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AN EXACT SOLUTION TO THE COMPRESSIBLE LAMINAR BOUNDARY

LAYER EQUATIONS FOR THE FLAT PLATE WITH CONSTANT HEAT FLUX 

SUMMARY 

An exact solution is found to Chapman and Rubesin's 

transformed laminar boundary-layer equations, in the case of 

a flat plate with constant heat-flux. It is shown that the 

ratio of the heat-transfer coefficients for constant heat-flux 

and for constant temperature (i.e. isothermal case) is a 

constant independent of the Reynolds number, Mach number and 

Prandtl number. This property indicates that experimental 

results are obtained with a constant heat-flux technique which 

are simply related to results that could be obtained with the 

usual isothermal methode 

The theory 1S experimentally checked by using an 

improved steady state technique derived from Seban's, which 

gives "uncorrected" data that are in agreement with the theory 

to within 10% at M = 2 and 20% at low speed. 

INTRODUCTION 

There exist two simple limiting cases in which the 

study of heat-conduction is eased ~ the isothermal case 

(i.e. constant wall temperature) and the case where heat is 

uniformly dissipated at the surface (i.e. constant heat-flux). 

The former is very weIl known, specially in the case 

of a flat wall for which an exact solution of the boundary

layer equation is known (see for examp~ ref.I). Moreover, most 

of the experiments are made with isothermal conditions. 

The latter is not so weIl known and the purpose 

of the present study 1S to solve the laminar boundary-Iayer 

equationsin the case of a flat plate with constant heat-transfer. 



In particular. it is interesting as a first-step 

to relate the corresponding heat-transfer coefficient to 

the one obtained in the isothermal case. with a view to 

developing a steady-state technique of heat-transfer 

measurement which could be used to study more complicated 

types of flow. 

The research was sponsored by the Air Force Office of 

Scientific Research, O.A.R., through the European Office. 

Aerospace Research. United States Air Force under Grant 

N° AF EOAR 63-45. Most of the theoretical developments 

have already been reported in ref.2. 

SOLUTION TO THE BOUNDARY-LAYER EQUATIONS 

The problem consists in finding a solution to 

the boundary-layer equations for the supersonic flow over 

a flat surface on which heat is uniformly dissipated. One 

seeks the velocity and temperature profiles in the boundary

layer as weIl as the temperature distribution. heat-transfer 

and skin-friction coefficients at the wall. 

The problem is treated in a way very similar to 

that used by Chapman and Rubesin (ref.l) who gave an exact 

solution for the flow over a "compressible" flat plate in the 

case of a polynomial wall temperature distribution and ~n 

particular for the isothermal case . The transformed boundary

layer equations given by Chapman and Rubesin are used here 

and solved for our particular boundary conditions. 

The two-dimensional compressible boundary-layer 

equations are yin the case of zero pressure gradient : 



pu Ê:. + pv ~ e 
( ll~ ) = oy ox oy oy 

a(pU ) +o~PV) = 0 
eX oy 

pU oT + aT = 1 0 
( ).1 !.!.) + II (~)2 pV 

ai ay p oy oy c oy 
r p 

By us~ng von Mises ' transformat i on. they are rewritten as 

~= 
eX 

where ~ ~s the stream funct i on defined by 

u = 
P"" a~ 

v= - P-ax 

and C is a coefficient introduced by 

).1 T 
- = C 
).1"" T"" 

with ( from 8uther1and v s formu1a) 

~ Tv Too + S 
C= T 'T'" +8 

"" w 

( 1 • 1 ) ; ( 1 • 2 ) 

3 . 

l' ~s a mean wa11 temperature, 8 is a constant equa1 to 102 . 5 
w 

and the subscr i pt infinity is re1ated to free-stream conditions . 

as 

Fina11y , by i ptroducing dimensionless quantities such 

u"" = u 
u 

"" 

T 
T 

"" 
'* X = X 

L 
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(where L is the length of the flat plate), one gets the 

following system of equations 

By introducing a function f(n) defined by 

or 

( 2 ) 

( 4 ) 

Chapman showed tbat tbe momentum equation (2) was satisfied 

by 

u~ = ~ ~V(n) = 1 ~ 
2 dn 

if T is tbe Blasius function - i.e. if t satisfies the 

following non linear differential equation 

ff" +f 11, = 0 

The solution (5) for the velocity profile differs from 

the incompressible one, only through tbe expression for n 

whicb remains to be determined o 

By using (5) and by changing the coordinated from (x·,~-) 

into (x.,n) Chapman finally wrote the energy equation (3) as 

a
2
T· +Pr-F ~~. - 2 Prr'x.lt ~~: = -+ (Y_l)M2=(f")2 

an 2 
( 6 ) 



The solution to equation (6) must satisfy the 

following boundary conditions ~ 

ljI* = 0 or n = 0 q = -k (l!) 
w dy w 

ljI. = co or n = co 0 T* = 1 , 

which differs from Chapman ' s cond i tions 

T~ = T~ 
w wa 

'1''' = co T~ = 1 

+ Ë a f'n 
o n 

= constant 

where T is the adiabatic wall temperature and a are wa n 
g~ven constants . 

A particular solution to the non - homogeneous . 

(7 . 1) 

(7 . 2) 

(8.1) 

( 8 . 2) 

equation (6) is obtained by considering the case where q = 0 

(i . e . the adiabatic case) . It is identical to the particular 

solution found by Chapman (a = 0), that is , n 

where the function r(n) is given fr om figure 1 . In particular, 

at the wall (n = 0) 

T'" 
wa 

= 1 + y-l M2 r(o) 
2 co 2 __ _ 

where r(o) is the so-called recovery factor (equal to I Pr) . 

At this point our solution starts to differ from 

Chapman ' s solution because the general solution of the 

homogeneous part of equation (6) must satisfy the condition 

(7 . 1) instead of (8 . 1) . 



SOLUTION TO THE HOMOGENEOUS EQUATION 

a . Boundary conditions 

The homogeneous part of equation (6) is 

a 2 T" aT" a lIf 
- + Prt"ä"Tl - 2 Prfx" ö~ ... = 0 (10) 
an 2 

together with the following boundary conditions 

n -+ 00 

n -+ 0 

T· = 1 

q = k (aT) = constant 
- w äy w 

In order to rewrite the second condition ~n terms of 

the variables that are used in (10), we first try to relate 

n to y o 

We introduce (4) in (l ol) 

Poo rv----- a; 
u = v""u""Cx ay P 

or 
Poo 1------ ~ ön 

u = v""u""Cx dn äy 
P 

But 

1 
u = 2' f v u"" an d ., , 

therefore 

Because the pressure is constant in the whole flow field, the 

state equation gives 

= p 



Thus 

on 1 
oy = 2TT 

The condition (7 01) is then written as 

= -k (ll) (h) = -k (ll) J u~ 
q w on w oy w w on w v xC Cl) 

1 
2TT 

w 

(11) 

As we assume constant values of Pand c , we have 
r p 

k = constant ioe . 
lJ 

Therefore 

k lJ w T w w - = = C = k lJCI) T Cl) Cl) 

or 

k w Ck TV" = Cl) 
w 

Thus 

lIt Jv:~c Ck . 
-T (l.!...) 

Cl) 
q = = Cl) on w 2 

k k w Cl) 
= 

.. 
C T w 

k T • #. Cl) Cl) 
(.a1.::.) 

-~ on w v x Cl) 

The solution to the homogeneous equation (10) must then 

satisfy the condition g 

aT« 2 JV~XL 
(an- )w = -rr UëL Cl) Cl) Cl) 

or, to simplify the writing 

= (12) 

with 

A - - ~ k T Cl) Cl) 
t~L 

uCl)C 
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b. Solution to the equation 

Separation of the variables is obtained by writing 

Replacing in (10) gives 

1 (Z" + P ~Z9) fIz r T 
= 2 P xII- XV = K 

r X 

The first member depends upon n only, while the second 

member depends upon x* - Therefore, they should be both 

constant, say K 0 

Solving the second part of the equation first, 

we get 

dX K dx 
~ 

= ~ X 2P 
r 

K .. 
R.nX = R.nx 

2P r 

X = (x ... )K/ 2Pr 

Replacing in (14) 

Tif 
= (x,,)K/2Pr Zen) 

and differentiating with respect to n 

At the 



In order to satisfy the condition (12) we must 

have the following equality ~ 

which means that 

K/2P = 1 / 2 or K = Pand Z'(o) = A 
r r 

Therefore the sol ut ion is 

• r-
T = YX" Z(r)) 

where Z(n) satisfies the equation 

9. 

Z" + P fz ij = P f ij Z (15) 
r r 

with the boundary consition 

Z'(o)=A 

and Z(~) = 0; because fr om Chapmanis analysis r(~) = o. 

Complete solution 

Dividing equation (15) by ZO(o) and intriducing a 

new funct i on 

one gets the fo110wing complete solution to the non

homogeneous equation (6). 
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If 
T (x" .n) = 1 + y-l 

2 
2 rg-OOX 

r(n) - ~ --- W(n) k T u C 
00 00 00 

where W(n) ~s a solution of 

Wil + P fw' = Pr-f'W r 

with 
, 

W ( 0 ) = 1 

W(oo) = 0 

Relationship for n 

(16) 

By integration of (11) with respect to n at constant 

x, we get 

= 

and upon using the solution (16) 

tVv::c = 1 + X;1 M2 m 

By introducing (see Chapman's paper or figure 1) 

and 

We have 

z-{1Ç = 
2 VV:;:X-C 

where A is given by (13). 

(20) 

(21) 

(22) 



Heat transfer coefficient (h ) 
q-

11. 

Let us denote by hq and h T the heat-transfer 

coefficients obtained for constant heat-flux and constant 

temperature respectively. 

h is defined by convention as 

h = q 
T -T w wa 

where q is the local heat-flux per unit surface and unit 

time, T the local wal 1 temperature and T the adiabatic 
w wa 

wall temperature (q = 0). Then h corresponds to q(x) = 
q 

constant and h T to Tw(x) = constant. 

By using the solution (16) written for n = 0 and 

the value of T given by relationship (9.2) we get : 
wa 

h 
q 

1 
WTOT 

From Chapman's theory, we get the value of h
T 

k"" vgaoC = - -- --- y' (0) 
2 vaox 0 

We can thus form the ratio of h T to h q' which 1S 

G 
h T yO ( 0 ) x W(o) CONSTANT (24 ) = h = = 0 q 

It is therefore concluded that the ratio of the 

heat-transfer coefficients for constant temperature and for 

constant heat-flux is a constant, independent of the Mach 

number and Reynolds number. As shown later its numerièal 

value is about 0 . 72, independently of the Prandtl number 

in the range 0.5 to l.O. 
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Re1ationship (23) can be written ~n terms of the 
h x 

Nusse1t number (N = ~ ) u. k .., 

It gives 

Nu IC 
/R- = 2":'4'4 

ex 

with W(O) = -1.22 for Pr = 0 . 72. This ratio is independent 

of the streamwise coordinate x, and of the stagnation 

conditions ~ It varies with M.., thro~gh Chapman's constant do 

Boundary-1ayer thicknesses 

By convention, y is equa1 to Ö when u = 
that ~s for 

f' ( n) = 2~ 
u .., 

= 1 098 

0099 u , .., 

The tables of B1asius function then give n = 2 . 5. 

Therefore fr om (22) we get : 

By definitioh 

or 

p u ö· = p u ö- fÖpUdy ..,co · ..,.., 0 



The integral of the secpnd member can be written as 

fÖpudy = f Ö l.t d = p 'I' ( ö) 
0 o P 00 ay y 00 

But from ( 4 ) 

'I' ( Ö ) =I;-u-~i f ( 2 05} = 3 028 rv-u-ëi 
00 00 00 00 

Therefore 

Ö* = ö _ 3 0 28 I;- u-ëi 
u 00 00 

00 

or 

Finally 

The momentum thickness is found to be , by a similar 

computation 

13. 

(see lol) 

independent of M 
00 

and the temperature distribution, except 

through small c hanges i n the value of coefficient C. Therefore, 

it is found that : 

e = 0 . 664 x rc 
IR--

ex 
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The 

thus 

friction 

~ 

• w = 

coefficient 

• w = = 1 2 
2P~ u 

~ 

0 . 332 lë 
/R---

ex 

1S equa1 to 

dS 0.664/ë 
2 = dx IR--

ex 

p u 2 
~ ~ 

This shows that 'w is inverse1y proportiona1 to 

IX . As q is constant in the present case. the ratio q/. w 

is a functionof x. whi1e that rat i o 1S constant in the 

isotherma1 case (known as the Reyno1ds analogy) . 

Solution to the W-equation 

Va1ues of W(n). W'(n) and ~(n) were determined by 

a numerical integration of the W- equation (16) . 

This was done in two different ways which gave 

essentia11y the same resu1ts to within better than 1 percent. 

The first method consisted in a step- wise integration carried 

out from the outer-edge of the boundary-1ayer towards the 

flat wa11. The initia1 va1ues were given by an exact 

asymptotic solut i on to the W-equation . (Appendix A) . The 

second method consisted in a step-wise integration carried 

out from the wa11 towards the ~uter-edge of the boundary-

1ayer. The initia1 va1ue of W was chosen arbitrari1y. whi1e 

W' was taken as unity and the computation was repeated unti1 

the correct asymptotic va1ue of W was reached (i.e. W(~) = 0). 
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The computations were made on an IBM 1620 computer either 

by a series expansion method or with the Kutta-Simpson 

technique 0 

The comput at i on i nvolves the use of the Blasius 

function and i ts derivat ives o They are generally available 

in the form of tables with i ncrements i n n of 0 . 1 (ref . 4). 

Therefore, they canno t be used for a numer"ièal computation 

that includes smaller step s i n n than O. I . For" that 

reason , the Blas i us equation was reintegrated each time 

as indicated i n Append i x B . Moreover , in these circumstances, 

there was no need of i ntroduc i ng Ho~arthVs tables into the 

computer . 

Practical deta i l s of the computation are given ~n 

Appendix C and the results are shown in table I (with four 

decimals only ) or in f i gure 2. From these results, it is 

now possible to evaluate the ratio G = hT / hq o According to 

Chapman ' s theory, one has to within one percent accuracy : 

y i ( 0 ) 
o 

;"(0) P 1/3 

2 
r 

We thus get the ~ollowing values of G. 

Pr 0 . 50 0 . 72 

G 0 . 730 0 0 726 

1.00 

0 0 723 

It is conc l uded that G is constant to within one 

percent over a Prandtl number range o_f 0.5 to 1.0 0 
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STEADY STATE TECHNIQUE FOR HEAT TRANSFER MEASUREMENTS 

Principle of the technique 

In the present technique, heat is uniformly dissipated 

at the surface of the model by Joule effect ~n a thin sheet 

of metal of constant thickness . The heat-flux per unit area 

and unit time (q) is determined from the measured voltage 

and current and the total area of the heating element. 

Temperatures are measuredd by thermocouples located at the 

model surface for power-off (T ) and power-on (T ) conditions. wa w 
The heat-transfer coefficient is then computed from the 

following relationship ; 

h = q 
T -T w wa 

The measurements were made at supersonic speeds on the symmetrie 

wedge model shown in figure 3 . It has a sem~ apex-angle of 

5 degrees. thus giving a uniform flow at M = 2.05 along its 

upper and lower surfaces (OA and OB as shown in the sketch) 

when placed at zero incidence in a supersonic free-stream 

at Moa = 2 . 21 . 

The model is made of araladite - type D - which has a low heat 

conductivity (k = 0 .17 kcal/m hr °c, i . e . about 0.11 BTU/ft hr 

OF). Heat is dis.ipated at the surface by Joule effect in a 



thin metallic layer th at adheres to the model surface. This 

technique was previously used by Seban et al. (ref.3); their 

model was made of bakelite on which nichrome ribbons, 0.051 mm 

thick, were glued. In the present investigation, it was expected 

to improve the method by avoiding the difficulty of properly 

gluing a thin sheet · of metal to the model surface and at the 

same time by further reducing the effective thickness of the 

metallic layer. 

In the early part of the research, this was done 

by evaporating nickel under vacuum. The thickness of the nickel 

layer formed on the surface of the model was of the order of 

one micron. However, the strength of the coating depended 

very much on the smoothness of the surface, inasmuch as very 

tiny little scratehes in the surface of the araldite produced 

small sparks when the voltage was applied, which destroyed 

the coating af ter a certain time. 

A simpIer method was then used which appears more 

succes~ul and which is at the same time of great simplicity. 

It is based upon a standard method of silvering mirrors. 

Details of the technique are given ~n Appendix D. The 

adherehce to the surface ~s extremely good. Indeed, it ~s 

necessary to use sand-paper to remove the silver layer. 

The uniformity of thickness of the coating is 

determined by dividing the surface into a number of strips 

with a razor blade as shown in the sketch and then me&suring 

the distribution of electric resistance of each strip along 
v"-':" 'tl rv\ •• __ ____ __ __ __ __ __ __ __ the z-ax~ s. w~ th proper 

_~STRIPS .~ --=-_-_-_- care ~n pre paring the 
;1-- .. ~ surface to be silvered, 

PAINT ~FLOW 
I ELEC 

it is possible to obtain 

a uniformity of thickness 

of the silver layer which 

is better than ten percent. 



As suggested by McCroskey (ref o5). it is possible to improve 

this uniformity by rubbing the silvered surface with fine 

sand-paper in regions where the resistance is too smallo 

The mean thickness of the layer was determined on 

a typical sample by titration of the Silver Nitrate solution 

which was used for silvering the sample o The thickness was 

found to be of the order of 1 micron o It should be noted 

fuat a direct computation of the thickness based on the size 

of the surface j its total resistance and the resistivity 

of the bulk material gave a value which was quite evidently 

too smallo 

Af ter checking the uniformity of its thickness 

the silver layer is electrically connected to the copper 

electrodes located at the sides of the model (see above sketch). 

Good contact is obtained between the layer and each electrode 

(along mm and nn respectively) by painting the ~urface 

locally with silver paint, as indicated in the sketch by 

a shaded area. 

For the model shown in figure 3, the total 

resistance of the silver layers on the upper surface OA 

or on the lower surface OB is of the order of 1 ohm. In this 

case, one needs a power supply with low voltage and high 

current o Because of the high current i a sizeable voltage drop 

exists in the lines connecting the power supply to the 

electrodes and the voltage drop across the heating element 

must then be measured directly at the electrodes with 

auxiliary wires. In addition i the electrodes are runn~ng 

along the full length of the model to ensure a uniform 

dissipation of power on the whole surface of the model . Faur 

independent power supplies were available during the tests 

in order to have independent control of the power dissipated 
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on the four surfaces OA i OB, AA ~ and BB i
• 

There is a small temperature effect on the 

resistivity of the silver layer. This effect is expected 

to be the same for thin layers as for the bulk material; 

this was checked on a nickel layer .in the early part of the 

investigation. The resistance increases approximately by 

one third of one percent g when the temperature increases by 

one degree. Therefore, if the wall temperature varies by 

+ 10° around a mean value, the resistance varies by ~ 3% 

and q differs from a constant by the same amount . In the 

present investigat i on, the temperature changes are kept 

small because the araldite D cannot wi thstand high temperatures. 

In these circumstances, the effect of the temperature on 

the measurements is not large . 

Seventeen flush fitting copper - constantan 

thermocouples are instalIed along the centre-line of 

surface OA to measure the wall temperatures. A few others 

are located on OB and also on the two parallel portions AAO 

and BB 9 of the model ( see previous sketch ) with a view 

to checking that symmetrie conditions are obtained during the 

tests o The model was casted with araldite af ter correctly 

positioning the thermocouples in the ~ould . Details are 

given in Appendix E . Each thermo c ouple i s connected to its 

individual reference thermocouple maintai ned at oOe by melting 

ice in a thermos bottle o The reference thermocu u ple W1res 

are not welded but merely twisted together and suspended 1n 

individual mercury reservoirs in the thermos bottIe. 

Individual reservoirs are needed because the thermocouples~ 

located at the surface of the model, are not insulated from 

the silver layer and therefore the thermocouple leads could 

locally by- pass the current from the silver coatingo Rotary 

switches are used to measure the output voltages of the 
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thermocouples, ~n turn, on a calibrated galvanometer. 

Measurements were also made at low speeds. The 

model consists of a flat plate of araldite, silver plated 

on both surfaces in the same manner as the supersonic model. 

The plate is 285 mm wide and 550 mm long. It has a thickness 

of 10 mm and an elliptic nose. 

Test conditions 

The symmetric wedge model was tested in the TCEA 

continuous supersonic wind-tunnel 8-1 (described in ref.6) 

at a free-stream Mach number of 2 . 21 and at stagnation 

pressures of 100 and 200 mm of mercury absolute. In these 

tests, the thickness of the silver layer was constant 

within 10 percent. Steady state conditions were achieved for 

both power-off and power-on conditions, af ter approximately 

one hour of running time. Adiabatic temperatures were of the 

order of O~C and wall temperatures with power-on were 

limited to a maximum of about 40°C. The stagnation temperature 

in the tunnel was closed to amb~ent temperature and remained 

nearly constant af ter tpe tunnel had been running for more 

than one hour. 

The flat plate model was tested in the TCEA low 

speed wind tunnel L-2 briefly described in ref.7. 

Results and discussion 

The experimental results are shown in figure 4 and 

compared with the theory. These results are not corrected 

for eventual heat-losses through the araldite, for non

uniformities in thickness of the silver layer or for 

temperature effect on the resistivity of the heating element. 
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Figure 4a gives the heat-transfer coefficient (h) 

as a function of the distance (x) from the leading-edge, for 

the supersonic test. Two different pressure levels were used 

in the tunnel (100 and 200 mm of mer cury ) and two different 

values of the power dissipated on the model surface (5 watts 

and 10 watts) . The agreement between t he experiment and the 

theory is better than ten per cent over the full length of 

surface of the wedge. In these tests~ the thickness of the 

silver layer was constan t within approximately 10% . Also 

shown in the figure is the recovery factor wh ic h agrees 

with the theoretical value of /P- for laminar flow to within 
r 

approximately 10% . As the recovery temperature was found 

to be very sensitive to the degree of humidi t y of the air ~n 

the tunnel, the tests were done at 0 . 1 gr . of water vapor 
. ( -4) 0 • per kg of a~r 10 • The i nfluence of hum~ d~ty has already 

been pointed out, in particular by Thomann (ref.8). 

The same re sult s are plotted in figure 4b which g~ves 

the rat i o Nu/IR-- which is theoretically constant and e~ual 
ex 

to 0.39 for the present test condit i ons according to 

relationship (25 ). 

The low speed data are shown i n figure 4c which g~ves 

h vs x and in figure 4d, in which Nu/IR-- is plotted against x. 
ex 

The test was made with a free - stream veloci ty of 15 m/sec and 

a power dissipated on each surface equal to about 36 watts. 

The e~perimental po i nts are off the theoretical curve by 20%. 

This was cons i dered as satisfactory because the flow conditions 

are not ideal i n t he small scale wind tunnel L-2. 

It is concluded that an excellent agreement exists 

between the ~ uncorrected" experimental data and the exact 

theory. 
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The possibility of correcting the experimental 

results will now be eonsidered. 

We first evaluate the heat-losses due to 

eonduetion thro.ugh the araldite. Beeause the geometry of 

the model and the heating system are symmetrie, there is no 

heat-flux across the plane of symmetry o~ the model. 

However, as the wall temperature increases fro~ the leading

edge to the trailing-edge of the model, heat is conducted 

through the araldite in the stream-wise direetion. This 

effeet ean be evaluated by computing the temperature 

distribution inside the wedge for given surface conditions. 

Under steady state eonditions, the temperature must ~atisfy 

Laplaee's equation whieh is written in pol ar eoordinates 

as (see sketch) 

(26) 

We assume that the wall temperature is given by the constant 

heat-flux theory, i.e. 

for 

~ vt~ W(o) {r-T = T w wa 

It can be seen that 

T=T +c 2 r 1/2 
wa 

6 
eos ('2 + lP ) 
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is a solution of (26). where C2 and ~ are constant. To 

satisfy the boundary conditions (27) we must have 

Thus 

~ = 0 

T = T wa 

2 ~IX> 1 C2 = - ~ --- W(o ) k u C ex 
IX> IX> cos 2 

- ~ )"00 W( c ) Ir 
k u C 

CD CD 

e 
cos 2" 

Cl 
cos 2 

(28) 

The heat flux through the surface of the model per unit time 

and unit area is then, from Fourier's "equation 

q =-k 
a a 

where k is the coefficient of thermal conductivity of the 
a 

araldite. 

Using the solution (28), (29) is rewritten as 

a W 0 ) CD Cl k ( ' ~ 
qa = - q k --;::- 'Uë tg 2 

IX> r' r CD 

The ratio of the heat-flux through the surface to the heat

flux dissipated by Joule effect at the surface ~s thus : 

k 
a 

-k 
IX> &. 00 Cl 

W( o) u':;Cr tg 2 (30) 
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This ratio decreases as rincreases and as the wedge angle 

decreases. For typical test conditions, (30) shows that qa/ q 

is smaller than 1%, when x is larger than about 5 mmo 

It is thus concluded that the heat-losses through the 

araldite have a negligible effect over most of the surface 

of the model. However, this computation is valid for an 

infinite wedge and the actual model has a finite length; it 

is thus possible that heat-exchanges exist between the model 

and the rear sting. This was ehecked by comparing the results 

of figure 4a with the results obtained without heating the 

rear surfaces of the model, AA' and BB' (see sketch on page 16)· 

No difference was observed within the accuracy of measurements. 

The effect of the temperature of the heating element 

on its resistance was experimentally checked by dissipating 

different amounts of power, keeping other conditions 

unchanged. As ' seen from figure 4a, no systematic difference 

was observed in the heat-transfer coefficients. 

No attempt was made to correct the results for 

a non-uniform thickness of the silver layer. The actual 

distribution of the heat-flux can be determined by measuring 

the distribution of resistance of the heating element as 

indicated under "Principle of the technique". However, the 

width (or span) of the portion of the surface which affects 

the temperature along the centre line of the model. remains 

unknown. 

The effect of the presence of thermocouples, below 

the silver-layer, on the power dis~ipated locally at the 

surface was checked by removing the silver layer just above 

the thermocouples. No difference was observed in the resu1ts. 



For the sake of eomparison. unsymmetric conditions 

were also tested, by keeping the lower surface of the model 

unheated o As expected~ a large difference was observed in the 
• results o Moreover, it was not possible to work out a simple 

method of correcting the data which was satisfactoryo This 

shows the importance of symmetrie conditions and the 

uncertainty of correcting the measurements for heat-losses, 

when necessaryo 

Conclusions 

An exact selution was found to the compressible 

laminar boundary layer equations for the case of a flat plate 

with constant heat-flux o The problem was solved by using the 

transformed boundary-layer equation given by Chapman and 

Rubesino The results showed,in particular, that there exists 

a constant ratio between the heat -t ransfer coefficients at 

constant heat-flux and at constant temperatureo 

A steady-state technique for heat-transfer 

measurements derived from Sebanos, was developped which gave 

uncorrected data te within 10 % of the theory at high speed 

and 20% at low speedo It is based on a simple method of 

silvering the surface of a model made of araldite and 

instrumented with thermocoupleso 

This method se ems particularly suitable and 

probably simpIer than the isothermal method when used to 

study thin symmetrical two-dimensional wings o It is hoped 

that the relationship between the heat transfer coefficients 

still holds in the presence of a stream-wise pressure 

gradiento 
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APPENDIX Ao 

Asymptotic solution to the W-Equation (17) 

If n- ~ ~ , then the Blas i us function and its first derivative 

can be expressed as 

t = 2(n- 0.86038 ) ; ~ ' = 2 

So that (17) is rewritten as 

W" + 2 P (n-0 0 86038) w' = 2 P W r r 

Introducing a new independent variabIe z defined by 

we have 

Thus 

z = ;P- (n-0 0 86038) 
r 

dz = ;p- dn 
r 

dW dW 
'dr)=di' 

dz ,-dW - = yPr-dn dz 
and 

2P W = 0 
r 

or , af ter simplification 

d 2 W dW 
--- + 2z - - 2W = 0 
dz 2 dz 

One can find immediately a particular solution to the 

equation,ioe. 

W = z o 

and obtain the general sOlution,by writing 

W = W t = zt o 

A.l 



Where (t) can be determined by two successive quadratures 

as follows 

dW = t + -dz 

Replacing ~n (A.l) 

Defining 

we have 

u = 
dt 
dz 

dt z-
dz ; 

(1 + z2) = 0 

z ~ + 2 U (1 + z2) = 0 
dz 

or 

dU 
U 

By integration 

= 

_Z2 
e 

where Cl is a constant o 

Therefore, from Ao2 

, _ _z2 
t = J Udz = Cl f z 2e dz + C2 , 

where C2 is another constant. Thus 

W = zt 

A.2 



In order to satisfy the boundary condition (19), i.e. W(~)=O, 

one must take C2 = 0, because it is seen, for example, that 

by successive integrations by parts, that the integral is 

equal to 

(_l)n+l (2n + 1)1 

22n+l nl z2n 

which tends towards 0 as z ~ ~. Thus 

A.3 

where Cl is to be determined by boundary condition (18) i.e. 

W'(o) = 1 

The numerical integration is simplified by rewriting the 

relationship A.3 as follows : 

f~ 

z 

Thus 

-2 _s2 
s e ds = ( 

_1 -s2f" 
-s e J f

~ _1 _s2 
s .2se ds 

_Z2 
e 

=-
Z 

_Z2 = e 

Z z 

[f~ _s2 fZ _s2 ] 
- 2 0 e ds - 0 e ds 

;.;;Z (1- erf z) 

By differentiation, we get all the successive derivatives 

W' W" - = - ;.;; (1 - erf z) , 
Cl Cl 

_Z2 
= 2 e • etc ••• 
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APPENDIX B. 

The Blasius function l' satisfies the equation 

1'1''' + 1''' ' = 0 B.l 

with the boundary-conditions 

1'(0) = 1"(0) = 0 an d 1" ( ... ) = 2 

A stepwise numerical integration of equation (Bol) 

was done from the wall towards the outer-edge of the ho~pdary

layero The initial value of 1'''(0) was selected arbitrafily 

together with 1'(0) = 1"(0) = 0 and the comp~tation was 

repeated untill the correct asymptotic value 1"("') = 2 was 

obtained. The integration was done by expanding 1', 1", 1''' 

into power series, such that : 

f(n+dn) = f(n)+f'(n)dn + .00 

f ' (n+dn)= f ' (n)+f"(n)dn+ + fV(n) dn 4 
000 4ï 

• 
f"(n+dn)= f"(n)+1''' ' (n)df1+o •• + fV(n) dn 3 

Tt 

The othef derivatives were computed at (n+ dn) ~n order to 

satisfy the equation (Bol) and the other equations obtained 

by successive differentiations,ioe. 

f"'(n+dn) = - f(n+dn)o f"(n+dn) 

1"" 1"1''' 1'1''' ' 

1''' = - 1'''2 - 21"1''' ' 
IV 

1'1' 
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With an interval of integration equal to dn = 0001, it was 

possible to get values of f, f i . f" which agreed with the 

values given by Howarth to within the fifth decimalo 

When the integration was performed in the same manner, 

but from infinity towards the wall t it was found necessary 

to readjust twice the values of f, fOt f" during the process 

in order to get Howarth 9 s resultso This is due to the fact 

that two initial values (for f and f") are now to be selected 

arbitrarily . 
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APPENDIX C. 

Numerical i ntegration of the W- equat i on (17) 

1 . Integration by series . 

The integration was done by expanding Wand WV in 

power series 

W (n+dn ) = W (n ) + W' (n ) dn + 00. 

W' (n+dn) = WV( n) + W" (n) d n + 0 . 0 

and the other deriva t ives were computed at ~+ d~ in order to 

satisfy the W- equat i on and the other equat i ons obtained by 

successive differentiation , i . e . 

W" ( n+dn) = Pr[f O(n+dn)W ( n+dn )- f ( n+dn ) W' (n+dn )] 

w" g = Pr[f"W- fW"], etc ooo 

The quantity .~ = f n Wdn was computed by the 
o 

following ser i es . 

20 Integration by the Kutta-S~mpson rule o 

The following system of differential equations 1S 

equivalent to the W-equation (17) 

~ = W 
dn 1 

= P r ( f v W - fW 1 ) 
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Therefore , from the Kutta-Simpson rule : 

where 

W (n+2dn) = W (n) + l (~ O +2~"+2~" O +ttl) 
3 

W1(n+2dn) = W (n) + l ( 6 ' +26"+26"'+61V) 
1 3 

~ o = W1(n) dn 

6 ' = Pr[f O(n ) W(n ) - f ( n)W1(n)] dn 

~" = [w1(n) + ; 6 VJd n 

6 " = P r { f I ( n + d n ) [W ( n ) +~ ~ 'J - f ( n + d n ) [ W 1 ( n ).+; 6 fJ } d n 

~ '" = [ W 1 ( n) + t 6 "J d n 

6'" = P r { f ' ( n + ~ n ) [ W ( n ) + ~ A "J -f ( n + d n ) [W 1 ( n ) +~6 "J } d n 

l" = [w1(n) + Ö" OJdn 

6 IV = P r { f u ( n + 2 d n ) I W ( n ) + ~ " , ] - f ( n + 2 d n ) [W 1 ( n ) + 6" 'J } d n 

The quantity ~(n) was computed by Simpson ' s rule. 
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APPENDIX D 

A m1rror silvering methode 

Chemicals involved. 

1. Silver Nitrate - Dissolve 10 gr. of silver nitrate into 25 cc. 

of distilled water. By adding ammonia to the solution a 

precipitate or deposit starts to form and then 

disappears progressivelyo Ammonia is added until the 

deposit has almost vanished (it corresponds to 

approximately 9 cc. of ammonia at 25°C). Filter the 

solution and add distilled water to make 1 litre. 

2. Tartaric acid - Prepare a solution of 5 gr. of tartaric 

acid for 100 cc . of distilled water. 

3 . Stannous chloride - (SnC12 - 2H20)-Dissolve 2 gr . of stannous 

chloride in one litre of distilled water . 

Procedure for silvering the modeIs. 

As indicated in appendix E, the model is cast in 

several steps. In most of the cases, it is thus impossible to 

obtain a uniform state of the surface. However, a uniform state 

is important in order to get a silver-layer of constant 

thickness. It is therefore useful to spray a thin layer of 

liquid araldite~ with an air gun on the model surface. At the 

same time, by insulating the thermocouples from the silver 

layer~ odd chemical reactions are avoided. The surface is then 

rubbed with sand-paper and very throughly degressed. 

* Type EPOXYLUX 4720. 
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This being done, the model is immersed in solution (3) 

for a few minutes, then rinsed briefly in distilled water, and 

finally immersed in a mixture of 1 litre of solution (1) with 

10 cc. of solution (2) (prepared just before use). One waits 

until the l~~uid gets slightly muddy. By that time, silver should 

have been deposited on the surface. It is preferabIe to work 

at a constant temperature of 25 0 C(the model must have a 

constant temperature). 

It is generally easy, by watching the model surface, 

to predict wether a uniform thickness will be obtained or not. 

In case of an unsuccesful result, the deposit must be thoroughly 

removed with sand paper or with nitric acid and the complete 

operation repeated. 
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APPENDIX Eo 

Preparation of the arald i te model 

The wedge model was cast in a metallic mould . coated 

inside with vacuum grease . to fa c ilitate withdrawal of the 

model from the mould o Each thermocouple is maintained in its 

correct position by inserting approximately half of the 

welding inside a small hole drilled i n t he cover plates of the 

mould . The wired are run spanwis ~ , i as indicated i n the sketch . 

to minimize the heat - losses due to the streamwise temperature 

gradient . 

I t was found necessary to cast 

the model in several steps 1n 

order to avoid excessive 

deformation of the araldite 

when removed from the mould o 

The model is th en machined 1n 

order to correct possible 

defects and also to bring the 

thermocouple junctions flush 

with the surface o 

The model was mounted in the wi nd- tunnel on a sting 

one end of which was inserted in the rear of the model dur i ng 

the casting process o 





Tab1e I 

p = 005 p = 0.72 P =. 100 
r r r 

Tl 
- -

- W - W - W - W - W - W 

0 1.3850 0 1.2199 0 ,100894 0 

0.1 1. 2852 .1335 1.1201 01170 09896 01039 

0 02 1 01862 .2571 1 00214 .2241 .8912 ,1980 

003 100889 .3708 .9248 03213 .7954 02823 

004 09941 04749 ;8313 .4091 07034 03572 

0.5 09024 05 697 .7416 04877 06160 04231 

0.6 .8144 .6555 .6565 05576 .5340 .4806 

0.7 .7307 .7327 .5766 .61$)2 .4581 .5301 

0,;8 .6515 08018 05022 06731 03888 .5724 

0.9 .5774 .8632 04336 .7198 03262 .6081 

1.0 05084 .9175 03712 07600 02705 06379 

1.1 .4448 09651 . 03149 079 43 .2215 06624 

102 03866 100066 02647 .8232 01792 06824 

103 03338 100426 .2204 08474 .1430 06985 

104 .2862 1.0735 01817 08674 01127 .7112 

1.5 .2437 1.1000 .1483 08839 00875 .7212 

1.6 .2062 101225 01198 .8973 .0670 07289 

107 .1731 1 01414 00959 09080 00506 .7347 

1.8 01443 1.1572 .0759 09166 .0376 .7391 

1.9 .1194 1.1704 00594 .92.33 00276 07423 

2.0 .0981 1.1812 .0460 .9286 00199 07447 

201 00800 1.1901. 00352 09326 00141 07464 

202 .0647 1.1973 00266 09357 00098 07476 

2·.3 .0520 1. 2032 00200 09380 00068 07484 

204 .0414 1.2078 00148 09397 00046 .7489 

205 .0327 102115 .0108 09 41 0 .0030 07493 

206 00257 102144 00078 09419 00020 07497 





p = 0 05 p = 0072 P = 10p 
r r ' r 

n 
- W -w - w -w - w -W 

2.7 00200 1.2167 00056 09426 . OG13 .7 498 

2.8 .0154 1.2185 00039 0943 1 .0008 07499 

2.9 00118 102198 00028 09434 000 05 074 99 

300 .0090 1.2208 00019 09 436 00003 07500 

301 00068 102216 00013 09438 00 002 07500 

302 00050 1 02222 00009 09439 00001 07500 

303 00037 102226 00006 094 40 00001 07500 

304 00027 1.2230 00004 09440 00000 07500 

3.5 00020 1.2232 00002 09 441 00000 07500 

306 00014 1 02234 00'002 094 41 00000 07 500 

307 00010 1.2235 00001 09441 00000 075 00 
,, 0 

3 08 00007 1.2236 00001 09441 00000 07500 

309 00005 1.2237 00000 09441 00000 07500 

400 00004 1.2237 00000 09 44 1 00000 07500 

4:01 0'0002 1.2237 00000 ~ 94 41. 00000 07500 
° 

402 00002 10 2237 00000 094 41 00000 07500 ,. 
403 00001 1.2238 00'000 09441 00000 07500 

404 00001 1.2238 00000 094 41 00 000 075 00 

405 00000 1.2238 00000 09441 00000 07 500 
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