TCEA TN 11

ro

(
(E
F

Y FRERRIBLAL et T
] U-“dzo i‘-i‘ L ‘7“,,,,,4—.:’;“".”. i

TRAINING CENTER FOR EXPERIMENTAL AERODYNAMICS

Technical Note 11

AN EXACT SOLUTION TO THE COMPRESSIBLE
LAMINAR BOUNDARY-LAYER EQUATION FOR
THE FLAT PLATE WITH CONSTANT HEAT FLUX

o’
<

Jean J. Ginoux

RHODE-SAINT-GENESE, BELGIUM

MAY 1963




hezorgen VOOr: I teru~’'

op, 106%

v



MONITORING AGENCY DOCUMENT Nr
ASTIA DOCUMENT Nr
TCEA TN 11

AN EXACT SOLUTION TO THE COMPRESSIBLE
LAMINAR BOUNDARY-LAYER EQUATION FOR
THE FLAT PLATE WITH CONSTANT HEAT FLUX

by
Jean J,Ginoux

Brussels University and TCEA,

GRANT N°AF EOAR 63-U45
LAMINAR SEPARATION IN SUPERSONIC FLOW

Technical Note nr 1

May 1963.

The research reported in this document has been
sponsored by the Air Force Office of Scientific Research,
through the European Office, Aerospace Research, United States
Air Force.







AN EXACT SOLUTION TO THE COMPRESSIBLE LAMINAR BOUNDARY-
LAYER EQUATIONS FOR THE FLAT PLATE WITH CONSTANT HEAT FLUX

SUMMARY

An exact solution is found to Chapman and Rubesin's
transformed laminar boundary-layer equations, in the case of
a flat plate with constant heat-flux, It is shown that the
ratio of the heat-transfer coefficients for constant heat-flux
and for constant temperature (i.e. isothermal case) is a
constant independent of the Reynolds number, Mach number and
Prandtl number, This property indicates that experimental
results are obtained with a constant heat-flux technique which
are simply related to results that could be obtained with the

usual isothermal method.,

The theory is experimentally checked by using an
improved steady state technique derived from Seban's, which
gives "uncorrected" data that are in agreement with the theory

to within 10% at M = 2 and 20% at low speed.

INTRODUCTION

There exist two simple limiting cases in which the
study of heat-conduction is eased : the isothermal case
(i.e., constant wall temperature) and the case where heat is

uniformly dissipated at the surface (i.e. constant heat-flux).

The former is very well known, specially in the case
of a flat wall for which an exact solution of the boundary-
layer equation is known (see for example ref.l). Moreover, most
of the experiments are made with isothermal conditions.,

The latter is not so well known and the purpose
of the present study is to solve the laminar boundary-layer

equations in the case of a flat plate with constant heat-transfer,




In particular, it is interesting as a first-step

to relate the corresponding heat-transfer coefficient to
the one obtained in the isothermal case, with a view to
developing a steady-state technique of heat-transfer
measurement which could be used to study more complicated

types of flow.

The research was sponsored by the Air Force Office of
Scientific Research, O.,A.R., through the European Office,
Aerospace Research, United States Air Force under Grant
N° AF EOAR 63-45, Most of the theoretical developments

have already been reported in ref.2,

SOLUTION TO THE BOUNDARY-LAYER EQUATIONS

The problem consists in finding a solution to
the boundary-layer equations for the supersonic flow over
a flat surface on which heat is uniformly dissipated. One
seeks the velocity and temperature profiles in the boundary-
layer as well as the temperature distribution, heat-transfer

and skin-friction coefficients at the wall.

" The problem is treated in a way very similar to
that used by Chapman and Rubesin (ref.l) who gave an exact
solution for the flow over a "compressible" flat plate in the
case of a polynomial wall temperature distribution and in
particular for the isothermal case., The transformed boundary-
layer equations given by Chapman and Rubesin are used here

and solved for our particular boundary conditions,

The two-dimensional compressible boundary-layer

equations are,in the case of zero pressure gradient :
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By using von Mises' transformation, they are rewritten as :
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where ¢y is the stream function defined by
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and C is a coefficient introduced by :
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with (from Sutherland's formula) :

T T + S
C = \[=2 g
Tm Tw + S

T; is a mean wall temperature, S is a constant equal to 102.5

and the subscript infinity is related to free-stream conditions.

Finally, by iptroducing dimensionless quantities such
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(where L is the length of the flat plate), one gets the

following system of equations

3

e ?%3 (u* au ¥ (2)
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XF S P IF (u™ =) + (Y-1)M_ (== w) (3)
r

v = /v_u_Ccx f(n) (L)
or

£(n) = v*// x>
Chapman showed that the momentum equation (2) was satisfied
by

wf = 2 g(n) =35 (5)

if £ is the Blasius function - i.e. if §{ satisfies the

following non linear differential equation

F'F" +? Wil

The solution (5) for the velocity profile differs from
the incompressible one, only through the expression for n

which remains to be determined.

By using (5) and by changing the coordinated from (x*,V¥)
into (x¥*,n) Chapman finally wrote the energy equation (3) as

P
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The solution to equation (6) must satisfy the

following boundary conditions :

oT
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(T.2)
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V¥ = = or n=o3;T =1 (7.2)
which differs from Chapman's conditions
v* = o ¥ =¥ 4+ % a0 (8.1)
W wa o n
\y" = o T* = 1 (802)

where Twa is the adiabatic wall temperature and a are

given constants,

A particular solution to the non-homogeneous
equation (6) is obtained by consideriné the case where q = O
(i.e. the adiabatic case). It is identical to the particular
solution found by Chapman (an = 0), that is

™(n) = 1 + IFM2_r(n) (9.1)

where the function r(n) is given from figure 1. In particular,
at the wall (n = 0)

* = Y-1 2
T oa ™ 1+ == M2 r{o) (9.2)

y —
where r(o) is the so-called recovery factor (equal to ¥ Pr).

At this point our solution starts to differ from
Chapman's solution because the general solution of the
homogeneous part of equation (6) must satisfy the condition
(7.1) instead of (8.1),
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SOLUTION TO THE HOMOGENEOUS EQUATION

a. Boundary conditions

The homogeneous part of equation (6) is

BZT“’ 0 ar* _
an2 f——_eprfx $e% = O (10)

together with the following boundary conditions

N T =1 (7.2)
n->o0 q = -k (22 = constant (7.1)
w'oy'w e

In order to rewrite the second condition in terms of
the variables that are used in (10), we first try to relate
n to y. .
We introduce (4) in (1. l)
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Because the pressure is constant in the whole flow field, the
state equation gives
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The condition (7.l1l) is then written as

u
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As we assume constant values of Pr and cp’ we have
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The solution to the homogeneous equation (10) must then
satisfy the condition
(aT* ) = 23 U g X 1
on w k T u _CL
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or, to simplify the writing

&*
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with
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b. Solution to the equation

Separation of the variables is obtained by writing

¥ = x(x*) z(n) (1k)

Replacing in (10) gives
X

l " [] - o =
Tz (z" + P _$2 ) =2 Px = K

The first member depends upon n only, while the second
member depends upon x* - Therefore, they should be both

constant, say K.

Solving the second part of the equation first,

we get
ax K ax”
X ~ 2P x*
r
K
2 = c—
nX 2Pr inx

X = (x’)K/2Pr
Replacing in (1L4)

* = (x*)5/2Pr g(4)

and differentiating with respect to n

2 . (x )K/zPr Z'(n)

At the wall (n 0)

. .
(3, = (*)*/2Fr 20 (o)



In order to satisfy the condition (12) we must

have the following equality :

(x*)X¥/2Pr 71(6) = A/XF

which means that

K/2Pr = 1/2 or K = Pr and Z'(o0) = A

Therefore the solution 1is

¥ = /x¥ 2(n)
where Z(n) satisfies the equation

"o, 1 = 9

A P_f2 P_£'z (15)
with the boundary consition

2'(o) = A
and Z(w) = 0; because from Chapman's analysis r(«) = 0.

Complete solution

Dividing equation (15) by Z°'(o) and intriducing a

new function

_ Z(n)

Ww(n) = T (oY

one gets the following complete solution to the non-

homogeneous equation (6).,
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T*( RIEEEE ' (n) L. e W(n) (16)
X yn) = 2 w TAONL = k T |u,C R
where W(n) is a solution of
W' + P fW' =P f'W (17)
with
w'(o) = 1 (18)
W(e) =0 (19)

Relationship for n

By integration of (11) with respect to n at constant

x, we get

u
oo

n
— A
2 \|vxc L)T dn

and upon using the solutiom (16)
T

L - S =1 2 n % (N
& il ¥ [Jr(n)an + A/x* [MW(n)an

By introducing (see Chapman's paper or figure 1)

r(n) = f:r(n)dn (20)
and ﬁ?n) = L:w(n)dn (21)
We have
u ——
% va:C =n+ léi M2 _r(n) + A/x* W(n) (22)

where A is given by (13).
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Heat transfer coefficient (hql

Let us denote by hq and hT the heat-transfer
coefficients obtained for constant heat-=flux and constant
temperature respectively.

h is defined by convention as

h:-—J—-
T -T
W Wwa

where q is the local heat-flux per unit surface and unit
time, Tw the local wall temperature and T_ the adiabatic
wall temperature (g = 0O), Then hq corresponds to gqi{x) =

constant and hj to Tw(x) = constant.,

By using the solution (16) written forn = O and
the value of T given by relationship (9.2) we get :

k u C
h - © oo 1
aQ 2 vax w(o) (23)

From Chapman's theory, we get the value of hT

k°° umC
= oe  m—— 1
hT vV X K o(o)
2 )
We can thus form the ratio of hT to hq, which is
hT
G # g~ = Y"o (o) x W(o) = CONSTANT (24)
q

It is therefore concluded that the ratio of the
heat-transfer coefficients for constant temperature and for
constant heat-flux is a constant, independent of the Mach
number and Reynolds number. As shown later its numerical
value is about 0.72, independently of the Prandtl number
in the range 0.5 to 1.0,



Relationship (23) can be written in terms of the

: h x
Nusselt number (Nu = Eg- )
It gives
N
S (25)
R 2.4k
ex
with W(0) = =1,22 for P, = 0,72. This ratio is independent

of the streamwise coordinate x, and of the stagnation

conditions, It varies with M_ through Chapman's constant C.

Boundary-layer thicknesses

By convention, y is equal to 8§ when u = 0,99 u_,
that is for

u
L - o -
F (n) 2u°° 1.98
The tables of Blasius function then give : n = 2.5,

Therefore from (22) we get :

u

= 2,5 + l%l M2 T(2,5) + A /X W(2.5)
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By definition

5
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The integral of the secpnd member can be written as : (see 1,1)
s S (8, Ao .
fopudy = Q (R 3y dy = me(G)
But from (4)
¥(8) =/v_u_Cx f(2.5) = 3.28 /v_u_Cx
Therefore
6* = § - 2228 o
uoo
or
L
S\ == . 3fle 1,64
2 v _xC 2yv_xC °
Finally
5 h 1
e — = A M2 F X% W
5 5xC 0.86 + L== M2 T(2.5) + A/x* W(2.5)

The momentum thickness is found to be, by a similar

computation

u

oo

2.5
= 1,64 - i; fo f"zdn

Njo

v _xC
L]

independent of M_ and the temperature distribution, except
through small changes in the value of coefficient C. Therefore,

it is found that

o = 28l x g
VR

ex




The friction coefficient is equal to

= ¥ ., 48 _ 0.664/C
£ - 2 - dx st
L R4

thus

=9:332 5 42
W /E——-‘ o o
ex

This shows that T, is inversely proportional to

VXx. As q is constant in the present case, the ratio q/rw

is a functionof x, while that ratio is constant in the

isothermal case (known as the Reynolds analogy).

Solution to the W-equation

Values of W(n), W'(n) and W (n) were determined by

a numerical integration of the W-equation (16).

This was done in two different ways which gave
essentially the same results to within better than 1 percent.
The first method consisted in a step-wise integration carried
out from the outer-edge of the boundary-layer towards the
flat wall, The initial values were given by an exact
asymptotic solution to the W-equation. (Appendix A). The
second method consisted in a step-wise integration carried
out from the wall towards the outer-edge of the boundary-
layer,. The initial value of W was chosen arbitrarily, while
W' was taken as unity and the computation was repeated until

the correct asymptotic value of W was reached (i.e. W(=) = 0),
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The computations were made on an IBM 1620 computer either
by a series expansion method or with the Kutta-Simpson

technique,

The computation involves the use of the Blasius
function and its derivatives. They are generally available
in the form of tables with increments in n of 0.1 (ref.h),
Therefore, they cannot be used for a numerical computation
that includes smaller steps in n than O0.1. For that
reason, the Blasius equation was reintegrated each time
as indicated in Appendix B. Moreover, in these circumstances,
there was no need of introducing Howarth's tables into the

computer.,

Practical details of the computation are given in
Appendix C and the results are shown in table I (with four
decimals only) or in figure 2. From these results, it is
now possible to evaluate the ratio G = hT/hqo According to

Chapman's theory, one has to within one percent accuracy :

y?® (o):_ﬂglpl/3

l¢) 2 ¥

We thus get the following values of G.

Py 0.50 0.72 1.00

G 0.730 0,726 0,723

It is concluded that G is constant to within one

percent over a Prandtl number range of 0.5 to 1.0,
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STEADY STATE TECHNIQUE FOR HEAT TRANSFER MEASUREMENTS

Principle of the technique

In the present technique, heat is uniformly dissipated
at the surface of the model by Joule effect in a thin sheet
of metal of constant thickness. The heat-flux per unit area
and unit time (q) is determined from the measured voltage
and current and the total area of the heating element,
Temperatures are measuredd by thermocouples located at the
model surface for power-off (Twa) and power=-on (Tw) conditions,
The heat-transfer coefficient is then computed from the

following relationship:

The measurements were made at supersonic speeds on the symmetric
wedge model shown in figure 3. It has a semi apex-angle of

5> degrees, thus giving a uniform flow at M = 2,05 along its
upper and lower surfaces (OA and OB as shown in the sketch)

when placed at zero incidence in a supersonic free-stream

at M, = 2.21,

ex‘oans\on wave,

Aﬂ
Mm=2°2l
s -
Bv
The model is made of araladite-type D - which has a low heat

conductivity (k = 0,17 kcal/m hr °C, i.e. about 0,11 BTU/ft hr

° F). Heat is dissipated at the surface by Joule effect in a
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thin metallic layer that adheres to the model surface., This
technique was previously used by Seban et al, (ref.3); their
model was made of bakelite on which nichrome ribbons, 0,051 mm
thick, were glued., In the present investigation, it was expected
to improve the method by avoiding the difficulty of properly
gluing a thin sheet of metal to the model surface and at the
same time by further reducing the effective thickness of the

metallic layer.,

In the early part of the research, this was done
by evaporating nickel under vacuum, The thickness of the nickel
layer formed on the surface of the model was of the order of
one micron, However, the strength of the coating depended
very much on the smoothness of the surface, inasmuch as very
tiny little scratches in the surface of the araldite produced
small sparks when the voltage was applied, which destroyed
the coating after a certain time,

A simpler method was then used which appears more
succesful and which is at the same time of great simplicity.
It is based upon a standard method of silvering mirrors,
Details of the technique are given in Appendix D. The
adherence to the surface is extremely good., Indeed, it is

necessary to use sand-paper to remove the silver layer.,

The uniformity of thickness of the coating is
determined by dividing the surface into a number of strips
with a razor blade as shown in the sketch and then measuring

the distribution of electric resistance of each strip along

va ___________ the z-axis, With proper

§ __§§;§EFEE§__ ————— care in preparing the

: N Anaiatar W i ] surface to be silvered,

‘T': ::_____—_—_t_::____— it is possible to obtain

S LOE I ¥ et 0 L e SR Y a uniformity of thickness

2 SILVER PAINT TFLOW of the silver layer which
b ELEC

is better than ten percent.
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As suggested by McCroskey (ref.5), it is possible to improve
this uniformity by rubbing the silvered surface with fine

sand-paper in regions where the resistance is too small,

The mean thickness of the layer was determined on
a typical sample by titration of the Silver Nitrate solution
which was used for silvering the sample., The thickness was
found to be of the order of 1 micron. It should be noted
that a direct computation of the thickness based on the size
of the surface, its total resistance and the resistivity
of the bulk material gave a value which was quite evidently

too small,

After checking the uniformity of its thickness
the silver layer is electrically connected to the copper
electrodes located at the sides of the model (see above sketch).
Good contact is obtained between the layer and each electrode
(along mm and nn respectively) by painting the surface
locally with silver paint, as indicated in the sketch by

a shaded area,

For the model shown in figure 3, the total
resistance of the silver layers on the upper surface OA
or on the lower surface OB is of the order of 1 ohm. In this
case, one needs a power supply with low voltage and high
current, Because of the high current, a sizeable voltage drop
exists in the lines connecting the power supply to the
electrodes and the voltage drop across the heating element
must then be measured directly at the electrodes with
auxiliary wires. In addition, the electrodes are running
along the full length of the model to ensure a uniform
dissipation of power on the whole surface of the model., Four
independent power supplies were available during the tests

in order to have independent control of the power dissipated
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on the four surfaces OA, OB, AA' and BB'.

There is a small temperature effect on the
resistivity of the silver layer, This effect is expected
to be the same for thin layers as for the bulk materialj
this was checked on a nickel layer in the early part of the
investigation, The resistance increases approximately by
one third of one percent, when the temperature increases by
one degree, Therefore, if the wall temperature varies by
+ 10° around a mean value, the resistance varies by I 3%
and q differs from a constant by the same amount. In the
present investigation, the temperature changes are kept
small because the araldite D cannot withstand high temperatures.
In these <circumstances, the effect of the temperature on

the measurements is not large.

Seventeen flush fitting copper-constantan
thermocouples are installed along the centre-line of
surface OA to measure the wall temperatures. A few others
are located on OB and also on the two parallel portions AA'
and BB' of the model (see previous sketch) with a view
to checking that symmetric conditions are obtained during the
tests, The model was casted with araldite after correctly
positioning the thermocouples in the mould. Details are
given in Appendix E. Each thermocouple is connected to its
individual reference thermocouple maintained at 0°C by melting
ice in a thermos bottle. The reference thermocouple wires
are not welded but merely twisted together and suspended in
individual mercury reservoirs in the thermos bottle.
Individual reservoirs are needed because the thermocouples,
located at the surface of the model, are not insulated from
the silver layer and therefore the thermocouplé leads could
locally by-pass the current from the silver coating. Rotary

switches are used to measure the output voltages of the



thermocouples, in turn, on a calibrated galvanometer,

Measurements were also made at low speeds. The
model consists of a flat plate of araldite, silver plated
on both surfaces in the same manner as the supersonic model,
The plate is 285 mm wide and 550 mm long. It has a thickness

of 10 mm and an elliptic nose,

Test conditions

The symmetric wedge model was tested in the TCEA
continuous supersonic wind-tunnel S-1 (described in ref.6)
at a free-stream Mach number of 2.21 and at stagnation
pressures of 100 and 200 mm of mercury absolute. In these
tests, the thickness of the silver layer was constant
within 10 percent. Steady state conditions were achieved for
both power-off and power-on conditions, after approximately
one hour of running time., Adiabatic temperatures were of the
order of 0°C and wall temperatures with power-on were
limited to a maximum of about 40°C. The stagnation temperature
in the tunnel was closed to ambient temperature and remained
nearly constant after the tunnel had been running for more

than one hour.

The flat plate model was tested in the TCEA low

speed wind tunnel L-2 briefly described in ref.T.

Results and discussion

The experimental results are shown in figure L4 and
compared with the theory. These results are not corrected
for eventual heat-losses through the araldite, for non-
uniformities in thickness of the silver layer or for

temperature effect on the resistivity of the heating element.
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Figure 4a gives the heat-transfer coefficient (h)
as a function of the distance (x) from the leading-edge, for
the supersonic test. Two different pressure levels were used
in the tunnel (100 and 200 mm of mercury) and two different
values of the power dissipated on the model surface (5 watts
and 10 watts). The agreement between the experiment and the
theory is better than ten percent over the full length of
surface of the wedge. In these tests, the thickness of the
silver layer was constant within approximately 10%. Also
shown in the figure is the recovery factor which agrees
with the theoretical value of f?; for laminar flow to within
approximately 10%. As the recovery temperature was found
to be very sensitive to the degree of humidity of the air in
the tunnel, the tests were done at 0.1 gr, of water vapor
per kg of air (lO-h)o The influence of humidity has already

been pointed out, in particular by Thomann (ref.8).

The same results are plotted in figure Lb which gives
the ratio Nu//ﬁz; which is theoretically constant and equal
to 0,39 for the present test conditions according to

relationship (25).

The low speed data are shown in figure bc which gives
h vs x and in figure b4d, in which Nu//ﬁzz is plotted against x,
The test was made with a free-stream velocity of 15 m/sec and
a power dissipated on each surface equal to about 36 watts.
The experimental points are off the theoretical curve by 20%.
This‘was considered as satisfactory because the flow conditions

are not ideal in the small scale wind tunnel L=2,

It is concluded that an excellent agreement exists
between the "uncorrected" experimental data and the exact

theory.




The possibility of correcting the experimental

results will now be considered,

We first evaluate the heat-losses due to
conduction through the araldite. Because the geometry of
the model and the heating system are symmetric, there is no
heat-flux across the plane of symmetry of the model.
However, as the wall temperature increases from the leading-
edge to the trailing-edge of the model, heat is conducted
through the araldite in the stream-wise direction. This
effect can be evaluated by computing the temperature
distribution inside the wedge for given surface conditions,
Under steady state conditions, the temperature must satisfy
Laplace's equation which is written in polar coordinates

as (see sketch) :

2 2
21,38 ,1L32 ., (26)
ar2 FoooT 392

We assume that the wall temperature is given by the constant

heat-flux theory, i.e.

W(o) VT (27)

for

It can be seen that

" 12 5
T Toat CorT cos (2 + ¢ )
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is a solution of (26), where C, and ¢ are constant., To

2
satisfy the boundary conditions (27) we must have

v
=0 : = - 29 |2 L
$ = 83 Uy k uCW(O)
2
Thus
6
T = T - 2 (28)
wa E,
2
—_—

The heat flux through the surface of the model per unit time

and unit area is then, from Fourier's equation :

9T
g w -k (o) (29)
a a T30 6 =a

where ka is the coefficient of thermal conductivity of the
araldite.,

Using the solution (28), (29) is rewritten as

C o fau(e) [Ye . o
P Q k_ /T umC g 32

The ratio of the heat-flux through the surface to the heat-

flux dissipated by Joule effect at the surface is thus

a
x_ W0l u_Cr te 2 (30)




This ratio decreases as r increases and as the wedge angle

decreases, For typical test conditions, (30) shows that qa/q

is smaller than 1%, when x is larger than about 5 mm.

It is thus concluded that the heat-loéses through the

araldite have a negligible effect over most of the surface

of the model. However, this computation is valid for an

infinite wedge and the actual model has a finite length; it

is thus possible that heat-exchanges exist between the model

and the rear sting. This was checked by comparing the results

of figure 4a with the results obtained without heating the

rear surfaces of the model, AA' and BB' (see sketch on page 16)

No difference was observed within the accuracy of measurements.

The effect of the temperature of the heating element
on its resistance was experimentally checked by dissipating
different amounts of power, keeping other conditions
unchanged. As seen from figure la, no systematic difference

was observed in the heat-transfer coefficients.

No attempt was made to correct the results for
a non-uniform thickness of the silver layer. The actual
distribution of the heat-flux can be determined by measuring
the distribution of resistance of the heating element as
indicated under "Principle of the technique”. However, the
width (or span) of the portion of the surface which affects
the temperature along the centre line of the model, remains

unknown,

The effect of the presence of thermocouples, below
the silver-layer, on the power dissipated locally at the
surface was checked by removing the silver layer just above

the thermocouples. No difference was observed in the results.
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For the sake of comparison, unsymmetric conditions
were also tested, by keeping the lower surface of the model
unheated., As expected, a large difference was observed in the
result;° Moreover, it was not possible to work out a simple
method of correcting the data which was satisfactory. This
shows the importance of symmetric conditions and the
uncertainty of correcting the measurements for heat-losses,

when necessary,

Conclusions

An exact solution was found to the compressible
laminar boundary layer equations for the case of a flat plate
with constant heat-flux. The problem was solved by using the
transformed boundary=-layer equation given by Chapman and
Rubesin. The results showed,in particular, that there exists
a constant ratio between the heat-transfer coefficients at

constant heat-flux and at constant temperature,

A steady-state technique for heat=transfer
measurements derived from Seban's, was developped which gave
uncorrected data to within 10 % of the theory at high speed
and 20% at low speed. It is based on a simple method of
"silvering the surface of a model made of araldite and

instrumented with thermocouples.

This method seems particularly suitable and
probably simpler than the isothermal method when used to
study thin symmetrical two-dimensional wings. It is hoped
that the relationship between the heat transfer coefficients
sfill holds in the presence of a stream-wise pressure

gradient,
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APPENDIX A,

Asymptotic solution to the W-Eguation (1T)

If n-+ =,then the Blasius function and its first derivative

can be expressed as

£=2(n- 0,86038) ; £ =2
So that (17) is rewritten as

w" + 2 P (n-0,86038) W' = 2 P W
Introducing a new independent variable z defined by

z = /ﬁz(n-0086038)

we have
aw aw  dz —aw a2w azw
an ~ Tz an - 'Prgy emd = =R T4
dn? dz?
Thus
2
P E—E + 2P z EE - 2P W = 0
b 2] r o dz ? 4
dz
or, after simplification
2
d°W . 2, %% - 2W = 0 A.l
dz2

One can find immediately a particular solution to the
equation,i.e. :

W = 2z
o

and obtain the general solution, by writing

W=W+1t =2t
o
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Where (t) can be determined by two successive quadratures

as follows :

2
dz?
Replacing in (A.1)
2
z 37t , o 4t (1 + 22) =0
dz? z
Defining
_dt
U = 32
we have
du 2 _
zdz+2U€1+z)-o
or
au _ 2 2
Tl (1L + z¢) dsz

where C, 1s a constant,

1

2
+Z—-‘dt

daz?

Therefore, from A.2
. -p -z
t = [ uaz = ¢, [z72%e dz + C
1 2
where C, is another constant, Thus :
W =12t = Clz fz e dz + sz




In order to satisfy the boundary condition (19), i.e. W(=)=0,

one must take C2 = 0, because it is seen, for example, that

by successive integrations by parts, that the integral is

equal to

1 ¥n (=1)"*1 (on + 1)1
2 .22 2n+1 2n
z%e 0 2 n! z

which tends towards O as z -+ «, Thus

_ © -2 g2
W = Clz & s e ds A.3

where C, is to be determined by boundary condition (18) i.e.
W'(o) =1

The numerical integration is simplified by rewriting the

relationship A.3 as follows :

©® w2 g2 Sy RS- PR -g2
f 2e "ds = (=g 0" T e f s .2se”"® as
z . z
2
-2 . a2 il
il - % i ds - ze & ds
) 0
Thus
——"
%— = e % . Vuz (1- erf z)

5 B

By differentiation, we get all the successive derivatives :

" 2
= - /1(1 - erf z) , %— =2 e 2 g PEGcia

k 21

W'
-(-:-—
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APPENDIX B.

The Blasius function f satisfies the equation

££" + £"' = 0 B.1

with the boundary-conditions

f(o) = f'(o) = 0 and f'(=) = 2

A stepwise numerical integration of equation (B.1l)
was done from the wall towards the outer-edge of the beundary-
layer. The initial value of f"(o) was selected arbitrarily
together with f(o) = £f'(o) = O and the computation was
repeated untill the correct asymptotic value f'(w) = 2 was
obtained. The integration was done by expanding f, f', f"

into power series, such that

oY
=
(8]

f(n+dn) = f(n)+f*'(n)dn + ... + £V (n)

Q
=3
£

£'(n+dn)= £'(n)+f"(n)dn+ ... + £ (n)

]

L]

£"(n+dn)= £"(n)+£" " (n)dn+... + £ (n) =

The other derivatives were computed at (n+ dn) in order to
satisfy the equation (B.l) and the other equations obtained

by successive differentiations,i.e.

f"'(n+dn) = = f(n+dn). £"(n+dn)

v

£ - VLY o M

- £"2 _ pprgmy _ g

H
[}
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With an interval of integration equal to dn = 0,01, it was
possible to get values of f, f', f" which agreed with the

values given by Howarth to within the fifth decimal.,

When the integration was performed in the same manner,
but from infinity towards the wall, it was found necessary
to readjust twice the values of f, f', f" during the process
in order to get Howarth's results. This is due to the fact
that two initial values (for f and f") are now to be selected

arbitrarily.



33,
APPENDIX C,

Numerical integration of the W-equation (17)

1. Integration by series,

The integration was done by expanding W and W' in

power series

vdnd

W (n+dn) =W (n) + W'(n)dn + ... +w-—;‘7
" vdn

W'(n+dn) = W'{n) + W"(n)dn + ... + W =7

and the other derivatives were computed at m+ dn in order to
satisfy the W-equation and the other equations obtained by

successive differentiation, i.e.,

Wi(nsan) = 7 [£0 (nean)u(nran)-£(nean)u’ (nvan) |
W" 9 = Pr[f"w-fW"J ) etC o o o0

The quantity‘w-= L: Wdn was computed by the
following series.

W(n+dn) = W(n) + W(n)dn + ... + W ~ZT

2. Integration by the Kutta-Simpson rule,

The following system of differential equations 1is

equivalent to the W-equation (17)
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Therefore,
W
w1

where
A\)

53

A"Q

6"'

iv
A

6|V

from the Kutta-Simpson rule

(n+2dn) = W (n) + %- (ar+28"+24" 1 +2"Y)

(n+2dn) = W (n) + -;- (§'+25"+26" 1 +68'Y)

= W,(n) dn

= Pr[f“(n)w(n) - f(n)Wl(n)] dn

- [Wl(”) + 3 5°]dn

= P {f'(n +dn)[W(n)+% A'J - f(n+dn)[wl(n)»+%6':|}dn
- [wl(n) + = 5"} dn

= Pr{r“(n+qn)[w(n)+-%- A"]-f(n+dn)[wl(n)+%=6":l}dn

= [Yl(n) + 6"V]dn

= Pr{f"(n+2dn)[W(n)+A"'J-f(n+2dn)[Wl(n)+6"']}dn

The quantity W(n) was computed by Simpson's rule.
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APPENDIX D

A mirror silvering method.

Chemicals involved.

1. Silver Nitrate - Dissolve 10 gr. of silver nitrate into 25
of distilled water., By adding ammonia to the solution a
precipitate or deposit starts to form and then
disappears progressively. Ammonia is added until the
deposit has almost vanished (it corresponds to
approximately 9 cc. of ammonia at 25°C). Filter the

solution and add distilled water to make 1 litre.,

2, Tartaric acid - Prepare a solution of 5 gr. of tartaric
acid for 100 cc. of distilled water.

3. Stannous chloride - (SnCl a2H20)-Dissolve 2 gr.of stannous

2
chloride in one litre of distilled water.

Procedure for silvering the models,

As indicated in appendix E, the model is cast in

several steps. In most of the cases, it is thus impossible to

CCo

obtain a uniform state of the surface. However, a uniform state

is important in order to get a silver-layer of constant

thickness. It is therefore useful to spray a thin layer of

liquid araldite® with an air gun on the model surface., At the

same time, by insulating the thermocouples from the silver

layer, odd chemical reactions are avoided. The surface is then

rubbed with sand-paper and very throughly degressed.

X Type EPOXYLUX L4720,




This being done, the model is immersed in solution (3)

for a few minutes, then rinsed briefly in distilled water, and
finally immersed in a mixture of 1 litre of solution (1) with

10 cec., of solution (2) (prepared just before use)., One waits
until the liquid gets slightly muddy. By that time, silver should
have been deposited on the surface. It is preferable to work

at a constant temperature of 25° C(the model must have a

constant temperature),

It is generally easy, by watching the model surface,
to predict wether a uniform thickness will be obtained or not.
In case of an unsuccesful result, the deposit must be thoroughly
removed with sand paper or with nitric acid and the complete

operation repeated.
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APPENDIX E.

Preparation of the araldite model

The wedge model was cast in a metallic mould, coated
inside with vacuum grease, to facilitate witldrawal of the
model from the mould. Each thermocouple is maintained in its
correct position by inserting approximately half of the
welding inside a small hole drilled in the cover plates of the
mould. The wired are run spanwise, as indicated in the sketch,
to minimize the heat-losses due to the streamwise temperature

gradient.,

It was found necessary to cast
WELHIVES « . .
- N order to avold excesslive

\

& N
r. ARALD\TE

the model in several steps in

deformation of the araldite
when removed from the mould.
The model is then machined in
order to correct possible

N - (Fzzx defects and also to bring the
¢ 1
1]

thermocouple junctions flush

% with the surface,
I . CENTRE
I - I NE

The model was mounted in the wind-tunnel on a sting

one end of which was inserted in the rear of the model during

the casting process,
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P, = 0.5
n
- W - W
y ,0200 | 1.2167
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3 .0068 1.2216
Fio .0050 |} 1.2222
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