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Introduction

When we look at the decimal expansion of a real number this tells us something about the nature of that
number. An eventually periodic expansion means that we have a rational number p

q ∈ Q, and a non-periodic

expansion means that we are dealing with an irrational number r ∈ R\Q.

When we are looking at regular continued fraction expansions of numbers we can find a similar classification.
A finite expansion means that we have a rational number p

q ∈ Q. However, the irrational numbers r ∈ R\Q
can be devided into two categories. We have regular continued fractions with an eventually periodic expansion,
which means that we have a quadratic irrational, while a non-periodic expansion will mean that we are dealing
with any irrational number r ∈ R\Q that is not a quadratic irrational.

But when dealing with N -continued fractions, which are a simple varriation of the regular continued fractions,
we see a change in this classification. In this case it is not proven that all quadratic irrationals will have an
eventually periodic expansion. This means that the N -continued fractions, while being build up in a very
similar way as regular continued fractions, might have significant different properties. This thesis will not give a
proof for the conjecture that there are quadratic irrationals without an eventually periodic N -continued fraction
expansion, but it will try to make it plausible that this conjecture holds true.

In chapter 1 we will give a brief intorduction to continued fractions, and scetch the prove of why quadratic
irrationals always have an eventully periodic regular continued fraction expansion. In chapter 2 we introduce
the N -continued fraction expansion and end with stating the goal of my thesis. Finally chapter 3 gives some
examples of how to construct the 2-continued fraction from the regular continued fraction. Here Raney’s
transducers are introduced, playing a key role in the reason why periodicity is probably lost in some cases.
This is backed up by the statistical properties derived from computer computations, which are compared with
properties yielded by the underlying ergodic system for the 2-expansion.
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1 Regular Continued Fractions

1.1 Continued fraction expansion

When we write a real number x as a regular continued fraction or RCF it has the following form:

x = a0 +
1

a1 +
1

a2 +
1

a3 +
1

a4 +
1

. . .

(1.1)

The numbers ai are sometimes called the partial quotients, here simply called digits. The digits are restricted
by the following: a0 ∈ Z and ai ∈ N≥1 for all i ≥ 1. Furthermore, a rational number p

q ∈ Q has two finite

RCF expansions, so p
q = [a0; a1, a2, . . . , an] = [a0; a1, a2, . . . , an− 1, 1]. Although both expressions represent the

same number it is custom to use the first, and thus shorter, notation. A number x ∈ R\Q has an infinite RCF
expansion, so we write x = [a0; a1, a2, . . .].

In this thesis we are only interested in numbers x ∈ [0, 1). We can make this restriction without loss of generality,
because if we have a number y that lies outside the interval [0, 1) and we want to find its RCF expansion we see
that y = byc+ (y − byc) = a0 + x for a certain x = y − byc ∈ [0, 1) and a0 = byc. So when we want to find the
RCF of a number y we can always assume that the number we are actually interested in is a number x ∈ [0, 1).

To find the RCF of a given number x we introduce the operator T : [0, 1)→ [0, 1) wich is defined as:

T (x) :=


1

x
−
⌊

1

x

⌋
;x ∈ (0, 1)

0 ;x = 0

Setting a1 :=
⌊
1
x

⌋
we find:

x =
1

a1 + T (x)

Now if T (x) 6= 0 we let T work on the number T (x), setting a2 :=
⌊

1
T (x)

⌋
we find:

x =
1

a1 +
1

a2 + T 2(x)

Repeating this iterative process yields the expression:

x =
1

a1 +
1

a2 +
1

an−1 +

.. .

an + Tn(x)

(1.2)

Due to Euclid’s Algorithm for rational numbers we find for certain N ∈ N that TN (x) = 0. At that moment
our iterative process stops and the complete RCF is constructed. For irrational numbers this iterative process
will continue infinitely.

When we approximate a number x = [a0; a1, a2, . . .] by computing only its first n digits and cut off the RCF
(giving us a rational number) we call this the nth convergent of x and denote this by: xn = [a0; a1, a2, . . . , an].
In fact one has that xn → x as n → ∞, which explains the limit notation (1.1). In the next section we will
explain why and also how fast xn converges to x as n→∞.
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1 Regular Continued Fractions

1.2 The convergents pn
qn

A 2× 2 matrix can operate as a Möbius transformation on a number x as follows:[
a b
c d

]
(x) =

a · x+ b

c · x+ d

Which is also known as a fractional linear transformation. When we calculate the first n digits of a certain x
we can define n matrices Ai by:

Ai :=

[
0 1
1 ai

]
When we let An operate on Tn(x) we get the following expression:

An(Tn(x)) =

[
0 1
1 an

]
(Tn(x)) =

0 · Tn(x) + 1

1 · Tn(x) + an
=

1

an + Tn(x)

When we let An−1 operate on An(Tn(x)) this yields:

An−1(An(Tn(x))) =

[
0 1
1 an−1

](
1

an + Tn(x)

)
=

1

an−1 +
1

an + Tn(x)

Repeating this process will give us:

A1A2 · · ·An(Tn(x)) =
1

a1 +
1

a2 +
1

an−1 +

.. .

an + Tn(x)

(1.3)

and from (1.2) we see that this representation equals x, therefore:

x = A1A2 · · ·An(Tn(x)) (1.4)

Now define the following n matrices by: Mi := A1A2 · · ·Ai. We than find that: Mn = A1A2 · · ·An and
Mn−1 = A1A2 · · ·An−1, so we see that: Mn = Mn−1An.

Matrix Mn can be written as: Mn =

[
rn pn
sn qn

]
, and because we have Mn = Mn−1An we get the following

equation: [
rn pn
sn qn

]
=

[
rn−1 pn−1
sn−1 qn−1

] [
0 1
1 an

]
=

[
pn−1 rn−1 + anpn−1
qn−1 sn−1 + anqn−1

]
This yields: rn = pn−1 en sn = qn−1, using this we also find:

pn = rn−1 + anpn−1 = pn−2 + anpn−1
qn = sn−1 + anqn−1 = qn−2 + anqn−1

So we find that:

Mn =

[
pn−1 pn
qn−1 qn

]
With pn and qn given by the recurrence relation:

pn = anpn−1 + pn−2
qn = anqn−1 + qn−2

(1.5)

However, to start this recurrence relation we need the values of p0, p1, q0 and q1. These we find using M1 = A1:

M1 = A1 ⇒
[
p0 p1
q0 q1

]
=

[
0 1
1 a1

]
⇒ p0 = 0, p1 = 1

q0 = 1, q1 = a1

The nth convergent is given by equation (1.3) when we choose Tn(x) to be equal to 0. This gives us the following
expression for xn:

xn = A1A2 · · ·An(0) = Mn(0) =

[
pn−1 pn
qn−1 qn

]
(0) =

0 · pn−1 + pn
0 · qn−1 + qn

=
pn
qn
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1.3 Quadratic irrationals and periodicity

So one of the properties of the numbers pn and qn is that:

xn =
pn
qn

(1.6)

Now we can look at how fast xn converges to x, because from (1.4) we see that:

x = Mn(Tn(x)) =

[
pn−1 pn
qn−1 qn

]
(Tn(x)) =

Tn(x) · pn−1 + pn
Tn(x) · qn−1 + qn

(1.7)

Combining (1.13) and (1.7) we can find an expression for their difference:

|x− xn| =

∣∣∣∣Tn(x) · pn−1 + pn
Tn(x) · qn−1 + qn

− pn
qn

∣∣∣∣
=

∣∣∣∣qn(Tn(x) · pn−1 + pn)− pn(Tn(x) · qn−1 + qn)

qn(Tn(x) · qn−1 + qn)

∣∣∣∣
=

∣∣∣∣∣Tn(x)(qnpn−1 − pnqn−1) + qnpn − pnqn
q2n(Tn(x) · qn−1

qn
+ 1)

∣∣∣∣∣
=

∣∣∣∣∣ Tn(x)(−1)n

q2n(Tn(x) · qn−1

qn
+ 1)

∣∣∣∣∣
=

Tn(x)

q2n

(
Tn(x) · qn−1

qn
+ 1
) (1.8)

In the third step we used that: qnpn−1 − pnqn−1 = (−1)n. This result can easily be checked because:

qnpn−1 − pnqn−1 = det(Mn) = det(A1 · · ·An) = det(A1) · . . . · det(An) = −1 · . . . · −1 = (−1)n

Because Tn(x) < 1 and
∣∣∣Tn(x) · qn−1

qn
+ 1
∣∣∣ ≥ 1 we can conclude from (1.8) that:

|x− xn| <
1

q2n
(1.9)

Now we can say something about the speed of convergence. We know that qn is given by qn = anqn−1 + qn−2
where q0 = 1 and q1 = a1. So the sequence {qn}∞n=1 grows the slowest when all ai equal 1, givng us the
sequence 1, 1, 2, 3, 5, 8, . . . which is the Fibonacci sequence. So for any SCF we have that qn ≥ Fn with Fn the
nth Fibonacci number, therefore from (1.9) we see that:

|x− xn| <
1

F 2
n

(1.10)

And from (1.10) we can conclude that xn converges exponentially fast to x, thus:

xn → x as n→∞

1.3 Quadratic irrationals and periodicity

A quadratic irrational is a solution x ∈ R\Q of a quadratic equation ax2 + bx + c = 0 having a, b, c ∈ Z. In
fact we could take a, b, c ∈ Q, but this would give us the same equations because we can always multiply the
equation by a number N ∈ N\{0} such that Na,Nb,Nc become integers again.

One surprising property of RCFs is the following theorem by Lagrange:

Theorem 1.3.1 x is a quadratic irrational ⇔ the regular continued fraction of x is eventually periodic

We say that a RCF is (eventually) periodic when it has the form: x = [a0; a1, a2 . . . , ak, ak+1, . . . , ak+m], where
the period is given by the sequence below the bar.

For the complete proof of Theorem 1.3.1 I would like to refer to [3], but here I will give you the idea for the proof
of the implication from left to right. To prove that a quadratic irrational always gives a periodic RCF we will
will use equation (1.4) and the fact that A1A2 . . . An = Mn. These two relations give the following equation:

x = Mn(Tn(x)) =

[
pn−1 pn
qn−1 qn

]
(Tn(x)) =

pn−1T
n(x) + pn

qn−1Tn(x) + qn
(1.11)
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1 Regular Continued Fractions

Using recurrence relation (1.5), this can be written as:

x =
pn−1T

n(x) + anpn−1 + pn−2
qn−1Tn(x) + anqn−1 + qn−2

=
(Tn(x) + an)pn−1 + pn−2
(Tn(x) + an)qn−1 + qn−2

(1.12)

In a RCF x = [a0; a1, a2, . . . , an, an+1, . . .] we say that a′n := [an, an+1, . . .] and call a′n the nth complete quotient
of the RCF. This a′n is a RCF with a value greater than 1, having an as it’s integer part and 1

a′n+1
as it’s

fractional part.
Because 1

a′n+1
= Tn(x) we can say that: a′n = an + Tn(x), so that equation (1.12) simplifies to:

x =
a′npn−1 + pn−2
a′nqn−1 + qn−2

(1.13)

Knowing that x is a quadratic irrational there are a, b, c ∈ Z such that x is the solution of the equation
ax2 + bx+ c = 0. When we sutstitute (1.13) into this equation we find a new quadratic equation for a′n:

Ana
′2
n +Bna

′
n + Cn = 0 (1.14)

where An, Bn, Cn are sums of products of a, b, c, pn−1, pn−2, qn−2, qn−2. This means that An, Bn, Cn ∈ Z again,
so therefore a′n is also a quadratic irrational.

Now in [3] some estimations for the absolute values of An, Bn, Cn are given and from this it is concluded in [3]
that all of the An, Bn, Cn are bounded by a finite number N ∈ N, and that this upper bound is independent of n.
This means that there is only a limited amount of values the numbers An, Bn, Cn can take, and because there are
infinitely many triplets (An, Bn, Cn) there must be at least one triplet (A,B,C) that occurs at least three times.
So we find for certain n1 < n2 < n3 that: (A,B,C) = (An1

, Bn1
, Cn1

) = (An2
, Bn2

, Cn2
) = (An3

, Bn3
, Cn3

), for
wich we can find roots a′n1

, a′n2
, a′n3

. But because a quadratic equation only has 2 different roots this means
that at least two of those three roots are the same, therefore for example we have: a′n1

= a′n2
.

Now let k = n2 − n1 so that a′n1
= a′n1+k

, looking back at the definition of a′n we find that:

an1
= an1+k, an1+1 = an1+1+k, . . . , an1+k = an1+2k, . . .

So the RCF of a quadratic irrational is periodic.
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2 N-continued fractions

Apart from the regular continued fraction expansion there are very many other continued fraction algorithms.
In this thesis we consider a new algorith which is – to some extend – an easy and obvious generalization of the
RCF. In spite of this, it turns out that some of the properties of the RCF might not hold for these new CF
algorithms.

2.1 Modifying the original case

In this thesis we will look at a special kind of continued fractions. Let N ∈ N and N ≥ 1, the new continued
fraction is created with an operator TN : [0, 1)→ [0, 1) as follows:

TN (x) :=


N

x
−
⌊
N

x

⌋
: x ∈ (0, 1)

0 : x = 0

Note that the case N = 1 is the RCF. For x ∈ [0, 1)\Q, we than have, following the same steps as in the previous
chapter:

x =
N

a1 +
N

a2 +
N

a3 +
N

a4 +
N

. . .

We will call this the N -continued fraction expansion or N -CF of x and write it in a shorter fashion as x =
[0; a1, a2, a3, . . .]N . Because for x ∈ (0, 1) we have that

⌊
N
x

⌋
≥ N the N -CF has the property that all ai ≥ N .

Here again, for a number x ∈ Q the N -CF expansion is finite and for x ∈ R\Q the N -CF expansion will be
infinite. When we only calculate the digits ai for i ≤ n we call the number xn = [0; a1, a2, . . . , an]N the nth
convergent of x.

2.2 New convergents pn
qn

For our N -CF we can find new pn and qn again. Given the first n digits we can define n matrices by Ai :=[
0 N
1 ai

]
. If we now let An operate on TnN (x) we get the expression:

An(TnN (x)) =

[
0 N
1 an

]
(TnN (x)) =

0 · TnN (x) +N

1 · TnN (x) + an
=

N

an + TnN (x)

Following the same procedure as in the previous chapter we find that:

A1A2 · · ·An(TnN (x)) =
N

a1 +
N

a2 +
N

an−1 +

.. .

an + TnN (x)

Again we define the matrices: Mi := A1A2 · · ·Ai.
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2 N -continued fractions

We write Mn as: Mn =

[
rn pn
sn qn

]
. Using Mn = Mn−1An we now get the following equation:[

rn pn
sn qn

]
=

[
rn−1 pn−1
sn−1 qn−1

] [
0 N
1 an

]
=

[
pn−1 Nrn−1 + anpn−1
qn−1 Nsn−1 + anqn−1

]
This yields: rn = pn−1 and sn = qn−1, using this we also find:

pn = Nrn−1 + anpn−1 = Npn−2 + anpn−1
qn = Nsn−1 + anqn−1 = Nqn−2 + anqn−1

In this way we find, given the digits, a recurrence relation for the values of pn and qn, this time with starting
values:

p0 = 0, p1 = 2
q0 = 1, p1 = a1

Again the nth convergent is given by the quotient: xn =
pn
qn

. We can check weather this converges to x again.

As in the previous chapter we find:

|x− xn| =

∣∣∣∣∣Tn(x)(qnpn−1 − pnqn−1) + qnpn − pnqn
q2n(Tn(x) · qn−1

qn
+ 1)

∣∣∣∣∣
Because this time, again using the properties derived from the matrices Mn, we have qnpn−1−pnqn−1 = (−N)n

we find:

|x− xn| =
Tn(x) ·Nn

q2n

(
Tn(x) · qn−1

qn
+ 1
) (2.1)

We still have that Tn(x) < 1 and
∣∣∣Tn(x) · qn−1

qn
+ 1
∣∣∣ ≥ 1, we we can conclude from (2.1) that:

|x− xn| <
Nn

q2n
(2.2)

We know that qn is given by qn = anqn−1+Nqn−2 where q0 = 1 and q1 = a1. So the sequence {qn}∞n=1 grows the

slowest when all ai equal N . In case N = 1 we get the Fibonacci sequence, for wich we have Fn

Fn−1
→ ϕ =

√
5+1
2

as n→∞.

For N > 1 we don’t get the Fibonacci sequence, so we need to prove that we still have convergence ourselves.
To do this we look at the recurrence relation for qn again, and this time we take all ai to equal N . So qn is
given by qn = Nqn−1 + Nqn−2 where q0 = 1 and q1 = N . This means that for n > 1 we have: qn > Nqn−1,
and because q1 = N we have qn > Nn for n > 1. So for n > 1 (2.2) becomes:

|x− xn| <
Nn

(Nn)2
=

1

Nn
(2.3)

So from (2.3) we can conclude that xn converges exponentially fast to x as n→∞.

2.3 Quadratic irrationals

In 2008, the Journal of Number Theory published an article of Ed Burger and some of his students about
N -CFs, [1]. In that article they presented the following theorem:

Theorem 2.3.1 For every real quadratic irrational α, there exist infinitely many integers N for which α can
be expressed as a periodic N -continued fraction having period length one.

This is an interesting theorem, but we can ask ourselves, do we have a periodic N -CF for every quadratic
irrational, when N is fixed?

The estimations made in the proof of Theorem 1.3.1 make explicit use of the relation pnqn−1−qnpn−1 = (−1)n.
But in the case of a N -CF we find pnqn−1 − qnpn−1 = (−N)n. This new relation makes that the values of
An, Bn, Cn for N ≥ 2 may grow to infinity as n goes to infinity. Therefore we can’t say that there is a limited
amount of different triplets anymore and the classical proof doesn’t work.

In the start-up of my thesis research, Cor Kraaikamp came with the following:

Conjecture 2.3.2 There are quadratic irrationals that for certain N have a non-periodic N -continued fraction.

The following chapters will try to make it plausible that this conjecture might hold.
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3 2-continued fraction expansion

Initially, we tried for several values of N to keep track of the An, Bn and Cn as used in Hardy and Wrights
pfoof in [3] of Lagrange’s result. Very quickly these values become extremely large, even if we divide by the
gcd(An,Bn,Cn) in every step. To keep things a little under the lid, we choose N as small as possible; i.e. N = 2.

3.1 Simple approach

When we have a quadratic irrational x we can try to find its 2-CF expansion by using its RCF expansion.
Given:

x =
1

a1 +
1

a2 +
1

a3 +
1

a4 +
1

a5 +
1

a6 +
1

. . .

We can multiply both numenator and denominator of the first fraction by 2, this gives us the following expression:

x =
2

2a1 + 2
1

a2 +
1

a3 +
1

a4 +
1

a5 +
1

a6 +
1

. . .

=
2

2a1 +
2

a2 +
1

a3 +
1

a4 +
1

a5 +
1

a6 +
1

. . .

Now we multiply the most upper numenator that is not a 2 already and it’s denominator by 2 again, yielding:

x =
2

2a1 +
2

a2 +
2

2a3 + 2
1

a4 +
1

a5 +
1

a6 +
1

. . .

=
2

2a1 +
2

a2 +
2

2a3 +
2

a4 +
1

a5 +
1

a6 +
1

. . .

Repeating this process will result in the 2-CF expansion:

x =
2

2a1 +
2

a2 +
2

2a3 +
2

a4 +
2

2a5 +
2

a6 +
2

. . .

(3.1)

So we find that x = [0; a1, a2, a3, a4, . . .]1 = [0; 2a1, a2, 2a3, a4, . . .]2. But using this method a problem can arise.
From our operator T2 we saw that all the digits in a 2-CF should be 2 at least. But using the method described

13



3 2-continued fraction expansion

above the digits an with n even will not be modified. So when the RCF expansion has 1 as it’s nth digit (with n
even) then the CF expansion given by (3.1) can not be correct. So apparently we need to find a way for dealing
with expressions like:

2 · 1

1 +
1

b2 +
1

b3 +
1

. . .

(3.2)

When we wouldn’t have looked at the 2-CF expansion but at the N -CF expansion for N ≥ 3 we would be in
the same kind of situation, but than not only 1 would be a forbidden digit, but every other integer smaller than
N would give rise to the same problem. But tackling the problem of multiplying a RCF by, for example, 7 takes
a lot more work than multiplying it by 2.

To find a way to multiply a RCF by 2 we introduce Raney’s Transducers.

3.2 Raney

In [5] A. Hurwitz published a method to multiply a RCF by 2. Although we could have used this result, I use
a more general method described by George N. Raney in [7].

In short, Raney’s trandsucers have as its imput a number x written in its RCF expansion and as output the
RCF expansion of, for example, n times x, where n depends on which transducer you use. We are interesed in
multiplying a RCF by 2 so we can use the simplest transducer.

They work as follows: first you convert the RCF into a so called R-L-word. This R-L-word is then used as
input for an automata, wich gives us another R-L-word as output. Finally this output is converted back into a
RCF, which is 2 times the RCF we started with.

The R-L-word is a string consisting of R’s and L’s only. To convert a RCF into such an R-L-word we look at
the first digit of the RCF and write as many R’s as the digits value. After this we look at the second digit
and write as many L’s as that digits value. The third digit tells us how many R’s we get afther this, the forth
how many L’s and so on. To keep the notation short we write R2 in stead of RR etc. So for example the RCF
[b0; b1, b2, b3, b4, . . .] would be converted into the word: Rb0Lb1Rb2Lb3Rb4 . . ..

Now that we have the R-L-word our next step is using this word as the transducers input, so we get a new word
as its output. How this works is described by Figure 3.1:

Figure 3.1: Raneys transcuser for N = 2, as presented in [7].

We start in state A and look at the first letter in the L-R-word, when we have a R as imput we receive R2 as
output, but when we have a L we need to use another letter to get an output. When this second letter is an L
aswell we receive a single L as output, but when the second letter is a R we get RL as its output and we move
to state A′. In this state we have a similar situation, a single L as input gives us L2 as output. When we have
a R we need to combine it with the next letter, another R gives a single R as output, a L as second letter gives
LR as output and we are send back to state A again.

Although our input is an infinite word, we don’t need to compile the complete word. This is because we certainly
get a periodic output, we are constructing the RCF expansion of 2 times a quadratic irrational, wich is still a
quadratic irrational, thus having a periodic RCF expansion. So we only need to take enough terms to find the
periodicity of our output.

Once we know what the output is we can convert this new R-L-word back into a RCF expansion in the same way
as we got the R-L-word in the first case, so: Rc0Lc1Rc2Lc3Rc4 . . . would be converted into [c0; c1, c2, c3, c4, . . .].
The continued fraction we started with represented a number x ∈ ( 1

2 , 1), so our output will be a number

14



3.3 Examples

2x ∈ (1, 2), therefore we already know that c0 = 1. So by using Raney’s transducers we can now rewrite
expression (3.2) as:

2 · 1

1 +
1

b2 +
1

b3 +
1

. . .

= 1 +
1

c1 +
1

c2 +
1

c3 +
1

. . .

(3.3)

3.3 Examples

Our first example will use the positive solution of the quardatic equation 2α2 +2α−1 = 0, which is α =
√
3−1
2 ≈

0.366. The RCF of α is given by [0; 2, 1]1. To find its 2-CF we cannot simply use expression (3.1), because
a2 = 1, and we already saw that we are not allowed to leave that digit unchanged. So to find its 2-CF we will
need to make use of Raney’s transducer. But first we try to get as far as possible the simple way:

x =
1

2 +
1

1 +
1

2 +
1

1 +
1

. . .

=
2

4 + 2
1

1 +
1

2 +
1

1 +
1

. . .

(3.4)

So we need to find the RCF of 2 · [0; 1, 2]1, here I will only give the result, a detailed derivation is available in
the appendix.

2 · [0; 1, 2]1 = [1; 2, 6]1 (3.5)

Filling in the result from (3.5) into (3.4) we can further compute the 2-CF:

x =
2

4 + 1 +
1

2 +
1

6 +
1

2 +
1

6 +
1

. . .

=
2

5 +
2

4 +
2

6 +
1

2 +
1

6 +
1

. . .

=
2

5 +
2

4 +
2

6 +
2

4 +
2

6 +
1

. . .

(3.6)

We now see that, because 1 no longer occurs as a digit in the part that’s still written as a RCF, we can continue
indefinitely with multiplying the numerator and denominator by 2. So we find that the 2-CF of α is given by:
α = [0; 5, 4, 6]2. And it is periodic again.

As a second example we use the positive solution to the quadratic equation 3x2 + 8x − 7 = 0, which is

x =
√
37−4
3 ≈ 0.69. The RCF of x is given by [0; 1, 2, 3]1. To find its 2-CF we again cannot simply use expression

(3.1), because a4 = 1. So to find its 2-CF we will need to make use of Raney’s transducer. But first we try to
get as far as possible the simple way:

x =
1

1 +
1

2 +
1

3 +
1

1 +
1

2 +
1

3 +
1

. . .

=
2

2 +
2

2 +
2

6 + 2
1

1 +
1

2 +
1

3 +
1

. . .

(3.7)

So we need to find the RCF of 2 · [0; 1, 2, 3]1, here I will only give the result, a detailed derivation is available
in the appendix.

2 · [0; 1, 2, 3]1 = [1; 2, 1, 1, 2, 1, 7]1 (3.8)
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3 2-continued fraction expansion

Filling in the result from (3.8) into (3.7) we can compute the 2-CF a little bit further:

x =
2

2 +
2

2 +
2

6 + 1 +
1

2 +
1

1 +
1

1 +
1

. . .

=
2

2 +
2

2 +
2

7 +
2

4 + 2
1

1 +
1

1 +
1

. . .

(3.9)

Here again we need to use Raney’s transducer, this time to find an expression for 2 · [0; 1, 1, 2, 1, 7, 2]1, again I
will only show the result overhere:

2 · [0; 1, 1, 2, 1, 7, 2]1 = [1; 6, 1, 3, 5]1 (3.10)

Filling in the result from (3.10) into (3.9) we can again compute the 2-CF a little bit further:

x =
2

2 +
2

2 +
2

7 +
2

4 + 1 +
1

6 +
1

1 +
1

. . .

=
2

2 +
2

2 +
2

7 +
2

5 +
2

12 + 2
1

1 +
1

. . .

(3.11)

Again we use Raney’s transducer to deal with 2 · [0; 1, 3, 5, 6]1 and find:

2 · [0; 1, 3, 5, 6]1 = [1; 1, 1, 10, 3, 2, 1, 1, 1, 2, 13]1 (3.12)

Going on with our proces we need to compute 2 · [0; 1, 10, 3, 2, 1, 1, 1, 2, 13, 1]1 and find that:

2 · [0; 1, 10, 3, 2, 1, 1, 1, 2, 13, 1]1 = [1; 1, 4, 1, 1, 1, 5, 3, 1, 27, 21, 1, 1, 2, 4, 2, 1, 6, 3]1 (3.13)

Repeating this proces we will find that the length of the new periods rapidly increase, while they stay rich of
1’s.

The reason for this is because while results as (3.10) don’t change the period length too much we also have cases
like (3.8) and (3.12). In the case of (3.8) we have an uneven period length, this means that to find periodicity
in the new R-L-word we need to take at least 2 of the old periods in order to find a loop, because while starting
with an L in the first period, the second period starts with an R, so this usually doesn’t give the same output.
In the case of (3.12) we do have an even period length, but while we build the new R-L-word and start with
the first period in state A, we find that we end our first period in state A′, so the second period won’t give the
same result as the first, and we need to use the second period to find a periodic output.

So in those two cases the new period lengt fluctuates around the doubble of the old period length. This makes
it plausible that while using the transducer we only get longer and longer new periods and the proces never
terminates, while getting into a loop only happens when the process terminates at a certain moment. So
therefore I think that this number does not have a periodic 2-CF. Of course this is not a proof, but it does make
Conjecture (2.3.2) more likely to be correct.

3.4 Ergodic Properties

In this section I will recall an old result and use this to give another indication that the 2-continued fraction
expansion of x = [0; 1, 2, 3]1 found in the previous section is probably not periodic. First I need to introduce
some concepts from the ergodic theory. A probability space is given by a set X, a σ-algebra F and a measure
µ.

Definition Let (X,F , µ) be a probability space. A measurable transformation T : X → X is measure preserving
with respect to µ, if µ(T−1A) = µ(A) for all A ∈ F .
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3.5 Implementations

In our case X is the interval [0, 1) and F is the collection of all Borel measurable subsets A ⊂ [0, 1). In 1800
Gauss stated that in modern terminology T is measure preserving with respect to the Gauss measure:

µ(A) :=
1

log 2

∫ 1

0

fA(x)
dx

1 + x
for A ∈ F (3.14)

where fA(x) is the indicator function of A, i.e.:

fA(x) =

{
1 : x ∈ A
0 : x /∈ A .

Using the Gauss measure we can determine for n ∈ N how often it occurs in the continued fraction expansion
of a number x ∈ [0, 1). Lets use the following definition to make clear what we mean by how often:

Definition The asymptotic frequenty φ of digit n is given by:

φ(n) := lim
m→∞

∑m
k=1 In(ak)

m

with In the indicator function: In(ak) =

{
1 : ak = n
0 : ak 6= n

.

Apart from some set of measure 0 we can use the Gauss measure to find the asymptotic frequenty of the digits
of almost every x by using the Ergodic Theorem (see [2] theorem 3.1.7).

The Gauss measure µ was made for the RCF. To be able to use an expression like (3.14) for the N -CF we will
need the following measure:

µN (A) :=
1

log(N+1
N )

∫ 1

0

fA(x)
dx

N + x
for A ∈ F (3.15)

Now let N = 2 and n ∈ N with n ≥ 2. Let An such that for x ∈ An we find
⌊
2
x

⌋
= n. This means that

n ≤ 2
x < n+ 1 and thus An = ( 2

n+1 ,
2
n ]. To find the asymptotic frequenty of n we now calculate µ2(An). Using

equation (3.15) and only integrating over the area where fAn
is not zero we find:

φ(n) =
1

log( 3
2 )

∫ 2
n

2
n+1

dx

x+ 2

=
1

log( 3
2 )
·
(

log

(
2

n
+ 2

)
− log

(
2

n+ 1
+ 2

))
=

1

log( 3
2 )
· log

(
2
n + 2
2

n+1 + 2

)

=
log
(

2n2+4n+2
2n2+4n

)
log( 3

2 )
(3.16)

Expression (3.16) gives us the asymptotic frequenties for all n ≥ 2 in case we are dealing with the CF expansion
of a typical number. Now we can compare this result with the 2-CF expansion of the number x = [0; 1, 2, 3]1.
But before we can do this we first need to calculate a lot of it’s digits in order to be able to say things about
its behaviour as the amount of digits tends to infinity.

3.5 Implementations

In order to calculate a lot of digits in a fast manner we first looked at the quadratic forms of the quadratic
irrationals. Having a number x that satisfies: A1x

2 + B1x + C1 = 0 we can use the computer to approximate
x precisely enough to be able to calculate a1 :=

⌊
N
x

⌋
. Now we can calculate A2, B2, C2 by taking sums of

products of A1, B1, C1 and a1 such that TN (x) satisfies: A2TN (x)2 + B2TN (x) + C2 = 0. Because A2, B2, C2

are sums of products of integers, they themselves are integers as well, so that the calculations are accurate
enough with the computer in most cases. Now that we have a quadratic form for TN (x) we can find a precisely

enough approximation for TN (x) in order to calculate a2 :=
⌊

N
TN (x)

⌋
. And using A2, B2, C2 and a2 we can find

a quadratic form for T 2
N (x) and so on.
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3 2-continued fraction expansion

When we use this to calculate the digits for a RCF we know that the absolute values of the numbers An, Bn, Cn
are bounded by a certain N0 ∈ N for all n. For the N -CF with N ≥ 2 we can not say this anymore. However, in
some cases the numbers An, Bn, Cn (possibly devided by their GCD) are limited and we easily find the N -CF
expansion for this number. In other cases the numbers An, Bn, Cn grow wild, and while using the computer
we get roundoff errors because the integers get bigger than the computer precision can handle. In this case the
quadratic forms are not accurate anymore and the digits we find are probably wrong.

Although this program turned out to be useless for finding the digits of the N -CF expansion of a quadratic
irrational that seemed to be non-periodic, it was usefull for generating a list of quadratic forms for possible
non-periodic N -CF expansions. To do this you first use the program to calculate the first 100 or 1000 digits
the N -CF for a certain quadtratic irrational. After this you check whether the digits are eventually repeating
a certain period or not.

So to deal with the problem of roundoff errors Raney’s transducer came in. This was also the moment where
we completely focussed on 2-CFs, because the transducer for multiplying by 2 is easier than for multiplying by
bigger numbers.

Implementing the program that was going to produce a lot of digits turned out to be harder than exptected.
To do this I first implemented a program that has as it’s imput the period of the RCF. It would doubble the
first digit and check whether the second digit was greater than 1. If this was the case the second digit is left
unchanged and the program moves on to the next two digits (placing the two it ‘used’ at the end of the input
period. In case the second digit was a 1 it had to use the period to find (using Raneys transducer) the RCF of
two times the input RCF.

While at first this goes quite fast, the period length increases quite fast aswell. So, while using the new periods
as input, the time it takes to find the next period after it finds a 1 as the second digit increases. Unfortunately
the elapsed time increases exponentially with the period length, therefore the computation times run out of
hand, and it’s impossible to find a lot of digits in a reasonable time. For example: to find the first 109 digits of

the 2-CF of
√
37−4
3 the program needs to run for a whole week!

Because 109 digits are far from enough to be able to talk about ergodic properties I had to edit the program.
I did this by giving the program a maximum for the period length it could produce as output. So setting this
maximum to, for example 40000, the program would stop using Raneys transducer when it found the whole new
period or when the new periods length reached 40000. Because we terminate the process here, not finishing the
actual new period we can’t use that output as a periodic input anymore. However, this gives us a lot of digits
to work with. So the program is given the fact that we don’t have a real periodic input anymore, but just a
truncation. The next time it needs to use Raneys transducer, it will therefore only compile the part of the given
period, and stop when that is finished (or we hit the 40000 digits again). Also, the last computed digit might
be wrong, because maybe we ended with a 4 while it had to be a 5 if you also used the next digit in the period
(which we never knew). So after it finishes processing the input, the last digit of the output is thrown away. In
this way, setting the maximum to 40000 we get about 28000 digits as our final output, and this is enough to be
able to say something about its ergodic properties.

3.6 Results

Using the last Matlab program I made, described in the last paragraph of section 3.5, I calculated the first 70825

digits for the 2-CF for the number x = [0; 1, 2, 3]1 =
√
37−4
3 . Using our definition for the asymptotic frequenty

of a number n we can use these 70825 digits to calculate our (approximate) asymptotic frequenty. The results
can be found in Table 3.1.

n 2 3 4 5 6 7 8 9
theoretical using µ .290489 .159172 .100679 .069478 .050853 .038840 .030638 .024787

x =
√
37−4
3 .291790 .159054 .099583 .069566 .050589 .039322 .031204 .024045

Table 3.1: Found asymptotic frequencies of the digits for 2 ≤ n ≤ 9 using 70825 digits.

To verify that we weren’t just lucky to find a single number that gets close to the theoretical asymptotic
frequencies I picked 4 other quadratic irrationals that (based on the first 60 digits) seemed to be non-periodic.
Because calculating more than 70000 digits took about 3.5 days I only calculated the first ± 28000 digits for
those 4, which took about 4 hours. In order to check weather this approximation is much worse than the one
with 70825 digits I also included [0; 1, 2, 3]1 with only ± 28000 digits. The results can be found in Table 3.2.
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3.7 Conclusion

n 2 3 4 5 6 7 8 9
theoretical using µ .290489 .159172 .100679 .069478 .050853 .038840 .030638 .024787√

37−4
3 .292783 .160084 .100767 .069511 .049407 .040385 .031186 .024153√

569−23
10 .289744 .161513 .101920 .069210 .048976 .036285 .036284 .025560√

197−13
4 .290775 .161334 .101116 .071307 .052130 .037508 .031045 .023098√

577−23
8 .290787 .161663 .101862 .066032 .050135 .039584 .031122 .024111√

993−9
24 .287611 .158821 .101349 .069258 .051331 .038410 .030813 .025843

Table 3.2: Found asymptotic frequencies of the digits for 2 ≤ n ≤ 9 using ± 28000 digits.

A more detailed table can be found in the Appendix.

Another way to look at these asymptotic frequencies is through a result shown by Khintchine [6]. He showed
that for almost every RCF:

lim
n→∞

n
1
a1

+ · · ·+ 1
an

= 1.7454066 . . . (3.17)

For the five quadratic irrationals from Table 3.2 we can use the calculated digits to make approximations for
Khintchines result for 2-CFs.

Instead of (3.17) we can also devide 1 by the sum over the reciprokes of all integers and multiply each reciproke
by the frequency of its corresponding integer. We then get the following equality:

lim
n→∞

n
1
a1

+ · · ·+ 1
an

=
1∑∞

n=1
φ(n)
n

(3.18)

Using (3.18) and our theoretical found asymptotic frequencies we can find a result similar to (3.17) for the 2-CF,
this gives:

lim
n→∞

n
1
a1

+ · · ·+ 1
an

= 3.704751 . . . (3.19)

The results can be found in the following table:

number of interest: theoretical

√
37− 4

3

√
37− 4

3

√
569− 23

10

√
197− 13

4

√
577− 23

8

√
993− 9

24
number of ditits used: ∞ 70825 28154 27974 28315 28245 28171
Khintchine number 3.704751 3.697957 3.686159 3.704431 3.691458 3.698910 3.722844

Table 3.3: Theoreical and numerical found numbers for equation (3.19).

3.7 Conclusion

Now we can come back to Conjecture (2.3.2). As said before, we haven’t found any real proof, but we can surely
say that this conjecture isn’t just based on some guesswork.

In section 3.3, when rewriting the periodic RCF expansions of certain numbers into 2-CF expansions we see
that, using Raney’s transducers, the periods we work with get bigger and bigger as we calculate more digits.
And it seems like we will never get to a point where we find periodicity again.

Also, in sections 3.4 and 3.6 we see that, using computer calculated digits for 2-CF expansions of certain
quadratic irrationals, the digits seem to satifsy classical ergodic properties that only work for typical numbers.
If the 2-CF expansions were periodic we probably wouldn’t have found these results because when the digits
follow a certain pattern it is very unlikely that they fit the theoretical asymptotic frequenty of the digits of a
typical number so well.

So we can, thanks to the use of the transducers which equates to repeatedly doubling the RCF expansion, and
backed up by the statistical properties that follow from the calculated digits of the 2-CF expansion, conclude
that Conjecture (2.3.2) in all probability holds.
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4 Appendix

4.1 Using Raneys transducers in detail

Figure 4.1: Raneys transcuser for N = 2, as presented in [7].

Result (3.5): finding 2 · [0; 1, 2]1.

First we make the R-L-word:
R0|L1R2|L1R2|L1R2|L1R2 . . .

Using this as our input we start in state A and the first letter we see is a single L, so we combine it with one
R, this gives us as output RL and we go to state A′.

The situation up untill now: we are in state A′, have as our input R1|L1R2|L1R2|L1R2 . . . and our output up
untill now is RL.

Now we get the second R, and because we are in state A′ we need to combine this with the L next to it to get
LR as output and we go back to state A.

The situation up untill now: we are in state A, have as our input R2|L1R2|L1R2 . . . and our output up untill
now is RLLR.

There is R2 left, so the output will be a R4.

The situation up untill now: we are in state A, have as our input L1R2|L1R2 . . . and our output up untill now
is RLLRR4.

What we see now is exactely what we had at the very start. So we found that the input L1R2|L1R2 gives us
the following output: RLLRR4. Because we are back in state A again the next 4 letters of the word will give
exactelyt he same output. So:

R0|L1R2|L1R2|L1R2|L1R2 . . . → RLLRR4|RLLRR4 . . .

Rewriting the right part by moving the bars one place to the right yields:

R1|L2R6|L2R6|L2R6 . . .

So we find that:
2 · [0; 1, 2]1 = [1; 2, 6]1

Result (3.8): finding 2 · [0; 1, 2, 3]1.

First we make the R-L-word:
R0|L1R2L3|R1L2R3|L1R2L3|R1L2R3 . . .

Using this as our input we start in state A and the first letter we see is a single L, so we combine it with one
R, this gives us as output RL and we go to state A′.
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4 Appendix

The situation up untill now: we are in state A′, have as our input R1L3|R1L2R3|L1R2L3|R1L2R3 . . . and our
output up untill now is RL.

Now we get the second R, and because we are in state A′ we need to combine this with the L next to it to get
LR as output and we go back to state A.

The situation up untill now: we are in state A, have as our input L2|R1L2R3|L1R2L3|R1L2R3 . . . and our
output up untill now is RLLR.

There is L2 left, so the output will be a single L. After this we get a single R, wich gives R2 as output. Next
is L2, wich gives us a single L and at last we see a R3, so our output is R6.

The situation up untill now: we are in state A, have as our input L1R2L3|R1L2R3|L1R2L3|R1L2R3 . . . and our
output up untill now is RLLRLR2LR6.

What we see next is exactely what we had at the very start. So we found that the input L1R2L3|R1L2R3 gives
us the following output: RLLRLR2LR6. Because we are back in state A again the next 6 letters of the word
will give exactelyt he same output. So:

R0|L1R2L3|R1L2R3|L1R2L3|R1L2R3 . . . → RLLRLR2LR6|RLLRLR2LR6 . . .

Rewriting the right part by moving the bars one place to the right yields:

R1|L2R1L1R2L1R7|L2R1L1R2L1R7 . . .

So we find that:

2 · [0; 1, 2, 3]1 = [1; 2, 1, 1, 2, 1, 7]1

Result (3.10): finding 2 · [0; 1, 1, 2, 1, 7, 2]1.

Again we start with making the R-L-word:

R0|L1R1L2R1L7R2|L1R1L2R1L7R2 . . .

We use this as our input and start in state A. Again we find a single L, combining this with the R that follows
we receive RL as our output and move to state A′

The situation up untill now: we are in state A′, have as our input L2R1L7R2|L1R1L2R1L7R2 . . . and our output
up untill now is RL.

Here we have L2 as our input and we receive L4. Next is a single R, so we combine it with an L, we receive LR
as output and go back to state A again.

The situation up untill now: we are in state A, have as our input L6R2|L1R1L2R1L7R2 . . . and our output up
untill now is RLL4LR.

What’s left is L6, wich gives us L3 and R2 wich gives us R4.

The situation up untill now: we are in state A, have as our input L1R1L2R1L7R2|L1R1L2R1L7R2 . . . and our
output up untill now is RLL4LRL3R4.

Now the circle is round, we have used a full period of the R-L-word and are in state A, so the next 6 letters
will give us the exact same output as we just derived, therefore:

R0|L1R1L2R1L7R2|L1R1L2R1L7R2 . . .→ RLL4LRL3R4|RLL4LRL3R4 . . .

Rewriting the right part by moving the bars one place to the right yields:

R1|L6R1L3R5|L6R1L3R5 . . .

So we find that:

2 · [0; 1, 1, 2, 1, 7, 2]1 = [1; 6, 1, 3, 5]1
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4.1 Using Raneys transducers in detail

Result (3.12): finding 2 · [0; 1, 3, 5, 6]1.

Again we start with making the R-L-word:

R0|L1R3L5R6|L1R3L5R6|L1R3L5R6 . . .

We use this as our input and start in state A. Again we find a single L, combining this with the R that follows
we receive RL as our output and move to state A′.

The situation up untill now: we are in state A′, have as our input R2L5R6|L1R3L5R6|L1R3L5R6 . . . and our
output up untill now is RL.

Now we have R2 and receive a single R, followed by L5, wich yields L10, at last we have R6 and receive R3.

The situation up untill now: we are in state A′, have as our input L1R3L5R6|L1R3L5R6 . . . and our output up
untill now is RLRL10R3.

Although we have completed one period of the R-L-word, and the next period starts (just like the first) with
an L we can’t say that we are finished already. This is because our first period we started in state A, while now
we are in state A′. So we move on to the second period. We find the single L again, wich gives L2 as output
this time. Next is R3, R2 yields a single R, while the third R needs to be combined with an L to receive LR,
and we go back to state A.

The situation up untill now: we are in state A, have as our input L4R6|L1R3L5R6 . . . and our output up untill
now is RLRL10R3L2RLR.

Here we have L4 left, wich gives us L2. And last in this period we have R6, wich gives us R12 as output.

The situation up untill now: we are in state A, have as our input L1R3L5R6|L1R3L5R6 . . . and our output up
untill now is RLRL10R3L2RLRL2R12.

This time we are finished, because we are at the beginning of a new period again, starting with a L and we are
in state A. So we now konw that:

R0|L1R3L5R6|L1R3L5R6|L1R3L5R6 . . .→ RLRL10R3L2RLRL2R12|RLRL10R3L2RLRL2R12 . . .

Rewriting the right part by moving the bars one place to the right yields:

R1|L1R1L10R3L2R1L1R1L2R13|L1R1L10R3L2R1L1R1L2R13 . . .

So we find that:
2 · [0; 1, 3, 5, 6]1 = [1; 1, 1, 10, 3, 2, 1, 1, 1, 2, 13]1
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4.2 Approximating frequencies of the digits for some quadratic irrationals

In section 3.6 five numbers were used to compute a large amount of the digits of their 2-CF expansion. These
numbers are listed in Table 4.1 written in three different representations. The first one is in the most common
representation (as the quadratic irrational they are). The second collum contains the equation each number
satisfies, and the last collum gives the RCF expansion of each number.

Normal notation: Quadratic form: RCF√
37− 4

3
3x2 + 8x− 7 = 0 [0; 1, 2, 3]

√
569− 23

10
5x2 + 23x− 2 = 0 [0; 11, 1, 2, 2, 23, 2, 2, 1, 11, 4, 1, 2, 5, 1, 1, 1, 1, 5, 2, 1, 4]

√
197− 13

4
4x2 + 26x− 7 = 0 [0; 3, 1, 6]

√
577− 23

8
8x2 + 46x− 6 = 0 [0; 7, 1, 5]

√
993− 9

24
12x2 + 9x− 19 = 0 [0; 1, 15, 7, 1, 4, 2, 1, 1]

Table 4.1: Different representations of the used numbers.

Table 4.2 is an extended version of Table 3.2. This version contains more asymptotic frequencies. This table
also shows how many digits were used to calculate these asymptotic frequencies.

theoretical

√
37− 4

3

√
37− 4

3

√
569− 23

10

√
197− 13

4

√
577− 23

8

√
993− 9

24
# ditits used: ∞ 70825 28154 27974 28315 28245 28171

φ(2) .290489 .291790 .292783 .289744 .290775 .290787 .287611
φ(3) .159172 .159054 .160084 .161513 .161334 .161663 .158821
φ(4) .100679 .099583 .100767 .101920 .101116 .101862 .101349
φ(5) .069478 .069566 .069511 .069210 .071307 .066032 .069258
φ(6) .050853 .050589 .049407 .048976 .052130 .050135 .051331
φ(7) .038840 .039322 .040385 .036285 .037508 .039584 .038410
φ(8) .030638 .031204 .031186 .031816 .031045 .031122 .030813
φ(9) .024787 .024045 .024153 .025560 .023098 .024111 .025843
φ(10) .020467 .021433 .021489 .018482 .020414 .020004 .021370
φ(11) .017187 .017734 .017546 .018160 .017341 .017844 .016578
φ(12) .014637 .014868 .014137 .013656 .013421 .015012 .014945
φ(13) .012615 .012439 .012751 .011404 .012361 .011861 .012176
φ(14) .010986 .010844 .010194 .011297 .010136 .010091 .010650
φ(15) .009653 .009869 .009199 .008973 .009607 .009170 .010046
φ(16) .008549 .008486 .008347 .008079 .008335 .008745 .008236
φ(17) .007624 .007342 .007175 .007579 .007947 .007506 .007987
φ(18) .006841 .006622 .006393 .007364 .006004 .005700 .006177
φ(19) .006173 .005874 .006393 .006256 .005404 .004992 .005502
φ(20) .005599 .006142 .005825 .005970 .006499 .006408 .005112

Table 4.2: Theoretical and numerical found asymptotic frequencies of the digits for 2 ≤ n ≤ 20.
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4.3 Matlab files used

Program to find a list of quadratic forms for possible non repetitive N-CF expansions:

N = 2; %teller

n = 1000; %aantal a_i te berekenen

aantalIteraties = 0;

indexABC = 0;

while (aantalIteraties < 10);

good1 = 0;

good2 = 0;

while (good1 + good2 < 2)

good1 = 0;

k = floor(200*(rand()-.5));

l = floor(200*(rand()-.5));

m = floor(200*(rand()-.5));

if (l^2-4*k*m > 0)

if(sqrt(l^2-4*k*m)-floor(sqrt(l^2-4*k*m)) > 0)

good1 = 1;

end

end

% y and z are solutions

y = (-l+sqrt(l^2-4*k*m))/(2*k);

z = (-l-sqrt(l^2-4*k*m))/(2*k);

if (0<y && y<1)

x = y;

else

x = z;

end

good2 = 0;

if (0<x && x<1)

good2 = 1;

end

end

A = zeros(n+1,1);

B = zeros(n+1,1);

C = zeros(n+1,1);

D = zeros(n+1,1);

X = zeros(n+1,1);

discr = zeros(n+1,1);

A(1) = k;

B(1) = l;

C(1) = m;

discr(1) = l^2-4*k*m;

b = zeros(1,n+1);

a = N;

b(1) = floor(a/x);

X(1) = x;

for i = 1:n

D(i) = gcd(C(i), gcd(2*b(i)*C(i)+a*B(i),a*b(i)*B(i)+A(i)*(a^2)+C(i)*(b(i)^2)));

A(i+1) = C(i)/D(i);

B(i+1) = (2*b(i)*C(i)+a*B(i))/D(i);

C(i+1) = (a*b(i)*B(i)+A(i)*(a^2)+C(i)*(b(i)^2))/D(i);

discr(i+1) = (B(i+1)^2-4*A(i+1)*C(i+1));

newX = (-B(i+1)+sqrt(discr(i+1)))/(2*A(i+1));

if ( newX > 0 && newX < 1 )

X(i+1) = newX;
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b(i+1) = floor(a/X(i+1));

else

X(i+1) = (-B(i+1)-sqrt(discr(i+1)))/(2*A(i+1));

b(i+1) = floor(a/X(i+1));

end

end

Repetition = RepeatTester(b);

if (Repetition == 0)

indexABC = indexABC + 1;

ABC(indexABC,:) = [k l m];

end

aantalIteraties = aantalIteraties+1;

end

zoekABC = ABC;

for vindKleine = 1:10

sqrtsumABC = sum(zoekABC.^2,2);

[MinSqrtSumABC IndSqrtSumABC] = min(sqrtsumABC);

kleineABC(vindKleine,:) = zoekABC(IndSqrtSumABC,:);

zoekABC(IndSqrtSumABC,:) = [100 100 100];

end

The function RepeatTester() used by the previous program:

function res = RepeatTester(b)

repetition = 0;

NewB = b;

for i = 1:20

NewB(i) = 0;

end

[MB(1) Imax(1)] = max(NewB);

NewB(Imax(1)) = 0;

repeat = 1;

RepCounter = 1;

while repeat

RepCounter = RepCounter + 1;

[MB(RepCounter) Imax(RepCounter)] = max(NewB);

if (MB(RepCounter-1) == MB(RepCounter))

fase(RepCounter-1) = Imax(RepCounter)-Imax(RepCounter-1);

if (max(fase) == min(fase))

repetition = 1;

if (Imax(RepCounter) + max(fase) > size(b))

repeat = 0;

end

else

repetition = 0;

repeat = 0;

end

else

repeat = 0;

end

NewB(Imax(RepCounter)) = 0;

end

res = repetition;

26



4.3 Matlab files used

Second program: to find unlimited digits, but works extreme slow:

VarB = [1 2 3]; %(periode van kettingbreuk)

PL = length(VarB);

PeriodLength(1) = PL;

L = -1;

R = 1;

k = 1;

while( k <= 100 ) %aantal te bepalen wijzergetallen

NewB(k) = 2*VarB(1);

k = k+1;

if( VarB(2) > 1 )

NewB(k) = VarB(2);

clear TempB

TempB = VarB;

clear VarB

VarB = TempB(3:length(TempB));

VarB(length(VarB)+1) = TempB(1);

VarB(length(VarB)+1) = TempB(2);

k = k+1;

else

%gebruik Transcucer om van oude Rany woord een nieuwe te maken

NewRanyWord = Transducer1(VarB);

%gebruik nieuwe Rany woord

NewB(k-1) = NewB(k-1)+1;

clear VarB

VarB = NewRanyWord([2:length(NewRanyWord)],2)’;

PL = length(VarB);

PeriodLength(length(PeriodLength)+1) = PL;

end

end

The function Transducer1() used by the previous program:

function result = Transducer1(VarB)

PL = length(VarB);

L = -1;

R = 1;

%maak Rany woord

if( round(PL/2) == PL/2 )

for i = 1:PL-1

Cycle(i) = VarB(i+1);

end

Cycle(PL) = VarB(1);

for i = 1:2:PL

OldRanyWord(i,:) = [L,Cycle(i)];

OldRanyWord(i+1,:) = [R,Cycle(i+1)];

end

else

for i = 1:PL-1

Cycle(i) = VarB(i+1);

end

Cycle(PL) = VarB(1);

Cycle(PL+1:2*PL) = Cycle(1:PL);

for i = 1:2:2*PL

OldRanyWord(i,:) = [L,Cycle(i)];

OldRanyWord(i+1,:) = [R,Cycle(i+1)];

end

end
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ORW = OldRanyWord;

%maak nieuw Rany woord

State = 1;

newInd = 1; %index NewRanyWord

NewRanyWord = [1 0];

j = 1; %index OldRanyWord

while( sum(OldRanyWord(:,2)) ~= 0 )

if( OldRanyWord(j,2) > 0 ) %controleer of er nog letters over zijn om mee verder te werken

if( OldRanyWord(j,1) == L )

% L

XL = OldRanyWord(j,2); %we hebben XL

if( State == 2)

% A’

if( NewRanyWord(newInd,1) == R ) %NewRanyWord eindigd nog op een R

newInd = newInd+1; %verhoog index van NewRanyWord met 1

NewRanyWord(newInd,:) = [L 0]; %laat nieuw woord eindigen op L

end %nieuwe woord eindigd nu op L

NewRanyWord(newInd,2) = NewRanyWord(newInd,2) + 2*XL; %tel 2*XL bij nieuwe woord op

OldRanyWord(j,2) = OldRanyWord(j,2) - XL; %haal XL van oude woord af

else

% A

HXL = floor(XL/2);

if( HXL > 0 ) %we hebben meer dan 1 L

if( NewRanyWord(newInd,1) == R ) %NewRanyWord eindigd nog op een R

newInd = newInd+1; %verhoog index van NewRanyWord met 1

NewRanyWord(newInd,:) = [L 0]; %laat nieuw woord eindigen op L

end %nieuwe woord eindgd nu op L

NewRanyWord(newInd,2) = NewRanyWord(newInd,2) + HXL; %tel HXL bij nieuwe woord op

OldRanyWord(j,2) = OldRanyWord(j,2) - 2*HXL; %haal 2*HXL van oude woord af

end

if( OldRanyWord(j,2) == 1 ) %we hebben nog 1 L over

if( NewRanyWord(newInd,1) == L ) %NewRanyWord eindigd nog op L

newInd = newInd+1; %verhoog index van NewRanyWord met 1

NewRanyWord(newInd,:) = [R 0]; %laat nieuwe woord op R eindigen

end %nieuwe woord eindgd nu op R

NewRanyWord(newInd,2) = NewRanyWord(newInd,2) + 1;

newInd = newInd+1;

NewRanyWord(newInd,:) = [L 1]; %plak RL achter nieuw woord

OldRanyWord(j,2) = OldRanyWord(j,2)-1;

OldRanyWord(j+1,2) = OldRanyWord(j+1,2)-1; %haal LR van oude woord af

State = 2; %ga naar A’

end

end

else

% R

XR = OldRanyWord(j,2); %we hebben XR

if( State == 1 )

% A

if( NewRanyWord(newInd,1) == L ) %nieuwe woord eindig nog op een L

newInd = newInd+1; %verhoog index van NewRanyWord met 1

NewRanyWord(newInd,:) = [R 0]; %laat nieuwe woord eindigen op R

end

NewRanyWord(newInd,2) = NewRanyWord(newInd,2) + 2*XR; %tel 2*XR bij nieuwe woord op

OldRanyWord(j,2) = OldRanyWord(j,2) - XR; %haal XR van oude woord af

% als OldRanyWord nu ’opgebruikt’ is dan zijn we klaar

else

% A’

% als OldRanyWord bij laatse letter is moeten we verder omdat we in A willen eindigen

if( j == length(OldRanyWord) )

OldRanyWord(j+1:j+length(ORW),:) = ORW; %plak ORW achter OldRanyWord

end
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% hier kan de periode flink oplopen

HXR = floor(XR/2);

if( HXR > 0 ) %we hebben meer dan 1 R

if( NewRanyWord(newInd,1) == L ) %NewRanyWord eindigd nog op een L

newInd = newInd+1; %verhoog index van NewRanyWord met 1

NewRanyWord(newInd,:) = [R 0]; %laat nieuw woord eindigen op R

end %nieuwe woord eindgd nu op R

NewRanyWord(newInd,2) = NewRanyWord(newInd,2) + HXR; %tel HXR bij nieuwe woord op

OldRanyWord(j,2) = OldRanyWord(j,2) - 2*HXR; %haal 2*HXR van oude woord af

end

if( OldRanyWord(j,2) == 1 ) %we hebben nog 1 R over

if( NewRanyWord(newInd,1) == R ) %NewRanyWord eindigd nog op R

newInd = newInd+1; %verhoog index van NewRanyWord met 1

NewRanyWord(newInd,:) = [L 0]; %laat nieuwe woord op L eindigen

end %nieuwe woord eindgd nu op L

NewRanyWord(newInd,2) = NewRanyWord(newInd,2) + 1;

newInd = newInd+1;

NewRanyWord(newInd,:) = [R 1]; %plak LR achter nieuw woord

OldRanyWord(j,2) = OldRanyWord(j,2)-1;

OldRanyWord(j+1,2) = OldRanyWord(j+1,2)-1; %haal RL van oude woord af

State = 1; %ga naar A

end

end

end

end

j = j+1;

end

if( NewRanyWord(newInd,1) == L ) %NewRanyWord eindigd nog op een L

newInd = newInd+1; %verhoog index van NewRanyWord met 1

NewRanyWord(newInd,:) = [R 0]; %laat nieuwe woord op R eindigen

end %nieuwe woord eindigd nu op R

NewRanyWord(length(NewRanyWord),2) = NewRanyWord(length(NewRanyWord),2)+1; %verhoog laatste R met 1

result = NewRanyWord;
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Third program: to find limited digits, but works faster:

maxP = 40000;

cleanP = 1;

stop = 0;

VarB = [1 2 3];

PL = length(VarB);

PeriodLength(1) = PL;

L = -1;

R = 1;

k = 1;

while( ~stop ) %gaat zolang door tot er te weinig weizergetallen over zijn om mee te rekenen

NewB(k) = 2*VarB(1);

k = k+1

if( VarB(2) > 1 )

NewB(k) = VarB(2);

clear TempB

TempB = VarB;

clear VarB

VarB = TempB(3:length(TempB));

if( cleanP )

VarB(length(VarB)+1) = TempB(1);

VarB(length(VarB)+1) = TempB(2);

end

k = k+1

else

%gebruik Transcucer om van oude Rany woord een nieuwe te maken

if( cleanP )

NewRanyWord = Transducer1(VarB);

else

NewRanyWord = Transducer2(VarB,maxP);

end

if( length(NewRanyWord) > maxP+1 || ~cleanP )

cleanP = 0;

end

%gebruik nieuwe Rany woord

if( cleanP )

NewB(k-1) = NewB(k-1)+1;

clear VarB

VarB = NewRanyWord([2:length(NewRanyWord)],2)’;

PL = length(VarB);

PeriodLength(length(PeriodLength)+1) = PL;

else

NewB(k-1) = NewB(k-1)+1;

clear VarB

VarB = NewRanyWord([2:min(length(NewRanyWord)-1,maxP)],2)’;

PL = length(VarB);

PeriodLength(length(PeriodLength)+1) = PL;

end

end

if( ~cleanP && length(VarB)<5 )

stop = 1;

end

end

The function Transducer2() also used by the previous program:

function result = Transducer2(VarB,maxP)

PL = length(VarB);
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L = -1;

R = 1;

%maak Rany woord

for i = 1:PL-1

Cycle(i) = VarB(i+1);

end

Cycle(PL) = VarB(1);

for i = 1:PL

if(mod(i,2))

OldRanyWord(i,:) = [L,Cycle(i)];

else

OldRanyWord(i,:) = [R,Cycle(i)];

end

end

%maak nieuw Rany woord

State = 1;

newInd = 1; %index NewRanyWord

NewRanyWord = [1 0];

j = 1; %index OldRanyWord

while( (j<length(OldRanyWord)) && (length(NewRanyWord) < maxP+1) )

if( OldRanyWord(j,2) > 0 ) %controleer of er nog letters over zijn om mee verder te werken

if( OldRanyWord(j,1) == L )

% L

XL = OldRanyWord(j,2); %we hebben XL

if( State == 2)

% A’

if( NewRanyWord(newInd,1) == R ) %NewRanyWord eindigd nog op een R

newInd = newInd+1; %verhoog index van NewRanyWord met 1

NewRanyWord(newInd,:) = [L 0]; %laat nieuw woord eindigen op L

end %nieuwe woord eindigd nu op L

NewRanyWord(newInd,2) = NewRanyWord(newInd,2) + 2*XL; %tel 2*XL bij nieuwe woord op

OldRanyWord(j,2) = OldRanyWord(j,2) - XL; %haal XL van oude woord af

else

% A

HXL = floor(XL/2);

if( HXL > 0 ) %we hebben meer dan 1 L

if( NewRanyWord(newInd,1) == R ) %NewRanyWord eindigd nog op een R

newInd = newInd+1; %verhoog index van NewRanyWord met 1

NewRanyWord(newInd,:) = [L 0]; %laat nieuw woord eindigen op L

end %nieuwe woord eindgd nu op L

NewRanyWord(newInd,2) = NewRanyWord(newInd,2) + HXL; %tel HXL bij nieuwe woord op

OldRanyWord(j,2) = OldRanyWord(j,2) - 2*HXL; %haal 2*HXL van oude woord af

end

if( OldRanyWord(j,2) == 1 ) %we hebben nog 1 L over

if( NewRanyWord(newInd,1) == L ) %NewRanyWord eindigd nog op L

newInd = newInd+1; %verhoog index van NewRanyWord met 1

NewRanyWord(newInd,:) = [R 0]; %laat nieuwe woord op R eindigen

end %nieuwe woord eindgd nu op R

NewRanyWord(newInd,2) = NewRanyWord(newInd,2) + 1;

newInd = newInd+1;

NewRanyWord(newInd,:) = [L 1]; %plak RL achter nieuw woord

OldRanyWord(j,2) = OldRanyWord(j,2)-1;

OldRanyWord(j+1,2) = OldRanyWord(j+1,2)-1; %haal LR van oude woord af

State = 2; %ga naar A’

end

end

else

% R

XR = OldRanyWord(j,2); %we hebben XR

if( State == 1 )

% A
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if( NewRanyWord(newInd,1) == L ) %nieuwe woord eindig nog op een L

newInd = newInd+1; %verhoog index van NewRanyWord met 1

NewRanyWord(newInd,:) = [R 0]; %laat nieuwe woord eindigen op R

end

NewRanyWord(newInd,2) = NewRanyWord(newInd,2) + 2*XR; %tel 2*XR bij nieuwe woord op

OldRanyWord(j,2) = OldRanyWord(j,2) - XR; %haal XR van oude woord af

% als OldRanyWord nu ’opgebruikt’ is dan zijn we klaar

else

% A’

HXR = floor(XR/2);

if( HXR > 0 ) %we hebben meer dan 1 R

if( NewRanyWord(newInd,1) == L ) %NewRanyWord eindigd nog op een L

newInd = newInd+1; %verhoog index van NewRanyWord met 1

NewRanyWord(newInd,:) = [R 0]; %laat nieuw woord eindigen op R

end %nieuwe woord eindgd nu op R

NewRanyWord(newInd,2) = NewRanyWord(newInd,2) + HXR; %tel HXR bij nieuwe woord op

OldRanyWord(j,2) = OldRanyWord(j,2) - 2*HXR; %haal 2*HXR van oude woord af

end

if( OldRanyWord(j,2) == 1 ) %we hebben nog 1 R over

if( NewRanyWord(newInd,1) == R ) %NewRanyWord eindigd nog op R

newInd = newInd+1; %verhoog index van NewRanyWord met 1

NewRanyWord(newInd,:) = [L 0]; %laat nieuwe woord op L eindigen

end %nieuwe woord eindgd nu op L

NewRanyWord(newInd,2) = NewRanyWord(newInd,2) + 1;

newInd = newInd+1;

NewRanyWord(newInd,:) = [R 1]; %plak LR achter nieuw woord

OldRanyWord(j,2) = OldRanyWord(j,2)-1;

OldRanyWord(j+1,2) = OldRanyWord(j+1,2)-1; %haal RL van oude woord af

State = 1; %ga naar A

end

end

end

end

j = j+1;

end

result = NewRanyWord;
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