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3D imaging by fast deconvolution algorithm
in short-range UWB radar for concealed
weapon detection

timofey savelyev
1,2

and alexander yarovoy
1

A fast imaging algorithm for real-time use in short-range (ultra-wideband) radar with synthetic or real-array aperture is
proposed. The reflected field is presented here as a convolution of the target reflectivity and point spread function (PSF) of
the imaging system. To obtain a focused 3D image, the proposed algorithm deconvolves the PSF out from the acquired
data volume with high speed due to fast Fourier transform and implementation in frequency-wavenumber domain. Then
the result is tested against two numerical criteria for efficiency, namely error and instability, whose optimal values can be
obtained iteratively. Since the PSF differs with distance, the algorithm suits mainly applications with relatively small
objects such as concealed weapon detection. Using several PSFs allows us to image a certain range of interest by their succes-
sive deconvolution from the same data. Performance of the algorithm has been evaluated experimentally and compared with
that of Kirchhoff migration. Measurements were carried out by a 5–25 GHz synthetic aperture radar in the lab, and scenarios
included a gun and a ceramic knife in free space, on a large metal plate, and a gun concealed on a dummy under a thick
raincoat. The results demonstrate sufficient image quality obtained in a fraction of time.
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I . I N T R O D U C T I O N

High-resolution microwave radar built on ultra-wideband
(UWB) technology suits imaging applications which require
a cm-order resolution. This holds especially for operational
ranges not exceeding the radar aperture size, i.e. 1–2 m.
Such a radar is seen as a promising sensor for concealed
weapon detection with smaller cost and complexity than
those of mm-wave and THz systems [1]. In general, an
active sensor delivers to the operator a 3D image of the
scene after digital focusing of the acquired electromagnetic
field. Thus, the speed of a focusing algorithm becomes of
crucial importance for real-time use.

The state-of-the-art in UWB short-range imaging radars
features advanced algorithms originating from seismic inte-
gration methods. Kirchhoff migration is proved to be one of
the most accurate reconstruction techniques in time
domain, while Stolt migration in frequency-wavenumber
domain is famous for its fastness [2–4]. In spite of their advan-
tages, the first one is the slowest while accuracy of the second
depends heavily on spectral interpolation. Another group of
algorithms (SEABED and others) aims at fast reconstruction
of the shape of reflecting surfaces by transforming the

reflected quasi-wavefronts, defined from the signal peaks, to
images [5]. This approach might have difficulty with
imaging of complex targets through clothes.

A separate imaging method makes use of deconvolution of
the a priori estimated system-medium-target properties and as
such it provides a higher resolution in the focused image. The
deconvolution-based imaging as evolved as a research direc-
tion in geophysical applications since long ago. One can
find a thorough comparison of three imaging techniques,
namely image extraction by travel time, cross-correlation
with source wavelet, and deconvolution with source wavelet
in [6]. It shows that deconvolution by a Wiener inverse
filter outperforms the others in high signal-to-noise scenarios
and does no worse than cross-correlation imaging at low
signal-to-noise levels. In a case when the medium-target prop-
erties are known with insufficient accuracy, one can try itera-
tive and semi-blind deconvolution methods developed for
magnetic archaeological prospecting in [7].

Regarding UWB radar imaging, deconvolution has been
already used in detection of landmines, i.e. objects of simple,
mostly cylindrical shape by ground penetrating radar [8–
11]. The technique estimates firstly a point spread function
(PSF) that expresses the radar impulse response at all possible
target positions along with properties of the medium. Then
the PSF is deconvolved out from the measured data volume
by means of a Wiener inverse filter and fast Fourier transform
(FFT) [11]. In this work, we extend that approach to the more
demanding case of complex targets, higher resolution, and
wider bandwidth.
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The paper is organized as follows. Section II describes the
imaging principle and estimation of the PSF. Section III
focuses on a regularized inverse filter with criteria for effi-
ciency. Section IV presents images of metallic and non-
metallic weapons obtained by synthetic aperture radar
(SAR) measurements, and evaluates the performance of the
technique. Conclusions are summarized in Section V.

I I . I M A G I N G P R I N C I P L E

A) Deconvolution
Imaging by deconvolution treats the scattered field as a super-
position of reflections from point-like scatterers forming the
target’s surface. That means the field received by radar aper-
ture represents a convolution of the PSF with target reflectivity
distribution or with the true shape of the target. In the 3D
case, we acquire the data with a 2D synthetic or real-antenna
array (aperture) and attempt to reconstruct a target whose
reflectivity changes over the aperture and with distance.
Since the antenna beamwidth increases with distance, the
PSF also changes with distance, which immediately limits
applicability of deconvolution to relatively flat target surfaces.
Imaging of weapons concealed on a human body follows such
a scenario. A person under test should stand at a fixed distance
from the sensor, while a few PSFs can be estimated beforehand
with a small step in distance to image successively concealed
objects of possibly different thickness.

Mathematically, the received field in space-time domain or
the radar data volume is given by

S(x, y, t) = H(x, y, t z0| ) ⊗L(x, y, t z0| ), (1)

where H(x, y, t z0| ) expresses the PSF as a function of horizon-
tal and vertical offsets of the virtual antenna with respect to a
point-like scatterer at a given distance z0, and of time;
L(x, y, t z0| ) stands for the target reflectivity (image) at the
distance z0; and operator ⊗ denotes convolution over x, y
and t. Having estimated the PSF and measured the radar
volume, we compute the target reflectivity by deconvolution

L(x, y, t z0| ) = S(x, y, t) ⊗−1 H(x, y, t z0| ), (2)

which gives a 3D image L(x, y, t z0| ) via the relationship
z = ct/2 accounting for propagation in the air with the
speed of light c.

Estimation of the PSF for particular imaging radar can be
done beforehand either by modeling or by precise measure-
ment. Figure 1 illustrates two 2D PSFs H(y, t 50| ) and
H y, t 60|
( )

, which were measured in the vertical plane from
two small metal spheres of a 2 cm diameter, placed at pos-
itions (0, 50) and (0, 60) cm, respectively. The measurement
was done by a 5–25 GHz laboratory radar system whose
description one will find in Section IV. The experimental
image highlights the difference in shape between the two
hyperbolas, which causes different deconvolution results. In
general, only one PSF should be measured at a time to be
used in (2).

Now the imaging strategy looks as follows:

1) Estimate a set of N PSFs separated from each other by a
small distance related to the downrange resolution of the

radar. Apparently N should not be large if a person
under inspection stands at a given spot. N represents an
interval defined by a positioning error and thickness of
clothes.

2) Compute N respective images by deconvolution for the
acquired radar volume.

3) Combine the obtained images either into one image or into
a video sequence (to see multiple objects at different
distances).

4) Visualize the result in a clear way to the operator.

B) Kirchhoff migration
In order to illustrate a proper quality of the images obtained
by deconvolution, we compare them with the images obtained
by Kirchhoff migration for the same scenarios. Generally,
Kirchhoff migration based on wave equation is seen as one
of the most accurate reconstruction techniques because it
accounts for the wavefront of the scattered electromagnetic
field. As a space-time integration technique, it provides the
highest signal-to-noise ratio (SNR) in the focused image at
the cost of relatively long computation [2, 3]. It requires a
user-defined 3D grid with a certain voxel at its input and
then it migrates the acquired data volume onto that grid.
According to the formulation for multi-static radar given in
[3], Kirchhoff migration can be expressed as follows:

L x, y, z
( )

=
∫∫

cosf1 + cosf2

( )

× 1
v
∂

∂t
s x′, y′, t + R1 + R2

v

( )
dx′dy′ (3)

where L(x,y,z) represents the target reflectivity at a grid-point
(x, y, z); s(x′, y′, t) is the field received at a point (x′, y′, t); R1

and R2 express the distances between the grid-point (x, y, z)
and Tx- and Rx-antennas, respectively; f1 and f2 indicate
the respective aspect angles; v stands for the propagation vel-
ocity. Given a measurement geometry along with a grid of
interest, the cosines and travel times in (3) can be computed
beforehand and organized in look-up tables to speed up com-
putation. Note that L (x, y, z) and s(x′, y′, t) in (3) express

Fig. 1. PSFs measured at 50 and 60 cm distances.
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scalar values with different coordinates, which means rep-
etition of the integration procedure for each grid-point (x, y,
z). Meanwhile, deconvolution (2) deals with data volumes
with the same coordinates and delivers a focused 3D image
at once.

I I I . R E G U L A R I Z E D 3 D I N V E R S E
F I L T E R I N G

The fastest classical way of performing deconvolution uses a
Wiener inverse filter in frequency domain along with FFT
[12]. In our case, we extend it to the frequency-wavenumber
domain as follows:

İ kx , ky , f
( )

=
Ṡ kx , ky , f
( )

· H∗ kx , ky, f
( )

Ḣ kx , ky, f
( )

· H∗ kx , ky , f
( )

+ b
, (4)

L x, y, t
( )

= IFFT İ kx , ky , f
( )[ ]

, (5)

where İ kx , ky , f
( )

, Ṡ kx , ky, f
( )

, and Ḣ kx , ky, f
( )

are the
complex spectra of the focused image, measured radar
volume, and PSF, respectively; IFFT means an inverse FFT;
symbol ∗ stands for complex conjugate, and b denotes the
regularization parameter originating from the inverse SNR.
From here on we treat deconvolution as an ill-posed inverse
problem by means of the regularization theory. Note piecewise
multiplication of 3D matrices in (4) and later on.

Proper selection of the regularization parameter defines the
image quality that must satisfy certain criteria for efficiency.
The regularized solution is seen as a trade-off between stability
and accuracy of deconvolution. Stability means negligible
ringing in the 1D deconvolution result or a low artifact level
in the image. Accuracy can be defined as a measure of simi-
larity between the original signal and its reconstruction
obtained by convolution of the found result with the PSF. A
stable solution does not always mean an accurate solution.
Normally lesser the stability larger the accuracy.
Furthermore, if deconvolution produces an unstable and inac-
curate result, this means a physically incorrect PSF.

Two complementary numerical criteria, namely error and
instability, have been proposed in [11] for deconvolution of
UWB signals. In the 1D case, the criteria are given by

d = ‖s t( ) − ŝ t( )‖2

‖s t( )2‖ + ‖ŝ t( )‖2
· 100%, (6)

g = ‖L t( )‖2

‖s t( )‖2
· 100%, (7)

where s(t), L(t) are the received signal and deconvolution
result, respectively; ŝ t( ) = L t( ) ⊗ h t( ) is the reconstructed
signal; operator ‖ · · · ‖2 stands for the two-norm (square
root from energy) of a vector. The error becomes 100%
when s t( ) and ŝ(t) have the same amplitude but opposite
polarity. The instability of more than 100% means that the
signal energy after deconvolution exceeds that found earlier,
which indicates the presence of ringing. Starting from a low
value and iteratively increasing the regularization parameter

b we arrive at a solution that respects admissible thresholds
for error and instability. In order to remove influence of the
PSFs energy on instability, we normalize a realistic PSF hr(t)
obtained by measurement or modeling beforehand, by its
2-norm as h t( ) = hr t( )/‖hr(t)‖2.

Figure 2 illustrates the efficiency of deconvolution for
signals acquired from a small metal sphere and a metal gun,
more specifically 1% error and 35% instability. These values
were obtained with the regularization parameter correspond-
ing to an SNR of 44 dB. Note that deconvolution shifts the
signal back in time (Fig. 2(c)) because it removes the phase
of the PSF from the received signal. However, this shift is con-
stant and, if necessary, it can be easily compensated for (in 2D
and 3D cases as well).

In the 3D case, the formulas for the PSF, reconstructed
signal, error, and instability become as follows:

H x, y, t
( )

=
Hr x, y, t

( )
‖Hr x, y, t

( )
‖F

, (8)

Ŝ x, y, t
( )

= IFFT İ kx , ky, f
( )

· Ḣ kx , ky, f
( )[ ]

, (9)

d =
‖S x, y, t
( )

− Ŝ x, y, t
( )

‖F

‖S x, y, t
( )

‖F + ‖Ŝ x, y, t
( )

‖F

· 100%, (10)

g =
‖L x, y, t

( )
‖F

‖S x, y, t
( )

‖F
· 100%, (11)

where operator ‖ · · · ‖F computes the Frobenius norm (square
root from energy) of a matrix. From our experience,
thresholds d ≤ 20% and g ≤ 50% provide good image
quality in most scenarios. Since an ill-posed inverse problem
by definition has many similar acceptable regularized sol-
utions, using the same thresholds for most target scenarios
is more relevant than attempting to find an optimal combi-
nation for every scenario (data volume) separately.

The above criteria depend on the regularization parameter
that expresses the inverse SNR in the data volume. Our decon-
volution algorithms start with an initial guess for the SNR,
which can be estimated on a calibration dataset beforehand.
Once the SNR is assumed in the space-time domain, the regu-
larization parameter is defined in frequency-wavenumber
domain as follows:

sn =
max[ S x, y, t

( )∣∣ ∣∣]
SNR

, (12)

Pn = K · L · M · s2
n, (13)

b = Pn

mean P kx , ky , f
( )[ ] , (14)

where operator max[ · · · ] gives the maximal value of a data
volume; operator . . .| | returns absolute values of a data volume;
s2

n is the noise variance in space-time domain; K, L, M express
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the dimensions of the data volume; Pn stands for the noise power
in frequency-wavenumber domain; P(kx, ky, f ) is the volume of
power spectral density of the data in frequency-wavenumber
domain; operator mean[ · · · ] finds a mean value of a data
volume. Obviously, the higher the SNR the lower the error, and
the higher the instability. A well-assumed SNR gives a proper
deconvolution result in one run, if not we adjust it iteratively
with a step of 1 dB.

A satisfactory deconvolution result needs one more step to
become a solid 3D image. In order to make it unipolar and to
smooth oscillations we compute the envelope of each time-
domain signal in L(x, y, t) by means of a Hilbert transform.
The latter delivers a proper positive envelope for UWB
signals whose frequency band lies far enough from 0 Hz
[13]. Figure 2(c) gives an example of such a signal obtained
by deconvolution in the 5–25 GHz band.

I V . I M A G I N G R E S U L T S

The proposed deconvolution algorithm was validated on the
high-quality data obtained by precise SAR measurements in
an anechoic chamber. A metal gun (a toy actually) and a
fully non-metal ceramic knife have been used as targets
which we imaged together in free space and on a large metal
plate. To estimate the PSF, we measured a single metal
sphere with a diameter of 2 cm. Next to that, the gun was
fixed on the chest of a dummy and imaged through a thick
raincoat. We used a plastic dummy plated with nickel spray

instead of a living person because each SAR measurement
lasted several hours. The images obtained by deconvolution
are compared here with those of Kirchhoff migration in
terms of quality and computational time.

A) Experimental setup
The measurements were conducted by means of a calibrated
vector network analyzer (Agilent E8364B). The stepped-
frequency data were acquired within a frequency band of 5–
25 GHz with a 10 MHz step, 300 Hz intermediate frequency
bandwidth, and 2 dBm transmitted power. These settings
resulted in a large dynamic range of 120 dB with respect to
the receiver noise. The selected 5–25 GHz band fitted well
with the transfer function of UWB antennas we used [14],
and meanwhile it gives the down-range resolution of
0.75 cm according to

DR = c
2B

, (15)

where c is the speed of light, and B is our bandwidth. This res-
olution determines actually the minimal detectable thickness
of a weapon concealed on the body.

A synthetic aperture of 60 × 60 cm was formed by move-
ment of one Tx/Rx antenna pair consisting of vertically
oriented Vivaldi antennas, in the X–Y plane with a 1 cm
step in both directions. Figure 3(a) illustrates the setup
wherein an X–Y translation table moves the equipment. The

Fig. 2. 1D deconvolution with 44 dB SNR, 1% error and 35% instability: (a) estimated PSF; (b) original received signal and reconstructed signal; (c) signal after
deconvolution.
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target distance was chosen to be 40 cm in order to have it
smaller than the aperture for a better cross-range resolution
given by

DL = lc

L
R, (16)

where lc ¼ 2 cm is the central wavelength, R ¼ 40 cm is the
target distance, and L ¼ 60 cm is the synthetic aperture in
X- or Y-plane. Thus, we may expect the cross-range resolution
of about 1.33 cm for the given setup.

The measurement with a dummy, shown in Fig. 3(b),
required a larger scan, more specifically 150 × 74 cm with
the center pointing at the solar plexus. The gun was fixed
on the body parallel to the aperture not only for the sake of
simplicity but also assuming that in reality a person under
test may be asked to turn around in front of the scanning
system. Note that the raincoat consists of a plastic layer
from outside and a layer of artificial fur from inside. The dis-
tance between the aperture and the surface of the dummy
equals 50 cm.

To be independent from a transmission–reception UWB
radar technology (e.g. impulse, noise, frequency-modulated
continuous wave, and stepped-frequency) our deconvolution
algorithm requires the time-domain data at its input.
Therefore, the frequency-domain data acquired by the
network analyzer were pre-processed as follows: (a) subtrac-
tion of the background (antenna crosstalk), which we
measure at the SAR center; (b) multiplication of each 1D
data by a Hann window to avoid ringing in time domain;
(c) padding each 1D data with zeros to obtain an interpolated
signal after transformation; (d) transformation into time
domain by IFFT; and (e) time gating of unwanted reflections.
Calibration was performed by estimating a time delay in the
Tx/Rx antenna pair from the sphere’s reflection at a given dis-
tance and then by respective time shift of all the data. Prior to
transformation to frequency-wavenumber domain for inverse
filtering (4), the spatial 2D data at each time instant in
S x, y, t
( )

were multiplied by a 2D Tukey window, which fea-
tures a flat top and smooth edges, in order to avoid ripples
after transformation. Standard 3D FFT and IFFT procedures

were used to transform the data to frequency-wavenumber
domain and back.

B) PSF
A pre-processed data volume, which has been acquired over a
metal sphere placed in the middle of the synthetic aperture,
was used as the PSF in the deconvolution algorithm. The dis-
tance between the antennas’ aperture and the closest sphere’s
point was set at 40 cm. Figure 4 shows a focused 2D image of
the sphere in the logarithmic amplitude scale that reduces
difference between strong and weak scatterers for better visu-
alization. This image was obtained from the focused data
volume by energy projection onto the vertical plane. In fact,
it expresses the focused PSF of our imaging radar, which fea-
tures a sidelobe level of less than 30 dB along with a cross-
range resolution of 1 cm at 210 dB. The image was focused
by deconvolution with the regularization parameter (14) cor-
responding to an SNR of 40 dB, which gave an error d = 6%
and instability g = 17%. The increase of SNR results in
appearing of artifacts above 230 dB, while its decrease broad-
ens the focused beam. The found SNR can be used as an initial
value in deconvolution of all the datasets acquired later on. In

Fig. 3. Measurement setup: (a) metal gun and ceramic knife on metal plate; (b) metal gun on conductive dummy under raincoat.

Fig. 4. PSF measured from metal sphere of 2 cm diameter and focused by
deconvolution.
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general, both unfocused and focused PSFs represent the key
characteristics of the imaging system with deconvolution.

C) Imaging of unconcealed weapons
In the next step, a metal gun and a fully non-metallic ceramic
knife, placed at positions (212, 212, 40) and (12, 12, 40) cm,
respectively, have been imaged. The distance z ¼ 40 cm
means a distance between the antennas’ aperture and the
rear side of the objects fixed on a large plate of styrene
foam. Figure 5(a) shows the weapons imaged by deconvolu-
tion at correct positions and with recognizable shape in a
20 dB dynamic range. The image was obtained with the fol-
lowing deconvolution parameters: 50 dB SNR, 15% error
and 19% instability. Comparison with the presumably most
accurate result obtained by Kirchhoff migration (Fig. 5(b)
proves the high performance of deconvolution. Note that
Kirchhoff migration was done for an artificially defined grid
of 60 × 60 × 30 cm with a voxel of 5 × 5 × 5 mm.
Deconvolution defines the grid from the acquired data

automatically, which is here a volume of 61 × 61 × 4096
points. For the used 1 cm SAR step and 2 ps sample interval,
we receive a voxel of 10 × 10 × 0.3 mm.

Imaging of the weapons on a large metal plate can be seen
as a quite difficult scenario for their detection in the presence
of the strongest possible unwanted reflection. Images focused
by deconvolution and Kirchhoff migration are presented in
Fig. 6(a) and (b) respectively. Both techniques reconstruct
the recognizable shapes of the weapons in a 10 dB dynamic
range although with some distortion. Owing to high sensi-
tivity of deconvolution to the target distance the metal plate
is not seen in Fig. 6(a). Moreover, in order to obtain this
result we used an SNR of 46 dB, which is in fact smaller
than the actual SNR defined by the metal plate. Thus, we
received a large error of 69% along with 5% instability.

D) Concealed weapon detection
In the scenario with a concealed gun, we measured not only
the dummy but also three PSFs for the same aperture and

Fig. 5. Image of metal gun and ceramic knife in free space: (a) focused by deconvolution and (b) focused by Kirchhoff migration.

Fig. 6. Image of metal gun and ceramic knife on metal plate: (a) focused by deconvolution and (b) focused by Kirchhoff migration.
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Fig. 7. Image of gun on dummy under raincoat, shown in 12 dB dynamic range: (a–c) focused by deconvolution with different PSFs and (d) focused by Kirchhoff
migration.
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three distances: 47, 50, and 53 cm, respectively. The best
deconvolution result showing the shape of the gun most
clearly was obtained with the PSF measured at 47 cm.
Recalling the 50 cm distance to the body and accounting for
the thickness of the gun we have a good agreement here
between the result and the experimental setup. Figure 7 pre-
sents the images focused by deconvolution with different
PSFs, and also by Kirchhoff migration that has been
implemented for a grid of 150 × 74 × 20 cm with a 5 × 5 ×
5 mm voxel. The images obtained by deconvolution have a
voxel of 10 × 10 × 0.3 mm. They were focused with the regu-
larization parameter corresponding to an SNR of 46 dB, which
gave an error and instability of about 6% and 19%,
respectively.

The images represent 2D projections of focused data
volumes onto the vertical plane. A significant advantage of
3D imaging comes from the possibility to process the
focused volume slice-by-slice for the most appropriate visual-
ization. Knowing that the gun protrudes from the body to
some extent, a simple visualization algorithm assigns larger
intensity to slices at smaller distances, sums them up, and
thus makes the gun brighter than the body.

The obtained results demonstrate that Kirchhoff migration
delivers a better image of the concealed weapon (Fig. 7(d))
than the best deconvolution result (Fig. 7(a)). However, the
latter provides a reasonable image quality at the cost of
much faster computation.

E) Computational time
The imaging algorithms have been implemented in MATLAB
running on a laptop of the latest generation with Intel Core i7
2.3 GHz processor, Ivy Bridge architecture, 8 GB RAM and
Windows 7 64-bit. In terms of computational time, deconvo-
lution focuses a data volume of 151 × 75 × 4096 points in 9 s
for one PSF including visualization (Fig. 7(a–c)). Kirchhoff
migration produces an image of 301 × 149 × 41 voxels in
13 min (Fig. 7(d)).

Unlike Kirchhoff migration, deconvolution does not create
a spatial volumetric grid artificially but works with the
acquired data directly. The voxel is defined here by how
densely we perform spatial and temporal sampling of the scat-
tered field, i.e. by the SAR step and sample interval. The above
images focused by deconvolution have a voxel of 10 × 10 ×
0.3 mm. Although deconvolution improves the down-range
resolution, 0.3 mm is too small in our case because it
depends physically on the selected 20 GHz bandwidth which
gives 7.5 mm. Numerical experiments have shown that the
images remain nearly the same unless the sample interval
does not exceed 16 ps meaning 512 points in a signal. The
computational time after such downsampling becomes 1.4 s
for deconvolution. Further reducing the 151 × 75 × 512

data volume to 128 × 64 × 512 points (to make the full use
of FFT) does not speed up focusing drastically, and gives 1
s. The speed of Kirchhoff migration does not change with
downsampling in the time domain. However, increasing its
voxel to 7.5 × 7.5 × 7.5 mm reduces the computational time
to 4 min, while the image deteriorates slightly. Table 1 sum-
marizes computational efficiency of the imaging algorithms
in the considered cases.

V . C O N C L U S I O N

A fast imaging algorithm based on 3D deconvolution has been
developed for concealed weapon detection by UWB radar.
The algorithm treats the scattered field as a superposition of
reflections from point-like scatterers and deconvolves the
PSF out from the measured radar volume. Since the PSF
differs with the target distance, deconvolution performs well
only for a given range. This limitation can be bypassed in
practice by estimation of a few PSFs at the distances of interest
and by their successive deconvolution. High imaging speed
comes from the use of FFT and 3D inverse filtering in
frequency-wavenumber domain. Implementation of an
inverse filter involves the regularization theory and two pro-
posed numerical criteria allowing us to find an optimal regu-
larization parameter iteratively.

The deconvolution algorithm has been tested on the exper-
imental set of data acquired by short-range SAR with a low
transmitted power over the frequency band of 5–25 GHz. It
delivers visually recognizable 3D images of a metal gun and
a ceramic knife both in free space and on a large metal
plate. Next to that, the metal gun has been successfully
imaged through a thick raincoat on a dummy. Comparison
with the imaging by Kirchhoff migration, seen as one of the
most accurate reconstruction techniques, has shown that the
developed deconvolution algorithm provides sufficient
quality of imagery at the cost of much faster computation. It
is able to image a person within 1.4 s versus 240 s by
Kirchhoff migration. Since deconvolution requires the knowl-
edge of the PSF a priori, it can be used in systems with certain
scanning rules such as a constant distance to a person under
test, turning around in front of the system, etc.

It has also been demonstrated that concealed weapon detec-
tion gains from proper visualization of the focused data. In this
respect, computer processing of a focused 3D image
slice-by-slice gives a way to various visualization techniques.

A C K N O W L E D G E M E N T S

This work has been done within the Weapon Scanner project
in cooperation with Rotterdam Rijnmond Police and

Table 1. Computational efficiency for an image of 150 × 74 × 20 cm.

Algorithm Data volume Voxel [mm] Imaged grid [vox] Computational time [s]

Deconvolution 151 × 75 × 4096 10 × 10 × 0.3 151 × 75 × 668 9
151 × 75 × 512 10 × 10 × 2.4 151 × 75 × 84 1.4

Kirchhoff migration 151 × 75 × 4096 5 × 5 × 5 301 × 149 × 41 780
151 × 75 × 512 5 × 5 × 5 301 × 149 × 41 780

151 × 75 × 4096 7.5 × 7.5 × 7.5 201 × 100 × 28 240
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