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1. Abstract 
Background context: Intraoperative neuromonitoring (IONM) has proven effective in reducing 

postoperative neurological complications. However, current understanding of IONM is limited and its 

precise meaning in relation to neurological outcomes remains unclear. Machine learning (ML) is a 

promising solution to analyze the excessive amount of IONM data quickly, objectively and in real-time.  

Purpose: The goal is to develop a ML algorithm that can effectively predict neurological outcomes after 

spinal surgery using IONM data that include both motor evoked potentials (MEPs) and somatosensory 

evoked potentials (SSEPs), and analyze its key predicting features. To more effectively determine the 

specific independent contribution of both separate modalities, a separate ML model will be created for both 

MEP and SSEP in addition to a combined MEP-SSEP model. 

Study setting: Retrospective study. 

Patient sample: A total of 67 patients were analyzed.  

Outcome measures: The neurological status three months postoperatively compared to the preoperative 

status, categorized into three classes: 'Neurological stable deficits', ‘Neurologically intact’ and 

'Neurological improvement'. 

Methods: 260 features were obtained from patients who underwent spinal surgery monitored by IONM. 

During nested cross-validation, the data was split into five folds, for both the inner and the outer loop. The 

four ML classifiers developed were support vector machine, K-nearest neighbors, random forest and 

extreme gradient boosting, and tested along the three modalities MEP, SSEP, and MEP-SSEP combination. 

Results: Extreme gradient boosting outperformed the other classifiers on all performance metrics. The 

combined MEP-SSEP model exhibited the highest scores for sensitivity: 70.4%, specificity: 88.3% and 

accuracy: 87.1%, while the MEP model exhibited the highest performance for precision: 75.6%. Highest 

predicting scores per individual class were also obtained by this XGBoost classifier on the combined MEP-

SSEP model. Key predicting features were the presence or absence of preoperative neurological deficits 

and last measured signal latency compared to baseline, with a contribution of 29% and 13.5% in the best 

performing model, respectively.  

Conclusion: A reliable prediction of neurological outcomes three months postoperatively can be made 

combining MEP and SSEP IONM features, provided that the patient's preoperative status is accurately 

documented and included in the prediction. Though either MEP or SSEP features alone offer predictive 

value, MEP features show superior predictive values compared to SSEP features when both modalities are 

accessible, with latency emerging as a prominent predictive IONM feature. 
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2. Introduction 

2.1 Rationale 

2.1.1 Intraoperative neuromonitoring 

During spinal procedures, surgeons operate in proximity to critical neural structures. This causes a risk of 

iatrogenic damage, leading to postoperative neurological impairment. [1] To reduce this risk of iatrogenic 

damage and thereby new neurological damage, intraoperative neuromonitoring (IONM) was introduced in 

1975 by Tamaki and Yamane. [2] IONM includes several modalities including somatosensory evoked 

potentials (SSEPs) and motor evoked potentials (MEPs). When feasible, direct waves (D-waves) are also 

monitored as an additional modality. These modalities serve to assess neural pathway integrity and detect 

real-time changes during the spinal procedures, [3-7] allowing for a procedural stop or temporary pause. 

[1] The use of IONM has been linked to a decreased occurrence of postoperative neurological 

complications. [4, 8-10]  

 

Nevertheless, despite its benefits, there are certain limitations associated with interpreting IONM. This 

technique requires specialized equipment, trained personnel, and additional time and resources during 

surgical procedures, leading to increased costs. Furthermore, the successful application of IONM relies on 

the expertise of a trained specialist. Different clinicians may interpret signals subjectively, leading to inter-

rater variability in predicting neurological outcomes. [7, 11] Because IONM requires rapid and reliable 

interaction with the surgeon intraoperatively, this subjectivity is considered undesirable. Moreover, in 

current practice where IONM is used, no clear agreements on warning criteria indicating the risk of 

reversible or irreversible neurological deficit are described. Current guidelines suggest that for SSEPs, a 

50% reduction in amplitude and a latency time increase of over 10% serve as standard warning criteria [6, 

9, 12-16], while MEP warning criteria range between 50% and 100% in amplitude reduction as long as D-

waves are preserved by over 50%. [1, 6, 9, 17] (App A) Apart from subjectivity and ambiguous alert criteria, 

considerations such as the general condition of the patient, suboptimal placement of needle electrodes and 

anaesthesia also contribute to the complex interpretation of IONM signals. [18] 

 

During spinal surgery, the relation between the interpretation of IONM signals and the patient's prognosis 

becomes a critical focus for surgeons. However, this relation often remains unclear due to the observed 

variability:  While a specific signal collapse may result in postoperative neurological deficits in one patient, 

others with similar signal collapse may not experience neurological problems. Enhanced and objective 

criteria in this area could significantly assist surgeons in making intraoperative decisions. Hence, the ability 

to real-time predict prognosis would be advantageous. Machine learning (ML) techniques might offer 

valuable contributions towards achieving this goal. 

 

2.1.2 Machine learning 

The increasing utilization of ML in healthcare, as a subset of artificial intelligence (AI), is on the rise due 

to its capacity to handle extensive datasets and convert analysis into valuable clinical insights, ultimately 

resulting in improved outcomes, reduced costs, and enhanced patient satisfaction. [19, 20] ML has been 

extensively researched in the context of neurosurgical conditions, presurgical planning, intraoperative 

guidance, neurophysiological monitoring, and neurosurgical outcome prediction. [21] Using ML 

techniques, the excessive amount of IONM data can rapidly be analyzed and interpreted intraoperatively to 

make predictions about the occurrence of neurological deficits and its key predicting features. ML models 

are primarily designed to provide precise and consistent predictions for new data by leveraging patterns 

acquired from existing data. [22] Predicting postoperative outcomes in spinal patients is crucial for 

developing accurate care plans, minimizing the risk of adverse events, and making informed decisions that 

support personalized medicine and optimal patient management. [23, 24] A real-time predictive model 
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could serve as an intraoperative decision support system for surgeons, which could help assess the risk of 

neurological deficits during surgery and aid in making informed choices. 

 

Only a few articles have used ML in conjunction with IONM to predict specific outcomes. [25-27] 

However, to our knowledge, only one study has examined the use of IONM data to predict neurological 

outcomes of patients after spinal surgery with ML. Jamaludin et al. [28] used solely MEP data to categorize 

patients into those exhibiting positive functional outcomes and those showing no changes from preoperative 

to postoperative. Only baseline and final IONM measurements were used, along with a limited number of 

features. Consequently, many potential opportunities remain unexplored within the field of predicting 

neurological outcomes for patients after spinal surgery using IONM data. 

 

2.2 Objectives 

This study investigates the potential of ML techniques in predicting neurological prognosis by using IONM 

findings combined with additional patient data. Attention will also be directed towards identifying key 

features that are crucial for predicting the neurological outcome. The goal is therefore to develop a ML 

algorithm that can effectively predict neurological outcomes after spinal surgery using IONM data, 

including both motor evoked potentials (MEP) and somatosensory evoked potentials (SSEP). This study is 

a first step toward a real-time model that can serve as an intraoperative decision support system for 

surgeons. Research comparing MEP and SSEP values in spinal cord surgery indicates that MEPs 

outperform SSEPs in predicting postoperative neurological complications. [9, 17, 29] To more effectively 

determine the specific independent contribution of both separate modalities, a separate ML model is created 

for both MEP and SSEP in addition to a combined MEP-SSEP model. 
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3 Design and methods 
For the clinical study a retrospective analysis was conducted, encompassing a cohort of patients who 

underwent spinal surgery at Haga Teaching Hospital in the Netherlands. The surgeries were performed 

between October 2019 and August 2023, and all procedures were monitored using IONM. Patients without 

sufficient IONM data or without sufficient pre- and postoperative neurological status were excluded. To 

ensure confidentiality, all data was anonymized and access to information that could identify individual 

patients was restricted solely to the research team members. The application of IONM, along with all 

associated parameters, remained unchanged for this study. All protocols were performed in the standard 

manner according to the established requirements for the surgical procedure. Due to the retrospective nature 

of this study, informed consent was not obtained from the patients. For an overview of the steps taken in 

the methodology of this study, see Figure 1. 

 

 

 

 

 

 

3.1 Data extraction 

In order to develop a ML algorithm, various types of data needed to be collected, including IONM features, 

additional patient-related features and the neurological status three months postoperatively compared to the 

preoperative status. The latter is described as the outcome value and was categorized into three classes: 

'Neurological stable deficits', ‘Neurologically intact’ and 'Neurological improvement'. For the purpose of 

this study, patients experiencing neurological deterioration were categorized as 'Neurological stable 

deficits'. Additional patient features and the outcome value were retrospectively extracted from the 

electronic health record (EHR) (see section 3.3 Feature selection). Lastly, IONM signals were retrieved 

from Medtronic's NIM-Eclipse®, a system used for generating, recording and storing IONM data during 

the surgical procedures. For a detailed user manual of the NIM-Eclipse®, refer to this link. 

 

3.1.1 Specific data extraction IONM 

All surgical procedures targeted the spine at or below the cervical-3 (C3) level, and all baseline 

measurements were determined by the physician assistant. Regarding the MEP signals, the overlapping 

monitored muscles in all procedures were the Tibialis Anterior (TA), which is innervated by the nerve roots 

L4, L5 and S1, the Abductor Hallucis (AH), which is innervated mostly by the S2 nerve root, and the 

Gastrocnemius, which is mostly innervated by the S1 and S2 nerve roots. [30] The placement of the 

reference electrode was standardized for surgeries concerning the thoracic and lumbar regions, positioned 

on the hand muscle Abductor Digiti Minimi (ADM), which is innervated by the C8-T1 nerve roots, for both 

the left and right sides. During surgeries involving regions above C8, the ADM was not considered a 

Figure 1: Schematic representation of the used methodology to conduct this study. 1: Data extraction of intraoperative 

neuromonitoring and additional features, 2: personal signal preprocessing to enable feature calculations, 3: Feature calculations, 

4: Splitting the dataset in 80% training set and 20% testing set, 5: Machine learning algorithm trains on the training set, 6: Model 

evaluation based on predictions made by the machine learning algorithm and actual outcomes from the test-set. Created with 

BioRender.com 

https://img1.wsimg.com/blobby/go/2bdde9c2-5c18-4690-b5ac-5a81b7eda099/downloads/NIM%20Eclipse%20User%20Manual.pdf?ver=1558501106733
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reference muscle; instead, it was treated as a regularly measured muscle. These four muscle groups, 

measured bilaterally, correspond to eight measured muscle groups per patient included in this study. To 

activate these muscle groups, a corkscrew electrode is bilaterally positioned on the patient's motor cortex. 

A pulse train stimulus of four to five pulses within the range of 150 to 650 volts was applied to generate a 

MEP signal, while needle electrodes were placed in the measured muscles to monitor the measured muscle 

responses with a sampling frequency of 10.000 Hz. The train rate was set to 333 pulses per second and the 

pulse duration was set to 75 µs. The MEP signals are typically measured during the surgery, with an average 

interval of every 10 minutes. However, when operating near critical structures, the frequency of this action 

may increase, depending on the preference of either the physician assistant or the surgeon. 

 

Regarding the SSEP signals, different tracts labeled under distinct names were documented for each patient. 

However, each patient presented one or more signals representing the left leg (L: Cz'-Fpz, L: C3'-C4', L: 

C3'-Fpz, L: Fpz-Cz', L: C4'-C3', L: C3'-Cz, L: C4'-Cz), as well as the right leg (R: Cz'-Fpz, R: C3'-C4', R: 

Fpz-Cz', R: C4'-C3', R: C4'-Cz, R: C3'-Cz). The decision was made to incorporate, from each patient, one 

corresponding tract for both the left and right leg, resulting in two SSEP pathways per patient. In patients 

where multiple signals per lower extremity were measured, the signal with the largest feature value was 

included (see section 3.3 Feature selection). To activate the sensory pathways, needle electrodes are inserted 

into the corresponding nerves, while corkscrew electrodes on the head located above the somatosensory 

cortex are employed to capture the signals with a sampling frequency of 10.000 Hz. Throughout the surgical 

procedure, the sensory pathways received continuous stimulation at a specific frequency of one Hz, with a 

pulse duration of 200 µs. Every 300 measurements were averaged to create one SSEP signal, which was 

subsequently stored using the NIM-Eclipse® system. The intensity was set within the range of 7-20 mA, 

and the pulse duration was fixed at 200 µs.  

 

3.2 Raw data preprocessing 

Prior to computing the ML features, the raw IONM data underwent preprocessing, which consisted of two 

parts. The first part involved direct raw data preprocessing within the NIM-Eclipse® system during signal 

measurements. Here, a band-pass filter was applied including a low-pass filter set at 800 Hz and a high-

pass filter set at one Hz. The second part consisted of personal raw data preprocessing in Python 3.8 [31], 

starting with organizing all acquired signals per patient for specific muscles and sensory pathways. Any 

signals measured prior to the last indicated baseline measure were excluded from the dataset. Each signal 

obtained consisted of 1000 samples collected over a duration of 100 ms. To eliminate potential interference 

from the pulse train that could affect the feature calculations, the first 140/1000 samples of each signal were 

set to zero. Following this step, a fourth order zero-phase Butterworth low-pass filter was employed with a 

cutoff frequency of 300 Hz to filter out noise from the signal. For a visualization of the personal 

preprocessing of a single signal, see Figure 2. 
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3.3 Feature selection 

For every patient, 260 features were identified: 27 features for eight muscles for the MEP signals (216 

features), 20 features for two tracts for the SSEP signals (40 features), and four additional features to be 

discussed below. This resulted in 220 features for the MEP ML model, 44 features for the SSEP model and 

260 for the combined MEP-SSEP model. IONM features were calculated based on different signal 

characteristics, specifically peak-to-peak, area under the curve (AUC), and latency parameters. For a 

detailed overview of the calculated features, see Table 1. The four additional features considered in this 

study were primarily derived from a prior literature review aimed at identifying features significantly 

contributing to the prediction of neurological outcomes after spinal surgery. Among these features, the most 

crucial included the mean intraoperative mean arterial pressure (MAP), [32, 33] the presence or absence of 

preoperative neurological deficits, [8, 17, 34-36] and patient age. [19, 34] In collaboration with 

neurosurgeons at the Haga Teaching Hospital, it was decided to also consider the surgical area, described 

as ‘Above thoracic 12’, or ‘Below thoracic 12’. When the surgical area spans vertebrae both above and 

below thoracic 12, the area is considered as ‘Above thoracic 12’. 

 

3.3.1 Feature calculations 

Peak-to-peak values were obtained by calculating the difference between the highest and lowest point of a 

signal after preprocessing, and AUCs describe the absolute area under the curve up to the line where y=0, 

as shown in Figure 3. Latency indicates the delay between the last pulse of the pulse train and the first 

moment when the signal crosses a predetermined threshold. When the signal first exceeds this threshold, it 

is assumed that the MEP has been initiated. To determine this threshold, a segment of each signal 

representing the baseline of that signal was selected. The baseline ranges of the four muscles are: 

• Tibialis anterior:      14 – 33 ms  

• Abductor hallucis:      14 – 42 ms 

• Gastrocnemius:      14 – 32 ms 

• Abductor digiti minimi:     14 – 22 ms 

The intervals were chosen to cover the time between the last pulse in the pulse train and the first moment 

an evoked potential could naturally occur, thereby indicating a baseline value. The threshold value was 

determined as the mean ± 3.5 times the standard deviation of this baseline segment. The corresponding time 

at which this point occurred was recorded. Consequently, the latency of the signal represents the time 

interval between the last pulse in the sequence of the pulse train and the noted time point.  

Figure 2:  MEP signal obtained from a random patients’ Vastus lateralis, A: Before the personal raw data preprocessing, 

B: After the personal raw data preprocessing. Note: In the left image, the NIM-eclipse already pre-processed the signal 

with a band-pass filter (1-800 Hz). 

A B 
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Table 1: Calculation of the 256 IONM features. Feature origin: This specifies the signal property from which the features were 

calculated. Feature calculation description: This specifies which signal changes relative to each other were calculated and included 

as individual features. Modality: This column describes which modalities the feature calculations were calculated for.  AUC: area 

under the curve, MEP: motor evoked potential, SSEP: somatosensory evoked potential.  

 

 

 

 

  

 

Feature origin 
 

Feature calculation description 
Modality 

8 MEP 

muscles 

2 SSEP 

tracts 

Peak-to-peak: Maximum amplitude drop of a signal compared to the preceding signal ✓ ✓ 

Peak-to-peak: Maximum amplitude increment of a signal compared to the preceding signal ✓ ✓ 

Peak-to-peak: Maximum % amplitude drop of a signal compared to the preceding signal ✓ ✓ 

Peak-to-peak: Maximum % amplitude increment of a signal compared to the preceding signal ✓ ✓ 

Peak-to-peak: Maximum amplitude drop of a signal compared to the initial signal ✓ ✓ 

Peak-to-peak: Maximum amplitude increment of a signal compared to the initial signal ✓ ✓ 

Peak-to-peak: Maximum % amplitude drop of a signal compared to the initial signal ✓ ✓ 

Peak-to-peak: Maximum % amplitude increment of a signal compared to the initial signal ✓ ✓ 

Peak-to-peak: Amplitude difference of the last measured signal compared to the baseline signal ✓ ✓ 

Peak-to-peak: % Amplitude difference of the last measured signal compared to the baseline signal ✓ ✓ 

AUC Maximum AUC decrease of a signal compared to the preceding signal ✓ ✓ 

AUC Maximum AUC increment of a signal compared to the preceding signal ✓ ✓ 

AUC Maximum % AUC decrease of a signal compared to the preceding signal ✓ ✓ 

AUC Maximum % AUC increment of a signal compared to the preceding signal ✓ ✓ 

AUC Maximum AUC decrease of a signal compared to the baseline signal ✓ ✓ 

AUC Maximum AUC increment of a signal compared to the baseline signal ✓ ✓ 

AUC Maximum % AUC decrease of a signal compared to the baseline signal ✓ ✓ 

AUC Maximum % AUC increment of a signal compared to the baseline signal ✓ ✓ 

AUC AUC decrease of the last measured signal compared to the baseline signal ✓ ✓ 

AUC % Collapse of the last measured signal compared to the baseline signal ✓ ✓ 

Latency Maximum delay of a signal compared to a preceding signal ✓  

Latency Maximum % delay of a signal compared to a preceding signal ✓  

Latency Maximum delay of a signal compared to the baseline signal ✓  

Latency Maximum % delay of a signal compared to the baseline signal ✓  

Latency Delay of the last measured signal compared to the baseline signal ✓  

Latency % Delay of the last measured signal compared to the baseline signal ✓  

Latency Longest delay of all signals ✓  
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3.4 Data preprocessing for machine learning 

3.4.1 Patients with insufficient data excluded 

Patients with no MEP or SSEP data were removed from the respective models. Additionally, patients with 

more than 25% missing feature data were excluded from the model. Lastly, patients were excluded if only 

one signal remained after elimination of signals before the last measured baseline, since this makes signal 

difference calculations and subsequent determination of features impossible.  

 

3.4.2 Handling missing values 

After patients with insufficient data were removed, the table presenting all features contained four NaN 

(Not a Number) values. These entries specifically related to the columns corresponding to the latency 

features, if zero or only one signal exceeded the threshold value (see section 3.3 Feature Selection). To 

address this, the NaN values in these columns were replaced by the median value of the column. 

Furthermore, in cases where intraoperative blood pressure values were not available, the median value of 

the mean intraoperative MAP, derived from all other patients was used as a substitute.  

  

Figure 3:  Visualization of the signal properties peak-to-peak amplitude, area under the curve and signal latency. 

std: standard deviation.  
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A 

3.4.3 Encoding variables 

The process of variable encoding involved transforming features into numeric formats suitable for the 

effective use by ML algorithms. In the context of ‘absence or presence of preoperative neurological deficits’ 

as a feature, 'Absence' was converted to '0', while 'Presence’ was converted to '1'. Likewise, in the case of 

surgical area, 'Below Thoracic 12' was translated to '0', and 'Above Thoracic 12' was translated to '1'. Lastly, 

the outcome table underwent normalization, wherein 'Neurological stable deficits' was encoded as '0', 

‘Neurologically intact’ was encoded as ‘1’ and 'Neurological improvement' was encoded as '2'.  

 

3.4.4 Scaling 

Scaling is used in ML to ensure that each feature contributes proportionally to the learning process. This is 

important as some ML algorithms, like K-nearest neighbors (KNN) assume that all features are centered 

around 0 or have a similar variance. [37] This prevents features with larger scales from overpowering those 

with smaller ones, ensuring the classifier learns correctly from all features as expected. Three options were 

considered for scaling: no scaling, applying a normally distributed scaler (‘StandardScaler’), or applying a 

robust range matching scaler (‘RobustScaler’). In figure 4, three different representations are plotted using 

the first two principal components from both the MEP and SSEP dataset. Principal components are new 

variables obtained from the original variables in a dataset, capturing the most substantial variance. They 

help reduce dimensionality while retaining the most critical information from the data. [38] This figure 

illustrates that data distribution clearly increases when no scaling or a StandardScaler is used, as opposed 

to a RobustScaler, which suggests better interpretability of the data. Since specific models that will be 

implemented, such as KNN and Support vector machine (SVM) (see section 3.6 Model development), 

require scaled data for optimal functionality, a StandardScaler is used to standardize the datasets. A 

StandardScaler uses the Z-score to scale the data.  

 

 

 

 

 

 

 

 

 

 

  

Figure 4: Distribution of different Scalers on A: the MEP dataset and B: the SSEP dataset, across the first two principal 

components. Left: No Scaling, middle: StandardScaler, right: RobustScaler. MEP: Motor evoked potential, SSEP: 

Somatosensory evoked potential. 

B 
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Figure 5: Schematic representation of nested cross-validation. This approach is typically used to optimize and train the model. 

The final performance of the model on unseen data is obtained by averaging the test performances over the outer cross-validation 

folds. Created with BioRender.com 

3.5 Splitting the dataset 

Cross validation (CV) is a technique used in ML to assess the performance of a model by dividing a dataset 

into subsets for training and testing. [39] In this process, the dataset is split into multiple segments, or folds, 

to train the model on a subset of the data while the remaining parts are used for testing. However, normal 

CV in model testing often leads to overfitting of the training set because models are evaluated on the same 

dataset used for tuning. [40] Nested CV, as a solution, helps avoid this problem by splitting the process into 

two levels, allowing hyperparameter tuning while avoiding bias in model evaluation by using different data 

splits for tuning and testing (see Figure 5). Restricting the hyperparameter search to a subset of the dataset 

significantly reduces, if not completely eliminates, the potential risk that the search process will overfit the 

original dataset. [40] The disadvantage of CV is that the computation time increases. In this study, both the 

outer and the inner CV loops were divided into five folds. For the outer loop, this means splitting the 

datasets in 80% for training and 20% for each fold of the loop, and for the inner loop, this means 64% for 

training and 16% for validation for each fold of the inner loop. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

3.6 Model development  

To predict neurological outcome after spinal surgery using IONM data with ML, we used multiple 

classification models. These models were all trained using the same train-test split that was created during 

nested cross-validation (see 3.5 Splitting the dataset). Four different ML classifiers were used to construct 

the models: 

• Support vector machine  

• K-nearest neighbors  

• Random forest  

• Extreme gradient boosting  

 

3.6.1 Support Vector Machine  

The primary goal of SVM (Figure 6A) is to find the optimal hyperplane that best separates data points into 

different classes. [41] SVM works by maximizing the distance between the hyperplane and the closest data 

points of each class, and proves to be a suitable classifier to test on our dataset, as it remains effective even 

when the number of dimensions exceeds the number of samples. [37] 
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3.6.2 K-nearest neighbors 

The classification of new datapoints in KNN (Figure 6B) is determined by the classes of their nearest data 

point, aiding in informed decisions about its specific class. The parameter 'k' indicates the number of 

neighbors taken into account in this classification process. For small datasets, KNN has a relatively short 

computational time. Additionally, this classifier is of interest for our dataset, as it exhibited the best 

performance in the study conducted by Jamaludin et al. [28] 

 

3.6.3 Random forest 

Random forest (RF) (Figure 6C) is an ensemble learning method that combines multiple decision trees to 

generate more accurate predictions. [42] Every decision tree is created by randomly selecting data from the 

available dataset. Nodes within these trees divide the dataset into smaller subgroups based on feature values 

categorized as high or low. The overall prediction of a RF is achieved by combining the predictions of each 

decision tree. RF serves as an effective classifier when the number of variables exceeds the number of 

samples. [43] In addition, the simplicity of computing feature importance plots in this algorithm is 

important for analyzing key features in the outcome prediction. 

 

3.6.4 Extreme gradient boosting 

Extreme gradient boosting (XGBoost) (Figure 6D), an implementation of gradient boosting, constructs an 

ensemble model by combining several decision trees. Unlike a random forest, training takes place 

iteratively, successively adding new trees while taking into account the errors of previous trees. [44] This 

iterative process allows XGBoost to focus on correcting the shortcomings of previous models.  

 

 

 

 

 

 

 

 

 

 

 

 

  

Figure 6: Schematic representation of the used classification techniques. A. Support vector machine; B. K-nearest 

neighbors; C. Random forest; D. Extreme gradient boosting. Created with BioRender.com 
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3.7 Model Evaluation  

After constructing the classification models using the training data, these models were applied to the test 

set to evaluate their performance. A series of evaluation metrics was used to assess the models, including 

sensitivity (recall), specificity, accuracy, and when applicable, precision. Table 2 shows these metrics and 

their corresponding formulas. In addition, to visually assess the models, receiver operating characteristic 

(ROC) plots were generated, alongside precision-recall plots, and when applicable, feature importance 

plots. The precision-recall plot proves valuable in scenarios with imbalanced data within a multiclass 

problem. In this case, accuracy and specificity are often high, resulting in a high AUC score. The precision-

recall plot gives a good representation of performance for such unbalanced data because true negatives 

(TN) are not included in the calculations. To visually assess all models in one plot, micro-averaged ROC 

curves and precision-recall curves were generated. These curves are a summarized performance measure 

in statistics, often used in the context of classification problems. It adjusts for differences in class size and 

ensures that the largest class has greater significance, which is preferable in scenarios with imbalanced data. 

[37]  

Performance Metrics Corresponding formula 

Sensitivity (recall) 𝑇𝑃

𝑇𝑃 + 𝐹𝑁
 

Specificity 𝑇𝑁

𝑇𝑁 + 𝐹𝑃
 

Accuracy 𝑇𝑁 + 𝑇𝑁

𝑇𝑃 + 𝐹𝑁 + 𝐹𝑃 + 𝑇𝑁
 

Precision 𝑇𝑃

𝑇𝑃 + 𝐹𝑃
 

Table 2: Performance metrics and their corresponding formulas. TP: true 

positive rate, FN: false negative rate, TN: true negative rate, FP: false positive 

rate.  
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4 Results 

4.1 Data 

Initially, data was obtained from 69 patients, who underwent surgery between October 2019 and August 

2023. The age distribution of the patients ranged from 19 to 87 years (median: 58, standard deviation: 16.6). 

Of these patients, 48 showed preoperative neurological deficits such as loss of strength or hypesthesia, 

while the remaining 21 reported no preoperative neurological deficits. 39 patients exhibited neurological 

improvement, 20 patients were neurologically intact, and 10 patients showed neurological stable deficits, 

of whom three experienced slight neurological deterioration during or after the surgery in the study period. 

After patients with insufficient data were removed, the SSEP model included 65 patients, the MEP model 

included 64 patients, and the MEP-SSEP model included of 62 patients. (see Figure 7) In total, 67 patients 

were included in one of the three ML models. (see Table 3). 

 

 

 

 

 

 

Patient Age 

(Years) 

Preoperative 

neurological 

deficits 

Mean 

intraoperative 

MAP (mmHg) 

Reason for surgery Three months 

postoperative neurological 

outcome 

1 85 Yes 78.39 Extirpation extramedullary tumor C3-C5 Neurological improvement 

2 42 No 94.97 Extramedullary tumor L4 Neurologically intact 

3 65 Yes 81.81 Ll-L2 intramedullary tumor Neurological improvement 

4 42 No 85.10 Tumor L2 intradural Neurologically intact 

5 45 Yes 69.32 Untethering (laminectomy L5) Neurological improvement 

6 43 Yes 99.11 Intradural extramedullary tumor T4 Neurological stable deficits 

7 46 No 99.30 Resection intradural tumor C7 Neurologically intact 

8 70 Yes 76.67 Thoracic tumor Neurological improvement 

9 69 No 72.24 Intradural extramedullary tumor T3 Neurological improvement 

10 76 Yes 88.85 Tumor T11-T12 Neurological improvement 

11 81 No 79.59 Tumor extirpation L4-L5 Neurological stable deficits 

12 60 Yes 98.24 Extirpation intradural tumor T1-T2 Neurological improvement 

13 54 Yes 87.25 Tumor extirpation C3-C4 Neurological improvement 

14 68 Yes 81.71 Resection intradural tumor T4-5 Neurological stable deficits 

15 50 Yes 91.93 Resection intradural tumor L1-L2 Neurological improvement 

16 57 Yes 107.78 Resection intradural tumor T7-T8 Neurological improvement 

17 72 Yes 73.30 Fixation T10-S1 Neurological improvement 

18 41 Yes 81.81 Kyphosis correction T2-10 Neurological improvement 

19 64 No 78.95 Tumor extirpation L2 Neurologically intact 

20 51 Yes 78.98 Biopsy spinal cord tumor C5-6 Neurological improvement 

21 35 No 70.45 Scoliosis correction T1-L3 Neurologically intact 

22 77 Yes 80.26 Extramedullary intradural tumor T4 Neurological improvement 

Figure 7: Flowchart of the patients included for each modality with their exclusion criteria. MEP: motor evoked potential, 

SSEP: somatosensory evoked potential. Created with BioRender.com 

Table 3 Patient demographics and clinical data of all 67 patients included in at least one of the three machine learning models. MAP: 

Mean arterial pressure, C: Cervical, T: Thoracic, L: Lumbar, S: Sacral. 
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Patient Age 
(Years) 

Preoperative 
neurological 
deficits 

Mean 
intraoperative 
MAP (mmHg) 

Reason for surgery Three months 
postoperative neurological 
outcome 

23 58 Yes 72.85 Extirpation intraspinal osteophyte T12 Neurological stable deficits 

24 54 Yes 77.34 Cystic lung metastasis L3-L4 Neurological improvement 

25 45 Yes 88.67 Ependymoma T8-T10 Neurological stable deficits 

26 79 No 93.73 Vertebral Fusion Surgery T8-L3 Neurologically intact 

27 26 No 76.36 Extramedullary tumor T3-T4 Neurologically intact 

28 68 Yes 92.06 Vertebral Fusion Surgery T10-S1 Neurological improvement 

29 53 No 69.05 Intradural tumor L1-L2 & sacral Neurologically intact 

30 19 Yes 77.76 Resection schwannoma T11 Neurological improvement 

31 50 No 91.44 Resection intradural tumor L4 Neurologically intact 

32 68 Yes 82.55 Intradural tumor Th10 Neurological improvement 

33 77 Yes 87.22 Resection intradural tumor L5-S1 Neurological improvement 

34 59 Yes 87.37 Scoliosis correction Th6-S1 Neurological improvement 

35 25 No 72.70 Resection intradural tumor C7 Neurologically intact 

36 26 No 85.73 Resection intradural tumor Th12 Neurologically intact 

37 24 Yes 85.12 Unilateral cordotomy low thoracic Neurological improvement 

38 61 Yes 88.15 Scoliosis correction Th12-L4 Neurological improvement 

39 38 Yes 70.40 Untethering lipoma cauda equina Neurological improvement 

40 37 No 72.16 Intramedullary cyst C4-C7 Neurologically intact 

41 69 No 85.61 Intradural tumor C7-Th1 Neurologically intact 

42 73 Yes 92.47 Biopsy intramedullary tumor T5-Th7 Neurological stable deficits 

43 66 Yes 83.16 Intradural tumor conus medullaris  Neurological improvement 

44 75 No 81.81 Extirpation tumor Th11-12 Neurologically intact 

45 53 Yes 87.15 Corpectomy C5 and C6 Neurological improvement 

46 75 Yes 87.175 Tumor extirpation Th5 Neurological improvement 

47 74 No 82.54 Tumor extirpation Th9-Th10 Neurologically intact 

48 69 Yes 92.18 Tumor extirpation Th1-Th2 Neurological improvement 

49 24 Yes 83.64 Tumor extirpation L2-L3 Neurological improvement 

50 41 No 65.07 Tumor L3-L4 Neurologically intact 

51 56 Yes 74.97 Laminectomy C3-C7 Neurological stable deficits 

52 57 Yes 76.79 Laminectomy and lateral fixation C4–C6 Neurological improvement 

53 87 Yes 102.00 Extirpation meningioma Th10-Th11 Neurological improvement 

54 53 Yes 80.54 Decompression Th2-Th5 & L3-L5 Neurological stable deficits 

55 69 No 78.66 Scoliosis correction Th11-ilium Neurologically intact 

56 77 No 71.43 Resection intradural tumor C6-C7 Neurological improvement 

57 66 Yes 78.73 Extirpation tumor Th9-Th10 Neurological improvement 

58 59 Yes 76.38 Scoliosis correction Th10-S1 Neurological improvement 

59 49 Yes 66.21 Resection conus medullaris Th11-Th12 Neurological stable deficits 

60 54 No 79.48 Thoracic kyphosis Neurologically intact 

61 61 No 101.52 Scoliosis correction Th10-ilium Neurologically intact 

62 85 Yes 83.65 Extirpation meningiomas Th5 and Th8 Neurological improvement 

63 84 Yes 135.92 Laminectomy C7-Th1 Neurological improvement 

64 50 Yes 71.64 Untethering spinal cord Neurological improvement 

65 39 Yes 61.66 Untethering spinal cord Neurological improvement 

66 58 Yes 89.75 Removal of hemangioblastoma Th8-9 Neurological stable deficits 

67 71 Yes 92.88 Ependymoma C3 Neurological improvement 

 

4.2 Overall classifier results 

Figure 8 lists all the classifier performances applied to the MEP, SSEP, and combined MEP-SSEP datasets. 

In addition, Figure 9 shows the micro-averaged ROC curves and the micro-averaged precision-recall curves 

for the four classifiers in the combined MEP-SSEP model. See Appendix B for an overview of the 

parameter grids used for hyperparameter tuning to obtain these outcomes. Micro-averaged ROC- and 

precision-recall curves regarding the separate MEP and SSEP models can be found in Appendix C. Both 

Figure 8 and Figure 9 illustrate that the XGBoost classifier outperformed the other classifiers on all 

evaluated aspects. The combined MEP-SSEP model using XGBoost achieved a sensitivity of 70.4%, 

specificity of 88.3%, accuracy of 87.1%, and precision of 73.7% across the three outcome classes. For 

XGBoost, the micro-averaged ROC curve showed an AUC of 0.92, and the micro-averaged precision-recall 

curve showed an average precision (AP) of 0.86. 
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Figure 8: Classifier performance metrics for each modality MEP, SSEP and Both (MEP & SSEP). Scores are percentages 

and are a combined score over the three outcome classes ‘Neurological stable deficits’, ‘Neurologically intact’ and 

‘Neurological improvement’. KNN: K-nearest neighbors, SVM: support vector machine, RF: random forest, XGBoost: 

extreme gradient boosting, MEP: motor evoked potential, SSEP: somatosensory evoked potential. Note: Some models 

couldn’t calculate the precision due to division by zero.  

A B 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

Figure 9: Micro averaged curves regarding the combined MEP-SSEP model A: Micro-averaged Receiver operating 

characteristics (ROC) curves for all classifiers. B: Micro-averaged precision-recall curves for all classifiers. XGBoost: extreme 

gradient boosting, RF: random forest, SVM: support vector machine, KNN: K-nearest neighbors, MEP: motor evoked potential, 

SSEP: somatosensory evoked potential. 
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4.3 Individual modalities results  

Given the superior performance of XGBoost, a closer look on the results of this classifier will follow. Figure 

10 shows ROC curves for each individual class, plotted for the combined MEP-SSEP, MEP, and SSEP 

models. The highest scores are observed in the combined MEP-SSEP model, with an area under the curve 

of 0.70 for 'Neurological stable deficits,' 0.98 for 'Neurologically intact,' and 0.87 for 'Neurological 

improvement'. Figure 11 shows the respective precision-recall curves for each individual modality for each 

outcome class. ‘Neurological stable deficits’ was best predicted by the MEP model (AP = 0.39), whereas 

‘Neurologically intact’ and ‘Neurological improvement’ were best predicted by the combined MEP-SSEP 

model, with APs of 0.97 and 0.86 respectively. To verify that the model does not overfit, a technique was 

used in which the outcomes are chosen at random. (App D) 

To later discuss the contributions comparing the individual MEP and SSEP models, the scores of these 

individual models are also considered. The individual MEP model achieved an AUC of 0.67 for 

neurologically stable deficits, slightly higher than 0.64 of the SSEP model, while both MEP and SSEP 

achieved an AUC of 0.94 for neurologically intact. (see Figure 10) In predicting neurological improvement, 

the MEP model scored an AUC of 0.86, slightly outperforming the SSEP model (AUC = 0.81). Examining 

the precision-recall curves, the MEP model exhibits higher APs: 0.39 for predicting neurological stable 

deficits compared to SSEP's 0.27 (see Figure 11). In predicting neurologically intact, MEP and SSEP 

achieve 0.95 and 0.94 respectively, while for neurological improvement, MEP scores 0.83, exceeding 

SSEP's 0.77.  

 

 

 

 

 

 

 

 

 

  

Figure 10: ROC curves per individual outcome class by the XGBoost classifier for all separate models. A: MEP & SSEP, B: MEP, C: SSEP. 

MEP: motor evoked potential, SSEP: somatosensory evoked potential, XGBoost: extreme gradient boosting. 



4 Results   

17 
 

A B C 

 

 

 

 

 

 

 

 

 

Figure 11: Precision-recall curves per individual outcome class by the XGBoost classifier for all separate models. A: MEP & SSEP, B: MEP, C: 

SSEP. MEP: motor evoked potential, SSEP: somatosensory evoked potential, XGBoost: extreme gradient boosting. 
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To assess the associated key predicting features, the top seven most contributing features were plotted in 

Figure 12 for the three different modalities. In all three models, the presence or absence of preoperative 

neurological deficits is the most prominent feature, contributing about 29%, 16% and 33% in the predictions 

of the MEP-SSEP model, the MEP model and the SSEP model, respectively. This is followed by the MEP 

feature ‘latency of the last measured TA signal relative to baseline’, contributing 13.5% and 7% for the 

MEP-SSEP model and the MEP model, respectively. The second most predictive feature in the SSEP model 

is the ‘percentage AUC increase in a signal from baseline for the right leg’, contributing for 9%. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 12: Feature importance plots for the three models. The seven features holding the highest predictive value are 

plotted. A: MEP & SSEP, B: MEP, C: SSEP. Additional features age, surgical area and mean intraoperative MAP were 

not incorporated in this figure because of their negligible values; For the MEP-SSEP, MEP and SSEP model respectively: 

Age 0%, 0%, 0%, surgical area 0%, 0%, 1.5%, mean intraoperative MAP: 0.6%, 0%, 0%. MEP: motor evoked potential, 

SSEP: somatosensory evoked potential, XGBoost: extreme gradient boosting.  
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5 Discussion 
In this study, ML was used to predict neurological outcomes three months postoperatively, using both 

IONM features and additional patient-related features. The aim was to correctly classify patients into the 

three groups: ‘Neurological stable deficits’, ‘Neurologically intact’ and ‘Neurological improvement’, and 

analyze its key predicting features. Four ML classifiers were constructed, with XGBoost showing superior 

performance in all performance metrics. Notably, the combined MEP-SSEP model exhibited the highest 

scores for sensitivity: 70.4%, specificity: 88.3% and accuracy: 87.1%, while the MEP model exhibited the 

highest performance for precision: 75.6%. Overall, the model shows a high predictive performance for 

predicting neurological outcomes within the three distinct groups. On average, the combined MEP-SSEP 

model yields the most favourable outcome scores: AUC = 0.70, 0.98, 0.87 and AP = 0.29, 0.97, 0.86 for 

‘Neurological stable deficits’, ‘Neurologically intact’ and ‘Neurological improvement’, respectively. These 

findings not only highlight the ability to predict neurological outcomes, but also shed light on key predicting 

features and identify those with less significance.  

The one similar study, conducted by Jamaludin et al. [28] focused on the outcome measures ‘Neurological 

improvement’ and ‘No improvement’, when predicting neurological outcomes after spinal surgery using 

IONM data. Their best-performing model, employing a KNN classifier, showed relatively high sensitivity 

(87.5%) but low specificity (33.3%). Comparison of these findings with our results shows higher specificity 

(88.3%) but lower sensitivity (70.4%) in our study. The higher mean scores in our study can be attributed 

to the integration of a larger set of IONM features along with their specific calculations, the inclusion of 

additional features, and the targeted training of multiple algorithms using nested cross-validation. 

Therefore, it is important for future research to implement these applications. Nevertheless, it is important 

to remember that higher sensitivity is preferred over higher specificity in this type of study. This preference 

arises from the goal of correctly classifying patients into the positive group (true positives) rather than 

correct classification of the negative group (true negatives). Hence, future research should explore methods 

to enhance sensitivity without excessively compromising specificity. 

 

5.1 Individual MEP and SSEP contributions 

Previous research indicates a superior predictive value for MEP signals compared to SSEP signals. For 

example, Antkowiak et al. (2022) [29] showed higher sensitivity (92.3%) and specificity (81.8%) for MEPs 

as opposed to SSEPs (50% sensitivity, 81% specificity), while comparing significant IONM alerts with a 

patient’s postoperative neurological outcome. Consistent with these trends were studies conducted by 

Cannizzaro et al. (2022) [17] and Dauleac et al. (2022). [9] In our study, the MEP model outperformed the 

SSEP model slightly with higher sensitivity (69.5% vs. 64.3%), specificity (87.5% vs. 87.1%) and precision 

(75.6% vs. 67.1%), while the SSEP model performs slightly better on accuracy scores (SSEP: 86.7% vs. 

MEP: 86.5%). Looking at the specific contributions per individual class predictions, MEP outperformed 

SSEP slightly on both AUC’s and APs. Though MEP has higher average scores, which is in line with the 

existing literature, the similarity of these values highlights the importance of including SSEP signals in the 

intraoperative assessment. Despite challenges in interpreting real-time SSEP signals, their individual 

importance in predicting neurological outcomes three months postoperatively is nearly equal to MEP 

importances. However, the feature importance plots show that of the top seven features in the combined 

MEP-SSEP model, five relate to MEP, while only one relates to SSEP. Thus, when both modalities are 

accessible, MEP features have greater predictive value.  
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5.2 Best predicting features 

The presence or absence of preoperative neurological deficits is the most important feature in all three 

models, contributing about 29%, 16% and 33% in the predictions of the MEP-SSEP model, the MEP model 

and the SSEP model, respectively. Nevertheless, it is important to note that patients without preoperative 

neurological deficits consistently belong to the ‘Neurologically intact’ outcome group, as none of them 

showed neurological deterioration. This clarifies why the models show strong performance in this group 

when the preoperative neurological deficits feature is taken into account. To assess the exact impact of this 

feature, a sensitivity analysis was performed by removing this feature for the combined MEP-SSEP model 

(App E). The findings show that the model retains its predictive ability in terms of AUCs, showing 0.71, 

0.75, and 0.54 for ‘Neurological stable deficits’, ‘Neurologically intact’ and ‘Neurological improvement’, 

respectively. However, a significant performance reduction was observed for the ‘Neurologically intact’ 

and ‘Neurological improving’ groups. Moreover, the calculated APs indicate unreliable predictions without 

this characteristic, with scores of 0.26, 0.57 and 0.58 for ‘Neurological stable deficits’, ‘Neurologically 

intact’ and ‘Neurological improvement’, respectively. Given the class imbalance within our model leading 

to high specificity, the precision-recall curve emerges as a crucial performance measure. (see section 3.3 

Model evaluation) Consequently, the reliability of the model depends on the inclusion of this feature, and 

predictions based solely on IONM features cannot be considered reliable. Therefore, accurate neurological 

assessment until shortly before surgery is crucial for predicting the patient's neurological status three 

months postoperatively. The importance of this feature in our model is in line with the existing literature. 

[8, 17, 34-36] For example, Cannizzaro et al. [17] stated that the most important predictor associated with 

an improved score on the modified McCormick scale was the patients’ preoperative neurological status 

(p<0.001), and Wang et al. [8] showed that the patients with preoperative spinal deficits have a higher 

decreasing percentage in IONM amplitude than those patients without. Similar trends were shown by 

Merali et al. [34], Zhang et al. [36] and Shimizu et al. [35]  

 

The results reveal additional notable findings regarding the latency features. Currently, physician assistants 

at Haga teaching hospital rely primarily on signal collapse and signal increment to interpret MEP and SSEP 

signals intraoperatively. Signal latencies are not included in this assessment. However, the feature 

importance plots show that the most prominent feature following preoperative neurological deficits is a 

latency feature. For the combined MEP-SSEP model it contributes 13.5% to the outcomes, and in the MEP 

model approximately 7%. Furthermore, in the best performing model, the combined MEP-SSEP model, 

not only the second-best feature, but three out of the top five features happen to be latency features. This 

highlights the importance of including signal latency in the visual intraoperative assessment, alongside 

signal collapse and increment, to provide a more comprehensive evaluation of the signals. The current 

literature barely addresses the relationship between MEP signal latencies and postoperative neurological 

outcomes as amplitude changes seem to have a greater predictive value. [45] Nevertheless, our study shows 

different results, highlighting the need to explore the neurological prediction of latency features in future 

research. 

 

5.3 Least predicting features 

Besides the most important features, specific features hold no significant weight in predicting the three 

months postoperative neurological status. Age holds a significance of 0% in all three models. Likewise, the 

surgical area, higher or lower than T12, hold a significance of 0% in the MEP-SSEP and the MEP model, 

and a significance of 1.5% in the SSEP model. This suggests that the decision to use IONM should be 

irrespective of surgical area or age. However, it should be noted that the surgical area feature is strongly 

normalized as above or below T12. In further research, when a larger group of patients is applicable, it 

might be useful to modify this feature to a specific vertebra to investigate its inclusion. Furthermore, the 

mean intraoperative MAP also does not figure prominently in the results. In the individual MEP and SSEP 
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model, this feature has an importance of 0%, and in the combined MEP-SSEP model it holds a significance 

of 0.6%. This contradicts existing literature, which suggests that this feature has a high predictive value for 

postoperative neurological deficits. For instance, the study by Agarwal et al. [32] suggests that none of the 

87 patients with a Mean intraoperative MAP higher than 96.3 mmHg showed neurological improvement 

after emergency decompressive surgery for acute spinal cord injury. However, in our study we still see 

neurological improvements up to the highest measured mean intraoperative MAP of 135.92 mmHg. In 

addition, the patient with the lowest measured mean intraoperative MAP (61.66 mmHg) showed 

neurological improvement. In current practice, if IONM signals collapse with a low or high MAP, surgery 

is usually postponed until the MAP stabilizes. However, our findings suggest that excessively high or low 

MAP may not be a direct indicator of poor neurological outcomes three months postoperative. Thus, in the 

future, consideration may be given to resume the surgery sooner when signals deviate in combination with 

blood pressure anomalies. 

 

5.4 Further findings 

Independent of the machine-learning models used, an important observation emerged during this project. 

All patients included in the study without preoperative deficits had no neurological worsening 

postoperatively. In contrast, 10 out of the 48 patients with preoperative neurological deficits showed no 

neurological improvement (20.8%), of whom three deteriorated (6.3%). Therefore, for patients who wish 

to postpone surgery until actual neurological symptoms are experienced, such as some patients with a 

benign spinal cord tumor, may be strongly advised to have the surgery before developing these symptoms. 

This significantly reduces their chances of maintaining or developing postoperative neurological deficits. 

Furthermore, it is essential to reflect on the fact that only three patients in our study showed neurological 

deterioration. Ideally, we would also include a group of patients who were not monitored with IONM to 

compare their outcomes and determine the rate of deterioration, but this was beyond the scope of this study.  

 

5.5 Limitations  

It would have been valuable for this study to include a separate outcome group with patients experiencing 

neurological worsening, but due to the insufficient number of representations in our patient group, this was 

not feasible. A multicenter study could have overcome this limitation by including a larger group of 

patients. This, in turn, would improve the training of the ML algorithm, likely leading to better results. 

Furthermore, examining possible additional features is essential, especially considering the two different 

types of signal collapse observed during surgery: sudden signal collapse due to compression and in addition 

for MEP signals, progressive signal collapse due to ischemia. [3] For this type of signal collapse, it would 

be desirable to include signal features that can be measured over time. Perhaps the algorithm could make 

important predictions based on these temporal features. However, to include these signal features, an 

approximately consistent number of signals must be measured for each patient to effectively run the ML 

algorithm. This poses a practical challenge because of variations in operative time, diverse critical moments 

during surgery and variations in the duration of anaesthetic clearance. In addition, in our study, only four 

muscle groups were measured in each patient, facilitating their inclusion in this type of ML, regardless of 

whether this was an affected muscle or not. It is possible that our model would show greater predictive 

value of IONM features if the affected muscle was included in the ML model for each patient. However, 

conducting similar studies with this recommendation presents challenges because this specific muscle 

group must be measured in each patient individually to train the ML algorithm, which is often not the case 

in practice. Combining muscle groups for the ML model is undesirable since the nerve roots of most 

muscles already split in the spinal cord. [30] One last limitation is that we assessed the neurological status 

three months postoperative. However, analyzing data over a longer postoperative follow-up period would 

provide more comprehensive and conclusive results. 
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5.6 Future implementation 

Before a real-time predictive model can be deployed in the operating room, several steps must be 

completed. After optimizing the ML model, performing extensive training on a large number of patients, 

incorporating additional features and specific affected muscles, an intuitive interface must be designed that 

allows the medical staff to seamlessly enter patient data. This interface must integrate effectively with the 

ML model. In addition, the NIM-Eclipse must load real-time data into the model. Next, the model must be 

thoroughly tested and validated on patient case studies in various scenarios in a controlled environment, 

evaluating performance characteristics and responsiveness in real time. Compliance with local regulations 

and ethical guidelines regarding the use of ML models in medical settings is crucial and requires approval 

under the Medical Device Regulation (MDR). Once approved, the model can be integrated into the 

operating room. Training sessions need to be provided for the medical staff on how to use the system. Also, 

feedback needs to be collected from physicians on the performance and usability of the model. The ML 

model needs to be trained regularly with updated data to improve performances to changing patient 

conditions. Finally, conduct post-implementation evaluations by consistently comparing model outcomes 

with patients' actual neurological status to identify incorrectly predicted cases or areas in need of 

improvement. 

6. Conclusion 
A reliable prediction of neurological outcomes three months postoperatively can be made combining MEP 

and SSEP IONM features, provided that the patient's preoperative status is accurately documented and 

included in the prediction. Though either MEP or SSEP features alone offer predictive value, MEP features 

show superior predictive values compared to SSEP features when both modalities are accessible, with 

latency emerging as a prominent predictive IONM feature. 
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7. Supplementary materials 

Appendix A. IONM warning criteria 

 

Article Journal SSEP 

(%) 

MEP 

(%) 

D-waves 

(%) 

 

SSEP 

Latency 

(%) 

MEP 

latency 

(%) 

Park et 

al.(2015)[6] 

World Journal of Clinical 

Cases 

> 50 > 50 < 50  > 10 > 10 

Olmsted et al. 

(2023)[1] 

World Neurosurgery   < 50    

Appel et al. 

(2019)[13] 

World Neurosurgery > 50 > 80  > 10  

Cannizzaro et 

al. (2022)[17] 

Journal of Neurosurgical 

Sciences 

 100 20 < x < 50   

Qiu et 

al.(2021)[14] 

Somatosensory & Motor 

Research 

> 50 > 80  > 10  

Sielatycki et 

al. (2020)[15] 

Spine Deformity Journal > 50   > 10  

Wang et al. 

(2017)[8] 

European Spine Journal > 50  > 80    

Dauleac et al. 

(2022)[9] 

Journal of clinical 

neurophysiology 

> 50 >50 < 50 > 10  

Yang et al. 

(2016)[12] 

European Spine Journal > 50   > 10  

Sun et al. 

(2023)[16] 

Scientific reports - Nature > 50   > 10  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table A-I: Warning criteria for the percentage signal collapse indicated by intraoperative neuromonitoring (IONM) evoked 

potential values, extracted from various articles and presented along their respective journals. SSEP: somatosensory evoked 

potential, MEP: motor evoked potential, D-waves: Direct waves.  
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Table B-I: Parameter grid used for hyperparameter tuning for each classifier. 

Appendix B. Parameter grids  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Classifier Parameter grid 

 

Random forest 

‘model__n_estimators’: [80, 100, 150, 200],    

‘model__max_depth’: [None, 5],  

‘model__min_samples_split’: [10, 15],  

‘model__min_samples_leaf’: [3, 4]     

 

K-nearest neighbors 

‘model__n_neighbors’: [4, 5],  

‘model__weights’: [‘uniform’, ‘distance’],  

‘model__p’: [1]   

 

Support vector machine 

‘model__C’: [100, 1000],   

‘model__kernel’: [‘rbf’, ‘sigmoid’],  

‘model__probability’: [True]  

XGBoost ‘model__learning_rate’: [0.005, 0.01] 

‘model__n_estimators’: [60, 80] 
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A B 

Appendix C. Micro-averaged ROC- and precision-recall curves MEP and SSEP 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

 

 

 

 

 

 

 

Figure C-I: Micro averaged curves regarding the MEP model. A: Micro-averaged receiver operating characteristic (ROC) curves for all 

classifiers. B: Micro-averaged precision-recall curves for all classifiers. XGBoost: extreme gradient boosting, RF: random forest, SVM: 

support vector machine, KNN: K-nearest neighbors. 

Figure C-2:  Micro averaged curves regarding the SSEP model. A: Micro-averaged receiver operating characteristic (ROC) curves for all 

classifiers. B: Micro-averaged precision-recall curves for all classifiers. XGBoost: extreme gradient boosting, RF: random forest, SVM: 

support vector machine, KNN: K-nearest neighbors. 
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Appendix D. MEP-SSEP random outcome ROC curves 

To assess the performance of the model and ensure that it does not overfit, we used a technique in which 

the outcomes are chosen at random. By choosing the outcomes randomly, the model should find no relation 

between the features and the outcome, which should reflect in the ROC-AUC curve with a value around 

±50%, as can be seen in Figure D-I. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure D-I:  ROC curves per individual class 

regarding the MEP-SSEP model for XGBoost. All 

outcomes are randomized which results in outcomes 

±50%. MEP: Motor evoked potential, SSEP: 

Somatosensory evoked potential, XGBoost: extreme 

gradient boosting. 
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Appendix E. Sensitivity analysis MEP-SSEP model 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure E-I: Performance plots of the MEP-SSEP model trained with the XGBoost classifier without the feature preoperative neurological 

deficits. A: ROC curves for each individual class, B: precision-recall curves for each individual class, C: Feature importance plot with the 

top seven predictive features. ROC: receiving operator characteristic, MEP: motor evoked potential, SSEP: somatosensory evoked 

potential, XGBoost: extreme gradient boosting 


