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Chapter 1

Introduction

1.1 A brief historical background

Belts, tapes, and cables, just as beams, rods and strings have something in common,

that is, the dimension in one direction, the so-called axial direction, is much larger

than the dimensions in the other two directions. In many cases, just a one-dimensional

approach can be used to describe a certain configuration involving these objects. The

applications of belts, tapes, or cables to mechanical systems such as conveyor belts,

magnetic tapes, or monocable ropeways are often referred to as axially moving materials

or axially moving continua. Axially moving systems are present in a wide variety of

engineering problems. Aerial cables, tramways, oil pipelines, magnetic tapes, power

transmission belts, and band saw blades are just a few of the many examples of the

applications of axially moving systems. The interest in studying axially moving systems

is also motivated by the increased use of oil and water pipelines since early 1950 [1].

A model describing transversal vibrations of a moving strip was derived by Thurman

and Mote [1]. This model can be used as a model of the transversal vibrations of tapes,

fibers, belts and band saws. The following equations of motion are used in their paper:

wtt + 2V wxx − (P 2
1 − V 2)wxx = (P 2

1 − 1 − ηV 2)uxuxx,

utt + 2V uxt − (1 − κV 2)uxx + P 2
0 uxxxx =

(P 2
1 − 1 − ηV 2)

(3

2
u2

xuxx + wxuxx + uxwxx

)
, (1.1.1)

subjected to simply supported boundary conditions: u(0, t) = u(1, t) = uxx(0, t) =

uxx(1, t) = 0 and w(0, t) = w(1, t) = 0. In (1.1.1) u is the transversal displacement, w

is longitudinal displacement, V is the (constant) belt speed and the parameters κ, η, P 2
0 ,

and P 2
1 are just constants which will be defined later on. A combination of the Linsted

perturbation method and the averaging method was used in [1] to study (1.1.1). The

focus of the research has been to study the relationship between the belt speed, the

natural frequencies, and the importance of the nonlinearities in the model (1.1.1).

1



2 Introduction

After Thurman and Mote, the transversal vibrations of a (constantly) moving ma-

terial was studied by Wickert [2] and Pellicano and Vestroni [3]. Most of the studies

concentrate on the axial-velocity-dependent natural frequencies and the existence of

instabilities at critical velocities. The natural frequencies turn out to decrease with

increasing belt speed.

In most of the references given above, the belt velocity is assumed to be constant. In

reality, however, the systems are exposed to accelerating and decelerating motions due

to some imperfections such as pulley excentricities. These disturbances can manifest

in the form of external excitations as well as parametric excitations. The transversal

vibrations of a string where one or both of its ends are harmonically excited was studied

by Sack [4], Archibald and Emslie [5], Mote [6], Mahalingam [7] and very recently by

van Horssen [8]. Van Horssen used the Laplace transform method to solve analytically

the equation describing the transversal vibrations of a (constantly) moving string.

Miranker [9] was probably the first who derived the equation for the transversal

vibrations of a tape moving with a time-dependent axial velocity. Recent studies of

the transversal vibrations of a string or a beam moving with a time-dependent velocity

was mainly done by Öz, Pakdemirli, and Boyaci in [10, 11, 12]. In [10] the vibra-

tions of an axially moving beam with a time-dependent velocity was studied by Öz

and Pakdemirli, while its associated string-like equation was studied in [11]. In [12]

the authors continue to study a similar type of equation with an additional nonlinear

term. A two-time-scales perturbation method was used in [10, 11, 12]. The solutions

are then approximated by using a truncation method. In all of these three papers trun-

cations to just one mode (without any justification) was applied. Since the solutions

of the partial differential equations consist of infinitely many modes, this (extreme)

truncation causes inaccurate results and many of the existing mode-interactions are

lost. These observations were recently also made by Pellicano and Vestroni in [3].

1.2 Motivations

It was stated in the last paragraph of the previous section that an (extreme) truncation

can lead to inaccurate approximations of the solution of the problem describing the

transversal vibrations of a conveyor belt. The purpose in doing the present work is to

investigate whether the truncation method can be applied or not, and how it should be

applied to approximate the transversal vibrations of axially moving continua moving

with time-dependent velocities. Extensions to the already existing literature will be

presented. Not only linear but also nonlinear problems will be studied. In this thesis

the study will be restricted to the transversal vibrations of a conveyor belt with a low

and time-varying velocity.



1.3 Equations of motion 3

1.3 Equations of motion

In this section the equations of motion describing the transversal and the longitudinal

displacements of a conveyor belt will be derived. In Figure 1, a schematic model of

a typical conveyor belt under consideration has been given. The equations of motion

P V  + W  + Wτb X

U  + V  Uτ b X

Vb

L
X

Figure 1.1: Schematic model of a conveyor belt, and velocity components at a point P

on the belt.

for a belt system moving with a constant axial velocity have been derived in [1] using

Hamilton’s principle. For a time-varying velocity the same approach can also be applied

with some modifications. A point particle P on the belt under consideration will have

transversal and longitudinal velocities:

dU

dτ
=

∂U

∂τ
+
∂U

∂X

dX

dτ
⇔ dU

dτ
= Uτ + Vb(τ)UX ,

dW

dτ
= Vb(τ) +Wτ + Vb(τ)WX , (1.3.1)

respectively. Using these two velocities the kinetic energy of the belt is given by:

KE =
1

2
ρA

∫ L

0

{
(Uτ + VbUX)2 + [Wτ + Vb(1 +WX)]2

}
dx, (1.3.2)

and the potential energy is given by:

PE =
1

2

∫ L

0

( 1

EA
{R0 − EA + EA[(1 +WX)2 + U2

X ]
1

2}2 + EIU2
XX

)
dx, (1.3.3)



4 Introduction

with:
ρ : the mass density of the belt,

A : the cross-sectional area of the belt,

Vb(τ) : the belt velocity,

E : the modulus of elasticity,

R0 : the constant tension in a dynamic equilibrium,

I : the second moment of area with respect to the horizontal axis,

U(X, τ) : the transversal displacement of the belt,

W (X, τ) : the longitudinal displacement of the belt,

X : the position along the horizontal axis,

τ : the time, and

L : the distance between the pulleys.
The Hamilton function H(X, τ, UX , Uτ ,WX ,Wτ , UXX) is defined by

1

2
ρA

{
(Uτ + VbUX)2 + [Wτ + Vb(1 +WX)]2

}

−1

2

( 1

EA
{R0 − EA+ EA[(1 +WX)2 + U2

X ]
1

2}2 + EIU2
XX

)
. (1.3.4)

Then according to Hamilton’s principle, the equations of motion can be derived from
dI(ε)

dε
= 0 with ε = 0, where

I(ε) =

∫ τ2

τ1

∫ L

0

H(X, τ, ŪX , Ūτ , W̄X , W̄τ , ŪXX)dxdt,

in which: W̄ (X, τ) = W (X, τ) + εξ(X, τ), and Ū(X, τ) = U(X, τ) + εζ(X, τ). The

arbitrary functions ξ(X, τ) and ζ(X, τ) have to satisfy:

ξ(0, τ) = ξ(L, τ) = ξ(X, τ1) = ξ(X, τ2) = 0, and

ζ(0, τ) = ζ(L, τ) = ζ(X, τ1) = ζ(X, τ2) = 0. (1.3.5)

It then follows that

dI(ε)

dε
=

∫ τ2

τ1

∫ L

0

d

dε
H(X, τ, ŪX , Ūτ , W̄X , W̄τ , ŪXX)dXdτ

=

∫ τ2

τ1

∫ L

0

{ ∂H

∂W̄X

∂W̄X

∂ε
+

∂H

∂ŪX

∂ŪX

∂ε
+

∂H

∂W̄τ

∂W̄τ

∂ε
+
∂H

∂Ūτ

∂Ūτ

∂ε
+

∂H

∂ŪXX

∂ŪXX

∂ε

}
dXdτ,

=

∫ τ2

τ1

∫ L

0

{ ∂H

∂W̄X

ξX +
∂H

∂ŪX

ζX +
∂H

∂W̄τ

ξτ +
∂H

∂Ūτ

ζτ +
∂H

∂ŪXX

ζXX

}
dXdτ. (1.3.6)

So, dI(0)
dε

=

∫ τ2

τ1

∫ L

0

{ ∂H

∂WX
ξX +

∂H

∂UX
ζX +

∂H

∂Wτ
ξτ +

∂H

∂Uτ
ζτ +

∂H

∂UXX
ζXX

}
dXdτ = 0. (1.3.7)
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Integrating (1.3.7) by parts and using (1.3.5) it then follows that (1.3.7) can be

rewritten in:
∫ τ1

τ2

∫ L

0

{
ξ
[ d

dX

( ∂H

∂WX

)
+

d

dτ

( ∂H

∂Wτ

)]

+ζ
[ d

dX

( ∂H

∂UX

)
+

d

dτ

( ∂H
∂Uτ

)
− d2

dX2

( ∂H

∂UXX

)]}
dXdτ = 0. (1.3.8)

Since the functions η(X, τ) and ζ(X, τ) are arbitrary it follows from (1.3.8) that

d

dX

( ∂H

∂WX

)
+

d

dτ

( ∂H

∂Wτ

)
= 0,

d

dX

( ∂H

∂UX

)
+

d

dτ

( ∂H
∂Uτ

)
− d2

dX2

( ∂H

∂UXX

)
= 0. (1.3.9)

These equations are called the Euler-Lagrange equations. By substituting H(X, τ, UX ,

Uτ ,WX ,Wτ , UXX) as given by (1.3.4) into (1.3.9), the following equations are obtained:

ρAWττ + 2ρAVbWXτ + ρAVbτ
(1 +WX) + (ρAV 2

b − EA)WXX =

(EA−R0)
(1 +WX)UXUXX − U2

XWXX

[(1 +WX)2 + U2
X ]3/2

,

ρAUττ + 2ρAVbUXτ + ρAVbτ
UX + (ρAV 2

b − EA)UXX + EIUXXXX =

(R0 − EA)
(1 +WX)2UXX − (1 +WX)UXWXX

[(1 +WX)2 + U2
X ]3/2

. (1.3.10)

Using a Taylor series, the denominator in (1.3.10) can be approximated by:

[(1 +Wx)
2 + U2

X ]−3/2 = 1 − 3WX + 6W 2
X − 3

2
U2

X − 10W 3
X +

15

2
WXU

2
X + O(4), (1.3.11)

where O(4) stands for terms of degree 4 or higher. Assuming that the displacements in

the longitudinal direction are much smaller than the displacements in the transversal

direction, that is, W = O(U 2) it follows from (1.3.11) that [(1 + WX)2 + U2
X ]3/2 ≈

1−3WX − 3
2
U2

X . Substitution of this approximation into (1.3.10) gives (approximately)

ρAWττ + 2ρAVbWXτ + ρAVbτ
(1 +WX) + (ρAV 2

b − EA)WXX =

(EA−R0)UXUXX ,

ρAUττ + 2ρAVbUXτ + ρAVbτ
UX + (ρAV 2

b − R0)UXX + EIUXXXX =
(
EA− R0

)(3

2
U2

XUXX +WXUXX + UXWXX

)
,

τ > 0, 0 < X < L. (1.3.12)

To put the equation of motion (1.3.12) into a non-dimensional form, the following

substitutions are applied: w(x, t) = W (X,τ)
L

, u(x, t) = U(X,τ)
L

, x = X
L
, β2 = T0

ρA
, t =

βτ
L
, V (t) = Vb(τ)

β
, P 2

0 = EI
T0L2 , and P 2

1 = EA
T0
, where L is the distance between the two
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pulleys which are assumed to be two simple supports, and T0 is the initial tension

which is related to R0 through R0 = T0 + ηρAV 2
b with 0 ≤ η ≤ 1. Substituting all

those non-dimensional variables into (1.3.12) and letting κ = 1−η the following system

of partial differential equations is then obtained:

wtt + 2V wxt + Vt(1 + wx) − (P 2
1 − V 2)wxx = (P 2

1 − 1 − ηV 2)uxuxx,

utt + 2V uxt + Vtux + (κV 2 − 1)uxx + P 2
0 uxxxx =

(P 2
1 − 1 − ηV 2)(

3

2
u2

xuxx + uxwxx + wxuxx), t > 0, 0 < x < 1. (1.3.13)

The boundary conditions for the two simple supports are given by:

w(0, t) = w(1, t) = 0, and u(x, t) = uxx(x, t) = 0 for x = 0, 1, (1.3.14)

while the initial displacements and initial velocities are:

w(x, 0) = w0(x), wt(x, 0) = w1(x), u(x, 0) = u0(x), and

ut(x, 0) = u1(x). (1.3.15)

Throughout this thesis, it is assumed that the time-dependent velocity of the belt

is given by V (t) = ε(V0 +α sin(Ωt)). The smallness of ε can be considered as a measure

of the smallness of the belt velocity Vb(t) compared to the wave velocity β. V0, α, and

Ω are assumed to be constants.

1.4 An analytical approximation

In this thesis formal approximations of the solutions of (1.3.13) - (1.3.15) will be con-

structed. This formal approximation will satisfy the partial differential equations and

the boundary conditions up to some order in ε. If a straight-forward ε−expansion is

used to approximate the solutions, secular terms can occur in the approximations. To

avoid these secular terms, a two-time-scales perturbation method is used. The first step

in applying this perturbation method can be to transform the initial-boundary-value-

problem (1.3.13) and (1.3.14) into the initial-value-problem by using the boundary

conditions (1.3.14).

The boundary conditions (1.3.14) imply that the solutions u(x, t) (and w(x, t))

should be extended as odd and 2-periodic functions in x, that is,

u(x, t) =
∞∑

n=1

un(t) sin(nπx). (1.4.1)

This extension implies that all terms in (1.3.13)-(1.3.15) should be extended odd and

2-periodic functions in x. Particular attention needs to be paid to the terms containing

ux and uxt since these terms are even with respect to x. To make these terms odd can
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be accomplished by multiplying them with the following odd and 2-periodic function

in x,H(x),

H(x) =
{ 1 for 0 < x < 1,

−1 for −1 < x < 0,
=

∞∑

j=0

4

(2j + 1)π
sin((2j + 1)πx), (1.4.2)

and H(x) = H(x + 2). It should be emphasized that in [10, 11, 12], the equations

(1.3.13)-(1.3.15) have been solved incorrectly, that is, the solutions have never been

extended properly and in fact the authors merely used a one mode approximation

without any justification.

In the process of transforming (1.3.13)-(1.3.15) into a system of ordinary diferential

equations, the following identities can be used:

∫ 1

0

sin(nπx) sin(kπx)dx =
{ 0 for k 6= n,

1
2

for k = n,
and

∫ 1

0

sin(nπx) cos(kπx)dx =
{ 0 for k ± n even,

2n
(n2−k2)π

for k ± n odd.
(1.4.3)

The results obtained by applying (1.4.1), (2.2.6), and (1.4.3) will be a set of ordinary

differential equations in t. The solutions of these ordinary differential equations will be

approximated by using a two-time-scales perturbation method. These two time scales

are usually t0 = t and t1 = εt. The introduction of these two time scales will give the

following transformations:

d(·)
dt

=
∂(·)
∂t0

+ ε
∂(·)
∂t1

,

d2(·)
dt2

=
∂2(·)
∂t20

+ 2
∂2(·)
∂t0∂t1

+ ε2
∂2(·)
∂t21

. (1.4.4)

The use of these transformations and the assumption that un(t) = un0(t0, t1)+εun1(t0, t1)

+ ε2un2(t0, t1) + . . . will give a set of ordered ordinary differential equations which can

be solved one by one (if possible) systematically.

1.5 Outline of the Thesis

In Chapter 2 the linear string-like equation for the transversal vibrations of a conveyor

belt with a low and time-varying velocity will be studied. The equation of motion

describing this phenomenon is the second part of (1.3.13) with P 2
0 = 0 and w(x, t)

identically equal to zero. Stability of the approximations of the solutions is discussed

as well as some similarities and differences between the present work and the results

available in the literature.

In Chapter 3 the linear beam-like equation for the transversal vibrations of a con-

veyor belt will be studied. In this chapter the bending stiffness P 2
0 is no longer equal to
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zero, which leads to a fourth order partial differential equation. It turns out that the

dynamic behaviour of a conveyor belt system modelled by using a beam-like equation

is considerably different from that modelled by using a string-like equation. For several

values of Ω (the frequency fluctuation of the belt velocity) the vibration of the belt

system are investigated. The most interesting cases for Ω can esentially be divided into

the sum or difference type of two natural frequencies. Even more interesting, for special

values of P 2
0 this sum and difference type can coincide giving rise to more complicated

dynamical behaviour which has never been detected in the existing literature.

In Chapter 4 the two equations in (1.3.13) will be studied. In this chapter it is

assumed that P 2
0 = O(1) and P 2

1 = O(1
ε
) leading to the possibility of decoupling

(1.3.13) into two uncoupled partial differential equations, through the application of

the so-called Kirchhoff approach. It turns out that the nonlinear part of the equation

stabilizes the solutions which are unstable in the linear case (see Chapter 2).

Another type of ordering assumptions on the transversal and longitudinal displace-

ments, and on P 2
0 and P 2

1 will lead to another problem. The case where P 2
0 = P 2

1 = O(1)

and u(x, t) = O(
√
ε), w(x, t) = O(ε) will be the topic of Chapter 5. It will be shown

in this chapter that µ2 = P 2
0 π

2 = 1
2

is a special parameter value, in the sense that for

µ2 > 1
2

the dynamic behaviour of the system resembles the one as studied in Chapter

4, while for µ2 < 1
2

a much more complicated behaviour will occur due to additional

mode interactions.
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Chapter 2

On The Transversal Vibrations of A

Conveyor Belt with A Low and

Time-Varying Velocity. Part I: The

String-like Case ‡

Abstract. In this chapter initial-boundary value problems for a linear wave (string) equa-

tion are considered. These problems can be used as simple models to describe the vertical

vibrations of a conveyor belt, for which the velocity is small with respect to the wave speed.

The belt is assumed to move with a low and time-varying speed. Formal asymptotic approx-

imations of the solutions are constructed to show the complicated dynamical behavior of the

conveyor belt. It also will be shown that the truncation method can not be applied to this

problem in order to obtain approximations valid on long time scales.

2.1 Introduction

Investigating transverse vibrations of a belt system is a challenging subject which has

been studied for many years (see [2] - [5] for an overview) and is still of interest today.

The main purpose of studying the dynamic behavior of a belt system is to know

the natural frequencies of the vibrations. By knowing these natural frequencies, the

so-called resonance-free belt system can be designed (see [4]). Resonances that can

cause severe vibrations can be initiated by some parts of the belt system, such as the

varying belt speed, the roll eccentricities, and other belt imperfections. The occurrence

of resonances should be prevented since they can cause operational and maintenance

problems including excessive wear of the belt and the support component, and the

increase of energy consumption of the system.

‡This chapter is a revised version of [1] On The Transversal Vibrations of A Conveyor Belt with

A Low and Time-Varying Velocity. Part I: The String-Like Case.

11
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Belt vibrations can be classified into two types, i.e. whether it is of a string-like

type or of beam-like type, depending on the bending stiffness of the belt. If the bending

stiffness can be neglected then the system is classified as string (wave)-like, otherwise it

is classified as beam-like. The transverse vibrations of the belt system may be described

as:

• string-like by

utt + 2V uxt + Vtux + (κV 2 − c2)uxx = 0, and (2.1.1)

• beam-like (with a string effect) by

utt + 2V uxt + Vtux + (κV 2 − c2)uxx +
EI

ρA
uxxxx = 0, (2.1.2)

where:
u(x, t) : the displacement of the belt in the vertical direction,

V : the time-varying belt speed,

c : the wave speed,

E : Young’s modulus,

I : the moment of inertia with respect to the x (horizontal) axis,

ρ : the mass density of the belt,

A : the area of the cross section of the belt,

κ : a constant representing the relative stiffness of the belt.

Its value is in [0, 1],

x : coordinate in horizontal direction,

t : time, and

L : the distances between the puleys.
The beam-like system with a low time-varying speed will be considered in Chapter

3. In this chapter we will study the string-like case where the belt velocity V (t) is

given by

V (t) = ε(V0 + α sin(Ωt)), (2.1.3)

where ε is a small parameter with 0 < ε � 1,and V0 and α are constants with V0 > 0

and V0 > |α|. The velocity variation frequency of the belt is given by Ω. In fact the

small parameter ε indicates that the belt speed V (t) is small compared to the wave

speed c. The condition V0 > |α| guarantees that the belt will always move forward in

one direction. It will turn out that certain values of Ω can lead to complicated internal

resonances of the belt system.

While for more accurate results, a non-linear model is required, it is not meaningless

to investigate first a linear model. Knowledge about linear models is important in order

to understand results found in non-linear models, especially for those cases which are
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weakly non-linear. For non-linear models describing the dynamic behavior of belts, we

refer the readers to [5], [7], and [8]. In [8] the role played by the external frequency

of the non-constant belt velocity and the bending stiffness is studied. It is found that,

as the bending stiffness tends to zero, the system behaves more like a string and its

dynamics becomes more complicated than the beam-like system.

Most belt studies involve mainly belts moving with a constant velocity. Recently in

a series of papers ( [9] - [12]) several authors considered the vibrations of belts moving

with time-dependent velocities and the vibrations of tensioned pipes conveying fluid

with time-dependent velocities. In fact in ( [9] - [12]) the equations (2.1.1) or (2.1.2)

have been studied, where V (t) as given by (2.1.3) belongs to and is included in the cases

that have been studied in ( [9] - [12]). To find approximations of the displacement of

the belt in vertical direction the authors use in ( [9] - [12]) the method eigenfunction

expansions, the Galerkin truncation method, and the multiple-time-scales perturbation

method as for instance described in [13, 14]. To apply the method of eigenfunction

expansions and the perturbation method, special attention has to be paid to the O(ε)

terms involving ux and uxt in (2.1.1) or (2.1.2). To apply the truncation method the

internal resonances between the vibration modes have to be studied. In ( [9] - [12]) the

O(ε) terms in (2.1.1) or (2.1.2) involving ux and uxt are not treated correctly, and it is

assumed in ( [9] - [12]) that truncation to one mode (or a few modes) of the constant

belt velocity system is allowed. In this chapter we will show that this truncation is not

allowed. In [9, 11] no instabilities of the belt system (as described by (2.1.1)) were

found using the truncation method when the velocity variation frequency Ω is equal

to or close to the difference of two natural frequencies of the constant velocity system.

In this chapter it will be shown that also instabilities can occur when Ω is equal to or

close to the difference of two natural frequencies of the constant velocity system. In

[5] and in ( [15] - [19]) several remarks can be found on how and when truncation is

allowed. In those papers weakly nonlinear problems for wave and for beam equations

have been studied.

In this chapter we consider the vibrations of a belt modeled by a string moving with

a non-constant velocity V (t) = ε(V0 + α sin Ωt), where V0, α, and Ω are constants with

V0 > |α|. The velocity V (t) can be considered as a periodically changing velocity such

that the belt still moves in one direction. This variation in V (t) can be considered

as some kind of an excitation. In relation to excitations, some results in this area

have been obtained in [20] and in [21]. In [20] problems for a string moving with

a constant velocity are considered for which one of its ends (i.e. x = L) is subjected

to an harmonic excitation. In [22], the vibrations of the string at x = L is forced to

be u(x, t) = u0 cos Ωt. In [22] the author also studied the case where one end of the

moving string is subjected to an harmonic excitation to represent the case of a belt

traveling from an eccentric pulley to a smooth pulley. Whereas the case where both

ends of the string are excited is studied in [23]. In that paper a moving string model

is used to study the transverse vibrations of power transmission chains. In all of these
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papers ( [20] - [23]), the belt velocity is assumed to be constant.

This chapter is organized as follows. In section 2.2, an equation to describe the

transversal vibrations of a belt (which is modeled as a string) is derived. Here we

assume that the belt moves with an arbitrary low velocity which is varied harmonically,

i.e. V (t) = ε(V0 + α sin Ωt). In section 2.3 we study the energy and the boundedness

of the solution of the problem as derived in section 2.2. In section 2.4 we discuss the

application of the two time-scales perturbation method to solve the equation. It turns

out that there are infinitely many values of Ω that can cause internal resonances. In

this chapter we only investigate the resonance case Ω = cπ
L

. All other resonance cases

can be studied similarly. In this section it will also be shown that the truncation

method can not be applied to this problem due to the distribution of energy among all

vibration modes. In the last part of section 2.4 we also study a detuning case for the

value Ω = cπ
L

. Finally, in section 2.5 some remarks will be made and some conclusions

will be drawn.

2.2 A string model

In this section the dynamic behavior of a conveyor belt which is modeled by a moving

string is studied. Since the belt is assumed to move with a speed V (t) (which explicitly
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Figure 2.1: Conveyor belt system

depends on t) we obtain for the time-derivative of the transversal displacement u(x, t)

of the belt

Du

Dt
=
∂u

∂t
+
∂u

∂x

dx

dt
= ut + V ux, (2.2.1)

and for the second order derivative with respect to time

D2u

Dt2
= utt + 2V uxt + V 2uxx + Vtux. (2.2.2)
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Accordingly, we have the following equation of motion

T0uxx = ρ
D2u

Dt2
,

c2uxx = utt + 2V uxt + V 2uxx + Vtux, (2.2.3)

where c =
√

T0

ρ
, in which T0 and ρ are assumed to be the constant tension and the

constant mass-density of the string, respectively. At x = 0 and x = L we assume that

the string is fixed in vertical direction, where L is the distance between the pulleys.

For V (t) we use V (t) = ε(V0 + α sin Ωt) with V0 > 0 and V0 > |α|. This low

velocity should be interpreted as low compared to the wave speed c of the belt. The

condition V0 > |α| guarantees that the belt will always move forward in one direction.

Consequently (2.2.3) becomes:

c2uxx − utt = ε [αΩ cos(Ωt)ux + 2(V0 + α sin(Ωt))uxt] + ε2[V0 + α sin(Ωt)]2uxx, (2.2.4)

where the boundary and initial conditions are given by

u(0, t; ε) = u(L, t; ε) = 0,

u(x, 0; ε) = f(x) and ut(x, 0; ε) = g(x), (2.2.5)

where f(x) and g(x) represent the initial displacement and the initial velocity of the

belt, respectively. Throughout this chapter it is assumed that f and g are suffi-

ciently smooth such that a two times continuously differentiable solution for the initial-

boundary value problem (2.2.4) - (2.2.5) exists. Moreover, it is assumed that all series

representations for the solution v (and its derivatives), and for the functions f and g

are convergent. In this section the initial-boundary value problem (2.2.4)-(2.2.5) for

u(x, t) will be reduced to a system of infinitely many ordinary differential equations.

This system will be studied further in section 2.4 using a two-time scales perturbation

method.

To satisfy the boundary conditions all functions should be expanded in Fourier-

sin-series. Therefore, solution of the form u(x, t; ε) =
∑∞

n=1 un(t; ε) sin(nπx
L

) is sought.

This is an odd function in x, both with regard to x = 0 and x = L. All functions in the

right hand side of (2.2.4) should be extended properly to make them odd with respect

to x = 0 and x = L, and periodic with period 2L thereof. Note that this extention

or expansion process is not applied in ( [9]- [11]) causing the occurence of incorrect

results in the critical values of Ω.

To make the right hand side of (2.2.4) odd, terms which are not already in Fourier-

sin-series form in x are multiplied with (see also [15, 18]):

H(x) =

{
1 if 0 < x < L

−1 if −L < x < 0
=

∞∑

j=0

4

(2j + 1)π
sin

((2j + 1)πx

L

)
.(2.2.6)
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Substituting (2.2.6) into (2.2.4) results in

c2uxx − utt = ε
∞∑

j=0

4

(2j + 1)π
sin

((2j + 1)πx

L

)
[αΩ cos(Ωt)ux+

2(V0 + α sin(Ωt))uxt] + ε2(V0 + α sin(Ωt))2uxx. (2.2.7)

Substitution of u(x, t) =
∑∞

n=1 un(t; ε) sin(nπx
L

) into (2.2.7) results in:

∞∑

n=1

(
−

(cnπ
L

)2

un − ün

)
sin

(nπx
L

)
= ε

∞∑

n=1

∞∑

j=0

4

(2j + 1)π
sin

((2j + 1)πx

L

)

(
αΩ cos(Ωt)

nπ

L
un cos

(nπx
L

)
+ 2 (V0 + α sin(Ωt))

nπ

L
u̇n cos

(nπx
L

))
−

ε2
∞∑

n=1

(V0 + α sin Ωt)2
(nπ
L

)2

un sin
(nπx
L

)
. (2.2.8)

By multiplying (2.2.8) with sin(kπx
L

), and by integrating the so-obtained equation with

respect to x from x = −L to x = L, we obtain:

ük +

(
ckπ

L

)2

uk = ε
[∑

1
−

∑
2
−

∑
3

] 2n

(2j + 1)L

[
αΩ cos(Ωt)un +

2(V0 + α sin(Ωt))u̇n

]
+ ε2(V0 + α sin(Ωt))2

(
kπ

L

)2

uk, (2.2.9)

where
∑

1 =
∑

k=n−(2j+1),
∑

2 =
∑

k=2j+1+n, and
∑

3 =
∑

k=2j+1−n . Equation (2.2.9)

will be studied further in section 2.4.

2.3 Energy and boundedness of the solution

We are going to use the concept of energy in many parts of the next sections. In this

section we shall derive the energy of the moving string as modeled by the wave equation

c2uxx = utt + 2V uxt + V 2uxx + Vtux. (2.3.1)

By multiplying (2.3.1) with (ut + V ux) we obtain after some elementary calculations

(
1

2
u2

t + utV ux +
1

2
c2u2

x +
1

2
V 2u2

x)t +

(−c2uxut −
1

2
c2V u2

x + V u2
t + V 2uxut +

1

2
V 3u2

x −
1

2
V ut)x = 0. (2.3.2)

Integrating (2.3.2) with respect to x from x = 0 to x = L, and then integrating the

so-obtained equation with respect to t from t = 0 to t, we obtain:

∫ L

0

(
1

2
u2

t + V utux +
1

2
(c2 + V 2)u2

x)|tt=0dx =
1

2

∫ t

0

(c2 − V 2)V u2
x|Lx=0dt. (2.3.3)
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The energy E(t) of the moving string is now defined to be:

E(t) =
1

2

∫ L

0

((ut + V ux)
2 + c2u2

x)dx. (2.3.4)

So, (2.3.3) can be written as

E(t) − E(0) =
1

2

∫ t

0

(c2 − V 2)V u2
x|Lx=0dt

⇔ dE

dt
=

1

2
(c2 − V 2)V

(
u2

x(L, t) − u2
x(0, t)

)
≤MV, (2.3.5)

where M is the maximum of 1
2
(c2 − V 2) (u2

x(L, t) − u2
x(0, t)), where we have assumed

that u(x, t) is two times continuously differentiable on 0 ≤ x ≤ L and 0 ≤ t ≤ Tε−1 for

some positive constant T <∞. It follows from (2.3.5) that dE
dt

≤ O(ε) on 0 ≤ t ≤ Tε−1

since V is O(ε). And so, E(t)−E(0) ≤ O(εt) on 0 ≤ t ≤ Tε−1. The following estimate

on u(x, t) then also holds

|u(x, t)| = |
∫ x

0

ux(x, t)dx| ≤
∫ x

0

|ux(x, t)|dx

≤
∫ L

0

|ux(x, t)|dx

≤

√∫ L

0

12dx

√∫ L

0

2 · 1

2
(c2u2

x + (ut + V ux)2)dx

=
√
L
√

2E(t), (2.3.6)

on 0 ≤ t ≤ Tε−1. We refer to [24] for more detailed descriptions of energetics of

translating continua.

2.4 Application of the two time-scales perturbation

method

Consider again equation (2.2.9). The application of a straight-forward expansion

method to solve (2.2.9) will result in the occurrence of so-called secular terms which

causes the approximations to become unbounded on long time-scales. To remove those

secular terms, we introduce two time-scales t0 = t and t1 = εt. The introduction of

these two time-scales defines the following transformations:

uk(t; ε) = vk(t0, t1; ε),
duk(t; ε)

dt
=
∂vk

∂t0
+ ε

∂vk

∂t1
,

d2uk(t; ε)

dt2
=
∂2vk

∂t20
+ 2ε

∂2vk

∂t0∂t1
+ ε2

∂2vk

∂t21
. (2.4.1)
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By substituting (2.4.1) into (2.2.9) we obtain:

∂2vk

∂t20
+ 2ε

∂2vk

∂t0∂t1
+

(
ckπ

L

)2

vk =

ε
[∑

1
−

∑
2
−

∑
3

] 2n

(2j + 1)L

(
αΩ cos(Ωt)vn + 2[V0 + α sin(Ωt)

∂vn

∂t0
]
)

+ O(ε2).

(2.4.2)

Assuming that vk(t0, t1; ε) = vk0(t0, t1) + εvk1(t0, t1) + . . ., then in order to remove

the secular terms up to O(ε), we have to solve the following problems:

O(1) :
∂2vk0

∂t20
+

(
ckπ

L

)2

vk0 = 0,

O(ε) :
∂2vk1

∂t20
+

(
ckπ

L

)2

vk1 = −2
∂2vk0

∂t0∂t1
+

[∑
1
−

∑
2
−

∑
3

] 2n

(2j + 1)L(
αΩ cos(Ωt)vn0 + 2(V0 + α sin(Ωt))

∂vn0

∂t0

)
. (2.4.3)

The O(1) problem has as solution

vk0(t0, t1) = Ak0(t1) cos
(ckπt0

L

)
+Bk0(t1) sin

(ckπt0
L

)
, (2.4.4)

where Ak0 and Bk0 are still arbitrary functions that can be used to avoid secular terms

in the solution of the O(ε)-problem.

From the O(ε) problem it can readily be seen that there are infinitely many values

of Ω that can cause internal resonance. In fact these values are (n+k) cπ
L
, (n−k) cπ

L
, (k−

n) cπ
L

, and −(n + k) cπ
L

, where k = n − 2j − 1, or k = 2j + 1 − n, or k = n + 2j + 1

(see also the summations in (2.2.9)). It is also easy to see that these values for Ω are

always odd multiples of cπ
L

(or are in an O(ε)-neighbourhood of these odd multiples).

In [9] and [11] the critical values of Ω are found to be even multiples of the natural

frequency. These incorrect results in [9] and [11] for O(ε) belt velocities are due to

the fact that certain terms in the PDE (that is, terms involving ux and uxt in (2.2.4))

are not extended or expanded correctly.

To show how the secular terms can be eliminated we will consider three cases:

Ω = cπ
L
,Ω = cπ

L
+ εδ, and the case that Ω is not in a neighborhood of an odd multiple

of Ω = cπ
L

.

2.4.1 Case 1: Ω = cπ
L

In appendix 1 it has been shown for Ω = cπ
L

what equations Ak0(t1) and Bk0(t1) have

to satisfy such that the approximations of the solution of the problem do not contain

secular terms. It turns out that Ak0 and Bk0 have to satisfy:

dAk0

dt̄1
= (k + 1)B(k+1)0 + (k − 1)B(k−1)0,
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dBk0

dt̄1
= −(k + 1)A(k+1)0 − (k − 1)A(k−1)0, (2.4.5)

where t̄1 = α
L
t1, and k = 1, 2, 3, . . .. For Ω = m cπ

L
where m is odd the same analysis

as presented in appendix 1 can be followed. It then follows that Ak0 and Bk0 have to

satisfy (k = 1, 2, 3, . . .):

dAk0

dt̄1
=

(k +m)(2k + 2m− 1)

m(2k +m)
B(k+m)0 +

(k −m)(2k − 2m+ 1)

m(2k −m)
B(k−m)0,

dBk0

dt̄1
= −(k +m)(2k + 2m− 1)

m(2k +m)
A(k+m)0 −

(k −m)(2k − 2m+ 1)

m(2k −m)
A(k−m)0.

It should be noticed that for m = 1 this system of ordinary differential equations is

reduced to system (2.4.5). In this section we will study system (2.4.5), which is a

coupled system of infinitely many ordinary differential equations.

Application of the truncation method

First we will try to find an approximation of the solution of system (2.4.5) by using

Galerkin’s truncation method. So, we will use just some first few modes and neglect

the higher order modes. For example, in the case we consider the first 3 modes, we

obtain from (2.4.5):

Ẋ = AX, (2.4.6)

where: X =




B10

A10

B20

A20

B30

A30




and A =




0 0 0 −2 0 0

0 0 2 0 0 0

0 −1 0 0 0 −3

1 0 0 0 3 0

0 0 0 −2 0 0

0 0 2 0 0 0




,

and where Ẋ represents the derivative of X with respect to t̄1. This system has eigen-

values 2
√

2i,−2
√

2i, and 0, all with multiplicity 2. Their associated eigenvectors are:

(0, 1,
√

2i, 0, 0, 1), (1, 0, 0,−
√

2i, 1, 0), (1, 0, 0,
√

2i, 1, 0), (0, 1,−
√

2i, 0, 0, 1), (−3, 0, 0, 0,

1, 0) and (0,−3, 0, 0, 0, 1), respectively. The solution of (2.4.6) is then given by:

B10(t1) = C3 cos(2
√

2t1) + C4 sin(2
√

2t1) − 3C5,

A10(t1) = C1 cos(2
√

2t1) + C2 sin(2
√

2t1) − 3C6,

B20(t1) = −
√

2C1 sin(2
√

2t1) +
√

2C2 cos(2
√

2t1) −
√

2C4 cos(2
√

2t1),

A20(t1) =
√

2C3 sin(2
√

2t1) −
√

2C4 cos(2
√

2t1),

B30(t1) = C3 cos(2
√

2t1) + C4 sin(2
√

2t1) + C5,

A30(t1) = C1 cos(2
√

2t1) + C2 sin(2
√

2t1) + C6, (2.4.7)

where C1, C2, . . . , C6 are all constants of integration. Note that we have dropped all

the bars in (3.4.2).
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From the initial conditions (2.2.5), that is, u(x, 0) = f(x) and ut(x, 0) = g(x) it

follows that

f(x) =
∞∑

k=1

uk(0; ε) sin
(kπx
L

)
⇔ uk(0; ε) =

2

L

∫ L

0

f(x) sin
(kπx
L

)
dx,

g(x) =
∞∑

k=1

u̇k(0; ε) sin
(kπx
L

)
⇔ u̇k(0; ε) =

2

L

∫ L

0

g(x) sin
(kπx
L

)
dx.

Moreover, since uk(0; ε) = vk(0, 0; ε) = vk0(0, 0) + εvk1(0, 0) + . . . and u̇k(0; ε) =

v̇k(0, 0; ε) = v̇k0(0, 0) + εv̇k1(0, 0) + . . . it follows that

vk0(0, 0) =
2

L

∫ L

0

f(x) sin
(kπx
L

)
dx, v̇k0(0, 0) =

2

L

∫ L

0

g(x) sin
(kπx
L

)
dx. (2.4.8)

From (3.3.5) and (2.4.8) we then obtain

Ak0(0) =
2

L

∫ L

0

f(x) sin
(kπx
L

)
dx, and Bk0(0) =

2

ckπ

∫ L

0

g(x) sin
(kπx
L

)
dx.

(2.4.9)

Equation (2.4.9) can be used to calculate the constants in (3.4.2).

In summary, after all constants in (3.4.2) have been calculated, vk0(t0, t1) can be

determined using (3.3.5). Then u(x, t; ε) can be approximated by
∑3

k=1 uk(t; ε) sin(kπx
L

).

For example, using 1, 2, or 3 modes, respectively, with f(x) = −8
π3 sin(πx),

g(x) = 0, c = L = 1 we find as approximations for u(x, t; ε):

u(x, t; ε) ≈ −8

π3
cos(πt0) sin(πx),

u(x, t; ε) ≈ −8

π3
cos(

√
2t1) cos(πt0) sin(πx) +

4
√

2

π3
sin(

√
2t1) sin(2πt0) sin(2πx),

u(x, t; ε) ≈
(
− 2

π3
cos(2

√
2t1) −

6

π3

)
cos(πt0) sin(πx) +

2
√

2

π3
sin(2

√
2t1)

sin(2πt0) sin(2πx) +
(−2

π3
cos(2

√
2t1) +

2

π3

)
cos(3πt0) sin(3πx). (2.4.10)

The graphs of these approximations for u(x, t) for x = 0.5 and ε = 0.01 are depicted

in Figure 2.2.

For more than three modes, eigenvalues and eigenvectors become more and more

difficult to compute by just using pencil and paper. Using the computer software

package Maple , the eigenvalues of system (2.4.5) have been computed up to 20 modes

and are listed in Table 1. From the table, it can be seen that the eigenvalues of

the truncated system are always purely imaginary, each has multiplicity two, and for

an odd number of modes we get an additional pair of zero eigenvalues. From the

approximations (2.4.10) and from Table 1 it can readily be seen that the truncation

method will not give accurate results on long time-scales, that is, on time-scales of

order ε−1. On the other hand it is well-known in mathematics that if the truncated

system has only purely imaginary eigenvalues and/or eigenvalues equal to zero then no

conclusions can be drawn for the infinite dimensional system.
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–0.2

–0.1

0

0.1

0.2

46 48 50 52 54

v(0.5,t)

1 mode
2 modes 3 modes

t

Figure 2.2: Approximations for u(x, t) with initial displacement f(x) = −8
π3 sin(πx) and

initial velocity g(x) = 0. The graphs are given for x = 0.5, t ∈ [45, 55], and ε = 0.01.

Analysis of the infinite dimensional system (2.4.5)

In the previous subsection we found that if system (2.4.5) is truncated then the eigen-

values of the truncated system are always purely imaginary or zero. In this section we

shall show that the results obtained by applying the truncation method are not valid

on time-scales of order ε−1.

By putting kBk0(t1) = Yk0(t1) and kAk0(t1) = Xk0(t1), system (2.4.5) becomes:

dYk0

dt1
= k[−X(k+1)0 −X(k−1)0],

dXk0

dt1
= k[Y(k+1)0 + Y(k−1)0], (2.4.11)

for k = 1, 2, 3, . . . , and X00 = Y00 = 0.

Accordingly we also have:

Yk0Ẏk0 = −k[Yk0X(k+1)0 + Yk0X(k−1)0],

Xk0Ẋk0 = k[Xk0Y(k+1)0 +Xk0Y(k−1)0]. (2.4.12)

By adding both equations in (2.4.12), and then by taking the sum from k = 1 to

∞ we obtain:

1

2

∞∑

k=1

d

dt1
(Y 2

k0 +X2
k0) =

∞∑

k=1

[X(k+1)0Yk0 − Y(k+1)0Xk0]. (2.4.13)

By differentiating (2.4.13) with respect to t1 we find (see also appendix 2)

1

2

∞∑

k=1

d2

dt21
(Y 2

k0 +X2
k0) = 2

∞∑

k=1

(X2
k0 + Y 2

k0), (2.4.14)
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No. of Eigenvalues of matrix A Dimensi-

modes (all multiplicity 2) on eigen-

space of A

1 0 2

2 ±
√

2i 4

3 0,±2
√

2i 6

4 ±1.13i,±4.33i 8

5 0,±2.30i,±5.89i 10

6 ±7.50i,±1.00i,±3.56i 12

7 0,±9.15i,±2.05i,±4.90i 14

8 ±10.83i,±0.93i,±3.18i,±6.30i, 16

9 0,±12.54i,±1.89i,±4.38i,±7.74i 18

10 ±14.26i,±0.87i,±5.65i,±9.23i,±2.93i 20

11 0,±16.01i,±1.78i,±4.05i,±6.97i,±10.76i 22

12 ±17.76i,±0.83i,±2.76i,±5.22i,±8.33i,±12.31i 24

13 0,±19.53i,±1.70i,±3.81i,±6.45i,±9.73i,±13.88i, 26

±19.53i

14 ±21.31i,±15.48i,±0.80i,±2.63i,±4.92i,±7.72i, 28

±11.16i

15 0,±23.11i,±17.10i,±1.64i,±3.63i,±6.07i,±9.03i, 30

±12.63i

16 ±24.91i,±18.73i,±0.78i,±2.53i,±4.68i,±7.28i, 32

±10.38i,±14.11i

17 0,±26.71i,±20.38i,±1.58i,±3.49i,±5.79i,±8.52i, 34

±11.75i,±15.62i

18 ±28.53i,±22.05i,±0.75i,±2.45i,±4.50i,±6.93i, 36

±9.79i,±13.16i,±17.15i

19 0,±30.35i,±23.72i,±1.54i,±3.37i,±5.55i,±8.12i, 38

±11.10i,±14.58i,±18.70i

20 ±32.18i,±25.41i,±0.73i,±2.38i,±4.34i,±6.65i, 40

±9.33i,±12.43i,±16.03i,±20.27i

Table 2.1: Approximations of the eigenvalues of the truncated system (2.4.5).

and so, by putting
∑∞

k=1(X
2
k0 + Y 2

k0) = W (t1) we finally obtain:

d2W (t1)

dt21
− 4W (t1) = 0. (2.4.15)

The solution of (2.4.15) is W (t1) = K1e
2t1 +K2e

−2t1 , where K1 and K2 are constants.

Note that W (t1) is a first integral of system (2.4.5). K1 and K2 are both positive
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numbers as is shown in the following calculation. From W (t1) =
∑∞

k=1[X
2
k0 + Y 2

k0] it

follows that

W (0) =
∞∑

k=1

[X2
k0(0) + Y 2

k0(0)] ≥ 0 ⇒ K1 +K2 ≥ 0 (2.4.16)

Differentiating W (t1) with respect to t1 and then putting t1 = 0 we get:

K1 −K2 =
∞∑

k=1

[Yk0(0)X(k+1)0(0) −Xk0(0)Y(k+1)0(0)]. (2.4.17)

From (2.4.16) and (2.4.17) it then follows that

2K1 =

∞∑

k=1

[
X2

k0(0) + Y 2
k0(0) + Yk0(0)X(k+1)0(0) −Xk0(0)Y(k+1)0(0)

]

=
1

2
X2

10(0) +
1

2
Y 2

10(0) +
1

2

(
X10(0) − Y20(0)

)2

+
1

2

(
Y10(0) +X20(0)

)2

+
1

2

(
X20(0) − Y30(0)

)2

+
1

2

(
Y20(0) +X30(0)

)2

+ . . .+

1

2

(
Xn0(0) − Y(n+1)0(0)

)2

+
1

2

(
Yn0(0) +X(n+1)0(0)

)2

+ . . .

≥ 0. (2.4.18)

So, K1 ≥ 0 and 0 if and only if Xk0(0) = Yk0(0) = 0 for each k = 1, 2, 3, . . .. Using

a similar method, K2 also can be shown to be a non-negative number. Consequently,

W (t1) is, in general, non-negative and increases as t1 increases. This behavior is dif-

ferent from the behavior of Ak0(t1) and Bk0(t1) as obtained by applying the truncation

method. If we apply the truncation method, we merely obtain sin and cos functions

for Ak0 and Bk0 while the energy (see next subsection) is described by exponential

functions. This means that the approximations obtained by applying the truncation

method to system (2.4.5) are not accurate on long time-scales, that is, on time-scales

of order ε−1.

The energy

The energy E(t) of the conveyor belt system can also be approximated using the

function W (t1). Since

u(x, t) =

∞∑

k=1

uk(t) sin
(kπx
L

)

=

∞∑

k=1

[
Ak0(t1) cos

(ckπt
L

)
+Bk0(t1) sin

(ckπt
L

)]
sin

(kπx
L

)
+ O(ε)

(2.4.19)
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it follows that the energy E(t) satisfies

E(t) =
1

2

∫ L

0

[
(ut + V ux)

2 + c2u2
x

]
dx

=
c2π2

4L

∞∑

k=1

k2

[(
−Ak0 sin

(kπt
L

)
+Bk0 cos

(kπt
L

))2

+

(
Ak0 cos

(ckπt
L

)
+Bk0 sin

(ckπt
L

))2
]

+ O(ε)

=
c2π2

4L

∞∑

k=1

[
(kAk0)

2 + (kBk0)
2
]
+ O(ε)

=
c2π2

4L

∞∑

k=1

[X2
k0 + Y 2

k0] + O(ε)

=
c2π2

4L
W (t1) + O(ε)

=
c2π2

4L

(
K1e

2t1 +K2e
−2t1

)
+ O(ε). (2.4.20)

So, the energy increases, although it is bounded on a time-scale of order 1
ε
.

2.4.2 Case 2: Ω = cπ
L

+ εδ

In this section we will consider the detuning from Ω = cπ
L

, that is, we will study the

case Ω = cπ
L

+εδ where δ = O(1). In order to avoid secular terms in the approximation,

it can be shown (the calculation are similar to those in section 4.1) that Ak0(t1) and

Bk0(t1) have to satisfy:

dAk0

dt̄1
= (k + 1)

[
B(k+1)0 cos(δt̄1) + A(k+1)0 sin(δt̄1)

]

+(k − 1)
[
B(k−1)0 cos(δt̄1) − A(k−1)0 sin(δt̄1)

]
,

dBk0

dt̄1
= −(k + 1)

[
A(k+1)0 cos(δt̄1) − B(k+1)0 sin(δt̄1)

]

−(k − 1)[A(k−1)0 cos(δt̄1) +B(k−1)0 sin(δt̄1)], (2.4.21)

for k = 1, 2, 3, . . .. It should be noticed that for δ = 0 we obtain again system (2.4.5).

For convenience, we will drop the bar from t̄1.

The calculations as given on page 21 can be followed again, and we obtain:

d2W (t1)

dt21
+ (δ2 − 4)W (t1) = D1δ

2, (2.4.22)

where W (t1) is defined as in section 4.1.2, and D1 = W (0). Elementary calculations

then yield:

for |δ| < 2 : W (t1) =
D1

4 − δ2

[
4 cosh(t1

√
4 − δ2) − δ2

]
+

D2√
4 − δ2

sinh(t1
√

4 − δ2),



2.4 Application of the two time-scales perturbation method 25

for |δ| = 2 : W (t1) = D1 +D2t1 +
1

2
D1δ

2t21,

for |δ| > 2 : W (t1) =
D1

δ2 − 4

[
δ2 − 4 cos(t1

√
δ2 − 4)

]
+

D2√
δ2 − 4

sin(t1
√
δ2 − 4),

(2.4.23)

where D2 = dW (0)
dt1

. The interesting features of these solutions are, that for |δ| < 2,

W (t1) (and so the energy) increases exponentially. For |δ| = 2,W (t1) increases poly-

nomally, and finally for |δ| > 2,W (t1) is bounded due to the trigonometric functions.

2.4.3 Case 3: The non-resonant case

If Ω is not within an order ε-neighborhood of the frequencies that cause internal reso-

nance, that is, not within an order ε−neighborhood of m cπ
L

(with m odd) then Ak0(t1)

and Bk0(t1) have to satisfy

dAk0

dt1
= 0,

dBk0

dt1
= 0, (2.4.24)

in order to avoid secular terms. Consequently, Ak0(t1) and Bk0(t1) are constants, say

K1k0 and K2k0. So, we have uk0(t0, t1) = K1k0 cos( ckπt0
L

) + K2k0 sin( ckπt0
L

). Since

u(x, t) =
∑∞

k=1 uk(t) sin(kπx
L

), where uk(t) is approximated by vk0(t0, t1), it follows

from the initial conditions v(x, 0) = f(x) and ut(x, 0) = g(x) that

K1k0 =
2

L

∫ L

0

f(x) sin
(kπx
L

)
dx, and K2k0 =

2

ckπ

∫ L

0

g(x) sin
(kπx
L

)
dx. (2.4.25)

The energy E(t) of the conveyor belt system for this case can be approximated from:

u(x, t) ≈
∞∑

k=1

(
K1k0 cos

(ckπt0
L

)
+K2k0 sin

(ckπt0
L

))
sin

(kπx
L

)
+ O(ε), (2.4.26)

where K1k0 and K2k0 are given by (2.4.25). Then,

E(t) =

∫ L

0

(u2
t + c2u2

x)dx+ O(ε),

=

∞∑

k=1

(ckπ)2

2L

(
K12

k0 +K22
k0

)
+ O(ε),

=
c2π2

2L

∞∑

k=1

k2(K12
k0 +K22

k0) + O(ε). (2.4.27)

Using (2.4.25), we finally obtain:

E(t) =
2c2L

π2

∞∑

k=1

1

k2

[∫ L

0

f ′′ sin
(kπx
L

)
dx

]2

+

2L3

π4

∞∑

k=1

1

k4

[∫ L

0

g′′ sin
(kπx
L

)
dx

]2

+ O(ε)

= constant + O(ε). (2.4.28)
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2.5 Conclusions

In this chapter we studied initial-boundary value problems which can be used as models

to describe transversal vibrations of belt systems. The belt is assumed to move with a

non-constant, low velocity V (t), that is, V (t) = ε(V0 +α sin(Ωt)), where 0 < ε� 1 and

V0, α,Ω are constants. Formal approximations of the solution of the initial-boundary

value problem have been constructed. Also explicit approximations of the energy of

the belt system are given. It turns out that there are infinitely many values of Ω giving

rise to internal resonances in the belt system. These values for Ω are m cπ
L

+ εδ where m

is an arbitrary odd integer, cπ
L

is the lowest natural frequency of the constant velocity

system, and δ is a detuning parameter of O(1). For Ω = cπ
L

+ εδ (that is, m = 1)

the problem has been studied completely. The following interesting results have been

found: for |δ| < 2 the energy of the belt system increases exponentially, for |δ| = 2

the energy increases polynomally, and for |δ| > 2 the energy is bounded and varies

trigonometrically. When Ω is not in an order ε−neighborhood of m cπ
L

(with m odd)

the energy of the belt system is constant up to order ε. All the results found are valid

on long time-scales, that is, on time-scales of order ε−1.

One major conclusion of this chapter is that the truncation method can not be

applied to obtain asymptotic results on long time-scales (that is, on time-scales of order

ε−1) when Ω is in an order ε−neighborhood of an odd multiple of the lowest natural

frequency of the constant velocity system. Moreover, in this chapter we improve the

(incorrect) results and applied methods as for instance given and used in ( [9] - [12])

for low speed belt systems.

Appendix 1

To avoid secular terms in the approximation for u(x, t; ε) we will show in this appendix

that the function Ak0(t1) and Bk0(t1) have to satisfy:

dAk0(t1)

dt1
= (k + 1)B(k+1)0(t1) + (k − 1)B(k−1)0(t1),

dBk0(t1)

dt1
= −(k + 1)A(k+1)0(t1) − (k − 1)A(k−1)0(t1) (A-1)

for k = 1, 2, 3, . . .. This can be derived as follows. After introducing a slow and a fast

time in section 2.4, we obtain the equation (2.4.3) with Ω = cπ
L

. The solution of the

O(1) problem is uk0(t0, t1) = Ak0(t1) cos( ckπt0
L

) +Bk0(t1) sin( ckπt0
L

), where Ak0 and Bk0

can be determined from the O(ε) equation by removing terms in the right hand side

of this equation that cause secular terms in uk1(t0, t1).

The first term in the right hand side of the O(ε) equation causing secular terms is

−2 ∂2uk0

∂t0∂t1
= 2 ckπ

L
[dAk0

dt1
sin( ckπt0

L
) + dBk0

dt1
cos( ckπt0

L
)].
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Taking apart those terms in the second term of the right hand side the O(ε) equation

that cause secular terms, we find:

[∑
1
−

∑
2
−

∑
3

] 2nαΩ

(2j + 1)L
cos(Ωt0)un0 =

[∑
1
−

∑
2
−

∑
3

] 2nαΩ

(2j + 1)L
cos(Ωt0)

[
An0(t1) cos(

cnπt0
L

)

+Bn0(t1) sin(
cnπt0
L

)
]

=
αcπ

L2
cos

(ckπt0
L

)[
(k + 1)A(k+1)0

−(k − 1)A(k−1)0 −
k + 1

2k + 1
A(k+1)0 −

k − 1

2k − 1
A(k−1)0

]
+

αcπ

L2
sin

(ckπt0
L

)[
(k + 1)B(k+1)0 − (k − 1)B(k−1)0 −

k + 1

2k + 1
B(k+1)0 −

k − 1

2k − 1
B(k−1)0

]
+ ”terms not giving

rise to secular terms in uk1”

Similarly we find for the third term:

[∑
1
−

∑
2
−

∑
3

] 4n

(2j + 1)L
(V0 + α sin(Ωt0))

∂un0

∂t0
=

[∑
1
−

∑
2
−

∑
3

] 4n

(2j + 1)L
(V0 + α sin(Ωt0))

cnπ

L

[
Bn0 cos

(cnπt0
L

)
−

An0 sin
(cnπt0

L

)]
=
αcπ

L2
cos

(ckπt0
L

)[
− 2(k + 1)2A(k+1)0

−2(k − 1)2A(k−1)0 +
2(k + 1)2

2k + 1
A(k+1)0 −

2(k − 1)2

2k − 1
A(k−1)0

]
+

αcπ

L2
sin

(ckπt0
L

)[
− 2(k + 1)2B(k+1)0 − 2(k − 1)2B(k−1)0 +

2(k + 1)2

2k + 1
B(k+1)0 −

2(k − 1)2

2k − 1
B(k−1)0

]
+ ”terms not giving

rise to secular terms in uk1”.

Collecting all terms in the right hand side of the O(ε) equation containing cos( ckπt0
L

)

and all terms containing sin( ckπt0
L

) and then setting their coefficients equal to 0 in order

to remove the secular terms, we obtain (A-1).

Appendix 2

In this appendix we will show that:

1

2

∞∑

k=1

d2

dt21
(Y 2

k0 +X2
k0) = 2

∞∑

k=1

(X2
k0 + Y 2

k0). (A-2)
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From (4.12) and (4.13) it follows that

1

2

∞∑

k=1

d

dt1
(Y 2

k0 +X2
k0) =

∞∑

k=1

[Yk0Ẏk0 +Xk0Ẋk0]

=

∞∑

k=1

[X(k+1)0Yk0 − Y(k+1)0Xk0].

Differentiating this expression with respect to t1, and using (4.11) we find:

1

2

∞∑

k=1

d2

dt21

(
Y 2

k0 +X2
k0

)
=

∞∑

k=1

[
Ẋ(k+1)0Yk0 +X(k+1)0Ẏk0 − Ẏ(k+1)0Xk0 − Y(k+1)0Ẋk0

]

=

∞∑

k=1

(k + 1)[X2
k0 + Y 2

k0] −
∞∑

m=2

(m− 1)[X2
m0 + Y 2

m0]

= 2(X2
10 + Y 2

10) +

∞∑

k=2

(k + 1)[X2
k0 + Y 2

k0] −
∞∑

m=2

(m− 1)[X2
m0 + Y 2

m0]

= 2(X2
10 + Y 2

10) +

∞∑

k=2

[(k + 1) − (k − 1)][X2
k0 + Y 2

k0]

= 2(X2
10 + Y 2

10) +
∞∑

k=2

2[X2
k0 + Y 2

k0] = 2
∞∑

k=1

[X2
k0 + Y 2

k0].

And so, (A-2) has been proved.
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Chapter 3

On The Transversal Vibrations of A

Conveyor Belt with A Low and

Time-Varying Velocity. Part II:

The Beam-like Case ‡

Abstract. In this chapter initial-boundary value problems for a beam equation (with string

effect) are considered. These problems can be used as simple models to describe the vertical

vibrations of a conveyor belt, for which the velocity is small with respect to the wave speed.

Again it is assumed that the belt is moving with a low and time-varying velocity V (t) =

ε(V0 + α sin(Ωt)). Formal asymptotic approximations of the solutions are constructed to

show the complicated dynamical behavior of the belt. Complicated dynamical behaviour of

the belt system occurs when the frequency Ω is the sum or difference of any two natural

frequencies of the system with zero belt velocity. For special values of the belt parameters

these sum type and difference type of internal resonances coincide giving rise to even more

complicated dynamical behaviour. Some examples (including detuning cases) will be studied

in detail.

3.1 Introduction

Axially moving systems are present in a wide class of engineering problems which arise

in industrial, civil, aerospatial, mechanical, electronic and automotive applications.

Aerial cables, tram-ways, oil pipelines, magnetic tapes, power transmission belts, paper

sheet and web processes, fiber winding and band saw blades are examples of cases where

an axial transport of mass can be associated with transverse vibrations.

Investigating transverse vibrations of a belt system is a challenging subject which

‡This chapter is a revised version of [1] On The Transversal Vibrations of A Conveyor Belt with

A Low and Time-Varying Velocity. Part II: The Beam-Like Case.
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has been studied for many years (see [2]- [5] for a recent overview) and is still of

interest today. The vibrations can be classified into two types, i.e. whether it is of a

string-like type or of beam-like type, depending on the bending stiffness of the belt. If

the bending stiffness can be neglected then the system is classified as string (wave)-like,

otherwise it is classified as beam-like. The transverse vibration of a belt system (with

constant belt velocity V ) can be modeled as:

• string-like by

utt + 2V uxt + (κV 2 − c2)uxx = 0, and (3.1.1)

• beam-like (with a string effect) by

utt + 2V uxt + (κV 2 − c2)uxx +
EI

ρA
uxxxx = 0, (3.1.2)

where V, κ, c, E, I, ρ, and A are constants as those explained in Chapter 1 and u(x, t)

is transversal vibrations.

The main purpose of studying the dynamic behavior of a belt system is to know

the natural frequencies of the vibrations. By knowing these natural frequencies, the

so-called resonance-free belt system can be designed (see [4]). Resonances that can

cause severe vibrations can be initiated by some parts of the belt system, such as the

varying belt speed, the roll eccentricities, and other belt imperfections. The occurrence

of resonances should be prevented since they can cause operational and maintenance

problems including excessive wear of the belt and the support components, and the

increase of energy consumption of the system.

In this chapter vibrations of a moving belt which is modeled by a beam equation

with a string effect will be studied. The belt speed is considered to be time-varying and

to be small compared to the wave speed. In [6] a string-like model for a similar belt

system has been studied. It will turn out that the beam-like model and the string-like

model give rise to different behaviour of the solutions. It is assumed that the low and

time-varying belt speed V (t) is given by ε(V0 + α sin(Ωt)), where ε, V0, α, and Ω are

constants with 0 < ε� 1 and V0 > |α|. It should be observed that the velocity changes

periodically such that the belt moves in one direction. In fact the small parameter ε

indicates that the belt speed V (t) is small compared to the wave speed c. Recently

the authors of [7] also studied the vibrations of an axially moving beam with a time-

dependent velocity. As has been pointed out in [6] their application of the truncation

method does not give approximations which are valid on long time-scales of order ε−1.

More results on axially moving strings and beams can also be found in [13], [14] and

[15]. The variation in V (t) can be considered as some kind of excitation. In relation to

excitations, some results in this area have been obtained by Sack [8] and Archibald and

Emslie [9]. Sack considered the problem of a string moving with a constant velocity

at which one of its end (i.e. x = L) is subjected to a harmonic excitation. In [8]

the vibrations of the string at x = L is forced to be u(x, t) = u0 cos(Ωt). Archibald

and Emslie also studied the case where one end of the moving string is subjected to a



3.2 A beam model 33

harmonic excitation to represent the case of a belt traveling from an eccentric pulley to

a smooth pulley. Whereas the case where both ends of the string are excited is studied

by Mahalingam in [10]. A moving string model to study the transverse vibrations

of power transmission chains has been used in [10]. In all of these works, the belt

movement is assumed to be constant.

This chapter is organized as follows. In section 3.2 the equation of motion describing

the dynamic behavior of a belt moving with a non-constant velocity is derived. The belt

is assumed to be simply supported in vertical direction. Then in section 3.3, the two

time-scales perturbation method is used to find approximations of the solution of the

problem. It will turn out in section 3.3 that complicated dynamical behaviour of the

belt system occurs when the frequency Ω is the sum or the difference of any two natural

frequencies ωk and ωn of the zero belt-velocity system. For special values of the belt

parameters these sum type and difference type of internal resonances can coincide giving

rise to even more complicated dynamical behaviour. In section 3.4 of this chapter, the

(difference type) case Ω = ω2−ω1 and the detuned case Ω = ω2−ω1+εφ with φ of order

one will be studied. While in section 3.5, the (sum type) cases Ω = ω2 + ω1,Ω = 2ω1,

and Ω = ω3 + ω2 will be considered. For some special values of the beam parameters

the case (including detuning) for which a sum type and a difference type of internal

resonance coincide will also be studied: that is, the case Ω = ω3 +ω2 = ω5−ω2. Finally

in section 6 of this chapter some remarks and some conclusions will be drawn.

3.2 A beam model

If the belt speed V is not constant but a function of t, then (3.1.2) becomes:

utt + (κV 2 − c2)uxx + 2V uxt + Vtux +
EI

ρA
uxxxx = 0, (3.2.1)

for 0 < x < L, t > 0. The meanings of all the symbols have been explained in Chapter

2. Since the beam is assumed to be simply supported, it will follow that the boundary

conditions are:

u(0, t) = u(L, t) = uxx(0, t) = uxx(L, t) = 0. (3.2.2)

The initial values are given by:

u(x, 0) = f(x), ut(x, 0) = g(x), (3.2.3)

where f is the initial displacement of the beam, and where g is the initial velocity of

the beam. Considering the case where V (t) = ε(V0 +α sin(Ωt)), in which V0 and α are

constants and V0 > |α|, equation (3.2.1) becomes:

utt − c2uxx +
EI

ρA
uxxxx = −εΩα cos(Ωt)ux − 2ε(V0 + α sin(Ωt))uxt +

−ε2κ(V0 + α sin(Ωt))2uxx. (3.2.4)
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It should be noticed that (3.2.4) is a subcase of a problem which has been studied by

Öz and Pakdemirli in [7].

Solutions of the form u(x, t) =
∑∞

n=1 un(t) sin(nπx
L

) certainly satisfy the boundary

conditions. There are two equivalent methods to determine what equations un(t) for

n = 1, 2, 3, . . . have to satisfy. The first method is based on the principle of reflections.

Using this method the initial-boundary value problem (3.2.1)-(3.2.4) is extended to an

initial-value problem. Special attention has to be paid to the terms ux and uxt in the

right-hand side of (3.2.4) when this method is applied. Since this method has already

been applied in [6] (and also for instance in [11], [12]) we will now apply the other

method which is based on the orthogonality properties of the set of functions sin
(

nπx
L

)

for n = 1, 2, 3, . . . on 0 < x < L. The following should be observed:

∫ L

0

sin
(nπx
L

)
sin

(kπx
L

)
dx =

{
0 for n 6= k,

1
2
L for n = k,

(3.2.5)

and

∫ L

0

cos
(nπx
L

)
sin

(kπx
L

)
dx =

{
0 for n± k is even,

−2Lk
(n2−k2)π

for n± k is odd.
(3.2.6)

Substituting u(x, t) =
∑∞

n=1 un(t) sin
(

nπx
L

)
into (3.2.4) gives:

∞∑

n=1

[
ün +

{(cnπ
L

)2

+ δ
(nπ
L

)4
}
un

]
sin

(nπx
L

)
=

−ε
∞∑

n=1

nπ

L

[
αΩ cos(Ωt)un + 2(V0 + α sin(Ωt))v̇n

]
cos

(nπx
L

)
+ O(ε2), (3.2.7)

where δ = EI
ρA

. Multiplying both sides of (3.2.7) with sin
(

kπx
l

)
, and then integrating

with respect to x from x = 0 to x = L gives (using (3.2.5) and (3.2.6)):

ük +

{(
ckπ

L

)2

+ δ

(
kπ

L

)4
}
uk = ε

∞∑

n=1

∗
nk

(n2 − k2)L

[
4αΩ cos(Ωt)un +

8(V0 + α sin(Ωt))v̇n

]
+ O(ε2), (3.2.8)

where the * in
∑∞

n=1
∗

indicates that the summation is only carried out for n ±
k is odd. For t = 0, uk(t) satisfies: uk(0) = 2

L

∫ L

0
f(x) sin(kπx

L
)dx, and v̇k(0) =

2
L

∫ L

0
g(x) sin(kπx

L
)dx.

It should be observed that in order to obtain (3.2.8) the terms ux and uxt in (3.2.4)

are in fact expanded in eigenfunctions (i.e. in sin(nπx
L

)) of the boundary-value problem

(5.2.2), (3.2.4) with ε = 0. In [7] these terms were not expanded accordingly (see also

appendix 3). In the next sections approximations of the solutions of (3.2.8) will be

constructed for different Ω-values.
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3.3 Application of the two time-scales perturbation

method

Due to occurrence of so-called secular terms a straightforward perturbation method

can not be used to solve (3.2.8) approximately. For that reason a two-time-scales

perturbation method (with time scales t0 = t and t1 = εt) is used. The introduction of

these two time scales defines the following transformations:

uk(t; ε) = vk(t0, t1; ε),
duk

dt
=
∂vk

∂t0
+ ε

∂vk

∂t1
,

d2uk

dt2
=
∂2vk

∂t20
+ 2ε

∂2vk

∂t0∂t1
+ ε2

∂2vk

∂t21
. (3.3.1)

Substitution of (3.3.1) into (3.2.8) yields:

∂2vk

∂t20
+ 2ε

∂2vk

∂t0∂t1
+ ε2

∂2vk

∂t21
+

[(ckπ
L

)2

+ δ
(kπ
L

)4]
vk =

ε
∞∑

n=1

∗
nk

(n2 − k2)L

[
4αΩvn cos(Ωt0) + 8(V0 + α sin(Ωt0))

∂vn

∂t0

]
+ O(ε2), (3.3.2)

Assuming that vk(t0, t1; ε) = vk0(t0, t1) + εvk1(t0, t1) + ε2vk2(t0, t1) + . . . then (3.3.2)

becomes:
[
∂2vk0

∂t20
+ ε

∂2vk1

∂t20
+ O(ε2)

]
+ 2ε

[
∂2vk0

∂t0∂t1
+ ε

∂2vk1

∂t0∂t1
+ O(ε2)

]
+ O(ε2) +

{(
ckπ

L

)2

+ δ

(
kπ

L

)4
}

(vk0 + εvk1 + O(ε2)) =

ε

∞∑

n=1

∗
nk

(n2 − k2)L

[
4αΩvn0 cos(Ωt0) + 8(V0 + α sin(Ωt0))

∂vn0

∂t0

]
+ O(ε2) (3.3.3)

By taking together terms of equal powers in ε from (3.3.3) the following O(1) and

O(ε) equations will be obtained:

O(1) :
∂2vk0

∂t20
+

[(
ckπ

L

)2

+ δ

(
kπ

L

)4
]
vk0 = 0,

O(ε) :
∂2vk1

∂t20
+ 2

∂2vk0

∂t0∂t1
+

[(
ckπ

L

)2

+ δ

(
kπ

L

)4
]
vk1 =

∞∑

n=1

∗
nk

(n2 − k2)L

[
4αΩvn0 cos(Ωt0) + 8(V0 + α sin(Ωt0))

∂vn0

∂t0

]
. (3.3.4)

The O(1) equation can be easily solved, yielding:

vk0 = Ak0(t1) sin(ωkt0) +Bk0(t1) cos(ωkt0), (3.3.5)
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where:

ω2
k =

(
ckπ

L

)2

+ δ

(
kπ

L

)4

, Bk0(0) =
2

L

∫ L

0

f(x) sin(
kπx

L
)dx,

and Ak0(0) =
2

ωkL

∫ L

0

g(x) sin(
kπx

L
)dx. (3.3.6)

The Ak0(t1) and Bk0(t1) in (3.3.5) are still arbitrary and can be used to avoid secular

terms in the solution of the O(ε) equation (3.3.4).

The O(ε) equation now becomes

∂2vk1

∂t20
+ ω2

kvk1 = −2ωk

[
Ȧk0(t1) cos(ωkt0) − Ḃk0(t1) sin(ωkt0)

]
+

∞∑

n=1

∗
nk

(n2 − k2)L

(
4αΩ cos(Ωt0)[An0 sin(ωnt0) +Bn0 cos(ωnt0)]

+8(V0 + α sin(Ωt0))ωn[An0 cos(ωnt0) − Bn0 sin(ωnt0)]
)
. (3.3.7)

From (3.3.7) it can readily be seen that there are infinitely many values of Ω that

can cause internal resonances. In fact these values are (in an O(ε) neighbourhood of)

ωn +ωk, ωn −ωk, ωk −ωn, and −(ωn +ωk, ), where k = n− 2j− 1, or k = 2j + 1 +n or

k = 2j+1−n for j = 0, 1, 2, . . . , (see also the summation in (3.3.7)). To show how the

secular terms can be eliminated and how the belt system can behave, the (difference

type) case Ω = ω2 − ω1 and its detuned case Ω = ω2 − ω1 + εφ with φ of order one

will be studied in section 3.4 while the (sum type) cases Ω = ω2 + ω1,Ω = 2ω1, and

Ω = ω3 + ω2 will be considered in section 3.5. For some special values of the beam

parameters the case (including detuning) for which a sum type and a difference type of

internal resonance coincide will also be studied; that is the case Ω = ω3 +ω2 = ω5−ω2.

3.4 The case Ω = ω2 − ω1 + εφ

In this section the case Ω = ω2 − ω1, and the case Ω = ω2 − ω1 + εφ with φ of order

one will be studied.

3.4.1 The case Ω = ω2 − ω1

It is shown in appendix 1 that for Ω = ω2 − ω1 the equation Ω ± ωn = ±ωk only

has the rather trivial solutions n = 2 and k = 1 if Ω − ωn = −ωk, and n = 1 and

k = 2 if Ω + ωn = ωk. Then, by taking apart those terms in the right-hand side of the

O(ε)-equation (3.3.7) that cause secular terms in vk1(t0, t1), it is found that Ak0 and

Bk0 have to satisfy

Ȧ10 =
−2α(ω1 + ω2)

3ω1L
B20, Ḃ10 =

2α(ω1 + ω2)

3ω1L
A20,

Ȧ20 =
−2α(ω1 + ω2)

3ω2L
B10, Ḃ20 =

2α(ω1 + ω2)

3ω2L
A10, (3.4.1)
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and for k ≥ 3 : Ȧk0 = Ḃk0 = 0.

System (4.3.11) can readily be solved, yielding

A10(t1) = −
√
ω2

ω1
B20(0) sin(γt1) + A10(0) cos(γt1),

B10(t1) =

√
ω2

ω1
A20(0) sin(γt1) +B10(0) cos(γt1),

A20(t1) = A20(0) cos(γt1) −
√
ω1

ω2

B10(0) sin(γt1), and

B20(t1) = B20(0) cos(γt1) +

√
ω1

ω2
A10(0) sin(γt1), (3.4.2)

where γ = 2α(ω1+ω2)
3L

√
ω1ω2

and for k ≥ 3, Ak0(t1) = Ak0(0) and Bk0(t1) = Bk0(0). For n ≥
1, An0(0) and Bn0(0) can be determined from (3.3.6). From (3.3.7) a solution vk1(t0, t1)

can now be obtained without unbounded terms (that is without secular terms). So,

a formal approximation vk0(t0, t1) + εvk1(t0, t1) of uk(t; ε) has been constructed. And

finally, an approximation
∑∞

k=1 vk0(t0, t1) sin(kπx
L

) + O(ε) of the solution u(x, t) of the

initial-boundary value problem (3.2.1) - (5.2.3) with Ω = ω2 − ω1 is obtained.

3.4.2 The detuning case Ω = ω2 − ω1 + εφ

If the frequency of the belt velocity fluctuation is detuned by taking Ω = ω2 − ω1 + εφ

with φ = O(1), then the O(ε)-equation (3.3.7) becomes:

∂2vk1

∂t20
+ ω2

kvk1 = −2ωk

[
Ȧk0 cos(ωkt0) − Ḃk0 sin(ωkt0)

]
+

∞∑

n=1

∗
nk

(n2 − k2)L

(
4αΩ0 cos(Ωt0)[An0 sin(ωnt0) +Bn0 cos(ωnt0)]

+8(V0 + α sin(Ωt0))ωn[An0 cos(ωnt0) − Bn0 sin(ωnt0)]
)
, (3.4.3)

where Ω0 = ω2 − ω1. Now, it should be observed that in (3.4.3)

cos(Ωt) = cos((ω2 − ω1)t0 + φt1) = cos(Ω0t0) cos(φt1) − sin(Ω0t0) sin(φt1),

and sin(Ωt) = sin((ω2 − ω1)t0 + φt1) = sin(Ω0t0) cos(φt1) + cos(Ω0t0) sin(φt1).

Then, by taking apart those terms in the right-hand side of (3.4.3) that give rise to

secular terms in vk1(t0, t1), it is found that in order to avoid secular terms, Ak0(t1) and

Bk0(t1) have to satisfy:

Ȧ10 = −p sin(φt1)A20 + p cos(φt1)B20,

Ḃ10 = −p cos(φt1)A20 − p sin(φt1)B20,

Ȧ20 = −q sin(φt1)A10 − q cos(φt1)B10,

Ḃ20 = q cos(φt1)A10 − q sin(φt1)B10, (3.4.4)
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and for k ≥ 3

Ȧk0 = 0 and Ḃk0 = 0, (3.4.5)

where

p =
−2α(ω1 + ω2)

3ω1L
and q =

2α(ω1 + ω2)

3ω2L
. (3.4.6)

Notice that for φ = 0, (3.4.4) is reduced to (4.3.11). In appendix 2, the solution of

system (3.4.4) has been derived. It turns out that the solution of system (3.4.4) is:

A10(t1) = K1 sin(β1t1) +K2 cos(β1t1) +K3 sin(β2t1) +K4 cos(β2t1),

B10(t1) =
1

pqφ
[A

(3)
10 + (φ2 − pq)Ȧ10],

A20(t1) =
−1

p
[Ȧ10 sin(φt1) + Ḃ10 cos(φt1)],

B20(t1) =
1

p
[Ȧ10 cos(φt1) − Ḃ10 sin(φt1)], (3.4.7)

and Ak0 = Ak0(0), Bk0 = Bk0(0) for k ≥ 3. Note also that in (3.4.7) φ 6= 0. In

(3.4.7), K1, K2, K3, and K4 are constants of integration, p, q are given by (3.4.6),

β1 =
√

1
2
[φ2 − 2pq −

√
φ4 − 4pqφ2], and β2 =

√
1
2
[φ2 − 2pq +

√
φ4 − 4pqφ2]. As in

subsection 4.1, an approximation
∑∞

k=1 vk0(t0, t1) sin(kπx
L

)+O(ε) of the solution u(x, t)

of the initial-boundary value problem (3.2.1) - (5.2.3) with Ω = ω2 − ω1 + εφ and

φ = O(1) has now been constructed.

For Ω in a neighbourhood of ω2 − ω1, now can be concluded (see also (3.4.7)) that

no instabilities for the belt system will occur. A similar analysis as given in this section

can be applied to other cases where Ω is of difference type (that is Ω = ωm − ωn for

some m and n). However, in some of these cases instabilities can occur as will be

explained in the next section.

3.5 Ω is a sum of two natural frequencies

It has been shown in section 3.3 that in order to remove secular terms, we have to solve

the equation Ω±ωn = ±ωk, where k = n− 2j − 1, or k = n+2j +1, or k = 2j +1−n

with j = 0, 1, 2, . . .. In the case Ω = ω2 − ω1, it has been shown in section 3.4 that

the only solutions of the problem (ω2 − ω1) ± ωn = ±ωk (for an arbitrary value of

µ2 = δπ2

c2L2 ) are the trivial solutions k = 1, n = 2 and symmetrically k = 2, n = 1. For

other values of Ω and for certain specific values of µ2 solutions other than the trivial

ones may occur. Cases Ω = ω2 + ω1,Ω = 2ω1, and Ω = ω3 + ω2 will be considered in

this section, other cases can be investigated similarly.
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3.5.1 The case Ω = ω2 + ω1

First, in order to solve the equation Ω ± ωn = ±ωk, the following three cases have to

be considered:

i) −ωn − ωk = Ω, which obviously has no solution since the right-hand side is

positive while the left hand side is negative,

ii) ωn + ωk = Ω, which obviously has only the trivial solution k = 2, n = 1 or

k = 1, n = 2,

iii) ωk −ωn = Ω (or equivalently ωn −ωk = Ω) which may or may not have solutions

depending on the value of µ2. From ωk − ωn = Ω, it follows that k
√

1 + k2µ2 =

n
√

1 + n2µ2 + 2
√

1 + 4µ2 +
√

1 + µ2. Since f(k) = k
√

1 + µ2k2 is an increasing

function it then follows from k
√

1 + µ2k2 > n
√

1 + µ2n2 that k > n ≥ 1. Then

from 1 ≤ n < k it follows that

k
√

1 + k2µ2 = n
√

1 + n2µ2 + 2
√

1 + 4µ2 +
√

1 + µ2

< n
√

1 + k2µ2 + 2
√

1 + k2µ2 +
√

1 + k2µ2

⇒ n < k < n+ 3, ⇒ k = n+ 1 or k = n + 2.

Since k = n − 2j − 1, or k = n + 2j + 1, or k = 2j + 1 − n with k, n ∈ N
+ and

j ∈ N it follows that k can only be equal to k = n+1. So, ωk −ωn = Ω = ω2 +ω1

can only have solutions for k = n + 1. The possibility to have solutions turns

out to be depending on the values of µ2. In Table 1 some of these solutions are

given.

Ω = ω2 + ω1 Ω = 2ω1 Ω = ω3 + ω2

k n µ2 k n µ2 k n µ2 k n µ2

3 2 - 2 1 0.7143 6 5 - 4 1 0.3851

4 3 0.3851 3 2 0.1664 7 6 - 5 2 0.0732

5 4 0.1607 4 3 0.0773 8 7 0.4588 6 3 0.0349

6 5 0.0926 5 4 0.0451 9 8 0.2124 7 4 0.0211

7 6 0.0613 6 5 0.0297 10 9 0.1321 8 5 0.0143
...

...
...

...
...

...
...

...
...

...
...

...

Table 3.1: Values of k, n, and µ2 for which ωk = ωn + Ω has solutions

Assuming that Ω ± ωn = ±ωk only has the trivial solutions (k = 2 and n = 1, and

k = 1 and n = 2) it turns out that no secular terms occur in the solution of (3.3.7) if
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Ak0(t1) and Bk0(t1) satisfy

Ȧ10 =
2α(ω1 − ω2)

3Lω1

B20, Ḃ10 =
2α(ω1 − ω2)

3Lω1

A20,

Ȧ20 =
2α(ω1 − ω2)

3Lω2
B10, Ḃ20 =

2α(ω1 − ω2)

3Lω2
A10, (3.5.1)

and for k ≥ 3, Ȧk0 = Ḃk0 = 0. The solution of (3.5.1) can readily be determined,

yielding

A10(t1) = A10(0) cosh(r1t1) −
√
ω2

ω1
B20(0) sinh(r1t1),

A20(t1) = A20(0) cosh(r1t1) −
√
ω1

ω2
B10(0) sinh(r1t1),

B10(t1) = −
√
ω2

ω1

A20(0) sinh(r1t1) +B10(0) cosh(r1t1),

B20(t1) = −
√
ω1

ω2
A10(0) sinh(r1t1) +B20(0) cosh(r1t1), (3.5.2)

where r1 = 2α(ω2−ω1)
3L

√
ω1ω2

, and for k ≥ 3 : Ak0(t1) = Ak0(0) and Bk0(t1) = Bk0(0). It is

obvious from (3.5.2) that instabilities for the belt system will occur. When for instance

µ2 ≈ 0.3851 it turns out that Ω ± ωn = ±ωk also has other solutions than the trivial

ones (see Table 1). To avoid secular terms in the solution of (3.3.7) it then turns out

that A10, B10, A20, and B20 still have to satisfy (3.5.1), and that

Ȧ30 =
−12α

7Lω3
(ω3 + ω4)B40, Ḃ30 =

12α

7Lω3
(ω3 + ω4)A40,

Ȧ40 =
−12α

7Lω4
(ω3 + ω4)B30, Ḃ40 =

12α

7Lω4
(ω3 + ω4)A30, (3.5.3)

and that for k ≥ 5, Ȧk0 = Ḃk0 = 0. The solution of (3.5.3) can readily be determined,

yielding

A30(t1) = −
√
ω4

ω3

B40(0) sin(βt1) + A30(0) cos(βt1),

A40(t1) = −
√
ω3

ω4
B30(0) sin(βt1) + A40(0) cos(βt1),

B30(t1) =

√
ω4

ω3
A40(0) sin(βt1) +B30(0) cos(βt1),

B40(t1) =

√
ω3

ω4

A30(0) sin(βt1) +B40(0) cos(βt1), (3.5.4)

where β = 12α(ω3+ω4)
7L

√
ω3ω4

and for k ≥ 5 : Ak0(t1) = Ak0(0) and Bk0(t1) = Bk0(0). Also for

µ2 ≈ 0.3851 it is obvious that instabilities for the belt system will occur. It should be

observed that Ω = ω2 + ω1 = ω4 − ω3 for µ2 ≈ 0.3851. So, for special values of the

beam parameters, also frequency Ω of difference type can lead to instabilities.
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The detuning case Ω = ω2 + ω1 + εφ

In the detuning case Ω = ω2 + ω1 + εφ secular terms will not occur if:

Ȧ10 =
2α

3Lω1

(ω2 − ω1)
[
A20 sin(φt1) − B20 cos(φt1)

]
,

Ḃ10 = − 2α

3Lω1

(ω2 − ω1)
[
A20 cos(φt1) +B20 sin(φt1)

]
,

Ȧ20 =
2α

3Lω2
(ω2 − ω1)

[
A10 sin(φt1) − B10 cos(φt1)

]
,

Ḃ20 = − 2α

3Lω2
(ω2 − ω1)

[
A10 cos(φt1) +B10 sin(φt1)

]
, (3.5.5)

and for k ≥ 3, Ȧk0 = 0 and Ḃk0 = 0. In the following it will be assumed that α > 0 (for

α < 0 the procedure is the same). By putting p = 2α
3Lω1

(ω2−ω1) and q = 2α
3Lω2

(ω2−ω1),

and by differentiating Ȧ10 once more it follows that

Ä10 = pqA10 − φḂ10. (3.5.6)

By differentiating Ä10 twice and by making use of (3.5.6) it then follows that

A
(4)
10 + (φ2 − 2pq)Ä10 + p2q2A10 = 0, (3.5.7)

where A
(4)
10 is the fourth order derivative of A10 with respect to t1. This fourth order

differential equation can be solved elementarily, and the following results are obtained:

• For φ2 > 4pq the solutions of (3.5.5) will be stable,

• For φ2 = 4pq the solutions of (3.5.5) will be unstable (due to linear term in t1),

and finally

• For φ2 < 4pq the solutions of (3.5.5) will increase exponentially.

In Figure 3.1, the stability regions for system (3.5.5) in (α, φ)−plane for positive values

of α have been given. The bifurcation lines are given by φ2 = 4pq = k2(L, µ)α2, where

k2(L, µ) =
8(2
√

1+4µ2−
√

1+µ2)2

9L2

√
1+4µ2

√
1+µ2

. From φ2 = k2α2 it follows that (φ − kα)(φ + kα) = 0.

The slope k is a function of L and µ and for fixed L it can be shown that 8
9L2 < k2 < 4

L2 .

Values of α and φ located in the regions I and IV lead to stable solutions of the system

(3.5.5) while values of α and φ in the regions II and III (including the lines φ2 = k2α2)

lead to unstable solutions of system (3.5.5).

3.5.2 The case Ω = 2ω1

As in subsection 3.5.1, in order to solve the equation Ω±ωn = ±ωk, again the following

three cases have to be considered:

i) −ωn − ωk = Ω = 2ω1, which obviously has no solutions,
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Figure 3.1: Areas of stability of system (3.5.5) for a specific value of k = 1.

ii) ωn + ωk = Ω = 2ω1, which obviously only can be satisfied for k = n = 1. But

since k = n − 2j − 1, or k = n + 2j + 1, or k = 2j + 1 − n with k, n ∈ N
+ and

j ∈ N, it follows that there is in this case no solution.

iii) ωk − ωn = Ω = 2ω1 (or equivalently ωn − ωk = Ω), which may or may not

have solutions depending on the value of µ2. From ωk − ωn = 2ω1 it follows

that k
√

1 + µ2k2 = n
√

1 + µ2n2 + 2
√

1 + µ2. Since f(k) = k
√

1 + µ2k2 is an

increasing function it then follows from k
√

1 + µ2k2 > n
√

1 + µ2n2 that k > n ≥
1. Then, from 1 ≤ n < k it follows that

k
√

1 + µ2k2 = n
√

1 + µ2n2 + 2
√

1 + µ2

< n
√

1 + µ2k2 + 2
√

1 + µ2k2

⇒ n < k < n+ 2 ⇒ k = n + 1.

So, ωk − ωn = 2ω1 can only have solutions for k = n+ 1. The possibility to have

solutions turns out to be depending on the values of µ2. In Table 1 some of these

solutions are given.

When µ2 is not (in neighbourhood of) a value as listed in Table 1 then it easily

follows from (3.3.7) that no secular terms occur in the solution if Ȧk0 = Ḃk0 = 0 for all

k ≥ 1. When for instance µ2 ≈ 0.7143 it turns out that no secular terms occur in the

solution of (3.3.7) if Ak0(t1) and Bk0(t1) satisfy

Ȧ10 = −4α
3Lω1

(ω2 − ω1)B20, Ḃ10 =
4α

3Lω1
(ω2 − ω1)A20,

Ȧ20 = −8αω1

3Lω2
B10, Ḃ20 =

8αω1

3Lω2
A10, (3.5.8)

and for k ≥ 3 Ȧk0 = Ḃk0 = 0. The solution of system (3.5.8) can readily be deter-

mined, yielding:

A10(t1) = −CB20(0) sin(θt1) + A10(0) cos(θt1),
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A20(t1) = − 1

C
B10(0) sin(θt1) + A20(0) cos(θt1),

B10(t1) = CA20(0) sin(θt1) +B10(0) cos(θt1),

B20(t1) =
1

C
A10(0) sin(θt1) +B20(0) cos(θt1), (3.5.9)

where C2 = ω2(ω2−ω1)
2ω2

1

, θ = 4
√

2α
3L

√
ω2−ω1

ω2

and for k ≥ 3 : Ak0(t1) = Ak0(0),

Bk0(t1) = Bk0(0). Obviously no instabilities for the belt system will occur when µ2 ≈
0.7143 or when µ2 is not (in neighbourhood of) a value as listed in Table 1. It should

be remarked that a similar analysis can be performed if Ω = 2ωN for some fixed N > 1.

3.5.3 The case Ω = ω3 + ω2

As in the previous two subsections 3.5.1 and 3.5.2, again the following three cases have

to be considered in order to solve the equation Ω ± ωn = ±ωk. Those cases are:

i) −ωn − ωk = Ω = ω2 + ω3, which obviously has no solution,

ii) ωn + ωk = Ω = ω2 + ω3, which obviously has the trivial solutions k = 2 and

n = 3, or k = 3 and n = 2. In this case additional solutions can only occur if

ωk+ω1 = Ω = ω2+ω3 has a solution. In appendix 1 (see the case ωk = ωn+ω2−ω1)

it has been shown that this is not possible.

iii) ωk − ωn = Ω = ω2 + ω3 (or equivalently ωn − ωk = Ω), which may or may not

have solutions depending on the value of µ2. From ωk − ωn = Ω it follows that

k
√

1 + µ2k2 = n
√

1 + µ2n2+3
√

1 + 9µ2+2
√

1 + 4µ2. Since f(k) = k
√

1 + µ2k2

is an increasing function it then follows that k > n and k > 3. Then, from k > n

and k > 3 it follows that

k
√

1 + µ2k2 = n
√

1 + µ2n2 + 3
√

1 + 9µ2 + 2
√

1 + 4µ2

< n
√

1 + µ2k2 + 3
√

1 + µ2k2 + 2
√

1 + µ2k2

⇒ n < k < n+ 3 + 2 ⇒ k = n + 1 or k = n+ 2 or

k = n+ 3 or k = n + 4.

Since k = n − 2j − 1, or k = n + 2j + 1, or k = 2j + 1 − n with k, n ∈ N
+ and

j ∈ N it follows that k can only be equal to n + 1 or n + 3. The possibility to

have solutions turns out to be depending on the values of µ2. In Table 1 some of

these solutions are given.

Assuming that Ω ± ωn = ±ωk only has the trivial solutions (k = 2 and n = 3, and

k = 3 and n = 2) it turns out that no secular terms occur in the solution of (3.3.7) if
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Ak0(t1) and Bk0(t1) satisfy

Ȧ20 = − 6α

5Lω2
(ω3 − ω2)B30, Ḃ20 = − 6α

5Lω2
(ω3 − ω2)A30,

Ȧ30 = − 6α

5Lω3
(ω3 − ω2)B20, Ḃ30 = − 6α

5Lω3
(ω3 − ω2)A20, (3.5.10)

and for k = 1, 4, 5, 6, . . . Ȧk0 = Ḃk0 = 0. The solutions of system (3.5.10) can readily

be determined, yielding:

A20(t1) = −
√
ω3

ω2

B30(0) sinh(s1t1) + A20(0) cosh(s1t1),

A30(t1) = −
√
ω2

ω3
B20(0) sinh(s1t1) + A30(0) cosh(s1t1),

B20(t1) = −
√
ω3

ω2
A30(0) sinh(s1t1) +B20(0) cosh(s1t1),

B30(t1) = −
√
ω2

ω3

A20(0) sinh(s1t1) +B30(0) cosh(s1t1), (3.5.11)

where s1 = 6α(ω3−ω2)
5L

√
ω3ω2

, and for k = 1, 4, 5, 6, . . .Ak0 = Ak0(0) and Bk0(t1) = Bk0(0).

From (3.5.11) it is obvious that instabilities for the belt system will occur. When for

instance µ2 = 0.0732 it turns out that Ω± ωn = ±ωk also has other solutions than the

trivial ones (see Table 1). To avoid secular terms in the solution of (3.3.7) it now turns

out that Ak0(t1) and Bk0(t1) have to satisfy

Ȧ20 = − 6α

5Lω2
(ω3 − ω2)B30 −

10α

21Lω2
(ω5 + ω2)B50,

Ḃ20 = − 6α

5Lω2
(ω3 − ω2)A30 +

10α

21Lω2
(ω5 + ω2)A50,

Ȧ30 = − 6α

5Lω3

(ω3 − ω2)B20, Ḃ30 = − 6α

5Lω3

(ω3 − ω2)A20,

Ȧ50 = − 10α

21Lω5

(ω5 + ω2)B20, Ḃ50 =
10α

21Lω5

(ω5 + ω2)A20, (3.5.12)

and Ȧk0 = Ḃk0 = 0 for k = 1, 4, 6, 7, 8, . . .. The solution of (3.5.12) can readily be

determined, yielding

A20(t1) = K1 sin(s2t1) + A20(0) cos(s2t1),

B20(t1) = K2 sin(s2t1) +B20(0) cos(s2t1),

A30(t1) =
d1K2

s2ω3
cos(s2t1) −

d1B20(0)

s2ω3
sin(s2t1) +

(
A30(0) − d1K2

s2ω3

)
,

B30(t1) =
d1K1

s2ω3

cos(s2t1) −
d1A20(0)

s2ω3

sin(s2t1) +
(
B30(0) − d1K1

s2ω3

)
,

A50(t1) =
d2K2

s2ω5
cos(s2t1) −

d2B20(0)

s2ω5
sin(s2t1) +

(
A50(0) − d2K2

s2ω5

)
, and

B50(t1) =
−d2K1

s2ω5

cos(s2t1) +
d2A20(0)

s2ω5

sin(s2t1) +
(
B50(0) +

d2K1

s2ω5

)
, (3.5.13)
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where s2 =
[(

10
21

)2
(ω2+ω5)2

ω2ω5

−
(

6
5

)2
(ω3−ω2)2

ω3ω2

] 1

2 α
L
, K1 = −1

s2

[
d1

ω2

B30(0) + d2

ω2

B50(0)
]
, K2 =

1
s2

[
−d1

ω2
B30(0) + d2

ω2
B50(0)

]
, d1 = 6α(ω3−ω2)

5L
, and d2 = 10α(ω5+ω2)

21L
. And for k =

1, 4, 6, 7, 8, . . . , Ak0(t1) = Ak0(0) and Bk0(t1) = Bk0(0). From (3.5.13) it is obvious

that now no instabilities for the belt system will occur. It should be observed that

Ω = ω2 + ω3 = ω5 − ω2 for µ2 ≈ 0.0732. So, for special values of the beam parameters

also frequencies Ω of sum type can lead to stable behaviour. To obtain more insight in

the complicated dynamical behaviour of the belt system, in the next section the beam

parameter µ2 will be detuned (keeping Ω fixed).

The detuned Case µ2 ≈ 0.0732

In the previous subsection 3.5.3 it has been shown that if Ω = ω2 +ω3 (and µ2 is not in

the neighbourhood of a value as listed in Table 1) then the belt system is unstable. For

µ2 ≈ 0.0732, however, the belt system is stable. To obtain more insight in this different

behaviour µ2 in a neighbourhood of 0.0732 will be detuned. Observe that µ2 = δπ2

c2L2

with δ = EI
ρA

. So, detuning of µ2 can be achieved by detuning δ in the original PDE

(3.2.4). For that reason it will be considered that µ2 = µ2
cr+εψ with µ2

cr = 0.0732 and ψ

an arbitrary constant of O(1), and δ = δcr + εν with ψ = π2

c2L2ν and µ2
cr = π2

c2L2 δcr. The

frequency Ω is kept fixed, that is, Ω =

√(
2cπ
L

)2

+ δcr

(
2π
L

)4

+

√(
3cπ
L

)2

+ δcr

(
3π
L

)4

. It

should be observed that this type of detuning is different from the one studied in section

3.4.2. By replacing δ in (3.2.4) by δcr + εν the same analysis as presented in section 3.2

and section 3.3 can be repeated. To avoid secular terms in the approximation it turns

out that Ak0(t1) and Bk0(t1) now have to satisfy (φ = π3ν
cL3 , and ω̄k = k

√
1 + µ2

crk
2 for

k = 2, 3, and 5)

Ȧ20 = − 6α

5Lω̄2

(ω̄3 − ω̄2)B30 −
10α

21Lω̄2

(ω̄5 + ω̄2)B50 −
8π4φ

ω̄2L4
B20,

Ḃ20 = − 6α

5Lω̄2
(ω̄3 − ω̄2)A30 +

10α

21Lω̄2
(ω̄5 + ω̄2)A50 +

8π4φ

ω̄2L4
A20,

Ȧ30 = − 6α

5Lω̄3
(ω̄3 − ω̄2)B20 −

81π4φ

2ω̄3L4
B30,

Ḃ30 = − 6α

5Lω̄3
(ω̄3 − ω̄2)A20 +

81π4φ

2ω̄3L4
A30,

Ȧ50 = − 10α

21Lω̄5
(ω̄5 + ω̄2)B20 −

625π4φ

2ω̄5L4
B50,

Ḃ50 =
10α

21Lω̄5

(ω̄5 + ω̄2)A20 +
625π4φ

2ω̄5L4
A50, (3.5.14)

and for k = 1, 4, 6, 7, 8, . . .

Ȧk0 = − ν

2ω̄k

(kπ
L

)4

Bk0, and Ḃk0 =
ν

2ω̄k

(kπ
L

)4

Ak0. (3.5.15)
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Obviously system (3.5.15) has bounded solution. The characteristic equation of system

(3.5.14) is:

λ6 + (1502.1631φ2 + 1.8787η2)λ4 + (.8824η4 − 1230.2972η2φ2 +

170023.5061φ4)λ2 + 874.7894η4φ2 + .1876 107φ6 − 81019.0927η2φ4 = 0, (3.5.16)

where η = α
L
. By putting λ2 = a in (3.5.16) the following cubic equation for a is

obtained

a3 + (1502.1631φ2 + 1.8787η2)a2 + (.8824η4 − 1230.2972η2φ2 +

170023.5061φ4)a + 874.7894η4φ2 + .1876 107φ6 − 81019.0927η2φ4 = 0. (3.5.17)

Equation (3.5.17) can be solved by using the Cardano’s formula. The radicand R (of

the reduced form of the cubic equation (3.5.17) plays an important role in the solution-

structure. When the radicand R is positive the reduced cubic equation of (3.5.17) will

have one real, and two complex conjugate solutions. Since a = λ2 it follows that at

least two roots of the characteristic equation (3.5.16) will have a positive real part.

Consequently the solution of system (3.5.14) will be unstable. For R < 0 the cubic

equation (3.5.17) will have three distinct real roots, and for R = 0 there are three real

roots of which two coincide. For R ≤ 0 it requires an additional analysis to determine

whether system (3.5.14) is stable or not.

In Figure 3.2 the bifurcation values of R as a function of φ and η have been given. In

this figure it has been assumed that η and so α (the amplitude of the speed fluctuation)

are positive. Similar results can be found for η < 0. When φ and η are in the areas

II and V then the solutions of (3.5.17) are positive, leading to the unstable solutions

for (3.5.14), whereas when φ and η are in the areas I, III, IV or V I the solutions of

(3.5.17) will be negative leading to stable solutions for (3.5.14). When φ and η are

exactly on the curves the solutions of (3.5.17) will be also negative which leads to

stable solutions of (3.5.14).

R=0

R=0

R=0

R=0

η

φ

R > 0

R > 0

R < 0

R < 0

R < 0

R < 0

R = 0

I
II

III

IV

V
VI

Figure 3.2: Bifurcation values of R as a function of η and φ.
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3.6 Conclusions and remarks

In this chapter initial-boundary value problems for a beam equation are studied. The

equations can be used as simple models to describe the vertical vibrations of a conveyor

belt for which the time-varying belt velocity is small with respect to the wave speed.

It is assumed that the belt velocity V (t) = ε(V0 + α sin(Ωt)) where ε, V0, α, and Ω are

constants with 0 < ε � 1 and |α| < V0. Complicated dynamical behaviour of the

belt system occurs when the frequency Ω is the sum or difference of any two natural

frequencies of the system for which the belt velocity is equal to zero. For special values

of the belt parameters these sum type and difference type of internal resonances can

coincide giving rise to even more complicated dynamical behaviour. For both sum type

and difference type of internal resonances instabilities for the belt system can occur.

In this chapter the following cases have been studied in detail with the following

results:

i) Ω = ω2 − ω1; interaction between the first and the second vibration modes; no

instabilities for the belt system (also for the detuned case).

ii) Ω = ω2 + ω1; interactions between the first and the second vibration modes, and

for special values of the beam parameters (see Table 1) additional interactions;

there will always be unstable behaviour of the belt system.

iii) The detuned case Ω = ω2 + ω1 + εφ; interactions occur between the first and

the second vibration modes. Solutions will be unstable if φ2 ≤ 4pq, while for

φ2 > 4pq the solutions are stable (p = 2α
3Lω1

(ω2 − ω1) and q = 2α
3Lω2

(ω2 − ω1)).

iv) Ω = 2ω1; only for special values of the beam parameters (see Table 1) there will

be an interaction between two different vibration modes; there are no instabilities

for the belt system.

v) Ω = ω2 + ω3; interaction between the second and the third vibration modes,

and for special values of beam parameters (see Table 1) there are additional

interactions; in general there will be instabilities for the belt system. However,

for special values of the beam parameters there can be stable behaviour of the belt

system. When some of these beam parameters are detuned unstable behaviour

can occur again (see the subsection of 3.5.3 where Ω = ω2 + ω3 = ω5 − ω2 for

µ2 = EIπ2

ρAc2L2 ≈ 0.0732).

It is expected that for other values of Ω, the same techniques (as presented in this

chapter) can be applied to determine the stability properties of the belt system.
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Appendix

Appendix 1

In this appendix it will be shown that the equation Ω ± ωn = ±ωk with Ω = ω2 − ω1

only has as solutions n = 2 and k = 1 if Ω − ωn = −ωk, and n = 1 and k = 2 if

Ω + ωn = ωk. To prove this, the following four cases have to be considered: ωk =

ωn + ω2 − ω1, ωk = −ωn + ω2 − ω1,−ωk = ωn + ω2 − ω1, and −ωk = −ωn + ω2 − ω1.

Note that k = n − 2j − 1, or k = n + 2j + 1, or k = 2j + 1 − n with k, n ∈ N
+ and

j ∈ N.

The case ωk = ωn + ω2 − ω1.

Since ω2
k = ( ckπ

L
)2 + δ(kπ

L
)4, it follows from ωk = ωn + ω2 − ω1 that

k
√

1 + µ2k2

√
1 + µ2

=
n
√

1 + µ2n2

√
1 + µ2

+
2
√

1 + µ222

√
1 + µ2

− 1, (A-1)

where µ2 = δ π2

c2L2 . It can easily be shown that f(k) =
k
√

1+µ2k2√
1+µ2

is an increasing function

in k, and that k ≤ f(k) < k2. Then it follows from (A-1) that

n
√

1 + µ2n2

√
1 + µ2

<
k
√

1 + µ2k2

√
1 + µ2

<
n
√

1 + µ2n2

√
1 + µ2

+
2
√

1 + µ222

√
1 + µ2

. (A-2)

Since f(k) is increasing in k it follows from the first inequality in (A-2) that 1 ≤
n < k. From the second inequality in (A-2) it then follows that

k
√

1 + µ2k2

√
1 + µ2

<
n
√

1 + µ2n2

√
1 + µ2

+
2
√

1 + µ222

√
1 + µ2

<
n
√

1 + µ2k2

√
1 + µ2

+
2
√

1 + µ2k2

√
1 + µ2

⇒ k < n + 2. (A-3)

Consequently, k = n+ 1, and (A-1) becomes:

(n + 1)
√

1 + µ2(n+ 1)2

√
1 + µ2

− n
√

1 + µ2n2

√
1 + µ2

=
2
√

1 + µ222

√
1 + µ2

−
√

1 + µ2

√
1 + µ2

.

Denoting the left hand side of the last equation by g(n) then the right hand side

of the equation is just g(1). It is not too difficult to show that g(n) is an increasing

function, so the last equation can only be satisfied if n = 1. Since k = n+ 1 it follows

that the only solution in this case is k = 2 and n = 1.
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The case ωk = −ωn + ω2 − ω1

In this case it follows from ωk = −ωn + ω2 − ω1 that

k
√

1 + µ2k2

√
1 + µ2

= −n
√

1 + µ2n2

√
1 + µ2

+
2
√

1 + µ222

√
1 + µ2

− 1. (A-4)

The only candidate for a solution of this equation is n = 1 since the left hand side

is always positive while the right hand side is negative for n ≥ 2. Accordingly, by

substituting n = 1 into (A-4) it will follow that:

k
√

1 + µ2k2

√
1 + µ2

=
2
√

1 + µ222

√
1 + µ2

− 2. (A-5)

Now it should be observed that the left-hand side of (A-5) is between k and k2, and

that the right-hand side is between 0 and 2. So, the only candidate for a solution is

k = 1 (and n = 1). Since k = n − 2j − 1, or k = n + 2j + 1, or k = 2j + 1 − n with

k, n ∈ N
+ and j ∈ N it easily follows that there are no solutions in this case.

The case −ωk = ωn + ω2 − ω1

In this case it follows from −ωk = ωn + ω2 − ω1 that

−k
√

1 + µ2k2

√
1 + µ2

=
n
√

1 + µ2n2

√
1 + µ2

+
2
√

1 + µ222

√
1 + µ2

− 1.

Now the left-hand side is always negative while the right-hand side is always posi-

tive. So, there are no solutions in this case.

The case −ωk = −ωn + ω2 − ω1

In this case it follows from −ωk = −ωn + ω2 − ω1 that

n
√

1 + µ2n2

√
1 + µ2

=
k
√

1 + µ2k2

√
1 + µ2

+
2
√

1 + µ222

√
1 + µ2

− 1.

By interchanging n and k, this case becomes the first case. So, the only solution in

this case in k = 1 and n = 2.

This completes the proof of the statement at the beginning of this appendix.

Appendix 2

In this appendix the solutions of (3.4.4) will be determined, that is, the solutions of:

Ȧ10 = −p sin(φt1)A20 + p cos(φt1)B20,

Ḃ10 = −p cos(φt1)A20 − p sin(φt1)B20,

Ȧ20 = −q sin(φt1)A10 − q cos(φt1)B10,

Ḃ20 = q cos(φt1)A10 − q sin(φt1)B10, (A-6)
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where p and q are given by (3.4.6).

By differentiating the first and the second equation in (A-6) it will follow

Ä10 = −pφ cos(φt1)A20 − p sin(φt1)Ȧ20 − pφ sin(φt1)B20 + p cos(φt1)Ḃ20

= φ[−p cos(φt1)A20 − p sin(φt1)B20] − p sin(φt1)[−q sin(φt1)A10 −
q cos(φt1)B10] + p cos(φt1)[q cos(φt1)A10 − q sin(φt− 1)B10]

= φḂ10 + pqA10, and (A-7)

B̈10 = −φȦ10 + pqB10. (A-8)

Differentiating (A-7) and using (A-8), will result in:

A
(3)
10 − pqȦ10 = φB̈10 = −φ2Ȧ10 + pqφB10, (A-9)

and finally by differentiating (A-9) and using (A-7) it follows

A
(4)
10 + (φ2 − 2pq)Ä10 + (pq)2A10 = 0. (A-10)

The characteristic equation corresponding to (A-10) is r4 +(φ2−2pq)r2 +(pq)2 = 0

with solutions r1 =
√

1
2
[2pq − φ2 +

√
D], r2 =

√
1
2
[2pq − φ2 −

√
D], r3 = −r1, and

r4 = −r2 and where D = φ4 − 4pqφ2. Since p and q are of opposite sign it follows

that φ4 − 4pqφ2 > 0 and 2pq − φ2 < 0. Therefore, r2 and r4 are purely imaginary.

And, since φ2 − 2pq =
√

(φ2 − 2pq)2 =
√
φ4 − 4pqφ2 + 4p2q2 >

√
φ4 − 4pqφ2 then

|2pq − φ2| >
√
φ4 − 4pqφ2. Accordingly r1 and r3 are also purely imaginary. So, all

the solutions of the characteristic equation can be written in the form r1 = β1i, r2 =

β2i, r3 = −r1, and r4 = −r2, where β1 =
√

1
2
[φ2 − 2pq −

√
φ4 − 4pqφ2] and β2 =√

1
2
[φ2 − 2pq +

√
φ4 − 4pqφ2]. The solution of (A-10) now becomes:

A10(t1) = K1 sin(β1t1) +K2 cos(β1t1) +K3 sin(β2t1) +K4 cos(β2t1),

where K1, K2, K3, and K4 are constants of integration.

From (A-9) B10(t1) can be derived, yielding

B10(t1) =
1

pqφ
[A

(3)
10 + (φ2 − pq)Ȧ10]; φ 6= 0.

From the first two equations in (A-6), A20 and B20 can now readily be determined,

yielding

A20(t1) =
−1

p
[Ȧ10 sin(φt1) + Ḃ10 cos(φt1),

B20(t1) =
1

p
[Ȧ10 cos(φt1) − Ḃ10 sin(φt1)].

So, the solutions of (3.4.4) have been derived.
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[7] H.R. Öz and M. Pakdemirli 1999 Journal of Sound and Vibration 227(2), 239-257.

Vibrations of An Axially Moving Beam with Time-Dependent Velocity.

[8] R.A. Sack 1954 British Applied Physics 5, 224-226. Transverse Oscillation in Trav-

eling String.

[9] F.R. Archibald, and A.G. Emslie 1958 Applied Mechanics 25, 347-348. The Vi-

brations of A String Having a Uniform Motion Along Its Length.

[10] S. Mahalingam 1957 British Journal of Applied Physics 8, 145-148. Transverse

Vibration of Power Transmission Chains.

[11] G.J. Boertjens and W.T. van Horssen 2000 SIAM Journal on Applied Mathematics

60, 602-632. An asymptotic Theory for A Beam Equation With A Quadratic

Perturbation.

51



52 BIBLIOGRAPHY

[12] W.T. van Horssen 1992 Nonlinear Analysis 19,501-530. Asymptotics for A Class

of Semi-linear Hyperbolic Equations With an Application to A Problem With A

Quadratic Nonlinearity.
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Chapter 4

On The Weakly Nonlinear,

Transversal Vibrations of A

Conveyor Belt with A Low and

Time-Varying Velocity ‡

Abstract. In this chapter the weakly nonlinear, transversal vibrations of a conveyor belt

will be considered. The belt is assumed to move with a low and time-varying speed. Using

Kirchhoff’s approach a single equation of motion will be derived from a coupled system of

partial differential equations describing the longitudinal and transversal vibrations of the

belt. A two time-scales perturbation method is then applied to approximate the solutions

of the problem. It will turn out that the frequencies of the belt speed fluctuations play an

important role in the dynamic behaviour of the belt. It is well-known in linear systems that

instabilities can occur if the frequency of the belt speed fluctuations is the sum of two natural

frequencies. However, in the weakly nonlinear case as considered in this chapter this is no

longer true. It turns out that the weak nonlinearity stabilizes the system.

4.1 Introduction

Axially moving systems are present in a wide class of engineering problems which

arise in industrial, civil, aerospace, mechanical, electronic and automotive applications.

Aerial cables, tram-ways, oil pipelines, magnetic tapes, power transmission belts, paper

sheet and web processes, fiber winding and band saw blades are examples of cases where

an axial transport of mass can be associated with transverse vibrations.

Investigating transverse vibrations of a belt system is a challenging subject which

has been studied for many years (see [2] - [5] for a recent overview) and is still of

‡This chapter is a revised version of [1] On The Weakly Nonlinear, Transversal Vibrations of A

Conveyor Belt with A Low and Time-Varying Velocity. Nonlinear Dynamics, 31, 197-223.
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interest today. In general, the studies about the dynamical behaviour of belt systems

have been restricted to belts moving with a constant speed (see for instance [2] -

[6]). Recently there are some studies about the transversal vibrations of belt systems

moving with a non-constant speed (see for instance [7] - [13]). The vibrations of a

belt system moving with a low non-constant velocity have been studied in [7], [8] and

[9]. In [7] the belt vibrations have been modeled using a linear string-like equation

while in [8] the vibrations have been modeled using a linear beam-like equation. The

transversal vibrations of a belt system moving with an O(1) time-dependent speed

have been studied in [10] and [11], while the associated nonlinear vibrations have

been studied in [12] and [13]. A major drawback in the papers [10] - [13] which has

been observed in [7] and [8], is the use of the truncation method (specifically the use

of only one term). It has been pointed out in [2], [7] and [8] that a strong reduction

in the phase space can lead to a poor description of the dynamic phenomena and in

particular the use of only an one degree-of-freedom approximation can lead to errors

in the spatial description and in the forecasting of the time evolution of the system.

In [7] and [8] it has been shown that the truncation method as applied in [10] -

[13] indeed leads to incorrect results for low speed belt systems on long timescales.

A similar conclusion on the applicability of the truncation method to these type of

problem can also be found in [14].

In this chapter the weakly nonlinear transversal vibrations of a moving belt will be

studied. These vibrations are described by a single weakly nonlinear beam equation.

Kirchhoff’s approach has been used to obtain this single governing equation from the

original coupled system of partial differential equations which describe the longitudinal

and transversal vibrations of the belt. The belt speed is considered to be time-varying

and to be small compared to the wave speed. It is assumed that the speed is V (t) =

ε̃(V0 + α sin(Ωt)), where ε̃, V0, α, and Ω are all constants with 0 < ε̃� 1 and V0 > |α|.
It should be observed that the velocity changes periodically such that the belt moves

in one direction. In fact the small parameter ε̃ indicates that the belt speed V (t) is

small compared to the wave speed. The variation in V (t) may be due to the pulleys

imperfection or some other sources of imperfection and it can be considered as some

kind of excitation. In this chapter it is assumed that the displacement of the belt in

the longitudinal and in the transversal directions are small.

In relation to excitations, some results in this area have been obtained by Sack

[15] and Archibald and Emslie [16]. Sack considered the problem of a string moving

with a constant velocity at which one of its end (i.e. x = L) is subjected to an

harmonic excitation. In [15] the vibrations of the string at x = L is forced to be

v(x, t) = v0 cos(Ωt). Archibald and Emslie also studied the case where one end of the

moving string is subjected to a harmonic excitation to represent the case of a belt

traveling from an eccentric pulley to a smooth pulley. Whereas the case where both

ends of the string are excited is studied by Mahalingam in [17]. A moving string model

has been used in [17] to study the transverse vibrations of power transmission chains.
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In all of these works, the belt movement is assumed to be constant.

This chapter is organized as follows. In section 4.2 the coupled equations describing

the motion of the belt system in longitudinal and in transversal direction are derived.

These coupled partial differential equations are then reduced in section 4.3 to a single

partial differential equation by applying Kirchhoff’s approximation. In section 4.4 a

two time-scales perturbation analysis of the equation as obtained in section 4.3 will be

carried out. Some specific values of Ω, the frequency of the belt speed fluctuations,

are used to demonstrate what kind of resonances can occur. Finally, in the last section

some conclusions will be drawn and some remarks will be made.

4.2 Kirchhoff’s approach

It has been derived in Chapter 1 that the equations of motion describing the transversal

and longitudinal vibrations of a conveyor belt are respectively:

wtt + 2V wxt + Vt(1 + wx) − (P 2
1 − V 2)wxx = (P 2

1 − 1 − ηV 2)uxuxx,

utt + 2V uxt + Vtux + (κV 2 − 1)uxx + P 2
0 uxxxx =

(P 2
1 − 1 − ηV 2)(

3

2
u2

xuxx + uxwxx + wxuxx), t ≥ 0, 0 < x < 1. (4.2.1)

The boundary conditions for the two simple supports are given by:

w(0, t) = w(1, t) = 0, and u(x, t) = uxx(x, t) = 0 for x = 0, 1, (4.2.2)

while the initial displacements and initial velocities are:

w(x, 0) = w0(x), wt(x, 0) = w1(x), u(x, 0) = u0(x),

and ut(x, 0) = u1(x). (4.2.3)

In this chapter it will be assumed that u and V are O(ε̃), w is O(ε̃2), P 2
0 is O(1),

and P 2
1 is O(1

ε̃
), where ε̃ is a small parameter with 0 < ε̃� 1. Using these assumptions

and following Kirchhoff’s approach it will be shown in this section that the coupled

system of PDEs (4.2.1) can be reduced to a single PDE for the transversal displacement

u(x, t).

Now, it should be observed that the equation for the longitudinal displacements

w(x, t) in (4.2.1) can be rewritten in:

wtt + 2V wxt + Vt(1 + wx) + V 2wxx = P 2
1 (wx +

1

2
u2

x)x − (1 + ηV 2)uxuxx. (4.2.4)

Since u and V are O(ε̃), w = O(ε̃2), and P 2
1 = O(1

ε̃
) then (4.2.4) up to order ε̃ becomes:

P 2
1 (wx +

1

2
u2

x)x = Vt ⇒ P 2
1 (wx +

1

2
u2

x) = xVt + f(t)

⇒ P 2
1

∫ 1

0

(wx +
1

2
u2

x)dx =
1

2
Vt + f(t)

⇒ f(t) =
1

2

(
P 2

1

∫ 1

0

u2
xdx− Vt

)
, (4.2.5)
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where use has been made of the boundary conditions w(0, t) = w(1, t) = 0.

Similarly the equation for u in (4.2.1) can be rewritten in

utt − uxx + P 2
0 uxxxx =

[
P 2

1

{
ux(

1

2
u2

x + wx)x + uxx(
1

2
u2

x + wx)
}
− 2V uxt − Vtux

]

+”h.o.t.”, (4.2.6)

where h.o.t. stands for higher order terms. Substituting wx + 1
2
u2

x from (4.2.5) into

(4.2.6) gives:

utt − uxx + P 2
0 uxxxx =

[
(x− 1

2
)Vtuxx − 2V uxt +

1

2
P 2

1 uxx

∫ 1

0

u2
xdx

]
+ ”h.o.t.”, (4.2.7)

where u(x, t) additionally has to satisfy the boundary conditions (4.2.2) and the initial

conditions (4.2.3).

When it is assumed that P 2
1 � O(1

ε̃
) (instead of P 2

1 = O(1
ε̃
)) it follows from (4.2.4)

that (wx + 1
2
u2

x)x = 0 approximately. Following the same steps as given in (4.2.5) and

(4.2.5) it then follows that u(x, t) has to satisfy

utt − uxx + P 2
0 uxxxx =

[
− Vtux − 2V uxt +

1

2
P 2

1 uxx

∫ 1

0

u2
xdx

]
+ ”h.o.t.”. (4.2.8)

An equation similar to (4.2.8) has been studied in [13] using Galerkin’s trunca-

tion method. In [7] and [8] it has been explained that for these type of equations

many phenomena which are present in infinite dimensional systems can be lost in its

finite dimensional approximations. In this chapter a justification of the applicability of

the truncation method will be given by explicitly studying all (internal and external)

resonances which are present in equation (4.2.7).

In (4.2.7) u, V, and P 2
1 are now replaced by ε̃ũ, ε̃Ṽ , and 1

ε̃
P̃1

2
respectively, where

ũ, Ṽ and P̃ 2
1 are of O(1). Equation (4.2.7) then becomes:

ũtt − ũxx + P 2
0 ũxxxx = ε̃

[
(x− 1

2
)Ṽtũxx − 2Ṽ ũxt +

1

2
P̃1

2
ũxx

∫ 1

0

ũ2
xdx

]
+

”h.o.t. in ε̃”, 0 < x < 1, t > 0, (4.2.9)

where ũ(x, t) also has to satisfy the following boundary and initial values

ũ(x, t) = ũxx(x, t) = 0, for x = 0 and x = 1, t ≥ 0, (4.2.10)

ũ(x, 0) = ũ0(x), ũt(x, 0) = ũ1(x), for t = 0, 0 < x < 1. (4.2.11)

4.3 A perturbation analysis

In this section approximations of the solution ũ(x, t) of the initial-boundary value

problem (4.2.9)-(4.2.11) will be constructed. As mentioned in the introduction of this

chapter it is assumed that the velocity V (t) = ε̃Ṽ (t) of the belt is given by

V (t) = ε̃Ṽ (t) = ε̃(V0 + α sin(Ωt)), (4.3.1)



4.3 A perturbation analysis 57

where ε̃, V0, α, and Ω are all constants with 0 < ε̃� 1 and V0 > |α|. For special values

of Ω it will turn out in this section that complicated resonances occur. Some of these

cases for Ω will be studied in detail. Based on the boundary conditions (4.2.10) for

ũ(x, t) it follows that ũ(x, t) can be written in the form: ũ(x, t) =
∑∞

n=1 un(t) sin(nπx).

Since this series is odd and 2-periodic in x each term in (4.2.7) should be expanded

odd with respect to x = 0 and x = 1 and 2-periodic in x. This is accomplished by

multiplying each term in (4.2.9) which is not already odd in x, (i.e. terms like xuxx

and uxt) with H(x) (see also [7], [19], [20]) where

H(x) =

{
1 for 0 < x < 1,

−1 for −1 < x < 0,
=

∞∑

j=0

4

(2j + 1)π
sin((2j + 1)πx), (4.3.2)

and H(x) = H(x+ 2). So, equation (4.2.9) then becomes on −1 < x < 1:

ũtt − ũxx + P 2
0 ũxxxx = ε̃

[
Ṽtũxx(xH(x) − 1

2
) − 2Ṽ ũxtH(x) +

1

2
P̃1

2
ũxx

∫ 1

0

ũ2
xdx

]
+ ”h.o.t. in ε”. (4.3.3)

It can be shown elementarily that the Fourier series of xH(x) on −1 < x < 1 is

1

2
−

∞∑

j=0

4

(2j + 1)2π2
cos((2j + 1)πx). (4.3.4)

Substitution of (4.3.4) in (4.3.3) gives:

ũtt − ũxx + P 2
0 ũxxxx = ε̃

[
− 4

∞∑

j=0

cos((2j + 1)πx)

(2j + 1)2π2
Ṽtũxx − 2Ṽ ũxtH(x)

+
1

2
P̃1

2
ũxx

∫ 1

0

ũ2
xdx

]
+ ”h.o.t. in ε”. (4.3.5)

Now by substituting Ṽ (t) as given by (4.3.1) and the series ũ(x, t) =
∑∞

n=1 un(t)

sin(nπx) for ũ(x, t) into (4.3.5) and then by using the orthogonality properties of the

Fourier sin−series on −1 < x < 1 it follows that uk has to satisfy (for k = 1, 2, 3, . . .)

ük + ω2
kuk = ε̃

[ ∑

k=2j+1+n

+
∑

k=n−2j−1

−
∑

k=2j+1−n

]2n2αΩ cos(Ωt)

(2j + 1)2
un −

4ε̃(V0 + α sin(Ωt))
[ ∑

k=2j+1+n

+
∑

k=2j+1−n

−
∑

k=n−2j−1

] nu̇n

(2j + 1)
−

ε̃
k2P̃ 2

1 π
4

4
uk

( ∞∑

l=1

l2u2
l

)
+ O(ε̃2), (4.3.6)

where ω2
k = (kπ)2 + P 2

0 (kπ)4. It should be observed that (4.3.6) is also obtained when

(after the sin−series for u(x, t) is substituted into (4.2.9)) equation (4.2.9) is multiplied

with sin(kπx) and then integrated with respect to x from x = 0 to x = 1.
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When a naive perturbation method is used secular terms will occur. To avoid

these secular terms a two time-scales perturbation method will be used to solve (4.3.6)

approximately. The introduction of two time-scales t0 = t and t1 = ε̃t implies that

uk(t) = ūk(t0, t1), u̇k =
∂ūk

∂t0
+ ε̃

∂ūk

∂t1
, ük =

∂2ūk

∂t20
+ 2ε̃

∂2ūk

∂t0∂t1
+ ε̃2

∂2ūk

∂t21
.

For convenience the bar on ūk(t0, t1) will be dropped in the further analysis. Assuming

that uk(t0, t1) can be written in the formal expansion uk0 + ε̃uk1 +O(ε̃2) it then follows

from the O(1)−terms and the O(ε̃)−terms in (4.3.6) that uk0 and uk1 have to satisfy:

O(1) :
∂2uk0

∂t20
+ ω2

kuk0 = 0,

O(ε̃) :
∂2uk1

∂t20
+ ω2

kuk1 = −2
∂2uk0

∂t0∂t1

+
[ ∑

k=2j+1+n

+
∑

k=n−2j−1

−
∑

k=2j+1−n

]2n2αΩun0 cos(Ωt0)

(2j + 1)2

−
[ ∑

k=2j+1+n

+
∑

k=2j+1−n

−
∑

k=n−2j−1

](4n(V0 + α sin(Ωt))

2j + 1

∂un0

∂t0

)

− P̃1
2
k2π4

4
uk0

( ∞∑

l=1

l2u2
l0

)
,

respectively. The solution of the O(1) problem is given by

uk0(t0, t1) = Ak0(t1) sin(ωkt0) +Bk0(t1) cos(ωkt0), (4.3.7)

where the functions Ak0(t1) and Bk0(t1) in (4.3.7) are still arbitrary and can be used to

avoid secular terms in the O(ε̃)−problem for uk1. By substituting uk0(t0, t1) into the

O(ε̃)−problem it follows that

∂2uk1

∂t20
+ ω2

kuk1 = −2ωk[Ȧk0 cos(ωkt0) − Ḃk0 sin(ωkt0)]

+
[ ∑

k=2j+1+n

+
∑

k=n−2j−1

−
∑

k=2j+1−n

] αΩn2

(2j + 1)2

[
An0

{
sin((ωn + Ω)t0)

+ sin((ωn − Ω)t0)
}

+Bn0

{
cos((ωn + Ω)t0) + cos((ωn − Ω)t0)

}]

+
[ ∑

k=n−2j−1

−
∑

k=n+2j+1

−
∑

k=2j+1−n

]4nωnV0

2j + 1

[
An0 cos(ωnt0) −Bn0 sin(ωnt0)

]

+
[ ∑

k=n−2j−1

−
∑

k=n+2j+1

−
∑

k=2j+1−n

]2αnωn

2j + 1

[
An0

{
sin((ωn + Ω)t0)

− sin((ωn − Ω)t0)
}

+Bn0

{
cos((ωn + Ω)t0) − cos((ωn − Ω)t0)

}]

−k
2P̃ 2

1 π
4

8

[
Ak0 sin(ωkt0) +Bk0 cos(ωkt0)

] ∞∑

l=1

l2
(
A2

l0 +B2
l0

)
+
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−k
2P̃ 2

1 π
4

16

∞∑

l=1

l2
(
B2

l0 − A2
l0

)[
Ak0

{
sin((2ωl + ωk)t0) − sin((2ωl − ωk)t0)

}

+Bk0

{
cos((2ωl + ωk)t0) + cos((2ωl − ωk)t0)

}]

−k
2P̃ 2

1 π
4

8

∞∑

l=1

l2Al0Bl0

[
Ak0

{
cos((2ωl − ωk)t0) − cos((2ωl + ωk)t0)

}

+Bk0

{
sin((2ωl + ωk)t0) + sin((2ωl − ωk)t0)

}]
. (4.3.8)

Now it can be seen from the right-hand side of (4.3.8) that secular terms (or equiva-

lently resonances) will occur when ωn ± Ω = ±ωk or when ωl = ωk. In the following

subsections, some cases will be studied in which resonances occur. In section 4.3.1 the

case Ω 6= ±ωk ± ωn will be studied. In this case only internal resonances occur due to

the nonlinear term in the PDE (4.2.9). In section 4.3.2 the case Ω = ω2 − ω1 + ε̃φ will

be studied in which φ is a detuning parameter. This case is an example in which the

frequency of the belt-velocity fluctuations is the difference of two natural frequencies of

the constant belt-velocity problem. In section 4.3.3 and 4.3.4 the case Ω = ω2 +ω1 + ε̃φ

and Ω = ω3 + ω2 + ε̃φ respectively will be studied. Again φ is a detuning parameter.

These cases are examples in which the frequencies of the belt-velocity fluctuations are

the sum of two natural frequencies of the constant belt-velocity problem.

4.3.1 The case where Ω causes no resonances

When Ω 6= ±ωk ±ωn (or not ε-close to these values) only internal resonances will occur

due to the nonlinear term in the PDE (4.2.9). It can be shown elementarily from (4.3.8)

that secular terms in uk1 can be avoided if Ak0 and Bk0 satisfy

Ȧk0 = −k
2P̃1

2
π4

32ωk

Bk0

[
k2(A2

k0 +B2
k0) + 2

∞∑

l=1

l2(A2
l0 +B2

l0)
]
,

Ḃk0 =
k2P̃1

2
π4

32ωk

Ak0

[
k2(A2

k0 +B2
k0) + 2

∞∑

l=1

l2(A2
l0 +B2

l0)
]
, (4.3.9)

for k = 1, 2, 3, . . .. System (4.3.9) can be solved exactly by introducing polar coor-

dinates, that is, Ak0(t1) = rk(t1) sin(φk(t1)) and Bk0(t1) = rk(t1) cos(φk(t1)). System

(4.3.9) in polar coordinates then becomes:

ṙk = 0, φ̇k = −k
2P̃1

2
π4

32ωk

(
k2r2

k + 2
∞∑

l=1

l2r2
l

)
. (4.3.10)

From (4.3.10) it follows that

rk(t1) = rk(0) and φk(t1) = −k
2P̃1

2
π4

32ωk

(
k2rk(0)2 + 2

∞∑

l=1

l2rl(0)2
)
t1 + φk(0),
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for k = 1, 2, 3, . . .. The constants rk(0) and φk(0) follow from the initial values Ak0(0)

and Bk0(0).

4.3.2 The case Ω = ω2 − ω1 + ε̃φ

It has been shown at the end of section 4.3 that resonances will occur when ωn ± Ω =

±ωk or when ωl = ωk. In this section the case Ω = ω2 − ω1 + ε̃φ will be discussed

where φ is a detuning parameter. By using this special value of Ω additional mode

interactions will only occur between mode 1 and mode 2 as has been shown in [8].

Substituting Ω = ω2−ω1+ε̃φ into (4.3.8), taking apart terms that cause resonances and

setting these terms equal to zero to avoid secular terms, the following set of equations

for Ak0(t1) and Bk0(t1) will be obtained:

Ȧ10 = −4α(4ω1 − ω2)

9ω1
[B20 cos(φt1) − A20 sin(φt1)]

− P̃1
2
π4

32ω1
B10

(
(A2

10 +B2
10) + 2

∞∑

l=1

l2(A2
l0 +B2

l0)
)
,

Ḃ10 =
4α(4ω1 − ω2)

9ω1

[A20 cos(φt1) +B20 sin(φt1)]

+
P̃1

2
π4

32ω1

A10

(
(A2

10 +B2
10) + 2

∞∑

l=1

l2(A2
l0 +B2

l0)
)
,

Ȧ20 = −4α(4ω1 − ω2)

9ω2
[A10 sin(φt1) +B10 cos(φt1)]

− P̃1
2
π4

4ω2
B20

(
2(A2

20 +B2
20) +

∞∑

l=1

l2(A2
l0 +B2

l0)
)
,

Ḃ20 =
4α(4ω1 − ω2)

9ω2
[A10 cos(φt1) +B10 sin(φt1)]

+
P̃1

2
π4

4ω2

A20

(
2(A2

20 +B2
20) +

∞∑

l=1

l2(A2
l0 +B2

l0)
)
, (4.3.11)

and (4.3.9) for k = 3, 4, 5, . . . . By introducing polar coordinates transformations in

(4.3.9) for k = 3, 4, 5, . . . and in (4.3.11), that is, Ak0(t1) = rk(t1) sin(φk(t1)) and

Bk0(t1) = rk(t1) cos(φk(t1)) it follows that

ṙ1 =
4α(4ω1 − ω2)

9ω1
r2 sin(φ2 − φ1 + φt1),

ṙ2 = −4α(4ω1 − ω2)

9ω2
r1 sin(φ2 − φ1 + φt1),

φ̇1 = −4α(4ω1 − ω2)r2
9ω1r1

cos(φ2 − φ1 + φt1) −
P̃1

2
π4

32ω1

(
r2
1 + 2

∞∑

l=1

l2r2
l

)
,
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φ̇2 = −4α(4ω1 − ω2)r1
9ω2r2

cos(φ2 − φ1 + φt1) −
P̃1

2
π4

4ω2

(
2r2

2 +
∞∑

l=1

l2r2
l

)
, (4.3.12)

and ṙk = 0 for k = 3, 4, 5, . . .. To obtain (4.3.12) it has been assumed that r1 6= 0,

and r2 6= 0. From (4.3.11) and (4.3.12) it can be seen that if there is no initial energy

present in the kth mode, k = 3, 4, 5, . . . then the energy in that mode will be zero up to

O(ε̃) on time-scales of O( 1
ε̃
). From (4.3.12) it can also be seen that if there is energy of

O(1) present in the first mode then an O(1) part of this energy will be transferred to

the second mode, and vice versa. This energy transport will take place on time-scales

of O(1
ε̃
). In what follows it is assumed that there is energy present in each mode of

vibration at t = 0. Since ṙk = 0 for k = 3, 4, 5, . . . it then follows that rk(t1) = rk(0)

for t1 > 0. From the first two equations in (4.3.12) it follows that ω1r1ṙ1 + ω2r2ṙ2 = 0.

This implies that ω1r
2
1 + ω2r

2
2 = C, where C is a constant of integration. In fact

rk(t1) = rk(0) for k = 3, 4, 5, . . ., and ω1r
2
1 + ω2r

2
2 = C are first integrals of the infinite

dimensional system of ODEs (4.3.12). Now let Φ(t1) = φ2(t1) − φ1(t1) + φt1. Then it

can easily be deduced from (4.3.12) that

ṙ1 =
4α(4ω1 − ω2)

9ω1

√
C − ω1r2

1

ω2
sin(Φ),

Φ̇ = φ+
4α

9
(4ω1 − ω2)

[ r2
ω1r1

− r1
ω2r2

]
cos(Φ)

+P̃1
2
π4

[ 1

32ω1

(
r2
1 + 2

∞∑

l=1

l2r2
l

)
− 1

4ω2

(
2r2

2 +

∞∑

l=1

l2r2
l

)]
. (4.3.13)

By introducing the following re-scalings r1(t1) =
√

c
ω1
R1(s2),Φ(t1) = Ψ(s2) with

s1 = 4α
9
√

ω1ω2

(4ω1 − ω2)t1, and ds2

ds1

= 1

R1

√
1−R2

1

, and by using the first integrals rk(t1) =

rk(0) for k = 3, 4, 5, . . ., and ω1r
2
1 + ω2r

2
2 = C it follows that (4.3.13) can be simplified

to

dR1

ds2
= R1(1 − R2

1) sin(Ψ),

dΨ

ds2
= (1 − 2R2

1) cos(Ψ) + (k1R
2
1 + k2)R1

√
1 − R2

1, (4.3.14)

where ki =
9P̃1

2
π4

√
ω1ω2

4α(4ω1−ω2)
k̄i for i = 1, 2 and k̄1 =

(
3

32ω1
− 1

4ω2

)
C
ω1

−
(

1
4ω1

− 3
2ω2

)
C
ω2

, and

k̄2 =
(

1
4ω1

− 3
2ω2

)
C
ω2

+ φ

P̃1

2
π2

+
(

1
16ω1

− 1
4ω2

) ∑∞
l=3 l

2rl(0)2. Since α and φ are both arbitrary

it follows that k1 and k2 are arbitrary. However, the analysis can be restricted to the

case k1 ≥ 0 and −∞ < k2 < ∞, since for k1 < 0 a simple rescaling (Ψ := Ψ + π, and

s2 := −s2) leads again to system (4.3.14) with k1 ≥ 0 and−∞ < k2 <∞. It turns out

that a first integral for (4.3.14) can also be obtained. To obtain this first integral it
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should be observed from (4.3.14) that

dΨ

dR1
=

(1 − 2R2
1) cos(Ψ) + (k1R

2
1 + k2)R1

√
1 − R2

1

R1(1 −R2
1) sin(Ψ)

⇔ sin(Ψ)dΨ

dR1

=
(1 − 2R2

1) cos(Ψ) + (k1R
2
1 + k2)R1

√
1 − R2

1

R1(1 −R2
1)

⇔ −d(cos(Ψ))

dR1

=
1 − 2R2

1

R1(1 − R2
1)

cos(Ψ) +
(k1R

2
1 + k2)R1

√
1 −R2

1

R1(1 − R2
1)

⇔ d(cos(Ψ))

dR1

+
1 − 2R2

1

R1(1 −R2
1)

cos(Ψ) = −(k1R
2
1 + k2)R1

√
1 −R2

1

R1(1 − R2
1)

(4.3.15)

which is a first order ODE in cos(Ψ). The solutions of this ODE(4.3.15) can readily

be constructed, yielding

cos(Ψ) =
k1

3R1

√
1 −R2

1

[
R1(1 − R2

1)
3/2 +

2

5
(1 − R2

1)
5/2

]

+
k2(1 −R2

1)

3R1

+
C̃

R1

√
1 − R2

1

, (4.3.16)

where C̃ is a constant of integration. In the following subsections an analysis of system

(4.3.14) in the (R1,Ψ)−phase plane will be given for different values of k1 and k2 with

k1 ≥ 0 and −∞ < k2 <∞.

Equilibrium points of system (4.3.14)

The obvious equilibrium points of system (4.3.14) are (R1,Ψ) = (0,±nπ
2

), and (1,±nπ
2

),

with n = 1, 3, 5, . . .. The less obvious equilibrium points (R1,Ψ) are given by Ψ = mπ

with m ∈ Z, where R1 with 0 < R1 < 1 follows from (1 − 2R2
1) cos(mπ) + (k1R

2
1 +

k2)R1

√
1 −R2

1 = 0. To determine the number of equilibrium points for a fixed value

of m two cases have to be studied: (i) m is even, and (ii) m is odd. These two cases

will now be studied.

(i) The case Ψ = mπ with m even

The R1-values in this case follow from

1 − 2R2
1 + (k1R

2
1 + k2)R1

√
1 −R2

1 = 0

⇔ 1 − 2R2
1

R1

√
1 − R2

1

+ k1R
2
1 + k2 = 0

⇔ 1 −R2
1 − R2

1

R1

√
1 − R2

1

+ k1R
2
1 + k2 = 0

⇔
√

1 − R2
1

R1
− R1√

1 −R2
1

+ k1R
2
1 + k2 = 0

⇔
√
z − z2

z
− z√

z − z2
+ k1z + k2 = 0, (4.3.17)
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where z = R2
1. To determine z from (4.3.17) is the same as determining the intersection

point(s) of the following two curves: y = k1z + k2, and y = −(
√

z−z2

z
− z√

z−z2
). For

special values of k1 and k2, these two curves are given in Figure 4.1. By varying k1

Figure 4.1: The curves y = −(
√

z−z2

z
− z√

z−z2
) and y = k1z + k2 with k1 = 3 and

k2 = −1.

and k2 it is possible to obtain one, two, or three intersection points (i.e. equilibrium

points). Observe also that as k2 is getting larger, the intersection point tends to z = 1.

In the case that the straight line is tangent to the other curve, there will be two

critical points. Assume that the straight line y = k1z + k2 is tangent to f(z) =

−(
√

z−z2

z
− z√

z−z2
) at the point z = z0. It then follows that

k1 = f ′(z0) =
−1

2z0(z0 − 1)
√

−z0(z0 − 1)
,

k2 = f(z0) − z0f
′(z0) =

4z2
0 − 6z0 + 3

2(z0 − 1)
√

−z0(z0 − 1)

= (4z2
0 − 6z0 + 3)(−z0)k1. (4.3.18)

From the first equation in (4.3.18) z0 can be determined, yielding

z01,2
=

1

2
± 1

2

√
1 − 3

√
16/k2

1, (4.3.19)

and then from the second equation in (4.3.18) it follows that

k21
= (−4z3

01
+ 6z2

01
− 3z01

)k1, k22
= (−4z3

02
+ 6z2

02
− 3z02

)k1. (4.3.20)

From (4.3.19) and from 0 < z0 < 1 it follows that 1 − 3

√
16
k3

1

≥ 0. Since k1 ≥ 0 it

then follows that k1 ≥ 4. In Figure 4.2 the curves in the (k1, k2)-plane (as defined

by (4.3.19) and(4.3.20)) are given on which exactly two equilibrium points (R1,Ψ) of

system (4.3.14) can be found for Ψ = mπ with m even and fixed. Also in Figure 4.2 the

region A-1 (A-3) is given in which exactly one (three) equilibrium point(s) of system

(4.3.14) can be found for Ψ = mπ with m even and fixed.
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Figure 4.2: Bifurcation curve in the (k1, k2)-plane for the number of equilibrium points

(R1,Ψ) of system (4.3.14) with Ψ = mπ,m even and fixed.

(ii) The case Ψ = mπ with m odd

The R1-values in this case follow from

−(1 − 2R2
1) + (k1R

2
1 + k2)R1

√
1 −R2

1 = 0, (4.3.21)

which is equivalent to finding the intersection point(s) of the curves y = −(k1z + k2)

and y = −(
√

z−z2

z
− z√

z−z2
), where z = R2

1 (see also the previous case (i)). In this case

always one equilibrium point will be found for Ψ = mπ with m odd and fixed since the

straight line has a negative gradient.

The (R1,Ψ)-phase plane of system (4.3.14)

In the previous subsection all equilibrium points of system (4.3.14) have been deter-

mined. In this subsection the orbits in the (R1,Ψ)-phase plane for system (4.3.14) will

be given for different values of k1 and k2. In Figure 4.3 these orbits are presented. It

can be seen from Figure 4.3 that for large values of the detuning parameter φ (that is,

for large values of |k2|) R1(s2), and so r1(t1) become constant. So, for large values of

the detuning parameter φ the solutions of the ”resonant” case (i.e. system (4.3.14))

tend to the solutions of the ”non-resonant” case (i.e.system (4.3.9)). Figure 4.3 and

the first integrals for system (4.3.14) also show that all solutions are bounded for this

special value of Ω = ω2 − ω1 + ε̃φ, which is of difference type. These results are in

accordance with those obtained for the linearized problem (see [8]).

4.3.3 The case Ω = ω2 + ω1 + ε̃φ

At the end of section 4.3 it has been shown that resonances will occur when ωn ±
Ω = ±ωk, or when ωl = ωk. In this section the case Ω = ω2 + ω1 + ε̃φ, will be

studied, where φ is again a detuning parameter. By using this special value of Ω

additional mode interactions will only occur between mode 1 and 2 as has been shown
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Figure 4.3: Orbits in the (R1,Ψ) phase plane for system (4.3.14) for different values of

k1 and k2 with −π ≤ Ψ ≤ π (vertical axis) and 0 ≤ R1 ≤ 1 (horizontal axis).
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in [8]. Substituting Ω = ω2 + ω1 + ε̃φ into(4.3.8), taking apart those terms that cause

resonances, and setting these terms equal to zero to avoid secular terms, the following

set of equations for Ak0(t1) and Bk0(t1) will be obtained:

Ȧ10 =
4α(ω2 + 4ω1)

9ω1
[B20 cos(φt1) − A20 sin(φt1)]

− P̃1
2
π4

32ω1

B10

[
A2

10 +B2
10 + 2

∞∑

l=1

l2(A2
l0 +B2

l0)
]
,

Ḃ10 =
4α(ω2 + 4ω1)

9ω1
[A20 cos(φt1) +B20 sin(φt1)]

+
P̃1

2
π4

32ω1
A10

[
A2

10 +B2
10 + 2

∞∑

l=1

l2(A2
l0 +B2

l0)
]
,

Ȧ20 =
4α(ω2 + 4ω1)

9ω2
[B10 cos(φt1) − A10 sin(φt1)]

− P̃1
2
π4

4ω2

B20

[
2(A2

20 +B2
20) +

∞∑

l=1

l2(A2
l0 +B2

l0)
]
,

Ḃ20 =
4α(ω2 + 4ω1)

9ω2
[A10 cos(φt1) +B10 sin(φt1)]

+
P̃1

2
π4

4ω2
A20

[
2(A2

20 +B2
20) +

∞∑

l=1

l2(A2
l0 +B2

l0)
]
, (4.3.22)

and (4.3.9) for k = 3, 4, 5, . . . . By introducing polar coordinates in (4.3.9) for k =

3, 4, 5, . . . and (4.3.11), that is, Ak0(t1) = rk(t1) sin(φk(t1)) andBk0(t1) = rk(t1) cos(φk(t1))

it follows that:

ṙ1 =
4α(ω2 + 4ω1)

9ω1

r2 sin(φ2 + φ1 + φt1), ṙ2 =
4α(ω2 + 4ω1)

9ω2

r1 sin(φ2 + φ1 + φt1),

φ̇1 =
4α(ω2 + 4ω1)r2

9ω1r1
cos(φ2 + φ1 + φt1) −

P̃1
2
π4

32ω1

[
r2
1 +

∞∑

l=1

l2r2
l

]
,

φ̇2 =
4α(ω2 + 4ω1)r1

9ω2r2
cos(φ2 + φ1 + φt1) −

P̃1
2
π4

4ω2

[
2r2

2 +

∞∑

l=1

l2r2
l

]
, (4.3.23)

where r2
l = A2

l0 + B2
l0, and ṙk = 0 for k = 3, 4, 5, . . .. This implies that rk(t1) = K̃,

where K̃ is a constant. From the first two equations in (4.3.23) a first integral can

again be derived, yielding ω1r
2
1 − ω2r

2
2 = K, where K is a constant of integration. As

in the previous section it will turn out that a phase plane analysis can be performed.

To give this analysis three cases have to be distinguished: (i) K > 0, (ii) K = 0, and

(iii) K < 0.
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The case K > 0

By using the first integrals and introducing Ψ = φ2 + φ1 + φt1 a reduced system as in

section 4.3.2 can be obtained from (4.3.23), that is;

ṙ1 =
4α

9ω1
(4ω1 + ω2)

√
ω1r2

1 −K

ω2
sin(Ψ),

Ψ̇ = φ+
4α

9
(4ω1 + ω2)

[ 2ω1r
2
1 −K

ω1ω2r1

√
ω1r2

1
−K

ω2

]
cos(Ψ) − P̃1

2
π4

[( 3

32ω1
+

1

4ω2

)
r2
1

+
( 1

4ω1

+
3

2ω2

)ω1r
2
1 −K

ω2

+
( 1

32ω1

+
1

4ω2

) ∞∑

l=3

l2rl(0)2
]
. (4.3.24)

A further simplification in (4.3.24) can be made by introducing the re-scalings r1(t1) =√
K
ω1

R1(s2), s1 = 4α
9
√

ω1ω2

(4ω1 + ω2)t1, and ds2

ds1

= 1

R1

√
R2

1
−1

which results in:

dR1

ds2

= R1(R
2
1 − 1) sin(Ψ),

dΨ

ds2

= (2R2
1 − 1) cos(Ψ) − (k1R

2
1 + k2)R1

√
R2

1 − 1, (4.3.25)

where ki =
9P̃1

2
π4

√
ω1ω2

4α(ω2+4ω1)
k̄i, for i = 1, 2, k̄1 =

(
3

32ω1

+ 1
4ω2

)
K
ω1

+
(

1
4ω1

+ 3
2ω2

)
K
ω2

and

k̄2 =
(

1
32ω1

+ 1
4ω2

) ∑∞
l=3 l

2rl(0)2 −
(

1
4ω1

+ 3
2ω2

)
K
ω2

− φ

P̃1

2
π2

. For the same reasons as given

in section 4.3.2 the analysis can be restricted to the case k1 ≥ 0 and −∞ < k2 < ∞.

It should be observed that K > 0 implies that R1 > 1. Using a similar method as

described at the end of section 4.3.2, a first integral of (4.3.25) also can be derived,

giving

cos(Ψ) =
1

R1

√
R2

1 − 1

[k1

7
R7

1 +
1

5
(k2 − k1)R

5
1 −

k2

3
R3

1 + Ĉ
]
, (4.3.26)

where Ĉ is a constant of integration. The equilibrium points of system (4.3.25) have

to satisfy dR2

ds2
= 0 and dΨ

ds2
= 0. Since R1 > 1 in this case it follows for the equilibrium

points that Ψ = mπ with m ∈ Z and R1 has to satisfy

±(2R2
1 − 1) − (k1R

2
1 + k2)R1

√
R2

1 − 1 = 0, (4.3.27)

where the ‘+’ sign is associated with Ψ = mπ and m even, and the ‘−’ sign is associated

with Ψ = mπ and m odd. Introducing z = R2
1 (4.3.27) becomes

±
( z√

z2 − z
+

√
z2 − z

z

)
− (k1z + k2) = 0. (4.3.28)

The solution(s) of (4.3.28) will be the intersection point(s) of the curves given by

g1(z) = ±
(

z√
z2−z

+
√

z2−z
z

)
and g2(z) = k1z + k2. In case Ψ = mπ and m even
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Figure 4.4: The functions g1(z) = ±
(√

z2−z
z

+ z√
z2−z

)
and some functions g2(z) =

k1z + k2. In the left graph g1 is given with the ‘−’ sign, and in the right graph g1 is

given with the ‘+’ sign.

always one intersection point will be found while in case Ψ = mπ and m odd zero,

one or two intersection points can be found depending on the values of k1 and k2 (see

also Figure 4.4). For Ψ = mπ with m odd exactly one intersection point will occur

when the straight line is tangent to the other curve. Assume that the straight line

g2(z) = k1z + k2 is tangent to g1(z) = −
(√

z2−z
z

+ z√
z2−z

)
at the point z = z0. It then

follows that

k1 = g′1(z0) =
1

2
(z0(z0 − 1))−3/2,

k2 = g1(z0) − z0g
′
1(z0) = −(4z3

0 − 6z2
0 + 3z0)k1, (4.3.29)

where z0 > 1. From the first equation in (4.3.29) it follows that z0 = 1
2

+ 1
2

√
1 + 3

√
16
k2

1

,

and then from the second equation in (4.3.29) it follows how the curve in the (k1, k2)-

plane is defined on which exactly one equilibrium point (R1,Ψ) of system (4.3.25) can

be found for Ψ = mπ with m odd and fixed. In Figure 4.5 this curve has been plotted.

Also in Figure 4.5 the region A-0 and A-2 are given in which zero and exactly two

equilibrium points, respectively, of system (4.3.25) can be found for Ψ = mπ with m

odd and fixed. In Figure 4.6 some phase portraits of system (4.3.25) have been given

for different values of k1 and k2. It can also be seen in Figure 4.6 that all solutions for

R1 are bounded, and that for large |k2|-values (that is, for large values of the detuning

parameter) the behaviour of the solutions of system (4.3.25) resembles the solutions of

the ”non-resonant” system (4.3.9).

The case K = 0

By using the first integral ω1r
2
1 = ω2r

2
2 and by introducing Ψ = φ2 +φ1 +φt1 a reduced

system (as in section 4.3.2) can be obtained from (4.3.23), that is,

ṙ1 =
4α

9
√
ω1ω2

(4ω1 + ω2)r1 sin(Ψ),
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Figure 4.5: Bifurcation curve in the (k1, k2)-plane for the number of equilibrium points

of system (4.3.25) with Ψ = mπ,m odd and fixed.

Ψ̇ =
8α(4ω1 + ω2)

9
√
ω1ω2

cos(Ψ) − P̃1
2
π4

[{ 3

32ω1
+

1

4ω2
+

( 1

4ω1
+

3

2ω2

)ω1

ω2

}
r2
1

+
( 1

32ω1
+

1

4ω2

) ∞∑

l=3

l2rl(0)2 − φ

P̃1
2
π4

]
. (4.3.30)

A further simplification in (4.3.30) can be made by introducing the re-scaling s1 =
4α

9
√

ω1ω2
(4ω1 + ω2)t1 which results in

dr1
ds1

= r1 sin(Ψ),
dΨ

ds1

= 2 cos(Ψ) − (k1r
2
1 + k2), (4.3.31)

where ki =
9P̃1

2
π4

√
ω1ω2

4α(4ω1+ω2)
k̄i, for i = 1, 2, and k̄1 = 3

32ω1

+ 1
4ω2

+
(

1
4ω1

+ 3
2ω2

)
ω1

ω2

, k̄2 =
(

1
32ω1

+ 1
4ω2

) ∑∞
l=3 l

2rl(0)2 − φ

P̃1

2
π4

. For the same reasons as given in section 4.3.2 the

analysis can be restricted to the case k1 ≥ 0 and −∞ < k2 < ∞. A first integral for

system (4.3.31) can be computed as follows:

dΨ

dr1
=

2 cos(Ψ)

r1 sin(Ψ)
− k1r

2
1 + k2

r1 sin(Ψ)
⇔ sin(Ψ)

dΨ

dr1
=

2 cos(Ψ)

r1
− k1r

2
1 + k2

r1
,

⇔ d cos(Ψ)

dr1
+

2 cos(Ψ)

r1
=
k1r

2
1 + k2

r1
, (4.3.32)

which has as solution:

cos(Ψ) =
1

r2
1

[k1

4
r4
1 +

k2

2
r2
1 + C∗

]
, (4.3.33)

where C∗ is a constant of integration.

The equilibrium points of system (4.3.31) are given by r1 sin(Ψ) = 0 and 2 cos(Ψ)−
(k1r

2
1 + k2) = 0. Elementarily it can be shown that the equilibrium points (r1,Ψ) of

system (4.3.31) are:
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Figure 4.6: Phase portraits of system (4.3.25) for different values of k1 and k2 (case

K > 0).

for k2 ≤ −2 : (r1,Ψ) =
(√

−2−k2

k1
, mπ

)
with m odd, and

(r1,Ψ) =
(√

2−k2

k1
, mπ

)
with m even.

for −2 ≤ k2 ≤ 2 : (r1,Ψ) = (0,Ψ) with Ψ given by cos(Ψ) = k2

2
, and

(r1,Ψ) =
(√

2−k2

k1

, mπ
)

with m even.

for k2 > 2 : no equilibrium points.
In Figure 4.7 some phase portraits of system (4.3.31) have been given for different

values of k1 and k2. It can also be seen in Figure 4.7 (and from (4.3.33)) that all

solutions for r1 are bounded, and that for large |k2|-values (that is, for large values of

the detuning parameter) the behaviour of the solution of system (4.3.31) resembles the

behaviour of the solutions of the ”non-resonant” system (4.3.9).

The case K < 0

From the first two equations in (4.3.23) a first integral ω1r
2
1 −ω2r

2
2 = K can be derived.

Substituting K = −F , with F > 0 into this first integral ω2r
2
2 = ω1r

2
1 + F is obtained.

By using this first integral and the other first integrals rk(t1) = rk(0) for k > 2, and

by introducing Φ = φ2 + φ1 + φt1 the following reduced system will be obtained:
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Figure 4.7: Phase portraits of system (4.3.31) for different values of k1 and k2 (case

K = 0).

ṙ1 =
4α

9ω1
(4ω1 + ω2)

√
ω1r2

1 + F

ω2
sin(Φ),

Φ̇ = φ+
4α

9
(4ω1 + ω2)

[ 2ω1r
2
1 + F

ω1ω2r1

√
ω1r2

1
+F

ω2

]
cos(Φ) − P̃ 2

1 π
4
[( 3

32ω1
+

1

4ω2

)
r2
1

+
( 1

4ω1

+
3

2ω2

)ω1r
2
1 + F

ω2

+
( 1

32ω1

+
1

4ω2

) ∞∑

l=3

l2rl(0)2
]
. (4.3.34)

By introducing the following re-scalings r1(t1) =
√

F
ω1
R1(s2),Φ(t1) = Ψ(s2) with s1 =

4α
9
√

ω1ω2
(4ω1 + ω2)t1, and ds2

ds1
= 1

R1

√
R2

1
+1

system (4.3.34) becomes:

dR1

ds2
= R1(R

2
1 + 1) sin(Ψ),

dΨ

ds2

= (2R2
1 + 1) cos(Ψ) − (k1R

2
1 + k2)R1

√
R2

1 + 1, (4.3.35)

where ki =
9P̃1

2
π4

√
ω1ω2

4α(4ω1+ω2)
k̄i for i = 1, 2, and k̄1 =

[(
3

32ω1

+ 1
4ω2

)
+

(
1

4ω1

+ 3
2ω2

)
ω1

ω2

]
F
ω1

and

k̄2 =
(

1
4ω1

+ 3
2ω2

)
F
ω2

+
(

1
32ω1

+ 1
4ω2

) ∑∞
l=3 l

2rl(0)2 − φ

P̃1

2
π4

. For the same reasons as given
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in section 4.3.2 the analysis can be restricted to the case k1 ≥ 0 and −∞ < k2 < ∞.

Using a similar method as described at the end of section 4.3.2 a first integral of (4.3.35)

can be derived, yielding

cos(Ψ) =
1

R1

√
R2

1 + 1

[k1

4
R4

1 +
k2

2
R2

1 + C∗∗
]
, (4.3.36)

where C∗∗ is a constant of integration.

The equilibrium points of system (4.3.35) have to satisfy R1(R
2
1 + 1) sin(Ψ) = 0

and (2R2
1 + 1) cos(Ψ) − (k1R

2
1 + k2)R1

√
R2

1 + 1 = 0. From the first equation it follows

that R1 = 0 or Ψ = mπ with m ∈ Z. For R1 = 0 it follows from the second equation

that cos(Ψ) = 0 ⇒ Ψ = (2n+1)
2

π with n ∈ Z. For Ψ = mπ it follows from the second

equation that

(−1)m(2R2
1 + 1) − (k1R

2
1 + k2)R1

√
R2

1 + 1 = 0. (4.3.37)

Following the analysis as given in subsection 4.3.1 it can be shown elementarily that

(i) for m even and fixed there will be always exactly one equilibrium point,

(ii) for m odd and fixed it is possible to have zero, one, or two equilibrium point(s)

depending on the values of k1 and k2. In Figure 4.8 the bifurcation curve in the

(k1, k2)-plane is given for which one equilibrium point occurs. Also in Figure 4.8

the regions A-0 and A-2 are given in which zero or two equilibrium points occur

respectively.
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Figure 4.8: Bifurcation curve in the (k1, k2)-plane for the number of critical points of

system (4.3.35) with Ψ = mπ,m odd and fixed.

In Figure 4.9 some phase portraits of system (4.3.35) are given for different values of

k1 and k2. From these phase portraits and from (4.3.36) it can be deduced that R1

remains bounded, and so, all solutions of the problem with Ω = ω2 + ω1 + εφ will

remain bounded. These results are different from the ones found in the linearized case

(see [8]). For the problem under consideration it can be concluded that the nonlinear

terms ”stabilize” the conveyor belt system.
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Figure 4.9: Phase portraits of system (4.3.35) for different values of k1 and k2 (case

K < 0).

4.3.4 The case Ω = ω3 + ω2 + ε̃φ

The linearized problem with Ω = ω3 + ω2 + ε̃φ has been studied in [8]. It has been

shown in [8] that for most parameter values only the second and the third mode

will interact through an internal resonance and that for special values of the beam

parameters there will be additional interactions. In this section it will be assumed

that the beam parameters are such that only an interaction between the second and

the third mode occurs due to velocity fluctuations with frequency Ω = ω3 + ω2 + ε̃φ,

where φ is a detuning parameter. In [8] it has been shown that for the linearized

problem instabilities (that is, unbounded solutions) occur. For the nonlinear system

(see (4.3.8)) with Ω = ω3 + ω2 + ε̃φ it can again be shown that in order to remove

secular terms that Ak0 and Bk0 have to satisfy:

Ȧ20 =
12α

25ω2

(9ω2 + 4ω3)[B30 cos(φt1) − A30 sin(φt1)]

− P̃1
2
π4

4ω2

B20

[
2(A2

20 +B2
20) +

∞∑

l=1

l2(A2
l0 +B2

l0)
]
,

Ḃ20 =
12α

25ω2

(9ω2 + 4ω3)[A30 cos(φt1) +B30 sin(φt1)]

+
P̃1

2
π4

4ω2

A20

[
2(A2

20 +B2
20) +

∞∑

l=1

l2(A2
l0 +B2

l0)
]
,

Ȧ30 =
12α

25ω3

(9ω2 + 4ω3)[B20 cos(φt1) − A20 sin(φt1)]

−9P̃1
2
π4

32ω3

B30

[
9(A2

30 +B2
30) + 2

∞∑

l=1

l2(A2
l0 +B2

l0)
]
,

Ḃ30 =
12α

25ω3

(9ω2 + 4ω3)[A20 cos(φt1) − B20 sin(φt1)]
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+
9P̃1

2
π4

32ω3
A30

[
9(A2

30 +B2
30) + 2

∞∑

l=1

l2(A2
l0 +B2

l0)
]
. (4.3.38)

and Ȧk0 = 0 and Ḃk0 = 0 for k = 1, 4, 5, 6, . . . . By introducing polar coordinates, that

is, Ak0(t1) = rk(t1) sin(φk(t1)) and Bk0(t1) = rk(t1) cos(φk(t1)) it follows that system

(4.3.38) becomes

ṙ2 =
12α

25ω2
(9ω2 + 4ω3)r3 sin(φ2 + φ3 + φt1), ṙ3 =

12α

25ω3
(9ω2 + 4ω3)r2 sin(φ2 + φ3 + φt1),

φ̇2 =
12α

25ω2
(9ω2 + 4ω3)

r3
r2

cos(φ2 + φ3 + φt1) −
P 2

1 π
4

4ω2

(
2r2

2 +
∞∑

l=1

l2r2
l

)
,

φ̇3 =
12α

25ω3
(9ω2 + 4ω3)

r2
r3

cos(φ2 + φ3 + φt1) −
9P 2

1 π
4

32ω3

(
9r2

3 + 2

∞∑

l=1

l2r2
l

)
, (4.3.39)

and ṙk0 = 0 for k = 1, 4, 5, 6, . . .. It follows from the first two equations in (4.3.39) that

ω2r2ṙ2 − ω3r3ṙ3 = 0 which leads to the first integral ω2r
2
2 − ω3r

2
3 = K̃, where K̃ is a

constant of integration.

Now it should be observed that system (4.3.39) and system (4.3.23) are of the same

from. So, the analysis as presented in section 4.3.3 can be repeated leading to the same

conclusions (see the end of section 4.3.3).

4.4 Conclusions and remarks

In this chapter a weakly nonlinear model describing the transversal vibrations of a

conveyor belt with a low and time-varying velocity has been studied. The equations

of motion have been derived using Hamilton’s principle leading to a system of partial

differential equations describing the longitudinal and the transversal displacements

of the conveyor belt. Using Kirchhoff’s assumption the system of partial differential

equations has been reduced to a single fourth order, weakly nonlinear beam equation,

which describes the transversal vibrations of the belt system. In the analysis it has

been assumed that the belt moves with a time-varying velocity V (t) = ε̃(V0+α sin(Ωt)),

where ε̃, V0, and α are constants with |α| < V0 and 0 < ε̃ � 1. The value of ε̃ can be

considered to be a measure of the smallness of the belt speed compared to the wave

speed. Further it has been assumed that the vertical and the longitudinal displacement

are of order ε̃ and of order ε̃2 respectively, and that P 2
0 = EI

T0L2 and P 2
1 = EA

T0

are of order

1 and of order 1
ε̃

respectively. Complicated dynamical behaviour of the belt system

occurs when the frequency Ω of the belt speed fluctuations is the sum or difference of

any two natural frequencies of the belt system with velocity equal to zero. In [8] it

has been shown for a linear model that the behaviour of the system will be unstable

for frequencies Ω of sum type. In this chapter it has been shown for a weakly nonlinear

model that the behaviour of the system will always be stable for Ω = ω2 − ω1 + ε̃φ,
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or Ω = ω2 + ω1 + ε̃φ, or Ω = ω3 + ω2 + ε̃φ, where φ is a detuning parameter. So, for

Ω ≈ ω1 + ω2 and for Ω ≈ ω2 + ω3 it can be concluded that when weakly nonlinear

terms are included in the model that the motion (which is still linearly unstable) does

not blow up to infinity (as predicted by the linear theory) but remains bounded. It is

expected that for other values of Ω the same techniques (as presented in this chapter)

can be applied to determine the stability properties of the belt system. Finally it

should be remarked that other order assumptions on the longitudinal and the vertical

displacement, and on P 2
0 and P 2

1 lead to other model equations. These model problems

will be the subject for future research. In particular the (from the point of view of

applications) very interesting case V (t) = O(1), that is, the case for which the belt

speed and the wave speed are of the same order of magnitude will be the subject for

future research.
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[10] H.R. Öz and H. Boyaci 2000 Journal of Sound and Vibration 236(2), 259-276.

Transverse Vibrations of Tensioned Pipes Conveying Fluid with Time-Dependent

Velocity.

76



BIBLIOGRAPHY 77
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Chapter 5

On The Weakly Nonlinear

Transversal Vibrations of A

Flexible, Non-stiff Conveyor Belt

with A Low and Time-Varying

Velocity

Abstract. In this paper the transversal vibrations of a conveyor belt are discussed. The

belt is assumed to move with a low and time-varying velocity. It is also assumed that the

displacements in the longitudinal direction are of order square of that in the transversal

direction, while P 2
0 , the belt bending stiffness, and P 2

1 , the belt inverse static strain, are

of the same order. With this set of assumptions Kirchhoff’s approach (as has been used

in [1]) can not be applied. The solutions of the problem have been approximated using a

two time-scales perturbation method. It turns out that if P 2
0 > 1

2π2 the behaviour of the

solutions of the problem studied in this paper resembles those studied in [1], where the

Kirchhoff’s approach has been used. If P 2
0 < 1

2π2 additional mode-interactions may arise. It

turns out that the values of P 2
0 which cause resonances are clustering in the neighbourhood

of 1
2π2 , 1

4π2 , 1
6π2 , . . . . Therefore it can be expected that for these special values of P 2

0 , the

solutions of the problem will be very complicated since a lot of modes will interact. For a

resonant value of P 2
0 = 15

154π2 together with a resonant and a non-resonant case for Ω, the

frequency of the velocity fluctuation, the problem has been studied thoroughly.

5.1 Introduction

Axially moving systems are present in a wide class of engineering problems which

arise in industrial, civil, aerospace, mechanical, electronic and automotive applications.

Aerial cables, tram-ways, oil pipelines, magnetic tapes, power transmission belts, paper
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sheet and web processes, fiber winding and band saw blades are examples of cases where

an axial transport of mass can be associated with transverse vibrations. Investigating

transverse vibrations of a belt system is a challenging subject which has been studied for

many years (see [2] - [5] for a recent overview) and is still of interest today. In general,

the studies about the dynamical behaviour of belt systems have been restricted to belts

moving with a constant speed (see for instance [2] - [6]). Recently there are some

studies about the transversal vibrations of belt systems moving with a non-constant

speed (see for instance [7] - [13]). The vibrations of a belt system moving with a low

non-constant velocity have been studied in [7], [8] and [9]. In [7] the belt vibrations

have been modeled using a linear string-like equation while in [8] the vibrations have

been modeled using a linear beam-like equation. The transversal vibrations of a belt

system moving with an O(1) time-dependent speed have been studied in [10] and

[11], while the associated nonlinear vibrations have been studied in [12] and [13]. In

[10]- [13] the truncation method has been used, and in almost all cases the solutions

are truncated to a single mode of vibration. In [2], [7], [8] and [14] it has been

pointed out that a strong reduction in the phase space can lead to a poor description

of the dynamic phenomena, and in particular the use of only one mode of vibration

approximation can lead to errors in the spatial description and in the forecasting of

the time evolution of the system. It has been shown in [7], [8] that the truncation

method as applied in [10]- [13] indeed leads to inaccurate results for low speed belt

system on long time-scales. A similar conclusion on the applicability of the truncation

method to these type of problems can also be found in [14].

In this paper the transversal vibrations of a moving belt will be studied. These

vibrations are described by a system of two weakly nonlinear partial differential equa-

tions. In [1] Kirchhoff’s approach has been used to obtain a single governing equation

from this coupled system of partial differential equations which describe the longitu-

dinal and transversal vibrations of the belt. The use of Kirchhoff’s approach becomes

possible due to the assumption that the belt inverse static strain P 2
1 is very large (that

is, O(1
ε
) with 0 < ε � 1) and that the belt bending stiffness P 2

0 = O(1). The advan-

tage of the use of the Kirchhoff’s approach is that the problem under consideration

can be decoupled into a problem in the transversal direction and into a problem in the

longitudinal direction. The problem in the transversal direction is solved first and then

the longitudinal problem can be solved in turn. In the case that the belt inverse static

strain P 2
1 = O(1) and P 2

0 = O(1) the coupled system has to be considered. In this case

the Kirchhoff’s approach can not be used. The case that P 2
1 and P 2

0 are of the same

order of magnitude will be studied in this chapter.

The belt speed is considered to be time-varying and to be small compared to the

wave speed. It is assumed that the speed is V (t) = ε(V0 + α sin(Ωt)), where ε, V0, α,

and Ω are all constants with 0 < ε � 1 and V0 > |α|. It should be observed that

the velocity changes periodically such that the belt moves in one direction. In fact the

small parameter ε indicates that the belt speed V (t) is small compared to the wave
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speed. The variation in V (t) may be due to the pulleys imperfection or some other

sources of imperfection and it can be considered as some kind of excitation. In this

paper it is assumed that the displacement of the belt in the longitudinal and in the

transversal directions are small.

In relation to excitations, some results in this area have been obtained by Sack

[15] and Archibald and Emslie [16]. Sack considered the problem of a string moving

with a constant velocity at which one of its end (i.e. x = L) is subjected to an

harmonic excitation. In [15] the vibrations of the string at x = L is forced to be

v(x, t) = v0 cos(Ωt). Archibald and Emslie also studied the case where one end of the

moving string is subjected to a harmonic excitation to represent the case of a belt

traveling from an eccentric pulley to a smooth pulley. Whereas the case where both

ends of the string are excited is studied by Mahalingam in [17]. A moving string model

has been used in [17] to study the transverse vibrations of power transmission chains.

In all of these works, the belt movement is assumed to be constant.

This paper is organized as follows. In section 5.2, the two partial differential equa-

tions describing the transversal and the longitudinal displacements of a conveyor belt

are discussed. For the derivation of these equations, the authors refer to [1]. In section

5.3, a (coupled) system of ordinary differential equations is derived from the partial

differential equations as obtained in section 5.2. By applying two time-scales perturba-

tion method the system of ordinary differential equations will be studied. It will turn

out that bounded solutions will occur only if one of the parameters Ω and P 2
1 are such

that Ω 6= P1kπ + O(ε) with k ∈ N
+. In section 5.4 and section 5.5, the case P 2

0 >
1

2π2

and the case P 2
0 < 1

2π2 are considered respectively. For the case P 2
0 < 1

2π2 a special

value of P 2
0 = 15

154π2 is studied in detail. Finally, some conclusions will given and some

remarks will be made in section 5.7.

5.2 Equations of motion

The equations of motion describing the dynamical behaviour of a conveyor belt moving

with a constant velocity have been derived in [18] using Hamilton’s principle. A similar

approach with some modifications can also be used to derive the equations of motion in

the case that the velocity is a function of time, as has been shown in [7]. In those papers

the equations of motion have been derived under the assumption that the displacements

in the longitudinal direction are of order square of those in the transversal direction.

Furthermore, terms of nonlinear degree higher than 3 have been neglected. In this

paper, the equations of motion describing the dynamical behaviour of a conveyor belt

are given by (the readers are referred to [7] for the derivation).

Wtt + 2VWxt + Vt(1 +Wx) − (P 2
1 − V 2)Wxx = (P 2

1 − 1 − ηV 2)UxUxx,

Utt + 2V Uxt + VtUx + (κV 2 − 1)Uxx + P 2
0Uxxxx =
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(P 2
1 − 1 − ηV 2)(

3

2
U2

xUxx + UxWxx +WxUxx), t ≥ 0, 0 < x < 1, (5.2.1)

where:
W (x, t) is the longitudinal displacement,

U(x, t) is the transversal displacement,

P 2
0 is the dimensionless flexural rigidity of the belt (P 2

0 = EI
T0L2 ),

P 2
1 is the inverse static strain of the belt (P 2

1 = EA
T0

),

E is the Young’s modulus,

I is the second moment of area with respect to the horizontal axis,

A is the cross-sectional area of the belt,

T0 is the initial tension,

L is the belt length,

η is a support constant (0 ≤ η ≤ 1),

κ is 1 − η,

x is the horizontal position, and

t is time.
The boundary conditions for the two simple supports are given by:

W (0, t) = W (1, t) = 0, and U(x, t) = Uxx(x, t) = 0 for x = 0, 1, (5.2.2)

while the initial displacements and initial velocities are:

W (x, 0) = W0(x), Wt(x, 0) = W1(x), U(x, 0) = U0(x), and Ut(x, 0) = U1(x). (5.2.3)

In [1] P 2
1 is assumed to be much larger than P 2

0 , this leads to the possibility of using

Kirchhoff’s approximation. In this chapter P 2
0 and P 2

1 are assumed to be of O(1).

Consequently, the coupled system of PDE’s has to be considered in this case. The belt

speed V (t) is still assumed to be O(ε).

5.3 The application of the two time-scales pertur-

bation method

Assuming that U(x, t) and W (x, t) are small, that is, U(x, t) =
√
εu(x, t),W (x, t) =

εw(x, t), where u(x, t) and w(x, t) are O(1) and V (t) = ε(V0 + α sin(Ωt)), (5.2.1) can

be transformed into:

wtt − P 2
1wxx + αΩ cos(Ωt) − (P 2

1 − 1)uxuxx = −ε
[
2(V0 + α sin(Ωt))wxt

+αΩwx cos(Ωt)
]

+ O(ε2),

utt − uxx + P 2
0 uxxxx = −ε[2(V0 + α sin(Ωt))uxt + αΩux cos(Ωt)

−(P 2
1 − 1)(

3

2
u2

xuxx + uxwxx + wxuxx)] + O(ε2). (5.3.1)
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Based on the boundary conditions, the solutions are of the form w(x, t) =
∑∞

n=1 wn(t)

sin(nπx) and u(x, t) =
∑∞

n=1 un(t) sin(nπx). By substituting the series for w(x, t) and

u(x, t) into (5.3.1), multiplying each term with sin(kπx) and then by integrating the

so-obtained equations with respect to x from x = 0 to x = 1, it follows that:

ẅk + (kP1π)2wk +
(P 2

1 − 1)π3

2

[ ∑

k=n+m

+
∑

k=m−n

−
∑

k=n−m

]
nm2unum

+
(
1 + (−1)k+1

)2αΩ

kπ
cos(Ωt0) = ε

[ ∑

k=n−2j−1

−
∑

k=n+2j+1

−
∑

k=2j+1−n

]

(4nẇn(V0 + α sin(Ωt))

2j + 1
+

2nαΩwn cos(Ωt)

2j + 1

)
,

ük + ω2
kuk = ε

[ ∑

k=n−2j−1

−
∑

k=n+2j+1

−
∑

k=2j+1−n

](4nu̇n(V0 + α sin(Ωt))

2j + 1

+
2nαΩun cos(Ωt)

2j + 1

)
+ ε

(P 2
1 − 1)π3

2

[ ∑

k=n−m

−
∑

k=n+m

−
∑

k=m−n

]
nm2(unwm + umwn)

−ε3(P 2
1 − 1)π4

16

[
2

∑

k=l+m−n

−2
∑

k=n−m−l

+
∑

k=l−n−m

+
∑

k=n+m+l

−
∑

k=n+m−l

]
nml2unumul,

(5.3.2)

where ω2
k = (kπ)2 + P 2

0 (kπ)4. To obtain an approximate solution of (5.3.2), valid

uniformly up to order ε, a two time-scale perturbation method will be used. So, two

time-scales t0 = t, t1 = εt are introduced. Further it is assumed that wk(t0, t1) =

wk0(t0, t1) + εwk1(t0, t1) + ε2wk2(t0, t1) + . . . and uk(t0, t1) = uk0(t0, t1) + εuk1(t0, t1) +

ε2wk2(t0, t1)+. . .. Substituting these expansions for wk(t0, t1) and uk(t0, t1) into (5.3.2),

and collecting terms of O(1), and of O(ε) it follows that wk0, wk1, uk0, and uk1 have to

satisfy:

O(1) :
∂2wk0

∂t20
+ k2P 2

1 π
2wk0 +

(P 2
1 − 1)π3

2

[ ∑

k=n+m

+
∑

k=m−n

+
∑

k=n−m

]
nm2un0um0 +

(
1 + (−1)k+1

)2αΩ

kπ
cos(Ωt0) = 0,

∂2uk0

∂t20
+ ω2

kuk0 = 0,

O(ε) :
∂2wk1

∂t20
+ k2P 2

1 π
2wk1 =

−2
∂2wk0

∂t0∂t1
− (P 2

1 − 1)π3

2

[ ∑

k=n+m

+
∑

k=m−n

−
∑

k=n−m

]
nm2(un0um1 + un1um0) +

[ ∑

k=n−2j−1

−
∑

k=n+2j+1

−
∑

k=2j+1−n

](4n(V0 + α sin(Ωt0))

2j + 1

∂wn0

∂t0
+

2nαΩwn0 cos(Ωt0)

2j + 1

)
,

∂2uk1

∂t20
+ ω2

kuk1 = −2
∂uk0

∂t0∂t1
+
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[ ∑

k=n−2j−1

−
∑

k=n+2j+1

−
∑

k=2j+1−n

](4n(V0 + α sin(Ωt0))

2j + 1

∂un0

∂t0
+

2nαΩun0 cos(Ωt0)

2j + 1

)
+

(P 2
1 − 1)π3

2

[ ∑

k=n−m

−
∑

k=n+m

−
∑

k=m−n

]
nm2(un0wm0 + um0wn0) −

3(P 2
1 − 1)π4

16

[
2

∑

k=l+m−n

−2
∑

k=n−m−l

+
∑

k=l−n−m

+
∑

k=n+m+l

−
∑

k=n+m−l

]
nml2un0um0ul0.

(5.3.3)

The O(1) equations have as solutions

uk0(t0, t1) = Ak0(t1) sin(ωkt0) +Bk0(t1) cos(ωkt0),

wk0(t0, t1) = Ck0(t1) sin(kP1πt0) +Dk0 cos(kP1πt0) +
2αΩ[1 + (−1)k+1]

kπ(k2P 2
1 π

2 − Ω2)
cos(Ωt0)

+
(P 2

1 − 1)π3

2

[ ∑

k=m+n

+
∑

k=m−n

+
∑

k=n−m

][
β1 cos(ωn + ωm)t0 + β3 sin(ωn + ωm)t0 +

β2 cos(ωn − ωm)t0 + β4 sin(ωn − ωm)t0

]
, (5.3.4)

where β1 = nm2(Bn0Bm0−An0Am0)

2[k2P 2

1
π2−(ωn+ωm)2]

, β2 = nm2(Bn0Bm0+An0Am0)

2[k2P 2

1
π2−(ωn−ωm)2]

, β3 = nm2(An0Bm0+Bn0Am0)

2[k2P 2

1
π2−(ωn+ωm)2]

, and

β4 = nm2(An0Bm0−Bn0Am0)

2[k2P 2

1
π2−(ωn−ωm)2]

. It should be observed that the O(1) solution for wk0 has been

derived under the assumptions that Ω is not ε−close to ±kP1π with k odd, and that

±ωn±ωm is not ε−close to ±P1kπ for k = m+n, or k = m−n, or k = n−m. It will turn

out that on a time-scale of order O( 1
ε
) the transversal vibrations can be determined

accurately by taking into account the motions in the longitudinal direction only up

to O(1). Because of this fact and due to the complicated calculations to approximate

longitudinal vibrations up to O(ε), the longitudinal part is beyond the scope of this

work.

With those assumptions mentioned above, the functions Ak0(t1), Bk0(t1) are then

determined by removing the secular terms occurring in the right hand side of the equa-

tion for uk1. Now, by substituting uk0, wk0 into the O(ε) equation for uk1, it will turn out

that secular terms will occur due to terms containing cos(ωkt0), sin(ωkt0), sin(Ωt0)
∂un0

∂t0
,

un0 cos(Ωt0) and un0um0ul0. It should be observed that the terms with un0wm0 and

um0wn0 do not cause any resonances because of the assumptions mentioned above.

Rewriting sin(Ωt0)
∂un0

∂t0
and un0 cos(Ωt0) shows that secular terms occur due to expres-

sions such as sin((Ω ± ωn)t0) and cos((Ω ± ωn)t0), while from un0um0ul0 secular terms

occur due to expressions like sin((ωl +ωn −ωm)t0), sin((ωl +ωm −ωn)t0), sin((ωl +ωn +

ωm)t0), sin((ωn + ωm − ωl)t0), cos((ωl + ωn − ωm)t0), cos((ωl + ωm − ωn)t0), cos((ωl +

ωn +ωm)t0), and cos((ωn +ωm−ωl)t0). Therefore it follows that the speed fluctuations

will cause resonances for Ω ± ωn = ±ωk for k = n − 2j − 1 or k = n + 2j + 1 or

k = 2j + 1 − n, where k, n ∈ N
+ and j = 0, 1, 2, . . .. While from the nonlinear part
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resonances will occur if the following systems of equations have solutions:

(I) :

{
k = m− n− l,

ωk = ±ωm ± ωn ± ωl,
(5.3.5)

(II) :

{
k = m+ n− l,

ωk = ±ωm ± ωn ± ωl,
(5.3.6)

(III) :

{
k = m + n+ l,

ωk = ±ωm ± ωn ± ωl,
(5.3.7)

It turns out (see Appendix) that (I) and (III) have no solutions at all, while for (II)

it turns out that only k = m+n−l, ωk = ωm+ωn−ωl, and k = m+n−l, ωk = ωm+ωn+ωl

need to be considered. The problem k = m + n − l, ωk = ωm + ωn − ωl has only the

trivial solutions k = m,n = l, or k = n,m = l for all µ2 > 0, where µ2 = (P0π)2. In

the appendix it is also shown that the problem k = m+ n− l, ωk = ωm + ωn + ωl will

only have solutions for specific values of µ2 with µ2 < 1
2
.

5.4 The case where (P0π)2 = µ2 > 1
2

Three cases for Ω will be considered in this section, namely:

1. The value of Ω does not lead to resonances,

2. Ω is a difference of two natural frequencies (that is, Ω = ωn − ωk for some n and

k),

3. Ω is a sum of two natural frequencies (that is, Ω = ωn + ωk for some n and k).

5.4.1 The value of Ω does not cause resonances

In this case, secular terms will occur only due to the nonlinear terms. Also since µ2 > 1
2
,

the only terms that give rise to resonances are the terms of the form sin((ωγ1
+ ωγ2

−
ωγ3

)t0) and cos((ωγ1
+ωγ2

−ωγ3
)t0) where γ1, γ2, γ3 are l, m, or n. For this trivial case,

it can be shown that secular terms can be removed if Ak0(t1) and Bk0(t1) satisfy

Ȧk0 = −kπ
6

2ωk

(P 2
1 − 1

2
√

2

)2

Bk0

[( 2

k2P 2
1 π

2
+

1

k2P 2
1 π

2 − 4ω2
k

)
r2
k +

∞∑

n=1

L(k, n)r2
n

]

−3(P 2
1 − 1)π4k2

128ωk
Bk0

[
3k2r2

k + 4

∞∑

n=1

n2r2
n

]
,

Ḃk0 =
kπ6

2ωk

(P 2
1 − 1

2
√

2

)2

Ak0

[( 2

k2P 2
1 π

2
+

1

k2P 2
1 π

2 − 4ω2
k

)
r2
k +

∞∑

n=1

L(k, n)r2
n

]

+
3(P 2

1 − 1)π4k2

128ωk

Ak0

[
3k2r2

k + 4
∞∑

n=1

n2r2
n

]
, (5.4.1)
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where L(k, n) = kn3(k+n)

k2P 2

1
π2−(ωk−ωn)2

+ k2n2(k+n)

k2P 2

1
π2−(ωk+ωn)2

and r2
k = A2

k0 + B2
k0. Multiplying

the first equation with Ak0 and the second equation with Bk0 and then by adding the

so-obtained equations, it follows that rkṙk = 0. This means that rk(t1) is constant and

so rk(t1) = rk(0). By putting Ak0(t1) = rk(t1) sin(φk(t1)) and Bk0(t1) = rk cos(φk(t1))

it follows that φ̇k = − kπ6

2ωk

(
P 2

1
−1

2
√

2

)2[(
2

k2P 2

1
π2

+ 1
k2P 2

1
π2−4ω2

k

)
r2
k(0) +

∑∞
n=1 L(k, n)r2

n(0)
]
−

3(P 2

1
−1)π4k2

128ωk
r2
k

[
3r2

k(0) + 4
∑∞

n=1 n
2r2

n(0)
]
. Assuming that rk0

(0) 6= 0 then φk(t1) =
[
−

kπ6

2ωk

(
P 2

1
−1

2
√

2

)2[(
2

k2P 2

1
π2 + 1

k2P1π2−4ω2

k

)
rk(0)+

∑∞
n=1 L(k, n)rn(0)2

]
− 3(P 2

1
−1)π4k2

128ωk
r2
k

[
3rk(0)2 +

4
∑∞

n=1 n
2rn(0)2

]]
t1+φk(0). Hence, up to O(ε), uk0(t0, t1) = rk0

(t1) sin(φk(t1)) sin(ωkt0)

+rk0
(t1) cos(φk(t1)) cos(ωkt0). Having found uk0(t0, t1), the solution wk0(t0, t1) also can

be determined from the O(1) equation in (5.3.3). The solution wk0(t0, t1) will be

bounded since no secular terms occur in the right hand side in (5.3.3).

5.4.2 The case Ω = ω2−ω1 + εφ, where the detuning parameter

φ = O(1)

If Ω = ω2 − ω1 then additional resonances will occur due to the external excitation,

that is, from the terms sin((Ω ± ωn)t0) and cos((Ω ± ωn)t0) in (5.3.3). For this special

value of Ω, additional mode-interactions will occur between mode 1 and mode 2. It

turns out that secular terms can be removed if Ak0(t1) and Bk0(t1) satisfy:

Ȧ10 = −
[2α(ω1 + ω2)

3ω1
+

(P 2
1 − 1)π2

2ω1

( 2αΩ

P 2
1 π

2 − Ω2
+

2αΩ

9P 2
1 π

2 − Ω2

)][
B20 cos(φt1)

−A20 sin(φt1)
]
− π6

2ω1

(P 2
1 − 1

2
√

2

)2

B10

[( 2

P 2
1 π

2
+

1

P 2
1 π

2 − 4ω2
1

)
r2
1 +

∞∑

n=1

L(1, n)r2
n

]

−3(P 2
1 − 1)π4

128ω1
B10

[
3r2

1 + 4
∞∑

n=1

n2r2
n

]
,

Ḃ10 =
[2α(ω1 + ω2)

3ω1
+

(P 2
1 − 1)π2

2ω1

( 2αΩ

P 2
1 π

2 − Ω2
+

2αΩ

9P 2
1 π

2 − Ω2

)][
A20 cos(φt1)

+B20 sin(φt1)
]

+
π6

2ω1

(P 2
1 − 1

2
√

2

)2

A10

[( 2

P 2
1 π

2
+

1

P 2
1 π

2 − 4ω2
1

)
r2
1 +

∞∑

n=1

L(1, n)r2
n

]

+
3(P 2

1 − 1)π4

128ω1
A10

[
3r2

1 + 4
∞∑

n=1

n2r2
n

]
,

Ȧ20 = −
[2α(ω1 + ω2)

3ω2
+

(P 2
1 − 1)π2

2ω2

( 2αΩ

P 2
1 π

2 − Ω2
+

2αΩ

9P 2
1 π

2 − Ω2

)][
B10 cos(φt1)

+A10 sin(φt1)
]
− π6

ω2

(P 2
1 − 1

2
√

2

)2

B20

[( 1

2P 2
1 π

2
+

1

4P 2
1 π

2 − 4ω2
2

)
r2
2 +

∞∑

n=1

L(2, n)r2
n

]
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−3(P 2
1 − 1)π4

8ω2
B20

[
3r2

2 +

∞∑

n=1

n2r2
n

]
,

Ḃ20 =
[2α(ω1 + ω2)

3ω2
+

(P 2
1 − 1)π2

2ω2

( 2αΩ

P 2
1 π

2 − Ω2
+

2αΩ

9P 2
1 π

2 − Ω2

)][
A10 cos(φt1)

−B10 sin(φt1)
]

+
π6

ω2

(P 2
1 − 1

2
√

2

)2

A20

[( 1

2P 2
1 π

2
+

1

4P 2
1 π

2 − 4ω2
2

)
r2
2 +

∞∑

n=1

L(2, n)r2
n

]

+
3(P 2

1 − 1)π4

8ω2
A20

[
3r2

2 +

∞∑

n=1

n2r2
n

]
, (5.4.2)

and (5.4.1) for k ≥ 3. It can be seen from (5.4.2) that if there is no initial energy present

in the k−th mode with k ≥ 3, then the energy in that mode will be zero up to O(ε) on

time-scales of O( 1
ε
). However, if there is initial energy present in the first mode, the

energy will be transfered to the second mode and reverse energy will also be transfered

from the second mode to the first mode. By introducing Ak0 = rk(t1) sin(φk(t1)) and

Bk0 = rk(t1) cos(φk(t1)), (5.4.2) can be transformed into:

ṙ1 =
[2α(ω1 + ω2)

3ω1

+
(P 2

1 − 1)π2

ω1

( αΩ

P 2
1 π

2 − Ω2
+

αΩ

9P 2
1 π

2 − Ω2

)]
r2 sin(φ2 − φ1 + φt1),

ṙ2 = −
[2α(ω1 + ω2)

3ω1
+

(P 2
1 − 1)π2

ω1

( αΩ

P 2
1 π

2 − Ω2
+

αΩ

9P 2
1 π

2 − Ω2

)]
r1 sin(φ2 − φ1 + φt1),

φ̇1 = −
[2α(ω1 + ω2)

3ω1
+

(P 2
1 − 1)π2

ω1

( αΩ

P 2
1 π

2 − Ω2
+

αΩ

9P 2
1 π

2 − Ω2

)]r2
r1

cos(φ2 − φ1 + φt1)

−3(P 2
1 − 1)π4

128ω1

[
3r2

1 + 4
∞∑

n=1

n2r2
n

]
− π6

2ω1

(P 2
1 − 1

2
√

2

)2[( 2

P 2
1 π

2
+

1

P 2
1 π

2 − 4ω2
1

)
r2
1

+
∞∑

n=1

( n3(1 + n)

P 2
1 π

2 − (ω1 − ωn)2
+

n2(1 + n)

P 2
1 π

2 − (ω1 + ωn)2

)
r2
n

]
,

φ̇2 = −
[2α(ω1 + ω2)

3ω2
+

(P 2
1 − 1)π2

ω2

( αΩ

P 2
1 π

2 − Ω2
+

αΩ

9P 2
1 π

2 − Ω2

)]r1
r2

cos(φ2 − φ1 + φt1)

−3(P 2
1 − 1)π4

8ω2

[
3r2

2 +
∞∑

n=1

n2r2
n

]
− π6

ω2

(P 2
1 − 1

2
√

2

)2[( 1

2P 2
1 π

2
+

1

4P 2
1 π

2 − 4ω2
2

)
r2
2

+
∞∑

n=1

( 2n3(2 + n)

4P 2
1 π

2 − (ω2 − ωn)2
+

4n2(2 + n)

4P 2
1 π

2 − (ω2 + ωn)2

)
r2
n

]
.

A first integral can be derived from the first two equations, that is, ω1r
2
1 + ω2r

2
2 = K

with K is a constant of integration. Now, by applying this first integral and some

transformations, that is, r1 = K
ω1
R1, s1 = 2α(ω1+ω2)

3
√

ω1ω2
t1 and ds2

ds1
= 1

R1

√
1−R2

1

, the following

reduced system of ODE’s can be obtained:

dR1

ds2

= R1(1 − R2
1) sin(Ψ),

dΨ

ds2

= (1 − 2R2
1) cos(Ψ) + (k1R

2
1 + k2)R1

√
1 −R2

1, (5.4.3)



88 Flexible, non-stiff belt

where Ψ = φ2 − φ1 + φt1, k1 =
√

ω1ω2

N1

(
C1K
ω1

− C2K
ω2

)
, k2 =

√
ω1ω2

N1

(
C2K
ω2

+ Cn + φ
)
,

C1 = 3(P 2
1 −1)π4

(
7

128ω1
− 1

8ω2

)
+π6

(
P 2

1
−1

2
√

2

)2(
1

2ω1

[
2

P 2

1
π2 + 1

P 2

1
π2−4ω2

1

]
+ L(1,1)

2ω1
− L(2,1)

ω2

)
, C2 =

3(P 2
1 − 1)π4

(
1

8ω1
− 7

8ω2

)
+π6

(
P 2

1
−1

2
√

2

)2(
L(1,2)
2ω1

− L(2,2)
ω2

− 1
ω2

[
1

2p2

1
π2 + 1

4P 2

1
π2−4ω2

2

])
, and Cn =

3(P 2
1 − 1)π4

(
1

32ω1

− 1
8ω2

) ∑∞
n=3

n2r2
n(0) + π6

(
P 2

1
−1

2
√

2

)2 ∑∞
n=3

(
L(1,n)
2ω1

− L(2,n)
ω2

)
r2
n(0) where L(k, n) = kn3(k+n)

k2P 2

1
π2−(ωk−ωn)2

+

k2n2(k+n)

k2P 2

1
π2−(ωk+ωn)2

for k = 1, 2. It should be noticed that (5.4.3) is exactly the same as

equation (38) in [1]. Therefore for the case where µ2 > 1
2

and Ω = ω2 − ω1 + εφ

together with some assumptions stated at the beginning of this paper, the transversal

dynamics of a conveyor belt modeled by (5.2.1) is the same as that modeled by using

equation (20) in [1] for which Kirchhoff’s approximation has been used. Therefore,

up to O(ε) the displacements in the vertical direction will be bounded on time-scales

O(1
ε
). Finally, the solutions in the longitudinal direction, wk0, can be determined by

using the solutions in the vertical direction, uk0, from the O(1) -equations in (5.3.3).

Also wk0 will be bounded.

5.4.3 The case Ω = ω2 +ω1 + εφ, where the detuning parameter

φ = O(1)

For Ω = ω2 + ω1 + εφ with the detuning parameter φ = O(1), secular terms can be

removed if Ak0(t1) and Bk0(t1) satisfy:

Ȧ10 = −
[ 2α

3ω1
(ω2 − ω1) +

(P 2
1 − 1)π2

2ω1

( 2αΩ

P 2
1 π

2 − Ω2
+

2αΩ

9P 2
1 π

2 − Ω2

)]
[B20 cos(φt1)

−A20 sin(φt1)] −
π6

2ω1

(P 2
1 − 1

2
√

2

)2

B10

[( 2

P 2
1 π

2
+

1

P 2
1 π

2 − 4ω2
1

)
r2
1 +

∞∑

n=1

L(1, n)r2
n

]

−3(P 2
1 − 1)π4

128ω1
B10

[
3r2

1 + 4
∞∑

n=1

n2r2
n

]
,

Ḃ10 = −
[ 2α

3ω1
(ω2 − ω1) +

(P 2
1 − 1)π2

2ω1

( 2αΩ

P 2
1 π

2 − Ω2
+

2αΩ

9P 2
1 π

2 − Ω2

)]
[A20 cos(φt1)

+B20 sin(φt1)] +
π6

2ω1

(P 2
1 − 1

2
√

2

)2

A10

[( 2

P 2
1 π

2
+

1

p2
1π

2 − 4ω2
1

)
r2
1 +

∞∑

n=1

L(1, n)r2
n

]

+
3(P 2

1 − 1)π4

128ω1
A10

[
3r2

1 + 4
∞∑

n=1

n2r2
n

]
,

Ȧ20 = −
[ 2α

3ω2
(ω2 − ω1) +

(P 2
1 − 1)π2

2ω2

( 2αΩ

P 2
1 π

2 − Ω2
+

2αΩ

9P 2
1 π

2 − Ω2

)]
[B10 cos(φt1)

−A10 sin(φt1)] −
π6

ω2

(P 2
1 − 1

2
√

2

)2

B20

[( 1

2P 2
1 π

2
+

1

4P 2
1 π

2 − 4ω2
2

)
r2
2 +

∞∑

n=1

L(2, n)r2
n

]
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−3(P 2
1 − 1)π4

8ω2
B20

[
3r2

2 +

∞∑

n=1

n2r2
n

]
,

Ḃ20 = −
[ 2α

3ω2
(ω2 − ω1) +

(P 2
1 − 1)π2

2ω2

( 2αΩ

P 2
1 π

2 − Ω2
+

2αΩ

9P 2
1 π

2 − Ω2

)]
[A10 cos(φt1)

+B10 sin(φt1)] +
π6

ω2

(P 2
1 − 1

2
√

2

)2

A20

[( 1

2P 2
1 π

2
+

1

4P 2
1 π

2 − 4ω2
2

)
r2
2 +

∞∑

n=1

L(2, n)r2
n

]

+
3(P 2

1 − 1)π4

8ω2
A20

[
3r2

2 +

∞∑

n=1

n2r2
n

]
,

and (5.4.1) for k ≥ 3. By using the transformation Ak0(t1) = rk(t1) sin(φk(t1)) and

Bk0(t1) = rk(t1) cos(φk(t1)), equation (5.4.4) can be transformed into:

ṙ1 = −N1

ω1

r2 sin(φ2 + φ1 + φt1), ṙ2 = −N1

ω2

r1 sin(φ2 + φ1 + φt1),

φ̇1 = −N1r2
ω1r1

cos(φ2 + φ1 + φt1) −
3(P 2

1 − 1)π4

128ω1

[
3r2

1 + 4

∞∑

n=1

n2r2
n

]

− π6

2ω1

(P 2
1 − 1

2
√

2

)2[( 2

P 2
1 π

2
+

1

P 2
1 π

2 − 4ω2
1

)
r2
1 +

∞∑

n=1

L(1, n)r2
n

]
,

φ̇2 = −N1r1
ω2r2

cos(φ2 + φ1 + φt1) −
3(P 2

1 − 1)π4

8ω2

[
3r2

2 +
∞∑

n=1

n2r2
n

]

−π
6

ω2

(P 2
1 − 1

2
√

2

)2[( 1

2P 2
1 π

2
+

1

4P 2
1 π

2 − 4ω2
2

)
r2
2 +

∞∑

n=1

L(2, n)r2
n

]
,(5.4.4)

where the assumptions that ri 6= 0 for i = 1, 2 have been used, and N1 = 2α
3

(ω2−ω1)+

(P 2
1 −1)π2

(
αΩ

P 2

1
π2−Ω2 + αΩ

9P 2

1
π2−Ω2

)
. A first integral can be obtained from the first and the

second equation in (5.4.4), giving ω1r
2
1 −ω2r

2
2 = K. Three cases have to be considered:

K > 0, K = 0, and K < 0.

The case K > 0

In this case, by using the first integral and several rescalings (namely r1 =
√

K
ω1
R1, s1 =

N1√
ω1ω2

t1, and ds2

ds1
= 1

R1

√
R2

1
−1

) system (5.4.4) can be reduced to:

dR1

ds2

= −R1(R
2
1 − 1) sin(Θ),

dΘ

ds2

= (1 − 2R2
1) cos(Θ) − (k1R

2
1 + k2)R1

√
R2

1 − 1,

(5.4.5)

where Θ = φ2 + φ1 + φt1. Using the transformation Θ = Ψ ± π system (5.4.5) can be

transformed into:

dR1

ds2
= R1(R

2
1 − 1) sin(Ψ),

dΨ

ds2
= (2R2

1 − 1) cos(Ψ) − (k1R
2
1 + k2)R1

√
R2

1 − 1,

(5.4.6)
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where k1 =
(

C1K
ω1

+ C2K
ω2

)√
ω1ω2

N1

, k2 = −
(
Cn + C2K

ω2

)√
ω1ω2

N1

, C1 = 3(P 2
1 − 1)π4

(
7

128ω1

+

1
8ω2

+π6
(

P 2

1
−1

2
√

2

)2[
1

2ω1

(
2

P 2

1
π2 + 1

P 2

1
π2−4ω2

1

)
+ L(1,1)

2ω1
+ L(2,1)

ω2
, C2 = 3(P 2

1 − 1)π4
(

1
8ω1

+ 7
8ω2

)
+

π6
(

P 2

1
−1

2
√

2

)2[
1
ω2

(
1

2P 2

1
π2 + 1

4P 2

1
π2−4ω2

2

)
+ L(1,2)

2ω1
+ L(2,2)

ω2
, and Cn = φ−

∑∞
n=3

[(
1

8ω2
+ 1

32ω1

)
n2+

π6
(

P 2

1
−1

2
√

2

)2(
L(1,n)
2ω1

+ L(2,n)
ω2

)]
r2
n(0). The parameters N1 and L(k, n) have been defined

previously. This system of ODE’s (5.4.6) is the same as (49) in [1] where Kirchhoff’s

approximation has been used. Therefore the analysis will be the same as the one in

[1] and it will not be repeated here.

The case K = 0

Using the same method as that explained in section 4.3.1, the following reduced system

of ODE’s can be obtained from (5.4.4) for K = 0

dr1
ds1

= −r1 sin(Θ),
dΘ

ds1
= −2 cos(Θ) − (k1r

2
1 + k2), (5.4.7)

where Θ = φ2 + φ1 + φt1, k1 = C1 + C2ω1

ω2

and k2 = −Cn (C1, C2 and Cn are defined in

section 4.3.1). Again with the transformation Θ = Ψ ± π (5.4.7) can be transformed

into equation (55) of [1], that is,

dr1
ds1

= r1 sin(Ψ),
dΨ

ds1
= 2 cos(Ψ) − (k1r

2
1 + k2). (5.4.8)

The analysis and its results can be obtained in [1], and it will not be repeated here.

The case K < 0

If K < 0 then by using the aforementioned transformations the following reduced

system will be obtained from the system (5.4.4)

dR1

ds2
= −R1(R

2
1 + 1) sin(Θ),

dΘ

ds2

= −(2R2
1 + 1) cos(Θ) − (k1R

2
1 + k2)R1

√
R2

1 + 1, (5.4.9)

where Θ = φ2 + φ1 + φt1, k1 =
(

C1

ω1

+ C2

ω2

)
M

√
ω1ω2

N1

and k2 =
(

C2M
ω2

− Cn

)√
ω1ω2

N1

with

M = −K > 0 (C1, C2 and Cn are defined in section 4.3.1). Again this system of ODE’s

can be brought back into system (59) of [1] by using the transformation Θ = Ψ ± π.

For analysis of this system, the reader is referred to [1].

From the analysis as presented in section 4 it can be concluded that in the case

(P0π)2 = µ2 > 1
2

and Ω = ω2 ±ω1 + εφ the behaviour of the belt system as modeled by

(5.2.1) is the same as that modeled in [1] (see subsection 4.3 of [1]) where Kirchhoff’s

approximation has been used. Hence, up to O(ε) the solution will be bounded on

time-scales of O( 1
ε
).
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5.5 The case (P0π)2 = µ2 < 1
2

For µ2 < 1
2

additional mode-interactions may occur due to the nonlinear part of the

equation. These additional interactions are never detected if Kirchhoff’s approximation

is applied. Since µ2 can be small (because P 2
0 is usually small (see [5])) then the

occurrence of these additional interactions can not be avoided. The occurrence of these

additional interactions usually give rise to complicated problems, which are difficult to

handle analytically. Two cases will be studied in this chapter. In this section the

detuned case for µ2 = 15
154

with a nonresonant value of Ω will be considered, and in

section 6 the case µ2 = 15
154

and the resonant value ω2−ω1 +εφ for Ω will be considered.

5.5.1 The case µ2 = 15
154 + εζ and Ω causes no resonances

From (5.3.6) and the appendix (see Figure 6, point P, λ2 = 1
µ2 = 154

15
) it follows that

for µ2 = 15
154

the first, the third, and the fifth mode will interact since ω5 = 2ω3 + ω1.

In what follows a detuned case of µ2 = 15
154

will be chosen as an example to study the

dynamic behaviour of the conveyor belt. Now, detuning µ2 implies detuning P 2
0 in the

original PDE’s. Rewriting µ2 as µ2 = µ2
c + εζ where µ2

c = 15
154

and P 2
0 = P 2

0c
+ εσ it

follows from µ2 = P 2
0 π

2 that µ2
c = P 2

0c
π2 and ζ = σπ2.

It will turn out that by using P 2
0 = P 2

0c
+ εσ in the original PDE’s, the appli-

cation of the two time-scales perturbation method will give secular-free terms in the

approximations if Ak0(t1) and Bk0(t1) satisfy

Ȧ10 = −π
4σ

2ω1

B10 −
[270(P 2
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+
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√
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√
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∞∑

n=1

L(1, n)r2
n

]
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]
,
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+
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,
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+
1

9P 2
1 π

2 − 4ω2
3
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+
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]
, (5.5.1)

and (5.4.1) for k 6= 1, 3, 5. By introducing Ak0(t1) = rk(t1) sin(φk(t1)) and Bk0(t1) =

rk(t1) cos(φk(t1)) it follows that (5.5.1) becomes:

ṙ1 = −K̃1

ω1
r2
3r5 sin(2φ3 − φ5 + φ1), ṙ3 = −K̃3

ω3
r1r3r5 sin(2φ3 − φ5 + φ1),

ṙ5 =
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ω5

r1r
2
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φ̇1 = −π
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2
3 −

3π6

2ω3

(P 2
1 − 1

2
√

2

)2
∞∑

n=1

L(3, n)r2
n

−108(P 2
1 − 1)π4

128ω3

∞∑

n=1

n2r2
n,

φ̇5 = −625π4σ

2ω5

− K̃5r1r
2
3

ω5r5
cos(2φ3 − φ5 + φ1) −M5r

2
5 −

5π6

2ω5

(P 2
1 − 1

2
√

2

)2
∞∑

n=1

L(5, n)r2
n
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−300(P 2
1 − 1)π4

128ω5

∞∑

n=1

n2r2
n, (5.5.2)

where it has been assumed that r1, r3 and r5 are not zero, Mn = nπ6

2ωn

(
P 2

1
−1

2
√

2

)2(
2

n2P 2

1
π2 +

1
n2P 2

1
π2−4ω2

n

)
+

9n4(P 2

1
−1)π4

128ωn
and K̃n =

270(P 2

1
−1)π4

128
+ 810π6

2[nP 2

1
π2−4ω2

3
]

(
P 2

1
−1

2
√

2

)2

for n = 1, 3, 5.

There are first integrals for system (5.5.2) connecting r1, r3 and r5, namely, ω1

K̃1

r2
1 +

ω5

K̃5

r2
5 = K1, and ω1

K̃1

r2
1− ω3

K̃3

r2
3 = K3. Consequently, it is also obvious that ω3

K̃3

r2
3 + ω5

K̃5

r2
5 =

K1 − K3, where K1 and K3 are constants of integration. Notice that K1 > 0, while

K3 can take any value, and K1 −K3 > 0 (implying that K3

K1
< 1). By using these first

integrals and denoting Ψ = 2φ3 − φ5 + φ1 system (5.5.2) can be reduced to a system

consisting of only two ODE’s, namely:

ρ̇1 = − K̃

ω1ω3
√
ω5

(ω1ρ
2
1 −K3)

√
K1 − ω1ρ

2
1) sin(Ψ),

Ψ̇ =
[
4ω2

1ρ
4
1 − (3K1 + 2K3)ω1ρ

2
1 +K1K3

] K̃ cos(Ψ)

ω1ω3
√
ω5ρ1

√
K1 − ω1ρ2

1

+ k̃1ρ
2
1 + k̃2,

where ρ1 =
√

1
K̃1

r1, K̃ = K̃3

√
K̃1K̃5, k̃1 = N1K̃1 + N3K̃3ω1

ω3
− N5K̃5ω1

ω5
, k̃2 = N5K1K̃5

ω5
−

N3K3K̃3

ω3
+

(
625
2ω5

− 1
2ω1

− 162
2ω3

)
π4σ +

(
300

128ω5
− 12

128ω1
− 216

128ω3

)
(P 2

1 − 1)π4
∑∞

n6=1,3,5 n
2r2

n(0) +

π6
(

P 2

1
−1

2
√

2

)2 ∑∞
n6=1,3,5

[
5L(5,n)

2ω5
−L(1,n)

2ω1
−6L(3,n)

2ω3

]
r2
n(0), andN1 = M5−M1+π

6
(

P 2

1
−1

2
√

2

)2[
5L(5,1)

2ω5

− L(1,1)
2ω1

− 6L(3,1)
2ω3

]
, N3 = 9M5 −M3 + π6

(
P 2

1
−1

2
√

2

)2[
5L(5,3)

2ω5
− L(1,3)

2ω1
− 6L(3,1)

2ω3

]
, N5 = M5 +

25(P 2
1 − 1)π4

(
300

128ω5

− 12
128ω1

− 216
128ω3

)
+ 5L(5,5)

2ω5

− L(1,5)
2ω1

− 6L(3,5)
2ω3

. Rescaling with ρ1 =
√

K1

ω1
R1, s1 = K̃t1

ω1ω3

√
ω5

and s2 = K2
1s1 will give:

dR1

ds2

= R1(R
2
1 − 1)(R2

1 − k3) sin(Ψ),

dΨ

ds2
= [4R4

1 − (3 + 2k3)R
2
1 + k3] cos(Ψ) + (k1R

2
1 + k2)R1

√
1 −R2

1, (5.5.3)

where k3 = K3

K1
< 1, k1 = k̃1

ω1
ω3

√
ω1ω5 and k2 = k̃2

K1
ω3

√
ω1ω5, and where 0 < R1 < 1.

5.5.2 Critical points of (5.5.3)

The most obvious critical point of (5.5.3) is R2
1 = k3, and by substituting this value

of R1 into the right hand side of the second equation in (5.5.3), Ψ can be determined.

For R2
1 6= k3 then the critical points have to satisfy sin(Ψ) = 0, that is, Ψ = nπ, n ∈ Z.

The second equation then becomes:

[4R4
1 − (3 + 2k3)R

2
1 + k3](±1) + (k1R

2
1 + k2)R1

√
1 −R2

1 = 0,
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⇔ ±4x2 − (3 + 2k3)x + k3√
x− x2

= −k1x− k2,

⇔ 4x2 − (3 + 2k3)x+ k3√
x− x2

= ∓k1x∓ k2, (5.5.4)

where: x = R2
1. The ′+′ sign corresponds to Ψ = nπ with n odd, while the ′−′ sign

corresponds to Ψ = nπ with n even. If the left hand side of (5.5.4) is denoted by y1(x)

and the right hand side by y2(x) then solutions of (5.5.4) will be the intersection points

y1(x) and y2(x). In Figure 2, the graph of y1(x) has been drawn for different values of

k3. To determine the solutions of (5.5.4), the parameter k1 will be kept fixed, namely
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(a) 0 ≤ k3 ≤ 1 (b) −1.2 ≤ k3 ≤ 0

Figure 5.1: The curves of y1

k1 = 1. For other values of k1 the method of analysis is the same. The values of k2, k3

will be varied with k3 < 1. For k3 < 0 it is possible to have 1, 2, or 3 critical points

with Ψ = nπ for both n odd or even, while for 0 ≤ k3 < 1 only 0, 1 or 2 critical points

are possible. The set of parameter values (k3, k2) where y2(x) tangent to y1(x) gives a

bifurcation diagram. This bifurcation diagram will now be determined.

The bifurcation diagram

The bifurcation diagrams depicting the change of the number of critical points of system

(5.5.3) can be derived as follows. Let x0 denote the point where y1(x) is tangent to

y2(x). Then, it follows that

dy1(x0)

dx
= ∓k1, and y1(x0) = y2(x0). (5.5.5)

Since k1 = 1 it follows from (5.5.5) that:

8x3
0 − 12x2

0 + 3x0 + k3

2(x2
0 − x0)

√
x0 − x2

0

= ∓1 and k2 = ±x0 ±
4x2

0 − (3 + 2k3)x0 + k3√
x0 − x2

0

. (5.5.6)
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From (5.5.6), it follows that the parametric equations of the bifurcation curves are

given by:

k3 = 2(x0 − x2
0)

√
x0 − x2

0 + 12x2
0 − 8x3

0 − 3x0 and k2 = x0 +
4x2

0 − (3 + 2k3)x0 + k3√
x0 − x2

0

,

and

k3 = 2(x2
0 − x0)

√
x0 − x2

0 + 12x2
0 − 8x3

0 − 3x0 and k2 = x0 −
4x2

0 − (3 + 2k3)x0 + k3√
x0 − x2

0

.

(5.5.7)

The graphs of (5.5.7) in the (k3, k2)-plane have been drawn in Figure 2. In this Figure,
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Figure 5.2: Bifurcation diagrams depicting the change in the number of critical points

of (5.5.3) with Ψ = nπ, n ∈ Z.

if (k3, k2) is in region Ai where i=0,1,2,3 then there will be i critical point(s) in system

(5.5.3) on the line Ψ = nπ with n fixed. In Figure 2 (a), the parameter values (k3, k2)

located on the curves OP, PQ, QO will give 2 critical points, the parameter values

located on the curves QR and the k2-axis below O will give 1 critical point, while the

parameter values on the k2-axis above the point Q will give 0 critical points. In Figure

2 (b), the parameter values on the curves OU, UV, and VO will give 2 critical points,

the parameter values on curve VW and the k2-axis above the point O will give 1 critical

point, and finally the parameter values on the k2-axis below the point V will give 0

critical points. In Figure 3 some phase planes of system (5.5.3) have been drawn for

several values of k2 and k3. In fact system (5.5.3) has a first integral which can be

derived as follows. From (5.5.3) it follows that:

dΨ

dR1
=

4ω2
1R

4
1 − (3 + 2k3)R

2
1 + k3

R1(k3 −R2
1)(1 −R2

1) sin(Ψ)
cos(Ψ) +

(k1R
2
1 + k2)R1

√
1 − R2

1

R1(k3 − R2
1)(1 −R2

1) sin(Ψ)
,

⇔ sin(Ψ)
dΨ

dR1
=

4R4
1 − (3 + 2k3)R

2
1 + k3

R1(k3 − R2
1)(1 − R2

1)
cos(Ψ) +

(k1R
2
1 + k2)

√
1 −R2

1

(k3 −R2
1)(1 −R2

1)

⇔ −dy(R1)

dR1

= F (R1)y(R1) +G(R1), (5.5.8)
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(a) k3 = 0.4, k2 = 0.1 (b) k3 = 0.4, k2 = 0.5811 (c) k3 = 0.4, k2 = 1
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(d) k3 = −0.04, k2 = 0.8 (e) k3 = −0.04, k2 = 0.6669 (f) k3 = −0.2, k2 = 0.6
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(g) k3 = −0.2, k2 = −1.4892 (h) k3 = −0.04, k2 = −1.3 (i) k3 = 0.4, k2 = 2

Figure 5.3: Some phase planes of system (5.5.3). The horizontal axis is R1 while the

vertical axis is Ψ.

where y(R1) = cos(Ψ(R1)), F (R1) =
4R4

1
−(3+2k3)R2

1
+k3

R1(k3−R2

1
)(1−R2

1
)

and G(r1) =
(k1R2

1
+k2)

√
1−R2

1

(k3−R2

1
)(1−R2

1
)

.

This linear differential equation can readily be solved yielding:

cos(Ψ) =
[
R1(k3 −R2

1)
√

1 − R2
1

][
− 1

2

k1 + k2

(k3 − 1)2
ln(1 − R2

1) +
1

2

k2 + k1k3

k3(k3 − 1)(R2
1 − k3)

+
k2

k2
3

lnR1 +
1

2

k3k1 − k2 − 2k2k3

k3(k3 − 1)2
ln|R2

1 − k3| + C∗
]
, (5.5.9)

where C∗ is a constant that can be determined from the initial condition.

5.6 The case (P0π)2 = µ2 = 15
154

and Ω = ω2 − ω1 + εφ

The special values of Ω = ω2−ω1 will cause mode 2 and mode 1 to interact in addition

to modes 1, 3, and 5. In this case, the secular terms in the approximation can be
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removed if Ak0(t1) and Bk0(t1) satisfy:

Ȧ10 = −
[2α(ω1 + ω2)

3ω1
+

(P 2
1 − 1)π2

2ω1

( 2αΩ

P 2
1 π

2 − Ω2
+

2αΩ

9P 2
1 π

2 − Ω2

)][
B20 cos(φt1)

−A20 sin(φt1)
]
− K̃1

ω1

[
B50(B

2
30 − A2

30) + 2A30B30A50

]
−M1B10r

2
1

− π6

2ω1

(P 2
1 − 1

2
√

2

)2

B10

∞∑

n=1

L(1, n)r2
n − 12(P 2

1 − 1)π4

128ω1
B10

∞∑

n=1

n2r2
n,

Ḃ10 =
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3ω1
+

(P 2
1 − 1)π2

2ω1

( 2αΩ

P 2
1 π

2 − Ω2
+

2αΩ

9P 2
1 π

2 − Ω2

)][
A20 cos(φt1)

+B20 sin(φt1)
]

+
K̃1

ω1

[
A50(B

2
30 − A2

30) − 2A30B30B50

]
−M1A10r

2
1

+
π6

2ω1

(P 2
1 − 1

2
√

2

)2

A10
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n=1

L(1, n)r2
n +

12(P 2
1 − 1)π4

128ω1

A10
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n=1

n2r2
n,

Ȧ20 = −
[2α(ω1 + ω2)

3ω2

+
(P 2

1 − 1)π2

2ω2

( 2αΩ

P 2
1 π

2 − Ω2
+

2αΩ

9P 2
1 π

2 − Ω2

)][
B10 cos(φt1)

+A10 sin(φt1)
]
−M2B20r

2
2 −

π6

ω2

(P 2
1 − 1

2
√

2

)2

B20

∞∑

n=1

L(2, n)r2
n

−3(P 2
1 − 1)π4

8ω2

B20
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n=1

n2r2
n,

Ḃ20 =
[2α(ω1 + ω2)

3ω2

+
(P 2

1 − 1)π2

2ω2

( 2αΩ

P 2
1 π

2 − Ω2
+

2αΩ

9P 2
1 π

2 − Ω2

)][
A10 cos(φt1)

−B10 sin(φt1)
]

+M2A20r
2
2 +

π6

ω2

(P 2
1 − 1

2
√

2

)2

A20
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n=1

L(2, n)r2
n

+
3(P 2

1 − 1)π4

8ω2

A20

∞∑

n=1

n2r2
n, (5.6.1)

and (5.4.1) for k 6= 1, 2, 3, 5. The equations for Ȧk0 and Ḃk0 for k = 3, 5 can be taken

from (5.5.1) with σ = 0.

By using polar coordinates, that is, Ak0(t1) = rk(t1) sin(φk(t1)) and Bk0(t1) =

rk(t1) cos(φk(t1)), two first integrals relating r1, r2, r3, and r5 can be obtained, that is,

ω1ρ
2
1 +ω2ρ

2
2 −ω3ρ

2
3 = K1 and ω1ρ

2
1 +ω2ρ

2
2 +ω5ρ

2
5 = K2 where K1, K2 are the constants

of integration, and r2
1 = K̃1ρ

2
1, r

2
2 = K̃1ρ

2
2, r

2
3 = K̃3ρ

2
3, and r2

5 = K̃5ρ
2
5. From these

first integrals it follows that r1, r2, r3, and r5 will be bounded. The so-obtained first

integrals can be used to reduce system (5.6.1) to a system of four first order ODE’s,

yielding:

ρ̇1 =
N2ρ2

ω1
sin(Φ) − K̃ sin(Ψ)

ω1ω3
√
ω5

(ω1ρ
2
1 + ω2ρ

2
2 −K1)

√
K2 − ω1ρ2

1 − ω2ρ2
2,

ρ̇2 = −N2

ω2

ρ1 sin(Φ),
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Φ̇ =
[ ρ2

ω1ρ1
− ρ1

ω2ρ2

]
N2 cos(Φ) +

K̃(ω1ρ
2
1 + ω2ρ

2
2 −K1)
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√
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2
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2
2 cos(Ψ)
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1 +
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]
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cos(Φ) +
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2
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2
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2
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, (5.6.2)

where: Φ = φ2 − φ1 + φt1,Ψ = 2φ3 + φ1 − φ5, N2 = 2α
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+ π6

(
P 2

1
−1

2
√

2

)2[
5L(5,2)

2ω5

− L(1,2)
2ω1

− 3L(3,2)
ω3

]
, G8 = 9(P 2

1 −

1)π4
[

300
128ω5

− 12
128ω1

− 216
128ω3

]
− 2M3 + π6

(
P 2

1
−1

2
√

2

)2[
5L(5,3)

2ω5

− L(1,3)
2ω1

− 3L(3,3)
ω3

]
, G9 = 25(P 2

1 −

1)π4
[

300
128ω5

− 12
128ω1

− 216
128ω3

]
+ M5 + π6

(
P 2

1
−1

2
√

2

)2[
5L(5,5)

2ω5
− L(1,5)

2ω1
− 3L(3,5)

ω3

]
, and G10 =

∑∞
n6=1,2,3,5

[
π6

(
P 2

1
−1

2
√

2

)2(
5L(5,n)

2ω5
−L(1,n)

2ω1
−3L(3,n)

ω3

)
+n2(P 2

1−1)π4
(

300
128ω5

− 12
128ω1

− 216
128ω3

)]
r2
n(0).

It should be noticed that in the process of deriving (5.6.2) it has been assumed

that rk 6= 0 for k = 1, 2, 3, 5. For k 6= 1, 2, 3, 5 it will follow that rk = rk(0) and

Φk = −3(P 2

1
−1)π4k2

128ωk

[
3r2

k0
+ 4

∑∞
n=1 n

2r2
n0

]
t1.

It seems that this system of four first order ODE’s can not be reduced any further

analytically. Because of that, in what follows only numerical results will be presented.

In order to reduce the number of parameters the following scalings are introduced

successively, that is, ρ1 =
√

K2

ω1
R1, ρ2 =

√
K2

ω2
R2, s1 = N2t1√

ω1ω2
, s2 = K2K̃

N2ω3

√
ω2

ω5
s1 and

ds3

ds2
= 1

R1R2

√
1−R2

1
−R2

2

. With these scalings it then follows from (5.6.2) that:

dR1

ds3

= ηR1R
2
2

√
1 − R2

1 − R2
2 sin(Φ) − (R2

1 +R2
2 −K)(1 −R2

1 − R2
2) sin(Ψ),
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dR2

ds3

= −ηR2
1R2

√
1 −R2

1 −R2
2 sin(Φ),

dΦ

ds3
= η(R2

2 −R2
1)

√
1 − R2

1 −R2
2 cos(Φ) +R2(1 −R2

1 − R2
2)(R

2
1 +R2

2 −K) cos(Ψ)

+(k1R
2
1 + k2R

2
2 + δ1)R1R2

√
1 − R2

1 − R2
2,

dΨ

ds3
= −ηR2

2

√
1 −R2

1 −R2
2 cos(Φ) + [R2

1(R
2
1 +R2

2 −K) − 2R2
1(1 − R2

1 − R2
2)

−(R2
1 +R2

2 −K)(1 − R2
1 −R2

2)]R2 cos(Ψ) + (k3R
2
1 + k4R

2
2 + δ2)R1R2

√
1 −R2

1 −R2
2,

(5.6.3)

where η = N2ω3

K2K̃

√
ω5

ω2
, K = K1

K2
< 1, k1 = [G2

ω1
+ G4

ω3
− G5

ω5
]
ω3

√
ω1ω5

K̃
, k2 = [G3

ω2
+ G4

ω3
−

G5

ω5
]
ω3

√
ω1ω5

K̃
, k3 = [G6

ω1
+ G8

ω3
− G9

ω5
]
ω3

√
ω1ω5

K̃
, k4 = [G7

ω2
+ G8

ω3
− G9

ω5
]
ω3

√
ω1ω5

K̃
, δ1 = [G1

K2
− G4K

ω3
+

G5

ω5

]K2ω1ω3

N2K̃

√
ω2ω5, and δ2 = [G10

K2

+ G8K
ω3

+ G9

ω5

]K2ω1ω3

N2K̃

√
ω2ω5.

It should be noticed that if P 2
1 is fixed then all the k1, k2, k3 and k4 will be fixed, so

the only parameters will be N2, K, δ1 and δ2. To give an illustration of the dynamical

behaviour of (5.6.3) some projected trajectories in the (R1, R2)−plane for the case

P 2
1 = 100, δ1 = 1, and δ2 = 0 have been given in Figure 4.
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Figure 5.4: Some projected trajectories of system (5.6.3) for several values of η and K,

and for several initial conditions IC = (R1(0), R2(0),Φ(0),Ψ(0)).
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5.7 Conclusions and remarks

In this paper a weakly nonlinear model describing the transversal and the longitudinal

vibrations of a conveyor belt with a low and time-varying velocity has been studied.

The model consists of a system of partial differential equations which can be derived

by using Hamilton’s principle.

In the analysis it has been assumed that the belt velocity is of order O(ε), that is,

V (t) = ε(V0 + α sin(Ωt)), |α| < V0, 0 < ε � 1. The value of ε can be considered as a

measure of the smallness of the belt velocity compared to the wave speed. Further, it

has also been assumed that the longitudinal displacements are O(ε), the transversal

displacements are O(
√
ε), and P 2

0 and P 2
1 are O(1). Due to the assumption that P 2

1 is

of order O(1) the Kirchhoff’s approach can not be used.

It is found that if µ2 = P 2
0 π

2 > 1
2

then the dynamical behaviour of the transversal

vibrations of the belt will resemble those found in the case where Kirchhoff’s approach

has been applied. Whereas for µ2 < 1
2

a more complicated behaviour will occur due to

the additional mode interactions caused by the nonlinear part of the problem.

The case µ2 = 15
154

has been studied in detail. For this special value of µ2 it is found

that the modes 1, 3, and 5 are interacting, while the other modes remain constant.

When Ω causes no resonances, the detuned case µ2 = 15
154

+ εζ with ζ = O(1) has been

considered. Although the solutions in this case are always bounded, their behaviour

may vary depending on ζ and the initial conditions. Also the resonant case Ω = ω2−ω1

and µ2 = 15
154

has been considered. In this case the modes 1, 2, 3 and 5 are interacting

while the other modes remain constant. The boundedness of the solutions for the

modes 1, 2, 3 and 5 proved analytically. It is expected that for other values of µ2 and

Ω a similar analysis can be performed. In this work, focus has been mainly put to

the transversal vibrations of the conveyor belt. This is not only due to the significant

importance of the transversal vibrations compared to the longitudinal vibrations, but

also due to the analytical complications in the study of the longitudinal vibrations.

Appendix

It has been stated in section 5.3 that the nonlinear part of the PDE’s gives rise to

resonances if the following systems of equations have solutions.

(I) :

{
k = m− n− l,

ωk = ±ωm ± ωn ± ωl
(A-1)

(II) :

{
k = m+ n− l,

ωk = ±ωm ± ωn ± ωl
(A-2)

(III) :

{
k = m + n+ l,

ωk = ±ωm ± ωn ± ωl.
(A-3)
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It will be shown in this appendix that system I and system III have no solutions at

all, while in system II the only cases that have to be considered are k = m+n− l, with

ωk = ωm +ωn−ωl, ωk = ωm +ωn +ωl, ωk = ωm−ωn +ωl, and ωk = −ωm +ωn +ωl. The

other equations either can be rewritten in these forms or do not have any solutions at

all. It should be noticed that system I and system III are in fact equivalent, therefore

only system I will be considered, and it will be shown that system I has no solutions.

System (A-1)

A. The case ωk = ωm + ωn + ωl

In this case k = m − n− l implies that m > k. As a consequence ωk = ωm + ωn + ωl

can not be satisfied.

B. The case ωk = ωm + ωn − ωl

Since k = m− n− l and ωk = ωm + ωn − ωl then m = k + n+ l and

ωk + ωl = ωm + ωn ⇔ ωk+n+l + ωn = ωk + ωl

⇔ (k + n+ l)
√

1 + (k + n+ l)2µ2 + n
√

1 + n2µ2 = k
√

1 + k2µ2 + l
√

1 + l2µ2,

where µ2 = P 2
0 π

2. The last equation can not be satisfied since the left hand side is

obviously larger than the right hand side.

C. The case ωk = ωm − ωn + ωl

Rewriting ωk = ωm − ωn + ωl as ωk + ωn = ωm + ωl and then by using the proof as

given in part B this case similarly has no solution.

D. The case ωk = ωm − ωn − ωl

In this case k = m − n − l, and ωk = ωm − ωn − ωl implies that m = k + n + l, and

ωm = ωk + ωn + ωl. Obviously ωk+n+l = ωk + ωn + ωl can not be satisfied.

E. The case ωk = −ωm + ωn + ωl

In this case ωm = ωn + ωl − ωk with m = k + n+ l. It is again obvious that ωk+n+l =

ωn + ωl − ωk can not be satisfied.

F. The case ωk = −ωm + ωn − ωl

This case is equivalent to m = k + n + l, and ωm = ωn − ωl − ωk. Since m > n it is

clear that there are no solutions.
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G. The case ωk = −ωm − ωn + ωl

This case is equivalent to ωk+n+l = ωl−ωn−ωk, which is obviously can not be satisfied.

H. The case ωk = −ωm − ωn − ωl

This case certainly can not be satisfied since the left hand side is positive while the

right hand side is negative. By using the same procedure as presented above, it can

also be shown that the case −ωk = ±ωm ± ωn ± ωl does not have any solutions.So,

system I does not have any solutions.

Now, by rewriting system III as m = k − n− l and ±ωm = ±ωk ± ωn ± ωl then it

can be seen that this system is equivalent to system I by interchanging the role of m

and k. Consequently this system also does not have any solutions.

System (A-2)

As mentioned at the beginning of this appendix, in what follows only the cases k =

m + n − l with ωk = ωm + ωn − ωl, ωk = ωm + ωn + ωl, ωk = ωm − ωn + ωl, and

ωk = −ωm + ωn + ωl will be considered in this section. By using the method apllied

previously, other cases can be brought to these systems of equations or they do not

have any solutions at all.

The case ωk = ωm + ωn − ωl

In this appendix it will be shown that the only solutions for the the Diophantine- like

equation k = m+n− l and ωk = ωm +ωn −ωl for which µ2 = P 2
0 π

2 > 0 are the trivial

solutions k = m,n = l, k = n,m = l and k = l = m = n. From ωk = ωm + ωn − ωl it

follows that:

√
k2 + k4µ2 =

√
m2 +m4µ2 +

√
n2 + n4µ2 −

√
l2 + l4µ2,

⇔ k2
√

1 + λ2/k2 = m2
√

1 + λ2/m2 + n2
√

1 + λ2/n2 − l2
√

1 + λ2/l2,

where λ = 1/µ and from k = m + n− l it follows that k + l = m + n. For non-trivial

solutions, without loss of generality, only the case where k > n ≥ m > l has to be

considered. The other cases can be treated similarly. Now, let f(x) = x2
√

1 + λ2/x2

then

f ′(x) =
2x2 + λ2

x
√

1 + λ2

x2

, and f ′′(x) =
2x2 + 3λ2

(x2 + λ2)
√

1 + λ2

x2

. (A-4)

Since the first and the second derivative of f(x) are positive for x > 0 it follows that f

is a convex function. In Figure 5.5 a typical example of a convex function f is given.
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− f(n)
y(m+n−l)

f(x)

x

y

f(m) − y(l)

l m k0 n

Figure 5.5: A typical graph of a convex function f .

Now, since k = m + n− l and ωk = ωm + ωn − ωl it follows that

ωk − ωn = ωm − ωl ⇔ ωm+n−l − ωn = ωm − ωl

⇔ f(m+ n− l) − f(n) = f(m) − f(l). (A-5)

By using the tangent line at x = n, that is, y(x) = f(n) + (x − n)f ′(n) it follows

that

y(m+ n− l) = f(n) + (m− l)f ′(n) ⇔ y(m+ n− l) − f(n) = (m− l)f ′(n)

⇒ f(m+ n− l) − f(n) > (m− l)f ′(n). (A-6)

On the other hand by using the tangent line at x = m, i.e., y(x) = f(m)+(x−m)f ′(m)

it follows that:

y(l) = f(m) + (l −m)f ′(m) ⇔ y(l) − f(m) = −(m− l)f ′(m) ⇔
f(m) − y(l) = (m− l)f ′(m) ⇒ f(m) − f(l) < (m− l)f ′(m). (A-7)

Using (A-6) in (A-5) gives f(m)−f(l) > (m− l)f ′(n). Now, f is a convex function,

that is, f ′′ > 0, therefore f ′(n) > f ′(m) for n > m. Consequently, f(m) − f(l) �
(m − l)f ′(m). But then this contradicts (A-7). Therefore, the system of equations

k = m + n − l and ωk = ωm + ωn − ωl, for all µ2 > 0 has no solutions other than the

trivial ones, that is, k = n,m = l or symmetrically k = m,n = l.

The case ωk = ωm + ωn + ωl

In this case n = l and k = m, or m = l and k = n can not be solutions of
{

k = m+ n− l,

ωk = ωm + ωn + ωl,
(A-8)

since the second equation will not be satisfied. Let’s put ν = mn − ml − nl. Now,

if ν < 0 then from k2 = m2 + n2 + l2 + 2ν it follows that k2 < m2 + n2 + l2. For

k = m+ n− l the following cases have to be ditinguished:
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• If k = max{k, l,m, n} it then follows that

ωk = ωm + ωn + ωl ⇔ k2

√
1 +

λ2

k2
= m2

√
1 +

λ2

m2
+ n2

√
1 +

λ2

n2
+ l2

√
1 +

λ2

l2
,

⇒ k2

√
1 +

λ2

k2
> m2

√
1 +

λ2

k2
+ n2

√
1 +

λ2

k2
+ l2

√
1 +

λ2

k2
⇔ k2 > m2 + n2 + l2,

which contradicts k2 < m2 + n2 + l2.

• If k 6= max{k, l,m, n} it then follows that ωk = ωm + ωn + ωl ⇔ k2
√

1 + λ2

k2 =

m2
√

1 + λ2

m2 + n2
√

1 + λ2

n2 + l2
√

1 + λ2

l2
which obviously can not be satisfied.

So, in the case ν < 0 then there are no solutions for (A-8).

In the case ν = 0 (A-8) again has no solutions. This can be shown as follows. Since

mn−ml−nl = ν = 0 it then follows from k = m+n− l that k2 = m2 +n2 + l2. Then,

the second equation in (A-8) implies (λ = 1
µ
):

ωk = ωm + ωn + ωl

⇔
√
k2 + µ2k4 =

√
m2 + µ2m4 +

√
n2 + µ2n4 +

√
l2 + µ2l4

⇔ k2

√
1

k2
+ µ2 = m2

√
1

m2
+ µ2 + n2

√
1

n2
+ µ2 + l2

√
1

l2
+ µ2,

⇔ k2

√
1 +

λ2

k2
= m2

√
1 +

λ2

m2
+ n2

√
1 +

λ2

n2
+ l2

√
1 +

λ2

l2
,

⇒ k2

√
1 +

λ2

k2
> m2

√
1 +

λ2

k2
+ n2

√
1 +

λ2

k2
+ l2

√
1 +

λ2

k2
,

⇒ k2 > m2 + n2 + l2, (A-9)

which contradicts k2 = m2 + n2 + l2. So, for ν = 0 system (A-8) has no solutions.

Now, using the estimate 1 <
√

1 + λ2/x2 < 1 + 1
2
λ2/x2, (where λ = 1

µ
), it follows for

ν > 0, k2 > m2 + n2 + l2 that

k2 < k2

√
1 +

λ2

k2
< m2

(
1 +

λ2

2m2

)
+ n2

(
1 +

λ2

2n2

)
+ l2

(
1 +

λ2

2l2

)

⇒ k2 < m2 + n2 + l2 +
3

2
λ2,

and consequently

m2 + n2 + l2 < k2 < m2 + n2 + l2 +
3

2
λ2,

⇔ m2 + n2 + l2 < m2 + n2 + l2 + 2ν < m2 + n2 + l2 +
3

2
λ2

⇔ 0 < ν <
3

4
λ2. (A-10)
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Since ν is a positive integer, it then follows from (A-10) that solution only exist for

λ2 > 4
3
. Therefore it can be concluded that for λ2 ≤ 4

3
or equivalently µ2 ≥ 3

4
system

(A-8) has no solutions. In what follows it will be shown numerically that for various

values of ν > 0 the solutions of (A-8) only exist for λ2 > 2 (or equivalently µ2 < 1
2
),

and are clustering in the neighbourhood of λ2 = 2ν = 2, 4, 6, . . .. The results of these

numerical computations are depicted in Figure 6 which are obtained by applying the

following algorithm:

• Given l and ν ∈ N, compute m from mn−ml − nl = ν, that is, m = l + l2+ν
n−l

,

• The values of n are determined such that n−l divides l2+ν. The Maple command

divisors is used for this purpose. If d is this divisor of l2 + ν then n = l + d.

The value of k is then calculated from k = m + n− l,

• Finally, λ2 is determined by solving the equation ωk = ωm + ωn + ωl for λ2.

The case ωk = ωm − ωn + ωl

In this case, the only solutions for the system k = m + n − l and ωk = ωm − ωn + ωl

are k = m, l = n and k = l = m = n. For other values of k, l,m, n by assuming

k > m ≥ n > l then ωk = ωm − ωn + ωl can not be satisfied.

The case ωk = −ωm + ωn + ωl

In this case the only solutions for the system k = m + n − l, ωk = −ωm + ωn + ωl

are k = n,m = l and k = l = m = n. For other values of k, l,m, n by assuming

k > m ≥ n > l again ωk = −ωm + ωn + ωl can not be satisfied.
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Figure 5.6: Relation between l and λ2 for some values of ν.
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Summary

In this thesis a mathematical analysis has been given for model which describes the

transversal vibrations of belt systems. The belt speed is assumed to be time-varying

and to be small compared to the wave speed. Not only linear string-like or beam-like

models but also nonlinear models have been studied. In all cases initial-boundary value

problems are formulated, and are investigated by using multiple time-scales perturba-

tion methods. Formal approximations of the solutions are constructed and it is shown

whether or not mode interactions between vibration modes occur for specific values of

the belt parameters. For some linear models instabilities in the solution occur, which

disappear when nonlinear terms are included in the model. It is also shown for what

parameter values in the nonlinear models a simplification in the formulation of the

problem (based on Kirchhoff’s assumption) can (or can not) be used.
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Samenvatting

In dit proefschrift wordt een wiskundige analyse gegeven van modellen welke de transver-

sale trillingen van transportbanden beschrijven. De transportband snelheid wordt

verondersteld tijdsafhankelijk en klein ten opzichte van de golfsnelheid te zijn. Niet

alleen lineaire golf-of balkachtige modellen maar ook niet-lineaire modellen worden

bestudeerd. In alle gevallen worden begin-randwaarde problemen geformuleerd, en on-

derzocht door gebruik te maken van de meer-tijdschalen storings-methode. Formele be-

naderingen van de oplosingen worden geconstrueerd, en aangetoond wordt voor welke

waarden van de transportband parameters interacties tussen verschillende trillings-

vormen optreden (of niet). Voor enkele lineaire modellen verschijnen instabiliteiten

in de oplossingen, welke verdwijnen als niet-lineaire termen in het model worden

meergenomen. Ook wordt aangetoond voor welke parameter-waarden in de niet-lineaire

modellen een vereenvoudiging in the formulering van het problem (gebaseerd op de

veronderstelling van Kirchhoff) kan worden toegepast of niet.
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