
Delft University of Technology
Master’s Thesis in MSC Embedded Systems

Semi-supervised Energy Disaggregation
Framework using General Appliance Models

Bontor Humala

Semi-supervised Energy Disaggregation Framework

using General Appliance Models

Master’s Thesis in MSC Embedded Systems

Embedded Software Section
Faculty of Electrical Engineering, Mathematics and Computer Science

Delft University of Technology
Mekelweg 4, 2628 CD Delft, The Netherlands

Bontor Humala
BontorHumala@student.tudelft.nl

15th January 2018

mailto:BontorHumala@student.tudelft.nl

Author
Bontor Humala (BontorHumala@student.tudelft.nl)

Title
Semi-supervised Energy Disaggregation Framework using General Appliance Models

MSc presentation
22nd January 2018

Graduation Committee
Prof.dr. Koen Langendoen Delft University of Technology
Dr. RangaRao Venkatesha Prasad Delft University of Technology
Dr. Alessandro Bozzon Delft University of Technology

mailto:BontorHumala@student.tudelft.nl

Abstract

Providing detailed appliance-level energy consumption information helps
consumers to understand their usage behavior and encourages them to op-
timize their energy usage. Non-intrusive load monitoring (NILM) or energy
disaggregation aims to estimate appliance-level energy consumption data
from the aggregate consumption data of households. NILM algorithms can
be broadly classified into supervised and unsupervised (or semi-supervised)
techniques. The former requires a large amount of prior data for each ap-
pliance and the latter relies on manual tuning of models of appliances based
on some metadata information. While there is a significant interest from
academia and industry, NILM techniques are still not adopted widely across
households. This is mainly because the techniques developed for one house-
hold cannot be generalized and applied in other households (applicability),
require tremendous manual-tuning to apply across households (scalability),
and cannot run in real-time. To overcome the above issues, we propose a
novel semi-supervised energy disaggregation framework – UniversalNILM.
The key idea of UniversalNILM is to model appliances in a few (3-10) train-
ing houses, which has detailed appliance-level data and transfer this learning
to test houses (blind disaggregation), which has only aggregate house con-
sumption data to derive fine-grained appliance energy consumption. To
this end, we develop an automated appliance modeling technique that cre-
ates general appliance models across various appliance brands and models.
The general appliance models are analytical models which describe power
consumption of each appliance. These general appliance models are then
fine-tuned automatically on test houses to accurately disaggregate the en-
ergy consumption in real-time. To test the robustness of UniversalNILM, we
empirically evaluated it across three publicly available real-world datasets.
We show that the general appliance models learnt on a few households is
able to accurately disaggregate on unseen test houses in the same dataset,
as well as unseen houses from different datasets. This is the first work in
NILM which is able to perform disaggregation across datasets. Another im-
provement is that UniversalNILM outperforms the reported accuracy from
both state-of-the-art supervised and unsupervised NILM techniques.

iv

Preface

In 2012, I co-founded an Internet of Things (IoT) company and become
interested in IoT data analytics, especially energy data (electricity, gas, wa-
ter). At one point during master study, I started to be aware of energy
disaggregation algorithms. It is a perfect example of data analytics on IoT
data. Today, smart meters are being installed in different countries and are
projected to penetrate 50% of global market by 2022. However, customers
are yet to benefit from smart meter data and energy disaggregation is not
widely adopted yet. This opportunity motivated me to do this thesis which
aims to create an applicable energy disaggregation algorithm. I believe that
IoT will be an important infrastructure and data analytics algorithms like
energy disaggregation will help users to understand IoT data effectively.

I am grateful to Akshay, who have provided me insightful guidance and dis-
cussion about energy disaggregation and machine learning. During his busy
job as a researcher in Microsoft, he makes himself available for consultations
via Skype regularly. I am also thankful to VP for his important guidance
during thesis, both on technical and non-technical matters. Both VP and
Akshay are truly supportive, especially during and after my father’s passing.
I cannot imagine how can I finish my thesis without their care and kindness.

A special gratitude to LPDP Indonesia who have provided the fund for
me to pursue my master at TU Delft.

Finally, my deepest gratitude to my mother and late father for their never
ending love and support.

Bontor Humala

Delft, The Netherlands
15th January 2018

v

vi

Contents

Preface v

1 Introduction 1

1.1 Importance of energy disaggregation 1

1.2 Challenges in NILM . 2

1.3 Research goal and contributions 3

1.4 Organisation . 3

2 NILM and Appliance Modeling 5

2.1 Appliance load modeling . 5

2.2 NILM algorithms . 6

2.2.1 Supervised disaggregation 6

2.2.2 Unsupervised disaggregation 6

2.3 Research opportunity . 9

3 Framework for UniversalNILM 11

3.1 Proposed model . 11

3.2 System Design . 12

3.3 Advantages of the framework 13

3.4 Summary of the framework for UniversalNILM 14

4 General modeling of appliances 15

4.1 Modeling - An overview . 15

4.2 Active period extraction . 16

4.3 State detection . 16

4.4 Cycle removal . 16

4.5 Curve splitting . 17

4.6 Model fitting . 17

4.7 Generalize parameters with clustering 17

4.8 Summary of general appliance modeling 19

5 Energy Disaggregation 21

5.1 General model based disaggregation 21

5.1.1 Detection of super-states 21

vii

5.1.2 Combinatorial Optimization disaggregation 22
5.2 Model Tuner: Fine-tuning general appliance models at test

house level . 24
5.2.1 Fitting convincing chunk 25
5.2.2 Clustering tuned parameters 26

5.3 Summary of energy disaggregation 27

6 Evaluation and Results 29
6.1 Experimental evaluation . 29

6.1.1 Datasets . 29
6.1.2 Metrics . 30
6.1.3 Implementation details 31

6.2 Results . 31
6.2.1 General appliance models builder 32
6.2.2 Energy disaggregation on test houses in the same dataset 32
6.2.3 Energy disaggregation on test houses in a different

dataset . 35
6.3 Real-time capability . 39
6.4 Stress test . 39
6.5 Effect of amount of data on disaggregation accuracy 41

7 Conclusion and Future Work 43
7.1 Conclusion . 43
7.2 Future Work . 44

viii

Chapter 1

Introduction

We first introduce the the background of the topic energy disaggregation in
Section 1.1. In section 1.2 we discuss the limitations of energy disaggregation
at present. This will lead us to explain the research goal in Section 1.3
considering the limitations. We also enlist the contributions of this thesis.
Finally, the organisation of this thesis is provided in Section 1.4

1.1 Importance of energy disaggregation

Electricity consumption in residential and commercial buildings plays a huge
role in worldwide energy demand and carbon emission. Worldwide total
energy consumption in residential and commercial buildings is estimated
to be 30-40% of generation [21]. Furthermore, electricity generation for
residential and commercial buildings accounts for one-fifth of fuel-based CO2

emissions in the world [1]. Thus efficient electricity consumption in buildings
is very important for global sustainability.

Smart metering comprises of networked electricity meters that are de-
ployed to measure, collect and analyze total household energy consumption
at consumer premises. The US and EU aims to replace at least 80% of the
traditional meters with smart meters by 2020 [3]. These smart meters act as
Internet of Things (IoT) devices, which enable bidirectional communication
between the consumers and utility providers for a wide variety of services.
Some of the services include providing immediate feedback on power usage,
power quality, and pricing details.

Intelligent data analytics on smart meter data can provide feedback to
consumers on daily average, monthly average and historical energy con-
sumption information. Recent studies have shown that 5-15% of electri-
city consumption can be reduced with better real-time information of ap-
pliance level consumption statistics as opposed to total household [8,10,22].
Moreover, fine-grained appliance information can also be used to identify
faulty or malfunctioning appliances that consume more energy than they

1

should. Consequently, occupants know where the energy is being wasted.
Home automation systems coupled with smart meters can now provide feed-
back on energy usage by monitoring household energy consumption.

The most common way of obtaining appliance level information is by
deploying sensors for each appliance. Such a deployment is intrusive, cum-
bersome to maintain, and has a high cost. Alternatively, non-intrusive load
monitoring (NILM) or energy disaggregation algorithms aim to break down
a household’s aggregate energy consumption into individual appliances en-
ergy consumption [9]. NILM 1 techniques are gaining popularity due to
large-scale smart-meter deployments to obtain a households aggregate en-
ergy consumption and inference algorithms proposed for energy disaggrega-
tion [29].

1.2 Challenges in NILM

While NILM techniques seem attractive, they do not work as is. The current
techniques require either huge training data in each individual house so as to
model the appliances or significant metadata information about occupants,
number of appliances, or type and model of the appliance in a household.
The former approach is known as supervised NILM, where prior data for each
appliance is required. This enables the supervised methods to be accurate,
but challenging because sensors need to be deployed to obtain the prior
data. The latter is known as unsupervised or semi-supervised NILM. Due
to lack of appliance-level data, these approaches are less accurate than the
supervised methods.

There still exist several challenges preventing NILM techniques to be
widely adopted across households: (i) Applicability: While both supervised
and unsupervised approaches do infer individual appliance consumption in
a household, the techniques developed for one household cannot be gener-
alized and applied in other households. (ii) Scalability: NILM techniques
proposed till date focus and evaluate only on one dataset or a few houses in
a dataset. Scaling to other datasets or households in other locations require
tremendous manual-tuning and is impractical. (iii) Real-time: Majority of
the NILM algorithms cannot run in real-time due to the computational com-
plexity and the ones that do, utilize cloud services. This raises several issues
related to cost and privacy. (iv) Metadata information: Detailed information
of the household, number of occupants, number of appliances, their brand
and model, and other information is required by NILM algorithms. This re-
quires deployment of additional sensors or survey information, consequently
making the system cumbersome to use.

1In this thesis, we use the term ’energy disaggregation’ and ’NILM’ interchangeably.

2

1.3 Research goal and contributions

All challenges mentioned in the previous section lead us to the research goal.
The main goal of this thesis is to develop a universal energy disaggregation
framework that can, (i) be applied to any household in any neighborhood/-
city without additional sensor deployment; and (ii) run on an embedded
system (such as Raspberry PI) in real-time, and locally at the household to
derive appliance-level energy consumption information.

The main contributions of this thesis are:
(i) We develop an automated appliance modeling technique that creates gen-
eral appliance models across various brands and models of appliances.
(ii) We propose a novel fine-tuning technique to tune the general appliance
models based on the aggregate energy data from the test houses.
(iii) We present a trainingless real-time disaggregation system based on
Combinatorial Optimization to derive appliance-level information using only
smart meter data.
(iv) We perform extensive experimentation across datasets and show that
the proposed solution outperforms the state-of-the-art supervised and un-
supervised NILM techniques.

1.4 Organisation

This thesis is organised as follow. Chapter 2 explains appliance load model-
ing and various NILM algorithms. We also discuss opportunities for a novel
research in that chapter. In Chapter 3 we explain a proposed solution to
answer the research goal. The proposed solution consists of two main com-
ponents. The appliance modeling component is explained in Chapter 4. The
disaggregator component is explained in Chapter 5. These components are
implemented and the evaluation results are discussed in Chapter 6. Finally,
we draw conclusions on the research goal and propose possible future works
in Chapter 7.

3

4

Chapter 2

NILM and Appliance
Modeling

This chapter starts with an explanation about appliance modeling in Sec-
tion 2.1. Numerous NILM algorithms, both supervised and unsupervised,
have been proposed in the literature to derive fine-grained appliance-level
information. We cover these algorithms in Section 2.2. Then, we discuss
opportunities for a novel research on NILM in Section 2.3.

2.1 Appliance load modeling

Appliance load modeling is a key step for energy disaggregation, for both su-
pervised and unsupervised NILM. Appliance models can vary from a simple
on-off model with fixed power states to a multi-state model with varying
power levels. We now review the state-of-the-art works about appliance
modeling.

Barker et. al [5] showed that appliances power data can be manually
categorized into several models based on their power signatures. The intu-
ition behind their idea is that appliances can be categorized by their load
types which are resistive, inductive, non-linear, or mixture of them (com-
posite). They proposed different mathematical equations for each load type
such as fixed power levels (resistive), growing or decaying power (inductive),
stable min/max or random power (non-linear). However, this work requires
significant manual efforts to classify appliances into different load types.
Figure 2.1 illustrates examples of appliances signatures that are categorized
into different load types.

An extension of these manually-derived models was proposed by Iyengar
et. al in [11]. They developed an automatic non-intrusive model deriva-
tion (NIMD) method which can reproduce appliance power data with high
similarity. However, the model only work for an appliance with a specific
brand and model. For example, there will be three different mathematical

5

models for washing machine brand A model 1, brand A model 2, and brand
B model 1.

In general, all the appliance models developed hitherto focused on mod-
eling a specific type of appliance in a dataset. These models are specific to
a household and require manual/domain expert knowledge to classify them.
UniversalNILM employs a systematic approach to model both simple and
composite appliance, that can work across households and datasets. In this
thesis, there are two contexts for the term ’model’. The first context is the
mathematical model for an appliance load. The word ’model’ in this first
context occurs alone in a sentence. The second context is the appliance
model from a specific brand/manufacturer. The word ’model’ in this second
context always occurs together with the word ’brand’ in a sentence.

2.2 NILM algorithms

Numerous NILM algorithms, both supervised and unsupervised, have been
proposed in the literature to derive fine-grained appliance-level information.
We first provide details on the existing algorithms and then discuss oppor-
tunities for a novel research on NILM.

2.2.1 Supervised disaggregation

PowerPlay [6] aims to track the electrical power consumption of selected
appliances in a household. PowerPlay uses offline modeling and feature
extraction in order to obtain identifiable features for each appliance. Finally,
several feature detectors (one for each load) operate on a sliding window
against the smart meter data. However, PowerPlay can only track a few (1-
3) predefined appliances in a household as it fails to handle the complexity
when the number of appliances increases. A recent work viz., SparseNILM
[18] achieves high disaggregation accuracy (>90%) with 5 appliances. It
can also disaggregate a large number of appliances (>18 loads), although
the accuracy in this case is not reported. It uses prior data to obtain the
appliances states and build a super-state Hidden Markov Model (HMM).
Finally, the HMM matrices are used together with a Viterbi algorithm to
disaggregate the smart meter data. Due to the complexity in collecting
fine-grained appliance data at each household, supervised techniques have
limited applicability at large scale.

2.2.2 Unsupervised disaggregation

Unsupervised disaggregation is sometimes called blind disaggregation. This
is because they do not have appliance-level data in test houses (blind). Un-
supervised disaggregation algorithms rely on aggregated smart meter data.

6

06:59
07:00

07:00

Time

0

500

1000

1500

Po
w

er
 (

W
at

t)

(a) Clothes iron, resistive

17:09
17:31

17:52

Time

0

20

40

60

80

Po
w

er
 (

W
at

t)

(b) Lamp, resistive

01:22
01:26

01:30

Time

0

100

200

300

400

Po
w

er
 (

W
at

t)

(c) Fridge, inductive

08:38
10:33

12:28
14:24

Time

0

100

200

300

Po
w

er
 (

W
at

t)

(d) Computer, non-linear

09:07
09:36

10:04
10:33

Time

0

1000

2000

Po
w

er
 (

W
at

t)

(e) Dish washer, composite

13:55
14:24

14:52

Time

0

500

1000

1500

2000

Po
w

er
 (

W
at

t)

(f) Washing machine, composite

Figure 2.1: Examples of categorized appliances signatures based on the type
of their load(s)

7

Parson et. al [23] developed an unsupervised energy disaggregation method
using general appliance models. It models an appliance as a variant of
Hidden Markov Model (HMM) called difference HMM. During deployment,
these general appliance models are then tuned for periods when only a single
appliance is turned on. The drawback is that it requires a domain expert
to manually develop the difference HMM models. Furthermore it is only
evaluated on the REDD dataset and the applicability of these models on
different datasets is not studied.

CFHSMM is another unsupervised energy disaggregation algorithm that
uses general appliance models [14]. It develops an HMM model and its
parameters from appliance data in a house. Then it tunes the parameters
in the test houses using Expectation-Maximization algorithm. Finally, it
estimates the appliances states using simulated annealing algorithm. How-
ever, CFHSMM is only evaluated using two-state appliances like television,
refrigerator, and game console. It is not tested on complex and multi-state
appliances like washing machine and dishwasher, which often consume most
of the energy in a house.

Neural NILM [12] is one of the first works to suggest the usage of neural
network in NILM. The problem with Neural NILM, as in other deep neural
network algorithms, is that the training phase requires a massive amount
of data and a lot of parameters to be trained. Furthermore, the paper
also mention that the disaggregation algorithm itself is too computationally
expensive to be run on an embedded processor inside a smart meter or an
in-home display.

SBNMF [19] is based on non-negative matrix factorization algorithm where
the smart meter data is factorized into basis and activation matrices. The
basis matrix is based on appliance power data and the activation matrix
holds binary values that indicate which appliance is active. SBNMF does
not require any model and can work with a standard smart meter. However
the disaggregation accuracy is low (< 20%), especially for appliances with
a complex usage pattern like television and washing machine.

BOLT [17] performs unsupervised disaggregation on current waveforms
using neural network and binary matrix factorization method. A neural
network is employed to find the basis and activation matrices. The power
consumption for each appliance is estimated naively, which assumes that
each appliance only has two states (ON and OFF state) with predefined
power value in each state. Another drawback is that it uses high frequency
current data which is impractical since a standard smart meter usually only
has low frequency power data. Furthermore, all of these unsupervised al-
gorithms focus only on one dataset or a few houses in a dataset. Their
scalability to other datasets or households in other locations has not been
proven.

8

Table 2.1: Comparison with SoA

Goals S-SoA U-SoA UniversalNILM

Accurate Y Y Y

Trainingless N Y Y

Simple Y Y Y

Real time Y N Y

Various appliance Y Y Y

Scalability N N Y

2.3 Research opportunity

Based on 2.2, we can see that supervised algorithms are not applicable. In
terms of applicability, unsupervised algorithms are generally preferable since
they do not need appliance-level data in the test houses. While there is sig-
nificant interest in unsupervised NILM techniques, there still exist issues,
(i) not scalable to houses in other datasets or locations, (ii) some of them
require smart meter with high sampling rate, (iii) the disaggregation accur-
acy is very low, and (iii) too computationally expensive to run in real-time
and locally in a household.

We propose UniversalNILM – a semi-supervised energy disaggregation
framework. UniversalNILM overcomes all the above drawbacks and can
work with any off-the-shelf smart meter data, derives appliance-level data
with high accuracy and can run in real-time. Zeifman et. al [28] introduces
six criteria for a good energy disaggregation method. We compare the pro-
posed UniversalNILM with the state of the art (SoA) works viz., supervised
(S-SoA) based on [18] and unsupervised (U-SoA) based on [15]. Table 2.1
shows the comparison against the six criteria.

9

10

Chapter 3

Framework for
UniversalNILM

At the end of Chapter 2, we address the research goal by proposing Uni-
versalNILM. In this chapter, Section 3.1 explains the idea of the proposed
solution, UniversalNILM. Section3.2 describes the design of UniversalNILM.

3.1 Proposed model

The key idea of UniversalNILM is to model appliances in a few (3-10) train-
ing houses, which have detailed appliance-level data and transfer this learn-
ing on to the rest of the test houses, which have only aggregated smart meter
data to derive fine-grained appliance energy consumption information.

Consider a neighborhood or a city where a few households (say 1-5) are
instrumented with smart plugs (to collect appliance-level energy informa-

Smart meter data
 +

Appliances data

Smart meter data

General appliance
model

Tuned model Disaggregated
appliance data

Training

Testing

Figure 3.1: Overview of UniversalNILM.

11

tion) [2]. UniversalNILM uses the fine-grained data from these few house-
holds to learn model parameters for each appliance. These models after
learning are then applied to any household in the neighborhood or city,
which has a smart meter (collecting aggregate household data). The hypo-
thesis here is that models of appliances learnt on a few training households
can be fine-tuned on unseen test households systematically with minimal
metadata information. These models of appliances are analytical models
which describe power consumption of each appliance mathematically.

Consider a neighborhood/city with ten thousand households each equipped
with a smart meter to measure total energy consumption of the house. It is
infeasible in terms of cost and maintenance to deploy a smart plug for each
appliance in all these households to provide appliance-level feedback. To this
end, lets us assume that there are a few households (say 10), in which each
appliance is equipped with a smart plug [2] to collect fine-grained appliance-
level data along with smart meter data. These houses can be instrumented
with smart plugs by an energy utility company or as pilot deployments.
UniversalNILM uses appliance-level data from these 10 households to derive
general appliance models, that learns the characteristics of each appliance
in these households. UniversalNILM then applies these general appliance
models across each test house in the city to derive fine-grained appliance
information. While applying the general appliance models1 on a test house,
UniversalNILM performs fine-tuning in order to adapt to varying appliance
brand/model2. In this thesis, we present a systematic and automated way
of developing general models of appliances from the houses considered for
training. Further, we propose how to fine-tune these models based on a test
house aggregate data.

To evaluate the efficacy, we applied UniversalNILM on three publicly
available datasets viz., REDD dataset in the US [16], UK-DALE dataset
in the UK [13], and DRED dataset in the Netherlands [27]. The Universal-
NILM framework is made publicly available3 for the community to support
additional analysis.

3.2 System Design

UniversalNILM is a semi-supervised energy disaggregation framework where
appliance models are learned on a few training households and then trans-
ferred to a large set of unseen test houses. UniversalNILM consists of two
main components, which are the model builder and the disaggregator. The
model builder aims to build general appliance models based on the train-
ing data from a few households as shown in Figure 3.2. As mentioned

1These are the mathematical models of appliances
2Model of an appliance from a specific vendor/manufacturer
3http://www.st.ewi.tudelft.nl/ akshay/dred/

12

Appliance-level
data Model builder General

appliance model

Figure 3.2: Model builder for general appliance models on a training house.

General
appliance model

Smart meter data CO
disaggregation Model tuner

Tuned appliance
model

CO
disaggregation

Appliance-level
data

Input

Output

Figure 3.3: Disaggregator component on a test house.

before in Section 3.1, the general appliance models are analytical models
which describe power consumption of each appliance mathematically. This
component is executed offline, for example by an energy utility or a data
analytics company, that instruments a few households to generate general
appliance models.

The disaggregator then uses these general appliance models to perform
online disaggregation in each household without any training. Disaggregator
consists of two main modules: the general model based disaggregation (CO
disaggregation) and the model tuner as shown in Figure 3.3. The CO disag-
gregation component uses general appliance models to disaggregate smart
meter data in test houses. This provides initial appliance-level information
for the test house. However, since the appliance brand and model may vary
from training to test houses, the general appliance models need to be tuned.
The model tuner component tunes the general appliance models based on
the test house aggregated smart meter data for accurate appliance-level en-
ergy disaggregation.

3.3 Advantages of the framework

The UniversalNILM framework separates training and testing into two en-
tirely different components which makes it modular. This modularity is

13

important since it means that we can easily try out different features, al-
gorithms, and evaluation scenarios. As mentioned in Section 2.3, the current
NILM techniques are not scalable to houses in other datasets or locations.

Trying out different evaluation scenarios definitely helps us to know the
scalability of our algorithm. For example, training and testing using different
datasets tells us whether if the algorithm can work in any houses or locations.
Since the training and testing components are modular, we can easily play
around with the training sets, the testing sets, or the number of appliances
which we will discuss later in Chapter 6.

Trying different algorithms and features is also important to develop an
accurate NILM algorithm. For example, the amount of appliance-level data
at this moment is limited which is the reason why deep neural network tech-
niques are not used more often in NILM. However, because there are a lot
appliances and each of them has a rich power consumption signature, devel-
oping a feature extractor manually may never be good enough. Therefore,
a deep neural network technique could be a better fit to NILM, given that
there is enough appliance-level data.

During development, we have tried several deep neural network architec-
tures (convolutional neural network/CNN and LSTM) to replace the ana-
lytical model. In this case, the modularity of the model builder allows us to
take appliance signatures and feed them to the deep neural network. Fur-
thermore, the disaggregator is also modular which allows us to replace the
CO-disaggregation with the deep neural network. Additionally, we also tried
FHMM to replace CO-disaggregation. In the end, we keep the analytical
model as the final proposed solution. Nevertheless, these facts show that
the modularity of the framework allows us to try different algorithm and
features in order to achieve a good accuracy and applicability.

3.4 Summary of the framework for UniversalNILM

The basic idea of UniversalNILM is to model appliances in a few training
houses (3-10) using appliance-level data and transfer this learning to the rest
of the test houses which have only aggregated smart meter data. To this end,
the framework for UniversalNILM consists of two main components which
are the model builder and the disaggregator. The models for appliances are
analytical models which describe the power consumption of each appliance
mathematically. This component is executed offline by an energy utility or
a data analytics company. The disaggregator tunes the general appliance
models using only aggregated smart meter data in the test houses. Finally,
it uses the tuned appliance models to perform online disaggregation in each
household without appliance-level data.

14

Chapter 4

General modeling of
appliances

The goal of the model builder is to accurately derive appliance signatures
that can be used to build general appliance models. We give a brief explan-
ation of the technique used in Section 4.1 Then we enumerate on the steps
involved in Section 4.2-4.7.

4.1 Modeling - An overview

For each appliance, the model builder first determines the active period and
state of the appliance. This comprises several steps, from the active period
extraction to the cycle removal. Model builder then applies various curve
and distribution fitting algorithms to model the appliance in active state
mathematically. Finally, the model parameters for all appliances in the
training data are clustered to determine the best model parameters for each
appliance across various appliance brands and models. Figure 4.1 shows the
detailed steps of the appliance modeling.

Figure 4.1: Steps involved in general appliance modeling.

15

4.2 Active period extraction

Appliance-level data consists of active and inactive periods. This step splits
the appliance-level data when it draws electrical power over a certain power
threshold and the results are called active period. Note that it is possible
for an appliance to draw no electrical power for some time even though it is
active. For example, when a washing machine stops spinning and prepares to
rinse. Therefore, if there are short inactive periods between multiple active
periods, then they are merged together into one active period. We refer to
the maximum short inactive period as inactive duration threshold. In this
work, we use 10 minutes as the inactive duration threshold for all appliances.
We take 10 minutes based on our manual observation that complex devices
such as dish washer and washing machine take up to 10 minutes inactive
period.

4.3 State detection

An appliance may consist of multiple operational states such as on, off,
and idle. For example, a washing machine can be in a washing, rinsing,
or spinning state. Each state has a different electrical power signature.
The state detection aims to split an active period of appliance into several
smaller chunks. Ideally these smaller chunks indicate different states of the
appliance.

To detect state changes we use – approximate entropy (ApEn) – a tech-
nique used to quantify the amount of regularity and the unpredictability
of fluctuations over time-series data [25]. We run a sliding window over an
active period and calculate ApEn for each position of the sliding window.
An entropy peak indicates a state change and finally, the active period is
split at every peak of entropy. These smaller chunks are called state chunks
since they represent different states in an appliance active period.

4.4 Cycle removal

In an appliance operational cycle (i.e., appliance ON to appliance OFF
state), an appliance load may be active many times. For example, a washing
machine may spin and stop several times during a wash state. Therefore
the same electrical power signature will be repeated multiple times. This
step splits a state chunk of an appliance into smaller chunks. These smaller
chunks are called cycle chunks since they represent different cycles of a state
in an appliance active period. A cycle chunk represents the electrical power
consumption of a state of an appliance.

At this stage, a cycle chunk relates to a unique state of an appliance. Con-
sequently, we should be able to perform model fitting at this point. However,

16

a complex appliance might include more states that have not been identified
by the state detection (Section 4.3) and cycle removal steps. Therefore, the
cycle chunk of such appliance is also complex. To overcome this problem,
the cycle removal identifies if the cycle chunk is simple or complex, by ana-
lyzing the time duration of each cycle chunk and its power consumption. If
the time duration is too long and the variance in power consumption is too
high, then the cycle chunk is considered complex (i.e. complex cycle chunk).

4.5 Curve splitting

If the cycle removal (Section 4.4) indicates that the cycle chunk is complex,
the curve splitting is employed to split the complex cycle chunk further. The
curve splitting uses a moving window to calculate standard deviations along
the complex cycle chunk. If the standard deviation at a point is higher than
the standard deviation of the whole complex cycle chunk, it suggests that
the particular point is different than the most of the chunk and therefore is
considered as an edge or end of the chunk. The complex cycle chunk is then
cut at the edges, resulting in the actual single cycle chunk. At this stage,
all appliance power data (simple or complex) can be split into single cycle
chunk corresponding to a state of an appliance. The next step is to model
each single cycle chunk mathematically.

4.6 Model fitting

The model fitting tries to fit various curves and distributions to the cycle
chunks that are previously obtained to get several mathematical models of
appliances. The output of model fitting is a set of models and parameters
for each appliance type as shown in Table 4.1. For each cycle chunk, all
mathematical models are evaluated and the model that is most similar to
the original trace is then selected (least root mean square error). Finally,
for each appliance, the corresponding models and its parameters are stored.
Note that, each appliance might include multiple models, for example, a
fridge can include on-off decay (corresponding to compressor ON state) and
on-off model (corresponding to fridge light ON state).

Figure 4.2 illustrates all the steps from the active period extraction until
the model fitting. The plots are based on real appliances data from REDD
dataset house 1. Note that since the dishwasher is a complex appliance, two
different single cycle chunks of dishwasher are shown on figure 4.2b and 4.2c.

4.7 Generalize parameters with clustering

During training there could be multiple brands and models of appliance of
the same type. This could result in huge number of models and parameters

17

00
:00

06
:00

12
:00

18
:00

00
:00

0

500

1000

1500

2000

Original appliance data

06
:00

12
:00

18
:00

0

500

1000

1500

2000

Active period extraction

03
:54

03
:57

04
:01

0

50

100

150

200

State detection

03
:54

03
:57

04
:01

0

50

100

150

200

Cyclic removal

03:54
03:57

04:01
0

50

100

150

200

Curve splitting

03
:53

03
:56

03
:59

04
:01

0

50

100

150

200

Model fitting

appliance data
model trace

Time

Po
we

r (
W

at
t)

1. Appliance data 3. State detection

4. Cyclic removal 5. Curve splitting 6. Model fitting

2. Active extraction

Cycle removal

(a) Fridge

00
:00

06
:00

12
:00

18
:00

00
:00

0

500

1000

Original appliance data

12
:36

13
:12

13
:48

0

500

1000

Active period extraction

12
:17

12
:28

12
:40

12
:51

0

500

1000

State detection

12
:17

12
:28

12
:40

12
:51

0

500

1000

Cyclic removal

12:21
12:21

12:21
12:22

0

50

100

150

200

Curve splitting

12
:21

12
:21

12
:21

12
:22

0

50

100

150

200

Model fitting

appliance data
model trace

Time

Po
we

r (
W

at
t)

1. Appliance data 2. Active extraction 3. State detection

4. Cyclic removal 5. Curve splitting 6. Model fittingCycle removal

(b) Dishwasher, load 1

00
:00

06
:00

12
:00

18
:00

00
:00

0

500

1000

Original appliance data

12
:36

13
:12

13
:48

0

500

1000

Active period extraction

12
:17

12
:28

12
:40

12
:51

0

500

1000

State detection

12
:17

12
:28

12
:40

12
:51

0

500

1000

Cyclic removal

12:41
12:46

12:50
0

500

1000

Curve splitting

12
:39

12
:43

12
:46

12
:50

0

500

1000

Model fitting

appliance data
model trace

Time

Po
we

r (
W

at
t)

1. Appliance data 2. Active extraction 3. State detection

4. Cyclic removal 5. Curve splitting 6. Model fittingCycle removal

(c) Dishwasher, load 2

Figure 4.2: Step-by-step output of model builder for fridge and dishwasher
appliance.

18

Table 4.1: Different models and parameters for various loads.

Model Mathematical model Parameters

On-off ax+ b a, b

On-off decay ae(−bx) + c a, b, c

On-off growth ae(bx) + c a, b, c

Random range Norm(µ, σ2) µ, σ2

Stable min/max Gamma(α, β, µ) α, β, µ

for each appliance. Therefore clustering is performed to identify the most
suitable models and parameters for each appliance. We apply a density-
based clustering algorithm – DBSCAN – to develop a general model for
each type of appliance.

Since there are six types of mathematical model as shown in Table 4.1, the
clustering algorithm is executed for each model per appliance. Parameters
which have similar values in a mathematical model are clustered together.
The final general model for an appliance consists of several cluster mean
values for each mathematical model type. Therefore, each cluster mean
value is a parameter of the general model.

Figure 4.3 illustrates the clustering parameters for fridge and dish washer
based on the appliance-level data from REDD houses 1 and 2. For simplicity,
only clustering for decay model is shown. From Figure 4.3, a general decay
model for fridge therefore has one model per cluster and general decay model
for dish washer has two models per clusters. Note that the red dots are
ignored by the clustering algorithm since they rarely occur.

4.8 Summary of general appliance modeling

The general appliance modeling starts with the idea that an appliance con-
sists of multiple operational states. Each state has a unique electrical power
signature which can be modeled mathematically. The model builder extracts
the unique signatures using several steps (the active period extraction until
curve splitting steps) – finding a model and parameters for each signature
using the model fitting, and finally finding general appliance models using
a clustering algorithm.

At this stage, for each appliance we have the possible states and the
corresponding models and parameters. For example, a washing machine has
OFF, pump ON, and motor ON states where the pump ON state corresponds
to random range and on-off models, similarly motor ON state corresponds
to random range and on-off decay models. The general appliance models
includes the final models and its parameters for each state of an appliance.

19

The disaggregator component of UniversalNILM uses these general appli-
ance models to disaggregate smart meter data (without any appliance-level
data) in the test house from the same dataset (blind disaggregation, same
dataset) and different datasets (blind disaggregation, different dataset).

a
0 500 1000 1500 2000

b
0

400
800

1200
1600

c

0

150

300

Clustering parameters cluster 0
ignored parameter

(a) Fridge, decay model

a

0 400 800 1200
b

0
30

60
90

120

c

250

500

750

1000

Clustering parameters cluster 0
cluster 1
ignored parameter

(b) Dishwasher, decay model

Figure 4.3: Clustering parameters towards developing general model for
each appliance. Each black circle denotes a cluster and each mean values of
a cluster is a parameter of the general appliance model

20

Chapter 5

Energy Disaggregation

The objective of the disaggregator component is to employ the general ap-
pliance models on a test house with aggregated smart meter data and derive
appliance-level energy consumption information.

To this end, the disaggregator consists of two modules viz., disaggregation
based on general model and model tuner as shown in Figure 3.3. The dis-
aggregation based on general model is explained in Section 5.1. Section 5.2
explains the model tuner.

5.1 General model based disaggregation

As mentioned earlier, in each test house we only have the aggregated energy
consumption information of the entire household (aggregated smart meter
data). From the general appliance models, we know that the correspond-
ing states and power consumption of each appliance. General model based
disaggregation uses these information to disaggregate the aggregated smart
meter data of the test house. There are two broad steps, (i) first, we need to
identify the regions and extract chunks where one or more appliance could
be active in the aggregated smart meter data (super-state detection) and
(ii) second, assign each chunk to a valid appliance state based on the gen-
eral model (CO disaggregation). Since we use CO and general model to
disaggregate we call this CO-Disaggregation() as shown in Algorithm 1.

5.1.1 Detection of super-states

In the test house, there are only the aggregated smart meter data and the list
of appliances in the household. In order to apply our mathematical models
on the smart meter data, we first split the whole smart meter data into
several chunks and try to find the most similar model for each chunk. Each
chunk should represent a cycle chunk, because that is the base of our general
appliance models as mentioned in 4.6. Note that multiple appliances can

21

Algorithm 1 General model based combinatorial optimization

1: function CO-Disaggregation(smart meter,model)
2: ss← GetSuperStates(smart meter)
3: i← 0
4: Loop iter
5: j ← 0
6: Loop superstates
7: disagg[j]← CO-LeastRMSE(ss[j],model, disagg[j − 1])
8: if j = length(ss) then
9: break Loop superstates

10: end if
11: j ← j + 1
12: End Loop
13: if i = max iter or length(ss) = 0 then
14: break Loop iter
15: end if
16: i← i+ 1
17: End Loop
18: return disagg
19: end function

be active simultaneously in the aggregated smart meter data. Thus, each
identified chunk is called as super-state, which is basically a combination of
appliance states.

The detection of super-states is similar to the state detection described
in 4.3. The key difference is that we use sample entropy (SampEn) instead
of approximate entropy in order to detect super-state changes. The reason
is that SampEn is independent of data length and less sensitive to data vari-
ance than approximate entropy [26]. This makes SampEn suitable for smart
meter data which has higher data variance and length compared to appli-
ance active chunk. Thus, at the end of this step, the aggregated smart meter
data is split into chunks of super-states as described in Algorithm 2. The
next step is to disaggregate these super-states into corresponding appliance
states.

5.1.2 Combinatorial Optimization disaggregation

Once we have super-state chunks from super-state detection, we perform
CO based disaggregation on each chunk using appliance-level data which is
generated from our general models. Combinatorial Optimization (CO) finds
the optimal combination of appliance states, which minimizes the difference
between the sum of predicted appliance power and the observed aggregated

power. Let ŷ
(n)
t be the estimated energy consumed and y

(n)
t be the actual

22

Algorithm 2 Super-states detection

1: function GetSuperStates(smart meter)
2: i← 0
3: window ← 20
4: Loop entropy window
5: sm window ← smart meter[i : window + i]
6: entropy[i]← SampEntropy(sm window)
7: if i = length(smart meter) then
8: break Loop entropy window
9: end if

10: i← i+ 1
11: End Loop
12: super states← FindPeaks(entropy)
13: return super states
14: end function

energy demand of each appliance n at time t. yt represent the aggregate
energy reading of the household. The ground truth state of an appliance

is represented by x
(n)
t ∈ Z ≥ 0 and x̂

(n)
t represents the appliance state

estimated by the disaggregation algorithm. CO based disaggregation can
now be defined as,

x̂
(n)
t = arg min

x̂
(n)
t

∣∣∣∣∣yt −
N∑

n=1

ŷ
(n)
t

∣∣∣∣∣ (5.1)

where N is the set of all appliances in the household and t is the current

time period. The predicted energy consumption of an appliance ŷ
(n)
t is then

mapped to the closest appliance state x̂
(n)
t . More details on CO can be found

in [27].

Thus, CO finds the combination of appliance states from general appliance
models that closely matches to the detected super state in the aggregated
smart meter data. One drawback is that the computational complexity in
CO increases exponentially with the number of appliances. The compu-
tational complexity for T time is O(T |S||N |) where |S| is the number of
appliances states and |N | is the number of appliances in the household.
Since there are multiple brands and models of a type of appliance, |S| can
be large and CO disaggregation becomes computationally intractable.

To reduce the computational complexity, we employ two techniques. The
first is priority combination [27]. Priority combination is basically the set
of appliances that are assumed to be currently running, based on the last
iteration of CO. If the difference between the sum of priority combination set
and the super-state chunk is within a threshold δ, then the set is prioritized
for disaggregation and the priority combination is retained. Second, for each

23

super-state chunk, we only generate and compare combinations of models
that have similar mean value with the super-state chunk.

With these techniques, the computational complexity for T time becomes
O(T |Scm||Ncp|) where |Scm| is the number of mean-constrained appliances
states and |Ncp| is the number of priority-constrained appliances in the
household.

Note that Scm ⊆ S and therefore |Scm| ≤ |S|. Further, note that Ncp ⊆ N
and therefore |Ncp| ≤ |N |. In practice, |Scm| < |S| almost always applies and
|Ncp| << |N |. These modifications to the original CO algorithm allows CO-
Disaggregation() to have a low computational complexity and run in real-
time. These techniques are implemented in function GenerateTrace().

Finally, we find a combination of appliance models which has the least root
mean squared error (RMSE) compared to the super-state chunk. Eq. 5.1
with the least RMSE is implemented in function LeastRMSE(). The full
CO-LeastRMSE is described in Algorithm 3.

Algorithm 3 Least RMSE combinatorial optimization

1: function CO-LeastRMSE(ss,model,priority combination)
2: model traces← GenerateTrace(ss,model, priority combination)
3: min rmse← LeastRMSE(ss,model traces)
4: trace id← where min rmse in model traces
5: disagg ss← model traces[trace id]
6: return disagg ss
7: end function

5.2 Model Tuner: Fine-tuning general appliance
models at test house level

In a test house, it is very likely that there are appliances with different
models and brands than those used in the training phase. For example, the
model builder uses fridge from brand A model 1, brand B model 2 and 3, and
brand C model 4. In the test house, there is a fridge from brand E model 1.
Therefore it is important to tune the general appliance models according to
specific appliances in the test house without any user intervention. In this
section, we describe how we fine-tune the general appliance models based
on the aggregated smart meter data of a test house.

The model tuner is only executed once during the initialization phase,
without users intervention, at a test house. The main idea is to assign
convincing chunks of aggregated smart meter data (i.e., super-state chunk)
to each appliance. The model tuner algorithm is shown in Algorithm 4. This
has three steps: (i) provides initial appliance-level information in the test
house using CO-Disaggregation() and general appliance models; (ii) fit

24

convincing chunk: for each super-state chunk, the algorithm finds the most
suitable model and updates the model parameters based on the test house
data; and (iii) cluster parameters: since there might be multiple models and
parameters for each state, clustering is employed to find the most suitable
model. We now describe these steps in detail.

Algorithm 4 Model tuner

1: procedure ModelTuner
2: disagg ← CO-Disaggregation(smart meter, general model)
3: fit params← FitConvincing(disagg)
4: tuned models← EMClustering(fit params)
5: end procedure

5.2.1 Fitting convincing chunk

The goal of this step is to find the appliance state model that matches the
super-state chunk. A super-state chunk is considered convincing if, (i) the
chunk only has one appliance trace dominating in the disaggregated data
chunk and (ii) the on time of the dominant appliance trace fits the typical
usage duration of that type of appliance (i.e. appliance is active).

Let ŷ
(n)
t be the estimated energy consumed of each appliance n at time t

using CO-Disaggregation() and general appliance models. yt represent
the aggregate energy reading of the household. The criteria of a convincing
chunk for appliance n can now be defined as,

acceptn(yt) =

{
true, if ŷ

(n)
t > 0.5× yt and length(t) ≈ on time(n).

false, otherwise.

(5.2)

where N is the set of all appliances in the household and t is the current
super-state chunk. If acceptn at the super-state chunk t is true, then the
super-state chunk yt is a convincing chunk for appliance n. The convincing
chunks will be used to tune the general appliance models.

We determine the typical on time for each type of appliance based on
a previous research about appliance modeling [20]. We also measure the
average usage duration of each type of appliance using several datasets to
confirm the validity of that research.

These criteria are used based on common understanding and our obser-
vation that same appliances in different houses are often similar in terms
of power consumption and usage duration, which is also confirmed in the
literature [20]. Therefore, it makes sense to assume that a chunk of the ag-
gregated smart meter data belongs to an appliance if the power consumption

25

and usage duration of that general appliance model is similar to that chunk
of smart meter data. Thus it makes more sense, rather than assuming that
the chunk belongs to a combination of other appliances.

We then find a model and parameter by applying different curves and
distributions fitting on the convincing chunk as described in model fitting in
Section. 4.6. The details of the fitting convincing chunk module is explained
in Algorithm 5.

Algorithm 5 Find convincing chunk and fit it

1: function FitConvincing(smart meter, disagg)
2: min← 0.1
3: max← 2.0
4: Loop i in appliances . i is appliance idx
5: Loop j in disagg[i] . j is active chunk idx
6: ratio← disagg[i][j]/smart meter[j]
7: if ratio > 0.5 then
8: dominant← True
9: end if

10: len← length(disagg[i][j])
11: min ot← min ∗ on time[i]
12: max ot← max ∗ on time[i]
13: if min ot < len < max ot then
14: fitrange← True
15: end if
16: if dominant & fitrange then
17: mp[i]←ModelFitting(disagg[i][j])
18: end if
19: End Loop
20: End Loop
21: return mp . mp is the collection of models and parameters from

convincing chunks
22: end function

5.2.2 Clustering tuned parameters

The fitting convincing chunk module generates a lot of mathematical models
and parameters because there are a lot of convincing chunks for each appli-
ance. To generate a tuned model for each appliance, a clustering algorithm
is employed to group similar parameters for each mathematical model. This
also removes outliers from the tuned appliance models. This is similar to the
clustering general parameters step which is explained in Section. 4.7. How-
ever, in this step, we employ Expectation Maximization (EM) clustering
algorithm to ensure each model parameter is given the same leve of import-

26

ance during clustering. We use the GaussianMixture module in scikit-learn
package to implement the EMClustering() function [24]. Finally, for each
super-state detected we identify the corresponding fine-tuned model and its
parameters.

This fine-tuning is performed on some historical data (say one week) in
each test house. This is to ensure that all appliances are used at least once
and their power consumption is reflected on the aggregated smart meter
data. Additionally, model tuner can be executed again if new appliance is
added later in the house or regularly e.g every 3 months to update the tuned
appliances models. The model tuner algorithm is shown in 4.

5.3 Summary of energy disaggregation

UniversalNILM energy disaggregation module aims to disaggregate smart
meter data in a test house using only general appliance models. First, it
disaggregates smart meter data using the CO-disaggregation algorithm and
general appliance models as we explained in Section 5.1. This provides
initial appliance-level information for the test house. Second, the model
tuner utilizes this information to tune the general appliance models using
as we explain in Section 5.2. Finally, the tuned appliance models are used
with the CO-disaggregation algorithm to predict fine-grained appliance-level
data in the test houses. Note that, other disaggregation modules such as
HMMs [14] can be used with the tuned appliance models.

27

28

Chapter 6

Evaluation and Results

This chapter starts with the explanation about the experiment: datasets,
metrics, and implementation details in Section 6.1. In Section 6.2 we present
and discuss the experiment results for both appliance load modeling and en-
ergy disaggregation. In Section 6.3 we measure and discuss the execution
time of UniversalNILM to see its real-time capability. We perform a stress
test on UniversalNILM in Section 6.4 by increasing the number of appli-
ances. Finally, we investigate the effect of different amounts of data on the
disaggregation accuracy in Section 6.5.

6.1 Experimental evaluation

In this section, we present details about the datasets used, metrics employed
and implementation details.

6.1.1 Datasets

We use three publicly available and well-known energy datasets:

REDD [16]. The Reference Energy Disaggregation Data Set was released
by MIT in 2011. The dataset contains several weeks of aggregated smart
meter data and appliance-level power data for six different houses in the
United States. In our evaluation, we use only 4 households as the remaining
two households have data for less than two weeks.

UK-DALE [13]. This dataset records the power demand from five houses
in UK. In each house, both the aggregated total mains power consumption
as well as power consumed by individual appliances are recorded.

DRED [27]. The Dutch Residential Energy Dataset includes one house
aggregated smart meter data along with the appliance-level power data for
more than five months.

We choose the above datasets mainly due to the following reasons, (i) all
of the above datasets record both appliance and smart meter data every

29

second; (ii) moreover, all the above datasets share at least 5 appliances so
that we can perform blind disaggregation across the households and the
datasets; and (iii) we use three datasets to ensure the proposed solution can
be used anywhere and can be used to compare the results with state-of-the-
art algorithms (scalability and applicability).

6.1.2 Metrics

We employ three standard metrics to evaluate UniversalNILM across the
three datasets.

Root mean square error. This is a common measure to calculate the
differences between ground truth values and values generated by models.

RMSE =

√√√√ 1

T

T∑
t=1

(pt − p̂t)2, (6.1)

where pt is the appliance-level data at time t, p̂t is the predicted appliance-
level data at time t, and T is the length of appliance-level data.

F1-score. F1-score is used to measure the accuracy of an algorithm.

F1-score =
2 ∗ Precision ∗Recall
Precision+Recall

(6.2)

Precision =
TP

TP + FP
(6.3)

Recall =
TP

TP + FN
(6.4)

True positives (TP) indicates that an appliance is ON in ground truth and
the disaggregation result also indicates appliance iw ON. FP is the false
positives, i.e., an appliance is OFF but the disaggregation reports that the
appliance is ON. FN is the false negatives, i.e., an appliance is ON but the
disaggregation reports that the appliance is OFF.

Proportion of total energy correctly assigned (PTE). Apart from
classifying whether an appliance is on or off, one might be interested in
observing the amount of actual energy being correctly predicted by an energy
disaggregation algorithm. PTE is a common metric [12, 16] employed to
predict the amount of power consumed by each appliance.

PTE = 1−

∑T
t

∑N
i

∣∣∣p(i)t − p̂t(i)
∣∣∣∑T

t p̄t
, (6.5)

where T is the length of appliance/smart meter power data and N is the
total number of appliances.

30

8 3 0 9 110.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

0.45

RM
SE

REDD

8 3 0 9 6 4 13 1 111410 5
Appliance ID

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

0.45
UKDALE

8 3 9 6 4 13 7 1 120.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

0.45
DRED

0: Dishwasher
1: Toaster
2: Clothes iron
3: Washing machine
4: TV
5: Vacuum Cleaner
6: Laptop
7: Cooker
8: Fridge
9: Microwave
10: Hair Dryer
11: Electric Stove
12: Fan
13: Oven
14: Kettle

Figure 6.1: Evaluation for general appliance model builder across different
appliances and datasets.

6.1.3 Implementation details

The complete UniversalNILM framework is implemented in Python. Spe-
cifically, Scikit-Learn and PyEEG [4] libraries are used for state detection
and super-state detection as mentioned in Section. 4 and 5. Furthermore, we
have integrated our framework with NILMTK – Non-intrusive load monit-
oring toolkit [7] – used by energy disaggregation researchers. NILMTK
currently supports multiple energy datasets and acts as a common platform
to evaluate various energy disaggregation algorithms.

6.2 Results

In this section, we present detailed evaluation results of UniversalNILM.
We show how general appliance models learnt on a few training houses are
transferred to disaggregate the aggregated smart meter data of houses in
both the same and different datasets (different geographic locations). Spe-
cially, we discuss, (i) how accurate is the general appliance models that are
constructed from a few training houses, (ii) disaggregation performance of
tuned appliance models on unseen test houses in the same dataset, and (iii)
disaggregation performance of tuned appliance models on unseen test houses
in a different dataset. All experiments use real household data with 1 -Hz
sampling frequency. The disaggregator provides fine-grained appliance-level
data at 1 -Hz frequency.

31

Table 6.1: General appliance model evaluation.

Dataset Train houses Test houses

REDD 1, 2 3, 5, 6

UK-DALE 1, 2 3, 4, 5

DRED 1 1

6.2.1 General appliance models builder

General appliance model builder takes a few training houses in a dataset
and builds a general model for each appliance that can be applied across
other households. In our evaluation, we used two households for training
and threee households for testing in REDD dataset. Similarly, in UK-DALE
two houses and three households were used for training and testing, respect-
ively. In DRED dataset, since it has only one household, we use one week
data from training and another week data for testing. Table. 6.1 shows
the training and testing houses employed and in total 16 appliances were
modeled from all of these houses.

To test the accuracy of the general appliance models, we use root mean
squared error (RMSE) between the ground truth appliance-level data and
the predicted appliance-level data generated from our general appliance
models.

Figure 6.1 shows the average RMSE values for each appliance across all
the test houses in the datasets. A low RMSE value indicates that the general
appliance models were able to predict the appliance data in the test house.
It can be seen that the RMSE values for most appliances are low (< 30%)
in all datasets. This shows that the general appliance models are able to
capture broad features that can be used to model appliances of various
brands and models. Furthermore in DRED, the RMSE values are very low.
Since DRED has only one house, the general appliance models are able to
capture the appliances features accurately. This shows that the proposed
model can be used to generate both brand-specific and general model of an
appliance. Finally, the high RMSE values in UK-DALE for the television
and the washing machine is mainly due to sparse appliance model parameters
resulting in clustering inaccuracies.

6.2.2 Energy disaggregation on test houses in the same data-
set

As seen previously, general appliance models are not always accurate. Hence,
we fine-tune the general models to obtain tuned appliance models. Fine
tuning is executed only once during an initialization phase as described in

32

Table 6.2: Disaggregation evaluation scenario

Dataset Train houses Test houses

REDD 1, 2 3, 5

UK-DALE 1, 2 4, 5

DRED 1 1

REDD UK-DALE

Dataset

0.0

0.1

0.2

0.3

0.4

0.5

0.6

F1
-s

co
re

S-SoA
U-SoA1
U-SoA2
UniversalNILM

Figure 6.2: F1-score comparison

Section 5.2. Table 6.2 shows the traning and testing houses used to evaluate
the tuned models. The training phase from which the general appliance
models are derived uses one week of data. For the testing phase, one week
of aggregated smart meter data is extracted from the test houses.

F1-score: Dataset level. Since the number and type of appliances in
each household and dataset may vary (i.e. a type of appliance is available
in a house, but it is not available in the other houses), we show the results
for the top-5 appliances across the datasets. F1-score is used to measure
the accuracy of disaggregation using tuned appliance models. We compare
the disaggregation accuracy of our proposed tuned appliance models with
the state-of-the-art energy disaggregation solutions as shown in Table. 6.3
and Figure 6.2. We compare UniversalNILM with (i) a supervised technique
(S-SoA) used as baseline based on FHMM models in NILMTK, (ii) an unsu-
pervised technique (U-SoA1) based on approximate inference in FHMM [15],
which represents an unlabeled unsupervised disaggregation method, and (iii)
an unsupervised technique (U-SoA2) based on NeuralNILM [12], which rep-
resents a labeled unsupervised algorithm.

It can be seen that UniversalNILM outperforms the current state-of-the-

33

Table 6.3: F1-score comparison

Disaggregator REDD UK-DALE

S-SoA 0.41 0.51
U-SoA1 0.55 -
U-SoA2 - 0.58

UniversalNILM 0.65 0.56

art baseline supervised and unsupervised NILM techniques. The results are
presented in the form of the average F1 score of all test houses in both the
REDD and UK-DALE datasets. Note that, we ensured all the algorithms
are evaluated on the same test data. Furthermore, UniversalNILM has much
lower computational complexity compared to the other algorithms and runs
in real-time across the datasets.
F1-score: Appliance level. We now discuss the F1-score per appliance
across datasets. Table. 6.4 shows the F1-score for the top-5 appliances in
each dataset, where (n/a) indicates that the appliance is not present in the
house and (-) indicates that the appliance is never ON in the test data.

Table 6.4: F1-score results

Appliance REDD UK-DALE DRED
3 5 1 4 1

Dishwasher 0.78 0.42 0.27 n/a n/a
Fridge 0.82 0.63 0.85 0.75 0.84

Microwave 0.65 - - - 0.43
Washing machine 0.76 - 0.47 0.53 -

Kettle n/a n/a 0.23 0.67 n/a
Television n/a n/a - - -

Cooker n/a n/a n/a n/a 0.72
Laptop n/a n/a n/a n/a 0.22

In general, it can be seen that the proposed tuned models have high F1-
score for simple appliances such as fridge, microwave, cooker, and kettle
(average F1-score is > 50%). Furthermore, the tuned models have high ac-
curacy (> 50%) for some complex appliances such as dishwasher and washing
machine. However, there are a few cases where F1-scores for complex appli-
ances are < 40%. This is because, (i) there are other appliances with similar
mean value as the complex appliances (inherent problem with CO-based dis-
aggregation) and (ii) the composite appliances are active only once during

34

Table 6.5: Proportion of total energy correctly assigned against various
approaches for REDD dataset.

Disaggregator REDD

S-SoA 0.93
U-SoA1 0.48

UniversalNILM 0.77

tuning period and therefore the chance to tune their models accurately is
very limited.
Proportion of total energy correctly assigned. As mentioned earlier,
proportion of total energy correctly assigned is a key metric for energy dis-
aggregation algorithms. We use the same training and testing scenario as
described earlier in Table. 6.2.

Table. 6.5 shows the PTE metric for the test houses in REDD dataset.
We compared UniversalNILM against S-SoA based on [7] and U-SoA1 based
on [16]. It can be seen that, S-SoA has the highest PTE, understandably
since the models of appliances are based on actual appliance power data
in the test houses. However, UniversalNILM outperforms the state-of-the-
art unsupervised technique. UniversalNILM has an average PTE of 77% as
compared to 48% of U-SoA1. Furthermore, 77% PTE is considered to be
an adequate result, since UniversalNILM does not need any training data
at the test house.

Figure 6.3 illustrates the energy assigned to each appliance in ground
truth and UniversalNILM for a day in a house in the REDD dataset. It can
be seen that, the energy assigned to each appliance closely resembles the
ground truth data.
Disaggregation using tuned models. Figure 6.4 illustrates the pro-
posed disaggregation based on tuned models on House-3 in REDD and cor-
responding ground truth. It can be seen that the disaggregation result of
UniversalNILM for each type of appliance closely resembles to the ground
truth.

6.2.3 Energy disaggregation on test houses in a different
dataset

In the previous sections, we described how UniversalNILM outperforms the
state-of-the-art techniques when applied on the households in the same data-
set. In this section, we present results where UniversalNILM is tested on
a dataset and trained on other datasets. The key idea is that the general
appliance models from training houses should be able to be tuned to unseen

35

0.0%
20.8%

22.4%

5.7%

51.1%

Ground truth

11.3%
9.9%

43.2%

21.8%

13.7%

S-SoA

electric stove
dish washer

fridge
microwave

washing machine

6.2%
12.4%

21.2%

24.9%

35.3%

UniversalNILM

Figure 6.3: Proportion of appliance energy in ground truth and tuned model
CO output

households from different datasets and locations. For example, even if we
train UniversalNILM in some houses in Netherlands, it still works in houses
in UK or Germany which demonstrates the scalability of UniversalNILM.

Table. 6.6 shows the average F1 score of UniversalNILM and the state-of-
the-art approaches on the three datasets. Note that while UniversalNILM
uses different datasets for training and testing, both U-SoA1 and U-SoA2
use the same dataset for training and testing (different houses in the same
dataset).

Table 6.6: Disaggregation on test houses in a different dataset.

Scenario-1 Scenario-2 Scenario-3

UniversalNILM 0.57 0.55 0.53
U-SoA1 0.55 n/a n/a
U-SoA2 n/a 0.58 n/a

Scenario 1: Training on UK-DALE and DRED, Test on REDD.
In this scenario, we employ house 1 and house 2 data from UK-DALE and
house 1 data from DRED to build general appliance models. These general
appliance models are then fine-tuned into tuned appliance models on the
test houses, i.e., REDD house 1, 2, and 3. It can be seen that Universal-
NILM outperforms the state-of-the-art unsupervised technique (U-SoA1).
UniversalNILM achieves F1-score of 57% as compared to 55% of U-SoA1

36

04-23 00
04-23 03

04-23 06
04-23 09

04-23 12
04-23 15

04-23 18
04-23 21

Time

0

1000

2000

3000

4000

Po
w

er
 (

W
at

ts
)

Ground truth

Site meter
Dish washer
Microwave
Washing machine
Electric stove
Fridge

(a) Ground truth

04-23 00
04-23 03

04-23 06
04-23 09

04-23 12
04-23 15

04-23 18
04-23 21

Time

0

500

1000

1500

2000

2500

3000

3500

4000

Po
w

er
 (

W
at

ts
)

Tuned model CO result

Site meter
Dish washer
Microwave
Washing machine
Electric stove
Fridge

UniversalNILM result

(b) UniversalNILM tuned model output

Figure 6.4: Disaggregation with tuned model CO example in a house in
REDD dataset

37

(see Table. 6.6).

Scenario 2: Training on REDD and DRED, Test on UK-DALE.
In this scenario, we employ house 1 data from REDD and house 1 data
from DRED to build general appliance models. These general appliance
models are then fine-tuned into tuned appliance models on the test houses,
i.e., UK-DALE house 1, 2, 4, and 5. In this scenario, UniversalNILM has
a lower accuracy to the unsupervised state-of-the-art algorithm (U-SoA2).
UniversalNILM achieves F1-score of 55% as compared to 58% of U-SoA1
(see Table. 6.6). The lower F1-score is due to the very low usage of a certain
appliance in the training data (the toasters are rarely active in the training
houses). We will discuss more about this in Section 6.5.

Scenario 3: Training on REDD and UK-DALE, Test on DRED. In
this scenario, we employ data from REDD and UK-DALE to build general
appliance models. These general appliance models are then fine-tuned into
tuned models on the test houses, i.e., DRED house 1. There is no previ-
ous attempt of unsupervised disaggregation on DRED house 1. Universal-
NILM achieves a consistent F1-score in this scenario as in previous scenarios
(around 50%). This result strengthens the argument that UniversalNILM
can be applied to any household in any neighborhood/city.

Thus, the proposed UniversalNILM framework can perform blind dis-
aggregation without training data, i.e., disaggregation on households from
same dataset and disaggregation on households from different dataset. In
both these scenarios, UniversalNILM outperforms state-of-the-art super-
vised and unsupervised techniques as shown in Table 6.7. In this report
we extensively evaluated our hypothesis on real-world datasets, where gen-
eral appliance models learnt on a few training households can be successfully
transferred to other households from same dataset and also from a different
dataset without any manual efforts.

Table 6.7: Detailed comparison of various results. Same dataset means
that the training and test houses are different, but within the same dataset.
Different dataset means that the training and test houses are different, and
they come from different datasets.

Same dataset Different dataset
REDD UK-DALE Scenario-1 Scenario-2 Scenario-3

UniversalNILM 0.65 0.56 0.57 0.55 0.53
S-SoA 0.41 0.51 n/a n/a n/a

U-SoA1 0.55 n/a 0.55* n/a n/a
U-SoA2 n/a 0.58 n/a 0.58* n/a
Changes +38% +6.5% +4% -5.5% n/a

38

Note that U-SoA1 and U-SoA2 results (*) use same dataset for training
and testing, only different houses as described in Subsection 6.2.3

6.3 Real-time capability

Another goal of this thesis is to develop a universal energy disaggregation
framework that can be run on an embedded systems. This is important
so that disaggregation can be performed locally in a household to minimize
privacy concerns. There is no specific and hard constraint about a minimum
disaggregation output interval. However, a study on real-time effectiveness
of feedback [10] suggests that 10 minutes output interval is enough to give
an effective feedback.

We measure the computational time using real-household data with 1 Hz
sampling frequency. The disaggregator outputs fine-grained appliance power
data at 1 Hz frequency. The computational time of our Python-processing
algorithm on an i7, @2.30 GHz machine is shown in Table 6.8.

Table 6.8: Average computational time of UniversalNILM disaggregator
component for 7 days of data in all datasets (in minutes)

REDD UK-DALE DRED

Model tuner 17 19 16
CO disaggregation 7.3 7 5.6

We only measure modules from the disaggregator because it is the only
component that runs in the test households. The computational time of the
model tuner is more than twice of the CO disaggregation. This is acceptable
since the model tuner runs only once during the initialization phase. The
average computational time of the CO disaggregation is 6.6 minutes for 7
days of real household data. Although this experiment is not done on an
embedded board, this result suggests that a real-time implementation is
feasible.

6.4 Stress test

Most unsupervised energy disaggregation algorithms disaggregate only a
limited number of appliances (mostly 5 appliances) [6,12,14,19]. As the num-
ber of disaggregated appliances increases, the difficulty increases. Therefore,
it is interesting to see how UniversalNILM reacts to increase in the number
of appliances. In this experiment, we perform disaggregation on test houses
in a different dataset with 5, 6, 7, and 8 appliances. We only test using

39

UK-DALE dataset because it has enough number of similar appliances with
the other datasets. REDD and DRED have a limited number of similar
appliances across datasets, as mentioned in 6.2.2.

5 6 7 8

Top-k

0.0

0.1

0.2

0.3

0.4

0.5

F1
-s

co
re

S-SoA
UniversalNILM

Figure 6.5: F1-score comparison with increasing number of appliances.
Train on REDD and DRED, test on UK-DALE.

We employ all of the houses data from REDD and DRED to build gen-
eral appliance models. These general appliance models are then automat-
ically fine-tuned using UniversalNILM algorithm on the test houses, i.e.,
UK-DALE house 1, 2, 4, and 5. The maximum number of appliances is
8 because (i) the number of similar appliances with the other datasets is
limited; and (ii) the types of appliances in households generally amount
to such. It can be seen that UniversalNILM outperforms the state-of-the-
art supervised technique (S-SoA). UniversalNILM accuracy is consistently
higher than S-SoA for all number of appliances (see Figure 6.5).

However, this result also shows that the dissaggregation accuracy of Uni-
versalNILM drops as the number of appliances increases. This is also the
case with most energy disaggregation algorithms (for example, see S-SoA
result in Figure 6.5) which is why most energy disaggregation algorithms
are only evaluated on limited number of appliances, especially the unsuper-
vised ones. As the number of appliances increases, there is a higher prob-
ability that there are appliances with similar signatures which are difficult
to differentiate from each other.

40

6.5 Effect of amount of data on disaggregation ac-
curacy

In the previous sections, we measured the accuracy of UniversalNILM using
a certain amount of data. For example, we employed house 1 data from
REDD and house 1 from DRED to train the general appliance models in
scenario 2 in Subsection 6.2.3. We could have used a different amount of
training data. For example, we could have used three houses from REDD
and one house from DRED to build the general appliance models. Although
the overall results suggest that the disaggregation accuracy of Universal-
NILM is consistently higher that the related works, we also come up with a
question: how to find the optimum amount of data to generate good general
appliance models?

In this section, we investigate the effect of amount of data on disaggreg-
ation accuracy. We vary the amount of data by using different amounts of
houses for training. As before, we use the top-5 appliances since most houses
have those appliances. This investigation covers all of the three datasets us-
ing the following scenarios.

Scenario 1: Training on UK-DALE and DRED, Test on REDD. For
training, we use one, two, three, until finally all four houses in UK-DALE.
Since DRED only has 1 house, we always use that house for training. For
testing, we use house 1, 2, and 3 in REDD.

Scenario 2: Training on DRED and REDD, Test on UK-DALE.
For training, we use one, two, three, four, until finally five houses in REDD.
Since DRED only has 1 house, we always use that house for training. For
testing, we use house 1, 2, 4, and 5 in UK-DALE.

Table 6.9: Training houses in UK-DALE and REDD that are used to invest-
igate the effect of the amount of data on disaggregation accuracy in DRED
(scenario 3).

Amount of training houses
2 3 4 5 6 7

UK-DALE houses 1 1, 2 1, 2 1, 2, 4 1, 2, 4 1, 2, 4, 5
REDD houses 1 1 1, 2 1, 2 1, 2, 3 1, 2, 3

Scenario 3: Training on UK-DALE and REDD, Test on DRED.
For training, we use six different amounts of training houses. For simplicity,
this scenario is described in detail in Table 6.9. Each cell contains the id of
the training house(s). For testing, we use house 1 in DRED.

The results are shown in Figure 6.6. As a reference, let us assume that 0.5

41

2 3 4 5 6 7

Amount of training houses

0.0

0.1

0.2

0.3

0.4

0.5

0.6
F1

-s
co

re

REDD
DRED
UK-DALE

Figure 6.6: The disaggregation accuracy with different amount of training
data, for each dataset

is an adequate F1-score since other unsupervised NILM algorithms usually
have this level of accuracy. From this figure, we can see that the accuracy
usually increases to the adequate level when we used six training houses or
more. Although we cannot prove that this is the case for REDD, it is safe to
assume that using six or more training houses will still give an adequate F1-
score for REDD. This is because the F1-scores of REDD are always higher
that 0.5.

The interesting thing is that the trend is not always positive as the amount
of data increases. In all scenarios, when the amount of training houses are
four or five, the accuracy drops. A possible explanation for this phenomena
is that increasing the number of training data may confuse the model tuner
in Section 5.2. In other words, since there are more appliance models, the
model tuner becomes more vulnerable to the weakness of the combinatorial
optimization algorithm (i.e., the CO algorithm picks a wrong set of appli-
ances as in the tuning phase). This problem seems to be solved by adding
even more training data to a certain threshold as we mention in the previous
paragraph.

In the end, we find six houses as the minimum amount of training data
to obtain an adequate disaggregation accuracy. However, we are yet to
find the optimum amount (i.e., an amount of training houses, when the
disaggregation accuracy stops increasing from that point on). Looking at
Figure 6.6, we need more training data and houses in order to find the
optimum amount. Therefore finding an optimum amount of training data
is still an open problem to solve.

42

Chapter 7

Conclusion and Future Work

7.1 Conclusion

The key contribution of our work is the proposition of a novel semi-supervised
energy disaggregation framework based on general appliance models. The
proposed framework – UniversalNILM – can perform unsupervised/blind
disaggregation on test houses from the same dataset as training, as well as
test houses from different datasets. At the core is the idea of developing a
comprehensive general appliance models that can be tuned automatically at
the test house for accurate energy disaggregation.

We developed a method to build the comprehensive general appliance
models automatically. Using this, we developed a method to tune the general
appliance models at the test house automatically. We employed a modified
CO algorithm to predict appliance-level energy consumption information
based on models of appliances. Finally, UniversalNILM was extensively
evaluated across three publicly available real-world datasets viz., REDD,
UK-DALE and DRED.

In terms of appliance load modeling, UniversalNILM general appliance
models have a low RMSE values compared to ground truth appliance data
(< 10%) for all datasets. This shows that the general appliance models
can be used to generate both brand-specific model and general model of
appliances.

UniversalNILM outperforms the state-of-the-art supervised and unsuper-
vised techniques in terms of energy disaggregation accuracy. This answers
the first part of the research goal, which is to develop an energy disaggrega-
tion framework that can be applied to any household in any neighborhood/-
city.

We discussed about UniversalNILM disaggregation computational com-
plexity in Sec. 5.1.2 and concluded that the modified CO algorithm has a
lower computational complexity than the original CO algorithm. Further-
more, we measured the computational time of UniversalNILM disaggrega-

43

tion. The average computational time is within the suggested constraint
for an effective feedback on energy consumption, which suggests that a real-
time implementation is feasible. This answers the second part of the research
goal, which is to develop an energy disaggregation framework that can run
on an embedded system in real-time locally at a household.

Additionally, we also try to push the limits of our unsupervised energy
disaggregation algorithm by evaluating UniversalNILM against more appli-
ances. Although the accuracy decreases as the number of appliances in-
creases, UniversalNILM consistently outperforms the state-of-the-art super-
vised technique in every cases.

The F1-score of UniversalNILM in the REDD and UK-DALE datasets are
65% and 56%, respectively. These numbers show improvements of 38% and
6.5% compared to the related works and state-of-the-art NILM algorithms.
Furthermore, UniversalNILM achieves comparable (+/- 4.5% difference) F1-
scores with the state-of-the-art unsupervised NILM algorithms even if Uni-
versalNILM uses a whole different datasets for training and testing (other
algorithms use same datasets, only different houses). UniversalNILM also
consistently achieves higher F1-scores (on average, 7.3% higher) compared to
NILMTK FHMM, the reference supervised energy disaggregation algorithm,
during the stress test. In the stress test, we used more and more appliances:
from five, six, seven, to eight appliances in the test houses.

Finally, we measure the execution time of UniversalNILM to investigate
whether if it is possible to run the disaggregation algorithm in real-time,
locally in a test house. The average computational time of UniversalNILM
disaggregator is 6.6 minutes for seven days of aggregated smart meter data.
Although the test is done not on an embedded board, spending several
minute to disaggregate one whole week data suggests that a real-time im-
plementation on an embedded board is possible.

Our proposed framework can now enable wide-adoption of NILM tech-
niques due to the reduced burden of collecting appliance-level data at each
household. To the best of our knowledge, this is the first effort towards devel-
oping an unsupervised NILM technique that can be applied across datasets
without training.

7.2 Future Work

While being scalable across datasets and accurate compared with other
NILM algorithms, UniversalNILM faces several challenges before it can
really be applied in the real-world. Much of it comes from the limitation
of currently available energy datasets. There are only 4 datasets, out of
20+ energy datasets, that contain appliance-level data each consists of 1-4
houses1. Building general appliance models is therefore difficult since there

1http://wiki.nilm.eu/datasets.html

44

are so many appliances from different brands and models.
UniversalNILM uses CO algorithm to perform model tuning and disag-

gregation. In general, CO suffers if there are appliances with similar power
consumption. We investigated one example of this problem in Section 6.5.
Instead of relying mainly on power consumption, we can also make use of
feature-rich appliance signatures (state transition, duration in each states)
to tune general models from aggregated smart meter data. While developing
a feature extractor for such rich signatures might be difficult, it is possible
to use other methods like deep learning. However, this approach will likely
require significantly bigger datasets containing thousands of appliance-level
data for different appliances which we do not have at this moment.

Furthermore, the disaggregation accuracy obtained by UniversalNILM
can be further improved by incorporating other disaggregation algorithm
such as Hidden Markov Model. HMM relies on appliance state transition
and emission probabilities, instead of relying on power consumption alone.
This way, the disaggregation accuracy and number of disaggregated appli-
ances may increase.

45

46

Bibliography

[1] CO2 emissions from fuel combustion: overview (2017 edition).
http://www.iea.org/publications/freepublications/publication/

CO2EmissionsFromFuelCombustion2017Overview.pdf. [Online; accessed
26-October-2017].

[2] Plugwise circle. https://www.plugwise.com/circle. [Online; accessed 18-
October-2017].

[3] Smart grids strategic research agenda towards 2035. http://www.egvi.eu/

uploads/Modules/Publications/smartgrids-sra2035.pdf. [Online; ac-
cessed 18-October-2017].

[4] Forrest Sheng Bao, Xin Liu, and Christina Zhang. Pyeeg: an open source
python module for eeg/meg feature extraction. Computational intelligence
and neuroscience, 2011, 2011.

[5] Sean Barker, Sandeep Kalra, David Irwin, and Prashant Shenoy. Empirical
characterization, modeling, and analysis of smart meter data. IEEE Journal
on Selected Areas in Communications, 32(7):1312–1327, 2014.

[6] Sean Barker, Sandeep Kalra, David Irwin, and Prashant Shenoy. Powerplay:
creating virtual power meters through online load tracking. In Proceedings of
the 1st ACM Conference on Embedded Systems for Energy-Efficient Buildings,
pages 60–69. ACM, 2014.

[7] Nipun Batra, Jack Kelly, Oliver Parson, Haimonti Dutta, William Knotten-
belt, Alex Rogers, Amarjeet Singh, and Mani Srivastava. Nilmtk: an open
source toolkit for non-intrusive load monitoring. In Proceedings of the 5th in-
ternational conference on Future energy systems, pages 265–276. ACM, 2014.

[8] Sarah Darby et al. The effectiveness of feedback on energy consumption. 2006.

[9] George William Hart. Nonintrusive appliance load monitoring. Proceedings of
the IEEE, 80(12):1870–1891, 1992.

[10] Sébastien Houde, Annika Todd, Anant Sudarshan, June A Flora, and K Car-
rie Armel. Real-time feedback and electricity consumption: A field experi-
ment assessing the potential for savings and persistence. The Energy Journal,
34(1):87, 2013.

[11] Srinivasan Iyengar, David Irwin, and Prashant Shenoy. Non-intrusive model
derivation: automated modeling of residential electrical loads. Power (Watt),
500(1000):1500, 2016.

[12] Jack Kelly and William Knottenbelt. Neural nilm: Deep neural networks
applied to energy disaggregation. In Proceedings of the 2nd ACM International
Conference on Embedded Systems for Energy-Efficient Built Environments,
pages 55–64. ACM, 2015.

47

http://www.iea.org/publications/freepublications/publication/CO2EmissionsFromFuelCombustion2017Overview.pdf
http://www.iea.org/publications/freepublications/publication/CO2EmissionsFromFuelCombustion2017Overview.pdf
https://www.plugwise.com/circle
http://www.egvi.eu/uploads/Modules/Publications/smartgrids-sra2035.pdf
http://www.egvi.eu/uploads/Modules/Publications/smartgrids-sra2035.pdf

[13] Jack Kelly and William Knottenbelt. The uk-dale dataset, domestic appliance-
level electricity demand and whole-house demand from five uk homes. Sci-
entific data, 2:150007, 2015.

[14] Hyungsul Kim, Manish Marwah, Martin Arlitt, Geoff Lyon, and Jiawei Han.
Unsupervised disaggregation of low frequency power measurements. In Pro-
ceedings of the 2011 SIAM International Conference on Data Mining, pages
747–758. SIAM, 2011.

[15] J Zico Kolter and Tommi Jaakkola. Approximate inference in additive factorial
hmms with application to energy disaggregation. In Artificial Intelligence and
Statistics, pages 1472–1482, 2012.

[16] J Zico Kolter and Matthew J Johnson. Redd: A public data set for energy
disaggregation research. 2011.

[17] Henning Lange and Mario Bergés. Bolt: Energy disaggregation by online bin-
ary matrix factorization of current waveforms. In Proceedings of the 3rd ACM
International Conference on Systems for Energy-Efficient Built Environments,
pages 11–20. ACM, 2016.

[18] Stephen Makonin, Fred Popowich, Ivan V Bajić, Bob Gill, and Lyn Bartram.
Exploiting hmm sparsity to perform online real-time nonintrusive load mon-
itoring. IEEE Transactions on Smart Grid, 7(6):2575–2585, 2016.

[19] Masako Matsumoto, Yu Fujimoto, and Yasuhiro Hayashi. Energy disaggreg-
ation based on semi-binary nmf. In Machine Learning and Data Mining in
Pattern Recognition, pages 401–414. Springer, 2016.

[20] Malcolm McCulloch. Reducing domestic energy consumption through beha-
viour modification. PhD thesis, University of Oxford, 2009.

[21] Office of the United Nations Environment Programme - Sustainable Buildings
and Climate Initiative (SBCI). Buildings and climate change: A summary for
decision-makers, 2009.

[22] Danny Parker and David Hoak. How much energy are we using? potential of
residential energy demand feedback devices.

[23] Oliver Parson, Siddhartha Ghosh, Mark J Weal, and Alex Rogers. Non-
intrusive load monitoring using prior models of general appliance types. 2012.

[24] F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel,
M. Blondel, P. Prettenhofer, R. Weiss, V. Dubourg, J. Vanderplas, A. Pas-
sos, D. Cournapeau, M. Brucher, M. Perrot, and E. Duchesnay. Scikit-learn:
Machine learning in Python. Journal of Machine Learning Research, 12:2825–
2830, 2011.

[25] Steven M Pincus, Igor M Gladstone, and Richard A Ehrenkranz. A regu-
larity statistic for medical data analysis. Journal of Clinical Monitoring and
Computing, 7(4):335–345, 1991.

[26] Joshua S Richman and J Randall Moorman. Physiological time-series ana-
lysis using approximate entropy and sample entropy. American Journal of
Physiology-Heart and Circulatory Physiology, 278(6):H2039–H2049, 2000.

[27] Akshay S.N. Uttama Nambi, Antonio Reyes Lua, and Venkatesha R. Prasad.
Loced: Location-aware energy disaggregation framework. In Proceedings of
the 2Nd ACM International Conference on Embedded Systems for Energy-
Efficient Built Environments, BuildSys ’15, pages 45–54, New York, NY, USA,
2015. ACM.

[28] Michael Zeifman. Disaggregation of home energy display data using probab-
ilistic approach. IEEE Transactions on Consumer Electronics, 58(1), 2012.

48

[29] Ahmed Zoha, Alexander Gluhak, Muhammad Ali Imran, and Sutharshan Ra-
jasegarar. Non-intrusive load monitoring approaches for disaggregated energy
sensing: A survey. Sensors, 12(12):16838–16866, 2012.

49

	Preface
	Introduction
	Importance of energy disaggregation
	Challenges in NILM
	Research goal and contributions
	Organisation

	NILM and Appliance Modeling
	Appliance load modeling
	NILM algorithms
	Supervised disaggregation
	Unsupervised disaggregation

	Research opportunity

	Framework for UniversalNILM
	Proposed model
	System Design
	Advantages of the framework
	Summary of the framework for UniversalNILM

	General modeling of appliances
	Modeling - An overview
	Active period extraction
	State detection
	Cycle removal
	Curve splitting
	Model fitting
	Generalize parameters with clustering
	Summary of general appliance modeling

	Energy Disaggregation
	General model based disaggregation
	Detection of super-states
	Combinatorial Optimization disaggregation

	Model Tuner: Fine-tuning general appliance models at test house level
	Fitting convincing chunk
	Clustering tuned parameters

	Summary of energy disaggregation

	Evaluation and Results
	Experimental evaluation
	Datasets
	Metrics
	Implementation details

	Results
	General appliance models builder
	Energy disaggregation on test houses in the same dataset
	Energy disaggregation on test houses in a different dataset

	Real-time capability
	Stress test
	Effect of amount of data on disaggregation accuracy

	Conclusion and Future Work
	Conclusion
	Future Work

