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This tutorial paper discusses the use of iterative restoration algo- 
rithms for the removal of linear blurs from photographic Images 
which may also be assumed to be degraded by pointwise nonlin- 
eariries such as film saturation and additive noise. lterative algo- 
rithms are particularly attractive for this application because they 
allow for the incorporation of various types of prior knowledge 
about the class of feasible solutions, because they can be used to 
remove nonstationary blurs, and because they are fairly robust with 
respect to errors in the approximation of the blurring operator. 
Special attention is given to the problem of convergence of the 
algorithms, and classical solutions such as inverse filters, Wiener 
filters, and constrained least-squares filters are shown to be limit- 
ing solutions of variations of the iterations. Regularization is intro- 
duced as a means for preventing the excessive noise magnification 
that is typically associated with ill-conditioned inverse problems 
such as the deblurring problem, and it is shown that noise effects 
can be minimized by terminating the algorithms aftera finite num- 
ber of iterations. The role and choice of constraints on the class of 
feasible solutions are also discussed. Ringing artifacts are common 
with most image restoration methods. It is shown that these arti- 
facts can be significantly reduced both by using constraints and 
also by making the algorithms spatially adaptive. Some variations 
on the basic iterations that accelerate the rate of convergence are 
discussed and numerous examples are presented. 

I. INTRODUCTION 

Images are produced to record or display useful infor- 
mation, but the process of image formation and recording 
is imperfect. The recorded image invariably represents a 
degraded version of the original scene. Three major types 
of degradations can occur-blurring, pointwise nonlinear- 
ities, and noise. Blurring i s  a form of bandwidth reduction 
of the image owing to the image formation process. It can 
be caused by relative motion between the camera and the 
original scene, or by an optical system that i s  out of focus. 
When aerial photographs are produced for remote sensing, 
blurs are introduced by atmospheric turbulence, aberra- 
tions in the optical system, and relative motion between the 
camera and the ground. Such blurring i s  not confined to 
optical images. Electron micrographs are corrupted by the 
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spherical aberrations of the electron lenses. The second 
type of image degradation is a pointwise nonlinearity intro- 
duced by the nonlinear responseof the recording medium. 
An important example of such a sensor nonlinearity is the 
sensitivityof photographic film. The density of silver grains 
on developed film varies approximately logarithmically with 
the incident light intensitywith saturation in both the black 
and white regions. The final source of degradation in re- 
corded imagery i s  noise. This corrupts both the image for- 
mation and recording processes. It can be introduced by 
the transmission medium (such as a noisy channel), the 
recording medium (such as filmgrain noise), measurement 
errors, and quantization of the data for digital storage. 

The field of image restoration i s  concerned with the 
reconstruction or estimation of an uncorrupted image from 
a distorted and noisy one. It i s  important in fields such as 
astronomy, where resolution and recording limitations are 
severe, for enhancing historically important photographs, 
and for analyzing images of unique events such as medical 
images, satellite photographs, and the result of scientific 
experiments. In recent years the commercial photographic 
industry has also shown an interest in consumer applica- 
tions of image restoration. 

This paper discusses an iterative approach to the prob- 
lem of restoration of blurred images. This i s  a special case 
of the more general problem of iterative signal restoration, 
which has had a very active recent history [I]-[21]. It has 
been consistently demonstrated that these iterative pro- 
cedures can be especially powerful when prior knowledge 
aboutthe underlying signal or image isavailable in the form 
of constraints on the allowable restorations, when the blur- 
ring function is only approximately known, and when the 
user elects to vary the degree of blur and noise removal with 
the local information content in  the image. This tutorial 
paper discusses many of these recent developments and 
shows that these iterative algorithms are particularly well 
suited to the problem of image restoration. 

This paper is arranged into several sections. Section I1 
discusses mathematical models for images and blur oper- 
ators. Motion blur i s  introduced as an example of a sta- 
tionary blur, and out-of-focus (defocussing) blur i s  pre- 
sented as an example of a nonstationary blur. Stationary 
approximations for defocussing blurs are also introduced. 
Procedures for deblurring require complete knowledge of 
the blurring function. As this is rarely available, Section Ill 
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reviews both cepstral and spatial domain procedures for 
the estimation of the blurring operator from the blurred 
image itself. 

The image deblurring problem is  a classical example of 
an ill-conditioned problem; its solution is highly sensitive 
to measurement errors. Many of the early solutions were 
concerned with the problem of noise sensitivity. Some of 
these classical solutions are discussed in Section IV. These 
include inverse filters, least squares or Wiener filters [22], 
Kalman filters [23], [24], and constrained least squares solu- 
tions [25]-[27]. This section continues by introducing the 
basic iterative deblurring algorithm forming the basis for 
most of the algorithms discussed in the remainder of the 
paper. Variations on this iteration are presented which 
asymptotically produce the inverse and constrained least 
squares solutions as the number of iterations is increased. 
The issue of convergence of the iterations i s  discussed care- 
fully and it is shown analytically that terminating these iter- 
ations prior to convergence i s  one important method for 
preventing noise magnification. 

Section V of the paper introduces the concept of regu- 
larization, a formalism by which the ill-conditioned deblur- 
ring problem is converted into a well-conditioned problem 
with less sensitivity to measurement noise. Both iterative 
and noniterative regularized restoration procedures are 
presented and several examples are given which clearly 
demonstrate the power of the approach. 

One of the strong motivations for using iterative pro- 
cedures i s  the fact that they provide a mechanism for lim- 
iting the set of feasible solutions to the inversion problem 
by requiring that the restorations lie in a closed convex 
space. Section VI is concerned with the problem of con- 
strained restoration. The earlier iterations are modified to 
allow for constraints and several examples are presented 
which demonstrate howthetightnessof theconstraintscan 
affect the resulting restorations. 

A common artifact associated with any of these resto- 
rations is ringing, a Gibbs-like oscillation introduced in the 
vicinity of abrupt changes in intensity. Methods for reduc- 
ing noise magnification, such as regularization, tend to 
make this problem worse. The imposition of constraints 
can greatly reduce ringing in some cases. It is also shown 
that making the iterations spatially adaptive is even more 
effective. In Section VI1 we show that both techniques can 
be applied together. 

In Section VIII, the iteration i s  extended to include the 
removal of the pointwise nonlinearities introduced in the 
recording process. Finally, Section I X  is concerned with 
procedures for increasing the rate of convergence of the 
iterative algorithms. Two different procedures are intro- 
duced for this purpose-one based on the method of con- 
jugate gradients from optimization theory, and one that 
replaces the iterations by a higher-order iteration whose 
convergence i s  accelerated. 

I I .  MODELS FOR BLURRED IMAGE FORMATION 

A. Image Formation 

It i s  appropriate to begin by assuming that a three-dimen- 
sional (3-D) object or scene has been imaged onto a 2-D 
imaging plane by means of a recording system such as a 
camera. If the image formation process i s  linear, the re- 
corded image can be modeled as the output of the system 

NOISE IMAGE SENSOR 
BLURRING RESPONSE 

Fig. 1. Model for the processes of image formation and 
recording. 

shown in Fig. 1, which is given mathematically by 

g(x, y) = s [ ! ~  lm h(x, y; s, t )  f ( s ,  t )  ds dt + n(x, y) .  1 -a - m  

Hereand throughoutthis paperg(x,y)will beused todenote 
the recorded image, and f(x, y )  will be used to denote the 
ideal image, which i s  a 2-D mapping of the 3-D input scene. 
The goal of the restoration i s  to produce a good estimate 
of f. Here h(x, y; s, t) is the 2-D impulse response (point- 
spread function) of the linear blurring system and s {  . }  i s  
the sensor nonlinearitywhich has been modeled as a point 
operator. The noise contribution is shown as an additive 
random process which i s  statistically uncorrelated with the 
image. This i s  a simplification because noises such as film- 
grain noiseand the noisecaused by photon statistics,which 
often corrupt images, are not uncorrelated with the input. 
This simplification nonetheless leads to reasonable and 
useful results. 

If the impulse response is stationaryacrossthe imageand 
object fields, it becomes a function of only the argument 
differences x - s and y - t. In this case the superposition 
integral in (1) becomes a more familiar convolution integral 

(2) 

(3) 

g(x, y )  = s[im Sa h(x - s, y - t )  f (s ,  t )  ds dt 

g(x, y )  = s{h(x, y) * f(x, y ) )  + n(x, y) 

where (*) i s  used to denote 2-D convolution. 
In a discrete implementation the functions with contin- 

uous arguments f ,  g, h,  and n are replaced by arrays of sam- 
ples taken on N x N 2-D rectangular lattices of equi-spaced 
samples. The sampled arrays are related by 

1 -m - m  

+ n(x, y) 

/- \ 

v(k.1)  

0 5 i , j  5 N - 1 .  (4) 

For the spatially invariant (stationary) system, the convo- 
lution integral (2) becomes a convolution sum 

f \ 

h(i - k,  j - I )  f ( k ,  I )  
v ( k , l )  

g(i, j )  = s { h ( i ,  j )  * f(i, i ) )  + n(i, j )  (6) 

where the asterisk (*) is now used to denote a discrete con- 
volution. Often the sensor nonlinearity i s  conveniently 
neglected (or linearized) to justify the use of a linear res- 
toration filter. When this nonlinearity is ignored, (6) reduces 
to the linear convolution model 

(7) g(i, j )  = h(i, j )  * f(i, j )  + n(i, j )  

BIEMOND et al.: IMAGE DEBLURRING 857 

.- 



for which discrete Fourier transforms (see Appendix) can 
be used to yield the frequency domain model 

G(m, n) = H ( m ,  n) F(m, n) + N(m, n). (8) 

Here H(m,  n) represents samples of the frequency response 
of the blurring system and m and n are the discrete hori- 
zontal and vertical spatial frequency variables. Because 
imperfections in an image formation system normally act 
as passive operations on the image data, all energy arising 
from the point (k, I) should be preserved. Thus, h(i, j ;  k, I )  
i s  constrained to satisfy 

h(i, j ;  k, I) = 1, v(k, I )  (9) 
0, I )ES,  

where SI i s  the support of the PSF. 

mat rix-vector not at ion 
For further simplification it i s  also convenient to use the 

g = H f + n  (1 0)  

where f, g, and n are lexicographically ordered vectors [28] 
of size N Z  x 1, and His the blurring operator of size N 2  x 
N 2  (see Appendix). 

These expressions were presented for monochromatic 
(blackandwhite) images.Acolor imageis usuallydescribed 
by a vector with three components corresponding to the 
tristimulus values red, blue, and green, each of which i s  
itself a monochromatic image. 

B. Image Models 

Certain linear image restoration techniques including 
Wiener filters [22] and Kalman filters [23], [24] make use of 
a priori statistical knowledge of the original (undistorted) 
image. This takes the form of a power density spectrum for 
the Wiener filter and the form of a stochastic difference 
equation for the Kalman filter. These quantities can be 
derived by using an autoregressive model for the image. A 
large class of real-world images can be modeled as the fol- 
lowing 2-D autoregressive process of low order: 

(11) 

Here U(;, j )  can be viewed as either an innovation process 
or as the error in approximating f ( i ,  j )  using a linear com- 
bination of neighboring sample values contained in a 
neighborhood W,. Different models result for different 
choices of the set W,. Some common choices for W1 are 

{ ( p ,  q ) : ( p  2 0, q < 0)  U ( p  > 0, q 2 O)},  

Nonsymmetric halfplane causal models 

semicausal models 

noncausal models. { ( p ,  q ) : ( p ,  q) # (0, 0)}, 

(12) 

These three neighborhoods are illustrated in Fig. 2. Acom- 
prehensive survey of these three image models has been 
given by lain [29]. Other relevant literature on image mod- 
eling can be found in [30]-[35]. 

Computational considerations usually restrict the non- 
zero values of the model parameters { a ( p ,  q ) }  to a finite 

P P P 

t t t 

(a) (b) (0 
Fig. 2. Model support corresponding to (a) nonsymmetric 
halfplane image model; (h) semicausal image model; (c) non- 
causal image model. 

window W, called the prediction window, which is a subset 
of w,. 
C. Blur Models 

Motion Blur: Many types of motion blur [36] can be dis- 
tinguished, all of which are caused by relative motion 
between the camera and the object. This can be in the form 
of a translation, a rotation, a sudden change of scale, or to 
some combination of these. Here only the important case 
of a translation will be considered. When the object trans- 
latesat aconstant horizontal velocity Vduringtheexposure 
interval [0, TI ,  the distortion i s  one-dimensional and its 
point-spread function is given by [36] 

h(x, y; S, t )  = h(x - S )  

otherwise. 

The discrete equivalent point-spread function makes use 
ofthe blurringdistanceL,which isthe numberofadditional 
points in the image resulting from a single point in the orig- 
inal scene. 

h(i, j ;  k, I) = h(i - k) 

otherwise. 

(14) 

The frequency responsecorresponding to this blur i s  given 

L o  

by 

These impulse and frequency responses are seen in Fig. 3. 
In that figure it i s  readily seen that the frequency response 
is zero on lines parallel to the n-axis with an interline spac- 
ing of NI(L + 1). If the linear motion i s  in some other direc- 
tion, the blurring frequency response will have the same 
form butwil ;  be rotated in frequency.The presenceof these 
parallel zeros in the frequencydomain, which arealso pres- 
ent in the blurred image (in the absence of noise), not only 
indicates the presence of a linear motion blur, but also indi- 
cates the direction of motion, and the blurring distance. 

Out-of-Focus Blur: When a three-dimensional scene i s  
imaged by a camera onto a two-dimensional image field, 
some parts of the scene are in focus while other parts are 
not. The degree of defocus depends upon the effective lens 
diameter and the distance between the object and the cam- 
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- .v/2 0 NI2 
(b) 

Fig. 3. (a) The impulse response and (b) magnitude of the 
frequency response of a horizontal linear blur of L = 9. 

era. To describe this inherently spatially varying blur, con- 
sider a camera consisting of a lens and an aperture that lim- 
its the lens diameter. When the film i s  located at the focal 
plane of the lens, objects infinitely far away are in perfect 
focus in the resulting image. As the lens i s  moved relative 
to the image plane, objects at other distances are brought 
into focus. In Fig. 4, an object at distance D i s  focussed 

I 
I VP 
rl 

t 

I 

Image Plane 

Fig. 4. Geometry of an imaging system. 

sharply. More distant object points come into focus in front 
of the imaging plane, and converging rays from nearer 
objectsare intercepted bythe film beforethey reach asharp 
focus. If the aperture is circular, the image of any point 
source i s  a small disk, known as the circle o f  confusion 
(COC). 

The diameter of the circle of confusion is a function of 
the distance P of the observed point [37]. Let V, and Vp be 
the image distances corresponding to objects at distances 
D (in focus) and P (out-of-focus) respectively. The point at 
V, lies in the image plane, but the point at P projects onto 
a circle as it converges a distance IV, - V,l away. From sim- 
ple geometry (see Fig. 4), it follows that 

- - 
€6 

(16) - 
LR _ -  
VP IVP - VDI 

where 
i s  the effective lens diameter, defined as the focal length 
divided by the aperture number (f-stop) n. From the lens law 

is the diameter of the circle of confusion and 

1 1 1  - + - = -  
P Vp F 

1 1 1  - + - = -  
D VD F 

where F i s  the focal length of the lens, it follows that the 
diameter of the circle of confusion C(P) can be written as 

(1 9) 

This function is sketched in Fig. 5. As P-t Dthe  planecomes 
into focus and the diameter of the circle of confusion 

F K D- D D+ 

Fig. 5. Diameter of the circle of confusion. 

approaches zero. The diameter of the COC varies asym- 
metrically with P .  

In practice an object can be said to be in focus whenever 
the diameter of i ts  circle of confusion i s  less than 6, the res- 
olution limit of the film. Appealing to Fig. 5,  this means that 
objects at distances between D -  and D +  are in focus. Blur 
will be visible only when the diameter of the circle of con- 
fusion exceeds the resolution limit. The term depth off ie ld 
refers to the range of object distances [ D - ,  D + ]  that fall 
within the resolution limit. For increasing aperture number 
n, that  is, a decreasing effective lens diameter, a greater 
depth of field can be realized. 

Points infinitely far away have a limiting COC diameter 
given by (V, - F)/n. Points at the distance K = 012, known 
as the critical distance, also have this same COC diameter. 
If (V, - F)/n < 6, then all points in  the range [K ,  w) will be 
in focus. 

To obtain a complete model for defocussing, we need to 
know the intensity distribution within the circle of con- 
fusion caused by a point object. From geometrical optics 
it follows that this intensity distribution should be roughly 
constant and nonzero within the circle of confusion and 
zero elsewhere [38]. This corresponds to the point-spread 
function 

J 

(20) 
(0 elsewhere. 

where r is the radius of the circle of confusion. 
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The frequency response (optical transfer function (OTF)) 
corresponding to this model for the blur i s  given by 

(21) 

where /, i s  the first-order Bessel function. This frequency 
response i s  shown in Fig. 6 .  A more accurate calculation 

A "  

I + 
N I 2  0 N / 2  

Fig. 6. Simplified frequency response corresponding to 
out-of-focus blur. 

would involve the effect of diffraction [39]. It can be shown 
[38], [40] that when the degree of defocussing i s  large, the 
geometrical O.TF closely approximates the diffraction OTF 
for low spatial frequencies. 

A discrete equivalent point-spread function correspond- 
ing to(20) can beobtained byassociatingwith each location 
(i, j )  in the discrete plane the rectangular pixel shape shown 
in Fig. 7. The value of the discrete point-spread function 

1 ' .  , , , 

Fig. 7. 
spread function. 

Discrete approximation to an out-of-focus point- 

(PSF) is then equal to the value of the continuous point- 
spread function weighted by the fraction of the pixel cov- 
ered. The discrete PSF is constant for small radii, zero for 
large ones, and assumes intermediate values for radii close 
to the radius of the circle of confusion. 

If the camera misadjustment and object position are 
known exactly, we can calculate the spatially varying point- 
spread function exactly. However, in most practical situ- 
ationswewill not havethis much prior knowledge.Theonly 
assumption often to be made i s  that the image is unsharp 
becauseof defocussing.Then the degreeof the blur should 
be estimated at each pixel from the blurred image itself. 

A more accurate model reveals that the point-spread 
function corresponding toan out-of-focus blur isalsowave- 
length dependent owing to diffraction and interference 
phenomena, and that the radius of the COC is also wave- 
length dependent because of the refractive index of the 
lens. This i s  known as chromatic aberration [41]. Thus, the 
three color components red, green, and blue (R, G, and B) 
of a color image, each originating from a different fre- 

quency band of the image scene, would generally have dif- 
ferent point-spread functions. 

Ill. BLUR IDENTIFICATION 

The first step in restoring a degraded image i s  the iden- 
tification of the type of degradation. If the camera misad- 
justment, object distances, object motion, and camera 
motion are known exactly, we can calculate the point-spread 
function for the three primary color components. In prac- 
tice the degradation i s  rarely known exactly, and the blur 
must be identified from the blurred image itself. In this sit- 
uation it i s  helpful to have a parametric blur description 
such as that in (14) or (20). For linear motion blur, as given 
in (14) it i s  only necessary to estimate the direction of blur 
and the blurring distance. With the simplified model for an 
out-of-focus blur in (20) it i s  only necessary to estimate the 
radiusof thecircleof confusion. Because both of these blurs 
have an oscillatory frequency response with a characteristic 
zero-crossing pattern, it is advantageous to identify them 
in the spectral or cepstral domain under the assumption 
that the blur i s  locally space invariant. If this assumption 
does not hold, the blur must be identified in the spatial 
domain [42], [43]. 

A. Blur Identification in the SpectrallCepstral Domain 

The following technique for identifying the power spec- 
trum of the blurring function was developed by Stockham, 
Cannon, and lngebretsen [44]. As before, let g(x, y ) ,  and f(x, 
y )  denote the blurred and original images, respectively. 
When the noise contribution is neglected, the power den- 
sity spectra of the two images are then related by 

(22) 

If the images g and fare divided into nonoverlapping sub- 
images { &(x, y ) ,  f k ( x ,  y ) ,  k = 1,2,. . . , K } ,  the power density 
spectraof these subimages will approximately satisfy a rela- 
tion similar to (22) 

I ~ ( m ,  n)12 = / ~ m ,  n)121Fk(m, n)12. (23) 

This relationship is only approximately true for the sub- 
images, because the convolution of h(x ,  y )  with fk (x ,  y) will 
extend beyond the boundaries of g,(x, y ) .  If these boundary 
effects are negligible, however, which is the case if the sub- 
images are large compared to the extent of the blurring 
function, then the approximation in (23) i s  a good one. Tak- 
ing logarithms of both sides of (23) and adding the results 
for each of the subimages gives 

1 G(m, n)(* = ( ~ ( m ,  n)121F(m, n)I2. 

The quantity on the left can be evaluated from the blurred 
image. The first sum on the right side of this equation, how- 
ever, i s  unknown. Stockham et al. [44] argued that it could 
be approximated by an average power spectrum evaluated 
over a wide variety of images. This estimate can then be 
subtracted from the expression on the left-hand side to yield 
an approximation to the magnitude response of the blur- 
ring function. 

For linear motion blur, such an estimate isoften sufficient 
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toestimate thezero patterns in thefrequencyresponsefrom 
which one can estimate the direction of motion and the 
blurring distance. For an out-of-focus blur, the frequency 
zero patternscan beused toestimatethe radiusofthecircle 
of confusion. 

An alternative to the above for identifying linear motion 
blur involves the computation of the two-dimensional cep- 
strum of g(x, y) [45]. The (power) cepstrum is the inverse 
Fourier transform of the logarithm of the magnitude of 
G(m, n). Thus 

g(x, y)  = F-'{log ( ~ ( m ,  n) l}  (25) 

where 5 - I  i s  the inverse Fourier transform operator. One 
of the important properties of the cepstrum is that if two 
signals are convolved, their cepstra add. Thus, if the noise 
i s  again neglected 

For horizontal, linear motion the frequency response of the 
blur can be expressed in terms of the Fourier variables 
(m, n) as 

This response has zeros at integer multiples of NIL + 1. As 
a result, h has a large negative spike at a distance L from 
the origin. This spike i s  a prominent feature in g(x, y). Its 
presence indicates the presence of motion blur and i t s  posi- 
tion indicates the direction and extent. As an example, con- 
siderthe blurred imageofatrain shown in Fig.8.Thisimage 
demonstrates horizontal motion blur. The rowwise 
summed log spectrum, formed from 32 rows taken at the 
level of the centers of the cars, i s  shown in Fig. 8(b), and the 
cepstrum i s  shown in Fig. 8(c). The cepstrum displays a 
prominent spike at L = 7 samples. 

B. Blur Estimation in the Spatial Domain 

The blur estimation techniques described in the previous 
section relied on a parametric description of the blur, for 
which the missing parameters were estimated using either 
the spectrum or cepstrum of the blurred image. These 
deterministictechniquescan only be used toestimateacer- 
tain class of frequency responses-those having zeros on 
the unit bi-circle. Not all important blurs have such char- 
acteristics. For example, a Gaussian blur, which is com- 
monly used to model the degradation introduced in an 
x-ray recording system, could not be identified using these 

techniques. This section will present a spatial domain pro- 
cedure for simultaneously estimating both the blurring 
operator and the image model coefficients without assum- 
ing a specific functional form for the blur. These estimated 
model and blur coefficients can then be used for the sub- 
sequent restoration of noisy blurred images. An additional 
advantage of the spatial domain technique i s  i t s  ability to 
track slowly varying image statistics and spatially varying 
blurs. 

The technique begins with the assumption that the 
undistorted original image can be described by the auto- 
regressive model (11) with causal support (12). That is, 

and that the noisy, blurred image with noncausal support 
can be described by 

g(i, j )  = (29) 

(Notice that the point-wise nonlinearity from (1) has been 
omitted.) This so-called state-space pair is not suitable for 
the identification of the unknown parameters in the model, 
because the undistorted image f ( i ,  j )  is not available. By 
eliminating f ( i ,  j )  from these equations and neglecting the 
effectoftheobservation noiseon theestimationofthecoef- 
ficients [42], we arrive at the equation 

h(k, I )  f ( i  - k, j - I )  + n(i, j ) .  
(k,l)ES> 

This represents a 2-D ARMA model for the observations, 
where the image model coefficients form the autoregres- 
sive(AR) portion of the model, and the blur coefficients h(k, 
I )  form the moving average (MA) part. 

In [42], Tekalp et a/. derive conditional maximum likeli- 
hood estimates of these unknown coefficients in the 
absence of observation noise. Biemond et a/ .  [43] followed 
the same procedure, but first decomposed the 2-D ARMA 
model rowwise into N /2  + 1 complex I -D ARMA column 
sequences by using the DFT and an assumed semicausal 
model support W. This gave 

p = 1  

v = 0, 1, . . .  , N 

Ao(n) G(i, n) 

= - 
P 2 K  

AJn) G(i - p, n) + c Hk(n) U(i  - k, n), 
k = O  

Fig. 8. (a) A natural image displaying motion blur. (b) The log spectrum computed from 
32 rows in the center of the train. (c) The cepstrum displaying a prominent spike at 7 sam- 
ples. 
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where A,(n) and Hk(n) are defined as the I-D DFTs of the 
defining sequence a,(;) and h k ( i ) .  These are given by 

a,(;) = { -a(p,  -4, . . . , -a(p,  O), . . . , -a(p, P ) )  (32) 

h k ( / )  = {h(k ,  - L ) ,  . . . , h(k,  O), . . . , h(k,  L ) } .  (33) 

Here capitals denote transform domain quantities and n 
denotes the discrete horizontal frequency variable. With 
this decomposition the parameter estimation can be per- 
formed in parallel using simple I-D recursive estimation 
techniques (461. An estimation procedure that offers the 
potential of being relatively fast, while still estimating the 
M A  portion of the model accurately, uses a high-order AR 
approximation as an intermediate step [43], [471. 

As an example of this identification procedure, consider 
the blurred cameraman image in Fig. IO, which wasobtained 
byacomputersimulated blurr ingofthe image in Fig.9with 

Fig. 9. Original cameraman image with 256 x 256 pixels 
quantized to 8 bits per pixel. 

Fig. 10. Motion-blurred cameraman image with noise 
added at an SNR of 50 dB. 

motion ( L  = 8) and noise. The image model computed from 
the original image i s  given by [43]: 

4 2 ,  -1) a(2, 0) a(2, 1 )  

4 0 ,  -1) a@, 0) 4 0 ,  1) 

0.2440 -0.7018 0.2440 . (34) 1 -0.0614 0.1740 -0.0614 

-0.4605 1.0000 -0.4605 

The following estimates were calculated for the image 
modeland blur parameters usingthe blurred imagein Fig.10: 

-0.0497 0.1654 -0.0497 

5(p, 4) = 0.1951 -0.6896 0.1951 ] [ (35) 

-0.4169 1.0000 -0.4169 

h(O, j )  = [h(O, -4, . . . , M O ,  01, . . . , h(O, 4 1  
= [0.1110, 0.1109, 0.1092, 0.1124, 0.1131, 

0.1 124, 0.1092, 0.1 109, 0.1 11 01. (36) 

Iv. THE CLASSICAL AND BASIC ITERATIVE SOLUTIONS 

Sections I1 and Ill addressed the problem of modeling 
and estimating the blurring function. This section begins 
by assuming that these are satisfactorily known. It looks at 
the problem of blur removal using a linear restoration filter, 
neglecting any pointwise nonlinearities that might be cor- 
rupting the image. In the space-varying case the original 
and blurred images are related by 

g(i, j )  = h(i, j ;  k,  I )  f (k ,  I )  + n(i, j). (37) 
v(k , l )  

and in the space-invariant case they are related by 

g(i, j )  = c h(i - k,  j - I )  f ( k ,  I )  + n(i, j ) .  (38) 
v(k,n 

This section will compare a number of methods for esti- 
mating f from g. 

A. The Inverse Filter Solution 

An inverse filter i s  a linear filter whose point-spread func- 
tion h,,,(i, j; k,  I )  is  the inverse of the blurring function 
h(i, j ;  k ,  I )  in the sense that 

where 

1 i f i = j = O  

0 elsewhere. 
(40) 

These filters are virtually impossible to design in the spa- 
tially varying case. Therefore, in the remainder of this sec- 
tion only the space-invariant case will be considered. 

The space-invariant inverse filter h,,,(i, j )  is the convo- 
lutional inverse of h(i, j ) .  Thus, 

6(i, j )  = 

h,,,(i, j )  * Mi, j) = 6( i ,  j )  (41) 

which can be expressed in the discrete frequency domain 
as 

H(m, n) H,,,(m, n) = 1 .  (42) 

If the blurred image i s  passed through the inverse filter, the 
discrete Fourier transform of the output i s  given by 

Am, n) = H,,,(m, n) G(m, n) 

= H,,,(m, n)[H(m, n) F(m, n) + N(m, n)l 

= F(m, n) + H,,,(m, n) N(m, n). (43) 

The restored image i s  thus equal to the desired image plus 
the inverse filtered noise. 

Unfortunately, there are several problems with this 
approach. First, the inverse filter may not exist. Such is the 

ab2 
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case if H(m, n) comes from an ideal lowpass filter, or if 
H(m, n)  i s  zero at selected frequencies. Recall that this i s  the 
case with both linear motion blur and shift-invariant 
approximations to out-of-focus blur. Second, even when 
the blurring frequency response does not actually go to 
zero, there are usually problems caused by excessive noise 
amplification at high frequencies. This is because the power 
spectrum of the blurred image is typically highest at low 
frequencies and rolls off significantly for higher ones. The 
spectrum of the additive noise, on the other hand, typically 
contains relatively more high frequency components. Thus, 
at high frequencies, [ (m,  n) i s  dominated by the inverse fil- 
tered noise, which yields useless solutions. The inverse fil- 
ter may also be difficult to realize, and when the blurring 
function is known only approximately, the resulting uncer- 
tainty in H,,,(m, n)  may be intolerable. With hindsight it can 
also be noted that the inverse filter suffers because it makes 
no use of the properties of f. 

Figure 11 shows a blurred cameraman image and the cor- 
responding inverse filtered restoration. The distortion here 

(a) 
Fig. 11. (a) Image blurred by defocusing blur (r = 3) at an 
SNR of 40 dB. (b) Restoration by inverse filtering. SNR 
improvement = -16.5 dB. 

was a defocusing blur with a COC radius of 3. The blurred 
image was computed from the unblurred original in Fig. 9 
and Gaussian noise was added to the result at a signal-to- 
noise ratio (SNR) of 40 dB. Here the signal-to-noise ratio is 
calculated as 

variance of the noise i variance of the blurred image 
SNR = 10 log,, 

As the undistorted image i s  available, it i s  possible to eval- 
uate the improvement in SNR introduced by the process 
of restoration. This i s  calculated as 

c (g(i, ;, - f ( i ,  /)IZ 
Improvement in SNR = I O  log,, ”’ c (f(i, ;, - f ( i ,  ;HZ . 

‘I I 

(45) 

For this image the “improvement” in SNR was -16.5 dB, 
which i s  to say that the restored image was farther from the 
original image than the blurred one was. The noise ampli- 
fication introduced by inverse filtering caused the resto- 
ration to lose ground. 

B. Least-Squares Solutions 

To overcome the noise sensitivity of the inverse filter, a 
number of restoration filters have been developed which 

wewill collectivelycall least-squares filters. This section will 
explore two least-squares restoration methods-the direct 
methods (which are usually implemented in the frequency 
domain) and the recursive or Kalman filtering methods 
(which are usually implemented in the spatial domain.) 

The Wiener Solution: The Wiener filter [22] i s  a linear 
space-invariant filter which makes use of the power spec- 
trum of both the image and the noise to prevent excessive 
noise amplification. The frequency response of this res- 
toration filter, Hw(m, n),  is  chosen to minimize the mean 
squared restoration error E ,  given by 

f2 = E ( ( F ( r n ,  n )  - ecm, n)I2) (46) 

(47) 

where E ( . )  denotes the expectation over an ensemble of 
images. The solution to this minimization problem i s  given 

by 

whereSff(m, n)  i s  the power spectrum of theoriginal image, 
Snn(m, n)  i s  the power spectrum of the noise, and H*(m, n)  
denotes the complex conjugate of H(m, n). In the noiseless 
case the Wiener filter approximates the pseudo-inverse fil- 
ter [22] defined by 

for H(m, n) = 0. 

An example of a Wiener filter restoration i s  shown in Fig. 
12. The improvement in the SNR i s  5.9 dB. The excessive 
noiseamplification of the earlier example i s  no longer pres- 
ent because of the masking of the spectral zeros, but the 
image is still somewhat blurred. It has been a regular crit- 

(b) 
Fig. 12. RestorationoftheimageinFig.Il(a)usingaWiener 
filter. (a) The power spectrum used in the Wiener filter. (b) 
The restored image. SNR improvement is 5.9 dB. 
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icism of Wiener filters that they act mainly to suppress mea- 
surement noise, while performing only minor deblurring. 

Constrained Least-Squares Solution: Constrained least- 
squares filtering is another approach for overcoming some 
of the difficulties associated with the inverse filter, while 
s t i l l  retaining the simplicity of using a single linear space- 
invariant filter to restore the image. 

If the restoration is a good one, the blurred estimate 
should be approximatelyequal to the observed image. That 
is, 

4 m ,  n)  H(m, n)  = C(m, n). 

With the inverse filter this approximation is made exact, 
which causes a problem when there are measurement 
errors because the inverse filter tries to get an exact fit to 
noisy data. It is, in fact, unreasonable to expect the res- 
toration to match the observations any more closely than 
the ideal solution itself. Thus, a more reasonable expec- 
tation for the restoration i s  that it satisfies the relation 

IIG(m, n)  - M m ,  n)  F(m, n)II 'I IIMm, n)II 

where )I.II denotes the regular Euclidean norm. An estimate 
ofthevarianceofthenoise,and, hence IIN(m,n)ll,caneasily 
be obtained from a smooth portion of the image. There are 
potentially many possible restorations which meet this cri- 
terion. Prior knowledge about the solution isone means for 
choosing among them or secondary optimization criteria 
can be used. One common secondary criterion, which 
acknowledges the tendency of the inverse filter to empha- 
size high frequency noise, i s  to require that the restoration 
be as "smooth" as possible. 

This is the motivation for the constrained least-squares 
restoration [22], [25]. The restoration F(m, n) ischosen which 
minimizes the quantity Q ( F )  defined by 

Q ( F )  = IIcw, n) i(m, n)ll (51) 

subject to the condition that 

IIG(m, n)  - H(m, n) P(m, n)II = IIMm, n)II. (52) 

Here C(m, n)  is  the frequency response corresponding to 
the point-spread function c(i, j )  of an operator which mea- 
sures the nonsmoothness of the restoration. A common 
choice for this operator i s  some form of second derivative, 
such as a discrete approximation to a 2-D Laplace filter [48]. 

The solution to the above minimization problem is again 
a linear space-invariant filter with the frequency response 
given by 

where the Lagrange multiplier I l y  is chosen so that the con- 
straint in (52) i s  satisfied. Equation (53) is called the con- 
strained least-squares solution [25], [49]. 

It should be noted that the formulations of the Wiener 
and constrained least-squares filters are very similar, 
although their motivations are quite different. The con- 
strained least-squares filters can be viewed as a general- 
ization of the direct least-squares solutions. In the limit as 
y approaches 0, the limiting solution is again the pseudo- 
inverse solution (Eq. (49)). 

Fig. 13. Restoration of the image in Fig. 11 using the con- 
strained least-squares method. SNR improvement i s  6.2 dB. 

Figure 13 shows an exampleof aconstrained least-squares 
restoration. The blurred image i s  the same as before with 
a defocusing blur. A Laplacian operator C was used with a 
value of y = 0.01. In this case the improvement in SNR i s  
6.2 dB. 

Recursive Solutions: Another solution to linear mean- 
squared error image restoration uses a Kalman filter. Once 
an ordering for the data has been chosen (causality con- 
dition), a Kalman filter can be defined which provides for 
a recursive solution to the restoration problem. Such afilter 
can track slowly varying image statistics and spatially vary- 
ing blurs.The Kalman filter makes useof theautoregressive 
image model given in (11) and the causal support condition 
given in (12). Together with (29), these form a set of state- 
space equations which form the basis for a scalar Kalrnan 
filter,whichfilters thedataone point at atime rowwise.The 
reduced update Kalman filter (RUKF) by Woods et al. [24] 
i s  a suboptimal but efficient alternative, which uses the fol- 
lowing state prediction and state update equations. 

f" b' I )  (m, n)  = c a(p, q) ft-""(m - n - 9) (54) 
( p . q ) E w  

(55) 

Here f(i, j )  denotes the estimate of f ( i ,  j ) ,  and k'","'(i, j )  
denotes the Kalman gain. In the above expressions the 
superscripts refer to the step in the filtering and the argu- 
ments denote the position of the data. The subscripts b and 
a denote before and after the update. A Kalman filter 
requires theapriori knowledgeof the image model and the 
blur coefficients. This identification problem was discussed 
in Section Ill-B as an ARMA identification problem. 

Instead of using a scalar Kalman filter which recursively 
estimates one pixel at a time, Biemond et al. developed a 
Kalman filter for vector observations, in which the image 
i s  filtered one image line (row) at a time [23], [50]. By using 
adecorrelating rowtransform, under certain conditions the 
final algorithm reduces to a set of scalar I-D Kalman filters 
suitable for parallel processing of the data in the column 
direction. In Fig. 14 such a system i s  shown, which uses row 
discrete Fourier transforms (DFTs) to decorrelate the col- 
umn data. 

By exploiting the symmetry properties of the Fourier 
transform for real input data, the number of Kalman filters 

864 

.- 

PROCEEDINGS OF THE IEEE, VOL. 78, NO. 5 ,  M A Y  1990 



Fig. 14. Parallel Kalman filter scheme. 

(channels) shown in that figure can be reduced to NI2 + 1. 
A restoration of the noisy blurred image in Fig. 11 made by 
this Kalman filter i s  shown in Fig. 15.The SNR improvement 
is  5.6 dB. 

Fig. 15. Restoration of the defocused cameraman image 
using the parallel Kalman filter. SNR improvement i s  5.6 dB. 

This discussion of Kalman filtering for images i s  far from 
complete. It was presented in order that the Kalman res- 
toration could be compared to those of the iterative meth- 
ods, which are the real subject of this paper. A more com- 
plete discussion of this issue can be found in, for example, 
[231. 

C. Iterative Solutions 

Van Cittert’s Method:The simplest of the iterative decon- 
volution methods has a long history. It goes back at least 
to the work of Van Cittert [51] in  the 1930s and may, in  fact, 
have even older antecedents. Iterative solution techniques 
have been applied to the image deconvolution problem by 
many researchers in recent years [3], [91-[111, [141-[211. 
Although originally formulated for the space-invariant case, 
it can be applied to the spatially varying case as well. 
Neglecting, for a moment, the noise contribution and mak- 
ing use of the compact matrix-vector notation introduced 
in (IO) to denote both the space-varying and space-invariant 
cases, the following identity i s  introduced, which must hold 
for all values of the parameter P: 

f = f + P(g - Hf). (56) 

Applying the method of successive substitutions to this 
suggests the following iteration 

30 = Pg 

? k + l  = ?k + P(g - Hfk) 

= Pg + (I - PH)?k 

= Pg f Rfk (57) 

where I is the identity operator. Different researchers refer 
to this iteration as the Van Cittert [51], Bially [52], or Land- 
weber [53], [54] iteration, presumably because it has been 
independently discovered many times. 

With any iterative algorithm there are two important con- 
cerns-does it converge and, if so, to what limiting solu- 
tion? By direct enumeration it is seen that 

k 

which can be written notationally as 

?k = p(I - R ) - ’ ( /  - Rkt’)g (59) 

provided that the matrix (I - R )  i s  invertible, that is, H is  
invertible. If 

Iim Rk+’g = O (60) 
k - m  

which is a sufficient condition for convergence, the limiting 
solution is 

?- = lim ?k = P(/ - R)-’g = H-’g. (61 ) 

This i s  the inverse filter solution. Hence, continuing the iter- 
ations indefinitely will produce a solution which has many 
unsatisfactory properties. The iterative implementation of 
the inverse filter (57), however, does have two advantages 
over the direct implementation. First, it can be terminated 
prior to convergence, resulting in a partially deblurred 
image which will often not exhibit noise amplification. The 
second advantage is that the inverse operator does not need 
to be implemented. Each iteration requires only that the 
blurring operator itself be implemented. Other advantages 
of the iterative approach will become apparent in  later sec- 
tions. 

Convergence Conditions and Properties of the Limiting 
Solution: We can gain a greater understanding of the iter- 
ation in (57) through an eigenvalue analysis of it. Not only 
will this provide a better understanding of the convergence 
condition in (60), but it wil l also explain why more satis- 
factory results occur when the iteration is terminated prior 
to convergence. It is also useful for understanding gen- 
eralizations of this basic iteration in later sections. 

To begin, consider the blurring operation in i t s  matrix- 
vector form 

g = H f + n  (62) 

where g and fare lexicographically stacked images and H 
i s  the blurring operator. Now let {vmn(i, j ) }  denote the 
eigenvectors associated with the blurring matrix H a n d  let 
the scalars { kmn}  represent the corresponding eigenvalues 
(see Appendix). By expanding ?k in terms of these eigen- 
vectors we get 

fk = (fkt vmn)vmn (63) 

where (., .) denotes the inner product between two vec- 
tors.Byalsoexpandinggin termsof (vmn}, and substituting 
these results into (53, we arrive at 

k - m  

m.n 

f k + l  = c ( ? k + l r  vmn)vmn 
m,n 

= C P(g, Vmn)Vmn + (I - PH) C ( f k r  VmJVmn 
m. n m.n 

= c [P(g, Vmn) + (1 - PAmn) (?kt  VmnIIVmn 
m,n 

(64) 
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or i s  given by 

Eq. (65) shows that once the eigenvectors of H have been 
obtained, the matrix iteration (57) can also be evaluated as 
a set of independent scalar iterations. 

The restoration obtained after k Van Cittert iterations, 
?k, can be written in terms of the eigenvectors and eigen- 

As k - 03 the sequence of iterates converges to 

if 

(1  - PA,,( I 1, vm, n. 

This convergence condition is equivalent to that given in 
(60). As the eigenvalues are complex numbers, they must 
all lie in the shaded circle of the complex plane (Fig. 16). 

Fig. 16. Region of the complex plane in which al l  of the 
eigenvalues of the blurring operator must lie for the Van 
Cittert iteration to converge. 

In the special case that the blur i s  space-invariant, the 
eigenvalues are the discrete Fourier transform coefficients 
H(m n)  and the eigenvectors are complex exponentials (see 
Appendix). In this case the inner products (g ,  v,,,,,) arevalues 
of the Fourier transform of the blurred image G(u, v), and 
(67) is  readily identified as the inverse filter solution. 

The above analysis has assumed that measurement noise 
was not present. When noise has been added to the blurred 
image, (66) becomes 

(69) 

When there i s  no noise, this converges to 

fm = c ( f ,  V,,)V,, = f  (70) 

but when noise is present, the last term in (69) causes the 
limiting solution to deviate from the ideal. This deviation 

m, n 

This error bound has two terms. The first of these can be 
made arbitrarily small by letting k + 03. This term repre- 
sents the degree of deblurring in the restored image. The 
second term in (71) approaches 

As the high-order eigenvalues of the blurring operator are 
typically infinitessimal orzero, this second term can become 
arbitrarily large. As El(k)  decreases with increasing k and 
Ez(k) increases, their sum may attain i t s  minimum after a 
finite number of iterations. Unfortunately, the optimal 
number of iterations i s  usually not known in advance. 

To illustrate this effect, consider the example in Fig. 17. 
The left column of Fig. 17 shows the restoration of the noisy, 
defocused cameraman image in Fig. 11 using theVan Cittert 
scheme (P = 1). Results are shown after 15, 250, 4000, and 
03 iterations. The images in the center column show the 
error images caused by the partial deblurring and those in 
the right column show the error caused by the noise mag- 
nification. For asmall number of iterations, theerror caused 
by partial deblurring i s  clearly seen, whereas for a higher 
number of iterations the noise amplification i s  apparent. 
This effect is also seen in Fig. 18 in which the components 
E,(k) and E,(k) of the total error are plotted as a function of 
the number of iterations. Forthisexample theoptimum res- 
toration occurred at approximately 250 iterations. The SNR 
improvement after 250 iterations was 5.7 dB. It i s  worth- 
while noticing that the best visual result seems to occur for 
k = 4000. This indicates that the SNR measurement does 
not correlate well with the subjective judgment of the image 
quality. On the other hand, it can be considered as an addi- 
tional advantage of the iterative schemes that they provide 
for the possibility of monitoring and terminating the iter- 
ations when a”visuallyoptimal” solution has been reached. 

Reblurring: In the previous section it was seen that a nec- 
essary and sufficient condition for the convergence of the 
Van Cittert iteration was that 

II - PA,,/ < I ,  ~ r n ,  n. 

As /3 i s  a free parameter, this i s  equivalent to the condition 

where %(.) denotes the real part operator. In the space-in- 
variant case this implies that the blurring operator must 
have a transfer function with a positive real part for all fre- 
quencies. This condition i s  not satisfied for the two impor- 
tant blurs discussed earlier, linear motion blur, and out-of- 
focus blur. 
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Restoration Partial deblurring error Noise magnification error 

k = 15  

k - 4 0 0 0  

Fig. 17. Effect of limiting the number of iterations. Restorations, deblurring error, and 
noise magnification errors after 15, 250, 4000, and OD iterations. 

/ I where H* i s  the conjugate transpose of H. This yields the 

Fig. 18. Total error, partial debIurringerror,and noise mag- 
nification error as a function of the number of iterations. 

iteration 

f&+l = P H * g  i- (/ - PH*H)fk 

= f k  + PH*(g - Hfk). (74) 

If a similar convergence analysis i s  applied to this iteration, 
convergence i s  seen to require 

0 < 11 - PX’,,l < 1. (75) 

This i s  equivalent to the requirement that A,, # 0, which 
is a weaker condition than the positive real property given 
in (72). This particular condition is not satisfied for blurring 

To overcome this problem, several authors have intro- 
duced the ideaof using a”reb1urring”operation in the iter- 
ation [I], [IO], [Ill. This is equivalent to applying the Van 
Cittert procedure to the identity 
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operators having zero eigenvalues. However, in this case 
fk converges to the pseudoinverse solution [53], [54]. 

Alternative derivations of the reblurred iteration have 
appeared in the literature. It can be shown [I l l  that this iter- 
ation corresponds to an iterative optimization procedure, 
based on the method of steepest descent [55], [56] for min- 
imizing the norm of g - /-/?(the residual image). That is, 

min @(?) = min Ilg - /-/?\I = min [ (g  - Hf)*(g - ~ f ) ] ” ’ .  

(76) 

The value of +(f) can also be used to evaluate the degree 
of convergence of the iterative procedure because this 
number can be estimated apriorifrom the norm of the mea- 
surement noise [4]. The graph in Fig. 19 shows the value of 

t i 1 

40 

31 

22 

13 

4 

C - 

Fig. 19. Acurveof +(f)versusthenumberof reblurredvan 
Cittert iterations for the defocused image in Fig. I l(a). 

the function $( f )  for the defocused cameraman, as a func- 
tion of the number of iterations. 

v. REGULARIZATION 

A. Introduction 

The previous section showed that the small eigenvalues 
of the blurring operator could cause the filtered observa- 
tion noise to dominate the inverse filter solution. Because 
of this, many deblurring procedures that try to recover the 
high frequency components of an image are ill-condi- 
tioned. Methods to suppress this noise amplification 
include (constrained) least-squares solutions and methods 
which limit the number of iterations of the iterative imple- 
mentation. This section wil l discuss the noise magnification 
problem in the more general context of ill-posed problems 
and regularization [I l l ,  [26]-[27], [57]-[65]. 

The dilemmas involved in estimating an original image 
f from a linearly distorted and noisy observation g which 
i s  now called an inverseproblem, was first studied by Had- 
amard [66] in the early 1900s in the inversion of certain inte- 
gral equations. He observed that the solution ?could differ 
by an arbitrarily large amount from the true solution 
because of small errors in measuring the observed signal. 
Based on his investigations and that of later mathemati- 
cians, the term “ill-posed problem” was introduced to 
denote the class of inverse problems that behaved in a sim- 
ilar manner. At that point the main objective in solving ill- 
posed problems became [26], [65] ”the construction of a 
physically acceptable and meaningful approximation of the 
true solution of an ill-posed problem which i s  sufficiently 
stable from the computational viewpoint.” Regularization 
encompasses a class of solution techniques which entails 

the analysis of an associated well-posed problem, provided 
that this analysis yields physically meaningful answers to 
the ill-posed problem. Although Hadamard’s arguments do 
not hold exactly in finite-dimensional spaces, in other 
words, for ill-conditioned matrices, many tools from regu- 
larization theory for infinite dimensional problems (such 
as methods for the inversion of certain integrals) have 
become popular and useful in finite-dimensional settings. 
We restrict ourselves here to the finite-dimensional for- 
mulation, in which H i s  a matrix operator. 

Nearlyall of theconcepts used in regularization are based 
on incorporating knowledge about either the true solution 
or the noise into the solution algorithm. Observe that, in 
this sense, the procedures already discussed for truncating 
the number of iterations should be called regularization as 
well. In this section we describe the most widely used of 
the regularization methods, which i s  usually associated with 
the names of Tikhonov [26] and Miller [27. Both the non- 
iterative and iterative restorations based bn  Tikhonov-Miller 
regularization wil l be analyzed using the eigenvector 
expansions presented earlier. Another family of regular- 
ization methods based on restricting the space of feasible 
solutions will be discussed in Section VI. 

B. Tikhonov-Miller Regularization 

Tikhonov and Arsenin [26] were the first to study exclu- 
sivelythe concepts of regularization, although some impor- 
tant priorwork had been performed byPhillips[67],Twomey 
[68] and a number of Russian mathematicians. The idea i s  
to define a criterion to select an approximate solution from 
a set of admissible solutions. Based on (52), define a class 
of feasible solutions Q, as those images for which the norm 
of the residual image i s  bounded. That is, 

(77) 

where II.I( denotes the Euclidean norm. This bound i s  
related to the uncertainty in the observed image g and can 
be estimated from a smooth image region using 

Q, i s  primarily populated with unacceptable (very noisy) 
solutions because of the ill-conditioned nature of the res- 
toration problem. Tikhonov defined the regularized solu- 
tion as the one which minimizes a stabilizing functional 
Q( f )  on the set Q,. 

Although a wide class of different stabilizing functionals 
is available (including,for example, maximum entropy mea- 
sures [69], [70]), usually a stabilizing functional of the fol- 
lowing form i s  chosen: 

where Cis a matrix operator of size N 2  x N2, known as the 
regularizing operator. The properties of this operator will 
be described shortly. The computation of the regularized 
solution reduces to the minimization of (79) subject to (77). 
Using the method of undetermined Lagrange multipliers 
the problem reduces to the minimization of 

Q( f )  = llcfll (79) 

a(?) = Ilg - H?11’ + CYllCf1l2 

where CY, the regularization parameter, i s  chosen so that (77) 
is satisfied with equality. 

Another related approach was presented by Miller [27l. 
He replaced the minimization of n(f) byaconstraint on the 
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Eqs. (81) and (77) can be combined into a single quadrature 
formula. The result is identical to the Tikhonov result with 
a = ( E / € ) * .  Other ways to select a are discussed in  [71], [72]. 

The minimization of r$(f) with respect to f i s  straightfor- 
ward and leads to the normal equations 

(H*H + crC*C)f,, = H*g. (82) 

The solution f,, can be computed from g directly (if the 
operator (H*H + aC*C) i s  invertible) or iteratively. Both 
methods wil l be discussed and analyzed in terms of their 
eigenvector decomposition. 

C. Direct Solution 

From (82) the solution of the Tikhonov-Miller procedure 
is 

which i s  a more general description of the space-invariant 
constrained least-squares filter described in Section IV-B. 
The two solutions, in  fact, are identical in the space-in- 
variant case, if C is chosen appropriately, but theTikhonov- 
Miller solution i s  valid in  the space-varying case as well. 

Assuming that both H, H* ,  C, and C* have the same set 
of eigenvectors {v,,},' and that {A,,,,,} and {umn}  are the 
eigenvalues belonging to H and C, respectively, then the 
Tikhonov-Miller restoration f,, i s  given by [ I l l ,  [57, [64], [65], 
[731 

Clearly, the effect of regularization is to modify the denom- 
inator of (67). The user chooses the regularization operator 
Cand thus its eigenvalues. To decide what is a good choice 
for C it i s  appropriate to analyze the difference between the 
true and regularized solutions. This error can be bounded 
using a technique similar to the one presented earlier. The 
resulting bound is given by 

The first term on the right side of this expression denotes 
the error caused by the regularization. It can be minimized 
bysettinga = 0.Thesecond term,which measuresthe noise 
magnification error, however, becomes infinite as a - 0 if 
any of the { A m n }  arezero.Thechoiceofa requiresatradeoff 
between these two errors. 

The user can also choose the regularizing operator C to 
tradeoff the twoerror terms.This is most convenientlydone 
by selecting the eigenvalues umn. As the original signal f 
should not be overly corrupted by the regularization, it is 
reasonable to choose umn << A,, when l ( f ,  vm,,)l >> 

'Thisassumption is true, for example, i f  theseoperators are space- 
invariant. Similar expression can, however, be obtained for more 
general cases. 

I(n, vm,,)l. This means that there will be little regularization 
of components where on average the signal energy i s  much 
greater than the noise energy. On the other hand, in those 
components where the noise energy generally dominates 
the signal energy, there should be a great deal of regular- 
ization. In the space-invariant case this means that because 
(i) the signal energy i s  concentrated in  the low frequency 
range, (ii) the noise is broad-band, and (iii) the blur acts like 
a form of low-pass filter, the regularizing operator C should 
act like a high-pass filter (such as a discrete approximation 
to a 2-D Laplacian filter.) The above qualitative discussion 
i s  thus in complete agreement with the motivation of the 
constrained least-squares filter in Section IV-B. 

Observe that we can rewrite the image model (II), given 

(86) 

by 

f(i, j )  = a(p, g) f( i - p, i - g)  + U(; ,  j )  
P . 9 E W  

as follows: 

f = A f + u  

(I - A) f  = U (87) 

where f and U are lexicographically ordered images and 
whereA isthe image model matrixwhich isdefined bycoef- 
ficients a(p, g). By taking the norm of both sides of (871, we 
arrive at a relation similar to (81): 

IIU - A)fII = IIuII 5 E .  (88) 

By setting C = (I - A) it i s  clear that the regularizing oper- 
ator and the 2-D recursive image model (11) are in fact 
related concepts. The restoration ftm i s  fairly robust with 
respect to the choice of both a and C. 

D. Iterative Solution 

For a general linear operator (83) cannot be evaluated, 
because this requires the inversion of an N2 X N2 matrix, 
but iterative solution methods can again be used. The fol- 
lowing iteration is similar in  form to the reblurred Van Cit- 
tert iteration. It can also be derived by minimizing (80) using 
a steepest descent algorithm [ I l l ,  [55], [56]: 

f k+ i , tm  = PH*g + ( I  - O(H*H + aC*C))fk 

= (I - (Ypc*c)fk + P H * ( I :  - Hfk). (89) 

The regularized solution after k iterations i s  given in terms 
of the eigenvalues and eigenvectors of the blurring and 
regularization operators as 

r k  1 

\ *  

. (gt Vmn)Vmn. (90) 

(1 - @(A;, + < 1, vm, n. (91 1 

From this the convergence conditions follow directly 

If the iterations converge, the limiting solution i s  given 
by (84). Again, when the iteration i s  terminated after k iter- 
ations, there will be two sources of error, one because con- 
vergence has not been achieved and because the solution 
i s  regularized, and one caused by the filtered measurement 
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(92) 

This expression reduces to several of the ones already 
derived if the number of iterations is increased to 03 or if 
the regularization parameter is set tozero. Observethat (89) 
reduces to the (reblurred) Van Cittert iteration if a = 0 (no 
Tikhonov-Miller regularization). 

In [Ill, [731 Katsaggelos et al. recognize that the term 
(I - aPC*C) in (89) behaves like a low-pass filter, suppress- 
ing the noise amplification in the iterates. As the charac- 
teristics of this stabilizing term are obviously related to the 
properties of the original image, they proposed to com- 
press this term into one single low-pass operator C,, which 
would reflect spectral knowledge about the original image. 
Eq. (89) then becomes 

(93) 

One choice for C, is  the noise smoothing Wiener filter [74], 
[75], which assumes the form 

(94) 

where S,, and Sff are the autocorrelation matrices of the 
noise and the original image, respectively. It can be shown 
[73] that the limiting solution of the iteration in (93) using 
(94) assumes a form quite similar to the parametric Wiener 
filter [22]. The advantage of (93) over (89) is that the inter- 
pretation of (93) i s  more clear. In practice the construction 
of a suitable filter, C, is sometimes easier than the selection 
of a regularizing operator C and the related bound E. 

f k + T  = cs?k + PH*(g - H?k). 

c, = Sff(S,, + Sf+)-' 

E. Example 

This example demonstrates the effect of regularization 
and the different types of errors that are present in (71), (851, 
and (92). The restoration of the defocused cameraman image 
with an SNR of 40 dB in Fig. I l ( a )  is again used. A number 
of regularized restorations were formed using a Laplacian 
regularization operator and the resulting restoration, regu- 
larization error, and noise magnification error were dis- 
played as a function of both the regularization parameter 
cxand the iteration index k. These results are shown in Figs. 
20-22. Each of these represents a montage of 20 images 
arranged in 5 rows of 4 images each. The four columns in 
each figure correspond to k = 15, 250, 4000, and 03 itera- 
tions, and the five rows correspond to a = 0, 
IO-', and IO- ' .  Fig. 20 shows the noise magnification error, 
Fig. 21 shows the regularization error, and Fig. 22 shows the 
resulting restorations. Observe that the right-most col- 
umns show errors and restorations as a function of a! only, 
and that the top-most rows show the two types of errors and 
restorations as a function of k only. (These, in fact, are iden- 
tical to Fig. 17.) Further, the regularization error is seen to 
be considerable only near sharp intensity transitions in the 

image, while the noise magnification degrades the whole 
image. Again the tradeoff between the two types of errors 
is clear: for small k and/or large a the regularization error 
dominates, while for large k and small a the noise mag- 
nification dominates. 

Finally, the noise magnification error, regularization 
error, and the total error ) I f  - ? k I I  have been plotted in Fig. 
23 as a function of both a and k. 

VI. DETERMINISTIC CONSTRAINTS 

in many image restoration problems there is a priori 
knowledge available about the original image which cannot 
be expressed in the form of a stabilizing functional. This 
knowledge, however, often can be used to reduce the set 
of feasible solutions, in this way achieving another form of 
regularization [76]-[78]. (For example, it is known that image 
intensity can never be negative.) These deterministic prop- 
erties can be incorporated into an image restoration algo- 
rithm if the set of solutions C, which satisfy the constraint 
i s  a closed convex set [6]. A nonexpansive mapping PI can 
be associated with each constraint set. It maps al l  images 
which violate the constraint onto C,. That is, 

f, if f E C, 

h, if  f $ C,, 
(95) P,f = 

where 

Ilh - f II 5 IIX - f 11, vx E c,. (96) 

Some examples of deterministic constraints which define 
closed convex sets are the nonnegativity of the intensity 
values or, more generally, a bounded range on the inten- 
sities, a maximum value for the signal energy, and finite 
support for the image. Other constraints are discussed in 
[4]-[81,[13], 1631. The power of these constraints i s  also dis- 
cussed in these references. 

There are two different, but related, methods for incor- 
porating deterministic constraints into the process of image 
restoration. These two methods will be described in the fol- 
lowing two subsections, but only the latter method is used 
in the later examples. 

A. Projections onto Convex Sets 

The theory of projections onto convex sets [6], [79] was 
developed to find an image in the intersection CO of m con- 
vex sets of images C,, i = 1, 2, . . . , m. Clearly any image 
in that intersection will exhibit all of thefeaturesassociated 
with all of the sets. If those convex sets all reflect desirable 
properties for the reconstructed image, then any image in 
the intersection should be reasonable. If the PI denote the 
projections onto the convex sets C,, then the iteration 

3k = (P,P, . . . Prn)k?, (97) 

will converge to a point in the intersection CO for all initial 
estimates f,, unless CO i s  empty. I f  CO i s  empty the iterations 
will not stabilize [5], [6], [8], [12]. The exact properties of the 
limiting solution ?- will depend on the initial estimate, 
unless the intersection CO contains only a single element 
(which is extremely rare). The iterations (97) have found wide 
applications in various signal processing applications, such 
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Fig. 20. Noise magnification error for the iterative regularized restoration of a defocused 
image with SNR = 40 dB. 

as bandlimited extrapolation, space-limited extrapolation, 
and phase and magnitude retrieval [I], [8], [12], [63], [81]-[83]. 

In terms of the discussion in Section V, in which it was 
observed that the restoration problem becomes less ill-con- 
ditioned when more knowledge about the original image 
is incorporated into the solution method, better solutions 
will be obtained when more constraints are used, or when 
the constraints are made tighter. In both situations, the 
intersection CO is  made smaller, thus reducing the deviation 
between the elements in the set. It should beobserved that, 

k = m  

because (77) and (81) define convex sets, Tikhonov-Miller 
regularization can also be used within the framework of 
projections onto convex sets [13], [84]. 

Recent research has led to the extension of the method 
of projections onto convex sets (POCS) to projections onto 
fuzzy sets [80]. In this method the “hard” boundaries defin- 
ing a convex set are replaced by fuzzy boundaries. As a con- 
sequence, the sets to be used in the restoration procedure 
are easier to define and less sensitive to erroneous assump- 
tions. 
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Fig. 21. Regularization error for different numbers of iterations and different values of 
the regularization parameter. 

B. Constrained Minimization 

Another method for incorporating determinstic con- 
straints into the restoration process i s  to extend the basic 
iterations given in (89) as follows: [I], [4], [I41 

where P i s  again a projection onto a convex set C. It can be 
shown that the convergence conditions for this iteration 
are s t i l l  given by (911, and that iterative schemes of this type 

minimize a quadratic functional such as (80) subject to the 
nonlinear constraint related to the projection operator [14]. 

The difference in  restoration performance between (97) 
and (98) i s  usually small. Their major differences lie in the 
number of constraints that they can handle, the conver- 
gence conditions, and the convergence speed. The remain- 
der of this paper will consider only algorithms of the form 
of (98) because these can be extended to a more compli- 
cated observation equation (Section VIII) and can be 
replaced by alternative iterations which converge faster 
(Section IX). 
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Fig. 22. Regularized restorations for different numbers of iterations and different values 
of the regularization parameter. 

C. Constraint Tightness 

In order to demonstrate the effect of deterministic con- 
straints on the iterative restorations, consider the original 
text image in Fig. 24(a). This image i s  used for this dem- 
onstration because it has highly constrained intensity val- 
ues, 25 5 f ( i ,  j )  5 210. Defocussing blur with r = 7was sirn- 
ulated and noise with SNR = 30 dB was added to the result 
(Fig. 24(b)). In Fig. 25 two sequences of restorations are 

shown. The two upper results (I), (2) were obtained using 
the constrained least-squares filter, which did not make use 
of deterministic constraints. By using the iteration in (98) 
with different deterministic constraints which bound the 
intensities in the restored image, the results in (3)-(10) were 
obtained. It i s  clear that the tighter the constraints, the bet- 
ter the restoration. 

The right sequence, obtained by nearlydisabling theTik- 
honov-Miller regularization (CY = 0.00005), shows that the 
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Fig. 23. (a) Noise magnification error, (b) regularization 
error, and (c) total error 11 f - 6.,4 as a function of k and a. 

(a) (b) 
Fig. 24. (a) Original text image. (b) Defocused text image. 

use of a deterministic constraint can reduce the noise mag- 
nification significantly. The leftsequence,which uses much 
more regularization (01 = 0.05), shows that deterministic 
constraints can also reduce the ringing artifacts which are 
visible in image (1) [14]. The issue of ringing reduction i s  
discussed in greater detail in the next section. 

VII. SPATIALLY ADAPTIVE IMPLEMENTATIONS 

It has been widely observed that linear, shift-invariant 
restoration algorithms, such as the ones described in Sec- 
tion IV, often introduce ringing artifacts (superwhites, 

R+putar &zed Feyulat t z e d  

1 t *t i  t i. c e  1tekat1t .e  

(9) W t o r a t i w  IwaQe Pestor-st1i.n (IO) 
U& rh with 

R~ngrnp Rlc)uctiun Ringing Redctctlurz 

Fig. 25. Effectof tightnessof adeterministicconstraint.The 
columnof restorationson the left havecu = 0.05and theones 
on the right havecu = 0.00005. From top to bottom thevalues 
for the bounds are: (1, 2): no bounds, (3, 4): [5,240], (5, 6): 
[15,2201, (7, 8): [20, 2151, (9, IO): [25, 2101. 

superblacks, overshoots, and undershoots) near sharp- 
intensity transitions. This ringing seriously reduces both 
the visual and measurable quality of the restoration. This 
section briefly considers the origin of ringing artifacts [14], 
and describes the spatially adaptive implementation of (98), 
by which ringing artifacts can be reduced. 

A. Ringing Artifacts 

Consider a linear space-invariant deblurring filter with 
the frequency response L(m, n). The deviation of this filter 
from the inverse filter H-'(m, n)  can be measured by the 
error spectrum E(m, n) ,  defined by 

E(m, n)  = 1 - L(m, n)  H(m, n). (99) 

Through some straightforward mathematical manip- 
ulations it can be shown that the restoration error 
Fcm, n )  - ~ ( m ,  n )  consists of two terms: 

~ ( m ,  n )  - F(m, n)  

1 - E(m, n )  
= -E(m, n) F(m, n )  + N(m, n). (100) 

H(m, n )  

a74 

,- 
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Fig. 26. Properties of the regularization error of the constrained least-squares filter for 
linear motion blur over 8 pixels (L = 7). (a) Modulus of the transfer function. (b) Modulus 
of the error spectrum. (c) Error sequences for different values of a. (d) Typical behavior 
of the dominant impulses in an error sequence. 

The noise magnification error(second term in (100)) i s  inde- 
pendent of the original image. The more the filter L(m, n) 
resembles the inverse filter H-'(rn, n), the larger this error 
will be. The regularization error(first term on the right side 
of (100)) introduces data-dependent degradations related 
tothe local structure in the image. Ringing i s  thereforeattrib- 
utable to the regularization error. 

The relationship between the regularization error and 
ringing artifacts can be illustrated by considering a general 
deblurring filter, such as the constrained least squares fil- 
ter. The error spectrum €(m, n) for this filter is shown in Fig. 
26 for the case of linear motion with L = 7 in the horizontal 
direction [14]. The error sequence e(;, j ) ,  which is  defined 
as the inverse Fourier transform of E(m, n), is also shown 
in Fig. 26 for this example. The regularization error in the 
spatial domain i s  given by the convolution of f(i, j )  with 
-e(;, j ) .  Owing to the peaks in €(U, v), e(i, j )  is dominated 
by positive impulsesat integer multiplesof the blurringdis- 
tance L + 1. This, in turn, leads to negative echos of the 
intensity transitions in the restored images, that is, ringing 
artifacts. 

One way of reducing ringing artifacts i s  through the use 
of a priori knowledge of the original image (Section VI). If 
the image data, for example, consists of blurred bright point 
sourcesagainsta black background (such asoccurs in astro- 
nomical imaging), the ringing manifests itself as negative 
intensity values. A positivity constraint on the restoration 

0 8 16 

(d) 

can thus prevent this ringing from happening. The iterative 
restoration procedures that were presented in Section VI 
are particularly effective for ringing reduction when the 
constraints can be made tight. However, in the restoration 
of more complicated signals, such as images of natural 
scenes, the use of deterministic constraints alone i s  usually 
insufficient to significantly reduce ringing. 

Another technique for reducing ringing locally regulates 
the noise magnification and regularization errors. This 
adaptation depends upon the local edge content of the 
image. By regularizing the edgy regions less strongly, the 
local regularization error, and hence the severity of the 
ringing, i s  reduced. At the same time resolution enhance- 
ment i s  achieved. When the regularization i s  reduced, the 
noise magnification is increased. Fortunately, however, it 
i s  known from psychophysical experiments that, although 
the response of the human visual system is very complex, 
thevisibilityof the noise isgreatlymasked nearsharp-inten- 
sity transitions (noise-masking effect), whereas blurring 
generally appears to be unacceptable in this context [85]. 
As blurring i s  acceptable in nearly constant portions of an 
image, but noise magnification is not, the restoration filter 
should use considerably more regularization in these parts 
of an image. 

Restoration filters which are implemented in the fre- 
quency domain, such as the Wiener and constrained least- 
squares filters, are unsuitable for such an adaptive 
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approach. In [86], Tekalp et al. describe a multiple image 
model Kalman restoration filter in which a number of image 
models are used to filter an image in agreement with the 
local edge orientations. In this way they achieve adaptive 
regularization. Although real images cannot be adequately 
characterized using onlya limited number of image models, 
this scheme outperforms the nonadaptive ones. The next 
section describes an iterative restoration method in which 
both ringing reduction methods-adaptive processing and 
the use of constraints-are incorporated. 

B. Iterative Restoration in a Weighted Space 

Adaptivity can be incorporated into the restoration algo- 
rithms by defining a different regularization operator Cfor 
every pixel. In our implementation this will be done implic- 
itly by considering a single global regularization operator 
and by varying the noise smoothinglregularization tradeoff 
through the use of weighted norms. 

To define the adaptive regularized iterative procedure 
(77) and (81) are replaced by 

(101) Ilg - H311R = [ ( g  - Hf)*R(g - H?)]”2 5 E 

and 

IIcfIls = [(C?)*S(C?)]”2 I E. (102) 

Here R i s  an N2 x N2 diagonal matrix containing positive 
weighting coefficients r,, associated with the pixels at loca- 
tions (i, j ) .  These locally regulate the restoration process. 
In the vicinity of steep-intensity transitions, r,, is assigned 
a relatively large value. Owing to the fixed upper bound E,  

the residual has to be small at these points, which enforces 
(pseudo) inversefilteringand avoidsedge blurring. In image 
regions where the intensities vary more gradually, the 
weights are assigned small values to permit a larger resid- 
ual. AS a consequence, there i s  little deblurring in these 
regions and little noise magnification either. The weighting 
matrixRmayalso be used toaccount forthe nonstationarity 
ofthe noisevarianceor for missing imagedata[14].Theulti- 
mate restoration depends upon the specific properties of 
the restoration algorithm employed. 

The smoothness requirement imposed on the restored 
image by (102) i s  locally adapted by the diagonal weighting 
matrix S in order to prevent ringing. Near sharp-intensity 
transitions the regularization i s  nearly disabled by assign- 
ing small values to the corresponding coefficients in the 
weighting matrix S. In smooth regions, these coefficients 
are made larger to guarantee noise suppression. 

Following the same line of reasoning as in Section V-B, 
(101) and (102) can be combined into a single quadrature 
formula 

+(?) = llg - H?lli + crllc?ll: 5 2 2 .  (103) 

@(f)  can be minimized, subject to the condition that the 
solution has to be a member of the closed convex subset 
which is defined by the projection operator P by using an 
adaptive version of (98) [14]. 

? k + l  = P[( l  - apC*SC)?k + PH*R(g - (104) 

A sufficient condition to guarantee the convergence of this 
iteration is 

2 
o < p < -  

Amax 

where A,,, is  the largest eigenvalue of the matrix (H*RH + 
aC*SC). The adaptivity introduced by the weighting matrix 

R is  seen to regulate the size of the restoration term 
PH*R(g - Hfk).Thisconceptwasfirst introduced by lchioka 
and Nakajima [3] who locally adapted the restoration pro- 
cess by changing the parameter p. Near edges 0 was made 
large to maximize restoration, while no restoration was 
achieved where was made small. The weighting matrix R 
achieves the same effect. 

The stabilizing term ( I  - (~ f i c ‘ *SC)?~  represents a locally 
adaptive low-pass filter. For small values of s,, (near edges) 
no filtering is done on fk, while heavy low-pass filtering i s  
done where the coefficients in the S matrix are large. A 
related adaptive smoothing approach was proposed by Kat- 
saggelos et a/. [ I l l ,  [15], [73]. Using ideas similar to those 
outlined in Section V-D, the stabilizing term i s  replaced by 
a single space-varying (edge-dependent) noise-smoothing 
filter C5(u, v; i, j ) .  A measure of the local variance, U$, j )  is  
computed either from g or from a preliminary restoration. 
It isused toregulatethisadaptivefilteraccordingtoanoise- 
masking principle. For example, the adaptive version of the 
noise-smoothing Wiener filter can be used in this context 
(compare Eq. (94)) [ I l l ,  [151. 

C&n, n; i, j )  = (106) 
1 

+ [ I  + bo:(;, j )  I””.”’ Sff(m, n) 

C. Examples 

The first example considers the constrained adaptive res- 
toration of the defocused cameraman image in Fig. I l (a ) .  
The weighting coefficients s,, were tuned as described in 
[14], and the intensity values in the restored image were 
constrained to the intensity interval [IO], [240]. The result 
of iteration (104) (Fig. 27) has an SNR improvement of 8.1 dB, 

Fig. 27. Constrained adaptive restoration of the defocused 
cameraman image with noise added (SNR = 40 de). SNR 
improvement is 8.1 dB. 

compared with a maximum of 6.2 dB for the space-invariant 
restorations of Section IV. 

The second example shows the combined effect of the 
two weighting matrices. The original cameraman image in 
Fig. 10 was blurred by horizontal motion with L = 8 and 
noise was added with SNR = 30 dB. Next, 50% of the pixels 
of this noisy blurred image were randomly discarded to 
simulate severe corruption of the image data. The resulting 
corrupted image i s  shown in Fig. 28(a), where all of the dis- 
carded pixels are given an intensity value of 0 (black). In the 
restoration process, using iteration (104), the correspond- 
ing coefficients r,, were set to zero to exclude this erroneous 
data. The result of the restoration i s  presented in Fig. 28(b). 
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(a) 
Fig. 28. (a) Noisy motion blurred cameraman image with 
50% of the data discarded. (b) Restoration. 

VIII. NONLINEAR RESTORATION 

The deconvolution methods presented so far have all 
used a linear image formation and recording model in which 
the effects of any pointwise nonlinearities have been 
ignored. This section looks at the restoration of blurred 
images described by the more complicated nonlinear 
model which incorporated this nonlinearity. For both space- 
invariant and space-varying blurs, this model will be sum- 
marized as 

g = s { H f }  + n. (107) 

Although the inversion of this relation i s  a nonlinear prob- 
lem, it can still be tackled by the regularization methods 
described in the previous sections. To define the nonlinear 
(adaptive) restoration algorithm that makes use of this 
model, (101) i s  replaced by 

Ilg - s{H?II I ,  5 E .  (1 08) 

Combining this with (102) into a single quadrature formula 
yields 

(109) 

As in Section VII-B, a(?) is minimized subject to the con- 
dition that the solution be a member of the convex set of 
feasible solutions. This yields the iteration 

a(?) = Ilg - s(H?)11; + (YIIC311: I 2 2 .  

? k + l  = 4(1 - crflc*sc)?k + P H * N , { H ? ~ }  R(g - S { H ? ~ } ) ] .  

(1 10) 

Here N J . )  is  the diagonal Jacobian matrix defined by 

N,(h) = diag (:I ,El , e . .  ,$I ). (111) 
x = h(1) x = h(2) x = h(N2) 

The relaxation parameter f l  i s  chosen to ensure conver- 
gence. This iteration can be shown theoretically to con- 
verge only to a suboptimal solution, a property which is 
inherenttothe nonlinear formulation of the problem. If the 
sensor nonlinearity s {  . } i s  replaced or approximated by a 
linear function, which i s  justifiable in situationsof low noise 
or low contrast [871, this iteration reduces to that in (104). 

The estimation of fgiven (107) was first studied by Hunt 
[87] and later improved by Trussell and Hunt [88] using a 
probabilistic approach to the estimation problem. Using 
Gaussian processes to model the image and noise, a max- 
imum a posteriori (Bayesian) estimate of the image, f was 
derived. As this estimator required solving a nonlinear 
equation, an iterative scheme was used. The following iter- 
ation solves (107) for the MAP estimator [87] 

Here ? i s  the local (nonstationary) image mean and Rf and 
R, are the covariance matrices of the image and noise, 
respectively. The form of these two iterations ((110) and (112)) 
are quite similar, and their major difference lies in the form 
of the two stabilizing terms, (I - ( ~ f l c * S C ) ? ~  and 
( I  - f l R ; ’ ) ? k ,  respectively. To use (112) directly requires that 
the two covariance matrices be inverted. As these are non- 
diagonal, Fourier methods are used instead, which restricts 
the MAP estimator to space-invariant restoration. Because 
this restriction does not hold for (IIO), it is  somewhat more 
general than (112). If the sensor nonlinearitys{ . } is replaced 
byalinearfunction in (112), itcan beshownthatthelimiting 
solution is given by the Wiener filter estimate with the a 
priori mean included [87l. 

To illustrate the nonlinear iteration (IIO), consider the 
restoration of noisy blurred density images, that is, the re- 
corded data represent the densities of silver grains on 
developed photographic film. The relation between light 
intensities and silver density isgoverned bythe Hurter-Drif- 
field curve [35] (see Fig. 291, which can be approximated in 

D s  Saturat ion 

log(Intensity) 

Fig. 29. The Hurter-Driffield curve. 

the “linear” region by 

(113) 

Here E is  the total exposure, y i s  the gamma of the film, arid 
Do i s  an offset value. In addition to the above relation there 
i s  a region of fog where, even for very low exposures, some 
small amount of silver i s  deposited, and a region of satu- 
ration whereall available silver has been deposited because 
of intense light. 

Figure 30(a) shows such a density image of the defo- 
cussed cameraman. The image formation and recording 
process was simulated by first defocusing the original, next 
passing the defocussed image through a Hurter-Driffield 
curve, and finally adding noise to the result with an SNR of 
40dB. It i s  obvious that this image cannot be restored using 
any linear filter. The resulting restoration obtained by the 
nonlinear iteration in (110) i s  shown in Fig. 30(b). Although 
the iterations given in (110) and (112) are suitable for such 
complicated degraded images, nonlinear restoration 
remains a complex problem. For this reason algorithms of 
this type are not yet widely used. 

D = y log E - Do. 

IX. ALGORITHMS WITH FASTER CONVERGENCE 

All of the iterative restoration procedures that we have 
considered to this point can be interpreted as the min- 
imization of a functional using the iterative method of 
steepest descent [55], [56]. With this approach, if a(?) is  the 
functional to be minimized, the algorithm proceeds by 
repeatedly moving in the direction of the negative of the 
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(b) 
Fig. 30. (a) Nonlinearly degraded and defocused camera- 
man image. (b) Restoration. 

gradient of 9( f), denoted by -V9( f). Thus 

rk = -iv+(?k) (steepest descent direction) (114) 

(1 15) 

The parameter Pk  i s  known as the step size. It i s  well known, 
however, that methods of steepest descent converge very 
slowly. For this reason, the use of more efficient iterative 
methods, which converge more quickly, have been studied 
for both the I -D  [89]-[94] and 2-D [95]-[96] cases. This section 
examines several of these more efficient iterations. 

A. Optimized Method of Steepest Descent 

In (89), (98), (104), and (110) the convergence of the iter- 
ations was controlled by the parameter 0, which was 
assumed to have a fixed value. However, because also 
controls the rate of convergence, it is desirable to optimize 
i ts  value at every iteration. 

The optimal value of Pk for each iteration can be derived 
by minimizing @(?k+l(&)) = @(?k + &rk) at each iteration, 
that is, to choose that Pk which minimizes +(?k+l) along the 
path fk+1 = ?k + &rk. For the iterations that have been con- 
sidered to this point with a linear projection operator P, this 
yields 

For a nonlinear projection operator P and for the non- 
linear restoration problem when the pointwise nonlinearity 
i s  included, such an explicit relation cannot be obtained. 
Then the common approach is to use a line search method 
to find a value for which approximately minimizes 
@(?k+l(Pk))[55]. Although theseoptimization procedures for 
Pk  obviously increase the convergence speed of the iter- 
ations, the improvements are usually moderate and may 
not justify the effort involved. 

6. Method of Conjugate Gradients 

Motivated by the desire to achieve more rapid conver- 
gence, the method of conjugate gradients has been suc- 
cessfully used in optimization theory [55]. Conjugate direc- 
tion methods, which were originally introduced for purely 
quadratic problems, can be viewed as a special orthogonal 
expansion of the solution of the minimization problem.The 
expansion i s  generated by making use of information from 
previous iteration steps. This section focuses on the use of 
the conjugate gradients method in image deconvolution 
[89], [90], [92], [96]. This i s  the most important of the con- 
jugate direction methods. One of the advantages of this 
method i s  its convergence in a finite number of iterations 
when exact arithmetic i s  assumed (superlinear conver- 
gence). When nonexact arithmetic i s  used or the problem 
i s  nonquadratic, this method will not converge in a finite 
number of steps because the conjugacy condition will no 
longer hold. It has been experimentally shown, however, 
that the conjugate gradients method exhibits a consider- 
ably higher convergence speed than the method of steep- 
est descent. 

The use of nonlinear constraints to represent a priori 
knowledge about theoriginal solution i s  not consistent with 
the conjugate direction methods, but they have nonethe- 
less been used in conjunction with them. The most simple 
and computationally efficient approach i s  to project the 
conjugate gradient iterates themselves after each iteration 
step [89], [96]. However, alternative, more complicated 
methods to incorporate nonlinear constraints, such as the 
gradient projection method [55], could be considered as 
well. 

The (extended) conjugate gradients iteration, which thus 
represents an alternative to the iterations given in (89), (98), 
(104), and (110) is defined by 

Here Pk is called the direction vector, which depends upon 
the current steepest descent vector rk  and the preceeding 
vector Pk-7. The parameter Yk regulates the conjugacy of 
the subsequent directionspk. Observe that forYk -+ 0, (117) 
reduces to (115). Forthe unconstrained minimization of the 
quadratic functionals (that is, P = Identity), it can be shown 
that the parameters Pk and Yk are given by [55], [96] 

(119) 

Using the above equations, (117) reduces to the original 
formulation of a conjugate gradients algorithm. Clearly, by 
incorporating a projection operator P into the algorithm, 
the concept of an orthogonal solution decomposition can 
no longer hold. It has been shown, however, that in the 
practice of image restoration, the use of the previous direc- 
tion vector Pk-7 i s  useful in determining the current direc- 
tion vector when the modifications made by the projection 
operator are relatively small. The choice for the values of 
ykand Pk  becomes moredifficult in thiscaseaswell. Usually 
a suitable choice for Yk i s  s t i l l  given by (118) or by a slightly 
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modified form [56]. The optimal value for P k  which mini- 
mizes % ( f k + l ( & ) )  for a linear projection P i s  given by (119) 
with P k  replaced by its projected version + k ,  while for all 
other situations, a line search method must be employed. 

C. Iteration Methods with Higher Convergence Order 

Although the method of the conjugate gradients has a 
considerably higher convergence speed than the method 
of steepest descent, both techniques converge linearly [55]. 
It is, however, well known that there exist iterative methods 
with a convergence rate which i s  quadratic or higher. 
Recently, a number of papers have described iterative res- 
toration schemes which exhibit Qth order convergence 
speed (Q 2 2) [93]-[96]. These algorithms, which are suit- 
able only for the unconstrained minimization of (80) and 
(103), are based on a Taylor expansion of the minimization 
problem, and are closely related to Newton-Raphson-like 
iteration methods. The basic form of these algorithms, 
which require a "double iteration," i s  given by 

fo = PH*Rg, 

Bo = I - /3(H*RH + aC*SC), 
Q k - 1  

f k + l  = B'kfk, (Qk  2 2), / = o  

Q k  

Here Qk determines the convergence order in each itera- 
tion step. Sufficient conditions for this iteration are again 
given by (105). 

The performance of this iteration can be derived by com- 
paring the explicit expressions for the (k  + 1)st iterate of 
(120) with the one obtained from the standard uncon- 
strained steepest descent iteration with a fixed value of 0. 
For the ( k  + 1)st iterate of (120), we can write (Qk = Q )  

Q k t l - 1  

? k + ,  = c (I - P(H*RH + aC*SC))'PH*Rg, (121) 
1 = o  

while for the (k  + 1)st iterate of the steepest descent iter- 
ation, we get 

k + l  

f k + 1  = c (I - P(H*RH + aC*SC))'PH*Rg. (122) 

From (121) and (122) it can be seen that the two procedures 
compute exactly the same solution. However, the steepest 

r = O  

descent algorithm requires Qk+' - 1 iterations to obtain 
the same solution that (120) reaches after only k + 1 iter- 
ations.Theextraexpensefor the enormous reduction in the 
required number of iterations i s  more computations in a 
single iteration step, and extra memory required to store 
Bk. The efficiency of the iterations therefore depends 
strongly on the choice of the convergence order parameter 
Q and the way in which the algorithm has been imple- 
mented. 

D. Examples 

We consider the linear, space-invariant restoration of the 
defocused cameraman image in Fig. I l ( a )  using iterations 
(89), (117), and (120). Fig. 31 shows the restoration results, 
one for each algorithm, which differ very little from one 
another. The result in Fig. 31(a) was obtained after 4000 iter- 
ations of the basic steepest descent algorithm, the one in 
Fig. 31(b) was obtained after 80 iterations of the conjugate 
gradient algorithm, and Fig. 31(c) was obtained after only 
12 iterations of iteration (120) with Q = 2. 

X. SUMMARY AND FURTHFR QUESTIONS 

This tutorial paper has discussed many recent devel- 
opments in the field of iterative image deblurring. It has 
been shown that these iterative procedures are well suited 
to the image restoration problem. They can be used in a 
variety of problems, ranging from the most simple linear 
deconvolution of noiseless images to the problems of con- 
strained, adaptive, and nonlinear restoration. The paper 
discussed the relationship between the basic Van Cittert 
iteration and i t s  extensions with various other methods, 
including frequencydomain filters, Kalman filters, and iter- 
ative methods which have a higher convergence speed. 

While (iterative) image restoration has received maturity, 
the related blur identification problem i s  still open for fur- 
ther research. In order to make image restoration appli- 
cable to practical situations of interest, i.e., restoring images 
which have been subject to real blurs, the unknown blurs 
have to be estimated from the noisy blurred images them- 
selves. Some new initiatives have appeared recently which 
tackle this problem in its most realistic form [42], [43], [97, 
[98]. It can be expected that a shift will occur from the pure 
image restoration problem toward the combined image 
identification and restoration problem in the coming dec- 
ade. 

(a) (b) 
Fig. 31. Three results obtained using different iterative algorithms. (a) 4000 iterations of 
the steepest descent algorithm. (b) 80 iterations of the conjugate gradient algorithm. (c) 
12 iterations of the quadratically converging algorithm. 
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APPENDIX 

A. Eigenvalue Analysis for 2-0 Systems 

In this appendix, we will briefly review some mathe- 
matical tools used in linear image processing, such as lex- 
icographic ordering of image data, convolutions, block cir- 
culant matrices, eigenvalues of 2-D matrix operations, and 
the2-DdiscreteFouriertransform (DFT). Moreon thesetop- 
ics can be found in the paper by Pratt [28], and the texts by 
Andrews and Hunt [22] and Gonzalez and Wintz [99]. 

Lexicographic Ordering: Let the 2-D array 3 represent a 
discrete image with M rows and N columns. 

5 = { f ( i , j ) } ,  0 I i I M - 1, 0 I / 5 N - 1. (122) 

This data can be written in terms of a I-D mapping that i s  
known as lexicographic ordering. The M x N 2-D array i s  
converted to a MN x 1 vector f by concatenating i t s  rows. 
Thus, 

fT = [ f ( O ,  0), f(0, I), . . . , f(0, N - I), f(1, O ) ,  

f(1, I ) ,  . . * , f(M - 1, N - I)]. (123) 

Block-Toeplitz and Block-Circulant Matrices: If the point- 
wise nonlinearity and additive noise of the blurred image 
are ignored, we have the following superposition relation: 

(1 24) 

By lexicographically ordering both f(i,j) and g( i ,  j ) ,  we have 

g = Hf, (125) 

where H is the blurring matrix, which i s  of size MN x MN. 
(Observe that H will always be square if f and g are of the 
same size.) Although H may have a very complex structure, 
it is usuallyquite sparse and structured. Some relevant cases 
are discussed in [28]. Here we consider the case where the 
point-spread function h(i, j ;  k ,  I )  is space-invariant. Then 
(124) can be written as a 2-D linear convolution. 

g(i, j )  = c h(i, j ;  k,  I )  f ( k ,  I ) .  
v ( k , l )  

g(i,  j )  = h(i - k, j - I) f(k, I) 
v ( k , l )  

The matrix H now has a block-Toeplitz structure. If it is par- 
titioned into M2 submatrices of size N x N, each of these 
submatriceswill beaToeplitz matrix. Furthermore,the sub- 
matrices are arranged in a Toeplitz pattern. This i s  illus- 
trated in Fig. 32. 

The block-Toeplitz matrix H i s  often approximated by a 
block-circulant one, because these two matrix types are 
structurally closely related, and operations involving block 
circulant matrices can be efficiently evaluated using two- 
dimensional discrete Fourier transforms. The errors intro- 
duced bytheapproximation are usuallysmall. With a block- 
circulant matrix H, = and the elements h( j ,  k )  of Hl are 
replaced by h ( / ,  k - N). In signal processing terms the 
approximation of the block-Toeplitz matrix by a block-cir- 
culant one converts a two-dimensional linear convolution 
into a two-dimensional circular convolution. 

Eigensystem o f a  Matrix:A powerful tool in both the anal- 
ysis and implementation of linear equations such as (124) 
i s  the set of eigenvalues and eigenvectors (eigensystem) of 
the matrices involved. Let {vmn(i, j ) }  denote the eigenvec- 
tors associated with the blurring matrix Hand let the scalars 

' 

880 

I!] 
f M - I  

Fig. 32. Block Toeplitz structure of a space-invariant H. g, 
and fk  refer to the jth row of g and the kth row of f ,  respec- 
tively. 

{A,,} represent the corresponding eigenvalues. That is, 

Hv,, = Xrnnvrnn, 0 I m 5 M - 1, 0 5 n 5 N - 1. 

(127) 

The double subscript notation i s  used because the eigen- 
vectors, when unstacked, are in fact images. They are 
actually the set of images which are unaffected by the blur- 
ring operator except for a change of scale. Writing out the 
eigenvector equations 

c Mi,  j ;  k, I)vmn(k, I )  = Amnvrnn(i,;), 
V(k.1)  

0 5 i , m  5 M - 1 0 5 j ,  n 5 N - 1. (128) 

If H a n d  H* have the same set of eigenvectors, the matrix 
H can be expressed in terms of i ts  eigenvectors a5 

H = X m n ~ r n , ~ ~ n  (1 29) 
m, n 

which can also be written as 

h(i, j ;  k, 1 )  = XrnnVmn(it / )  vmn(k, I ) .  (130) 
m, n 

The advantage of using the eigensystem of a matrix is  that 
linear relations, such as (124), can be evaluated as a set of 
independent equations. To this end we first decompose f 
in terms of the eigenvectors of H, that is, 

f = ( f, vmn) vmn (1 31 ) 

where (f, vmn) denotes the inner product between fand the 
mnth eigenvector. Substituting (131) into (125) yields 

rnn 

g = Hf = H (f, v,,)~,,, 
m,n 

= (fr VmnIHvmn 
m. n 

= c ( f ,  Vmn)hm,Vmn. (132) 

By also expanding g in terms of the eigenvectors of H, we 

(133) 

m.n 

get 

C (g, vmn)vmn = C ~ m n ( f r  vmri)vmn 
m.n m,n 
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or 
(g, v m n )  = XmnCf, VmJr Vm, n. (134) 

Thus, by virtue of using the eigensystem of H, we have 
replaced the superposition summation (124) by a far more 
simple set of scalar equations (134). 

In general, it is  hardly ever possible to find the eigen- 
vectors { vmn]  of an arbitrary matrix H of size M N  x MN 
because of its size. This becomes possible only when H is 
highly structured. In the particular case where H is block- 
circulant (that is, h(i, j ;  k, I )  is spatially invariant), the eigen- 
vectors are the complex exponentials 

(135) (k ,  1) = e-/2d(mk/M) + (nl/N)) 
mn 

and the eigenvalues are equal to the DFT samples 

A,, = c h(k, 1 )  V A k ,  I )  (136) 

which can be evaluated efficiently using a 2-D FFT algo- 
rithm. Furthermore, the dot products ( f ,  vmn) and (g ,  vmn) 
are samples of the 2-D DFTs of f ( i , j )  and g( i , j )  respectively. 
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