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Abstract

Graph Neural Networks have become ubiquitous in machine learning research, and their use has also
given rise to expectations of what a model can do and how we can understand it. Explainability has
become one of the key tools for solving these problems, but explainability often needs to consider
domain-specific requirements to be useful. To the best of our knowledge, no domain-specific require-
ments have been set for the biomedicine domain when working with biomedicine. In this thesis, we
seek to understand what standards are needed by the domain, set automatic metrics to meet them, and
evaluate these metrics in problems common to biomedicine. Thanks to working on the gene disease as-
sociation and the proteins classification task, we are able to provide some insights into what constraints
require what explainers. We find that no single explainer is able to outperform all the other explainers
in all metrics. This work offers practical recommendations for selecting appropriate explainers for spe-
cific biomedical applications. It identifies key directions for developing domain-specific explainability
approaches that address the unique needs of biomedical research.

i



Contents

Abstract i

1 Introduction 1
1.1 The Need for Explainable AI in Biomedicine . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 Graph Neural Networks in Biomedicine . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.3 Explainability in Graph Neural Networks . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.4 Addressing the Needs of XAI in Biomedical GNNs . . . . . . . . . . . . . . . . . . . . . 2
1.5 Research questions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.6 Structure of thesis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

2 Explainers and Datasets 4
2.1 Explainers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

2.1.1 GNNExplainer (P) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
2.1.2 Integrated Gradients (G) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
2.1.3 Saliency (G) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
2.1.4 InputXGradient (G) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
2.1.5 Deconvolution (G) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
2.1.6 Guided Backpropagation (G) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
2.1.7 Parameterized Explainer for Graph Neural Network (PGExplainer) (P) . . . . . . 7
2.1.8 GraphLIME (S) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
2.1.9 Zorro (P) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
2.1.10 DummyExplainer (D) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

2.2 Explainer Intuition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
2.3 Datasets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

2.3.1 Node Classification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
2.3.2 Graph Classification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

3 Evaluation Metrics for XAI in Biomedicine 10
3.1 Faithful model explanations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

3.1.1 RDT-Fidelity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
3.1.2 Alternative Fidelity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
3.1.3 Kernel Distance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

3.2 Human understandable . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
3.2.1 Entropy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
3.2.2 Counterfactual . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

3.3 Consistency . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
3.3.1 Repeatability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
3.3.2 Variance over Explanations (VoE) . . . . . . . . . . . . . . . . . . . . . . . . . . 15

3.4 Time . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
3.5 Needs that are out of scope . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

3.5.1 Fairness . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
3.5.2 Causality . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
3.5.3 Human agreement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
3.5.4 Privacy related metrics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

3.6 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

4 Experiments 18
4.1 XGDAG Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

4.1.1 Dataset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
4.1.2 Model architecture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

ii



Contents iii

4.1.3 Explainer implementation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
4.1.4 Replication study . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

4.2 Proteins Dataset Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
4.2.1 Dataset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
4.2.2 Model architecture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

5 Results 24
5.1 XGDAG results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

5.1.1 Metric Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
5.1.2 Replication results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
5.1.3 Conclusion of XGDAG results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

5.2 Protein Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
5.2.1 Metric Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
5.2.2 Conclusion of Protein Dataset results . . . . . . . . . . . . . . . . . . . . . . . . 37

6 Conclusion 39
6.1 Summary of Key Findings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
6.2 Limitations and Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

References 42

A Extra figures 47



1
Introduction

1.1. The Need for Explainable AI in Biomedicine
In recent years, Artificial Intelligence (AI) has made remarkable strides in various fields, including
biomedicine. AI has already achieved human-level performance in multiple tasks such as skin can-
cer classification [19]. As AI models become increasingly complex and powerful in the analysis of
biological data, the need for transparency and interpretability becomes paramount. The need for trans-
parency has led to the emergence of Explainable AI (XAI), a field aimed at developing AI systems
whose decisions can be understood and interpreted by humans [79]. XAI encompasses a range of
techniques, all aimed at providing human-interpretable insights into the decision-making processes of
complex AI models.

The importance of explainability in biomedicine cannot be overstated. A recent review found that ap-
proximately 30% of existing articles in the field of explainability focus on the medical domain [53]. This
emphasis reflects the critical nature of transparency in the biomedical domain, where decisions can
have life-changing consequences. More complicated models are needed in biomedicine, so XAI helps
bridge the gap between more complex models and makes them understandable.

The frequent use of XAI methods in biomedicine is in contrast to the little effort put into adapting XAI
approaches to the biomedicine field. It has been argued that most explainers should be tuned to each
domain in which they are used [36], but most methods are rarely adapted to bioinformatics [81] [1]. This
vacuum is the primary focus of this thesis.

For the remainder of this thesis, we will use the following definitions;

• Model: Machine learning system that outputs a value for an input.
• Explainer: System that gives information that explains why a model gives the output it gave for
the given input.

• Explanation: The resulting output of the explainer for a given model.

1.2. Graph Neural Networks in Biomedicine
Graph Neural Networks (GNNs) have emerged as powerful tools in biomedical research, offering a
natural way to model and analyze complex biological systems. GNNs are specialized artificial neural
networks that are adapted to work with graphs as input, which is naturally extended to biomedicine due
to structures such as molecules that can be represented as graphs [58]. The inherent graph structure
of many biological phenomena makes GNNs particularly well-suited for a wide range of applications in
this field.

Key areas where GNNs have made significant contributions include:

• Molecular Structure and Drug Discovery: GNNs are used to predict drug target affinities and
molecular properties, accelerating the drug discovery process [73].

1



1.3. Explainability in Graph Neural Networks 2

• Genomics: GNNs facilitate the prediction of gene-disease associations and gene expression
analysis, improving our understanding of genetic factors in diseases [47].

• Cellular and Tissue-level Analysis: GNNs are used in the classification of cell types from single-
cell RNA sequencing data and brain connectome analysis [70].

Despite their success, the application of GNNs in biomedicine faces several challenges, particularly
in terms of interpretability and biological plausibility. The complexity of these models often makes
their decision-making processes opaque, which is problematic in healthcare applications where trans-
parency is crucial [36].

1.3. Explainability in Graph Neural Networks
While XAI is crucial across various AI domains, it faces particular challenges when applied to Graph
Neural Networks (GNNs).

• Structural Complexity: The interplay between nodes and edges in graphs makes it difficult to
isolate the impact of individual elements on the model’s decision. [57]

• Non-linearity: The multiple transformations in GNNs make it difficult to find the relation between
input features and output predictions.

• Consistency: Most explainers use randomness in explanations, meaning the highlighted features
can change on the same input per run [53]

Benchmark methods have come up as an approach to mitigate these issues when applying XAI meth-
ods to GNNs. The techniques vary depending on the method, but the idea behind them is to pro-
vide a standard template for comparing XAI approaches, to understand how well they are honestly
explaining. The need for benchmarking methods arises because XAI methods are not always human-
understandable [44] [34], and theoretical results do not always match practical results in XAI [3].

Some of these methods include the BAGEL benchmark proposed by Rathee et al. [57], and Graph-
FramEx proposed by Amara et al [2].

1.4. Addressing the Needs of XAI in Biomedical GNNs
Through our work, we have found that authors would often highlight the following needs, and addressing
these needs forms the core of this work. The needs are as follows:

• Domain Specificity: Many existing explainers are domain-agnostic, failing to account for the
unique requirements of biomedical applications [36] [81].

• Interpretability for non-technical users: As highlighted by Lotsch et al. [45], explanations must
cater to both statistical experts and domain practitioners.

• Biological Plausibility: Explanations must respect the constraints and realities of biomedical sys-
tems, avoiding biologically impossible interpretations [80] [78] [81].

• Fairness and Bias: There is a need to identify and address potential biases in AI healthcare
applications [32].

• Consistency: Most explainers use some randomization, which means each output might be dif-
ferent [3], and having inconsistent results is not considered acceptable by humans [28].

1.5. Research questions
How can the previously explained needs of biomedicine be addressed when deciding what ex-
plainer to use?

As Karim et al. [36], each domain has different needs when adapting explainers towards it. We want
to understand how different explainability metrics align with the needs of biomedicine that we outlined
in the previous section. We establish various metrics that are relevant to the domain, and show how
they perform when used in domain-specific datasets.

How do dataset properties affect the explanations in biomedicine?
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Class imbalance is most common in biological problems [24]. Biological systems also have their struc-
ture that might not be understood by models, leading to biologically impossible outcomes [80]. We seek
to understand the effect that the data itself has on the output of the explainers, and if we can control
for it.

How differently do gradient-based, perturbation-based, and surrogate explainers perform be-
tween node and graph classification problems in biomedical applications?

Rathee et al. [57] found that there was a difference in explainer performance between graph and node
classification tasks. We seek to understand what effect is kept in biomedical applications, using a
consistent set of metrics in both problems. We additionally investigate the impact that different GNN
models have on explainer performance.

What strategies should be used when applying general-use GNN explainers in the biomedicine
domain?

Based on the previous research questions, we have found some steps for setting up explainers in
biomedicine. This thesis should be the first step in adapting explainers to meet the various needs of
biomedicine and setting up future steps.

1.6. Structure of thesis
The thesis is organized into the following chapters:

• Chapter 1 introduces the problem and explains the needs of biomedicine when using XAI, high-
lighting why we need to adapt general explainer use when using the tools in biomedicine.

• Chapter 2 introduces the explainers used, as well as giving information on why we picked the
datasets that we chose.

• Chapter 3 introduces the evaluation metrics that will be used, as well as why we chose these
metrics. This section addresses what is needed to use AI in biomedicine and outlines what is
required to meet trustworthiness.

• Chapter 4 gives detailed information on the experiments taken and how they differ from the original
papers used as a starting point.

• Chapter 5 gives results of the experiments, as well as providing an in-depth analysis of them. This
chapter also answers the research questions about the performance of the different explainer
types, as well as how the dataset influences the explanation.

• Chapter 6 provides concluding words and summarizes many of the findings. It includes guidelines
on how to apply explainers to biomedicine based on current findings.

The code used for this thesis can be found here: https://github.com/PriXAI/XAI-GNN-Biomed-Thesis

https://github.com/PriXAI/XAI-GNN-Biomed-Thesis


2
Explainers and Datasets

We will now focus on explaining the explainers commonly used in the literature, as well as introducing
the types of problems we will be working with. You can find more detailed information on the datasets
used for each problem type in Chapter 4.

Kakkad et al. [35] divide GNN explainability into various categories. The two main branches are coun-
terfactual methods, which aim to identify the slightest change in the input that alters the output, and
factual methods, which focus on determining the input features that have the most significant influence
on the prediction.

We can further divide Factual methods into self-interpretable and post-hoc methods. Self-interpretable
methods have explainability built directly into the model.

We focus on post-hoc methods, which work by using the model’s input and its output. We took this
decision to make our analysis applicable in more cases and integrate it with existing solutions.

We can further divide post-hoc explainers into three groups, based on the categorization of Kakkad et
al. [35] and Rathee et al. [57].

• Gradient-based (G): Gradients measure the rate of change, meaning we can understand the
relative importance of each feature by understanding the gradient of the prediction compared to
the input.

• Perturbation-based (P): Perturbation methods perturb the input, using the difference between the
new prediction and the original to score the features that were modified.

• Surrogate-based (S): Surrogate methods fit a simple interpretable model around the prediction,
then the output of the interpretable model is used as an explanation.

2.1. Explainers
Explainers focus on the three elements that make up a graph: nodes, features, and edges. Some
explainers combine these elements, and when used to explain nodes and features, we will refer to
them as graph explanations for brevity.

We present the list of explainers used during this thesis, as well as highlighting some of their use in
bioinformatics. In contrast to the work done by GNNX-Bench [40], we give a bigger focus to gradient
methods.

2.1.1. GNNExplainer (P)
GNNExplainer [74] is a method that works by learning a soft mask for the edges and node features of
the input graph. It is a perturbation-based approach. It optimizes this mask to maximize the mutual
information between the prediction of the complete graph and the prediction of the subgraph induced
by the mask, while keeping the subgraph small. This approach effectively identifies the most critical

4



2.1. Explainers 5

substructures and features for a given prediction. This method is one of the first explainer methods
and is frequently used in the literature [46] [57] [20]. It was applied in drug repurposing to highlight key
molecular structures [69].

The way GNNExplainer works is by optimizing the following:

max
Gs⊆Gc

MI(Y, (GS , XS)) = H(Y )−H(Y |G = GS , X = XS) (2.1)

Where Gc represents the original graph, GS ⊆ Gc, vj ∈ Gs are the nodes chosen to belong in Gs,
XS = {xj |vj ∈ GS} are the features of GS for each corresponding node, Y are the original labels, v
is the node to explain, andMI is mutual information between two random variables. This optimization
aims to find the smallest subgraph that maximizes the mutual information with the model’s prediction.

The original paper later simplified the equation to something more tractable. We can remove H(Y )
since it is fixed for a trained model. GNNExplainer also treats the subgraph as a random graph variable
GS ∼ G, focusing on optimizing this. Lastly, GNNExplainer assumes that the equation is convex and
applies Jensen’s inequality, leading to the following equation:

min
Gs⊆Gc

H(Y |G = EG[GS ], X = XS). (2.2)

2.1.2. Integrated Gradients (G)
Integrated Gradients, commonly shortened to IG [66], calculate the importance of each input feature
by integrating the gradients along a straight path from a baseline input (typically a zero input) to the
actual input. It is a gradient-based method. It accumulates these gradients to attribute the prediction
difference to each input feature. The authors demonstrated its application on a molecular graph convo-
lution architecture [37], showing its ability to identify essential atoms and bonds in molecular property
prediction tasks.

The IG attribution for an input x with baseline x′ is defined as:

IG(x) = (x− x′)⊙
∫ 1

α=0

∂f(x′ + α(x− x′))

∂x
dα (2.3)

In practice, we approximate this integral through a Riemann sum [66]:

IG(x) ≈ (x− x′)⊙ 1

N

N∑
k=1

∂f(x′ + k
N (x− x′))

∂x
(2.4)

Where N is the number of steps in the Riemann approximation, and ⊙ represents element-wise multi-
plication,

2.1.3. Saliency (G)
Saliency introduced by Simonyan et al. [61] is a simple, gradient-based attribution method that com-
putes the gradient of the output with respect to the input features. In the context of GNNs, we can apply
Saliency to both node features and graph structure. Saliency maps were used as an auditing tool for a
model to detect COVID-19 in chest radiographs [15].

The saliency attribution for an input x is defined as:

Attribution(x) =
∣∣∣∣∂f(x)∂x

∣∣∣∣⊙ x (2.5)

Where x is the input, f(x) is the model output, ⊙ represents element-wise multiplication, | · | is the
absolute value operation, and ∂f(x)

∂x is the gradient of the output with respect to the input.
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In the context of GNNs, Saliency can be applied to both node features and graph structure. For node
classification tasks, we compute:

S(v) =

∣∣∣∣∂f(G, v)

∂hv

∣∣∣∣ (2.6)

where G is the graph, v is the node of interest, and hv is the feature vector of node v. For graph-level
tasks, we aggregate node-level saliencies:

S(G) =
∑
v

∣∣∣∣∂f(G)

∂hv

∣∣∣∣ (2.7)

2.1.4. InputXGradient (G)
This explainer multiplies the input features with the output gradients for that input value. It is a gradient-
basedmethod. InputXGradient is a very simple explainer, since it relies only on the input and the default
gradients, but it can tell the direction and magnitude of an explanation [59]. Li et al. used the method
to better understand molecular properties [43].

InputXGradient is defined as follows:

Attribution(x) = x⊙ ∂f(x)

∂x
(2.8)

Where x is the input, f(x) is the model output, ⊙ represents element-wise multiplication, and ∂f(x)
∂x is

the gradient of the output with respect to the input.

2.1.5. Deconvolution (G)
Deconvolution [77] computes the gradient of the target output with respect to the input, but during back-
propagation, it only propagates nonnegative gradients. It is a gradient-based method. This approach
aims to highlight features that positively contribute to the target class. It was used in a comparative
study of different explainers for a gene expression problem by Budhkar et al. [7].

The Deconvolution method works by backpropagating the activation of a target output neuron through
the network, but with modified gradient computation rules. For a given layer l, the Deconvolution
attribution is computed as:

Attributionl = ReLU(Deconvl+1 ·WT
l ) (2.9)

Where Deconvl+1 is the Deconvolution of the next layer, Wl is the weight matrix of the current layer,
and ReLU is the rectified linear unit activation function.

The key difference between Deconvolution and standard backpropagation is in how it handles the ReLU
activation function:

Deconv(ReLU(x)) = ReLU(Deconv(x)) (2.10)

During the backward pass, Deconvolution keeps only the positive gradients, effectively ignoring the
paths where ReLU would have set the activations to zero in the forward pass.

2.1.6. Guided Backpropagation (G)
Guided Backpropagation [62] is similar to Deconvolution; this method also focuses on backpropagation
but combines it with the ReLU activation function’s gradient. It is a gradient-based method. It only
propagates positive gradients for positive activations, aiming to visualize what the network is looking
for, rather than what it has found. This method was also used in the comparative study by Budhkar et
al. [7].
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2.1.7. Parameterized Explainer for Graph Neural Network (PGExplainer) (P)
Parameterized Explainer for Graph Neural Network (PGExplainer) [46] focuses on explaining the gen-
eral model instead of being done per instance. It is a perturbation-based explainer. PGExplainer
assumes that all graphs have some underlying structure, meaning each graph can be described as
Go = Gs +∆G, where Go is the original graph, Gs is the ”important” subgraph, and ∆G is information
relevant to the task. That is why PGExplainer uses the following expression to find Gs:

max
Gs⊆Gc

MI(Yo, Gs) = H(Yo)−H(Yo|G = Gs) = min
Gs⊆Gc

H(Yo|G = Gs), (2.11)

Here, Yo is the prediction of the GNN model. H(Yo) remains fixed with a trained model. As such,
PGExplainer only has to optimize minGs⊆Gc

H(Yo|G = Gs). PGExplainer also focuses on predicting
the relevant edges that make up Gs.

Due to difficulties with the objective function, PGExplainer takes multiple steps to make it more tractable.
It assumes that the edges in the explanatory graph are conditionally independent and also relaxes the
optimization from binary to continuous variables on the edges.

Furthermore, PGExplainer takes several steps to differentiate itself from GNNExplainer, which shares
a similar objective function. Most importantly, GNNExplainer needs to be trained per input graph. In
contrast, PGExplainer is first trained and then used per instance, meaning a trained model is consider-
ably more efficient for each explanation needed. Additionally, it includes multiple regularization terms.
It has constraints for the explanation size and to guarantee connectedness.

The original paper already works on a biological dataset, using the MUTAG dataset for parts of their
experiments [46].

2.1.8. GraphLIME (S)
GraphLIME (Graph Local Interpretable Model-agnostic Explanations) [31] is an adaptation of the LIME
algorithm for graph-structured data. The objective of this method is to explain individual predictions of
any graph neural network model by learning an interpretable model locally around the prediction. Costi
et al. [13] used the method to help predict diabetes.

Given a node v in graph G and a GNN model f , GraphLIME generates an explanation by solving the
following optimization problem:

ξ(v) = argmin
o∈O

o(f,Xn) (2.12)

Where:

• O is a class of interpretable models, specifically the Hilbert-Schmidt Independence Criterion
(HSIC) Lasso

• f is the GNN model
• Xn is the sampling local information of the node v

GraphLIME works by perturbing the subgraph around the node of interest and observing how the
model’s predictions change. Then, a linear model is fit to this local behavior. The coefficients of this
linear model serve as an explanation, indicating the importance of each feature.

2.1.9. Zorro (P)
Zorro [22] is a powerful explanation method specifically designed for Graph Neural Networks (GNNs).
It aims to produce sparse, stable, and faithful explanations by optimizing a novel objective based on
Rate-Distortion Theory. The Zorro method optimizes the following objective:

argmax
x∈Xn

F(Vn, {f}) or argmax
v∈Vn

F({v}, Fn) (2.13)

Where:
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• F is the RDT Fidelity
• Vn is the set of all nodes not included in the current subgraph. It starts with all of the features.
• Fn is the set of all the features not included in the current subgraph. Start with all of the features.

At each step, the algorithm selects the subset that yields the most significant improvement in RDT
Fidelity, whether it is a node or a candidate feature. You can find the definition of RDT Fidelity in Chap.
3.

Zorro generates explanations by learning a mask over the input graph’s edges and node features. This
mask is optimized to preserve the model’s prediction while being as sparse as possible.

2.1.10. DummyExplainer (D)
DummyExplainer is not an actual explanation method but serves as a benchmark for the quality of the
explanation. Since it does not fit into the three explainer categories, we define it in its own category,
DummyExplainer (D). It randomly assigns importance values to each potential mask value. By com-
paring other explainers with this random baseline, you can ensure that the explanations provided by
different methods are helpful [20].

2.2. Explainer Intuition
To make it easier to understand each explainer, we will briefly go over the methods and provide concise
explanations for each of them. The idea of this section is to get an intuition of why each of the methods
works.

• GNNExplainer (P): Find the minimal subgraph and feature set that has the same information as
the original prediction.

• Integrated Gradients (G): Given a baseline input (typically zero), what are the features that give
the most significant difference in the prediction?

• Saliency (G): Calculate the gradient of the output using the input features to find the elements
that have the most significant influence.

• InputXGradient (G): Same as Saliency, but now captures direction instead of only magnitude.
• Deconvolution (G): Backwards propagation using only positive output gradients to find input
feature importance.

• Guided Backpropagation (G): Backwards propagation using only positive input gradients to find
feature importance.

• PGExplainer (P): Find minimal subgraph and feature set with same information as original pre-
diction, but focused on edges and learning over multiple inputs.

• GraphLIME (S): Creates a locally interpretable model that approximates the complex model’s
behavior around a specific prediction.

• Zorro (P): Do greedy selection on feature that improves RDT fidelity.
• DummyExplainer (D): Assigns random importance values to each feature.

2.3. Datasets
Graph neural networks work with problems of classification and regression, just like standard machine
learning. Each of these problems can also be divided into node, edge, or graph prediction levels. We
focus on node and graph classification, as we found these types to be more common in biomedicine.

2.3.1. Node Classification
For node classification, we focus on the work done by eXplainable Gene–Disease Associations via
Graph Neural Networks (XGDAG) [47]. XGDAG is a paper that works in the task of gene-disease
association (GDA) discovery. This task focuses on identifying genes likely associated with a given
disease, using multiple types of network data [47].
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XGDAG is relevant for explainability because the authors use explainable methods as a step for gene
prediction. After using a GNN model, XGDAG uses various explanations in the given output. These
explanations build a ranked order of the genes. Through this approach, they were able to beat other
state-of-the-art papers in GDA. You can find more detailed information about XGDAG in Chapter 4.

2.3.2. Graph Classification
For the graph classification problem, we choose to focus on the Proteins dataset as defined by TU-
Dataset [50]. This dataset is used to predict whether a protein is an enzyme or not.

This dataset was chosen in particular because, as of the time of writing, it is the most commonly used
dataset in biology, according to Papers with Code [11].

We used the work done by GNNX-Bench [40] as a starting point. GnnX-Bench is a benchmarking study
of GNN explainers, focusing on perturbation-based methods. Their work provides a starting point for
model architectures and offers insights for comparison. A more detailed explanation of what is being
used from the GNNX-bench can be found in Chap. 4.



3
Evaluation Metrics for XAI in

Biomedicine

With the growing power of AI, requirements are also getting stricter for its use [12]. Despite this, all of
the needs for AI use can be summarized in one simple word: Trustworthiness [36] [12] [17].

Sadly, trustworthiness is a word that has multiple definitions [36] [12] [17] [53] [35] [14]. This issue is
expounded when you take into account that these definitions can be mutually exclusive to each other.
For example, the definition of trustworthy AI given by [42] includes fairness, but as the authors [39] find,
some of the definitions of fairness are mutually incompatible in most scenarios.

As such, we need to work on narrowing down the scope to something that we can work on.

Based on the research, we have grouped the needs of XAI in biomedicine into three distinct categories
that we will focus on addressing:

• Faithful model explanations
• Human understandable
• Consistency
• Time

Additionally, we will explain the out-of-scope needs and provide a summary of the previously included
points.

3.1. Faithful model explanations
If an explanation says that a model uses certain features, those features should be significant to the
model. Guaranteeing that explanations are faithful to the given model can help us understand how the
explainers change depending on the problem and the datatype [81]. Additionally, we can understand
whether the explanations are consistent with the underlying data and are biologically plausible [80] [78]
[81]. However, there are multiple ways of measuring faithfulness, which we will discuss in the following
sections.

3.1.1. RDT-Fidelity
To measure the faithfulness of explainers that provide feature or node attributions, we will be using rate
distortion-based fidelity (RDT-Fidelity) as proposed in Zorro [22]. RDT-Fidelity works by randomizing
the features that were not considered relevant by the explainer and comparing the prediction with the
randomized and the original features. So, if the explainer says something is important, changing the
nonimportant features should not affect the prediction.

10
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RDT-Fidelity is defined as follows:

F(S) = EYs|Z∼N
[
If(X)=f(Ys)

]
(3.1)

YS = X ⊙M(S) + Z ⊙ (⊮−M(S)), Z ∼ N (3.2)

Where S is the explanation,M(S) is the explanation mask, f is the GNN,X is the input, N is the noise
distribution, and Ys is the perturbed input.

For our use case, we are slightly modifying the method. The first modification is to allow for soft masks;
this allows the metric to be used with more explainers. The second is to allow as direct input a node and
feature mask set, as many methods output both directly. Lastly, for the case of regression problems,
we will measure the difference between the scores in order to make the value more understandable
when analyzing.

3.1.2. Alternative Fidelity
An alternative way of measuring Fidelity has been proposed, one that works without random perturba-
tion. This metric is actually two elements, Fidelity+ and Fidelity-, as described by Yuan et al. [75]. The
idea of this approach is that, for Fidelity+, removing important features should change the prediction,
and for Fidelity-, it is that keeping only the essential features should not change the prediction. These
fidelities are measured as follows:

Fidelity+ = 1− 1

N

N∑
i=1

I(ŷGi\S
i = ŷi) (3.3)

Fidelity− = 1− 1

N

N∑
i=1

I(ŷG
S
i

i = ŷi) (3.4)

Where

• N is the total number of graphs in the dataset
• ŷi is the original prediction of the model for graph i

• Gi represents the original complete graph
• S denotes the subgraph identified as important by the explainer
• Gi \ S represents the graph with the important subgraph removed
• GS

i represents only the important subgraph

• ŷ
Gi\S
i is the model’s prediction when the important subgraph is removed

• ŷ
GS

i
i is the model’s prediction when only the important subgraph is used

These also fit some of the requirements given by causality, where Fidelity- describes a sufficient expla-
nation, and Fidelity+ describes a necessary explanation [2]. The values are bound within the range of
0 to 1; values with higher Fidelity+ are preferred, and lower Fidelity- values are preferred.

In the literature, we find an alternative name for this approach to Fidelity. Fidelity- is also known as
being a Sufficient explanation. Fidelity+ is also known as being a Necessary explanation [2] [57].

Although Fidelity is the most intuitive explanation, it has a couple of problems related to it. Due to the
removal and modification of information, the data the model is predicting on might come from a different
distribution than the original data. Hooket et al. found that models are robust to information removal,
in an image classification problem, removing 90% of the input still gave accuracy that was comparable
to clean data, and above chance [30].

This robustness leads to an issue where the training data and the masked data might come from
different distributions, and where the model remains accurate due to its innate properties. So, how
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do we measure the distance between an explanation and the true dataset? Graphs expound these
problems, where there are variations in input size and aggregation that make it more difficult to compare
the distance between two graphs.

3.1.3. Kernel Distance
Graph kernels have emerged as a natural solution to the challenge of comparing graphs, offering a
method to measure similarity between objects of varying structures. These techniques have found
applications in diverse fields such as bio-informatics, chem-informatics, and neuroscience [41]. This
allows us to understand how close the distributions of two graphs are, and can be used as a way of
understanding how biologically plausible the explanations are.

Formally, a graph kernel k : G × G → R is a function that maps a pair of graphs to a real number,
satisfying the following properties for all graphs G,G′, G′′ ∈ G:

1. Symmetry: k(G,G′) = k(G′, G)

2. Positive semi-definiteness:
∑

i,j cicjk(Gi, Gj) ≥ 0 for any n ∈ N, graphs G1, . . . , Gn ∈ G, and
real numbers c1, . . . , cn ∈ R

After evaluating various graph kernel methods based on their expressivity, precision, and computational
efficiency [41, 60], we selected the propagation kernel method [51] for our analysis. This choice was
motivated by its favorable trade-off between accuracy [41] and speed [60].

The propagation kernel measures the similarity between graphs based on the diffusion of node labels.
For a graph G = (V,E) with nodes V and edges E, the propagation kernel k(G,G′) between two
graphs G and G′ is defined as:

K(G,G′) =
∑
u∈G

∑
v∈G′

k(u, v) (3.5)

Here, k is a node kernel that is resolved by binning. For this particular implementation, locally sensitive
hashing was used [60]. An LSH is a function h where given d(x, x′) < θ then Pr(h(x) = h(x′)) > p1.
That is, similar elements are stored in the same bin. Neumann et al. provide amore detailed explanation
[51].

The particular LSH used in this case is detailed in the following section. Here, the matrix X represents
the nodes and their features, where N is the number of nodes, and D is the number of attributes.

Algorithm 1 CALCULATE-LSH
Require: matrix X ∈ RN×D, bin width w, metric M
if M = H then
X ←

√
X {square root transformation}

end if
if M = H or M = L2 then
v ← RAND-NORM(D) {generate random projection vector} {sample from N (0, 1)}

else if M = TV or M = L1 then
v ← RAND-NORM(D)/RAND-NORM(D) {sample from Cauchy(0, 1)}

end if
b = w ∗ RAND-UNIF() {random offset b ∼ U [0, w]}
h(X) = ⌊(X ∗ v + b)/w⌋ {compute hashes}

Here, the metrics are as follows:

• H: Hellinger distance
• L2: Euclidean (L2) distance
• L1: Manhattan (L1) distance
• TV: Total variation distance
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For our experiments, we used the Manhattan distance.

To apply this idea with masks, we will work on sampling from the explanation, where we will only use
the top K features of a given explanation when generating the explanation subgraph, where K is a
percent cut-off based on sorting the values. For our use case, we will assume that the top K features
are those with the highest value, not the highest absolute value. With this, an explanation subgraph is
generated that can then be compared with the propagation kernel method [51]. For our tests, we fix
K = 10%, based on the findings of Zheng et al. [80]. We train the embeddings on the original dataset.

To apply this method to explanation masks, we sample from the explanation by selecting the top K
features based on their importance values. Specifically, we generate an explanation subgraph using
only the features with the highest positive values, where K is a percentage cut-off (set to 10% in our
experiments, following Zheng et al. [80]). This approach allows us to compare the original graph with
its masked version using the propagation kernel method.

The process can be summarized as follows.

1. Generate explanation masks for a given graph.
2. Create subgraphs by retaining only the top K% of nodes/edges based on the mask values.
3. Convert the original graph and the subgraphs to a format compatible with the graph kernel library

(e.g., GraKeL [60]).
4. Compute the propagation kernel between the original graph and each subgraph.
5. Analyze the resulting kernel values to quantify the difference between the original and masked

graphs.

We chose this approach because of its applicability to graph problems. Other approaches, such as the
one used by Qiu et al. [55], were not deemed valid as they required the input shape to remain constant.
Constant input shape is something that rarely happens with graphs. The approach used by Zheng et
al. [80], where they trained an Autoencoder model and compared the resulting vector representation of
graphs, was considered. However, we decided not to use it as it required a training step in the middle
and could be affected by the randomness of training. Another approach that could be used is ROAR
[30], where a fraction of the input is removed based on the importance of the feature and a model is
retrained on this new set of features; however, this approach was deemed too time-consuming to be
viable.

3.2. Human understandable
One of the main priorities for biomedical use is to ensure that the human who uses the tool actually
understands the result received, something often ignored in explainability [44] [34]. We have already
outlined that human tests are out of scope, but we can still find alternatives that helpmeasure usefulness
for humans.

3.2.1. Entropy
An explanation that says everything has the same importance would return a perfect fidelity score. This
explanation is not good, as it means that the explanation is not really explaining. So we want a way
of measuring whether our explanations are small and focused on the most important features. This
idea also lines up with human intuition; if you have to remember hundreds of numbers, you will not
memorize them, but if you only need to remember 10 numbers, it is much easier to memorize them.

We follow the Entropy definition described in Zorro[22], where we calculate the Shannon entropy over
the normalized distribution. Entropy defines the average level of information of a variable, with a higher
value meaning that there is more uncertainty about it. The formal mathematical definition is the follow-
ing:

H(p) = −
∑
ϕ∈M

p(ϕ) log p(ϕ). (3.6)

In our experiments, we found that certain explainers give negative masks, which makes sense as
this means that a particular attribute worked against the prediction. To deal with this, we first find the
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absolute value of all the mask values, working under the assumption that the further a value is from 0,
the more important that value is.

3.2.2. Counterfactual
Jeyakumar et al. [34] conduct an Amazon Mechanical Turk study comparing which explanation method
humans prefer. They find that their model, ExMatchina, is consistently rated as the best model. This
model works by providing an example of similar input and contrasting it, making it easier to understand
why the system took the decision it did.

Other authors have found that humans prefer contrasting explanations, where humans prefer explana-
tions of why the current explanation happened instead of something else [49]. For XAI, counterfactuals
ask the perfect question: What needs to be changed to achieve a different outcome? [10]. As Chou
et al.[10] outline, multiple points are needed for a good counterfactual: proximity, plausibility, sparsity,
diversity, and feasibility. Other metrics in the thesis have taken all of these points into account, with
the exception of proximity.

Based on this, we will take an approach based on the work done by Ramon et al.[56]. The authors
used the outputs of LIME and SHAP as a ranked way of deciding which feature to remove or to set to
0, and then measured the effectiveness of the counterfactuals based on the number of features that
were changed before there was a change in the prediction. As such, the fewer features modified, the
closer the new point is to the original one.

Mini C(x \ Ei) ̸= C(x) (3.7)

Where:

• x is the original feature set
• Ei is a ranked ordered list of the most important i features according to the explainer
• x \ Ei is the feature set with the i most important features removed, in this case by setting them
to 0

• C(x) is the classifier’s prediction for instance x

This method forces all metrics to become hard masks due to their ranking. An alternative approach
could be used, which uses soft masks as a gradient for exploration, but this method does not work in
the case of hard masks. We decided that a strategy that works for all types of masks is more desirable.

3.3. Consistency
Most explainers use some randomization when generating their explanation [3] [53]. This randomness
can lead to an issue where the most important feature changes when the same model is explained
again. To find out whether this is an issue, we came up with two metrics to measure consistency and
understand whether repeated explanations differ too much.

3.3.1. Repeatability
For the cases where we receive hard masks, we use the approach defined in LEAF [3] to compare the
Jaccard similarity between multiple different explanations. We chose this approach due to its flexibility
for working with various types of masks and due to its existing application for explainability.

The Jaccard similarity is a method of measuring the similarity between different sets by seeing how
many overlapping elements are contained versus the total number of elements in both sets.

We extend the metric defined in LEAF [3] to soft masks by taking the top K important features as a
set and comparing the generated sets between different soft masks. We name this metric repeatability
because we take it to be the number of times it repeats the same important values. We extend the
definition given by LEAF [3] of Jaccard similarity for features to work with the use of feature rankings,
where for each explanation, we get the most important K features.
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Repeatability =
1(
n
2

) n−1∑
i=1

n∑
j=i+1

J(Si, Sj) (3.8)

Where:

J(Si, Sj) =
|Si ∩ Sj |
|Si ∪ Sj |

(3.9)

And:

• n is the number of predictions being compared
• Si and Sj are sets of important features from different predictions
• For hard masks, Si and Sj are the sets of features with mask value 1
• For soft masks, Si and Sj are the sets of top K important features
• J(Si, Sj) is the Jaccard similarity between sets Si and Sj

In our experiments, we fix K = 30.

3.3.2. Variance over Explanations (VoE)
The most intuitive metric to measure consistency is measuring the variance of the explanations. The
issue we find is that each resulting mask is one-dimensional, so finding the variance between different
masks leads to a large covariance matrix. For all of the masks, the approach taken is to find the sum
of the variances from the covariance matrix, which we call Variance over Explanations (VoE). The VoE
can be represented as:

VoE =

n∑
i=1

σii (3.10)

where σii represents the variance of the i-th element (the i-th diagonal element of the covariancematrix)
and n is the number of elements in the mask.

Although an in-depth analysis of the covariance matrix would provide more detailed information, this
approach is chosen for its simplicity and generalizability across different problem types. It also offers a
more straightforward interpretation compared to analyzing the full covariance matrix.

Due to the large size of the datasets involved, we calculate the covariance matrix using an online
method. This approach allows for the incremental computation of the covariance matrix, updating it as
new data points are processed, rather than requiring all data to be present in memory simultaneously.
This method is beneficial for handling large-scale datasets efficiently.

The approach used follows Welford’s online algorithm [71]. The algorithm is described as follows:

Let X = {x1, x2, ..., xm} be the set of m samples, each sample representing an explanation, where
each xi is a vector of dimensions d.

1. For the mean calculation:
x̄k = x̄k−1 +

1

k
(xk − x̄k−1) (3.11)

where x̄k is the mean after processing k samples.
2. For the M2 statistic (sum of squared differences):

M2k = M2k−1 + (xk − x̄k−1)(xk − x̄k) (3.12)
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3. The variance for each feature after processing the m samples is:

σ2
i =

M2n,i
m− 1

(3.13)

where M2m,i is the i-th element of the final M2 vector.
4. Finally, the total variance is the sum of the variances for all features:

Total Variance =

d∑
i=1

σ2
i =

d∑
i=1

M2n,i
n− 1

(3.14)

3.4. Time
Lastly, we also consider the time to run each model. As highlighted by GraphframEx [2], most papers
ignore this when performing a benchmark of metrics. As such, we include this information in our analy-
sis. For explainers that need to be trained, in particular PGExplainer [46], we include the training time
in the benchmark. We will measure the time to explain an input.

3.5. Needs that are out of scope
Lastly, we would like to highlight metrics or ideas that were not implemented here. We found multiple
metrics that were highlighted in biomedical papers, but were either vague in their description or had
requirements that were outside of the scope of this thesis. This list is non-exhaustive, but it contains
some of the most essential points that were considered for internal use.

3.5.1. Fairness
The main issue in measuring fairness is that the existing methods work directly on the model or the
data [4], not on the explainers. Furthermore, the methods that we could use for fairness would highlight
the need to understand why the model took its decisions [48] [4], which we believe is already taken into
account by the different faithfulness metrics used.

3.5.2. Causality
Causality has been highlighted as one of the limiting factors in using AI in medicinal fields [6], as well
as making the argument that causality is what is needed to meet European standards, not explanations
[26].

Causality was not integrated into the system, as there is simply no existing system that provides model-
agnostic causal explanations, to the best of our knowledge.

This issue can be partially related to the idea of trying to understand the model versus understanding
the data [9]. Most causal systems, when applied to AI problems, focus on trying to understand the true
relations in the data [8], while our focus here is on understanding why a model makes certain decisions.
We also highlight that this difficulty in finding causality is inherent in the problem. AI systems tend to
work with observed data, and finding causality from that is very difficult [10].

Additionally, we would like to highlight that we are not dealing directly with causality but have a method
to describe counterfactuals. Counterfactuals have been linked to causality, which is ”the extent to which
an explanation of a statement to a human expert achieves a specified level of causal understanding
with effectiveness, efficiency, and satisfaction in a specified context of use.” [29]. As such, although we
do not use causality fully, we believe that we have incorporated enough of its ideas to satisfy biomedical
needs.

3.5.3. Human agreement
Human agreement as a metric would focus on making things understandable for physicians [53] [27]
[45]. Doing this would require human testing, which is beyond the scope of this.

Additionally, Counterfactual as a metric has been highlighted for their use with humans [49] [34]. Given
this, we believe that we are partially incorporating human agreement into one of the existing metrics.
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3.5.4. Privacy related metrics
Privacy and data governance have all been highlighted as important metrics to improve the trust of AI
[12]. In this thesis, we are ignoring them because we are working with data and models that are publicly
available.

3.6. Summary
This section summarizes themetrics we will use in our studies and serves as a shorthand for expressing
intuition about how each approach works.

• Fidelity: Are the explanations accurate to what the model is using?

– RDT-Fidelity: If we randomize the nonimportant metrics, does the prediction change?
– Fidelity+: Does removing important features change the prediction?
– Fidelity-: If we keep only important features, does the prediction change?

• Kernel distance: How similar are the explanations to the original data?
• Entropy: Are the explanations concise?
• Counterfactual: How good is the explanation for changing the prediction?
• Repeatability: Are the same features always highlighted?
• Variance over explanations: What is the variance of the resulting masks?
• Time: How long does the explainer take to run?

In each specific section, you can find information on why these metrics were chosen and how they help
address some of the needs of biomedicine.



4
Experiments

This section gives a detailed overview of the experiments carried out. We will provide more information
on where we are applying the explainers and how the code has changed compared to the original
papers. The original papers are still the focus of this structure.

In most cases, the general structure is: Take the original paper, whenever it uses an explainer, swap
the explainer out, and perform tests at that moment. That is, keep the comparison as close as possible
to what the original paper did.

We also provide detailed information on the datasets used and information on how they were obtained.
We seek to explain the dataset properties to understand what might have an effect on the explainers,
as other researchers have found that explainer performance changes per dataset [57] [2] [40].

4.1. XGDAG Experiments
XGDAG [47] is a novel methodology for disease gene discovery that leverages graph-structured data
using Graph Neural Networks (GNNs) along with an explainability phase to determine the ranking of
candidate genes. The method frames gene discovery as a positive-unlabeled (PU) learning problem.

4.1.1. Dataset
The XGDAG paper uses multiple datasets, each constructed with different restrictions depending on
the closeness of the association between genes desired or the original source for the GDA.

The dataset used by the authors is a protein-protein interaction (PPI) network, where the nodes are
proteins with an edge between them if there is an interaction. The authors closely followed the steps
taken by NIAPU [64], where they took the human PPI network contained in BioGRID [63], and kept only
the genes that were present in both BioGRID and DisGeNET [52]. They did two rounds of this curated
data, for training, they kept a curated set of associations, which means GDAs from reliable sources,
and for validation, they used all associations.

XGDAG does not treat GDA as a traditional classification problem, as it is not a binary classification
problem. There are cases where there is a known association between the gene and the disease, but
in other cases, the gene can have an association with the disease, but the association is unknown. To
deal with this, XGDAG takes an approach known as a positive-unlabeled (PU) learning problem.

In this type of problem, there are positive and unlabeled samples, some of which are negative and
some of which are unknown positive. In the use case, a positive use case means that the gene is
associated with the disease. The resulting labels are positive (P), likely positive (LP), weakly negative
(WN), likely negative (LN), and reliably negative (RN).

To label these unlabeled genes, XGDAG used NIAPU [64] to assign pseudo-labels to unknown genes
through a Markov diffusion process. This approach works through a gene similarity matrix based on
features that are specific to known disease genes. This set of features is a mixture of network-based
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features and biology-informed features, giving more specific information to each disease. After this, a
Markovian diffusion process is used to distribute label probabilities across the graph until a stationary
distribution is obtained to assign the pseudo-labels.

In our work, we use the version of XGDAG with an underlying binary classification system. The binary
system was chosen to make comparisons easier with other explanatory methods, although the authors
of XGDAG highlighted that it has an adverse effect on the results [47]. For comparison, we focus on
three diseases: malignant neoplasm of breast (C0006142), colorectal carcinoma (C0009402), and liver
cirrhosis (C0023893). Each one is a graph, and its properties can be found in table 4.1.

In the dataset, each node represents a gene, which is the instructions for generating a protein. These
diseases were picked because of the high number of seed genes. Seed genes are those labeled 0,
meaning they are the genes that are known to be associated with the given disease. What counts
as a seed gene varies depending on the type of association, as a more curated set has more strict
requirements and a smaller number of seed genes. For testing, the XGDAG authors used a curated
seed gene set during feature creation and training. They saw if other genes known to be associated
were recovered while evaluating the system. The edges represent protein interactions between genes
[65].

Disease Nodes/Genes Edges Node features Pos/Neg Labels
C0009402 13 328 138 334 6 13,286 / 42
C0023893 13 328 138 334 6 13,304 / 24
C0006142 13 328 138 334 6 13,288 / 40

Table 4.1: Disease Dataset Characteristics

The majority class is the Pos labels, which are 1 in the dataset. The minority class is the 0 labels,
which are the genes related to the relevant disease. The high imbalance of the data that is seen in
Table 4.1 was noted by the authors, and data imbalance is known to have a significant effect on model
performance [47]. Given that class imbalance is a common issue in biological works [24], we believe
XGDAG provides a great venue to explore this dataset property.

These three diseases have the same number of nodes, edges, and features because they are all built
with the same dataset. The difference seems to be in the actual features, as these are built depending
on the seed genes associated with the given disease. We also note the large size of the graphs, there
is only one dataset common in the literature that has a larger node and a larger edge count [2] [57].
This allows the XGDAG experiments to be a good test of the effect that a large dataset can have on
using explainers, another factor that is common in biology [27].

These dataset properties defined in Table 4.1 are different from the properties described in the supple-
mentary materials of XGDAG [47], as the number of nodes and edges differs for all three diseases.

We assume that this difference is because we are working with the version of the data that was further
modified to be a binary classification problem, as already highlighted. This version of the dataset exists
to compare with the DIAMOnD [23] method; at the time of XGDAG’s writing, it was one of the state-of-
the-art methods for gene prioritization.

We do have the issue that there are six node attributes, as the original paper lists 4. The four fea-
tures listed are heat diffusion, balanced diffusion, NetShort, and NetRing. Heat diffusion and balanced
diffusion are network diffusion-based features, while NetShort and NetRing are topological features
informed by the seed genes in the graph. You can find detailed explanations about them in the original
paper [47]. Information about what the other two features represent is unknown.

4.1.2. Model architecture
In the original XGDAG paper, the authors use explainers as a middle step to rank priority nodes in vari-
ous types of disease. This use of explainers meant that there were predictions, an explainer explaining
the predictions, and then an aggregation of the results of the explanations [47].

After pseudo-labeling, the XGDAG approach uses a GraphSAGE model [25] on the generated dataset.
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GraphSAGE learns the embedding of a node based on the node’s features and neighbors. The equa-
tion for a GraphSAGE layer is:

x′
i = σ (W1xi +W2 · AGGREGATE(xj , ∀j ∈ N (i))) (4.1)

Where:

• W1 and W2 are learnable weight matrices
• xi is the feature vector for node i

• N (i) is the neighborhood of node i

• AGGREGATE is a function that combines neighbor information (e.g., mean, max, or LSTM)
• σ is a non-linear activation function

In the paper, σ is a ReLU function [21]. The authors trained and found that a seven-layer GraphSAGE
GNN is the optimal size to avoid oversmoothing.

4.1.3. Explainer implementation
With the trained GraphSAGE model, XGDAG runs the model on the graph and gets a prediction for the
individual nodes. These predictions are restricted to only the genes related to the disease and to using
only the immediate neighbors of the gene being predicted.

For each node, XGDAG then obtains the number of times it appeared in an explanation, as well as
the sum of the node importance values that were given per explanation. The nodes are only stored if
they were marked as LP. Storing the nodes in this way creates a ranked list of them, where a node is
ranked higher the more times it appears in an explanation. In case two nodes appear the same number
of times, we give priority to the node with the higher node importance score. A visual example of this
process can be found in Figure 4.1, obtained directly from the paper [47].

For explanations, the authors of XGDAGused three explainability methods: GNNExplainer [74], GraphSVX
[18], and SubgraphX [76]. For our experiments, we focus on GNNExplainer as it is one of the most
commonly used explainers in the field [57] [2], as well as the explainers previously listed in chapter 2.

For the training of the PGExplainer model, we split the evaluation dataset and use 80% for training. We
picked this train split given the standard use of it in machine learning. The original paper contains no
information or restrictions on how PGExplainer should be trained [46].

For all the other explainers, a similar approach was taken for their hyperparameters, focusing on the
values given by the respective original authors, following any indications given.

4.1.4. Replication study
We then use the ranking of candidate genes to decide which nodes to classify as related to the disease
first. The original authors used differentK values to see what effect this had on the final accuracy. The
ranking of the nodes given their explanations is essential for our use case, as it also tells us whether
the explainers follow real biological insight or if the explanation generated has no backing in reality.

Figure 4.1: XGDAG explainability phase
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To handle this replication, we had to make some changes related to the ranking. The original paper did
two rankings: the first is the number of appearances, and the second is the value given per explanation.
In our use case, we are not restricting the explanations to use only the immediate neighbors of the target
node to be explained. Because the initial mask is often larger, we focus on the total score obtained,
not on the number of appearances. Given this, we get a much larger number of our candidate genes
and receive them in a different manner.

Given this difference, we will focus on the percentage of genes used. The original paper uses a simple
top K genes, which is not representative of the total number of genes predicted as important. We
believe that using it as a percentage is more informative. The change in the presentation of genes
does mean a direct comparison with the author is not as simple as we use all of the genes in the graph,
while the XGDAG authors use only a fraction of the genes. We will take into account the effect of
counting genes differently during the analysis.

XGDAGmeasured the performance of this method by focusing on the resulting classification’s F1 score.
The F1 score summarizes and displays a trade-off between precision and recall.

With these changes in mind, we focus on repeating the other parts of the experiment. We use the
ranked order of the genes as a list of positively labeled nodes with different thresholds, using percents
instead of the top K genes in our case. From this ”classification,” we can obtain the precision, recall,
F1 score, and AUC of the precision-recall curve.

4.2. Proteins Dataset Experiments
The Proteins dataset is a well-established benchmark in graph machine learning, specifically designed
for the classification of proteins as enzymes or non-enzymes. It is part of the TU Dortmund University
collection of graph benchmark datasets [50], which are widely used for evaluating graph kernel methods
and graph neural networks.

4.2.1. Dataset
The dataset comprises 1,113 graphs, where each graph represents one protein. Each node in a graph
corresponds to a secondary structure element, i.e., helices, sheets, and turns. The nodes are also
enriched with physical and chemical information. In particular, they contain information on the hy-
drophobicity, the van der Waals volume, the polarity, and polarizability of the SSE represented by this
node. Detailed explanation on this can be found in the work by Borgwardt et al. [5].

For the edges, there is an edge between nodes if they are neighbors in spacewithin the protein structure,
or if they are neighbors in the amino acid (AA) sequence. Each edge is labeled with its type [5].

Dobson and Doig originally compiled the Proteins dataset [16] to distinguish between enzymes and non-
enzymes using structural properties. Enzymes are proteins that act as biological catalysts, accelerating
chemical reactions without affecting their equilibrium [54]. The dataset is made up of 59% enzymes
and 41% non-enzymes, making it slightly imbalanced towards the enzyme class.

The classification task for this dataset is to predict whether a protein functions as an enzyme (negative
class) or not (positive class). This classification problem is particularly relevant in bioinformatics and
drug discovery, as enzymes play crucial roles in metabolic pathways and are frequent targets for phar-
maceutical interventions. Accurately classifying proteins can help identify potential drug targets and
understand protein function in biological systems.

4.2.2. Model architecture
Following the benchmarking approach of GNN-X-Bench [40], we implemented four different Graph
Neural Network (GNN) architectures for the protein classification task. Each model follows a general
structure consisting of multiple GNN layers for feature extraction, followed by a max pooling operation
to obtain a graph-level representation, and finally a multi-layer perceptron (MLP) for classification.

For all models, we used a consistent architecture with three GNN layers (each with a hidden dimension
of 20), each being followed by batch normalization [33], and a ReLU operation. After the three layers
pass through the dataset, the model performs a max pooling operation and a one-layer MLP for the
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final prediction. We implemented four different types of GNN layers to compare their performance and
explanatory capabilities.

Graph Convolutional Network (GCN)
The GCN [38] is a fundamental GNN architecture that performs message passing based on the nor-
malized adjacency matrix. The propagation rule for each GCN layer is defined as:

H(l+1) = D̂− 1
2 ÂD̂− 1

2H(l)W(l) (4.2)

where Ã = A+ I is the adjacency matrix with added self-loops, D̃ is the diagonal degree matrix of Ã,
and W(l) is the learnable weight matrix for layer l.

GCN performs a localized first-order approximation of spectral graph convolutions, effectively aggre-
gating features from a node’s immediate neighborhood.

Graph Attention Network (GAT)
The GAT [67] introduces attention mechanisms that allow nodes to attend differently to their neighbors.
The update rule for a GAT layer is:

x′
i = αi,iΘxi +

∑
j∈N (i)

αi,jΘxj (4.3)

Where:

• x′
i: The updated feature vector of node i after applying the GAT convolution operation. This value

represents the node’s features in the next layer.
• xi: The current feature vector of node i in the input layer.
• xj : The feature vector of node j, which is a neighbor of node i.
• N (i): The set of neighboring nodes of node i in the graph.
• Θ: The learnable weight matrix that linearly transforms the node features. This matrix is a shared
transformation applied to all nodes.

• αi,j : The attention coefficient between node i and node j.

The attention coefficient αi,j is as follows:

αi,j =
exp

(
LeakyReLU

(
aT1 Θxi + aT2 Θxj

))∑
k∈N (i)∪{i} exp

(
LeakyReLU

(
aT1 Θxi + aT2 Θxk

)) (4.4)

Where:

• Θ: The learnable weight matrix that transforms node features linearly.
• xi and xj : Feature vectors of nodes i and j, respectively.
• a1 and a2: Learnable parameter vectors of the attention mechanism. These vectors are part of
the attention mechanism that computes the importance of node relationships.

• LeakyReLU: The Leaky Rectified Linear Unit activation function, typically with a negative slope
of 0.2. It adds non-linearity to the attention mechanism.

• N (i) ∪ i: The neighborhood of node i, including node i itself (accounting for self-loops).
• exp(·): The exponential function, used to ensure the attention coefficients are positive.
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GraphSAGE
GraphSAGE [25] (SAmple and aggreGatE) is designed for inductive learning on large graphs by sam-
pling and aggregating features from a node’s local neighborhood. The update rule for a GraphSAGE
layer is:

x′
i = W1xi +W2 ·meanj∈N (i)xj (4.5)

where:

• x′
i is the updated feature vector of node i after the GraphSAGE operation

• xi is the current feature vector of node i

• xj is the feature vector of node j, which is a neighbor of node i

• N (i) is the set of neighboring nodes of node i in the graph
• W1,W2 are learnable weight matrices for transforming the node features
• meanj∈N (i) is the mean aggregation function that averages the features across all neighbors

The GraphSAGE operator first aggregates information from a node’s neighborhood using a mean pool-
ing operation, and then combines this neighborhood representation with the node’s features through
learnable weight matrices. This formulation allows themodel to learn both node-specific and neighborhood-
based patterns in the data.

Graph Isomorphism Network (GIN)
GIN [72] is designed to maximize the representational power of GNNs, being as powerful as the
Weisfeiler-Lehman graph isomorphism test. The update rule for a GIN layer is:

h
(l+1)
i = MLP(l)

(
(1 + ϵ(l)) · hi(l) +

∑
j ∈ N (i)h

(l)
j

)
(4.6)

Where ϵ(l) is a learnable parameter or a fixed scalar (we used a learnable parameter), and MLP is a
multi-layer perceptron. In our implementation, the MLP consists of two fully connected layers with a
normalization layer between each.

GIN achieves injective aggregation by using sum pooling over the neighborhood and leveraging the
universal approximation capabilities of MLPs.

Training and Hyperparameters
Following GNN-X-Bench [40], we trained all models using the Adam optimizer with a learning rate of
0.001. The models were trained for 100 epochs with early stopping (patience of 200 epochs) based on
validation performance. We used a batch size of 128 and performed 10 different runs per model.
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Results

In this section, we focus on answering how the different explainers perform in different types of graph
problems, as well as understanding the effect that the dataset has on the explanations. We compare
two biomedicine datasets, GDA and Proteins. We are also able to compare the three different explainer
types (Perturbation, Gradient, and Surrogate) in the two different problem types, to see if there is some
common trend between explainer types.

We hope that our findings help highlight essential caveats in the biomedical domain and provide insights
into what actions to take when using explainers in biomedicine.

5.1. XGDAG results
We perform tests with XGDAG [47]. The paper used the NIAPU approach [64], applying explanations
to the resulting prediction of Markovian diffusion to rank the importance of the nodes for further ranking.
For our use case, we used the Markovian diffusion prediction and then analyzed the result, analyzing
the usage of explainers by the authors of XGDAG [47].

The results are in tables 5.2 and 5.1. For each metric, we highlight the best-performing explainer.

We calculate the maximum Entropy by assuming that the entire mask is made of ones, which gives the
”noisiest” possible prediction. For most models, this value is 11.29, rounded to two decimal places. In
the case of GraphLIME, it is 1.79 (rounded), because GraphLIME only works on features. For PGEx-
plainer, it is higher given the size of the edge count, being 13.22. For our results, we normalize each
value by dividing it by the corresponding maximum Entropy, so the result displayed in the table is the
percent. We did this normalization to make the analysis easier. We made a similar change for the
Counterfactual. The original values can be found in Table A.1.

For the Counterfactual value, there were multiple cases where the explainer found no way of changing
the prediction. In those cases, we set the individual counterfactual value to be the number of elements
that can be changed for the explanation given + 1.

We tested the repeatability 30 times for each node, and we performed the kernel distance experiment
20 times on each graph set. This last one is due to the randomness of the chosen kernel, as we want
to know how reliable the method is in obtaining the Kernel Distance.

The last important detail to note is that we did not calculate the Kernel Distance in GraphLIME or
PGExplainer. We were not able to calculate it due to restrictions on the given graph, which made a fix
for these methods not available in time for the report. For similar reasons, we exclude Zorro from this
result analysis.

Additionally, we add information on the tables onwhether it is a gradient-based approach (G), a perturbation-
based approach (P), or a surrogate method (S). We use the categorization of Kakkad et al. [35] and of
Rathee et al. [57] for this. In case an approach is not categorized in the two previous papers, we have

24
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Time seconds ↓ RDT-Fidelity ↑ Fidelity- ↓ Fidelity+ ↑ Kernel Distance ↑
Explainer

Deconvolution (G) 0.02 ± 0.01 0.78 ± 0.37 0.45 ± 0.5 0.01 ± 0.1 0.53 ± 0.18
DummyExplainer (D) 0.01 ± 0.0 0.62 ± 0.45 0.4 ± 0.49 0.42 ± 0.49 0.24 ± 0.1
GNNExplainer (P) 2.21 ± 0.12 0.65 ± 0.4 0.19 ± 0.39 0.4 ± 0.49 0.54 ± 0.22
GraphLIME (S) 1.9 ± 3.11 0.56 ± 0.46 0.45 ± 0.5 0.0 ± 0.0 N/A
GuidedBackprop (G) 0.02 ± 0.01 0.78 ± 0.37 0.45 ± 0.5 0.01 ± 0.1 0.51 ± 0.16
InputXGradient (G) 0.02 ± 0.01 0.79 ± 0.35 0.31 ± 0.46 0.21 ± 0.41 0.5 ± 0.15
IntegratedGradients (G) 1.02 ± 0.09 0.78 ± 0.35 0.26 ± 0.44 0.5 ± 0.5 0.48 ± 0.2
PGExplainer (P) 64.01 ± 12.83 0.7 ± 0.46 0.44 ± 0.5 0.0 ± 0.0 N/A
Saliency (P) 0.02 ± 0.01 0.56 ± 0.46 0.45 ± 0.5 0.0 ± 0.0 0.51 ± 0.2

Table 5.1: XGDAG Fidelity Metrics

Repeatability ↑ VoE ↓ Entropy % ↓ Counterfactual % ↓
Explainer

Deconvolution (G) 1.0 ± 0.0 0.0 ± 0.0 0.49 ± 0.11 0.51 ± 0.50
DummyExplainer (D) 0.0 ± 0.0 6663.8 ± 4.11 0.98 ± 0.0 0.61 ± 0.44
GNNExplainer (P) 0.08 ± 0.08 388.77 ± 133.14 0.82 ± 0.06 0.51 ± 0.50
GraphLIME (S) 1.0 ± 0.0 0.0 ± 0.0 0.25 ± 0.14 0.84 ± 0.38
GuidedBackprop (G) 1.0 ± 0.0 0.0 ± 0.0 0.49 ± 0.11 0.51 ± 0.50
InputXGradient (G) 1.0 ± 0.0 0.0 ± 0.0 0.37 ± 0.12 0.51 ± 0.50
IntegratedGradients (G) 1.0 ± 0.0 0.0 ± 0.0 0.37 ± 0.01 0.50 ± 0.50
PGExplainer (P) 1.0 ± 0.0 0.0 ± 0.0 0.14 ± 0.07 0.80 ± 0.63
Saliency (P) 1.0 ± 0.0 0.0 ± 0.0 0.49 ± 0.11 0.53 ± 0.50

Table 5.2: XGDAG Other Metrics

done the categorization based on the descriptions given in chapter 2. For the DummyExplainer, which
is random, we will use (D) to distinguish it from the rest.

5.1.1. Metric Results
Time
For the time in seconds, DummyExplainer performed best, so it was the fastest in getting explanations.
DummyExplainer’s performance is expected; it just generates random values. The gradient methods
tend to outperform all the other methods, which also makes sense, as they are a linear operation,
instead of the search done by the perturbation and surrogate methods.

It is relevant to note that PGExplainer had the longest run time by far. We assume that this is mainly
the fault of the training time, although it was done once per model to be explained, it is still a rather
lengthy operation. The long time to use is contrary to what the authors of PGExplainer describe [46],
but we believe that the more explanations that are needed, the smaller this difference in time.

RDT-Fidelity
For RDT-Fidelity, we have InputXGradient as the best-performing metric overall. In general, you can
see that most gradient methods have similar RDT-fidelity mean and variance. A higher score for RDT-
Fidelity implies that the explanation is more stable and more accurate to the original model.

The most relevant fact is that the worst-performing explainer in this case is not the DummyExplainer,
but the Saliency maps. In fact, Saliency maps and GraphLIME had similar performance in both mean
and variance. The fact that GraphLIME had the worst performance is interesting, as the original imple-
mentation of RDT-Fidelity is focused on feature explanations [57], which are what GraphLIME targets.

Fidelity+ and Fidelity-
We find that GNNExplainer is the best-performing model for Fidelity-, while IntegratedGradients is the
best-performing model for Fidelity+. A low Fidelity- implies that the explanation is sufficient, so using
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Figure 5.2: Fidelity comparison per explainer 0 nodes Figure 5.3: Fidelity comparison per explainer 1 nodes

only the elements highlighted by the explanation does not change the prediction of the model. A high
Fidelity+ means the explanation is necessary, so removing the explanation changes the prediction of
the model.

Figure 5.1: Fidelity comparison per explainer

In figure 5.1 we can see how the two
metrics trade off. In this plot, an ex-
plainer that goes to the upper left has
the best performance, and the bottom
right corner has the worst. We can
notice that while some models have a
trade-off, it tends to be the case that a
model with a good Fidelity+ will have a
better Fidelity-, and vice versa. In par-
ticular, we notice that IntegratedGradi-
ents and GNNExplainer are the best in
these two metrics, with GNNExplainer
having better Fidelity- (sufficient expla-
nations) and IntegratedGradients hav-
ing better Fidelity+ (necessary expla-
nations).

We also notice that in the bottom right
of figure 5.1, many of the explainers
cluster together. This implies that they provided neither Sufficient nor Necessary explanations. There
is at least one explainer for each class of explainers, so there is no simple explanation for why these
four explainers perform so poorly. DummyExplainer is not among these four explainers. So, somehow,
these four explainers were actively worse than a random explanation.

To find more information about why this happened, we filtered the responses on the positive and neg-
ative labels. XGDAG focused on predicting negative labels, so the elements the model predicted as 0.
You can find those plots in figures 5.2 and 5.3. In XGDAG [47], the authors focused on the 0-labeled
nodes, which are the ones that are related to the disease described in the specific graph.

It is very striking how significant the change in performance is for all models in both cases. You can see
this difference in performance with the values used in the axes, with the plot focusing on 0 nodes having
values that get closer to 1. The plot for the 0 nodes feels very similar to the plot with all the data, but with
more extreme values. In the 0-node plot, we still notice that GNNExplainer and IntegratedGradients
outperform most other models.

By comparison, in the 1-node plot, we see that all of the explainers perform worse. We believe that this
is due to the model being trained to focus on the minority class, but we have difficulties understanding
the exact effect. If the original model was overtrained to predict 0 labels, then the Fidelity+ metric
would not be as high as it was, as the model would not change predictions when removing the original
explanations.
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Figure 5.4: Fidelity+ vs RDT-Fidelity Figure 5.5: Fidelity- vs RDT-Fidelity

The last thing to note is that PGExplainer was the only explainer not to change its results when com-
paring 0 vs. 1 predictions, at least not substantially. The explainer was never able to find the neces-
sary explanations (Fidelity +), which is also strange when you consider that the explainer had a good
performance for its RDT-Fidelity score. So, it seems that the explanation was able to follow model
behavior (RDT-Fidelity), but was unable to provide the necessary information to keep the same predic-
tion (Fidelity+). We believe that this difference is due to how the two different methods use noise, with
RDT-Fidelity using random noise for the non-target nodes [22], and Fidelity+ setting them to 0 [2].

We also believe that part of this issue comes from the fact that PGExplainer is the only method that
focuses on the edges. All other explainers work with nodes, features, or both. The original authors
of XGDAG highlighted the importance of the underlying structure [47], and the features are built partly
on top of the connections between the genes (nodes) themselves. As such, we believe that changes
in the edges are another one of the main reasons why PGExplainer has such consistent performance,
compared to all the other explainers.

We find that DummyExplainer has a surprisingly high Fidelity+, which is equivalent to a Necessary
explanation. That means that randomly picking elements tends to give you the genes necessary to
predict a disease. This performance does not really make sense if seen in a vacuum, but we believe
that this is due to the class imbalance in the dataset and how the model was trained to adapt for this.

You can see a graph comparing RDT-Fidelity with Fidelity+ in figure 5.4, and a plot comparing RDT-
Fidelity with Fidelity- in figure 5.5.

For the comparison between RDT-Fidelity and Fidelity+, there seems to be a curve similar to exponen-
tial growth. It appears that higher RDT-Fidelity values only affect Fidelity+ when reaching more extreme
values, at which point the differences are more pronounced. This effect might imply that RDT-Fidelity
is more sensitive and is better at expressing minor differences in accuracy. You can also notice a sim-
ilar curve downwards when comparing Fidelity- with RDT-Fidelity. We believe this helps reinforce that
RDT-Fidelity is more sensitive compared to the other Fidelity measurements.

We also want to highlight that in both cases, GNNExplainer and DummyExplainer were the only ex-
plainers that were outside of the curve. Given this result, the property of the curve might only apply to
gradient-based methods. PGExplainer is the other perturbation method that we could compare with,
which might confirm or deny this idea. However, we believe that PGExplainer overfitted on the training
set; as such, we cannot use it properly for comparison.

Entropy
For the entropy values, we notice that PGExplainer and GraphLIME have the explanations with the
lowest Entropy. Lower Entropy means the explanations had fewer elements highlighted. Explanations
with fewer elements means that the explanations are smaller and easier to understand [57].

There are only 6 features in the dataset. The current Entropy that GraphLIME obtained means it consis-
tently picked 2 features as relevant. The authors built 2 of the features using the biological information
of what genes were already known to be related to the disease. So, in a way, GraphLIME might be
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Figure 5.6: Entropy vs Fidelity- Figure 5.7: Entropy vs Fidelity+

”cheating” because it uses features that already see the seed genes. However, given the issue with
the features described in chapter 4, we cannot confirm if this is the case.

The Entropy itself is not a sufficient comparison, as an explainer can highlight none of the features
and get a perfect entropy. The more interesting comparisons are when you compare Entropy with the
Fidelity values. The comparison with Fidelity- can be found in figure 5.6, and the comparison with
Fidelity+ can be found in figure 5.7.

In figure 5.7, we notice a slight trend where a higher Entropy leads to a higher Fidelity+. This finding is
in line with previous findings [57], and makes intuitive sense. The less information a system has, the
less likely it is to be able to replicate the original approach closely. The only explainer that somewhat
breaks the trend is IntegratedGradients.

The results of PGExplainer are now more interesting. The explainer would consistently predict a few
edges, but those edges would often be wrong. We believe that this is because we overfit the PGEx-
plainer model on the training data. Our results on repeatability and variance later on help reinforce this
idea.

We quickly want to mention that the high Entropy for GNNExplainer is partly due to the lack of fine-tuning
on our end. GNNExplainer allows for control of the size of the subgraph and feature explanations, using
these as a hyperparameter [74]. The original paper describes that these features should be informed
based on prior knowledge of the dataset, but in our use case, we decided not to optimize it. Proper
guidelines on how to optimize these hyperparameters might be needed.

Kernel Distance
A higher Kernel Distance (closer to 1) means that the subgraph generated from the explanations is
a graph that is close to the domain of the original graphs. Having a higher Kernel Distance is impor-
tant because it means that the explanations are more likely to be possible in reality. For the sake of
comparison, we also calculated the Kernel Distance between the three graphs we are using for the
comparison. This value was 0.3230.314.

For Kernel Distance, GNNExplainer has masks that are closer to the original plot. This might come
from the fact that it’s perturbation-based. All of the explainers obtained a lower Kernel Distance value
compared to the distance between the graphs of the original dataset. The only method that performed
worse was DummyExplainer, which is good as it means that the methods are able to give realistic
explanations.

We find that the Kernel distance that uses only the original graphs is relatively low, considering most of
the graphs are the same. This might indicate that the Kernel that we used is too sensitive to differences
in graphs and that we need to find alternatives.

Repeatability and Variance over Explanations (VoE)
For repeatability and VoE, we have similar results. High repeatability means that the top-K features
were the same across multiple runs, and low VoE implies that the explanation had a low overall variance.
As such, both metrics measure how consistent the explanations are.



5.1. XGDAG results 29

Only DummyExplainer and GNNExplainer give non-perfect results; all of the other explainers get the
perfect score for the corresponding metric. We expected to have non-perfect results with DummyEx-
plainer. The VoE being different for GNNExplainer is consistent with other studies [57], but the fact that
PGExplainer has a variance over the explanations of 0 is concerning. Given the lack of information on
how to train the explainer in the original PGExplainer paper [46], we believe that we overfit the training
data during training. We followed the parameters set up by the author, but in this case, each explainer
was trained on only one graph, training on multiple nodes. We assume that the original parameters
were meant for multiple graphs.

Counterfactual
A low Counterfactual means that the given explanation is able to rank the features in a way that makes
it easier to change the prediction. A low Counterfactual implies that we can use the explainers to find
what is necessary to change the outcome.

Figure 5.8: Counterfactual % XGDAG

For the Counterfactual, IntegratedGradients per-
formed the best. By comparison, PGExplainer
and GraphLIME were the worst-performing mod-
els, doing worse than even DummyExplainer.
However, this result does not give all the infor-
mation.

The reason this is happening is because the ex-
plainers were either able to find a Counterfactual
immediately or were not able to find it at all. You
can see this result in figure 5.8. In the violin plot,
it is easy to notice that for almost all explainers,
the results cluster either at 0 or at 100 percent.
The only exceptions are DummyExplainer, PGEx-
plainer, and GraphLIME.

The reason the values are so extreme is because
of the class imbalance themodel had to learn. This imbalance can be seen for the counterfactual values
for 0 labeled nodes and for 1 labeled nodes, as can be seen in Figures 5.9 and 5.10, respectively. If
the original label was 0, finding a Counterfactual tended to be trivial. If the original label was 1, finding
a Counterfactual was impossible for most models.

Figure 5.9: Counterfactual 0 labeled nodes Figure 5.10: Counterfactual 1 labeled nodes

The reason behind these results makes some sense. If a gene has no relation to the target disease
(1 labeled), having it be responsible for the disease is not an easy change. However, genes related to
a disease are sensitive, so slight changes might mean that they stop being related to the disease (0
labeled).

Given our results for Counterfactual, we believe that a good venue for research would be to test genes
for which a counterfactual value was found, for those genes that are not related to the disease (so 1
labeled). Given that the focus of this problem is to find new links between known genes and diseases
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Figure 5.11: Fidelity+ vs Counterfactual all Figure 5.12: Fidelity+ vs Counterfactual 0 labeled nodes

Figure 5.13: Percent Malignant Neoplasm of Breast F1 score
XGDAG vs New results

Figure 5.14: Top K Malignant Neoplasm of Breast F1 score
XGDAG vs New results

[47], these might be a relevant venue for future exploration. In particular, the results of PGExplainer
might be most interesting, as that was the best-performing explainer when filtered for 1 labeled nodes.

Lastly, we want to compare these results with Fidelity+, as that metric also sees how efficient the mask
is at changing the prediction. We have the plot comparing the two results in figure 5.11, and we also
do the plot filtering for only 0 labeled nodes in figure 5.12.

There is a significant decay in quality in the scores of Fidelity+ and Counterfactual when you filter to
only the 0-labeled nodes. We note that a high Fidelity+ tends to correlate with a lower Counterfac-
tual %. Based on these plots, we would define that only the explainers on the bottom horizontal line
(GuidedBackprop, InputXGradient, GNNExplainer, and IntegratedGradients) should be used for finding
Counterfactual values.

5.1.2. Replication results
First, we compare the performance scores obtained using our methods to the performance scores
obtained in the original paper. We focus on the F1 score as the metric to compare, as that was the value
on which the original authors focused the most. Given that it provides a trade-off between precision
and recall, it also provides more information than using either value separately. The exact scores for
the four metrics, recall, precision, F1, and AUC, can be found in the Appendix A.

We have a comparison that uses the top K genes, using the K values presented by XGDAG. Additionally,
we transform the values to percents of nodes predicted, given that we did not restrict our methods to
the immediate neighborhood.

The F1 score values for the C0006142 malignant neoplasm of the breast can be found as a percent in
figure 5.13, and with the top K values in figure 5.14. This plot compares some of our best-performing
explainers versus the results obtained in XGDAG. The Figures for the other two diseases can be found
in the Appendix A.

The F1 score for the different explainers presented in Figure 5.14 shows that our approaches are
competitive with XGDAG. Our results imply that you do not need to filter on immediate neighboring
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nodes to find relevant genes, as the explainers seem to highlight the relevant genes no matter what.

We see that by using more nodes, we are able to achieve great performance in Figure 5.13. While the
number of genes is much higher when using the overall graph, it seems that using all of the genes in
the graph is still a valid strategy for finding relevant genes.

However, we believe that these results using the entire graph highlight that most of the nodes in the
graph are somewhat related to the disease, not that our approach is a good alternative to filtering on
neighbors. This result can imply that either the entire graph is relevant, or that the list of seed genes
is too extensive and needs stricter requirements when finding a link to the disease. We believe that
this issue is also in the Figure that compares all of the different explainers we tested with, which can
be found in Figure 5.15.

Figure 5.15: Malignant Neoplasm of Breast All Explainers

The only part that matters in
Figure 5.15 is that DummyEx-
plainer is a competitive explana-
tion model to retrieve new genes.
We believe that this happens be-
cause the list of test genes over-
laps very closely with the graph.
As such, predicting all of the
genes as being related to the dis-
ease is a valid solution, which
does not make sense. This rein-
forces our belief that the underly-
ing graph is themost crucial factor
in the prediction of new candidate
genes, not the explainers used.

5.1.3. Conclusion of XGDAG
results
Based on the initial results, we can observe the complexity of the biological field in explanations. On the
metric side of things, we can see many trade-offs between Fidelity and Entropy that have often been
outlined in the literature [57] [2], which helps to reinforce the importance of these particular metrics.

There did not seem to be a common grouping between the different strategies. The two perturbation
methods (GNNExplainer and PGExplainer) would often get contrary results. If PGExplainer had low
entropy results with low Fidelity, GNNExplainer would get high entropy results with high Fidelity. There
was no trend like this with the gradient methods either, so it does seem that each method is really
fine-tuned towards specific needs.

IntegratedGradients seemed to be the method that found the best trade-off between a high fidelity score
and a lower Entropy score, so this approach is likely best when you need to find a human explanation.
We postulate that the sensitivity axiom defined in the original paper of IntegratedGradients [66] is re-
sponsible for this, as it is the most significant difference from other guided backpropagation methods.
The sensitivity axiom says that if two inputs differ on a feature, and that causes a different prediction,
that feature must be used.

Counterfactual explanations seem to correspond to being necessary explanations (Fidelity+ in our
case). This finding is in line with the findings of Amara et al. [2] and Wachter et al. [68], which makes
some sense. Removing the features that are highlighted changes the prediction, whether you do it one
by one or in a batch. The advantage that Counterfactual seems to provide is that it is more sensitive
to changes in the graph, compared to the results obtained from Fidelity+.

We believe the most important finding was not the results of the explainers themselves, but the dif-
ference in performance between the majority and the minority class. We found this result in multiple
metrics. This result highlights the idea that the use of explainers needs to take into account the domain
where they are being used, as the dataset and the model trained on the dataset can have a significant
influence on the explainers [81] [1] [36]. Users should consider what target class they are trying to
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Time seconds ↓ RDT-Fidelity ↑ Fidelity- ↓ Fidelity+ ↑ Mask Kernel Distance ↑
Explainer

Deconvolution (G) 0.01 ± 0.0 0.87 ± 0.26 0.08 ± 0.27 0.69 ± 0.46 0.0007 ± 0.0001
DummyExplainer (D) 0.0 ± 0.0 0.86 ± 0.27 0.21 ± 0.41 0.19 ± 0.39 0.0005 ± 0.0
GNNExplainer (P) 0.85 ± 0.15 0.87 ± 0.27 0.35 ± 0.48 0.0 ± 0.0 0.0006 ± 0.0001
GuidedBackprop (G) 0.01 ± 0.0 0.87 ± 0.26 0.08 ± 0.27 0.69 ± 0.46 0.0007 ± 0.0001
InputXGradient (G) 0.01 ± 0.0 0.86 ± 0.28 0.41 ± 0.49 0.38 ± 0.48 0.0007 ± 0.0001
IntegratedGradients (G) 0.31 ± 0.08 0.87 ± 0.28 0.4 ± 0.49 0.33 ± 0.47 0.0006 ± 0.0001
Saliency (G) 0.01 ± 0.0 0.77 ± 0.34 0.02 ± 0.12 0.7 ± 0.46 0.0007 ± 0.0001

Table 5.3: Proteins Fidelity Metrics

Repeatability ↑ VoE ↓ Entropy % ↓ Counterfactual % ↓
Explainer

Deconvolution (G) 1.0 ± 0.0 0.0 ± 0.0 0.86 ± 0.06 0.75 ± 0.33
DummyExplainer (D) 0.02 ± 0.03 120.44 ± 119.39 0.97 ± 0.0 0.8 ± 0.29
GNNExplainer (P) 0.35 ± 0.21 10.84 ± 20.48 0.95 ± 0.03 0.7 ± 0.34
GuidedBackprop (G) 1.0 ± 0.0 0.0 ± 0.0 0.86 ± 0.06 0.75 ± 0.33
InputXGradient (G) 1.0 ± 0.0 0.0 ± 0.0 0.69 ± 0.08 0.74 ± 0.33
IntegratedGradients (G) 1.0 ± 0.0 0.0 ± 0.0 0.71 ± 0.07 0.73 ± 0.34
Saliency (G) 1.0 ± 0.0 0.0 ± 0.0 0.86 ± 0.06 0.75 ± 0.33

Table 5.4: Proteins Other Metrics

predict when using any explainer.

5.2. Protein Results
Results for the Proteins dataset [50] can be found in tables 5.3 and 5.4. The values were rounded to
2 decimal places for the sake of fitting them in the table. In case one of multiple rounded values has
a better unrounded performance, we will highlight the best version. The tables presented contain the
information for all the GNN models; the results per model can be found in the appendix A.

Zorro and GraphLIME were not used in these comparisons, as those methods focus on node-level
explanations. We were not able to use PGExplainer due to time constraints.

Maximum Entropy per graph was calculated assuming the entire mask is made of ones, giving the
”noisiest” possible prediction. The Entropy obtained was divided by this maximum Entropy, giving the
Entropy % value that is shown in table 5.4.

We take a similar approach for Counterfactual %, where we take the number of nodes in the respective
graph as the maximum counterfactual value. In case the explanation was not able to find a Counter-
factual value, we set the Counterfactual value to be number of nodes+ 1.

We ran each explainer 30 times for each input to calculate the Repeatability and VoE values. For the
Kernel Distance experiment, we initialized a new Kernel 20 times for the masks each explainer gave
for each model type. This last one is to account for the randomness of the chosen kernel.

We also calculate the Kernel Distance within graphs. We define this as the distance between the graphs
of the original dataset, without any modification. For the Proteins dataset, the resulting Kernel Distance
within graphs was 0.0.

5.2.1. Metric Results
Time
The overall trend of the results is similar to what we found when comparing with the XGDAG experi-
ments. Gradient methods are fast; perturbation methods take longer.
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RDT-Fidelity All Saliency Deconvolution
GNN Model

GAT 0.8032 0.739018 0.830982
GCN 0.8359 0.814911 0.853661
GIN 0.8389 0.652232 0.849464
SAGE 0.9264 0.893036 0.928839

Table 5.5: Proteins RDT-Fidelity

RDT-Fidelity
In this case, RDT-Fidelity gives quite different results. The most striking fact is that most of the ex-
plainers have a similar score. The fact that most of the explainers are so similar can imply that the
underlying model is much more consistent, compared to the variance obtained in the XGDAG results.
This is reinforced when you consider that DummyExplainer had these consistent results as well, giving
random values to the mask had no visible effect on the RDT-Fidelity score.

Figure 5.16: RDT-Fidelity per explainer proteins

We want to note that in this
case, GNNExplainer had an RDT-
Fidelity score that was similar to
the Perturbation methods, which
differs from the results obtained
from the XGDAG experiments.
Given how RDT-Fidelity is calcu-
lated, this might imply that the
underlying model remains much
more resistant to noise compared
to the model used for the XGDAG
method. Given that DummyEx-
plainer also had such a high RDT-
Fidelity score, there is some con-
cern about how well the RDT-
Fidelity was able to capture the
nuance of the explanations.

The only outlier in these results is
the Saliency maps, which had the
worst performance. As can be seen in Figure 5.16, the difference comes in large part due to the higher
variance. This result is also in line with our previous results, where the Saliency explainer was the
worst performer while we were doing experiments with the XGDAG method.

The reasoning behind this can be hinted at in the summarized table 5.5. Here, we show the RDT-
Fidelity values of all the explainers averaged, Saliency only, and Deconvolution only. It is striking that
Saliency performs worst no matter the GNN, but it is also considerably worse when a GIN architecture
is involved. As of writing, we cannot find an explanation for this difference in behavior. We believe
that the fact that an absolute value is used for Saliency maps is the reason for this, as it is the most
significant difference in procedure compared to other gradient methods. Still, we have not found an
explanation for why this function ends up having such influence on RDT-Fidelity.

Fidelity+ and Fidelity-
For these metrics, we find more variance in the values. The most notable fact is that Saliency maps
outperform all the other methods in both Fidelity+ and Fidelity-.

The Figure in 5.17 leads to one other question: why do Saliency maps perform so well with Fidelity+
and Fidelity- but struggle with RDT-Fidelity? We do not have a good answer to this question at the
moment.

Based on the figure 5.17, we see three clusters forming: Saliency, Deconvolution, and GuidedBack-
propagation; InputXGradient and IntegratedGradients; DummyExplainer and GNNExplainer. These
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clusters were recurring in our tests with the protein dataset. Deconvolution is not as visible in Figure
5.17, but we can see that it is part of this cluster when looking at Figures 5.18 and 5.19.

Figure 5.17: Fidelity + vs - per explainer

Another interesting point is the
results of the DummyExplainer.
This explainer had a good RDT-
Fidelity and Fidelity- score, while
having a poor Fidelity+ score.
Why was it so difficult to have the
model change predictions? Keep-
ing random elements still some-
how keeps the same label. The
fact that the model was able to
keep accurate predictions with
random changes means that ei-
ther the edges or the number
of nodes are the most essen-
tial features for the models, and
none of the explainers managed
to capture that information appro-
priately. This result also tells us
that our approach is lacking in
topology-based method analysis, which could be limited due to our greater focus on identifying nodes
and node features. Additional tests with explainers that give edge explanations might be needed, or
some way of finding out if this is the case. This result also clashes with some of the findings of BAGEL
[57], where they state that high RDT-Fidelity correlates with high stability, given that the random expla-
nation had high RDT-Fidelity.

In figure 5.17 we can see a comparison between Fidelity+ and Fidelity-. We find similar results to
those in GraphFramEx [2], where Saliency maps were able to outperform the other explainers in the
two metrics. A significant difference compared to GraphFramEx is that most of the explainers are not
able to find a necessary explanation, as the average Fidelity+ is not close to 1. The reason for this
might be related to the underlying model, as we will highlight that the model has a large influence in
the explanation.

We also work on finding the results per GNN model, to see if there is any appreciable difference. The
results can be found in figures 5.18 and 5.19. We can see that Saliency maps perform best no matter
the underlying model, and that gradient methods tend to outperform the perturbation method, which
lines up with the results found by GraphFramEx [2]. One thing to note is that GIN and SAGE models
tended to have more faithful explanations, no matter the explainer.

Lastly, we analyze the results based on whether the prediction matched the true label (correct) or
whether it did not (incorrect). Figures 5.22 and 5.23 contain the corresponding plots.

While the general clustering of the solutions seems similar, there appears to be a big difference in the
explanation quality. It seems that in cases where the model’s prediction is incorrect, the explanation
suffers. A wrongly predicted label will receive a worse prediction. This is confusing, as the explain-
ers are not using the target data in any way, so why would this have an effect? We cannot find an
explanation for this, but we believe that future use of explainers must be cautious of model accuracy.

The issue of explanation fidelity suffering seems to mainly affect the best-performing cluster of Saliency,
Deconvolution, and GuidedBackpropagation. In Figures 5.21 and 5.20, you can see the influence there,
mainly by the difference in the axis values. We also find that the explainers have worse performance
for the minority class, true labels constitute 32.14% of the dataset.

This difference in performance depending on the underlying label does not seem to be the cause of the
difference in performance depending on whether the model’s prediction was correct. When filtering the
dataset for correct predictions, true labels constituted 26.05% of the dataset. A difference, but nothing
close to what is seen in the plots. As such, we have no explanation for the difference in faithfulness
given a different underlying label or given that the model wrongly predicted the label.
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Figure 5.18: Proteins Performance per model Fidelity-

Figure 5.19: Proteins Performance per model Fidelity+

Figure 5.20: Fidelity+ vs Fidelity- for True Original Label Figure 5.21: Fidelity+ vs Fidelity- for False Original Label
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Figure 5.22: Fidelity+ vs Fidelity- for Correct Predictions Figure 5.23: Fidelity+ vs Fidelity- for Incorrect Predictions

Figure 5.24: Proteins Entropy vs Fidelity- Figure 5.25: Proteins Entropy vs Fidelity+

We do notice that Saliency maps remain the best explainer regardless, which aligns with the results
obtained by GraphFrameEx [2].

Entropy
For the Entropy scores, we can see that InputXGradient was the best-performing method. We observe
that the value is, on average, higher than in the XGDAG experiments. The higher Entropy score is
probably because this is a graph classification task, so all of the information is relevant to the final
prediction.

To see more detailed information on how the Entropy affects the fidelity scores, we can find the figures
5.24 and 5.25. Based on the figures, it seems like three clusters formed. GuidedBackpropagation,
Deconvolution, and Saliency maps are accurate but high-entropy responses. InputXGradients and
IntegratedGradients are low-entropy but inaccurate responses. GNNExplainer and DummyExplainer
are bad at both, which implies that GNNExplainer is not only bad but can also be actively worse than
random explanations.

Kernel Distance
Kernel distance was almost 0 across the board. Even though it cannot be seen due to rounding, the
resulting kernel distance of the masks was higher than the kernel distance within the original dataset.
The reason the kernel distance of the masks was slightly higher was that the mask corresponding to
their respective graph had a non-zero result.

We believe that this is because we normalized the score when using the kernel method. The differences
in the graphs seem to be large by default, and the normalization makes all of the elements of the original
dataset appear different. This tells us that the current implementation of Kernel distance needs to be
modified to at least guarantee that the distance within the original dataset is not as significant.

Repeatability and VoE
Repeatability and variance over the Explanation (VoE) give similar results compared to our XGDAG
experiments, where all the gradient-based methods provide consistent explanations.
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Figure 5.26: Repeatability per explainer

Even though the repeatability is 1 for most explainers in table 5.4, we can see in Figure 5.26 that the
true value is not always 1. These results are not the case for VoE, where the values are truly 0 always.

We believe that this difference in the score of repeatability happens when some of the features are tied
in importance. When finding the top k elements per graph, ties have an element of randomness to them;
as such, the final list might have slightly differing elements. This result does imply that repeatability is
a bit more sensitive than the VoE, which might be undesired.

Counterfactual
For the counterfactual values, we see that all the explainers tend to have a high counterfactual score.
DummyExplainer does have worse performance, but the difference is not significant.

However, looking at the values in detail in Figure 5.27, there is no significant difference between the
explainers, other than a difference in the variance. For us, this gives credence to the idea that the
edges provide the most information for the models being tested. As such, the experiments were not
able to provide additional insights.

5.2.2. Conclusion of Protein Dataset results
These results have highlighted one main factor: you need to fine-tune explainers. For multiple metrics,
we found that not working with edges impacted the results. It seems likely that the explanations are
not as good as the scores say, but are lacking in other respects. This issue with the explanations leads
to the question of how to identify what to optimize for. We were not able to create good guidelines on
what to optimize for, but we believe that by identifying this factor with our current tests, we have helped
highlight the importance of fine-tuning the explainer to fit your needs.

Focusing on the results obtained, it seems that Saliency maps are a great all-around explainer as
they are able to find a balance between concise explanations and faithful explanations. The good
performance of Saliency maps aligns with the results found in GraphFramEx [2].

Comparing our results with GNNX-Bench in the same dataset [40], we find that GNNExplainer performs
worse for Fidelity-, compared to the other models, where the original authors found it to be one of the
best performers for the Fidelity- metric. Our set of explainers was different, with our explainers having
a bigger focus on gradient-based methods.

While we did not do extensive testing with other perturbation-based models like GNNX-Bench did, our
findings could indicate that gradient methods should be used when compared to perturbation methods.
Taking into account results other than the Fidelity, this fact becomes clearer. The quality of gradient
methods is in line with the results found by GraphFramEx [2] and BAGEL [57], where Saliency maps
(called GradInput in BAGEL) would often be among the best-performing models.

Lastly, we believe that the results found per model show that specific GNN architectures are easier to
explain, regardless of the underlying explainer. In cases where biological explanationsmight be needed,
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Figure 5.27: Counterfactual per explainer

GraphSAGE or GIN should be prioritized as the model architecture to guarantee that the explanation
of the results is more faithful.



6
Conclusion

This thesis investigated various explainability methods for GNNs in biomedical contexts. Through ex-
periments for graph and node classification, we have compared multiple explainers across different
metrics to understand their effectiveness and limitations.

6.1. Summary of Key Findings
How can the previously explained needs of biomedicine be addressed when deciding what ex-
plainer to use?

We set an initial set of metrics and an explanation for each of the metrics in Chapter 3, based on the
needs that were identified in Chapter 1. We believe our work provides key steps in making XAI with
GNNs more trustworthy, which was the biggest desire for its use in biomedicine. Our metrics highlight
many of the needs in biomedicine, and we provide tests on how explainers measure up to these needs.
While addressing all needs is impossible, we have found that IntegratedGradients and Saliency tend
to be best at addressing the needs of biomedicine.

How do dataset properties affect the explanations in biomedicine?

We found that biological datasets tend to be quite large in size. This implies that explainers that require
additional training might not be viable, as the time it takes to train them can make them too unwieldy.
Based on this, we believe that gradient-based methods were able to avoid these issues and were the
easiest to adapt.

Class imbalance has a significant effect on every explainer, and given that class imbalance problems
are most common in biology [24], it is crucial to take this into account when using explainers. In our
findings, a model that is overfitted on one of the classes will not have valid explanations when dealing
with other classes. The impact of this finding will depend on the user of the explainer, as a model that
is overfitting on a specific class usually wants to predict that class above all.

We also found that deciding what to explain was not trivial. There were huge differences between the
explainers that focused on edges, nodes and features, or only features. Deciding what aspect of the
graph to explain will have a significant effect on explanation quality, and should be informed based on
domain knowledge. Based on our findings, we believe that finding a good explainer for edge properties
is crucial, as topological features seemed to have the most significant effect on prediction quality.

How differently do gradient-based, perturbation-based, and surrogate explainers perform be-
tween node and graph classification problems in biomedical applications?

We found issues in the trade-off between having accurate model explanations and making sure they
were sparse, which provides a limitation for human users. In many cases, either an explanation is
correct but hard to understand, or easy to understand but incorrect. IntegratedGradients and Saliency
maps were the explainers that could best handle this trade-off, for node classification and graph clas-
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sification, respectively. In case either accuracy or sparsity is more important, the specific explainer will
change; detailed information about which to use can be found in Chapter 5.

We also find that gradient-based methods are consistent and fast, which are two traits desired for
biomedical use. Based on the previously outlined factors, we believe that gradient-based methods are
preferred over perturbation and surrogate explainers. We also found that the underlying GNN model
impacts explanation fidelity. GIN and GraphSAGE models should be prioritized in case an explanation
is needed, regardless of what type of explainer is used.

We find that the underlying models can be resilient to changes, putting the value of other explanations
into doubt. Due to this, we believe that using random explanations as a sanity check is crucial, as this
allows us to understand whether the explainer is actually explaining or whether the model is resilient to
data changes. This approach is also faster to use compared to ROAR [30], and with some guidelines,
it can be crucial in understanding when the explainer is providing insights into the model, or if the model
is resilient to explanations.

We also provide insights for each of the individual metrics that we highlighted:

• RDT-Fidelity: This metric was able to get more nuance in the node classification task versus the
graph classification task. Based on this, we believe that RDT-Fidelity is more useful as a measure
of Fidelity in cases where node-level explanations are needed.

• Fidelity+ and Fidelity-: The metrics do not always correlate, so there are cases where an explana-
tion is good at finding how to change the prediction, but is not able to keep the prediction. Based
on this, domain experts must decide to focus on either sufficient or necessary explanations.

• Kernel distance: The kernel distance was already considerable when comparing the graphs of
the original datasets with themselves, so an approach that can group the original graphs closer
together is needed. We were not able to properly understand how good explainers are at guar-
anteeing that results are still biologically plausible.

• Entropy: Graph classification explanations are a lot less sparse, and might require additional re-
strictions to be understandable. This applies to all explainers, regardless of the type of approach.

• Counterfactual: This metric correlated with Fidelity+, and it needs to be assessed how much new
information it is able to provide.

• Repeatability, VoE, and Time: Gradient-based methods significantly outperform the other ex-
plainer types in these metrics

What strategies should be used when applying general-use GNN explainers in the biomedicine
domain?

The performance of the explainers varies between the two biomedical datasets. For the disease-gene
association task, IntegratedGradients found a balance between fidelity and entropy, while Saliency
maps performed better on the Proteins dataset. Based on this, we believe that IntegratedGradients
should be used for node classification problems, while Saliency should be used for graph classification
problems. Gradient explainers are preferred for both problem types.

The GNN architecture has an effect on explainer performance, and the GIN and SAGE models are
generally easier to explain.

In both datasets, we found evidence suggesting that the underlying graph structure, particularly edge
connections, plays a crucial role in model predictions. This was especially apparent in the Proteins
dataset, where even DummyExplainer achieved reasonable RDT-Fidelity scores, hinting that topologi-
cal properties may carry more predictive information than individual node features. Determining when
to focus on nodes and when to focus on edges remains critical for future work.

We observed that class imbalance has a significant effect on the explainer’s faithfulness in our exper-
iments. This effect in the explainers highlights how explainer use has to take into account how the
model was built. It also highlights that additional steps need to be taken in cases where there is a
significant class imbalance, which is common in biomedicine [24], with rare diseases as an example.
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We find that most explainers need to be tuned to fit the specific needs of the problem, either by focusing
on specific aspects of the explanation or by setting the hyperparameters based on prior knowledge.
We find that the importance of the topology is critical, and is not always easy to extract from given
explanations.

6.2. Limitations and Future Work
Several limitations in our study point to important directions for future research.

Post-Hoc Focus: For our tests, we focus on using post-hoc explainers to remain flexible to different
approaches, which does partly limit our results. Future tests could include intrinsic explanations.

Kernel Method Refinement: The Kernel Distance metric provided little to no new information. Given
the difficulty of finding the distance between two graphs [41], this is not surprising. Finding an alternative
for this should be explored in the future. Some ideas include not normalizing the kernels or using
datasets with consistent node and feature dimensions.

Human Evaluation: Direct evaluation by domain experts would give the most critical information, as
they are the ones who will be using these systems. Systematic tests involving biologists and clinicians
would be essential to define the most vital factors to make explanations useful to them.

Explainer Fine-Tuning: Developing guidelines for the use of explainers in specific biomedical tasks
would greatly help users. This could include automated approaches to identify what needs to be ex-
plained (nodes, edges, or features) based on preliminary data analysis, or information on how to tune
the hyperparameters depending on the problem’s restrictions.

In conclusion, this thesis provides an introduction to what explainableGNNs are, their use in biomedicine,
important metrics for their continued use in the domain, and does an exploratory study of how explain-
ers are affected by usage in the biomedical domain. It highlights pitfalls that affect the biomedicine field
in particular and finds ways in which explainers need to be adapted when being used in the field. We
find that no single explanation is perfect and that selecting which explainer to use will depend signifi-
cantly on the data, problem type, and model being explained; we are able to highlight some use cases
depending on explanation needs.
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A
Extra figures

Explainer Sparsity ↓ Counterfactual ↓

Deconvolution 5.54921 ± 1.25711 0.4717 ± 1.82768
DummyExplainer 11.09628 ± 0.00098 1158.86321 ± 2496.39053
GNNExplainer 9.26114 ± 0.63465 7.53302 ± 48.02521
GraphLIME 0.45557 ± 0.2553 0.67453 ± 2.02185
GuidedBackprop 5.54921 ± 1.25711 0.4717 ± 1.82768
InputXGradient 4.19479 ± 1.30109 0.33491 ± 1.53509
IntegratedGradients 4.19575 ± 1.15522 0.41981 ± 1.6886
PGExplainer 1.82045 ± 0.88433 52269.25 ± 95429.22773
Saliency 5.54921 ± 1.25711 0.16038 ± 1.58869

Table A.1: Original Sparsity and Counterfactual XGDAG
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Figure A.1: Liver Cirrhosis XGDAG vs new methods

Figure A.2: Colorectal Carcinoma XGDAG vs new methods
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Model/Pct 0.
1

0.
2

0.
3

0.
4

0.
5

0.
6

0.
7

0.
8

0.
9

1.
0

IntegratedGradients 0.117966 0.202863 0.282659 0.356696 0.418394 0.476966 0.539158 0.617802 0.706811 0.823462
Saliency 0.123560 0.221948 0.320171 0.411320 0.495722 0.569102 0.636723 0.702369 0.763574 0.823462
InputXGradient 0.109246 0.198091 0.282165 0.356203 0.419710 0.482396 0.542613 0.618625 0.708950 0.823462
Deconvolution 0.106449 0.203685 0.289240 0.360480 0.428266 0.487002 0.550839 0.624054 0.713557 0.823462
GuidedBackprop 0.106449 0.203685 0.289240 0.360480 0.428266 0.487002 0.550839 0.624054 0.713557 0.823462
GNNExplainer 0.133432 0.234288 0.330536 0.414610 0.493912 0.572721 0.639191 0.704508 0.765712 0.823462
DummyExplainer 0.085884 0.166009 0.251069 0.332511 0.410826 0.493748 0.576834 0.660744 0.740375 0.823462
PGExplainer 0.121751 0.220796 0.320665 0.414446 0.500823 0.581606 0.649391 0.725568 0.781836 0.823462

Table A.2: Recall per Explainer XGDAG C0006142. Pct columns represent percentages from 0.1 to 1.0.

Model/Pct 0.
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0.
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0.
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0.
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0.
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0.
9

1.
0

IntegratedGradients 0.538288 0.462664 0.429715 0.406754 0.381660 0.362556 0.351308 0.352218 0.358179 0.375553
Saliency 0.563814 0.506191 0.486743 0.469043 0.452199 0.432591 0.414880 0.400431 0.386943 0.375553
InputXGradient 0.498498 0.451782 0.428964 0.406191 0.382861 0.366683 0.353559 0.352687 0.359263 0.375553
Deconvolution 0.485736 0.464540 0.439720 0.411069 0.390665 0.370185 0.358919 0.355783 0.361597 0.375553
GuidedBackprop 0.485736 0.464540 0.439720 0.411069 0.390665 0.370185 0.358919 0.355783 0.361597 0.375553
GNNExplainer 0.608859 0.534334 0.502501 0.472795 0.450548 0.435343 0.416488 0.401651 0.388027 0.375553
DummyExplainer 0.391892 0.378612 0.381691 0.379174 0.374756 0.375313 0.375858 0.376700 0.375188 0.375553
PGExplainer 0.555556 0.503565 0.487494 0.472608 0.456851 0.442096 0.423135 0.413657 0.396198 0.375553

Table A.3: Precision per Explainer XGDAG C0006142
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0

IntegratedGradients 0.193522 0.282054 0.341008 0.380084 0.399184 0.411965 0.425419 0.448653 0.475432 0.515846
Saliency 0.202699 0.308590 0.386264 0.438289 0.472961 0.491545 0.502402 0.510066 0.513612 0.515846
InputXGradient 0.179217 0.275420 0.340413 0.379558 0.400440 0.416655 0.428145 0.449250 0.476870 0.515846
Deconvolution 0.174629 0.283198 0.348948 0.384116 0.408602 0.420634 0.434636 0.453193 0.479969 0.515846
GuidedBackprop 0.174629 0.283198 0.348948 0.384116 0.408602 0.420634 0.434636 0.453193 0.479969 0.515846
GNNExplainer 0.218893 0.325746 0.398769 0.441795 0.471235 0.494671 0.504349 0.511620 0.515051 0.515846
DummyExplainer 0.140891 0.230813 0.302898 0.354313 0.391963 0.426460 0.455147 0.479838 0.498008 0.515846
PGExplainer 0.199730 0.306988 0.386860 0.441620 0.477827 0.502345 0.512398 0.526913 0.525896 0.515846

Table A.4: F1 per Explainer XGDAG C0006142



50

Model/Pct 0.
1

0.
2

0.
3

0.
4

0.
5

0.
6

0.
7

0.
8

0.
9

1.
0

IntegratedGradients 0.403331 0.403331 0.403331 0.403331 0.403331 0.403331 0.403331 0.403331 0.403331 0.403331
Saliency 0.448407 0.448407 0.448407 0.448407 0.448407 0.448407 0.448407 0.448407 0.448407 0.448407
InputXGradient 0.396458 0.396458 0.396458 0.396458 0.396458 0.396458 0.396458 0.396458 0.396458 0.396458
Deconvolution 0.398980 0.398980 0.398980 0.398980 0.398980 0.398980 0.398980 0.398980 0.398980 0.398980
GuidedBackprop 0.398980 0.398980 0.398980 0.398980 0.398980 0.398980 0.398980 0.398980 0.398980 0.398980
GNNExplainer 0.461794 0.461794 0.461794 0.461794 0.461794 0.461794 0.461794 0.461794 0.461794 0.461794
DummyExplainer 0.371633 0.371633 0.371633 0.371633 0.371633 0.371633 0.371633 0.371633 0.371633 0.371633
PGExplainer 0.451298 0.451298 0.451298 0.451298 0.451298 0.451298 0.451298 0.451298 0.451298 0.451298

Table A.5: AUC per Explainer XGDAG C0006142
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Explainer Time seconds ↓ RDT Fidelity ↑ Fidelity- ↓ Fidelity+ ↑ Mask Kernel Distance ↑

Deconvolution 0.01 ± 0.0 0.83 ± 0.3 0.12 ± 0.33 0.64 ± 0.48 0.0006 ± 0.0
DummyExplainer 0.0 ± 0.0 0.79 ± 0.34 0.25 ± 0.43 0.29 ± 0.45 0.0005 ± 0.0
GNNExplainer 1.11 ± 0.02 0.8 ± 0.33 0.26 ± 0.44 0.0 ± 0.0 0.0006 ± 0.0
GuidedBackprop 0.01 ± 0.0 0.83 ± 0.3 0.12 ± 0.33 0.64 ± 0.48 0.0006 ± 0.0
InputXGradient 0.01 ± 0.0 0.82 ± 0.31 0.39 ± 0.49 0.32 ± 0.47 0.0006 ± 0.0
IntegratedGradients 0.44 ± 0.01 0.81 ± 0.33 0.42 ± 0.5 0.27 ± 0.44 0.0006 ± 0.0
Saliency 0.01 ± 0.0 0.74 ± 0.39 0.02 ± 0.13 0.64 ± 0.48 0.0006 ± 0.0

Table A.6: Proteins GAT Fidelity metrics

Explainer Entropy % ↓ Repeatability ↑ Total Variance ↓ Counterfactual % ↓

Deconvolution 0.78 ± 0.05 1.0 ± 0.0 -0.0 ± 0.0 0.72 ± 0.33
DummyExplainer 0.97 ± 0.0 0.02 ± 0.03 120.45 ± 119.9 0.87 ± 0.25
GNNExplainer 0.95 ± 0.03 0.25 ± 0.18 15.66 ± 26.74 0.72 ± 0.35
GuidedBackprop 0.78 ± 0.05 1.0 ± 0.0 0.0 ± 0.0 0.72 ± 0.33
InputXGradient 0.61 ± 0.07 1.0 ± 0.0 0.0 ± 0.0 0.73 ± 0.34
IntegratedGradients 0.66 ± 0.05 1.0 ± 0.0 -0.0 ± 0.0 0.77 ± 0.34
Saliency 0.78 ± 0.05 1.0 ± 0.0 0.0 ± 0.0 0.73 ± 0.34

Table A.7: Proteins GAT Other metrics

Explainer Time seconds ↓ RDT Fidelity ↑ Fidelity- ↓ Fidelity+ ↑ Mask Kernel Distance ↑

Deconvolution 0.01 ± 0.0 0.85 ± 0.28 0.17 ± 0.38 0.66 ± 0.48 0.0007 ± 0.0001
DummyExplainer 0.0 ± 0.0 0.85 ± 0.3 0.24 ± 0.43 0.19 ± 0.39 0.0005 ± 0.0
GNNExplainer 0.8 ± 0.01 0.85 ± 0.29 0.35 ± 0.48 0.0 ± 0.0 0.0007 ± 0.0001
GuidedBackprop 0.01 ± 0.0 0.85 ± 0.28 0.17 ± 0.38 0.66 ± 0.48 0.0007 ± 0.0001
InputXGradient 0.01 ± 0.0 0.82 ± 0.35 0.43 ± 0.5 0.49 ± 0.5 0.0007 ± 0.0001
IntegratedGradients 0.31 ± 0.02 0.82 ± 0.36 0.33 ± 0.47 0.47 ± 0.5 0.0007 ± 0.0001
Saliency 0.01 ± 0.0 0.81 ± 0.34 0.04 ± 0.21 0.71 ± 0.45 0.0007 ± 0.0001

Table A.8: Proteins GCN Fidelity metrics

Explainer Entropy % ↓ Repeatability ↑ Total Variance ↓ Counterfactual % ↓

Deconvolution 0.87 ± 0.04 1.0 ± 0.01 -0.0 ± 0.0 0.75 ± 0.29
DummyExplainer 0.97 ± 0.0 0.02 ± 0.03 120.42 ± 119.68 0.79 ± 0.27
GNNExplainer 0.96 ± 0.03 0.34 ± 0.2 8.91 ± 16.13 0.68 ± 0.31
GuidedBackprop 0.87 ± 0.04 1.0 ± 0.01 -0.0 ± 0.0 0.75 ± 0.29
InputXGradient 0.73 ± 0.06 1.0 ± 0.0 -0.0 ± 0.0 0.75 ± 0.31
IntegratedGradients 0.73 ± 0.06 1.0 ± 0.0 -0.0 ± 0.0 0.69 ± 0.3
Saliency 0.87 ± 0.04 1.0 ± 0.01 -0.0 ± 0.0 0.75 ± 0.3

Table A.9: Proteins GCN Other metrics

Explainer Time seconds ↓ RDT Fidelity ↑ Fidelity- ↓ Fidelity+ ↑ Mask Kernel Distance ↑

Deconvolution 0.01 ± 0.0 0.85 ± 0.23 0.0 ± 0.0 0.71 ± 0.45 0.0007 ± 0.0001
DummyExplainer 0.0 ± 0.0 0.88 ± 0.2 0.17 ± 0.38 0.15 ± 0.36 0.0005 ± 0.0
GNNExplainer 0.81 ± 0.02 0.9 ± 0.19 0.38 ± 0.49 0.0 ± 0.0 0.0006 ± 0.0001
GuidedBackprop 0.01 ± 0.0 0.85 ± 0.23 0.0 ± 0.0 0.71 ± 0.45 0.0007 ± 0.0001
InputXGradient 0.01 ± 0.0 0.85 ± 0.23 0.45 ± 0.5 0.54 ± 0.5 0.0007 ± 0.0001
IntegratedGradients 0.26 ± 0.02 0.89 ± 0.21 0.37 ± 0.48 0.46 ± 0.5 0.0007 ± 0.0001
Saliency 0.01 ± 0.0 0.65 ± 0.33 0.0 ± 0.0 0.71 ± 0.45 0.0007 ± 0.0001

Table A.10: Proteins GIN Fidelity metrics
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Explainer Entropy % ↓ Repeatability ↑ Total Variance ↓ Counterfactual % ↓
Deconvolution 0.9 ± 0.03 1.0 ± 0.0 -0.0 ± 0.0 0.78 ± 0.3
DummyExplainer 0.97 ± 0.0 0.02 ± 0.03 120.49 ± 119.77 0.81 ± 0.26
GNNExplainer 0.95 ± 0.03 0.47 ± 0.19 6.49 ± 11.48 0.74 ± 0.32
GuidedBackprop 0.9 ± 0.03 1.0 ± 0.0 -0.0 ± 0.0 0.78 ± 0.3
InputXGradient 0.75 ± 0.05 1.0 ± 0.0 0.0 ± 0.0 0.77 ± 0.3
IntegratedGradients 0.76 ± 0.06 1.0 ± 0.0 -0.0 ± 0.0 0.75 ± 0.32
Saliency 0.9 ± 0.03 1.0 ± 0.0 -0.0 ± 0.0 0.78 ± 0.3

Table A.11: Proteins GIN Other metrics

Explainer Time seconds ↓ RDT Fidelity ↑ Fidelity- ↓ Fidelity+ ↑ Mask Kernel Distance ↑

Deconvolution 0.01 ± 0.0 0.93 ± 0.19 0.03 ± 0.16 0.74 ± 0.44 0.0007 ± 0.0001
DummyExplainer 0.0 ± 0.0 0.92 ± 0.2 0.18 ± 0.38 0.12 ± 0.33 0.0005 ± 0.0
GNNExplainer 0.69 ± 0.02 0.91 ± 0.22 0.43 ± 0.5 0.0 ± 0.0 0.0006 ± 0.0001
GuidedBackprop 0.01 ± 0.0 0.93 ± 0.19 0.03 ± 0.16 0.74 ± 0.44 0.0007 ± 0.0001
InputXGradient 0.01 ± 0.0 0.95 ± 0.17 0.38 ± 0.49 0.15 ± 0.36 0.0007 ± 0.0001
IntegratedGradients 0.23 ± 0.02 0.95 ± 0.16 0.46 ± 0.5 0.1 ± 0.3 0.0007 ± 0.0001
Saliency 0.01 ± 0.0 0.89 ± 0.25 0.0 ± 0.0 0.74 ± 0.44 0.0007 ± 0.0001

Table A.12: Proteins SAGE Fidelity metrics

Explainer Entropy % ↓ Repeatability ↑ Total Variance ↓ Counterfactual % ↓

Deconvolution 0.88 ± 0.04 1.0 ± 0.0 -0.0 ± 0.0 0.74 ± 0.37
DummyExplainer 0.97 ± 0.0 0.02 ± 0.03 120.4 ± 119.82 0.75 ± 0.36
GNNExplainer 0.95 ± 0.03 0.34 ± 0.22 12.3 ± 23.09 0.67 ± 0.39
GuidedBackprop 0.88 ± 0.04 1.0 ± 0.0 -0.0 ± 0.0 0.74 ± 0.37
InputXGradient 0.7 ± 0.06 1.0 ± 0.0 -0.0 ± 0.0 0.71 ± 0.38
IntegratedGradients 0.71 ± 0.05 1.0 ± 0.0 0.0 ± 0.0 0.73 ± 0.38
Saliency 0.88 ± 0.04 1.0 ± 0.0 -0.0 ± 0.0 0.75 ± 0.37

Table A.13: Proteins SAGE Other metrics
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