trusses being simplified to a single
truss. Finally, if any exactly overlapping trusses are present in the system, these trusses are merged into a
single truss, having the summed cross-sectional area of its constituent parts. It will be seen that these post-
processing steps lead to a drastically simplified version of the optimized Box truss system.

4.4. Results
In this section, the results will be shown that are produced for the two sample problems. In both cases, the
variation in cross-sectional area dA initially starts at a value of 500 mm2, but is sequentially allowed to change
to 100 mm2, 50 mm2, and 10 mm2. For both the unary constraint and the RF constraint, a strength value of 1
was used, giving the constraints the same order of magnitude as the mass objective function. Additionally, for
the RF constraint, an RF margin of 0.1 was used. This means that the final optimal result will likely be found
when the RFs of all trusses in the system are between 1 and 1.1. The Python codes used for these analyses
and the raw results datasheet are available online [92].

4.4.1. Box Truss System
The initial design of the box truss system is shown in Fig. 4.2, with the exact cross-sectional areas and RFs as
indicated in Table 4.1. The pinned boundary conditions act on nodes N1 and N4, with a downward vertical
load of 20 kN acting in N5.

200 0 200 400 600 800 1000 1200
X-Coordinate [mm]

1000

800

600

400

200

0

Y-
Co

or
di

na
te

 [m
m

]

E1

E2

E3

E4

E5 E6

E7 E8

E9

N1 N2

N3

N4 N5

Original

Figure 4.2: Box truss system initial design.

Element Area [mm2] RF [-]

E1 2500 3.0176

E2 2500 3.0178

E3 2500 3.0176

E4 2500 2.1340

E5 2500 2.1340

E6 2500 3.0176

E7 2500 2.1339

E8 2500 3.0173

E9 2500 1.0670

Table 4.1: Table of truss cross-sectional areas
and RFs.

Simulated Annealing
The truss system was optimized using 30 iterations of simulated annealing. The evolution of the cross-
sectional areas and the RFs over every iteration are shown in the plots in Fig. 4.3. It can be seen that the
cross-sectional area of certain trusses tends towards zero area, which causes significant oscillations in the

4.4. Results 35

RFs for these trusses. Furthermore, note that some of the plotted lines may not be clearly visible due to ex-
actly overlapping with the plots for other elements.

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30
Iterations

0

1000

2000

3000

4000

Ar
ea

 [m
m

2]

Cross-Sectional Areas

Element 1
Element 2
Element 3
Element 4
Element 5
Element 6
Element 7
Element 8
Element 9

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30
Iterations

0.0

0.5

1.0

1.5

2.0

2.5

3.0

Re
se

rv
e

Fa
ct

or
 [-

]

Truss RFs
Element 1
Element 2
Element 3
Element 4
Element 5
Element 6
Element 7
Element 8
Element 9
RF = 1

Figure 4.3: Evolution of the cross-sectional area and the RFs for the box truss structure using SA.

The final iteration of the SA optimization routine yielded the cross-sectional areas and RFs as shown in
Table 4.2, graphically shown in Fig. 4.4.

200 0 200 400 600 800 1000 1200
X-Coordinate [mm]

1000

800

600

400

200

0

Y-
Co

or
di

na
te

 [m
m

]

E1

E2

E3

E4

E5 E6

E7 E8

E9

N1 N2

N3

N4 N5

Result from optimization

Figure 4.4: Box structure optimization result based on SA.

Element Area [mm2] RF [-]

E1 11 7.1626

E2 1450 1.0261

E3 1450 1.0260

E4 1 0.4609

E5 1 0.4609

E6 11 7.1690

E7 1 0.4609

E8 1450 1.0260

E9 4000 1.0011

Table 4.2: Results from optimization of box
truss system using SA.

However, as can be seen, several trusses have become negligible in size compared to the others. Thus,
some classical post-processing can be performed to simplify the structure. As a simplification, all trusses that
have been given a cross-sectional area of less than 50 mm2 are removed. Furthermore, for this structure there
are some overlapping trusses that can be merged, taking care to sum the cross-sectional areas of the merged
trusses. This yields the simplified structure with the cross-sectional areas and RFs as shown in Table 4.3, and
visible in Fig. 4.5.

This entire analysis procedure was performed three times using SA and produced identical final results
each time. On average the analysis took 36.511 seconds, with a standard deviation of 0.344 seconds. After
post-processing, the final result is a simplified truss-structure design for which cross-sectional areas have
been found that minimize the weight of the structure and bring the reserve factors close to a value of 1.

36 4. Truss Sizing Optimization: Direct QUBO Method

200 0 200 400 600 800 1000 1200
X-Coordinate [mm]

1000

800

600

400

200

0

Y-
Co

or
di

na
te

 [m
m

]

E1

E2

N1 N2

N3

N4 N5

Post-processed

Figure 4.5: Post-processed box structure optimization result based
on SA.

Element Area [mm2] RF [-]

E1 2900 1.0252

E2 4000 1.0003

Table 4.3: Post-processed optimized box
truss system cross-sectional areas and RFs.

Quantum Annealing
Using the SA analysis as a reference, the problem can also be submitted to the QA to investigate whether
similar results are obtained, and compare the amount of time necessary to complete the analysis. Starting
from the same initial structure, again 30 iterations of the optimization routine are performed. For the QA a
setting of 16 reads per problem submission is used. This means that each time a QUBO problem is submitted,
it is solved 16 times, and the lowest energy solution that has been found will be the one used for the next
iteration of the analysis. For each read, the default annealing time of 20 microseconds is used.

Performing the full optimization procedure three times, it was seen that each time the same final result is
obtained. The evolution of the cross-sectional areas and the RFs throughout the analysis are shown in Fig. 4.6.
Note that since some of the cross-sectional areas tend towards zero, this causes large fluctuations to occur in
the RFs for those trusses. The cross-sectional areas and corresponding RFs of the final iteration are shown in
Table 4.4, and are shown graphically in Fig. 4.7.

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30
Iterations

0

1000

2000

3000

4000

Ar
ea

 [m
m

2]

Cross-Sectional Areas

Element 1
Element 2
Element 3
Element 4
Element 5
Element 6
Element 7
Element 8
Element 9

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30
Iterations

0.0

0.5

1.0

1.5

2.0

2.5

3.0

Re
se

rv
e

Fa
ct

or
 [-

]

Truss RFs
Element 1
Element 2
Element 3
Element 4
Element 5
Element 6
Element 7
Element 8
Element 9
RF = 1

Figure 4.6: Evolution of the cross-sectional area and the RFs for the box truss structure using quantum annealing.

After post-processing, by removing trusses with a cross-sectional area smaller than 50 mm2, and merging
overlapping trusses, the final optimized structure is obtained as shown in Fig. 4.8, with the cross-sectional
areas and RFs as specified in Table 4.5. The total amount of time needed to achieve these final results was,

4.4. Results 37

200 0 200 400 600 800 1000 1200
X-Coordinate [mm]

1000

800

600

400

200

0
Y-

Co
or

di
na

te
 [m

m
]

E1

E2

E3

E4

E5 E6

E7 E8

E9

N1 N2

N3

N4 N5

Result from optimization

Figure 4.7: Box structure optimization result based on quantum
annealing.

Element Area [mm2] RF [-]

E1 11 7.1626

E2 1450 1.0261

E3 1450 1.0260

E4 1 0.4609

E5 1 0.4609

E6 11 7.1690

E7 1 0.4609

E8 1450 1.0260

E9 4000 1.0011

Table 4.4: Results from optimization of box
truss system using quantum annealing.

on average, 138.469 seconds, with a standard deviation of 0.264 seconds. However, this amount of time is
dominated by various sources of overhead, such as the programming methods used, as well as network delay
in submitting the problem to D-Wave, potential queue time before the problem is solved, and network delay
for returning the result to the local computer. Detailed information on the timing of the processes involved in
submitting problems to the D-Wave QA is provided in D-Wave’s timing user manual [28]. The total amount of
actual QPU access time needed to perform all iterations was only 0.4382 seconds on average, with a standard
deviation of 8.387 ·10−5 seconds.

200 0 200 400 600 800 1000 1200
X-Coordinate [mm]

1000

800

600

400

200

0

Y-
Co

or
di

na
te

 [m
m

]

E1

E2

N1 N2

N3

N4 N5

Post-processed

Figure 4.8: Post-processed box structure optimization result based
on quantum annealing.

Element Area [mm2] RF [-]

E1 2900 1.0252

E2 4000 1.0003

Table 4.5: Post-processed optimized box
truss system cross-sectional areas and RFs.

Box Truss System Discussion
It is observed that the final results from the quantum annealing analyses are the exact same as those from the
simulated annealing analyses. Furthermore, the methods produced the same results every time the analysis
was performed. This indicates that both methods are capable of consistently solving the problem and finding
optimal solutions. The only difference between the methods is that the total amount of time needed to solve
the optimization problem through quantum annealing was much longer than through SA. However, neglect-
ing the overhead associated with quantum annealing, the actual amount of QPU access time needed to solve
the problem is extremely short. If the various sources of overhead could be reduced, for example by having
unlimited access to local quantum annealing hardware, the method could become quite competitive to use
in practice.

38 4. Truss Sizing Optimization: Direct QUBO Method

4.4.2. Bridge Truss System
For the bridge truss system a similar approach is taken to that used for the box truss system. First, the struc-
ture will be analyzed three times using simulated annealing, to obtain classical reference solutions. Then, an
additional three analyses are performed using quantum annealing, and the results from both methods will
be compared. The original bridge truss system design and the initial cross-sectional areas and RFs are shown
in Fig. 4.9 and Table 4.6. Note that the pinned boundary conditions act in the nodes N1 and N4, with a 20 kN
downward vertical load acting in node N5.

0 200 400 600 800 1000 1200 1400 1600
X-Coordinate [mm]

0

200

400

600

800

1000

Y-
Co

or
di

na
te

 [m
m

]

E1 E2

E3

E4

E5E6 E7E8

E9N1

N2 N3

N4N5

Original

Figure 4.9: Initial design of bridge truss structure.

Element Area [mm2] RF [-]

E1 2500 1.7216

E2 2500 2.5211

E3 2500 33632.6804

E4 2500 5.5775

E5 2500 2.5211

E6 2500 2.4254

E7 2500 1.7216

E8 2500 2.4254

E9 2500 33632.6804

Table 4.6: Bridge truss system cross-sectional
areas and RFs.

Simulated Annealing
Although a maximum number of 30 iterations was set for the bridge truss system analysis, the optimiza-
tion consistently converged before reaching the maximum number of iterations. In this case, the analysis is
deemed to have converged because the optimization routine finds the same exact solution twice in a row.
Each of the three analyses resulted in the exact same final solution, reaching this solution after 11 iterations.
The evolution of the truss cross-sectional areas throughout these iterations, as well as the truss RFs are shown
in Fig. 4.10. The final iteration produced the results as shown in Fig. 4.11 and Table 4.7.

0 1 2 3 4 5 6 7 8 9 10 11
Iterations

0

500

1000

1500

2000

2500

Ar
ea

 [m
m

2]

Cross-Sectional Areas

Element 1
Element 2
Element 3
Element 4
Element 5
Element 6
Element 7
Element 8
Element 9

0 1 2 3 4 5 6 7 8 9 10 11
Iterations

0.0

0.5

1.0

1.5

2.0

2.5

3.0

Re
se

rv
e

Fa
ct

or
 [-

]

Truss RFs
Element 1
Element 2
Element 3
Element 4
Element 5
Element 6
Element 7
Element 8
Element 9
RF = 1

Figure 4.10: Evolution of the cross-sectional area and the RFs for the bridge truss structure using SA.

4.4. Results 39

0 200 400 600 800 1000 1200 1400 1600
X-Coordinate [mm]

0

200

400

600

800

1000
Y-

Co
or

di
na

te
 [m

m
]

E1 E2

E3

E4

E5E6 E7E8

E9N1

N2 N3

N4N5

Result from optimization

Figure 4.11: Final result from SA optimization of bridge truss
structure.

Element Area [mm2] RF [-]

E1 2400 1.0736

E2 1 1.2995

E3 1 8053.3562

E4 1500 1.0005

E5 1 1.2995

E6 1100 1.0672

E7 2400 1.0736

E8 1100 1.0672

E9 1 8053.3562

Table 4.7: Truss cross-sectional areas and RFs
from SA optimization of bridge truss structure.

The solution was post-processed to remove trusses with a final cross-sectional area smaller than 50 mm2.
This then resulted in the final simplified design as shown in Fig. 4.12, with the cross-sectional areas and RFs
as shown in Table 4.8.

0 200 400 600 800 1000 1200 1400 1600
X-Coordinate [mm]

0

200

400

600

800

1000

Y-
Co

or
di

na
te

 [m
m

]

E1

E2

E3 E4E5

N1

N2 N3

N4N5

Post-processed

Figure 4.12: Post-processed result from SA optimization of bridge
truss structure.

Element Area [mm2] RF [-]

E1 2400 1.0733

E2 1500 1.0000

E3 1100 1.0672

E4 2400 1.0733

E5 1100 1.0672

Table 4.8: Post-processed truss
cross-sectional areas and RFs for bridge truss

structure.

Overall, the three SA analyses that were performed for the bridge truss system lasted 13.999 seconds on
average, with a standard deviation of 0.465 seconds.

Quantum Annealing
Similar to the SA analyses, the bridge truss system is also analyzed three times using quantum annealing. The
results can then be compared to those found using SA. It was found that by using quantum annealing, with a
setting of 16 reads per iteration and a default annealing time of 20 microseconds, the same final results were
obtained for each of the three analyses. The analyses each converged after 11 iterations. The evolution of the
truss cross-sectional areas and the RFs throughout these iterations are shown in Fig. 4.13. The final selection
of cross-sectional areas and the corresponding RFs are shown in Table 4.9, with the graphical representation
of the bridge truss system shown in Fig. 4.14.

Post-processing of the result from the quantum annealing optimization is performed by removing the
trusses that have small cross-sectional areas with an area of less than 50 mm2. This yielded the simplified
solution as shown in Fig. 4.15, with the cross-sectional areas and corresponding RFs detailed in Table 4.10.

The quantum annealing analyses took on average 51.475 seconds with a standard deviation of 0.184 sec-
onds. However, especially for quantum annealing, this amount of time is dominated by various sources of
overhead. The sum of the QPU access time needed to perform all iterations for each of the analyses was on
average a mere 0.161 seconds, with a standard deviation of 8.055 ·10−6 seconds.

40 4. Truss Sizing Optimization: Direct QUBO Method

0 1 2 3 4 5 6 7 8 9 10 11
Iterations

0

500

1000

1500

2000

2500

Ar
ea

 [m
m

2]

Cross-Sectional Areas

Element 1
Element 2
Element 3
Element 4
Element 5
Element 6
Element 7
Element 8
Element 9

0 1 2 3 4 5 6 7 8 9 10 11
Iterations

0.0

0.5

1.0

1.5

2.0

2.5

3.0

Re
se

rv
e

Fa
ct

or
 [-

]

Truss RFs
Element 1
Element 2
Element 3
Element 4
Element 5
Element 6
Element 7
Element 8
Element 9
RF = 1

Figure 4.13: Evolution of the cross-sectional area and the RFs for the bridge truss structure using quantum annealing.

0 200 400 600 800 1000 1200 1400 1600
X-Coordinate [mm]

0

200

400

600

800

1000

Y-
Co

or
di

na
te

 [m
m

]

E1 E2

E3

E4

E5E6 E7E8

E9N1

N2 N3

N4N5

Result from optimization

Figure 4.14: Final result from quantum annealing optimization of
bridge truss structure.

Element Area [mm2] RF [-]

E1 2400 1.0736

E2 1 1.2995

E3 1 8053.3562

E4 1500 1.0005

E5 1 1.2995

E6 1100 1.0672

E7 2400 1.0736

E8 1100 1.0672

E9 1 8053.3562

Table 4.9: Truss cross-sectional areas and RFs
from quantum annealing optimization of bridge

truss structure.

0 200 400 600 800 1000 1200 1400 1600
X-Coordinate [mm]

0

200

400

600

800

1000

Y-
Co

or
di

na
te

 [m
m

]

E1

E2

E3 E4E5

N1

N2 N3

N4N5

Post-processed

Figure 4.15: Post-processed result from quantum annealing
optimization of bridge truss structure.

Element Area [mm2] RF [-]

E1 2400 1.0733

E2 1500 1.0000

E3 1100 1.0672

E4 2400 1.0733

E5 1100 1.0672

Table 4.10: Post-processed truss
cross-sectional areas and RFs for bridge truss

structure.

4.5. Triviality of the QUBO Formulation and Classical Reproduction 41

Bridge Truss System Discussion
From the results that were obtained for the bridge truss system it is evident that using simulated annealing
and quantum annealing both lead to the exact same final solution each time the problem is solved. This
means that both methods are able to reliably produce optimal results without making errors. Because of
this, it also indicates that it is likely feasible to solve larger problems than the ones currently tested. Note
that, since a purely vertical load was applied, the horizontal members connected to the loaded point were
essentially zero-force members. This is why the optimization reduced these members to having negligible
cross-sectional areas. Realistically, if the truss joints were allowed to pivot, the optimized and post-processed
result would be unstable, since any amount of horizontal load would cause the structure to collapse.

Naturally, the two solving methods that were applied differ in the amount of time necessary to find the
final solution. Using SA the final solution was found in about 14 seconds on average, while for quantum
annealing it took an average of 51.5 seconds. In the case of quantum annealing, the actual average amount
of QPU access time needed was only 0.161 seconds, meaning that the total of 51.5 seconds consists of almost
exclusively overhead. Therefore, with unfettered access to QPU hardware, quantum annealing may be an
extremely fast way to solve this type of optimization problem.

Despite the seemingly positive results, throughout the testing process, a feeling of uncertainty about the
methods presented in this chapter arose. The optimization method, as shown, can provide optimal truss
structure designs after performing several iterations. However, one might critically ask: ’What is the quantum
annealer really adding to this process?’. In the upcoming section this question is addressed.

4.5. Triviality of the QUBO Formulation and Classical Reproduction
Of the work that was done to formulate the truss system optimization QUBO, as presented in this chapter, the
most time and effort was spent finding a way to add a stress constraint to the QUBO problem. This was nec-
essary, as the goal for the optimization is to find the most lightweight design, while still complying with basic
limit stress constraints. At the time of development, this was very much a pen-and-paper process, relying on
a natural understanding of the workings of QUBO problems, and being the topic of many discussions with
thesis supervisor Dr. Chen. However, despite the effort, the stress constraint as it is currently being applied
appears to result in a trivial optimization problem.

Looking at how the optimization process is performed through every iteration shows that the QA always
obeys the ‘preference’ that is assigned as part of the stress constraint. This preference is determined through
a single classical FEM analysis of the current selection of cross-sectional areas. Then, based on the RFs, a
preference is assigned for how the truss cross-sectional areas should be changed. For example, if the current
cross-sectional area of a specific truss yields an RF < 1, then a preference is assigned to choose an increased
cross-sectional area in the next iteration. However, if the QA always exclusively obeys this preference, then
it is trivial to predict what the outcome of the optimization will be for every iteration. By knowing exactly
what the truss RFs are for the current selection of cross-sectional areas, the selection of new cross-sectional
areas for the next iteration will simply follow from the rules that govern the setting of the preference. As such,
the QA does not really do anything interesting. It is simply directly following the assigned preferences, and
returning an answer that could be guessed without going through the effort of setting up a QUBO matrix and
solving the problem. In essence, the method used for constraining the truss RFs yields a completely trivial
problem, with the optimization routine as a whole simply describing a basic decision-making strategy.

The above statements can be supported experimentally. A completely classical decision-making scheme
can be set up, relying solely on the truss RFs to make a selection of new cross-sectional areas. The process
emulates the behavior of the optimization that was done through the QA, but completely bypasses the need to
set up and solve a QUBO problem. The code for this purely classical decision-making scheme is also available
online [92]. Allowing this decision-making routine to run 30 iterations of both the box truss system and the
bridge truss system yields the results shown in Figs. 4.16 and 4.17 and Tables 4.11 and 4.12.

The classical decision-making scheme leads to the exact same solutions as those achieved through quan-
tum annealing and simulated annealing. However, in this case, the final results were obtained much more
quickly. Based on the results from three separate runs, the box truss system took on average 0.3305 seconds
to optimize, with a standard deviation of 0.0245 seconds. For the bridge truss system, the converged solution
was found in 0.2441 seconds on average, with a standard deviation of only 0.0033 seconds. This is at least an
order of magnitude faster than using either simulated annealing or quantum annealing.

42 4. Truss Sizing Optimization: Direct QUBO Method

200 0 200 400 600 800 1000 1200
X-Coordinate [mm]

1000

800

600

400

200

0

Y-
Co

or
di

na
te

 [m
m

]

E1

E2

E3

E4

E5 E6

E7 E8

E9

N1 N2

N3

N4 N5

Result from optimization

Figure 4.16: Raw final result for box truss system from classical
decision-making strategy.

Element Area [mm2] RF [-]

E1 11 7.1626

E2 1450 1.0261

E3 1450 1.0260

E4 1 0.4609

E5 1 0.4609

E6 11 7.1690

E7 1 0.4609

E8 1450 1.0260

E9 4000 1.0011

Table 4.11: Final areas and RFs for box truss
system from classical decision-making

strategy.

0 200 400 600 800 1000 1200 1400 1600
X-Coordinate [mm]

0

200

400

600

800

1000

Y-
Co

or
di

na
te

 [m
m

]

E1 E2

E3

E4

E5E6 E7E8

E9N1

N2 N3

N4N5

Result from optimization

Figure 4.17: Raw final result for bridge truss system from classical
decision-making strategy.

Element Area [mm2] RF [-]

E1 2400 1.0736

E2 1 1.2995

E3 1 8053.3562

E4 1500 1.0005

E5 1 1.2995

E6 1100 1.0672

E7 2400 1.0736

E8 1100 1.0672

E9 1 8053.3562

Table 4.12: Final areas and RFs for bridge truss
system from classical decision-making strategy.

Because the results can be emulated exactly, while completely bypassing any of the quantum computing-
related aspects, this means that the quantum annealing technology is not adding any value to the optimiza-
tion method presented in this chapter. It only serves as a medium to execute a simple decision-making
scheme, and thus the method is considered trivial.

At this point then, two options exist: either the methods in this chapter are changed, extended, or adapted
so that they are no longer trivial, or a completely different method must be created for setting up truss-
optimization problems for use with the QA. Possible extensions are discussed in Section 4.6, while a com-
pletely different approach to setting up the truss optimization problem is discussed in Chapter 5.

4.6. Possible Extensions
In this section some of the attempted or conceptualized extensions to the truss optimization method dis-
cussed in this chapter are commented on.

Tuning of Constraint Strength For the testing of the current stress constraint method, a constraint strength
value of 1 was used. It was seen that this caused the stress constraint to always be obeyed, which is what
led to the conclusion that the method produced trivial results. A method of reducing the triviality of the
results might be to reduce the strength of the stress constraints to such a degree, that the constraint is no
longer exclusively obeyed. In turn, this would mean that the mass objective function becomes relatively more
important. This may lead to situations where the QA prefers to save weight versus picking cross-sections that
comply with strength requirements.

Arguably, reducing the strength value of the stress constraints would make the output of the QA less pre-
dictable, and therefore probably less trivial. However, it is questionable whether this tactic would lead to

4.6. Possible Extensions 43

truss system designs that comply with stress requirements. This is why the constraint strength was kept at
a value high enough to enforce a hard stress constraint. Thus, the possibility that lower constraint strength
would lead to less trivial results was not investigated in depth. This could be investigated without needing to
otherwise change or extend any of the currently implemented methods.

Inclusion of Secondary Effects One of the ideas to reduce the triviality that the stress constraint causes was
to find a way to include secondary stress effects in the QUBO. What is meant by this is clarified by asking: How
does the stress in truss A change, when the cross-sectional area of truss B is altered?. More mathematically, the
partial derivatives of the truss stress with respect to the cross-sectional area of every truss were investigated.
The primary stress derivative would then be the derivative of the stress in truss A with respect to the area of
truss A. The secondary stress derivatives are then the derivative of the stress in truss A, with respect to the
cross-sectional area of all other trusses in the system.

Using the software Maple, a simple truss structure was investigated. By leaving the truss cross-sectional
areas as symbolic variables, and then solving the FEM problem, symbolic expressions for the truss stresses
and RFs could be generated. Having these expressions allowed for the program to then calculate the partial
derivatives with respect to the individual truss cross-sectional areas. However, investigating the magnitudes
of these derivatives, it was seen that the secondary stress derivatives were much smaller than the primary
derivatives. When evaluating all symbolic derivatives, using a cross-sectional area of 2500 mm2 for all trusses,
it was seen that the secondary stress derivatives are approximately 1000 times less significant than the pri-
mary derivatives. From this observation it was concluded that it would not be particularly useful to integrate
the secondary stress effects into the truss optimization QUBO. The amount of additional information needed
to include the secondary effects would also likely make this quite a challenging task to integrate into the setup
of the QUBO problem. The Maple worksheet, as well as the Abaqus FEM model that was used to verify the
results are available online [92].

Discrete Derivatives An idea for a possible extension for the truss system optimization QUBO is to do more
than just one FEM analysis before setting up the QUBO matrix. For example, imagine a system with N num-
ber of trusses, with every truss having a specified initial choice of cross-sectional area. It would be possible
to perform a FEM analysis on the initial configuration to get the reference RFs for every truss. Then, an ad-
ditional N number of FEM analyses could be performed, where for each analysis one of the cross-sectional
areas is slightly changed. This would then yield a new set of RFs, which can be used in conjunction with the
initial reference RFs to determine the discrete derivatives of the RFs due to changing the cross-sectional area.
To get all discrete derivatives, a total of N +1 FEM analyses would therefore need to be performed.

The improvement in this case again lies in the attempted inclusion of secondary effects, but as was pre-
viously discussed, this is likely not very interesting, as these effects are very small. Furthermore, by finding
the discrete derivatives, as opposed to finding derivatives symbolically, many more FEM analyses need to be
performed. This is fast for small problems, however, becomes much more time-consuming for larger prob-
lems. The fact that N + 1 FEM analyses would be needed to calculate all discrete derivatives means even
more so that this idea to include secondary effects would be an inefficient process. The idea was not further
investigated.

Inclusion of Stiffness Constraints One last idea to reduce the triviality caused by the stress constraint in its
current form is to add an additional constraint on the stiffness of the truss system. An investigation into the
truss system stiffness matrix could reveal properties that would help with identifying optimal load paths, or
finding the truss elements that contribute most to the deflection of the loaded point. Knowing such proper-
ties may in turn lead to an extension of the QUBO setup that includes stiffness constraints, which reduces the
triviality of the method compared to only using a stress constraint.

The possibility for a stiffness constraint was briefly investigated. The method relied on the addition of
a ‘preference’ term to the QUBO matrix, similar to that used in the stress constraint method. In this case,
the preference was added to increase the stiffness (choose a larger cross-sectional area), for the trusses that
directly contribute the most stiffness to the loaded point, in the direction of the load. However, since the
manual addition of preference terms to the QUBO matrix was eventually found to lead to trivial optimization
problems, it was also deemed to be an unsuitable method for stiffness constraints. Ultimately, these ideas for
reducing the triviality of the direct QUBO method for the truss sizing optimization problem were abandoned
in favor of setting up an entirely new methodology, as presented in Chapter 5.

5
Truss Sizing Optimization: Symbolic

Finite-Element Method

Another method of setting up the truss sizing optimization QUBO is by solving the finite-element problem
fully in terms of qubit variables. This may allow for a minimization objective function to be found that de-
scribes the sizing optimization problem from a more analytical perspective. When minimized this objective
function should also lead to the ideal choice of truss cross-sections. This symbolic method of setting up the
truss sizing optimization problem is described in this chapter. The work is divided into three phases: a prepa-
ration phase, a QUBO setup phase, and a QUBO solving phase. Throughout the process, various challenges
were encountered that needed to be overcome to eventually yield a suitable QUBO formulation for the truss
sizing optimization problem.

5.1. Phase 1: Preparation
In this section, the basic definitions that are needed for setting up the QUBO problem are given, as well
as an overview of the general plan that will be followed to set up the QUBO formulation of the truss sizing
optimization problem. The first challenge that was encountered, being the inversion of symbolically defined
matrices, is also part of the preparatory work.

5.1.1. QUBO Basics and Plan
Since the goal of the optimization is to make the ideal selection of truss cross-sectional areas, the cross-
sectional areas are defined in terms of binary variables. This is done in a similar way as for the mass objective
function in Chapter 4. Thus, the cross-sectional area of truss n, given a set of C possible discrete choices, is
written as:

An =
C∑

c=1
qn,c An,c (5.1)

for which An,c are in the set of cross-sectional areas that can be selected for truss n, and qn,c are the corre-
sponding binary qubit variables.

The main idea behind the symbolic finite-element method of formulating a sizing optimization QUBO is
to utilize Eq. (5.1) for the cross-sectional area of every truss, and set up and solve the linear FEM problem en-
tirely symbolically. If the binary qubit variables can be kept as unknowns throughout the solving procedure,
symbolic expressions for the truss stresses and reserve factors can hopefully be set up and used to formulate
a QUBO problem. By using these expressions, the QA can then potentially be used to make the optimal se-
lection of cross-sectional areas such that every truss in the system is as close as possible to the limit stress,
giving a reserve factor as close as possible to 1. This also implies that the minimum-weight configuration has
been found, since further reducing cross-sectional areas to save weight would lead to non-compliance with
material strength requirements. Thus, the focus will be on using the symbolic expressions for truss stresses
and reserve factors to obtain an objective function that can be used for the QUBO problem.

From this basic idea, the symbolic problem-solving process can be described by the following steps:

1. Given sets of possible choices of cross-sectional area for every truss, the actual cross-sectional area can
be written in terms of qubit variables, as shown in Eq. (5.1).

45

46 5. Truss Sizing Optimization: Symbolic Finite-Element Method

2. Using the expression for the truss cross-sectional area, the element stiffness matrices of the trusses can
also be written in terms of the qubit variables.

3. The symbolic global stiffness matrix of the entire system of trusses can be assembled from each of the
element stiffness matrices.

4. Proceeding as normal with the FEM analysis, boundary conditions must be taken into account, and a
vector of applied loads must be known. By inverting the symbolic global stiffness matrix, and multiply-
ing this inverse matrix with the load vector, a symbolic vector of nodal displacements can be obtained.

5. Using the symbolic vector of nodal displacements, and the known initial length of every truss, symbolic
expressions for the truss strain can be set up.

6. By multiplying the symbolic expression of the truss strain with the Young’s modulus, a symbolic expres-
sion for the truss stress is obtained.

7. Lastly, a symbolic expression for the truss RF can be found by dividing the assumed limit stress by the
symbolic truss stress expression.

Once symbolic expressions for the truss reserve factors have been obtained, these expressions may be
used to construct an objective function for which the minimum solution encodes the optimal choice of cross-
sectional area for every truss in the structure. For such an objective function to be usable with the D-Wave QA,
it must be compatible with the QUBO problem formulation. Thus, the objective function should be written
as a pure sum of linear and quadratic qubit terms. However, the outcome of the aforementioned symbolic
problem-solving steps may not be in exactly this format. As such, once symbolic expressions for the reserve
factors for every truss have been found, these expressions may need to be further manipulated to produce
an objective function that fits exactly within the QUBO problem framework. This process was thoroughly
investigated using three small sample problems.

5.1.2. Sample Problems
The sample problems used to investigate the symbolic QUBO method are shown in Figs. 5.1a to 5.1c. As can
be seen, the simple truss structures consist of two, three, and four truss elements, forming problems that are
expected to be incrementally more challenging to solve. For these sample problems it is assumed that there
are three possible choices of cross-sectional area for every truss. This means that the number of binary qubit
variables needed to define the problems is three times the number of trusses in the problem, giving the two-,
three-, and four-truss problems a total of 6, 9, and 12 qubit variables.

The exact definitions for the three sample problems are given in Table 5.1, including the boundary condi-
tions and loads acting on the truss systems. The sign convention has the positive x-direction pointing hori-
zontally to the right (→) and has the positive y-direction pointing vertically upwards (↑). Having the necessary
design parameters for the truss systems, the allowable choices for the truss cross-sectional areas are also de-
fined. These are given in Table 5.2. For reference, when choosing the mid-sized (option 2) cross-sectional
area for every truss, each of the trusses will have the reserve factors as indicated in Table 5.3. These reserve
factors are also indicated in Figs. 5.1a to 5.1c.

The following sections describe the implementation, and the challenges encountered during the investi-
gation into these sample problems, in the attempt at setting up the truss sizing optimization QUBO problem.

5.1. Phase 1: Preparation 47

−200 0 200 400 600 800 1000 1200
X-Coordinate [mm]

−1000

−800

−600

−400

−200

0

Y-
Co

or
di
na
te
 [m

m
]

e1 RF=0.91

e2 RF=2.15

n1

n2n3

System with 2 tr sses

(a) Two-truss problem.

−600 −400 −200 0 200 400 600
X-Coordinate [mm]

−400

−200

0

200

400

Y-
Co
or
di
na
te
 [m

m
]

e1 RF=0.77

e2 RF=1.33

e3 RF=7.83

n1

n2

n3

n4

System ith 3 trusses

(b) Three-truss problem.

−200 0 200 400 600 800 1000 1200
X-Coordinate [mm]

−400

−200

0

200

400

Y-
Co

or
di
na
te
 [m

m
]

e1 RF=1.77

e2 RF=1.77

e3 RF=0.89

e4 RF=1.29

n1

n2

n3 n4

System with 4 tr sses

(c) Four-truss problem.

Figure 5.1: Sample truss optimization problems.

Two-Truss System Three-Truss System Four-Truss System

Material

Young’s Modulus 200000 MPa Young’s Modulus 200000 MPa Young’s Modulus 200000 MPa

Tens. Limit 100 MPa Tens. Limit 100 MPa Tens. Limit 100 MPa

Compr. Limit 100 MPa Compr. Limit 100 MPa Compr. Limit 100 MPa

Nodes

Name X [mm] Y [mm] Name X [mm] Y [mm] Name X [mm] Y [mm]

N1 0 0 N1 -500 500 N1 0 500

N2 1000 -1000 N2 -500 -500 N2 0 -500

N3 0 -1000 N3 500 100 N3 500 0

- - - N4 0 0 N4 1000 0

Elements

Name Start Node End Node Name Start Node End Node Name Start Node End Node

E1 N1 N2 E1 N1 N4 E1 N1 N3

E2 N2 N3 E2 N2 N4 E2 N2 N3

- - - E3 N3 N4 E3 N1 N4

- - - - - - E4 N3 N4

Load
Acting on: Fx [kN] Fy [kN] Acting on: Fx [kN] Fy [kN] Acting on: Fx [kN] Fy [kN]

N2 0 -70 N4 0 -100 N4 0 -100

BCs

Acting on: dx [mm] dy [mm] Acting on: dx [mm] dy [mm] Acting on: dx [mm] dy [mm]

N1 0 0 N1 0 0 N1 0 0

N3 0 0 N2 0 0 N2 0 0

- - - N3 0 0 - - -

Table 5.1: Truss system material, design, and load parameters.

48 5. Truss Sizing Optimization: Symbolic Finite-Element Method

Two-Truss System

For element: Option 1 [mm2] Option 2 [mm2] Option 3 [mm2]

E1 800 900 1000

E2 1400 1500 1600

Three-Truss System

For element: Option 1 [mm2] Option 2 [mm2] Option 3 [mm2]

E1 400 500 600

E2 950 1050 1150

E3 700 800 900

Four-Truss System

For element: Option 1 [mm2] Option 2 [mm2] Option 3 [mm2]

E1 2400 2500 2600

E2 2400 2500 2600

E3 1900 2000 2100

E4 2400 2500 2600

Table 5.2: Truss system allowable choice of cross-sectional areas.

Two-Truss System Three-Truss System Four-Truss System

For element: Area [mm2] RF For element: Area [mm2] RF For element: Area [mm2] RF

E1 900 0.9086 E1 500 0.7692 E1 2500 1.7680

E2 1500 2.1511 E2 1050 1.3252 E2 2500 1.7680

- - - E3 800 7.8331 E3 2000 0.8910

- - - - - - E4 2500 1.2859

Table 5.3: Truss system reference reserve factors.

5.1.3. Challenge: Symbolic Matrix Inversion and Setup of Symbolic Expressions
Using Python, a script was written that can set up a truss finite-element problem symbolically, assuming
known discrete choices for the cross-sectional area of every truss. However, it became immediately apparent
that it is quite difficult to ‘solve’ the finite-element problem while using a global stiffness matrix that contains
many unknown variables. Even for these small problems, it became intractable to invert the global stiffness
matrix for the four-truss problem. Thus, step 4 from the approach described above, could not be performed.
The solving procedure stalls when trying to find the inverse of the symbolic global stiffness matrix.

However, the Python package that was used for manipulating symbolic expressions, Sympy, might be in-
efficient compared to other software. Thus, as an alternative, the Matlab software package was used with the
hope that its implementation for solving symbolic matrix equations might be more efficient. Within Matlab,
matrix equations of the familiar [A]x = b form can be solved for the vector of unknowns x by utilizing the
so-called backslash operator. As such, the vector of unknowns can be found by implementing x = [A]\b. This
circumvents the need to explicitly calculate the inverse of the matrix [A], being [A]−1, and means that the
vector of unknowns does not have to be calculated by x = [A]−1 b.

Thus, to attempt to solve the symbolic finite-element problem, the symbolic global stiffness matrix was
implemented into the Matlab software package. Knowing the symbolic global stiffness matrix [K] and the
nodal force vector f, the vector of nodal displacements u could be found by implementing u = [K]\f. It was
found that indeed the Matlab implementation for solving linear systems of equations was much more effi-
cient and was able to find symbolic expressions for the nodal displacement vector.

At the point that the symbolic expressions for the nodal displacements were found, it became clear why
the previous step in the process was so troublesome to calculate. The expressions for the nodal displacements
are extremely long, even for such simple finite-element problems. However, now that these expressions have
been found, they can be used to find expressions for the truss strains, stresses and RFs.

Initially, the truss strain was calculated by finding the symbolic expression for the total displaced length
of the truss Ldisp, and then using the known initial length of the truss L0, to perform the strain calculation
shown in Eq. (5.2). However, it was found that this leads to a symbolic expression for the truss strain that
contains many absolute functions. The appearance of these absolute functions was problematic as these
prevent the symbolic expression from being written purely as a sum of terms, which is eventually necessary
for the QUBO problem formulation. By using the Green-Lagrange strain formulation, the stretching of the
trusses is squared. This prevents the absolute functions from appearing in the symbolic strain expressions.
Thus, the symbolic expressions for the strain are found by calculating the strains using the expression shown
in Eq. (5.3). Under the infinitesimal deformation assumption, when L0 ≈ Ldisp, Eq. (5.2) and Eq. (5.3) will be
equivalent.

5.2. Phase 2: Setup of the QUBO Problem 49

ε= Ldisp −L0

L0
(5.2)

ε= 1

2

(
L2

disp

L2
0

−1

)
(5.3)

The expressions for truss stresses and RFs then follow simply from Eq. (5.4) and Eq. (5.5), in which the material
Young’s modulus E and limit stress σlimit are needed.

σ= Eε (5.4)

RF = σlimit

σ
(5.5)

The expressions for the displacements, strains, stresses, and RFs can be verified by filling in the values of
the qubit variables that correspond to choosing a particular area. By doing so, it was seen that indeed the
expected values are obtained, giving the same results as a standard finite-element analysis. As such, up until
this point, the preparatory procedure for setting up symbolic expressions for the truss strains, stresses and
RFs is working as intended, and is giving the correct results. For reference, the symbolic expressions for the
truss stresses of each of the sample problems are available online [91].

As an example, for the two-truss problem, the expressions found for the stresses in both truss members
can be evaluated. To do this a certain binary solution to the problem must be assumed. In this case, by
choosing the solution [0,1,0,0,1,0], this corresponds to choices of 900 mm2 for the first truss and 1500 mm2

for second truss. Using these values, the expression for the first truss evaluates to a stress of 110.09 MPa, and
the expression for the second truss yields a value of -46.48 MPa. When verified using Abaqus, the commercial
finite-element software, almost exactly the same solution is obtained, as can be seen from Fig. 5.2. This
simple verification FEM model is also available online [91]. The slight differences are likely due to rounding
errors in the setup of the symbolic expressions.

Figure 5.2: Commercial FEM analysis of two-truss problem.

Now that a method has been implemented that can correctly write the stresses and RFs in terms of qubit
variables, the next step is to set up an objective function that, when minimized, should yield the most opti-
mal choice of cross-sectional area for every truss in the structure. However, this process uncovered another
challenge, which is discussed in the upcoming section.

5.2. Phase 2: Setup of the QUBO Problem
Phase 1 concluded with having found a way to set up symbolic expressions for the truss stresses and RFs for
three simple FEM problems. Now, phase 2 will focus on using these expressions to set up truss optimization
QUBO problems. This means that a way must be found to use these expressions to set up an objective func-
tion that describes the behavior of the full truss systems, in a QUBO-compatible format. Since quite a number
of topics are discussed as a part of this phase, the following list gives a brief overview of the upcoming topics.

50 5. Truss Sizing Optimization: Symbolic Finite-Element Method

1. In Section 5.2.1 it will be discussed how potential candidate objective functions can be evaluated.

2. In Section 5.2.2 the expected optimal outcomes of the three sample problems are discussed. These will
help to verify the results from the investigation into the objective function setup methods.

3. In Section 5.2.3 the challenge of setting up an objective function is discussed, eventually finding a func-
tional method.

4. In Section 5.2.4 it will be seen that, although a functional objective function can be found, it is written in
a QUBO-incompatible fractional format. Some methods are discussed to rewrite the objective function
into a more compatible non-fractional format.

5. In Section 5.2.5 some practical implementation aspects will be discussed, pertaining to the final steps
needed to write the truss sizing optimization objective function as a true QUBO problem.

Thus, it will first be discussed how a theoretical objective function can be evaluated.

5.2.1. Objective Function Evaluation Method
When symbolic expressions for the truss stresses and RFs are set up through the process described in phase 1,
these tend to be long and complicated in nature. Nevertheless, the function values of these expressions can
be calculated if a certain solution for the binary variables is assumed. One simple way to evaluate the nature
of these expressions would be to sequentially assume every possible solution of the binary function variables,
and calculate the output of the symbolic expression in every possible case. This type of approach is called a
brute-force approach, because it relies on brute computational power to simply perform function evaluations
for every possible solution to the problem. When every possible solution to the problem has been calculated,
it is straightforward to find which of the solutions gives the best possible result. Due to the simplicity of the
brute-force approach, this is the preferred method to gain insight into the behavior of the various objective
functions that will be set up in the upcoming section of the report.

One drawback of brute-force analyses is that it can be quite time-consuming to find every possible solu-
tion to a problem, if the problem is quite large in size. In the case of the truss-optimization problems, the
two-, three- and four-truss problems are defined using a total of 6, 9, and 12 binary qubit variables respec-
tively. In turn this means that the problems have 26 = 64, 29 = 512, and 212 = 4096 different possible solutions
respectively. The number of possible solutions scales exponentially with the size of the problem, increasing
by a factor 23 = 8 for each additional truss in the system. This naturally leads to significant time requirements
to solve larger problems, and may eventually become intractable.

However, the effects of the exponential growth of the number of possible solutions to the truss optimiza-
tion problem can be reduced. This is because it is known beforehand which solutions are valid, and which
solutions are invalid. Namely, those solutions where exactly one cross-sectional area is selected for every
truss in the truss structure will be considered to be valid. Solutions for which multiple areas are selected per
truss, or none are selected at all, are invalid and are undesirable. Such invalid solutions can be avoided by the
QA by implementing the unary constraint, which has already been seen in both Chapters 3 and 4, and will
also be implemented for this symbolic finite-element QUBO method at a later stage. Thus, assuming that in-
valid solutions will be avoided by the QA, the brute-force verification of the different objective functions can
also be performed using solely the set valid solutions to each problem. This drastically reduces the number
of possible problem solutions. If N is the number of trusses in the truss system, then the full set of all possible
solutions scales by 23N , while the set of only valid solutions would scale by 3N . Although this still represents
exponential growth, it is much less extreme, and leads to a total of 32 = 9, 33 = 27, and 34 = 81 valid solutions
for the two-, three- and four-truss problems respectively. Thus, the various methods of setting up truss sys-
tem objective functions will be assessed by brute-force evaluation of the valid solutions to the optimization
problems. In this way, the global minimum solution to these objective functions is guaranteed to be found,
and the overall behavior of the objective functions can be assessed.

5.2.2. Expected Optimization Outcomes
The methods for setting up the objective functions will be evaluated using brute-force as was discussed. In
this way the minimum solution is guaranteed to be found. However, one point of attention remains. Namely,
if a certain minimum solution is found, how does one know if this solution makes physical sense? The answer
to this question can be found by performing a number of additional classical FEM analyses on the sample
truss systems, thus finding an expected optimum solution to the optimization problem. These expected

5.2. Phase 2: Setup of the QUBO Problem 51

solutions will be briefly discussed, and will serve as a guide to determine if objective functions are behaving
as expected.

Consider again the results initially shown in Table 5.3, reiterated in Table 5.4 for convenience. The table
shows the RFs present in each of the sample truss systems when the mid-sized cross-sectional area is chosen
for every truss in the system. These results are based on simply performing a standard FEM analysis of the
truss-structures. Because the mid-sized cross-sectional area is chosen for every truss in the system, there are
both smaller and larger options available for each of the trusses. Based on this information, an educated guess
can be made as to which solution might be expected from a truss-sizing optimization, given the allowable
choices.

Two-Truss System Three-Truss System Four-Truss System
For element: Area [mm2] RF For element: Area [mm2] RF For element: Area [mm2] RF
E1 900 0.9086 E1 500 0.7692 E1 2500 1.7680
E2 1500 2.1511 E2 1050 1.3252 E2 2500 1.7680
- - - E3 800 7.8331 E3 2000 0.8910
- - - - - - E4 2500 1.2859

Table 5.4: Truss system reference reserve factors.

Recall that the most lightweight truss structure that still complies with the material stress requirements
will have RF = 1 for every truss in the structure. Thus, looking at the RFs for the two-truss system, it is seen
that the RF for the first element is too low, while for the second element it is too high. Thus, given that both
smaller and larger options are available for both elements, it could be expected that the optimal result would
be to use a larger cross-sectional area for the first element, and a smaller one for the second element. Since,
the RF is expected to behave roughly proportionally to the change in cross-sectional area. In other words, it
is expected that increasing the cross-sectional area of a truss leads to a decrease of the truss stresses, in turn
leading to an increase of the RF. Applying this logic to the two-truss problem, this would mean that the first
element would optimally have an area of 1000 mm2, and the second element would use an area of 1400 mm2.
Another FEM analysis can be performed using these choices to see if this selection brings the truss RFs closer
to the optimal value of 1. Indeed, it is seen that using these choices, RFs of 1.0096 and 2.0062 are found for
the first and second truss elements, both being closer to the optimal value. As such, the expected result for
the two-truss system, in terms of binary variables, is [0,0,1,1,0,0].

In a similar vein, the expected results for the three- and four-truss problems can also be determined. By
first observing the RFs from Table 5.4, in which all trusses used their mid-sized area choices, a certain change
can be expected which may bring each truss closer to the optimal situation where the RFs are close to a value
of 1. For the three-truss system this means that the expected outcome would be a larger cross-sectional area
for the first truss, and smaller cross-sectional areas for the second and third trusses. Verifying with a FEM
analysis, using A1 = 600 mm2, A2 = 950 mm2, and A3 = 700 mm2, the RFs are found to be RF1 = 0.8586,
RF2 = 1.3206, and RF3 = 48.2891 respectively. In terms of the binary problem variables, this solution would
be represented as [0,0,1,1,0,0,1,0,0]. It can be seen that in this configuration, the reserve factor for the third
truss becomes much higher compared to the original configuration of cross-sectional areas. Specifically, in
the original configuration the third truss has RF3 = 7.8331, which increases to RF3 = 48.2891 upon making
the expected change to the cross-sectional areas. This goes against the intuition where an increase in cross-
sectional area is expected to lower truss stresses and increase RFs. Thus, this indicates that the problem might
be difficult to solve. The cause of this behavior is likely due to force redistribution within the truss structure,
due to the significant change in cross-sectional area of the first and second trusses.

Finally, for the four-truss system, observing the RFs in the initial configuration, it is expected that the
optimum choices would be to increase the cross-sectional area of the third truss element, while decreasing
the area of the first, second, and fourth elements. Thus, this is again checked with a standard FEM analysis,
using the areas A1 = 2400 mm2, A2 = 2400 mm2, A3 = 2100 mm2, and A4 = 2400 mm2. Doing so results
in finding RF1 = 1.6973, RF2 = 1.6973, RF3 = 0.9354, and RF4 = 1.2323. This solution would correspond to
[1,0,0,1,0,0,0,0,1,1,0,0] in terms of the binary problem variables. It can be seen that for this solution indeed
each of the trusses gets closer to the optimum value of RF = 1, compared to the original configuration.

5.2.3. Challenge: Setting up an Objective Function
As of yet, every truss has its own individual symbolic expressions for the stresses and RFs. Furthermore, it
is now known that such symbolic expressions can be evaluated by brute-force to investigate their behavior
for valid solutions to the optimization problem, and the expected optimal results have also been discussed.

52 5. Truss Sizing Optimization: Symbolic Finite-Element Method

Thus, it is now time to find a single expression that describes the entire truss system, and which can be used
to define the truss sizing optimization problem. This will be the objective function for the optimization.

The most optimal design, for this sizing optimization, is the truss structure design that is the most lightweight,
while still complying with the material strength allowables. In essence, if every truss in the system is brought
as close as possible to the allowed limit stress, giving a reserve factor close to 1, this would also describe the
minimum weight configuration. Since, if any more material were to be removed from any of the trusses, the
reserve factors would fall below a value of 1, meaning strength requirements are not being met. The follow-
ing sections detail the chronological development of a suitable objective function, which proved to be quite
challenging. The first attempts at setting up an objective function are related to the RF, while the final attempt
directly uses the expressions for the truss stresses. Throughout this process, the MATLAB software package
was used to perform the manipulations of the various symbolic expressions. The code is available online [91].

Initial Objective Function
The first method that was used to set up an objective function utilized the expressions that were found for the
truss RFs. It was seen that the symbolic expressions for the reserve factors are of a fractional form. The numer-
ator and denominator of these expressions both contain very many high-order qubit terms. Aside from the
fact that terms of higher than quadratic order are not allowed in QUBO problems, this fractional expression
for the reserve factor cannot be used directly in the QUBO formulation. This is because in QUBO problem
formulations only pure sums of linear and quadratic qubit terms can be taken into account. However, since
the QA is inherently designed for solving minimization problems, this fractional expression can possibly be
rewritten such that it becomes a target for a minimization problem.

It is known that the most optimal value of the reserve factor will be 1. This means that, if the reserve factor
is written as a fraction, the numerator and the denominator should be equal to each other. In this case, it
should therefore also be the case that the numerator minus the denominator should yield a result of zero,
in the optimal case. However, assuming that the currently known symbolic expression for the truss reserve
factor actually describes a sub-optimal case, this will result in an error term. An optimization problem can
then be set up for which the goal is to minimize this error, by simply squaring the expression. This ensures that
the optimum solution will be the one where the squared error is closest to zero, giving an objective function
for the minimization. The steps to this thought process are shown in Eq. (5.6).

If: RF =N

D
= 1

Then: →N = D

Optimally: →N −D = 0

Sub-optimally: →N −D = ε
Optimizing: →min

(
ε2)⇒ min

(
(N −D)2)

(5.6)

If this objective function for the minimization is set up for every truss individually, it may be reasonable to
expect the sum of each of these expressions to encode the minimization problem for the entire truss system.
Since, the objective would therefore be to find the minimum sum of all individual truss errors. As such, using
this method, the objective function for the whole system of trusses becomes:

T =
N∑

n=1
(Nn −Dn)2 (5.7)

Testing and Results This objective function was implemented and tested using MATLAB [91]. Using a sim-
ple brute-force analysis, using the set of valid answers to the optimization problem, the results for the two-,
three-, and four-truss problems are shown in Figs. 5.3 to 5.5. In each case, the minimum solution is indicated
with a small red circle.

For the two-truss problem, the minimum solution is found to be [0,1,0,1,0,0], which indicates the selec-
tion of the mid-sized cross-section for the first truss, and the smallest possible cross-section for the second
truss. For the three- and four-truss problems, the minimum solutions are found to be [1,0,0,1,0,0,1,0,0]
and [1,0,0,1,0,0,1,0,0,1,0,0] respectively. Both of these solutions indicate that the smallest possible cross-
section should be chosen for all trusses in the truss systems. These results are contrary to what was expected,
based on the arguments provided in Section 5.2.2. As an example, for the four-truss problem, the expected

5.2. Phase 2: Setup of the QUBO Problem 53

1 2 3 4 5 6 7 8 9

Solutions

0.6

0.8

1

1.2

1.4

1.6

1.8

2

F
un

ct
io

n
va

lu
e

1073 2: Initial Objective Function

Figure 5.3: Initial objective function for the two-truss problem. Global minimum is found to be solution number 4, corresponding to
[0,1,0,1,0,0].

0 5 10 15 20 25 30

Solutions

0

1

2

3

4

5

6

7

8

F
un

ct
io

n
va

lu
e

10128 3: Initial Objective Function

Figure 5.4: Initial objective function for the three-truss problem. Global minimum is found to be solution number 1, corresponding to
[1,0,0,1,0,0,1,0,0].

54 5. Truss Sizing Optimization: Symbolic Finite-Element Method

0 10 20 30 40 50 60 70 80 90

Solutions

2

3

4

5

6

7

8

9

F
un

ct
io

n
va

lu
e

10146 4: Initial Objective Function

Figure 5.5: Initial objective function for the four-truss problem. Global minimum is found to be solution number 1, corresponding to
[1,0,0,1,0,0,1,0,0,1,0,0].

optimum is that the third truss is would use the largest possible cross-section, rather than the smallest of the
given choices. Hence, an error may be present in the proposed method.

After some investigation, a source of erroneous behavior was found. The oversight in this method is that
the large symbolic expressions for the reserve factors rely on the expressions for the stresses. In turn, the
symbolic stress expressions evaluate to negative values for trusses that are in compression. This means that
the RF also becomes a negative number for compressive trusses, which in turn means that the calculation
to set up the objective function stops working properly. When the RF is calculated by RF = N /D and the
term D is a negative number, this means that the objective function is calculated using the sum of N and
D , rather than calculating the difference between N and D . This means that the objective function would
work inversely for compressive trusses. Naturally, the next step in the development process was to correct
this error.

Improved Objective Function
It was previously found that the objective function was not working properly with compressive trusses, due to
the stress in these trusses being negative. One idea to solve this issue might be to apply an absolute function
to the expressions for the truss stresses, such that they always return positive values. However, this would
be problematic, as mathematical functions cannot be applied to the terms in QUBO problem formulations.
Since, by definition, QUBO problems can only consist of a summation of linear and quadratic terms. Mathe-
matical functions, such as the absolute function, would therefore prevent the objective function from being
written in a QUBO-compatible form.

However, there is a workaround for this issue of not being allowed to use the absolute function for the
truss stresses. Namely, by squaring the expressions for the stresses, a new quantity is obtained that will always
be positive. Then, the squared stress can be used to find an expression for the squared reserve factor. The
expression for the squared reserve factor could then be used to set up a new objective function, for which the
minimum solution is sought. The squared reserve factor, for every truss n in the truss system, will have the
form shown in Eq. (5.8).

RF 2
n = N 2

n

D2
n

(5.8)

Similar to the previous case, the expression for the squared reserve factor is of a fractional form. Further-
more, the optimal solution for the squared reserve factor will still have a value of 1, which means that the
numerator and denominator should still be equal to each other. As such, the objective function for a single
truss is set up as:

5.2. Phase 2: Setup of the QUBO Problem 55

Tn = (N 2
n −D2

n)2 (5.9)

with the objective function for the complete system of trusses then being found by taking the sum for all
trusses.

T =
N∑

n=1
(N 2

n −D2
n)2 (5.10)

This reformulated objective function is again tested with the sample problems, using the brute-force anal-
ysis method, to find out if the minimum solution makes sense given the problem that is defined.

Testing and Results The improved objective function is again tested via brute-force analysis [91]. The re-
sults of these analyses are shown in Figs. 5.6 to 5.8, with the global minimum solutions indicated with a small
red circle. For the two-truss problem, the optimum is found at solution number 7, which in turn corresponds
to the binary solution [0,0,1,1,0,0]. For both the three-, and four-truss problems, both optimum solutions
are found at solution number 1, corresponding to [1,0,0,1,0,0,1,0,0] and [1,0,0,1,0,0,1,0,0,1,0,0].

1 2 3 4 5 6 7 8 9

Solutions

0

2

4

6

8

10

12

14

16

18

F
un

ct
io

n
va

lu
e

1081 2: Improved Objective Function

Figure 5.6: Improved objective function for the two-truss problem. Global minimum is found to be solution number 7, corresponding
to [0,0,1,1,0,0].

Using the improved objective function method, the expected solution for the two-truss problem is in-
deed returned. Since, the binary solution [0,0,1,1,0,0] indicates that the first truss element should choose
the largest possible cross-section, while the second truss element should optimally take the smallest cross-
section. However, it is seen that, for the three- and four-truss problems, the improved objective function
method is still not providing the expected results, indicating that the smallest cross-sections should be cho-
sen for all trusses in these truss systems.

Even though the improved objective function is now providing the expected result for the two-truss prob-
lem, the current method is still presumed to be flawed. Since, for the more complicated three- and four-truss
problems, the expected results are not obtained. The reason for this might be that the method includes a step
to mitigate a fractional form. In the improved objective function method, the difference between N 2 and D2

is considered, rather than considering the ratio N 2/D2 which defines the squared reserve factor. A solution
that minimizes the difference between N 2 and D2 is not necessarily the same solution for which the ratio
between N 2 and D2 is minimal. Hence, this may be the source of the unexpected behavior produced by this
objective function method.

56 5. Truss Sizing Optimization: Symbolic Finite-Element Method

0 5 10 15 20 25 30

Solutions

0

1

2

3

4

5

6

7

8

9

10

F
un

ct
io

n
va

lu
e

1097 3: Improved Objective Function

Figure 5.7: Improved objective function for the three-truss problem. Global minimum is found to be solution number 1, corresponding
to [1,0,0,1,0,0,1,0,0].

0 10 20 30 40 50 60 70 80 90

Solutions

0

0.5

1

1.5

2

2.5

3

3.5

F
un

ct
io

n
va

lu
e

10114 4: Improved Objective Function

Figure 5.8: Improved objective function for the four-truss problem. Global minimum is found to be solution number 1, corresponding
to [1,0,0,1,0,0,1,0,0,1,0,0].

5.2. Phase 2: Setup of the QUBO Problem 57

The objective function setup methods thus far have included steps to mitigate a fractional form for the
objective functions, but have not been successful in reliably finding the expected minimum solutions via
brute-force analysis. An alternative option, which may find the expected solutions more reliably, could be to
set up a fractional objective function. However, by having a fractional objective function, the function would
be much less compatible with the QUBO problem formulation in which only a summation of linear and
quadratic terms is allowed. Nevertheless, a fractional objective function could still be evaluated using brute-
force analysis to investigate if it produces the expected results more reliably. Thus, in the next section, the
setup of a fractional objective function will be investigated via brute-force. If it is found that such an objective
function indeed provides the expected results via brute-force, then an additional method must be found by
which fractional objective functions can be made compatible with the QUBO problem format. Otherwise, it
will not be feasible to implement this problem on the QA.

Fractional Objective Function
The idea that reserve factors should be equal to 1 was previously used to allow for the objective function to
be written in a non-fractional form. However, the testing of these methods showed that they were not reliably
finding the expected optimum solution. It is therefore necessary to investigate the theoretical results if the
objective function is intentionally kept in a fractional form. In this case, there is no longer a need to rely
on an expression for the reserve factor. Rather, an objective function can be set up that directly considers the
difference between the allowable stress and the actual stress in the truss. Because the expressions for the truss
stresses are fractional in nature, the final objective function will also become a fraction using this method.

Setting up the fractional objective function, it is again important to consider that the truss stresses evalu-
ate to negative numbers for trusses in compression. As such, it is necessary to square the expression for the
truss stress. For consistent units this also means that the maximum allowable stress must be squared. For a
single truss n, this leads to the fractional target objective function shown in Eq. (5.11).

Tn = (
σ2

limit −σ2
n

)2
(5.11)

With Eq. (5.11), the minimum solution should encode the choice of truss cross-sectional area that min-
imizes the absolute difference between the limit stress and the truss stress. In turn, this choice implicitly
brings the RF as close as possible to 1, and the weight of the truss is therefore minimized. Furthermore, if
Eq. (5.11) describes the difference between the limit stress and the current stress in a single truss, then the
goal for the entire truss system would be to minimize the sum of these differences for every truss in the struc-
ture. Thus, to set up an objective function that describes the entire truss structure, the summation of the
target expressions of every individual truss is taken, which leads to Eq. (5.12).

T =
N∑

n=1
Tn =

N∑
n=1

(
σ2

limit −σ2
n

)2
(5.12)

With Eq. (5.12) a general method is obtained that can be used to set up a fractional objective function for
each of the sample problems. These objective functions can then be evaluated using a brute-force analysis,
to find if it gives the expected results in a reliable manner. Unfortunately, it is impossible to implement this
fractional objective function for use directly with the QA, since it is incompatible with the QUBO formulation.

Testing and Results As with the previous attempts at formulating an objective function, this new fractional
objective function is also investigated using a brute-force method. The results for the three sample problems
are shown in Figs. 5.9 to 5.11, and were produced using the MATLAB code which is available online [91]. For
the two-truss problem, the minimum is found at solution number 7, corresponding to [0,0,1,1,0,0]. The
three-truss problem has the global minimum at solution number 21, corresponding to the binary solution
[0,0,1,1,0,0,0,0,1]. Finally, the four-truss problem has the minimum at solution number 7, which in this
case corresponds to [1,0,0,1,0,0,0,0,1,1,0,0].

58 5. Truss Sizing Optimization: Symbolic Finite-Element Method

1 2 3 4 5 6 7 8 9

Solutions

0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

1.05

F
un

ct
io

n
va

lu
e

2: Fractional Objective Function

Figure 5.9: Fractional objective function for the two-truss problem. Global minimum is found to be solution number 7, corresponding
to [0,0,1,1,0,0].

0 5 10 15 20 25 30

Solutions

1

1.5

2

2.5

3

3.5

4

F
un

ct
io

n
va

lu
e

3: Fractional Objective Function

Figure 5.10: Fractional objective function for the three-truss problem. Global minimum is found to be solution number 21,
corresponding to [0,0,1,1,0,0,0,0,1].

From these results, it can be seen that the fractional objective function provides the expected outcomes
for both the two- and four-truss problems. This indicates that the fractional objective function method may
be useful for solving these truss optimization problems. However, for the three-truss problem, the fractional
objective function does not entirely yield the expected result. In this case, the result [0,0,1,1,0,0,0,0,1] in-
dicates that the third truss should optimally use the largest cross-section, rather than the initially expected
smallest cross-section. The results for the first and second trusses in the system do agree with the expecta-
tion from Section 5.2.2. From Fig. 5.10 it can also be seen that solutions 19 and 20 are extremely close to the
optimum, having only slightly higher function values compared to the optimum solution. To be precise, the
function values are T

(
q19

) = 1.3512, T
(
q20

) = 1.3485, and T
(
q21

) = 1.3461. These three solutions only have
different cross-sectional areas for the third truss, all having the same choices for the first two trusses. Thus,
for the three-truss problem, it evidently does not make much difference for the value of the objective func-
tion what cross-section is chosen for the third truss, as long as the expected choices are made for the first and

5.2. Phase 2: Setup of the QUBO Problem 59

0 10 20 30 40 50 60 70 80 90

Solutions

1.05

1.1

1.15

1.2

1.25

1.3

1.35

1.4

1.45

1.5

F
un

ct
io

n
va

lu
e

4: Fractional Objective Function

Figure 5.11: Fractional objective function for the four-truss problem. Global minimum is found to be solution number 7, corresponding
to [1,0,0,1,0,0,0,0,1,1,0,0].

second trusses.

Initially, in Section 5.2.2, it was already seen that the three-truss problem could cause difficulties. Under
the assumed expected solution, it was seen that the RF for the third truss would increase from 7.8331 to a
value of 48.2891. This goes against the intuition that decreasing the truss cross-sectional area would lead to
higher truss stresses, and thus lower the RF. Instead, for the third truss in the three-truss system, the opposite
behavior is seen. This is likely due to the design of the truss structure, having the third truss in a nearly
horizontal orientation. The load acting on the central node is acting vertically downward. Thus, the first
and second trusses will carry the majority of the load, since they are better aligned with the loading direction
compared to the nearly-horizontal third truss. However, if the stiffness of the first two trusses is significantly
changed, this can lead to a force redistribution within the structure. This can decrease the load that is carried
by the third truss, in turn meaning that the stresses decrease and the RF increases. Since the stiffness of the
first and second trusses is significantly changed, the force redistribution within the structure is expected to
be the reason for the counter-intuitive behavior of the third truss.

Overall, the fractional objective function works as expected for the two- and four-truss problems. Fur-
thermore, for the three-truss problem, it is seen that the choice of cross-sectional area of the third truss has
little effect on the value of the objective function. For the first and second trusses in the three-truss system
the fractional objective function works as expected. The deviation from the expected result in this case is
caused by the fact that the problem itself is quite difficult, and is not necessarily due to mistakes in the for-
mulation of the objective function. Thus, even though some improvements to the methodology may still be
possible, the fractional objective function using the current method works well enough to merit further inves-
tigation. Because of the fact that the fractional objective function cannot be used directly with the QA, since
it is incompatible with the QUBO problem format, the next section of the thesis discusses this challenge.

5.2.4. Challenge: Fractional Objective Functions
In the previous section, it was seen that an objective function can be set up for which the minimum solu-
tion gives a selection of truss cross-sectional areas that bring every truss closest to the assumed limit stress.
However, the problem with this specific objective function formulation is that it is fractional in nature, which
is not compatible with the QUBO problem framework and therefore not directly usable with the QA. In the
earlier attempts at setting up an objective function, methods were tried to set up non-fractional objective
functions. Unfortunately, these methods were shown to be ineffective at yielding the expected results. As
such, the fractional objective function presents another challenge to be overcome along the path to using a
QA for the truss sizing optimization problem. In this section, methods for translating the fractional objective
function to an equivalent non-fractional form are investigated.

60 5. Truss Sizing Optimization: Symbolic Finite-Element Method

Original Conversion Method
Assuming a basic fractional objective function of the form:

T f =
N

D
(5.13)

where the subscript f indicates the fractional form, there might be several ways one could consider con-
verting the function to an equivalent non-fractional form. The previous attempts at converting to a non-
fractional objective accomplished the conversion by:

Tnf = (N −D)2 (5.14)

in which the subscript nf indicates ‘non-fractional’. This conversion was thought to be feasible, since opti-
mally T f = 1 should hold. Because this means that N = D , taking (N −D)2 was thought to lead to an optimiza-
tion problem. However, the minimum solution of Tnf is not necessarily the same as the minimum solution of
T f . As a brief example, imagine a certain fractional objective function has two possible solutions:

T f ,1 =
11

10
= 1.1 and T f ,2 =

101

100
= 1.01 (5.15)

In this case, the minimal solution of the two available options would be the second, T f ,2 = 101
100 . However,

conversion into a non-fraction using the method of Eq. (5.14) does not yield any difference between both
solutions. Since, performing the conversion, Tn f ,1 = (11−10)2 = 1 and Tn f ,2 = (101−100)2 = 1. This method
is therefore problematic, as it does not preserve the same minimum solution, and therefore fails to set up an
equivalent non-fractional objective fuction.

Taylor Series Approximation
Another method that was attempted for converting the fractional objective into a non-fraction was through
using a Taylor series approximation. Aside from helping to write the objective as a non-fraction, the Taylor
series approximation may also help to reduce the highest order of the terms appearing in the objective func-
tion. Originally the fractional objective function has many high-order terms, where many of the binary qubit
variables are multiplied together. Using the Taylor series approximation, the highest order of terms allowed
in the approximation becomes a user-defined parameter. Given a fractional objective function:

T f
(
q
)= N

(
q
)

D
(
q
) (5.16)

in which the vector of binary qubit variables is written as q. This fractional objective function has high-
order functions of all binary qubit variables in both the numerator and the denominator. For the Taylor
series expansion it is also necessary to assume a vector of values for the qubit variables, around which the
approximation will be valid. This vector of assumed values is written as a. The Taylor series expansion for
this multi-variable function is then given as:

Tn f
(
q
)≈ T f (a)+ (

q−a
) ∂T f (a)

∂q
+ 1

2

(
q−a

)2 ∂
2T f (a)

∂q2 + . . . (5.17)

In this case, the expansion is written up to the second order, but higher-order expansions are possible.
The constant term T f (a) could actually be dropped, since it contributes the same amount to every possible
solution, and therefore does not influence which solution is minimal. By finding the second-order expan-
sion the objective would be written as a summation of linear and quadratic terms. This in turn means that
a second-order Taylor approximation of the fractional objective function would automatically make the ap-
proximation compatible with the QUBO problem framework.

For the assumed solution a of the Taylor approximation, several possibilities exist. Either, a particular
solution to the problem can be chosen, such as the solution for which all trusses utilize a medium-sized
cross-section. Alternatively though, despite the variables q being binary, every variable can be assumed to
be in a ‘superposition’ state, i.e. having a value of 1

2 . Both of these methods were implemented and tested,
investigating the resulting approximated objective function through brute-force analysis of every possible
valid solution to the problem.

5.2. Phase 2: Setup of the QUBO Problem 61

Testing and Results The Taylor series approximation method was tested for the simplest sample problem
that has been defined, namely the two-truss structure. In this case, the problem is defined such that there is a
choice of three different cross-sectional areas for each truss, meaning that in total there are six different qubit
variables that must be taken into account.

Through some initial testing it quickly became apparent that for this particular problem it is quite time-
consuming to find the fifth- and sixth-order Taylor approximations. Since, the number of symbolic deriva-
tives that must be calculated and evaluated increases exponentially with every additional order of approxima-
tion. Therefore, only results of second-, third-, and fourth-order Taylor series approximations are investigated
and compared to the original fractional objective function.

The following plots show the brute-force solutions of the Taylor approximations and the original fractional
objective function. The first plot, given in Fig. 5.12a, shows the second-order Taylor approximation results,
using the mid-sized solution as the solution around which the approximation is calculated. The exact cross-
sectional areas for the mid-sized solution can be found in Table 5.2, using the areas found in the ‘Option 2’
column, for every truss in the two-truss problem.

1 2 3 4 5 6 7 8 9

Solutions

-14

-12

-10

-8

-6

-4

-2

0

2

F
un

ct
io

n
va

lu
e

104 2: Fraction vs Taylor Approximation

Fraction
Taylor O2

(a) Second-order Taylor approximation.

1 2 3 4 5 6 7 8 9

Solutions

-20

-18

-16

-14

-12

-10

-8

-6

-4

-2

0

F
un

ct
io

n
va

lu
e

109 2: Fraction vs Taylor Approximation

Fraction
Taylor O2
Taylor O3
Taylor O4

(b) Taylor approximations up to fourth order.

Figure 5.12: Taylor approximations of the fractional objective function of the two-truss problem around the mid-sized solution.

It can be seen that, performing the approximation around the assumed mid-sized solution, the second-
order Taylor approximation does an extremely poor job at approximating the original fractional objective
function. The order of magnitude on which the approximated function varies is much greater than that of
the original function, making the original look like a simple horizontal line. The approximation is only close
to the true value for solution number 5, which is exactly the mid-sized solution around which the approxi-
mation should be valid. The approximation therefore seems to be working correctly, but fails to capture the
behavior of the fractional objective function for every other solution, aside from the initially assumed solu-
tion. Increasing the order of the approximation only exacerbates the errors, as can be seen from Fig. 5.12b.

Clearly then, choosing the mid-sized solution for the Taylor approximation is not yielding usable results.
The approximated functions yield erroneous solutions for all but the initially assumed solution, and fail to
correctly approximate the shape of the original fractional objective function, giving different minimum solu-
tions.

The second option for the assumed solution is to assume every qubit is in a ‘superposition’ state, between
the valid binary values. Thus, every qubit variable is assumed to have a value of 1

2 . The plots shown in Fig. 5.13
show the results for the Taylor approximations up to the fourth order.

In this case, it can be seen that the approximation yields much more reasonable results, at least being
in the same order of magnitude as the original fractional objective. However, the approximations still do not
capture the shape, nor the same minimum solution as that of the original fractional objective function. Since,
the original function has its minimum at solution number 7, while the approximations consistently have their
minima at solution number 9. These solutions correspond to q7 = [0,0,1,1,0,0] and q9 = [0,0,1,0,0,1].

62 5. Truss Sizing Optimization: Symbolic Finite-Element Method

1 2 3 4 5 6 7 8 9

Solutions

0.5

1

1.5

2

F
un

ct
io

n
va

lu
e

2: Fraction vs Taylor Approximation

Fraction
Taylor O2
Taylor O3
Taylor O4

Figure 5.13: Taylor approximations using ‘superposition’ solution.

Since in both cases the Taylor approximation fails to capture the correct shape and minimum solution
as that of the original fractional objective function, the Taylor series approximation method is deemed un-
suitable for use in converting the fractional objective function into an equivalent non-fractional function. As
such, further literature on possible conversion methods for this purpose must be investigated.

Literature on Conversion Methods for Fractional Functions
The conversion methods attempted thus far have not yielded equivalent non-fractional functions. However,
this problem remains of critical importance to solve if a practical implementation for the QA is desired. Thus,
it is necessary to look further into the literature to find possible methods that might be successful. One field
in which some success may be found is the field of Linear Fractional Programming (LFP).

Although the current fractional objective function is definitely non-linear, considering the many high-
order multiplications in the function, it may be possible to reformulate the fractional function as an LFP
problem. For instance, the two-truss problem relies on six individual binary qubit variables. The fractional
expression however, contains many terms with different products of these original six variables. An idea
might be to define a new auxiliary variable, which can be used to replace each of the higher-order products.
For example, suppose the following fractional function F exists, as a function of the binary variables in q:

q = [
q1, q2, q3, q4, q5, q6

]T

F
(
q
)= q1 +q2 +q3 +q3q4 +q4q5q6

q1 +q2 +q3 +q4 +q5 +q6

(5.18)

The non-linear terms q3q4 and q4q5q6 might respectively be replaced by the linear auxiliary variables qa1

and qa2. In order to make this replacement valid, constraints will be necessary to enforce that qa1 = q3q4 and
qa2 = q4q5q6. Without considering the specifics of how such a constraint might need to be enforced, it seems
plausible that this method could at least be used to convert the unconstrained non-linear fractional objective
function into an LFP problem with constraints. As such, what follows is a brief look into some of the literature
that was uncovered on the conversion of LFP problems to Linear Programming (LP) problems.

Method by Hasan and Acharjee From the literature on LFP problems, some clues have been found with
respect to converting LFP problems into simpler Linear Programming (LP) problems. Specifically, a publi-
cation by Hasan and Acharjee indicates that the conversion of LFP to LP is a field that has been active since
at least the 1960s [40]. According to Hasan and Acharjee, the existing methods for LFP to LP conversion are
complicated or computationally expensive [40]. However, the new method proposed by the authors appears
to be fairly straightforward and will be shown below. An LFP is defined as shown in Eq. (5.19).

Z = cx +α
d x +β (5.19)

5.2. Phase 2: Setup of the QUBO Problem 63

The LFP can be transformed to an LP by rewriting in the following manner:

Z = cx +α
d x +β

= cx +α
d x +β

β

β

= cxβ+αβ
β

(
d x +β)

= cxβ−d xα+d xα+αβ
β

(
d x +β)

=
(
cβ−dα

)
x +α(

d x +β)
β

(
d x +β)

=
(
c −d

α

β

)
x

d x +β + α

β

(5.20)

Then, defining:

p =
(
c −d

α

β

)
y = x

d x +β g = α

β
(5.21)

the LFP then becomes the LP:

F
(
y
)= py + g (5.22)

One major caveat for this method, however, is that it only works when β 6= 0. In the case of the fractional
objective function that is obtained for the truss sizing optimization problem, the function does not contain
any constant terms. This means that for the truss problem, the situation arises thatβ= 0, and the method de-
scribed by Hasan and Acharjee will not work. Regardless, some brief testing was performed using this method
of converting the fractional two-truss sizing optimization problem into a non-fraction assuming various val-
ues forα and β. However, the results were not representative of the original fractional objective function, and
the method was therefore abandoned, in search of other alternatives.

Method by Simi and Talukder More recently, a new approach to converting LFP to LP problems was for-
mulated by Simi and Talukder [79]. In essence, this method is quite similar to the approach that was initially
attempted, where the denominator of the fractional function is subtracted from the numerator, to arrive at a
non-fractional objective. However, the approach includes an extra step that scales the magnitude of the de-
nominator term. Simi and Talukder describe the following method [79]. Given an LFP, as shown in Eq. (5.23):

F (x) = cT x +γ
d T x +β (5.23)

A feasible solution to the problem, x∗ is chosen, and the LFP is evaluated at this point to yield a valid
function value F∗.

F∗ = F
(
x∗)= cT x∗+γ

d T x∗+β (5.24)

The LP problem can then be defined as:

φ (x) = (
cT −F∗d T)

x (5.25)

The method was implemented and briefly tested with the two-truss sizing optimization problem. How-
ever, some changes and assumptions were necessary for this method to be applied to the fractional objective.
Namely, it was assumed that each high-order term could be represented by its own new individual linear
variable. Furthermore, no method could be found to implement constraints such that these replacement
variables would be equal to their original definition, and therefore the problem remained unconstrained.
Additionally, the method relies on an assumed feasible solution. For this purpose, the mid-sized solution of
the two-truss problem was used. This means that, given the three available options for both of the trusses in
the two-truss problem, the areas given in the ‘Option 2’ column of Table 5.2 were used to calculate the value

64 5. Truss Sizing Optimization: Symbolic Finite-Element Method

of F∗. Lastly, the constant terms γ and β were assumed to be zero, as these terms do not naturally appear in
the original fractional objective.

Despite these differences and assumptions, this method seemed to give promising results for the small
two-truss problem. Namely, for the two-truss problem, the expected outcome is one that corresponds to
choosing the largest possible cross-section for the first truss, while choosing the smallest possible cross-
section for the second truss. These choices result in the configuration where each truss is closest to the limit
stress, given the available choices in cross-sectional area. Indeed, using the method proposed by Simi and
Talukder, these same results are found to have the minimum solution to the converted objective function.
Thus this method appeared promising for converting fractional objectives into equivalent non-fractional
forms.

However, further testing of the method using the larger four-truss problem yielded poor, and seemingly
arbitrary results. This may be due to the assumptions that were necessary to implement the method. Partic-
ularly the assumption that every high-order binary variable multiplication can be replaced by a new linear
variable, without being able to impose constraints to enforce similar behavior, would be a likely source of
errors.

The limited success of this method perhaps indicates that the general idea for this conversion method is
good, but that the fractional objective as given for the truss sizing optimization problem is not particularly
compatible. Especially when the size of the problem is increased, and so too the number of high-order terms
in the fractional objective, the direct conversion method proposed by Simi does not work for this problem,
using the previously described assumptions.

Iterative Method by Ajagekar et al. Although the publication by Ajagekar et al. had previously already been
encountered, its importance and relevance to the truss sizing optimization problem was perhaps somewhat
underestimated. In their work, the authors describe an iterative method for minimizing a fractional objective,
specifically with application to quantum annealing in mind [3]. However, the reason for not implementing
their method up until this point was that its iterative nature was seen as a large disadvantage compared to
the possibility of direct methods existing. However, evidently, the direct methods of converting the fractional
objective to an equivalent non-fractional form have thus far yielded poor results. As such, finally, the iterative
method demonstrated by Ajagekar et al. was further investigated.

The method proposed by Ajagekar et al. can be adapted to the truss sizing optimization, and is described
by the following procedure. Asserting that the original fractional objective F is a function of the binary vari-
ables q, the objective function can be written as shown in Eq. (5.26).

F (q) = N (q)

D(q)
(5.26)

Then, some additional parameters are needed and initialized before the iterative procedure can be started.
As such, these initial values are set as shown in Eq. (5.27).

iter = 0

λ= 0

obj =∞
δ= 10−6

(5.27)

Consequently, the iterative procedure can be started, as shown in Eq. (5.28).

1 : while
∣∣λ−ob j

∣∣> δ
2 : iter = iter+1

3 : Fn f
(
q
)= N

(
q
)−λD

(
q
)

4 : find q̂ s.t. min
(
Fn f

(
q̂
))

5 : obj =λ
6 : λ= F

(
q̂
)

(5.28)

It can be seen that, similar to previously attempted methods, an N −λD approach is taken in step 3 to
rewrite the objective as a non-fraction. Step 4 can then be performed using the QA, or, for testing purposes,
by using brute-force analysis, yielding a solution for q̂ . The function evaluation that takes place in step 6

5.2. Phase 2: Setup of the QUBO Problem 65

can then simply be performed classically using the original fractional objective function F . Due to the iter-
ative nature of the procedure, the process is repeated several times until the difference between the current
fractional objective function value and the value in the previous iteration is below a user-defined threshold.

The implementation of the iterative procedure was fairly straightforward, only requiring a few additional
parameters and a simple while-loop in order to be tested. The method was tested using the familiar sam-
ple problems, being evaluated by brute-force. The results for the iterative solution procedure are shown in
Figs. 5.14 to 5.16.

1 2 3 4 5 6 7 8 9

Solutions

-1

-0.5

0

0.5

1

1.5

2

2.5

F
un

ct
io

n
va

lu
e

1033 2: Iterative Solving Procedure
Iteration1
Iteration2
Iteration3
Iteration4
Minimum

Figure 5.14: Iterative solution procedure for the two-truss problem. Global minimum is found to be solution number 7, corresponding
to [0,0,1,1,0,0].

0 5 10 15 20 25 30

Solutions

-2.5

-2

-1.5

-1

-0.5

0

0.5

1

1.5

F
un

ct
io

n
va

lu
e

10168 3: Iterative Solving Procedure
Iteration1
Iteration2
Iteration3
Iteration4
Iteration5
Minimum

Figure 5.15: Iterative solution procedure for the three-truss problem. Global minimum is found to be solution number 21,
corresponding to [0,0,1,1,0,0,0,0,1].

These results can be compared with those of the original fractional objective functions, as were previously
shown in Figs. 5.9 to 5.11. It can be seen that the iterative method is consistently able to converge on the same
minimum solutions as described by the fractional objective functions. Therefore, this procedure can success-
fully transform the fractional problem into a non-fractional form. Although several iterations are necessary

66 5. Truss Sizing Optimization: Symbolic Finite-Element Method

0 10 20 30 40 50 60 70 80 90

Solutions

-2

0

2

4

6

8

10

12

F
un

ct
io

n
va

lu
e

10156 4: Iterative Solving Procedure
Iteration1
Iteration2
Iteration3
Iteration4
Minimum

Figure 5.16: Iterative solution procedure for the four-truss problem. Global minimum is found to be solution number 7, corresponding
to [1,0,0,1,0,0,0,0,1,1,0,0].

to find the correct solution, the fact that a non-fractional problem is being solved in step 4 of the procedure
shown in Eq. (5.28) means that this method is suitable for use with the practical QA. Since, by being non-
fractional, it should be possible to finally rewrite this non-fractional expression as a QUBO problem. Thus,
another step has been taken towards feasibly solving the truss sizing optimization problem using the actual
QA. The practical aspects of getting this procedure to work with the QA, and the testing thereof are discussed
in the upcoming section.

5.2.5. Practical Implementation of Truss Sizing Optimization
Based on the previous theoretical work, in which a suitable method was found to define an objective function
for the truss sizing optimization problem, as well as finding an iterative method by which the minimum
solution to this objective function can be found, the practical implementation of the problem for use with
real quantum annealing hardware can be investigated. Thus far, the work done will allow for a fractional
objective function to be found for any 2-dimensional system of trusses, having three possible discrete choices
in cross-sectional area for every truss. Then, to find the minimum solution of this fractional objective, a
rewritten non-fractional function is iteratively solved. This rewritten non-fractional function is nearly, but
not quite, suitable for implementation on the QA. In this section, the final steps will be discussed for the
practical implementation, and the final results thereof.

Once a problem has been set up in a quantum annealing-compatible QUBO formulation, two different
solving methods can be used. The problem can naturally be submitted to the quantum computing hard-
ware to find a solution, however, alternatively, D-Wave offers a simulated annealing (SA) method that can be
employed to find solutions without requiring the use of the quantum computing hardware [19]. Simulated
annealing is a computationally intensive solving procedure that can be run on local classical computing hard-
ware. The benefit of using SA is that it does not expend the limited amount of quantum computational time
that is allotted to basic user accounts on D-Wave’s Leap quantum software development platform. This made
SA ideal for use throughout the development process for testing code functionality, before committing to
using the physical quantum computing hardware.

Problem Size Reduction by High Order Truncation
When it comes to solving problems using the physical quantum annealing hardware or the SA method, it is
beneficial if problems can be simplified or reduced in size. This is beneficial because these methods are not
guaranteed to yield the global minimum solution, and errors can occur. For quantum annealing this is due
to the probabilistic nature of the quantum annealing process. Similarly, the SA implementation that D-Wave
offers with their development tools is also not guaranteed to yield the true minimum solution. However,

5.2. Phase 2: Setup of the QUBO Problem 67

when the size or complexity of a problem can be decreased, this means the total size of the solution space
decreases, and the likelihood of finding high-quality solutions is increased. For this reason, one of the first
steps that is undertaken when practically implementing the truss sizing optimization problem for use with
the QA is to find ways by which the complexity of the problem can be reduced, while not influencing the
minimizing solution.

One key realization at this point in the process was that not all terms in the objective function contribute
useful information to valid solutions to the problem. For instance, consider the two-truss problem. This
problem, with three different choices of cross-sectional area per truss, utilizes a total of six different qubit
variables in its expression for the objective function. As such, the highest-order term in the expression is
a sixth-order term, where every variable is multiplied together. However, logically, it is only ever desirable
to select a single ideal cross-sectional area for each truss, given the set of possible discrete choices. This
means that, for the two-truss problem, valid solutions to the problem will have two binary variables end
up with a value of 1, while the remaining four variables should all have a value of 0. In turn, this means
that all terms in the objective function that are higher than second order only contribute information to
invalid solutions. Since, if only two of the binary variables are expected to be 1, then any term containing
three or more variables will never yield a contribution to the final objective function value. The first major
simplification to the objective function expression is therefore to truncate any term that has a higher order
than the number of trusses in the complete structure.

The effect of performing this simplification is that the total number of terms in the objective function
is greatly reduced. For example, before truncation, the objective function for the two-truss problem has a
total of 63 terms in the expression. This number is not arbitrary, as it is also the total number of possible
combinations of six variables, without repetitions, for all possible combinations from first-order up to and
including sixth-order. However, truncating every term that is higher than second order, leaves a total of 21
terms, meaning that two-thirds of the terms in the objective function were only contributing information to
undesirable and invalid solutions. This effect is even exacerbated for the three- and four-truss problems. In
those cases, the total number of terms gets reduced from 511 to 129, and from 4095 to 793 terms respectively.
This means that those expressions for the objective functions are reduced in size by around 75% and 80%
respectively. For reference, these calculations were performed in a simple Excel sheet, which is available
online [91].

Linear Scaling of the Objective Function
Following the simplification of the objective function, a linear scaling of the terms in the objective function
can be performed. This means that a constant scaling factor is applied to every term in the objective function.
The scaling is chosen such that the maximum absolute magnitude of any of the terms in the function will be
equal to a specific, user-defined value. Although the usefulness of this scaling action may not be entirely ob-
vious at this point, it offers an important benefit. Namely, by implementing this linear scaling, a user-defined
parameter is created that allows for convenient scaling of the magnitude of the output of the fractional objec-
tive function. In turn, this parameter may become useful for manually tuning the importance of the objective
function with respect to other properties or constraints related to the practical implementation for quantum
annealing. As an example, consider the simple objective function shown in Eq. (5.29).

F = 3q1 +2q1q2 +5q2q3 (5.29)

It can be seen that the maximum coefficient in this function has a value of 5, thus cmax = 5. The function
can be scaled such that the user-defined maximum coefficient has a value of cuser . As an example, setting
cuser = 1, first the scaling coefficient cscale is calculated as shown in Eq. (5.30). For this example this will be
1/5. Then, to scale the objective function, the full expression for the objective function is multiplied by cscale,
as shown in Eq. (5.31).

cscale =
cuser

cmax

cscale =
1

5

(5.30)

Fscaled = cscaleF

= cscale
(
3q1 +2q1q2 +5q2q3

)
= 3

5
q1 + 2

5
q1q2 +1q2q3

(5.31)

68 5. Truss Sizing Optimization: Symbolic Finite-Element Method

This scaling operation is straightforward in its implementation, as the cmax value can be found through
simple one-line commands in Python, such as by using the amax function present in the Numpy package [63].
It is also possible to perform the scaling separately for both the numerator and the denominator of a fractional
objective function, by finding the maximum magnitude cmax separately for both parts of the fraction. How-
ever, within the iterative solving approach, the scaling is applied to the rewritten non-fractional objective
function.

Non-Linear Scaling of the Objective Function
Throughout the brute-force testing of the objective functions for the different sample problems, as discussed
in Section 5.2.3, it was seen that certain objective functions have very little difference in function value for the
global minimum solution and other local minimum solutions. In practice, this would mean that the global
minimum solution is quite difficult to find, as other local minimum solutions have roughly the same function
value. In quantum computing terminology, the set of possible function values that can be found for an objec-
tive function are commonly referred to as the energy landscape for that objective function. This terminology
is used in spite of the fact that the objective function is not necessarily written in terms of typical ‘energy’
units, such as Joules. Nevertheless, the energy landscape invokes a visual intuition for finding globally op-
timal solutions, as these would be represented by the lowest valley in the energy landscape. The problem
where global and local minima have roughly the same function value can therefore be interpreted as the en-
ergy landscape having a number of approximately equally deep valleys. Although the QA should be good at
finding one of these valleys, it may have difficulty identifying which exact valley is the lowest.

The main cause for very small differences between local minima and the global minimum, is that the
specific terms in the objective function that cause these small differences have small coefficients compared
to other terms in the function. The method by which these small differences between local and global min-
ima can be amplified is therefore to scale small coefficients in the objective function to become larger and
more influential, while not affecting the terms that are already significant. This calls for a non-linear scaling
method, which scales small coefficients by a large amount, but barely influences larger coefficients. The goal
of this scaling is then to increase the difference in the Hamiltonian energy of the global minimum solution
and the other local minima. By increasing this difference, it should become easier for the QA to find the global
minimum solution.

A Python function was created and implemented that performs this non-linear scaling. By performing
this scaling, it may improve the likelihood of identifying the true global minimum using the QA. The method
relies on simple user-defined parameters that will allow for manual tweaking once the problem has been fully
implemented for use with the QA.

Given the user-defined scaling parameter cNL, a positive coefficient cin+ from the objective function is
input into the non-linear scaling function. The non-linearly scaled coefficient is then found by Eq. (5.32).

cout+ = cin+
cin++ cNL

(5.32)

For negative input coefficients, cin−, the non-linear scaling is performed by:

cout− =− cin−
cin−− cNL

(5.33)

To determine if the input coefficient must be scaled using either Eq. (5.32) or Eq. (5.33), a simple if-
statement is used. By setting cNL to be a certain small number, such as 0.002, the amount of scaling that
is applied to small coefficients is much more aggressive than for relatively larger coefficients. As a demon-
stration of this function, several plots are given in Fig. 5.17, showing the influence of changing the parameter
cNL. As can be seen, selecting smaller values for cNL leads to more aggressive scaling of small coefficients,
but also causes all relatively larger coefficients to become essentially equal. The use of this non-linear scaling
function will therefore be a balancing act of increasing the importance of small coefficients, while not losing
distinction for the larger terms. The Python code for the non-linear scaling function, and for producing the
plot from Fig. 5.17 is available online [91].

To demonstrate the effect of the non-linear scaling on the energy landscapes, a brute-force analysis can
be performed. Since the non-linear scaling will be a part of the iterative solving procedure described in the
previous section, the energy landscapes of the first iteration of the solving procedure are shown. This first
iteration is convenient to investigate, since from Eq. (5.27) it is known that λ= 0, meaning that the objective
function in step 3 in Eq. (5.28) only involves the numerator of the fractional objective function. This nu-
merator is first linearly scaled, choosing the user-defined maximum coefficient to be cuser = 1. This simply

5.2. Phase 2: Setup of the QUBO Problem 69

−1.00 −0.75 −0.50 −0.25 0.00 0.25 0.50 0.75 1.00
Input coefficient

−1.00

−0.75

−0.50

−0.25

0.00

0.25

0.50

0.75

1.00

Ou
tp
ut
 c
oe

ffi
cie

nt

Non-linear scaling function
Original input
Scaling constant = 0.1
Scaling constant = 0.05
Scaling constant = 0.025
Scaling constant = 0.001

Figure 5.17: Non-linear scaling function.

brings the function values in the energy landscape to a more reasonable magnitude and allows for the non-
linear scaling to work as intended. Then, the non-linear scaling can be applied, using a scaling parameter
of cNL = 0.1. The plots in Figs. 5.18 to 5.20 show both the original and non-linearly scaled energy landscapes
of the first iteration in the solving procedure for the sample truss problems. It can be seen that the small
fluctuations in the energy landscape are amplified, which should make the problem easier to solve for the
QA.

1 2 3 4 5 6 7 8 9

Solutions

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

F
un

ct
io

n
va

lu
e

10-7 2: Original vs. Scaled Numerators

Original
NL Scaled

Figure 5.18: Effect of non-linear scaling in two-truss problem.

It is important to note that this non-linear scaling function was developed solely for the purpose of in-
creasing the differences between the global and local minima in the energy landscapes, as a part of this study.
It is not intended to be used as a general-purpose tool for problems with unknown energy landscapes. Since,
when using overly aggressive scaling factors for cNL, this may cause the global minimum solution to change.

70 5. Truss Sizing Optimization: Symbolic Finite-Element Method

0 5 10 15 20 25 30
Solutions

0

1

2

3

4

5

F
un

ct
io

n
va

lu
e

10-6 3: Original vs. Scaled Numerators

Original
NL Scaled

Figure 5.19: Effect of non-linear scaling in three-truss problem.

0 10 20 30 40 50 60 70 80 90

Solutions

0

0.2

0.4

0.6

0.8

1

1.2

F
un

ct
io

n
va

lu
e

10-14 4: Original vs. Scaled Numerators

Original
NL Scaled

Figure 5.20: Effect of non-linear scaling in four-truss problem.

5.2. Phase 2: Setup of the QUBO Problem 71

Problem Size Reduction by Truncation of Insigni�cant Terms
After applying the linear scaling to make the objective function yield results of a more convenient order of
magnitude, and applying the non-linear scaling to help amplify small differences between local and global
minima, one final simplification step can be undertaken to reduce the size and complexity of the objective
function. This simplification is to truncate terms that fall below a user-defined order of magnitude.

It is known that the physical QA has a certain range wherein qubit biases can be controlled. For linear
qubit biases this is a range of [-2,2] and the quadratic qubit biases can be controlled to be in the range of
[-1,1]. These allowable bias ranges can be found through the Python commands:

DWaveSampler().properties['h_range']

DWaveSampler().properties['j_range']

In the case that a problem is submitted for which the biases exceed these allowable ranges, the problem
will automatically be scaled by default [27]. Inside the QPU, the qubit biases are controlled through a physical
process, relying on small magnetic fields within the QPU [22]. As such, these biases can only be controlled
with a finite precision [26]. For example, in practice, the QA is able to control linear qubit biases with an error
between about 0.002 and 0.016. For the quadratic qubit biases the control error ranges from about 0.0005
to 0.0075 [23]. Since all terms in the objective function are subject to this control error, this means that the
terms that are smaller than this error cannot reliably be taken into account by the QA. Therefore, such small
terms can be removed from the objective function altogether to simplify the problem further.

Care should be taken when choosing an order of magnitude for the truncation threshold. If the threshold
is relatively large, for example truncating terms that are smaller than 10−2, this may influence which solution
becomes the most optimal one, as relatively much information will be truncated from the objective function.
On the other hand, when choosing a smaller magnitude for truncation, e.g. 10−8, and briefly neglecting
the limited physical precision of the QA, it is more likely that the truncated objective function will keep the
same optimum solution. However, in trying to take into account this greater precision, the objective function
will be more complex. To be conservative, the truncation magnitude can be chosen to be smaller than the
precision that the physical QA can take into account.

Unary Constraint
The majority of all possible solutions to the truss optimization problems are invalid. Solutions are invalid
when an incorrect number of cross-sectional areas are selected. In other words, when either zero or more
than one cross-section is selected for a truss member, the solution is invalid. Solutions can only be valid
when exactly one cross-sectional area is chosen for every truss member. For example, the two-truss problem
has six qubit variables and therefore has a total of 26 = 64 possible solutions. However, only 9 different valid
solutions to this problem exist. To promote the selection of valid solutions, and prevent invalid solutions
from being chosen, the unary constraint is implemented.

In a previous section of this report, Section 4.2.2, the unary constraint has already been discussed in detail.
In this section the description will therefore be rather brief, although still necessary for completeness. The
unary constraint is a constraint that will promote the selection of only one cross-sectional area per truss. This
is accomplished by adding a penalty function to the objective function such that the Hamiltonian energy for
invalid solutions is typically increased, while for valid solutions to the problem the Hamiltonian energy is
decreased. The strength of the unary constraint is denoted as λ, and is a user-defined parameter, which can
be tuned to meet the needs of the user.

In the context of the truss sizing optimization problem, the unary constraint is required to be a hard
constraint. This means that it is strictly forbidden for invalid solutions to be given as the optimal solution
to the problem. Hence, the value of λ must be chosen such that the contribution of the unary constraint to
the energy landscape is greater than the typical fluctuations between valid and invalid solutions due to the
original objective function. To this end, it has been found that a good starting point for the value of λ is to
set it to be twice the size of the maximum term in the objective function. However, when tuning the strength
of the unary constraint it is also typical to use a trial-and-error approach, by increasing the strength of the
constraint until noncompliance stops occurring.

For example, if the maximum term in the objective function has a value of 1, then an initial guess for the
strength of the unary constraint would be λ= 2. In turn, due to how the unary constraint works, this means
that the energy of valid solutions gets decreased by 2 for every truss, while the energy for invalid solutions is
either left alone or is increased by 6 depending on the severity of the error for every truss. In practice, this
means that major jumps will be formed in the energy landscape, ensuring that all valid solutions have much
lower energies than any of the invalid solutions.

72 5. Truss Sizing Optimization: Symbolic Finite-Element Method

Quadratization
The last step before being able to solve the truss sizing optimization problem using practical quantum an-
nealing, or SA for that matter, is to perform a quadratization of the objective function. Up until this point, the
objective function has been manipulated, scaled, and truncated in order for it to become more compatible
with the QUBO problem formulation. However, one key issue has yet to be solved: the function might still
contain many terms that are greater than quadratic order. Therefore, it can still not be used with the QA,
since per definition the QA can only solve quadratic problems. Performing a quadratization of a high-order
objective function ensures that it is rewritten as a quadratic-order function, with equivalent solutions.

There are many different methods of quadratization discussed in literature, an extensive overview of
which is given by Dattani [29]. Some of these methods utilize auxiliary variables to rewrite the high-order
objective function into an equivalent quadratic-order expression, while other methods are able to do so with-
out the need for auxiliary variables. Each method has its respective benefits and drawbacks. For example, it
is convenient when no auxiliary variables are needed, yet in that case it may require much effort to rewrite
the objective function in a quadratic form. On the other hand, if a method uses auxiliary variables, it may
be easier to write in a quadratic form, but the additional variables increase the complexity of the objective
function, making it more difficult to find the optimum [29].

In practice, for the truss sizing optimization problem, the most straightforward quadratization solution is
to simply rely on the implementation that is provided by D-Wave [20]. In their implementation, all high-order
terms are rewritten and replaced to be in terms of auxiliary variables, such that the final problem is at most of
quadratic order. An additional user-defined parameter is used to select the strength with which the quadrati-
zation is enforced [20]. If the quadratization is not enforced correctly, this can result in a poor approximation
of the original high-order objective function. The quadratization strength is problem-dependent and must
be tuned such that the quadratization is always obeyed, to have an accurate representation of the original
high-order objective function.

The quadratization method provided by D-Wave does have a drawback. Depending on how many auxil-
iary variables are needed to quadratize the problem, the complexity of the problem can skyrocket. This is one
of the reasons why it is beneficial to simplify the objective function as much as possible before performing
the quadratization. Applying this to the known sample problems, the two-truss problem does not need to be
quadratized since it was previously already truncated to the second order. However, the three-truss problem
has 9 variables and was truncated to the third order. Therefore, the quadratization is necessary to rewrite the
problem into a quadratic form, growing the problem size to a total of 25 variables. Similarly, quadratizing the
four-truss problem increases to problem size from the original 12 binary variables to a total of 81 variables.

With the quadratization, the truss sizing optimization is finally written as a QUBO problem. This vital step
finally concludes all of the preparatory work that was necessary for the problem to be compatible with the
quantum computing hardware. The next section will discuss the solution process and show results that are
obtained.

5.3. Phase 3: Solving the QUBO Problem
With the conclusion of phase 2, the truss sizing optimization problem is now finally written in a QUBO for-
mulation and can be solved using the QA. Now, in phase 3, the final steps for solving the sample problems are
discussed. First, the analysis procedures will be discussed in more detail. Then, because there are a number
of user-defined parameters relevant to the analyses, the tuning process is discussed for selecting values for
these parameters. Once satisfactory values are chosen for the user-defined parameters, the results for the
sample problems are shown and discussed.

5.3.1. Analysis Procedures
To solve the reference truss problems, three different analysis methods are applied. First, brute-force eval-
uation of the original fractional objective function is used to obtain a baseline solution. Then, both SA and
quantum annealing are used, following the iterative procedure described in [3]. The specifications of the local
classical computing hardware used are given in Table 5.5.

The comparison between the analysis methods will focus primarily on the computational time and the
probability of obtaining the global optimum solution. To this end, the brute-force analysis will function sim-
ply to obtain the reference solution, since finding the global optimum is guaranteed. There are other more
efficient (and more complicated) classical analysis methods available for truss optimization problems, as re-
viewed by Stolpe [82]. However, for the purposes of this study, simple brute-force analysis is sufficient to

5.3. Phase 3: Solving the QUBO Problem 73

Device Lenovo Legion Y540-15IRH
CPU Intel Core i7-9750H 2.6 GHz
Memory 16 GB DDR4 2667 MHz
GPU Mobile NVIDIA RTX 2060 6GB

Table 5.5: Classical computing hardware.

produce the reference solutions. Since there is some variance in the amount of time needed to complete the
analyses, they will all be performed multiple times. The brute-force analyses are each performed three times,
since this classical approach performs rather consistently.

Although SA is an entirely different optimization algorithm compared to quantum annealing, SA will be
used to verify the functioning of the iterative solving process. Furthermore, by using both SA and the QA,
the probability of obtaining the global minimum solutions using both methods can be compared. Thus, to
gain some insight into how well these analysis methods are able to find the global minimum solution, each
analysis will be performed a total of 10 times. The choice to perform each of the SA and QA analyses 10 times
was based on the fact that a limited amount of quantum computational time was available.

One parameter that will be seen to play a large role in the performance of the SA and quantum annealing
analyses is the so-called number of reads. Once a problem has been submitted to be solved, this number
indicates how many times that problem will be solved, before yielding the final lowest-energy solution that
has been found. Thus, by increasing the number of reads, the computational time will increase significantly.
However, because both SA and quantum annealing are probabilistic solving methods, increasing the number
of reads also increases the likelihood that the global minimum solution will be found. For this reason, several
different settings for the number of reads will be used, to more broadly assess the performance and usability
of these methods.

5.3.2. Parameter Tuning
It has already been mentioned before, but SA is a convenient method for solving QUBO problems, that does
not rely on the quantum computing hardware. The main benefit of this method is therefore that it does not
use the limited amount of computational time that is allotted to basic user accounts on the D-Wave quantum
computing platform. Since several important user-defined parameters influence how the problem is solved,
for example the strength of the unary constraint, SA allows for appropriate initial settings for these parameters
to be found.

When it comes to fine-tuning the performance of the QA, there are also several specific settings that do
not apply to simulated annealing. These would be the settings that directly control how the quantum an-
nealing hardware performs its task. Examples are the chain strength, annealing time, annealing schedule,
and depending on if reverse annealing is used, the reverse fraction. Naturally, there are many more settings
that allow for even greater control over the behavior of the QA, however, in this project these are left at their
default configurations. The full list of options and the descriptions thereof is provided by D-Wave [27].

To fully define the analysis procedure, values related to the iterative solving procedure were first chosen.
The maximum number of iterations within one solving attempt was set to 15. It was seen that by brute-force,
the analyses converge in around 5 iterations. For the SA and quantum annealing analyses this value was
tripled to give some room for potential errors to be corrected by the procedure. However, if the procedure
does not converge after 15 iterations, it is stopped, to prevent excessive expending of computational time1.
The convergence threshold δ for the iterative analysis (used in Eqs. (5.27) and (5.28)) is set at a value of 10−6,
which is the same value used by Ajagekar et al.

From initial trial analyses using SA, starting values for the different problem parameters were found. First
of all, it was determined that performing a total of 256 reads per iteration gives consistent results for all of the
sample problems. Performing fewer reads is less computationally expensive, and works well for the smaller
sample problems. Thus, in all, it was decided to use a total of 16, 64, and 256 reads per iteration for each of
the sample problems. Second, it was chosen to set the linear scaling maximum magnitude cuser to a value of
1 for all analyses. Third, the non-linear scaling parameter cNL has been set to a value of 0.1 for all analyses.
It was seen that this value improves the distinction between minima in the energy landscapes for the sample
problems, while preserving the global minima. Fourth, the unary constraint strength was set to a value of 10,

1Due to a slight programming error, setting the maximum number of iterations to 15, leads to a total maximum of 16 iterations being
performed for the simulated annealing and quantum annealing analyses.

74 5. Truss Sizing Optimization: Symbolic Finite-Element Method

with which the constraint is obeyed consistently. Fifth, terms that have a magnitude smaller than 10−8 are
truncated, to slightly reduce the number of terms in the objective functions. This is a conservative truncation,
as it is well beyond the precision of the quantum annealing hardware capabilities. However, setting a much
less conservative truncation magnitude, such as 10−3, could potentially lead to changes in the global mini-
mum solution, which should be avoided. Finally, the quadratization strength is initially also set to a value of
10, to equally match the strength of the unary constraint.

For the QA, some additional parameters are needed to solve the sample problems. Based on preliminary
testing, the anneal time was left at its default value of 20 µs, as no improvements to performance were ob-
served by using larger values, while consuming more QPU access time. Furthermore, reverse annealing also
did not appear to have a beneficial influence on the performance of the QA. Due to this, and for the sim-
plicity of the analysis procedures, it was chosen to only use the default forward annealing approach for the
truss sizing optimization problems. Initially, a chain strength of 10 was selected, but it was seen that chain
breaks would still occur for the three- and four-truss problems. For those problems a chain strength of 30
performed better, preventing chain breaks from occurring. For specifically the four-truss problem, it was also
observed that the unary constraint was not always obeyed when using the QA. Hence, the unary constraint,
and correspondingly the quadratization strength was increased to a value of 20. The number of reads used for
the quantum annealing analyses is tailored to the expected performance for the specific sample problems, to
prevent excessive spending of QPU access time. Thus, for the two-truss problem the analysis is performed
using 16 and 64 reads per iteration. For the three-truss problem this is increased, performing the analysis
using 64 and 256 reads per iteration. Lastly, for the four-truss problem, only a setting of 256 reads is used,
since poor results are expected when using lower settings.

In Table 5.6 a summary is given of all parameters used for each of the analyses. Parameters that are irrel-
evant or not applicable for an analysis are indicated by NA.

Parameters Brute-force Simulated Annealing Quantum Annealing

Truss system 2-truss 3-truss 4-truss 2-truss 3-truss 4-truss 2-truss 3-truss 4-truss

Total number of times analyzed 3 3 3 10 10 10 10 10 10

Maximum number of iterations NA NA NA 15 15 15 15 15 15

Iteration convergence threshold NA NA NA 10−6 10−6 10−6 10−6 10−6 10−6

Number of reads per iteration NA NA NA {16,64,256} {16,64,256} {16,64,256} {16,64} {64,256} {256}

Highest order terms allowed NA NA NA 2 3 4 2 3 4

Linear scaling maximum magnitude NA NA NA 1 1 1 1 1 1

Non-linear scaling strength NA NA NA 0.1 0.1 0.1 0.1 0.1 0.1

Unary constraint strength NA NA NA 10 10 10 10 10 20

Quadratization strength NA NA NA 10 10 10 10 10 20

Precision truncation magnitude NA NA NA 10−8 10−8 10−8 10−8 10−8 10−8

Chain strength NA NA NA NA NA NA 10 30 30

Annealing time
[
µs

]
NA NA NA NA NA NA 20 20 20

Table 5.6: Parameters used for all analyses.

5.3.3. Results: Two-Truss Problem
The two-truss problem is the simplest of the three sample problems. To set up the fractional objective func-
tion for the problem, the procedure is followed that is described throughout the previous sections of this
chapter. For this problem, it takes approximately 13.5 seconds to set up the fractional objective function.
Once this objective function has been found, it is written to a text file. This file can then imported and inter-
preted before performing every analysis. When running the same problem many times, the same text file can
simply be imported each time, and no longer needs to be set up from scratch. In total, six different analyses
were run for this problem:

1. BF2_F_V: Brute-force analysis of the fractional objective function, for valid solutions.

2. SA2_16: Simulated annealing, with num_reads = 16.

3. SA2_64: Simulated annealing, with num_reads = 64.

5.3. Phase 3: Solving the QUBO Problem 75

4. SA2_256: Simulated annealing, with num_reads = 256.

5. QA2_16: Quantum annealing, with num_reads = 16.

6. QA2_64: Quantum annealing, with num_reads = 64.

For each of the SA and QA analyses, two different time-metrics are provided. First, the total real time (RT)
is given, which is the time it took to analyze the problem and includes some sources of overhead. Second, the
pure solve time (ST) is measured, which for SA is the time spent purely performing the simulated annealing
task, and for quantum annealing is the amount of QPU access time needed to solve the problem. The brute-
force analysis was performed three times, while the SA and QA analyses were each performed ten times. Based
on these analyses, mean run-times and standard deviations were calculated, and are shown in Fig. 5.21.

BF
2_
F_
V

SA
2_
16

_R
T

SA
2_
16

_S
T

SA
2_
64

_R
T

SA
2_
64

_S
T

SA
2_
25

6_
RT

SA
2_
25

6_
ST

QA
2_
16

_R
T

QA
2_
16

_S
T

QA
2_
64

_R
T

QA
2_
64

_S
T0

5

10

15

20

25

30

Ti
m
e
[s
]

2-Truss system: Mean solve times

Figure 5.21: Mean analysis times for two-truss problem.

Using both SA and the QA, the analyses were performed ten times, to gain some insight into the probabil-
ity of obtaining the globally optimal solution. In Figs. 5.22 and 5.23 the probability of obtaining valid solutions
is shown as a bar chart, with the brute-force line plot of the original fractional objective function superim-
posed to show the energy landscape. The global minimum solution of the fractional objective function is
located in the plot at solution number 7.

Discussion From the probability charts for the SA and QA analyses, Figs. 5.22 and 5.23, it can be seen that
for both methods each of the ten runs resulted in the same global optimum that is found by brute-force. The
solution that is found in all cases is [0,0,1,1,0,0], which indicates that the optimal choices for the truss cross-
sections are the largest possible choice for the first truss, and the smallest possible choice for the second truss.
Furthermore, it can be seen that this result is returned even when only 16 reads are performed for every step
in the iterative solving process for both SA and QA methods. The apparently high probability of finding the
correct result, as well as the low number of reads per iteration that is needed, indicate that the problem is
easy to solve.

When it comes to the amount of computational time needed to perform the analyses, as indicated in
Fig. 5.21, it can be seen that the brute-force analysis of the original fractional objective function, limited to
the set of valid solutions, runs extremely quickly. In this case it took on average only about 0.23 seconds to
solve the problem. For the QA it can be seen that the total real analysis time is more consistent using 64 reads,
compared to using only 16 reads, as the standard deviation is much smaller. The amount of QPU access time
needed to solve the problem is extremely low, appearing to be virtually non-existent in the chart. On average,
the QPU access time to solve the problem was 59176 µs and 118207 µs using 16 and 64 reads respectively.
This is faster than the brute-force analysis, however, the real total amount of time to solve the problem is
dominated by various sources of overhead, making the procedure much slower in general.

76 5. Truss Sizing Optimization: Symbolic Finite-Element Method

1 2 3 4 5 6 7 8 9
Solutions

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

Re
su

lt
pr
ob

ab
ilit

y
(B

ar
 c

ha
rt)

2-Truss System: SA: Result Probability and Objective Function

0.566

0.614

0.662

0.710

0.758

0.806

0.855

0.903

0.951

0.999

1.047

Ob
je

ct
iv

e
Fu

nc
tio

n
(L

in
e

pl
ot

)

 16 reads
 64 reads
256 reads

Figure 5.22: Solution probability histogram of two-truss problem using SA, compared to original objective function.

1 2 3 4 5 6 7 8 9
Solutions

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

Re
su

lt
pr

ob
ab

ilit
y

(B
ar

 c
ha

rt)

2-Truss System: QA: Result Probability and Objective Function

0.566

0.614

0.662

0.710

0.758

0.806

0.855

0.903

0.951

0.999

1.047

Ob
je

ct
iv

e
Fu

nc
tio

n
(L

in
e

pl
ot
)

 16 reads
 64 reads

Figure 5.23: Solution probability histogram of two-truss problem using the QA, compared to original objective function.

5.3. Phase 3: Solving the QUBO Problem 77

5.3.4. Results: Three-Truss Problem
The three-truss problem is a more complicated problem to set up compared to the two-truss problem, due to
the increased number of variables. Setting up the fractional objective function for this problem, and writing
that expression to a text file took approximately 81.4 seconds. However, once the expression was written to
a file, it could simply be imported and reused for every analysis. Similar to the two-truss problem, the three-
truss problem was analyzed using six different procedures in total. The procedures are:

1. BF3_F_V: Brute-force analysis of the fractional objective function, for valid solutions.

2. SA3_16: Simulated annealing, with num_reads = 16.

3. SA3_64: Simulated annealing, with num_reads = 64.

4. SA3_256: Simulated annealing, with num_reads = 256.

5. QA3_64: Quantum annealing, with num_reads = 64.

6. QA3_256: Quantum annealing, with num_reads = 256.

Again, the brute-force analysis was performed three times, while the SA and QA analyses were run ten
times each. In Fig. 5.24 the mean analysis times can be seen, including the corresponding standard devia-
tions.

BF
3_
F_
V

SA
3_
16

_R
T

SA
3_
16

_S
T

SA
3_
64

_R
T

SA
3_
64

_S
T

SA
3_
25

6_
RT

SA
3_
25

6_
ST

QA
3_
64

_R
T

QA
3_
64

_S
T

QA
3_
25

6_
RT

QA
3_
25

6_
ST

0

50

100

150

200

250

Ti
m
e
[s
]

3-Truss system: Mean solve times

Figure 5.24: Mean analysis times for three-truss problem.

In Fig. 5.25 and Fig. 5.26 the solution probability histogram is shown for both the SA and QA analyses,
including the original fractional objective function. The global minimum solution of the original objective
function is located at solution number 21 for the three-truss problem. Since this problem is more complicated
compared to the two-truss problem, sometimes invalid final solutions are found. These are indicated in the
solution probability histogram, in the final column on the right-hand side, above which NV (non-valid) is
written.

Discussion From the probability histograms it can be seen that the problem is more difficult to solve com-
pared to the two-truss problem, as the histograms show that a spread of different solutions were found. When
using SA, the global optimum solution was returned for every attempt when using 256 reads per iteration.
Using 64 reads per iteration however is seen to provide very good solutions also, as it tends to give the global
optimal solution 21 as well as the nearly-optimal solutions 19 and 20. When using quantum annealing, the
majority of solutions are either optimal or extremely close to optimal when using 256 reads per iteration.

78 5. Truss Sizing Optimization: Symbolic Finite-Element Method

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27
Solutions

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

Re
su

lt
pr
ob

ab
ilit

y
(B
ar
 c
ha
rt) NV

3-Truss System: SA: Result Probability and Objective Function

1.230

1.473

1.716

1.959

2.201

2.444

2.687

2.930

3.172

3.415

3.658

Ob
je
ct
iv
e
Fu
nc
tio

n
(L
in
e
pl
ot
)

 16 reads
 64 reads
256 reads

Figure 5.25: Solution probability histogram of three-truss problem using SA, compared to original objective function.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27
Solutions

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

Re
su
lt

pr
ob

ab
ilit

y
(B

ar
 c
ha

rt)

NV

3-Truss System: QA: Result Probability and Objective Function

1.230

1.485

1.740

1.995

2.250

2.505

2.760

3.015

3.270

3.524

3.779

Ob
je
ct
iv
e
Fu
nc
tio

n
(L
in
e
pl
ot
)

 64 reads
256 reads

Figure 5.26: Solution probability histogram of three-truss problem using the QA, compared to original objective function.

5.3. Phase 3: Solving the QUBO Problem 79

When using 64 reads quantum annealing performs rather poorly, with 8 out of 10 analyses yielding a non-
valid result.

The computational time required to solve the three-truss problem by brute-force is about 0.9 seconds.
By contrast, the SA and QA analyses take between about 25 to about 250 seconds of real analysis time to
solve, depending on the number of reads. However, an interesting phenomenon can be seen for the quantum
annealing analysis times. Namely, when using 256 reads per iteration, the mean real analysis time is almost
half of that when using only 64 reads. This can be explained by the fact that when using a higher number
of reads, it becomes more likely that the correct solution is found for every iteration of the procedure. This
means that on average fewer iterations are needed before the solution algorithm converges. However, even
though the amount of real time needed to solve the problem is much lower when using 256 reads of quantum
annealing, the actual QPU access time to solve the problem increases from 337477 µs when using 64 reads
to 558414 µs when using 256 reads. Discounting the sources of overhead, this means that using quantum
annealing with 256 reads per iteration is a faster method of ‘solving’ the problem than when using brute-
force analysis. However, this forsakes the guarantee of finding the global optimum solution. In reality the
method takes much longer due to the overhead from various programming steps, calculating an embedding
for the problem, network lag from problem submission, and solution retrieval from the D-Wave server.

5.3.5. Results: Four-Truss Problem
The last problem, with the highest number of variables involved, is the four-truss problem. The initial setup
of the fractional objective function in this case took up a total of 3430.5 seconds, which is a staggering increase
from the 81.4 seconds that were necessary to set up the three-truss problem. In this case, it is a great benefit
that the fractional objective function is written to a text file, which is in turn imported and interpreted before
running every analysis. Were this not the case, it would mean that every analysis would be prefaced by a
nearly hour-long setup process, greatly slowing down the testing and analysis process. Overall, the following
analyses were performed:

1. BF4_F_V: Brute-force analysis of the fractional objective function, for valid solutions.

2. SA4_16: Simulated annealing, with num_reads = 16.

3. SA4_64: Simulated annealing, with num_reads = 64.

4. SA4_256: Simulated annealing, with num_reads = 256.

5. QA4_256: Quantum annealing, with num_reads = 256.

In this case quantum annealing was only used with a setting of 256 reads per iteration, as it was deemed
improbable that using fewer reads would lead to good results, and would only serve to fruitlessly expend
the limited amount of QPU access time available. Brief testing with 1024 reads did not appear to give more
reliable results, while expending far more valuable QPU access time. Hence, when using the QA, the decision
was made to only investigate this problem using 256 reads per iteration.

As with the previous sample problems, the brute-force analysis was performed three times, while the SA
and QA analyses were all performed ten times each. The mean analysis times for all analyses can be seen in
Fig. 5.27. The solution probability histograms for the SA and QA analyses are shown in Figs. 5.28 and 5.29,
including a plot of the original fractional objective function, for which the global optimum solution exists at
solution number 7.

Discussion It can be seen that the problem is reliably solved using 256 reads per iteration when using SA.
With a setting of 64 reads, performance appears to be decent, finding the global optimum most of the time,
and sporadically yielding other local minima. However, when it comes to quantum annealing, even when
using 256 reads, seemingly random yet valid final results are produced. None of the quantum annealing anal-
yses found the global optimum solution, and only some of the solutions that were found can be considered
to be local minima. It could still be the case that a higher number of reads would lead to more consistent final
solutions, however, this could not be extensively tested due to the large amount of QPU access time required.

For quantum annealing, an issue that could be the cause of the seemingly random final solutions is that
most attempts at solving the problem (7 of the 10 total) ended with an iteration run-out, rather than ending
with a converged final solution. This issue could potentially also be solved with a larger number of reads
per iteration. A single test-run was performed using 1024 reads per iteration. However, this test still ended

80 5. Truss Sizing Optimization: Symbolic Finite-Element Method

BF
4_

F_
V

SA
4_

16
_R

T

SA
4_

16
_S

T

SA
4_

64
_R

T

SA
4_

64
_S

T

SA
4_

25
6_

RT

SA
4_

25
6_

ST

QA
4_

25
6_

RT

QA
4_

25
6_

ST

0

100

200

300

400

500

600

700
Ti

m
e

[s
]

4-Truss system: Mean solve times

Figure 5.27: Mean analysis times for four-truss problem.

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 41 43 45 47 49 51 53 55 57 59 61 63 65 67 69 71 73 75 77 79 81
Solutions

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

Re
su

lt
pr
ob

ab
ilit

y
(B

ar
 c

ha
rt)

4-Truss System: SA: Result Probability and Objective Function

1.044

1.087

1.131

1.174

1.217

1.261

1.304

1.348

1.391

1.434

1.478

Ob
je

ct
iv

e
Fu

nc
tio

n
(L

in
e

pl
ot

)

 16 reads
 64 reads
256 reads

Figure 5.28: Solution probability histogram of four-truss problem using SA, compared to original objective function.

5.4. Final Discussion 81

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 41 43 45 47 49 51 53 55 57 59 61 63 65 67 69 71 73 75 77 79 81
Solutions

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

Re
su

lt
pr

ob
ab

ilit
y

(B
ar

 c
ha

rt)

4-Truss System: QA: Result Probability and Objective Function

1.044

1.090

1.135

1.181

1.226

1.272

1.317

1.363

1.408

1.454

1.499

Ob
je

ct
iv

e
Fu

nc
tio

n
(L

in
e

pl
ot
)

256 reads

Figure 5.29: Solution probability histogram of four-truss problem using the QA, compared to original objective function.

with an iteration run-out and a non-optimal solution, while requiring a tremendous total of 5312595 µs of
QPU access time. Although a single analysis is not enough to calculate any meaningful statistics or form any
definitive conclusions, it indicates that the problem may simply be too difficult for the QA to find a consistent
solution.

When brute-force evaluating the fractional objective function for the four-truss problem, the mean time
to solve the problem is only 4.37 seconds. In comparison, the SA and QA real analysis times range from
approximately 380 seconds to about 675 seconds depending on the number of reads. Of further note are the
large differences between the real analysis time and the actual solve time for the SA analyses. For each of
these analyses, there is roughly a 300 second difference between the real analysis time, and the actual solve
time. This difference is mostly due to programming overhead related to the interpretation of the original
fractional objective function from the source text file. This source of overhead also plays a role in the quantum
annealing analysis, explaining the majority of the difference between the real analysis time, and the QPU
access time.

The quantum annealing QPU access time is on average 1280156µs, meaning that this is the fastest method
to ‘solve’ the problem. However, practically, the accumulated overhead throughout the process leads to a real
analysis time of about 437 seconds on average. Furthermore, it was seen that the QA was not able to consis-
tently yield the global minimum result. It could still be the case that using a much higher number of reads for
the quantum annealing analysis would yield more consistent results. However, this could unfortunately not
be extensively tested due to QPU access limitations.

5.4. Final Discussion
Having investigated the three sample problems, a number of final observations can be made based on the
data that was produced. In this section these will be given.

Problem Setup Before any of the analyses can be performed, the fractional objective function that de-
scribes the truss sizing optimization problem must be set up. This setup procedure is performed using the
MATLAB software and is finished when the symbolic fractional objective function is written to a text file. Once
the fractional objective function has been found, the analysis procedure can continue within Python, where

82 5. Truss Sizing Optimization: Symbolic Finite-Element Method

the function is imported and further processed in order to finally be written in a QUBO-compatible format.
The time to set up the fractional objective function was measured once for each of the sample problems. Al-
though already reported in the previous section, the setup times are reiterated in Table 5.7, also showing the
factor with which the setup time increases for each subsequent problem.

The initial setup time is reasonable for the two-truss problem. However, it seemingly becomes exponen-
tially worse for larger truss systems. Using the Microsoft Excel software package, an exponential trendline for
the problem setup time can be fitted to the data. This is shown in Fig. 5.30. It can be seen that the exponen-
tial curve can be fitted with an R-squared value of R2 = 0.96, which indicates a good fit. From this trendline
it can be approximated that setting up the fractional objective function for a five-truss problem would take
T5 = 0.0384 ·exp(2.7687 ·5) = 39490 seconds, or about 11 hours. Evidently, it becomes extremely impractical
to generate the fractional objective function for larger truss systems. Thus, this severely limits the practical
usability of the method that has been developed for the setup of the fractional objective functions.

Truss System Variables Setup Time [s] Growth Factor [-]
2 6 13.504 -
3 9 81.390 6.0270
4 12 3430.542 42.1494

Table 5.7: Overview of objective function setup time.

y = 0,0384e2,7687x

R² = 0,9605

0

500

1000

1500

2000

2500

3000

3500

4000

1 2 3 4 5

Ti
m

e
[s

]

Number of Trusses [-]

Setup Time

Setup Time

Expon. (Setup Time)

Figure 5.30: Problem setup time and exponential trendline.

Chaining Overall, the fractional objective functions for the truss sizing optimization problems represent
fully, or nearly-fully connected problems. This means that (nearly) all possible unique multiplications of the
binary problem variables are present in the problem. For the QA this means that every logical variable must
be embedded in such a way that it can form a connection with every other logical variable. Through the
process of embedding, logical variables are turned into physical variables, where a single logical variable is
represented by a chain of physical qubits. When problems necessitate high variable connectivity, this auto-
matically means that long qubit chains will be used to describe these variables. Since, the physical layout
of the qubits in the QA has at most, on the Chimera architecture, a total of 6 connections to nearby qubits.
By using chains of physical qubits to represent the logical variables, the maximum connectivity between the
logical variables can be increased.

However, due to the fact that such high connectivity is required for the truss optimization problems, this is
an indication that the problem is not particularly well suited for solving on the QA. Although the connectivity
limitation can be overcome to a limited degree by using chains, a high chain strength must be used to prevent
these chains from breaking. In turn, the high chain strength is detrimental to the performance of the QA, as

5.4. Final Discussion 83

it reduces the probability of finding the optimal solution to the problem [33]. Because some very long chains
are used for the larger truss optimization problems, sometimes up to 14 qubits in length, this indicates poor
compatibility between the current generation of quantum annealers and the current method of formulating
the truss sizing optimization QUBO. The fact that such long chains are needed might be the root cause of the
low consistency and reliability seen for the three- and four-truss problems. The next generation of quantum
annealers to be produced by D-Wave will rely on the Pegasus hardware architecture, which will enable up to
15 connections between physical qubits [30]. This would significantly reduce the length of the chains needed
to embed the truss optimization problems.

Simulated Annealing Simulated annealing was used to solve the sample problems mostly because the
method allowed for code to be tested and fixed without spending the limited amount of computational time
available on the D-Wave quantum annealing platform. Observing the behavior compared to quantum an-
nealing, SA with 256 reads per iteration produced the global optimum result in all cases, for all sample prob-
lems. As such, the method, although slow for the larger problems, is seen to be much more reliable than
quantum annealing. By performing the SA analyses, it is clear that the iterative solving procedure works as
intended. Since the same procedure is used for the quantum annealing analyses, the iterative solving method
itself is not expected to be the cause of any of the difficulties seen in the quantum annealing analyses. Based
on the SA analyses, it can be concluded that the method shown in this chapter for casting the truss sizing
optimization problem into a QUBO form is valid and feasible for small problems.

Quantum Annealing Neglecting the various sources overhead, quantum annealing provides a very fast
method of finding solutions to the truss sizing optimization problems. Counting just the pure QPU access
time, the method tends to find results for the largest sample problem in approximately 1.3 seconds, and is
even faster for the smaller sample problems. This means that the pure solve time for quantum annealing is
faster than the analysis time using the classical brute-force method. Of course, in a more traditional setting,
more efficient classical optimization methods would be used to optimize truss structures [82], but for this
study brute-force analysis provided the simplest way to obtain the reference global optimum solutions. How-
ever, when taking the overhead into account, quantum annealing is much slower in practice. This overhead
could potentially be alleviated by more efficient programming. Furthermore, having on-site unlimited access
to a quantum annealing system would also help to significantly reduce the amount of overhead time during
the analyses. Therefore, based on the computational time needed to solve problems, quantum annealing has
the potential to become a competitive problem-solving method.

When weighing the value of the quantum annealing technology for the truss sizing optimization problem,
the quality of the results that it produces must also be taken into account. It was seen that quantum annealing
provides consistent optimal results for the smallest of the sample problems. However, for problems beyond
the very smallest, the method has shown difficulty in finding optimal solutions. It is possible that using a
greater number of reads per iteration can amend these difficulties, however, this comes at the cost of much
increased computational time requirements and could not practically be tested. One of the main causes
for this poor reliability is expected to lie in the fact that the three- and four-truss problems have connectivity
requirements beyond what the QA natively supports. This leads to complicated embeddings with long chains
of qubits representing the individual problem variables, which has a negative impact on the probability of
finding the global optimum solution. The next-generation quantum annealing hardware, using the Pegasus
architecture, could significantly reduce these problems.

Although it has been shown that it is feasible to solve small truss sizing optimization problems using
the QA, it is evident that there are currently significant limitations to the practical usability of the methods
discussed in this chapter. As such, it can be concluded that it is not currently beneficial to apply quantum
annealing to solve these practical truss sizing optimization problems. With further development of quantum
annealing technology, and with improvements to the methods that have been shown in this chapter, there is
nevertheless the potential for this conclusion to change.

84 5. Truss Sizing Optimization: Symbolic Finite-Element Method

5.5. Chapter Summary
Throughout this (admittedly lengthy) chapter, a symbolic finite-element method was developed with which
arbitrary 2-dimensional truss sizing optimization problems could be set up and solved using the QA. The
starting point was a relatively simple question, being: What is the most optimal selection of cross-sectional
areas for a system of trusses, given discrete allowable choices? However, this proved to be quite a complicated
question to answer.

Following the symbolic method, the first challenge to be overcome was that of solving symbolically de-
fined finite-element problems. Symbolic expressions for the nodal displacements in the truss system needed
to be found, after which these could be further processed to find expressions for the truss stresses and reserve
factors. It was eventually found that by using the MATLAB software to perform these steps, instead of using
Python, the symbolic finite-element problem could be solved relatively easily.

From this point onwards, the next challenge was to find a functional formulation for an objective func-
tion, which would be able to serve as the target for an optimization problem. Through some trial-and-error,
an objective function formulation was eventually found which appeared to agree with the expectations an
engineer might have for this type of optimization problem. Namely, the minimum solution to these objective
functions generally steers the truss cross-sectional areas towards a configuration where the truss stresses ap-
proach the material limit stress. This also implies that, through iteration, the minimum weight truss-system
would be found for which every truss complies with the material stress requirements.

The unfortunate consequence of the method used to formulate the objective functions is that the method
yields functions which are written in a fractional form. These are inherently incompatible with the QUBO
problem formulation, since QUBO problems are non-fractional in nature. Thus, this led to the next challenge,
which was to find a way to make the objective functions compatible with a QUBO problem formulation. Al-
though some methods to rewrite the fractional objective function directly into a non-fractional form were
attempted, none were successful in yielding an equivalent function with the same minimum solutions as the
original. The only method that proved to be successful was to use an iterative approach, which is eventually
able to converge on the same global minimum solution as is present in the original fractional objective func-
tion. Thus, by using this iterative approach, another step is taken towards a formulation for the truss sizing
optimization problem which could be solved using the QA.

The final step to make the truss sizing optimization problem compatible with the QA involved simplifica-
tions, constraints, and processing of the objective function. While most of the simplifications and processing
serve to make the optimization problem easier to solve for the QA, the most important step is to perform a
quadratization of the objective function. This ensures that any high-order terms in the function are rewritten
in such a way that the objective function contains only linear- and quadratic-order terms. This means that
the objective function is finally written as a QUBO problem, and can be submitted to the QA.

The performance of the QA was evaluated using three simple reference truss problems. These problems
were solved using brute-force analysis, simulated annealing, and quantum annealing. The brute-force analy-
ses served as a reference for the global optimum solution, as finding the global optimum is guaranteed using
this method. In turn, SA was used to verify the functionality of code, and help to fine-tune various param-
eters that influence how the problem is solved. Naturally, quantum annealing was used to investigate if it is
feasible to solve the truss sizing optimization problem using quantum computing techniques.

From the results of the many analyses performed in this chapter it was seen that, in general, the QA has
difficulty finding the global optimum solutions for all but the smallest of the sample problems. One of the
major contributing factors in this difficulty is the fact that the truss sizing optimization problem requires high
qubit connectivity. In the current generation of quantum annealers, the maximum connectivity between
qubits allows for only 6 connections between qubits. In turn, this means that long chains of physical qubits
are needed to represent each of the individual logical problem variables, which has a negative impact on the
probability of finding the global optimum solution [33]. In the next generation of D-Wave quantum annealers,
the connectivity between physical qubits will be increased to a maximum of 15. This would help to reduce
the length of the qubit chains needed to embed the truss sizing optimization problem, and would likely lead
to performance improvements.

Regardless of whether global optimum solutions are found, the QA has been shown to be extremely fast
at finding solutions to the truss optimization problems, if sources of overhead are neglected. With more
efficient programming and more direct access to the QA, these sources of overhead could be reduced signifi-
cantly. This means that, overall, the technology shows promise for becoming a competitive problem-solving
method. However, as it currently stands, the amount of time overhead present in the truss sizing optimization
procedure means that it is much slower to use the QA in practice than it is to simply perform a brute-force

5.5. Chapter Summary 85

analysis. This fact, along with the poor probability of obtaining the global optimum solution for the larger
truss systems, means that it is currently not beneficial to apply quantum annealing to these truss sizing op-
timization problems. Nevertheless, it has been shown that it is at least feasible, through significant effort, to
translate such an engineering optimization problem into a quantum-compatible form. The lessons learned
throughout this process may hopefully help future researchers to formulate other interesting and practically-
oriented optimization problems for use with the quantum annealer.

6
Conclusion

In this chapter, the conclusion to the entire thesis project is offered. The general findings and conclusions
from all previous chapters of the report are first summarized. Then, answers will be provided to the research
questions that were initially posed at the start of the thesis.

6.1. General Findings and Conclusions
In this thesis, the feasibility of using quantum computing to aid in solving practical engineering optimization
problems was investigated. As an introduction, the Traveling Salesman Problem was investigated. To set up
the TSP an intuitive approach was used to directly create the QUBO matrix that defines the problem. The
constraints that are necessary to ensure valid solutions are found were similarly added through an intuitive
understanding of the structure of the QUBO matrix. This intuitive approach was taken despite the existence
of mathematically defined formulations of the TSP QUBO. This choice was made to help readers new to the
topic of quantum annealing and QUBO problems get acquainted with the methods, and hopefully develop
an intuitive understanding of QUBO matrices.

The main goal of the thesis was to investigate a typical engineering optimization problem. For this pur-
pose, it was chosen to investigate 2-dimensional truss structures due to their simplicity. A common objective
for truss structure optimization is to minimize the system weight, while complying with various strength,
displacement, or stability constraints. Investigating how such an optimization could be performed with the
quantum annealer therefore became the main area of research. Since the quantum annealer relies on binary
variables, an optimization using discrete sets of allowable truss cross-sectional areas was the most natural
approach. The main challenge was to consequently formulate a method to cast the discrete truss sizing opti-
mization into a QUBO problem framework.

The first method to cast the truss optimization problem into a QUBO matrix was developed based on
intuitive methods. However, it was found to be quite difficult to formulate stress constraints that are compat-
ible with the QUBO formulation. The method that was eventually settled on works by inserting a preference
term in the QUBO matrix that steers the QA towards solutions for which the truss RFs are close to 1. After
due consideration, this was deemed an unsuitable method, as it yielded trivial optimization problems. Since
the quantum annealer always followed the preference defined by the stress constraint, yet in doing so, it only
ever gave extremely predictable solutions for the optimization problem. As such, the method leads to a sim-
ple decision-making process, where the selection of a new set of cross-sectional areas predictably depends
on the current truss RFs. A purely classical implementation of this decision-making scheme, compared to
the implementation that uses the quantum annealer, was several orders of magnitude faster while yielding
identical final results. It was therefore concluded that this QUBO formulation for the truss optimization prob-
lem is trivial. Although extensions and improvements to the method might lead to less trivial optimization
problems, these options were forsaken in order to concentrate efforts on a different and potentially more
promising methodology.

The second method that was developed for setting up the truss sizing optimization problem, for use with
the quantum annealer, takes an approach that is based more on typical finite-element analysis procedures.
The essence of the method is that the truss cross-sectional area is defined using a symbolic expression, which
is based on a set of allowed discrete choices for the cross-sectional area, and a binary qubit variable corre-
sponding to each choice. Using this symbolic expression for the cross-sectional area, a linear finite-element
truss problem is solved symbolically to obtain symbolic expressions for the truss stresses. Several attempts
were made to use these symbolic expressions to set up an objective function that could be used as the tar-

87

88 6. Conclusion

get for the optimization of the truss system. Eventually, a suitable general method to define an objective
function was formulated. The optimum solution to these objective functions is generally the choice of truss
cross-sectional areas that yields a truss system in which every truss is as close as possible to the material
limit stress. However, these objective functions are fractional in nature, which means they are not natively
compatible with the quantum annealer. An iterative optimization approach was implemented that writes
the objective function in a more compatible non-fractional form, and can eventually find the same optimum
solution described by the original fractional objective function. Following some further steps to simplify the
objective function, as well as an important quadratization step, the discrete truss sizing optimization problem
is finally written in a QUBO form. The quantum annealer can then be used to search for optimum solutions
to this problem.

The problems that were investigated using this symbolic finite-element QUBO method were three sim-
ple truss structures, consisting of two, three, and four total truss elements. The symbolic method used to
set up the objective functions for these truss sizing optimization problems scales exponentially. It is likely
to be infeasible to use this method for defining objective functions for truss systems containing more than
four trusses. Nevertheless, it was found that quantum annealing works reliably for the smallest of these prob-
lems. However, the larger two problems showed that the QA had difficulties with finding the global optimum
solution. It was also found that, although the QA only uses very little actual QPU access time to solve the
problems, there is a large amount of overhead present in the method, meaning that it takes a long time to
solve the truss sizing optimization problems in practice.

Overall, the poor scaling of the method to set up the objective function, the low probability of returning
the global optimum solution, and the large amount of practical time necessary to find solutions, currently
make quantum annealing a poor choice for the truss sizing optimization problem. The next generation of
quantum annealing technology is expected to improve performance for this type of optimization problem,
due to the increase in qubit connectivity the new hardware will provide. However, further improvement to the
methods of casting such practical engineering optimization problems into a quantum-compatible form are
certainly also needed if quantum annealers are to be used for practical engineering applications in the future.
In Chapter 7 some closing remarks on potential improvements and future work on this topic are offered.

6.2. Answering the Research Questions
The research and development process followed throughout this thesis was guided by a number of research
questions. The main research question was:

What method can be used to solve practical structural optimization problems using a quantum
computer, and how well does it perform compared to classical methods?

To answer this main research question, three supporting research questions were asked. These research
questions will be reiterated and answered in this section.

6.2.1. Research Question 1
1. What typical optimization problem can be formulated and solved classically, such that it can act as a

reference for the performance of quantum solution algorithms?

(a) What is a typical problem in aerospace engineering that is suitable for solving on both classical and
quantum computers?

(b) What method is used to classically solve this problem?

(c) What performance metric can be used to compare the performance of classical and quantum solu-
tion algorithms?

This research question has served to lay the foundation for the thesis project. From the initial literature
study, it became apparent that the quantum annealer was the most likely type of quantum computer to be
used for practical optimization problems. Within aerospace engineering, structural finite-element problems
are ubiquitous. For such problems, 2-dimensional truss structures are one of the most basic types of struc-
tures. Therefore, the focus of this thesis was laid on this type of simple truss structure.

The quantum annealer uses binary (0,1) problem variables to solve optimization problems. Thus, for this
project, the most natural approach was to use the truss structures to define discrete truss sizing optimization
problems. Since the quantum annealer can only solve minimization problems, objective functions must be

6.2. Answering the Research Questions 89

formulated which can be used as the target for minimization. Classically, there are several options to find the
minimum solution to such functions. The simplest methods to implement in this project were brute-force
analysis and simulated annealing. Other, more efficient classical methods are also available, but these would
have been more complicated to use. Since the focus of this project was on the feasibility of using quantum
computing for these problems, the simplest classical solution methods were chosen.

To evaluate the performance of the quantum annealer with respect to the classical solution methods,
several metrics were considered. Classically, brute-force analysis is guaranteed to give the global optimum
solution, which is needed for reference purposes. For simulated annealing, as well as quantum annealing, it
is important to gauge the probability of finding the global optimum solution, since this is not guaranteed with
these methods. Furthermore, the time-to-solution was measured to gauge the performance of the analysis
methods. To give insight into potential improvements, a distinction was made between the total practical
analysis time, including various sources of overhead, and the pure solve time excluding overhead.

6.2.2. Research Question 2
2. What method can be used to cast an optimization problem into a formulation that the quantum com-

puter can understand?

(a) What programming interface exists that allows for problems to be submitted to the quantum com-
puter?

(b) How can the optimization problem be cast into a QUBO or Ising model formulation?

(c) What parameters or settings in the quantum computer will influence the time-to-solution, and
which settings give the best computational performance?

The first sub-question for this research question again serves a rather foundational purpose. D-Wave
Systems Inc. provides an extensive library of open-source Python tools that can be used to interface with their
quantum annealer. Hence, Python was used throughout most of this project. Since the quantum annealer
can only interpret QUBO or Ising model problem formulations, the truss system optimization problem must
be cast into one of these formulations. Due to its binary nature, the QUBO formulation was preferred for the
truss system optimization problems.

Finding a satisfactory answer to the second sub-question was found to be much more difficult than ini-
tially anticipated. Two methods were developed to cast truss sizing optimization problems into a QUBO
format. The first method, described in Chapter 4, directly casts the truss optimization into a QUBO ma-
trix format. However, this method was eventually found to give trivial optimization problems. The second
method, described in Chapter 5, relied on symbolically solving linear FEM truss problems, using binary qubit
variables to represent different choices for the truss cross-sectional areas. Using symbolic expressions for the
truss stresses, optimization objective functions could then be set up. The minimum solution to these objec-
tive functions represents the configuration of trusses that brings the truss stresses closest to the material limit
stress. Through various simplifications, quadratization, and by implementing an iterative solving procedure,
these objective functions were eventually made compatible with the QUBO problem format. Although many
challenges were encountered throughout the process described in Chapter 5, it was found to be difficult, yet
feasible, to cast small truss sizing optimization problems into a quantum-compatible format.

Users can change many parameters related to the performance of the quantum annealer. The most no-
table of these parameters is the total number of reads that are performed during an analysis. When the num-
ber of reads is increased, the time-to-solution also increases, but it was seen that this can also improve the
likelihood of obtaining the global minimum solution for the truss sizing optimization problems. The best
computational performance is obtained when the minimum number of reads is used that still reliably yields
the global optimum solution. All other parameters that control the behavior of the quantum annealer were
left at their default states for this project.

Overall, the majority of the work needed to answer this research question was related to finding a suit-
able method to cast the truss optimization problem into a QUBO form. Although the approach described
in Chapter 5 appeared straightforward during its conception, the many challenges encountered throughout
the process indicate that the translation step from an engineering idea to a functional implementation for
the quantum annealer should not be underestimated. The methods by which these challenges have been
overcome throughout this process may nevertheless serve an educational purpose to future researchers.

90 6. Conclusion

6.2.3. Research Question 3
3. How does quantum computing compare to classical computing for solving practical optimization prob-

lems?

(a) For the reference problem, what is the computational performance of both classical and quantum
solution procedures?

(b) What reliability issues exist with quantum computation, and how may these issues be addressed?

(c) If the size of the problem is increased, how does this affect computational performance?

(d) If the quantum computing hardware would be improved in the future, how would this affect com-
putational performance?

(e) At this point in time, is it beneficial to apply quantum computing to practical aerospace engineering
problems?

The time-to-solution was measured for classical and quantum methods, using the truss optimization
problem setup described in Chapter 5. In practice, classical brute-force analysis of the fractional objective
function, using the set of valid solutions, is very fast compared to classical simulated annealing and quantum
annealing. Although simulated annealing is very slow to use for larger problems, these analyses demonstrate
that the iterative solution method works as expected and is able to converge on the global optimum solution
when using a high number of reads. With quantum annealing, considering only the QPU access time, this
method is extremely fast at finding solutions to each of the sample problems. However, the quantum annealer
has difficulty in obtaining the global optimum solutions for the three- and four-truss sizing optimization
problems.

The low probability of finding the global optimum solutions for the three- and four-truss problems using
the quantum annealer could potentially be amended. First, having higher connectivity QPU hardware, as
will be present in the next generation of quantum annealers, the length of the qubit chains needed to embed
these problems could be significantly reduced. Second, at the expense of additional QPU access time, a
greater number of reads could be used for every iteration in the solving procedure. Third, the maximum
number of allowed iterations in the solving procedure could be increased, giving the quantum annealer more
chances to converge on the global optimum solution. Fourth, an in-depth study of the solver parameters
could be performed, to find values that maximize the probability of returning the global optimum solution.
Finally, there may still be ways to further simplify the objective functions, thereby reducing the complexity of
the problem.

With the current methods, the initial setup of the fractional objective function scales extremely poorly.
If a five-truss problem were to be defined, it would likely take approximately 11 hours to find the objective
function for such a truss system. If such a system were to be optimized by the quantum annealer, using the
current iterative method, the probability of finding the global optimum solution is expected to be even lower
than with the four-truss system, due to the increased complexity. Overall, truss systems with more than four
trusses are not considered solvable using the current methods.

The next-generation quantum annealers using the Pegasus architecture would present a significant im-
provement over the current Chimera architecture. Both the number of qubits, as well as the number of
connections between qubits, will be increased greatly. This will allow for more complicated problems to
be solved, and will likely improve the probability of finding optimal solutions to the truss sizing optimization
problems. However, using this new architecture is not expected to influence the time-to-solution compared
to the current Chimera architecture. Since the user-defined annealing time will likely still default to a value
of 20 µs.

The difficulties seen throughout this project were numerous. It started with symbolically solving finite-
element problems, and setting up objective functions, which is a slow process for larger problems. In turn,
a special iterative solving procedure was needed to make the objective function more compatible with the
quantum annealer. Eventually, it was seen that the quantum annealer has a low probability of finding global
optimum solutions to the larger truss sizing problems. Compared to classical methods, these findings show
that, although possible, it is currently not beneficial to apply quantum computing to this type of engineer-
ing optimization problem. With further development of both quantum annealing technology, as well as the
methods to cast engineering problems into a quantum-compatible form, this conclusion may eventually
change.

6.2. Answering the Research Questions 91

6.2.4. Main Research Question and Research Objective
To offer some final concluding remarks about the research performed in this thesis, the main research ques-
tion and the research objective are reiterated. The main research question was:

What method can be used to solve practical structural optimization problems using a quantum
computer, and how well does it perform compared to classical methods?

Considering the answers that were provided to each of the research sub-questions in Sections 6.2.1 to 6.2.3,
this main research question is considered to have been sufficiently answered. The research goal of this thesis
was formalized as the following:

Within the time-span of the thesis, the objective is to investigate the practical application of
quantum computing to aerospace structural optimization problems, by developing a method
to cast the problem into code that can be interpreted by the quantum computer, and evaluate
the performance and reliability compared to classical methods.

Reflecting on this research goal, the research shown in this thesis indicates that it is difficult, yet feasible, to
utilize the D-Wave quantum annealer to solve simple structural optimization problems. The research objec-
tive has therefore been achieved. However, the research also shows that there are still a number of challenges
left to be overcome before quantum annealing can become a competitive method for this type of optimiza-
tion problem. These challenges lie both in the methods for casting engineering optimization problems into
a quantum-compatible form, as well as the development of the quantum annealing technology itself.

In the next generation of quantum annealers, the connectivity between qubits will be significantly in-
creased. This means that the length of the qubit chains in the embeddings for the truss sizing optimization
problems can become much shorter. In turn, this is expected to improve the probability of finding the global
optimum solutions for these problems. Furthermore, if sources of overhead can be reduced, by more efficient
coding and more direct access to the quantum annealing hardware, quantum annealing has the potential to
become an extremely fast method for solving larger structural optimization problems.

In this thesis, some of the first exploratory steps have been taken in an effort to solve structural optimiza-
tion problems using a quantum computer. Though some of these steps have proven to be quite challenging,
the lessons that have been learned may help others find ways to formulate their own problems in a quantum-
compatible form. In the future, quantum annealing will hopefully become a competitive tool for engineers,
allowing them to solve what has proven to be an interesting and challenging class of optimization problems.

7
Recommendations and Future Work

In this chapter, some of the recommendations and ideas for future work in the field of practical quantum
annealing are given.

7.1. Improvements to the Current Methodology
Through the research process carried out in this thesis, it was discovered that it was much more difficult to
find a truss optimization QUBO formulation than was initially anticipated. The majority of the time spent
during the development of the symbolic finite-element method presented in Chapter 5, was spent on solv-
ing the various problems and challenges that were encountered along the way. Even though a compatible
formulation was achieved, the difficulty of the translation from a truss optimization concept to a functional
QUBO problem indicates that perhaps it was inevitable that the method would produce unreliable results
with the quantum annealer. Given that 2-dimensional truss structures are one of the simplest types of struc-
tures, it is likely infeasible for this symbolic method to be extended for use with more complicated structures.
Since simple finite-element truss systems already gave rise to many difficult challenges, structures containing
beams, shells, or solid elements would likely be even more challenging to reformulate using a methodology
similar to that presented in this thesis. However, there may be options to improve upon the methods shown
in this thesis. Particularly, there are potential improvements in the setup process for generating the fractional
objective function which defines the truss sizing optimization problem.

One of the slowest steps in the setup process is the fact that large symbolic expressions must be squared
and expanded multiple times. The fractional objective function is defined as shown in Eq. (7.1).

T =
N∑

n=1
Tn =

N∑
n=1

(
σ2

limit −σ2
n

)2
(7.1)

The difficulty with setting up the objective function is that the complicated symbolic expression σn must
be squared and expanded. Furthermore, once the difference

(
σ2

limit −σ2
n

)
has been calculated, this difference

is yet again squared and expanded such that it can be used as a target for minimization. This process then
repeats for all trusses in the system, getting ever more complicated and time-consuming for larger truss sys-
tems, due to the increased number of variables. However, this setup process could be drastically improved if
it would be known beforehand which trusses would be in compression, and which would be in tension. The
initial squaring of the truss stresses is performed to ensure that σ2

n always evaluates to positive values. If it
was known beforehand which trusses would be in tension and which would be in compression, this squar-
ing operation could be avoided by simply setting up the objective function in different ways in each case.
Namely, for tensile trusses the objective would become (σlimit −σn)2, while for compressive trusses it would
be (σlimit +σn)2. The change in sign in the expression causes the negative compressive trusses to still be
subtracted from the positively defined limit stress, ensuring that the difference is calculated correctly.

Another possible improvement to the setup process for the fractional objective function, which should
lead to a significant speed improvement, is to apply simplifications throughout the process. Currently, one
of the simplifications that is performed after the setup of the fractional objective function is complete, is to
truncate all terms that are of an order greater than the number of trusses in the system. For example, for a
three-truss system, all terms greater than third order are truncated. These terms only contribute information
about invalid solutions to the optimization problem. Since invalid solutions should be avoided altogether, it
is beneficial to simply remove these terms from the objective function. The idea for the speed improvement

93

94 7. Recommendations and Future Work

is therefore to remove such high-order terms throughout the setup process of the objective function, rather
than performing the entire setup process first, and performing the truncation at the end. By continuously
removing high-order terms, which appear after each squaring operation, no unnecessary effort is wasted in
manipulating these terms further. Since these computationally expensive squaring operations are performed
multiple times, this simplification is likely to lead to a significant speedup of the objective function setup
method.

The setup process for the original fractional objective functions could be further improved by consider-
ing parallel execution of certain sections of the MATLAB code. After the symbolic expressions for the nodal
displacement have been obtained, the process continues with finding expressions for the truss stresses and
individual truss objective functions. This happens sequentially, for every truss in the system. Once the in-
dividual truss objective functions have all been found, these are then summed to obtain the final fractional
objective function for the whole truss system. However, the portion of the code that sequentially finds the
expressions for the truss stresses and objective functions may be suitable for parallel execution. Since, these
expressions can be set up independently from each other and only depend on the symbolic expressions for
the nodal displacements. A speed improvement may be possible if the individual truss stress and objective
function expressions are found simultaneously for multiple trusses in the truss system.

Finally, one of the major constraints that prevented a truly in-depth investigation into the behavior of the
quantum annealer for this thesis was the limited amount of QPU access time available. This meant that many
of the analyses were only performed ten times each, to gauge the performance of the quantum annealing
method. Although performing ten analyses gives some insight into the behavior of the quantum computer,
it is not sufficient to determine definitive statistical measures. If many more analyses had been performed,
more statistically significant claims could be made with respect to, for example, the probability of obtaining
the global minimum solution. As it stands, having performed only ten quantum annealing attempts to solve
each of the different truss optimization problems, this is only enough to give a preliminary conclusion. If
further research on this topic were to be performed, it would be extremely beneficial to have much more
access to the quantum annealing hardware.

7.2. Suggestions for Future Work
The work performed in this thesis was mostly related to finding a way to translate a truss sizing optimization
problem into a format that is compatible with the quantum annealer. However, even though such a transla-
tion was eventually successfully found, the quantum annealer had difficulty finding optimal solutions to the
larger truss optimization problems. The issues that were encountered during the development of the sym-
bolic finite-element QUBO method were perhaps an indication that this type of truss optimization problem
is not a suitable match for the quantum annealer, causing the problem to be difficult to solve. Alternatively,
perhaps the method used to translate the truss optimization problem into a QUBO format was unsuitable.
Nevertheless, the technology is still considered promising, and for future research into practical applications
for the aerospace industry, different types of optimization problems should be chosen.

Some unique applications of quantum annealing have been found in [3, 45, 62, 81, 85]. In these studies,
tailor-made QUBO formulations are used to solve clear, practical optimization problems. These works could
inspire further research into the practical applications of quantum annealing. Of particular interest might be
the work shown by Van Vreumingen et al. [85], which deals with a shape optimization of a sphere, defined
through finite-elements. Shape optimizations are naturally also quite applicable to the aerospace industry,
considering topics like aerodynamic design, or topology-optimized structural design. It is suggested that, for
future research into quantum annealing applications for aerospace engineering, inspiration is drawn from
the work by Van Vreumingen et al., and a shape optimization problem is investigated.

Perhaps a similar approach to that of Van Vreumingen et al. can be used to optimize the positioning of
the nodes that define a truss system. This may lead to truss system designs with optimized load-paths, which
could be a first step towards the more complex shape optimizations of aircraft structures. Further inspiration
for such an optimization could also be taken from the formulations for the Traveling Salesman Problem.
Trusses and nodes can also be interpreted as cities and roads, meaning that it is perhaps feasible to use a TSP-
like formulation to find the most efficient load paths between the loaded nodes and the structural boundaries.
Further extensions might also include methods that can change the topology of the structure, by removal
of inefficient elements, or exploring new possibilities by allowing new additional elements to be generated.
Such complicated optimizations might be possible using the novel approaches shown by King et al. [49] and
Pastorello and Blanzieri [68], which combine quantum annealing with genetic algorithms, or other learning

7.2. Suggestions for Future Work 95

methods.
On a different note, many of the challenges in this project were related to casting the engineering opti-

mization problem into a suitable QUBO form. It would have been helpful if there had been tools or computer
programs available that could aid in this translation process. The development of such a general program
is likely to be more appropriate work for someone that specializes in computer science and software de-
velopment. Nevertheless, it could end up being an incredibly useful tool for engineers to help translate their
practical optimization problems into a valid QUBO formulation. For instance, such a program could ask what
type of problem the engineer wanted to solve, would assist in defining the problem variables and constraints,
and then generate the QUBO matrix. This would make it much easier for engineers to integrate quantum
computing into the toolbox of technologies they use on a daily basis to do their jobs.

Bibliography

[1] S. Aaronson. Read the fine print. Nature Physics, 11(4):291, 2015.

[2] Airbus. Airbus Quantum Computing Challenge: Bringing flight physics into the Quantum Era. On-
line, Jan 2019. URL https://www.airbus.com/innovation/tech-challenges-and-competitions/
airbus-quantum-computing-challenge.html. Accessed: 2019-11-06.

[3] A. Ajagekar, T. Humble, and F. You. Quantum Computing based Hybrid Solution Strategies for Large-
scale Discrete-Continuous Optimization Problems. arXiv e-prints, art. arXiv:1910.13045, Oct 2019.

[4] T. Albash and D. A. Lidar. Adiabatic quantum computation. Reviews of Modern Physics, 90(1), Jan. 2018.
URL https://doi.org/10.1103/revmodphys.90.015002.

[5] A. Ambainis. Variable time amplitude amplification and a faster quantum algorithm for solving systems
of linear equations. arXiv e-prints, art. arXiv:1010.4458, Oct. 2010.

[6] M. Amico, Z. H. Saleem, and M. Kumph. Experimental study of Shor’s factoring algorithm using the
IBM Q Experience. Phys. Rev. A, 100:012305, Jul 2019. URL https://link.aps.org/doi/10.1103/
PhysRevA.100.012305.

[7] F. Arute, K. Arya, R. Babbush, D. Bacon, J. C. Bardin, R. Barends, R. Biswas, S. Boixo, F. G. S. L. Bran-
dao, D. A. Buell, B. Burkett, Y. Chen, Z. Chen, B. Chiaro, R. Collins, W. Courtney, A. Dunsworth, E. Farhi,
B. Foxen, A. Fowler, C. Gidney, M. Giustina, R. Graff, K. Guerin, S. Habegger, M. P. Harrigan, M. J. Hart-
mann, A. Ho, M. Hoffmann, T. Huang, T. S. Humble, S. V. Isakov, E. Jeffrey, Z. Jiang, D. Kafri, K. Kechedzhi,
J. Kelly, P. V. Klimov, S. Knysh, A. Korotkov, F. Kostritsa, D. Landhuis, M. Lindmark, E. Lucero, D. Lyakh,
S. Mandrà, J. R. McClean, M. McEwen, A. Megrant, X. Mi, K. Michielsen, M. Mohseni, J. Mutus, O. Naa-
man, M. Neeley, C. Neill, M. Y. Niu, E. Ostby, A. Petukhov, J. C. Platt, C. Quintana, E. G. Rieffel, P. Roushan,
N. C. Rubin, D. Sank, K. J. Satzinger, V. Smelyanskiy, K. J. Sung, M. D. Trevithick, A. Vainsencher, B. Vil-
lalonga, T. White, Z. J. Yao, P. Yeh, A. Zalcman, H. Neven, and J. M. Martinis. Quantum supremacy us-
ing a programmable superconducting processor. Nature, 574(7779):505–510, Oct. 2019. URL https:

//doi.org/10.1038/s41586-019-1666-5.

[8] S. Barz, I. Kassal, M. Ringbauer, Y. O. Lipp, B. Dakić, A. Aspuru-Guzik, and P. Walther. A two-qubit pho-
tonic quantum processor and its application to solving systems of linear equations. Scientific Reports, 4:
6115, Aug 2014. doi: 10.1038/srep06115.

[9] C. Bernhardt. Quantum Computing for Everyone (The MIT Press). The MIT Press, Mar. 2019. ISBN
0262039257. URL https://www.xarg.org/ref/a/0262039257/.

[10] R. Biswas, Z. Jiang, K. Kechezhi, S. Knysh, S. Mandrà, B. O’Gorman, A. Perdomo-Ortiz, A. Petukhov,
J. Realpe-Gómez, E. Rieffel, D. Venturelli, F. Vasko, and Z. Wang. A NASA perspective on quantum
computing: Opportunities and challenges. Parallel Computing, 64:81–98, May 2017. URL https:

//doi.org/10.1016/j.parco.2016.11.002.

[11] S. Boixo, T. Albash, F. M. Spedalieri, N. Chancellor, and D. A. Lidar. Experimental signature of pro-
grammable quantum annealing. Nature Communications, 4(1), June 2013. ISSN 2041-1723. URL
http://dx.doi.org/10.1038/ncomms3067.

[12] A. Borle and S. J. Lomonaco. Analyzing the quantum annealing approach for solving linear least squares
problems. In International Workshop on Algorithms and Computation, pages 289–301. Springer, 2019.

[13] X.-D. Cai, C. Weedbrook, Z.-E. Su, M.-C. Chen, M. Gu, M.-J. Zhu, L. Li, N.-L. Liu, C.-Y. Lu, and J.-W. Pan.
Experimental Quantum Computing to Solve Systems of Linear Equations. Phys. Rev. Lett., 110:230501,
Jun 2013. URL https://link.aps.org/doi/10.1103/PhysRevLett.110.230501.

97

https://www.airbus.com/innovation/tech-challenges-and-competitions/airbus-quantum-computing-challenge.html
https://www.airbus.com/innovation/tech-challenges-and-competitions/airbus-quantum-computing-challenge.html
https://doi.org/10.1103/revmodphys.90.015002
https://link.aps.org/doi/10.1103/PhysRevA.100.012305
https://link.aps.org/doi/10.1103/PhysRevA.100.012305
https://doi.org/10.1038/s41586-019-1666-5
https://doi.org/10.1038/s41586-019-1666-5
https://www.xarg.org/ref/a/0262039257/
https://doi.org/10.1016/j.parco.2016.11.002
https://doi.org/10.1016/j.parco.2016.11.002
http://dx.doi.org/10.1038/ncomms3067
https://link.aps.org/doi/10.1103/PhysRevLett.110.230501

98 Bibliography

[14] Y. Cao, A. Daskin, S. Frankel, and S. Kais. Quantum circuit design for solving linear systems
of equations. Molecular Physics, 110(15-16):1675–1680, 2012. URL https://doi.org/10.1080/
00268976.2012.668289.

[15] A. M. Childs, R. Kothari, and R. D. Somma. Quantum Algorithm for Systems of Linear Equations with
Exponentially Improved Dependence on Precision. SIAM Journal on Computing, 46(6):1920–1950, Jan
2017. ISSN 1095-7111. URL http://dx.doi.org/10.1137/16M1087072.

[16] B. D. Clader, B. C. Jacobs, and C. R. Sprouse. Preconditioned Quantum Linear System Al-
gorithm. Phys. Rev. Lett., 110:250504, Jun 2013. URL https://link.aps.org/doi/10.1103/
PhysRevLett.110.250504.

[17] C. Coffrin, H. Nagarajan, and R. Bent. Evaluating Ising Processing Units with Integer Programming. In
L.-M. Rousseau and K. Stergiou, editors, Integration of Constraint Programming, Artificial Intelligence,
and Operations Research, pages 163–181, Cham, 2019. Springer International Publishing. ISBN 978-3-
030-19212-9.

[18] P. J. Coles, S. Eidenbenz, S. Pakin, A. Adedoyin, J. Ambrosiano, P. Anisimov, W. Casper, G. Chennupati,
C. Coffrin, H. Djidjev, D. Gunter, S. Karra, N. Lemons, S. Lin, A. Lokhov, A. Malyzhenkov, D. Mascarenas,
S. Mniszewski, B. Nadiga, D. O’Malley, D. Oyen, L. Prasad, R. Roberts, P. Romero, N. Santhi, N. Sinitsyn,
P. Swart, M. Vuffray, J. Wendelberger, B. Yoon, R. Zamora, and W. Zhu. Quantum Algorithm Implementa-
tions for Beginners. arXiv e-prints, art. arXiv:1804.03719, Apr. 2018.

[19] D-Wave Systems Inc. D-Wave Systems Inc. Repositories. Online, Dec 2017. URL https://github.com/
dwavesystems. Accessed: 2019-11-08.

[20] D-Wave Systems Inc. dimod.higherorder.utils.make_quadratic. Online, 2017. URL
https://docs.ocean.dwavesys.com/projects/dimod/en/latest/reference/generated/
dimod.higherorder.utils.make_quadratic.html. Accessed: 2020-07-08.

[21] D-Wave Systems Inc. Getting Started with the D-Wave System: User Manual, Oct. 2018.

[22] D-Wave Systems Inc. Introduction to the D-Wave Quantum Hardware. Online, 2019. URL
https://www.dwavesys.com/tutorials/background-reading-series/introduction-d-wave-
quantum-hardware. Accessed: 2020-08-20.

[23] D-Wave Systems Inc. QPU Properties: D-Wave 2000Q Online System (DW_2000Q_2_1), Aug. 2019.
URL https://support.dwavesys.com/hc/article_attachments/360043207874/09-1177A-
F_QPU_Properties_Online_DW_2000Q_2_1.pdf.

[24] D-Wave Systems Inc. D-Wave Leap Dashboard. Online, 2019. URL https://cloud.dwavesys.com/
leap/. Acessed: 2019-11-01.

[25] D-Wave Systems Inc. dwavesystems /dwave-inspector. Online, May 2020. URL https://github.com/
dwavesystems/dwave-inspector. Accessed: 2020-07-03.

[26] D-Wave Systems Inc. D-Wave Problem-Solving Handbook, Feb. 2020. URL https://

docs.dwavesys.com/docs/latest/doc_handbook.html.

[27] D-Wave Systems Inc. D-Wave Solver Properties and Parameters Reference, Feb. 2020. URL https://

docs.dwavesys.com/docs/latest/doc_solver_ref.html.

[28] D-Wave Systems Inc. Solver Computation Time User Manual, Feb. 2020. URL https://

docs.dwavesys.com/docs/latest/doc_timing.html.

[29] N. Dattani. Quadratization in discrete optimization and quantum mechanics. arXiv e-prints, art.
arXiv:1901.04405, Jan. 2019.

[30] N. Dattani and N. Chancellor. Embedding quadratization gadgets on Chimera and Pegasus graphs. arXiv
e-prints, art. arXiv:1901.07676, Jan 2019.

[31] D. Dervovic, M. Herbster, P. Mountney, S. Severini, N. Usher, and L. Wossnig. Quantum linear systems
algorithms: a primer. arXiv e-prints, art. arXiv:1802.08227, Feb. 2018.

https://doi.org/10.1080/00268976.2012.668289
https://doi.org/10.1080/00268976.2012.668289
http://dx.doi.org/10.1137/16M1087072
https://link.aps.org/doi/10.1103/PhysRevLett.110.250504
https://link.aps.org/doi/10.1103/PhysRevLett.110.250504
https://github.com/dwavesystems
https://github.com/dwavesystems
https://docs.ocean.dwavesys.com/projects/dimod/en/latest/reference/generated/dimod.higherorder.utils.make_quadratic.html
https://docs.ocean.dwavesys.com/projects/dimod/en/latest/reference/generated/dimod.higherorder.utils.make_quadratic.html
https://www.dwavesys.com/tutorials/background-reading-series/introduction-d-wave-quantum-hardware
https://www.dwavesys.com/tutorials/background-reading-series/introduction-d-wave-quantum-hardware
https://support.dwavesys.com/hc/article_attachments/360043207874/09-1177A-F_QPU_Properties_Online_DW_2000Q_2_1.pdf
https://support.dwavesys.com/hc/article_attachments/360043207874/09-1177A-F_QPU_Properties_Online_DW_2000Q_2_1.pdf
https://cloud.dwavesys.com/leap/
https://cloud.dwavesys.com/leap/
https://github.com/dwavesystems/dwave-inspector
https://github.com/dwavesystems/dwave-inspector
https://docs.dwavesys.com/docs/latest/doc_handbook.html
https://docs.dwavesys.com/docs/latest/doc_handbook.html
https://docs.dwavesys.com/docs/latest/doc_solver_ref.html
https://docs.dwavesys.com/docs/latest/doc_solver_ref.html
https://docs.dwavesys.com/docs/latest/doc_timing.html
https://docs.dwavesys.com/docs/latest/doc_timing.html

Bibliography 99

[32] H. N. Djidjev, G. Chapuis, G. Hahn, and G. Rizk. Efficient Combinatorial Optimization Using Quantum
Annealing. arXiv e-prints, art. arXiv:1801.08653, Nov 2016.

[33] Y.-L. Fang and P. A. Warburton. Minimizing minor embedding energy: an application in quantum an-
nealing. arXiv e-prints, art. arXiv:1905.03291, May 2019.

[34] S. Feld, C. Roch, T. Gabor, C. Seidel, F. Neukart, I. Galter, W. Mauerer, and C. Linnhoff-Popien. A Hybrid
Solution Method for the Capacitated Vehicle Routing Problem Using a Quantum Annealer. Frontiers in
ICT, 6, June 2019. URL https://www.frontiersin.org/article/10.3389/fict.2019.00013.

[35] B. Gardas, J. Dziarmaga, W. H. Zurek, and M. Zwolak. Defects in Quantum Computers. Scientific Reports,
8(1), Mar. 2018. URL https://doi.org/10.1038/s41598-018-22763-2.

[36] F. Glover, G. Kochenberger, and Y. Du. A Tutorial on Formulating and Using QUBO Models. arXiv e-
prints, art. arXiv:1811.11538, Nov. 2018.

[37] F. Glover, G. Kochenberger, M. Ma, and Y. Du. Quantum Bridge Analytics II: Combinatorial Chaining for
Asset Exchange. arXiv e-prints, art. arXiv:1911.03036, Nov 2019.

[38] R. Hamerly, T. Inagaki, P. L. McMahon, D. Venturelli, A. Marandi, T. Onodera, E. Ng, C. Langrock, K. In-
aba, T. Honjo, and et al. Experimental investigation of performance differences between coherent Ising
machines and a quantum annealer. Science Advances, 5(5):eaau0823, May 2019. ISSN 2375-2548. URL
http://dx.doi.org/10.1126/sciadv.aau0823.

[39] A. W. Harrow, A. Hassidim, and S. Lloyd. Quantum Algorithm for Linear Systems of Equations. Phys. Rev.
Lett., 103:150502, Oct 2009. URL https://link.aps.org/doi/10.1103/PhysRevLett.103.150502.

[40] M. Hasan and S. Acharjee. Solving LFP by Converting it into a Single LP. International Jour-
nal of Operations Research, 8:1–14, Jan. 2011. URL https://www.researchgate.net/publication/
319135012_Solving_LFP_by_Converting_it_into_a_Single_LP.

[41] I. Hen and M. S. Sarandy. Driver Hamiltonians for constrained optimization in quantum annealing.
Phys. Rev. A, 93:062312, Jun 2016. URL https://link.aps.org/doi/10.1103/PhysRevA.93.062312.

[42] I. Hen and F. M. Spedalieri. Quantum Annealing for Constrained Optimization. Phys. Rev. Applied, 5:
034007, Mar 2016. doi: 10.1103/PhysRevApplied.5.034007. URL https://link.aps.org/doi/10.1103/
PhysRevApplied.5.034007.

[43] IBM. IBM Q Experience. Online, 2019. URL https://quantum-computing.ibm.com/. Acessed: 2019-
11-01.

[44] IBM. IBM Unveils World’s First Integrated Quantum Computing System for Commercial Use.
Online, Jan. 2019. URL https://newsroom.ibm.com/2019-01-08-IBM-Unveils-Worlds-First-
Integrated-Quantum-Computing-System-for-Commercial-Use. Acessed: 2019-11-01.

[45] K. Ikeda, Y. Nakamura, and T. S. Humble. Application of Quantum Annealing to Nurse Scheduling
Problem. Scientific Reports, 9(1):12837, Sep 2019. ISSN 2045-2322. URL https://doi.org/10.1038/
s41598-019-49172-3.

[46] S. Jiang, K. A. Britt, A. J. McCaskey, T. S. Humble, and S. Kais. Quantum Annealing for Prime Factorization.
Scientific Reports, 8(1), Dec. 2018. URL https://doi.org/10.1038/s41598-018-36058-z.

[47] M. W. Johnson, M. H. S. Amin, S. Gildert, T. Lanting, F. Hamze, N. Dickson, R. Harris, A. J. Berkley, J. Jo-
hansson, P. Bunyk, E. M. Chapple, C. Enderud, J. P. Hilton, K. Karimi, E. Ladizinsky, N. Ladizinsky, T. Oh,
I. Perminov, C. Rich, M. C. Thom, E. Tolkacheva, C. J. S. Truncik, S. Uchaikin, J. Wang, B. Wilson, and
G. Rose. Quantum annealing with manufactured spins. Nature, 473(7346):194–198, May 2011. URL
https://doi.org/10.1038/nature10012.

[48] H. G. Katzgraber, F. Hamze, Z. Zhu, A. J. Ochoa, and H. Munoz-Bauza. Seeking Quantum Speedup
Through Spin Glasses: The Good, the Bad, and the Ugly. Phys. Rev. X, 5:031026, Sep 2015. URL
https://link.aps.org/doi/10.1103/PhysRevX.5.031026.

https://www.frontiersin.org/article/10.3389/fict.2019.00013
https://doi.org/10.1038/s41598-018-22763-2
http://dx.doi.org/10.1126/sciadv.aau0823
https://link.aps.org/doi/10.1103/PhysRevLett.103.150502
https://www.researchgate.net/publication/319135012_Solving_LFP_by_Converting_it_into_a_Single_LP
https://www.researchgate.net/publication/319135012_Solving_LFP_by_Converting_it_into_a_Single_LP
https://link.aps.org/doi/10.1103/PhysRevA.93.062312
https://link.aps.org/doi/10.1103/PhysRevApplied.5.034007
https://link.aps.org/doi/10.1103/PhysRevApplied.5.034007
https://quantum-computing.ibm.com/
https://newsroom.ibm.com/2019-01-08-IBM-Unveils-Worlds-First-Integrated-Quantum-Computing-System-for-Commercial-Use
https://newsroom.ibm.com/2019-01-08-IBM-Unveils-Worlds-First-Integrated-Quantum-Computing-System-for-Commercial-Use
https://doi.org/10.1038/s41598-019-49172-3
https://doi.org/10.1038/s41598-019-49172-3
https://doi.org/10.1038/s41598-018-36058-z
https://doi.org/10.1038/nature10012
https://link.aps.org/doi/10.1103/PhysRevX.5.031026

100 Bibliography

[49] J. King, M. Mohseni, W. Bernoudy, A. Fréchette, H. Sadeghi, S. V. Isakov, H. Neven, and M. H. Amin.
Quantum-Assisted Genetic Algorithm. arXiv e-prints, art. arXiv:1907.00707, Jun 2019.

[50] G. Kochenberger, J.-K. Hao, F. Glover, M. Lewis, Z. Lü, H. Wang, and Y. Wang. The unconstrained binary
quadratic programming problem: a survey. Journal of Combinatorial Optimization, 28(1):58–81, apr
2014. URL https://doi.org/10.1007/s10878-014-9734-0.

[51] M. Kochenderfer and T. Wheeler. Algorithms for Optimization. The MIT Press. MIT Press, 2019. ISBN
9780262039420. URL https://books.google.nl/books?id=uBSMDwAAQBAJ.

[52] C. R. Laumann, R. Moessner, A. Scardicchio, and S. L. Sondhi. Quantum annealing: The fastest route
to quantum computation? The European Physical Journal Special Topics, 224(1):75–88, Feb. 2015. URL
https://doi.org/10.1140/epjst/e2015-02344-2.

[53] W. Lechner, P. Hauke, and P. Zoller. A quantum annealing architecture with all-to-all connectivity
from local interactions. Science Advances, 1(9):e1500838, Oct. 2015. URL https://doi.org/10.1126/
sciadv.1500838.

[54] Y. Lee, J. Joo, and S. Lee. Hybrid quantum linear equation algorithm and its experimental test on IBM
Quantum Experience. Scientific reports, 9(1):4778, 2019.

[55] A. Lucas. Ising formulations of many NP problems. Frontiers in Physics, 2, 2014. ISSN 2296-424X. URL
http://dx.doi.org/10.3389/fphy.2014.00005.

[56] A. Lucas. Hard combinatorial problems and minor embeddings on lattice graphs. Quantum Information
Processing, 18(7):203, Jul 2019. URL https://doi.org/10.1007/s11128-019-2323-5.

[57] C. C. McGeoch. Adiabatic Quantum Computation and Quantum Annealing: Theory and Prac-
tice, volume 5. Morgan & Claypool Publishers LLC, July 2014. URL https://doi.org/10.2200/
s00585ed1v01y201407qmc008.

[58] C. C. McGeoch, R. Harris, S. P. Reinhardt, and P. I. Bunyk. Practical Annealing-Based Quantum Comput-
ing. Computer, 52(6):38–46, June 2019. URL https://doi.org/10.1109/mc.2019.2908836.

[59] A. Mizel, D. A. Lidar, and M. Mitchell. Simple Proof of Equivalence between Adiabatic Quantum Com-
putation and the Circuit Model. Physical Review Letters, 99(7), Aug 2007. ISSN 1079-7114. URL
http://dx.doi.org/10.1103/PhysRevLett.99.070502.

[60] M. Möller and C. Vuik. A conceptual framework for quantum accelerated automated design op-
timization. Microprocessors and Microsystems, 66:67 – 71, 2019. ISSN 0141-9331. URL http://

www.sciencedirect.com/science/article/pii/S0141933118303223.

[61] A. Montanaro and S. Pallister. Quantum algorithms and the finite element method. Phys. Rev. A, 93:
032324, Mar 2016. URL https://link.aps.org/doi/10.1103/PhysRevA.93.032324.

[62] F. Neukart, G. Compostella, C. Seidel, D. von Dollen, S. Yarkoni, and B. Parney. Traffic flow optimization
using a quantum annealer. arXiv e-prints, art. arXiv:1708.01625, Aug 2017.

[63] NumPy.org. numpy.amax - NumPy v1.19 Manual. Online, Jun 2020. URL https://numpy.org/doc/
stable/reference/generated/numpy.amax. Accessed: 2020-08-19.

[64] M. Ohkuwa, H. Nishimori, and D. A. Lidar. Reverse annealing for the fully connected p-spin model. Phys.
Rev. A, 98:022314, Aug 2018. URL https://link.aps.org/doi/10.1103/PhysRevA.98.022314.

[65] M. Ohzeki, C. Takahashi, S. Okada, M. Terabe, S. Taguchi, and K. Tanaka. Quantum annealing: next-
generation computation and how to implement it when information is missing. Nonlinear Theory and
Its Applications, IEICE, 9(4):392–405, 2018. URL https://doi.org/10.1587/nolta.9.392.

[66] S. Okada, M. Ohzeki, M. Terabe, and S. Taguchi. Improving solutions by embedding larger subproblems
in a D-Wave quantum annealer. Scientific Reports, 9(1), Feb. 2019. URL https://doi.org/10.1038/
s41598-018-38388-4.

https://doi.org/10.1007/s10878-014-9734-0
https://books.google.nl/books?id=uBSMDwAAQBAJ
https://doi.org/10.1140/epjst/e2015-02344-2
https://doi.org/10.1126/sciadv.1500838
https://doi.org/10.1126/sciadv.1500838
http://dx.doi.org/10.3389/fphy.2014.00005
https://doi.org/10.1007/s11128-019-2323-5
https://doi.org/10.2200/s00585ed1v01y201407qmc008
https://doi.org/10.2200/s00585ed1v01y201407qmc008
https://doi.org/10.1109/mc.2019.2908836
http://dx.doi.org/10.1103/PhysRevLett.99.070502
http://www.sciencedirect.com/science/article/pii/S0141933118303223
http://www.sciencedirect.com/science/article/pii/S0141933118303223
https://link.aps.org/doi/10.1103/PhysRevA.93.032324
https://numpy.org/doc/stable/reference/generated/numpy.amax
https://numpy.org/doc/stable/reference/generated/numpy.amax
https://link.aps.org/doi/10.1103/PhysRevA.98.022314
https://doi.org/10.1587/nolta.9.392
https://doi.org/10.1038/s41598-018-38388-4
https://doi.org/10.1038/s41598-018-38388-4

Bibliography 101

[67] J. Pan, Y. Cao, X. Yao, Z. Li, C. Ju, H. Chen, X. Peng, S. Kais, and J. Du. Experimental realization of quantum
algorithm for solving linear systems of equations. Physical Review A, 89(2), Feb 2014. ISSN 1094-1622.
URL http://dx.doi.org/10.1103/PhysRevA.89.022313.

[68] D. Pastorello and E. Blanzieri. Quantum annealing learning search for solving QUBO problems. Quan-
tum Information Processing, 18(10):303, Aug 2019. ISSN 1573-1332. URL https://doi.org/10.1007/
s11128-019-2418-z.

[69] E. Pednault, J. Gunnels, D. Maslov, and J. Gambetta. On "Quantum Supremacy". Online, Oct. 2019. URL
https://www.ibm.com/blogs/research/2019/10/on-quantum-supremacy/. Acessed: 2020-07-20.

[70] A. Perdomo-Ortiz, A. Feldman, A. Ozaeta, S. V. Isakov, Z. Zhu, B. O’Gorman, H. G. Katzgraber, A. Diedrich,
H. Neven, J. de Kleer, B. Lackey, and R. Biswas. Readiness of Quantum Optimization Machines for Indus-
trial Applications. Phys. Rev. Applied, 12:014004, Jul 2019. URL https://link.aps.org/doi/10.1103/
PhysRevApplied.12.014004.

[71] QuTech. About QI. Retrieved from Quantum Inspire, Oct. 2019. URL https://www.quantum-
inspire.com/about-qi. Acessed: 2019-11-01.

[72] S. Resch and U. R. Karpuzcu. Quantum Computing: An Overview Across the System Stack. arXiv e-prints,
art. arXiv:1905.07240, May 2019.

[73] Rigetti Computing. Rigetti right now. Online, May 2020. URL https://www.rigetti.com/. Accessed:
2020-07-22.

[74] M. L. Rogers and J. Singleton, Robert L. Floating-Point Calculations on a Quantum Annealer: Division
and Matrix Inversion. arXiv e-prints, art. arXiv:1901.06526, Jan 2019.

[75] T. F. Rønnow, Z. Wang, J. Job, S. Boixo, S. V. Isakov, D. Wecker, J. M. Martinis, D. A. Lidar, and M. Troyer.
Defining and detecting quantum speedup. Science, 345(6195):420–424, June 2014. URL https://

doi.org/10.1126/science.1252319.

[76] G. Rosenberg, M. Vazifeh, B. Woods, and E. Haber. Building an iterative heuristic solver for a quan-
tum annealer. Computational Optimization and Applications, 65(3):845–869, Apr. 2016. URL https:

//doi.org/10.1007/s10589-016-9844-y.

[77] A. Rothwell. Optimization Methods in Structural Design. Springer International Publishing, 2017. doi:
10.1007/978-3-319-55197-5. URL https://doi.org/10.1007/978-3-319-55197-5.

[78] S. W. Shin, G. Smith, J. A. Smolin, and U. Vazirani. How “Quantum” is the D-Wave Machine? arXiv
e-prints, art. arXiv:1401.7087, Jan. 2014.

[79] F. A. Simi and M. S. Talukder. A New Approach for Solving Linear Fractional Programming Problems with
Duality Concept. Open Journal of Optimization, 06(01):1–10, 2017. URL https://doi.org/10.4236/
ojop.2017.61001.

[80] R. D. Somma, D. Nagaj, and M. Kieferová. Quantum Speedup by Quantum Annealing. Phys. Rev. Lett.,
109:050501, Jul 2012. URL https://link.aps.org/doi/10.1103/PhysRevLett.109.050501.

[81] T. Stollenwerk, B. O’Gorman, D. Venturelli, S. Mandrà, O. Rodionova, H. Ng, B. Sridhar, E. G. Rieffel, and
R. Biswas. Quantum Annealing Applied to De-Conflicting Optimal Trajectories for Air Traffic Manage-
ment. IEEE Transactions on Intelligent Transportation Systems, pages 1–13, 2019. ISSN 1558-0016. URL
http://dx.doi.org/10.1109/TITS.2019.2891235.

[82] M. Stolpe. Truss optimization with discrete design variables: a critical review. Structural and Multidis-
ciplinary Optimization, 53(2):349–374, Feb 2016. ISSN 1615-1488. URL https://doi.org/10.1007/
s00158-015-1333-x.

[83] Sz. Szalay, N. Dattani, and N. Chancellor. PegasusDraw. https://github.com/HPQC-
LABS/PegasusDraw/, 2018.

http://dx.doi.org/10.1103/PhysRevA.89.022313
https://doi.org/10.1007/s11128-019-2418-z
https://doi.org/10.1007/s11128-019-2418-z
https://www.ibm.com/blogs/research/2019/10/on-quantum-supremacy/
https://link.aps.org/doi/10.1103/PhysRevApplied.12.014004
https://link.aps.org/doi/10.1103/PhysRevApplied.12.014004
https://www.quantum-inspire.com/about-qi
https://www.quantum-inspire.com/about-qi
https://www.rigetti.com/
https://doi.org/10.1126/science.1252319
https://doi.org/10.1126/science.1252319
https://doi.org/10.1007/s10589-016-9844-y
https://doi.org/10.1007/s10589-016-9844-y
https://doi.org/10.1007/978-3-319-55197-5
https://doi.org/10.4236/ojop.2017.61001
https://doi.org/10.4236/ojop.2017.61001
https://link.aps.org/doi/10.1103/PhysRevLett.109.050501
http://dx.doi.org/10.1109/TITS.2019.2891235
https://doi.org/10.1007/s00158-015-1333-x
https://doi.org/10.1007/s00158-015-1333-x

102 Bibliography

[84] O. Ubbens. Practical Implementation of a Quantum Algorithm for the Solution of Systems of Lin-
ear Systems of Equations. Bachelor’s thesis, Delft University of Technology, 2019. URL http://

resolver.tudelft.nl/uuid:444580f0-a661-4adc-a937-51c5660916d9.

[85] D. Van Vreumingen, F. Neukart, D. Von Dollen, C. Othmer, M. Hartmann, A.-C. Voigt, and T. Bäck.
Quantum-assisted finite-element design optimization. arXiv e-prints, art. arXiv:1908.03947, Aug 2019.

[86] D. Venturelli and A. Kondratyev. Reverse Quantum Annealing Approach to Portfolio Optimization Prob-
lems. arXiv e-prints, art. arXiv:1810.08584, Oct 2018.

[87] Volkswagen. Volkswagen optimizes traffic flow with quantum computers . Online, Oct. 2019.
URL https://www.volkswagen-newsroom.com/en/press-releases/volkswagen-optimizes-
traffic-flow-with-quantum-computers-5507. Accessed: 2020-09-04.

[88] T. Vyskočil, S. Pakin, and H. N. Djidjev. Embedding Inequality Constraints for Quantum Annealing Op-
timization. In Quantum Technology and Optimization Problems, pages 11–22. Springer International
Publishing, 2019. URL https://doi.org/10.1007/978-3-030-14082-3_2.

[89] R. H. Warren. Gates for Adiabatic Quantum Computing. arXiv e-prints, art. arXiv:1405.2354, May 2014.

[90] C. Whyte. Google has reached quantum supremacy - here’s what it should do next. Online, Sept.
2019. URL https://www.newscientist.com/article/2217835-google-has-reached-quantum-
supremacy-heres-what-it-should-do-next/. Acessed: 2019-11-01.

[91] K. Wils. Truss Sizing Optimization: Symbolic Finite Element Method QUBO Repository, 2020. URL
https://doi.org/10.34894/PYZGEX.

[92] K. Wils. Truss Sizing Optimization: Direct QUBO Method Repository, 2020. URL https://doi.org/
10.34894/OU99WD.

[93] K. Wils. TSP QUBO Repository., 2020. URL https://doi.org/10.34894/QYHGAE.

[94] L. Wossnig, Z. Zhao, and A. Prakash. Quantum Linear System Algorithm for Dense Matrices. Phys. Rev.
Lett., 120:050502, Jan 2018. URL https://link.aps.org/doi/10.1103/PhysRevLett.120.050502.

[95] G. Xu and W. S. Oates. Can Quantum Computers Solve Linear Algebra Problems to Advance Engineering
Applications? In ASME 2018 Conference on Smart Materials, Adaptive Structures and Intelligent Systems.
American Society of Mechanical Engineers Digital Collection, 2018.

[96] N. S. Yanofsky. Quantum Computing for Computer Scientists. Cambridge University Press, Aug. 2008.
ISBN 0521879965. URL https://www.xarg.org/ref/a/0521879965/.

[97] Y. Zheng, C. Song, M.-C. Chen, B. Xia, W. Liu, Q. Guo, L. Zhang, D. Xu, H. Deng, K. Huang, Y. Wu,
Z. Yan, D. Zheng, L. Lu, J.-W. Pan, H. Wang, C.-Y. Lu, and X. Zhu. Solving Systems of Linear Equa-
tions with a Superconducting Quantum Processor. Phys. Rev. Lett., 118:210504, May 2017. URL https:

//link.aps.org/doi/10.1103/PhysRevLett.118.210504.

http://resolver.tudelft.nl/uuid:444580f0-a661-4adc-a937-51c5660916d9
http://resolver.tudelft.nl/uuid:444580f0-a661-4adc-a937-51c5660916d9
https://www.volkswagen-newsroom.com/en/press-releases/volkswagen-optimizes-traffic-flow-with-quantum-computers-5507
https://www.volkswagen-newsroom.com/en/press-releases/volkswagen-optimizes-traffic-flow-with-quantum-computers-5507
https://doi.org/10.1007/978-3-030-14082-3_2
https://www.newscientist.com/article/2217835-google-has-reached-quantum-supremacy-heres-what-it-should-do-next/
https://www.newscientist.com/article/2217835-google-has-reached-quantum-supremacy-heres-what-it-should-do-next/
https://doi.org/10.34894/PYZGEX
https://doi.org/10.34894/OU99WD
https://doi.org/10.34894/OU99WD
https://doi.org/10.34894/QYHGAE
https://link.aps.org/doi/10.1103/PhysRevLett.120.050502
https://www.xarg.org/ref/a/0521879965/
https://link.aps.org/doi/10.1103/PhysRevLett.118.210504
https://link.aps.org/doi/10.1103/PhysRevLett.118.210504

	Abstract
	List of Abbreviations
	Introduction
	Aim and Scope
	Thesis Layout

	Literature Study
	General Purpose Quantum Computers
	Quantum Bits
	Hardware Overview
	Applications

	Quantum Annealers
	Overview and Applications
	Problem Formulation
	Hardware Limitations

	Selecting a Quantum Computer for Practical Applications
	Optimization Problems
	Optimization Applications
	Quantum Assisted Genetic Algorithm
	Finite-Element Shape Optimization

	Conclusion

	Introduction to Practical QUBO Problems
	Quadratic Unconstrained Binary Optimization
	Traveling Salesman Problem
	Beginnings of a TSP QUBO
	Distances
	Constraints
	Embedding the TSP
	Results
	Final Comments

	Truss Sizing Optimization: Direct QUBO Method
	Overview
	Direct QUBO Formulation
	Design Variables and Objective Function
	Unary Constraint
	Stress Constraint: Preliminary Information
	Stress Constraint: RF Dependent Preference in an Optimization Scheme

	Testing of Optimization Procedure
	Results
	Box Truss System
	Bridge Truss System

	Triviality of the QUBO Formulation and Classical Reproduction
	Possible Extensions

	Truss Sizing Optimization: Symbolic Finite-Element Method
	Phase 1: Preparation
	QUBO Basics and Plan
	Sample Problems
	Challenge: Symbolic Matrix Inversion and Setup of Symbolic Expressions

	Phase 2: Setup of the QUBO Problem
	Objective Function Evaluation Method
	Expected Optimization Outcomes
	Challenge: Setting up an Objective Function
	Challenge: Fractional Objective Functions
	Practical Implementation of Truss Sizing Optimization

	Phase 3: Solving the QUBO Problem
	Analysis Procedures
	Parameter Tuning
	Results: Two-Truss Problem
	Results: Three-Truss Problem
	Results: Four-Truss Problem

	Final Discussion
	Chapter Summary

	Conclusion
	General Findings and Conclusions
	Answering the Research Questions
	Research Question 1
	Research Question 2
	Research Question 3
	Main Research Question and Research Objective

	Recommendations and Future Work
	Improvements to the Current Methodology
	Suggestions for Future Work

	Bibliography

