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Abstract

In this review, we provide an overview of emerging trends and challenges in
the field of intelligent and autonomous, or self-driving, vehicles. Recent ad-
vances in the field of perception, planning, and decision-making for autono-
mous vehicles have led to great improvements in functional capabilities, with
several prototypes already driving on our roads and streets. Yet challenges
remain regarding guaranteed performance and safety under all driving cir-
cumstances. For instance, planning methods that provide safe and system-
compliant performance in complex, cluttered environments while modeling
the uncertain interaction with other traffic participants are required. Further-
more, new paradigms, such as interactive planning and end-to-end learning,
open up questions regarding safety and reliability that need to be addressed.
In this survey, we emphasize recent approaches for integrated perception and
planning and for behavior-aware planning, many of which rely on machine
learning. This raises the question of verification and safety, which we also
touch upon. Finally, we discuss the state of the art and remaining challenges
for managing fleets of autonomous vehicles.
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1. INTRODUCTION

Autonomous vehicles will reduce the number of road fatalities, give our parents and grandparents
greater independence in their retirement, and give us the ability to go anywhere, anytime. In a
single year, Americans drive nearly 3 trillion miles (1), which translates into many hours spent in
traffic, and the number grows significantly when we consider the entire planet. The time spent
in traffic is potentially dangerous, with more than 3,000 lives lost every day (2, 3) and most
accidents due to human error (4). Autonomous vehicles have the potential to improve the quality
and productivity of the time spent in cars, increase the safety and efficiency of the transportation
system, and transform transportation into a utility available to anyone, anytime. This requires
advances in many aspects of vehicle autonomy, ranging from vehicle design to control, perception,
planning, coordination, and human interaction.

In this review, we focus on recent advances in planning and decision-making for autonomous
vehicles, especially (a) how the vehicles decide where to go next, (b) how vehicles use the data
provided by their sensors to make decisions with short and long time horizons, (c) how the inter-
action with other vehicles affects what to do, (d ) how vehicles can learn how to drive from their
history and from human driving, (e) how to ensure that the vehicle control and planning systems
are correct and safe, and ( f ) how to ensure that multiple vehicles on the road at the same time
coordinate and are managed to move people and packages to their destinations in the most effec-
tive way. Inspired by the possibility of a future where transportation becomes a utility, academic
and industry communities have started to address the science and engineering of autonomy, and
significant work has been directed toward these challenges. This article surveys recent results
related to various aspects of decision-making and planning for autonomous vehicles.

The level of automation of an intelligent vehicle can vary from a human-operated vehicle to
a completely self-driving, or autonomous, vehicle. SAE International outlines five levels of auto-
nomy in their J3016 document (5). Up to level 2, the driver is required at all times; in levels 3
and 4, handovers from the vehicle to the driver in difficult situations are possible; and level 5
is reserved for vehicles that are fully autonomous under all circumstances. Traditionally, an in-
cremental approach has been followed to introduce advancements in intelligent vehicles. These
advancements increase the automation level in cars with systems that support the driver, e.g., to
maintain a constant speed, follow a lane, or perform a car–driver handover (6).

Achieving the vision of fully capable automated vehicles will require overcoming many tech-
nical, legal, and social challenges (7). In this survey, we focus on technical approaches that aim
to create a fully automated, or level 5, vehicle. The 2004–2007 Defense Advanced Research
Projects Agency (DARPA)–sponsored competitions (8, 9) pushed research on automated driving
to near-real-world conditions (10, 11). These methods were limited to relatively low speeds and
clutter-free environments with a few moving obstacles. Impressive progress has been achieved in
the last decade, yet recent works on self-driving vehicles still present limitations in the complexity
of the environment and/or the speed of movement (12, 13).

Autonomous vehicles, which operate in complex dynamic environments, require methods that
generalize to unpredictable situations and reason in a timely manner in order to reach human-level
reliability and react safely even in complex urban situations. Informed decisions require accurate
perception. Nonetheless, state-of-the-art computer vision systems cannot yet achieve error rates
acceptable for autonomous navigation. Most recently, approaches combining decision-making,
control, and perception have shown promising results. With the ever-increasing popularity of
machine learning techniques and complex planning and decision-making methods, verification
and guaranteed performance of the autonomous driving pipeline have become challenges still to
be addressed.
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Figure 1
Schema of the planning and decision-making components described in this review: fleet management
(Section 6); approaches for generating control commands from sensory data, namely traditional planning
and control (Section 2), behavior-aware planning (Section 4), and end-to-end planning (Section 3); and
verification of the methods for autonomous driving (Section 5).

In this review, we cover several aspects of planning and decision-making for autonomous
vehicles. In particular, we distinguish between three distinct approaches: sequential planning,
behavior-aware planning, and end-to-end planning (for a schematic overview, see Figure 1).
The sequential approach utilizes advanced perception and decision-making methods to generate
inputs for motion planning and control. After a brief overview of the state of the art in shared
control of intelligent vehicles, these traditional methods for planning and control are described in
Section 2. An alternative approach is that of integrated perception and planning, which includes
learning-based end-to-end methods. These are described in Section 3, together with an overview
of the state of the art in perception. The third approach is that of behavior-aware planning,
where decision-making and planning are integrated into interactive planning. These methods are
described in Section 4. In Section 5 we discuss how these methods could be verified or made
safe by construction, and in Section 6 we describe methods for managing fleets of autonomous
vehicles to provide mobility on demand. Finally, Section 7 concludes the article and provides
several directions for future research.

2. MOTION PLANNING AND CONTROL

We first review traditional methods for vehicle control and motion planning in intelligent vehicles.
We briefly introduce methods for parallel autonomy, where a human is still in control of the
vehicle, and then focus on autonomous vehicles. At the end of this section, we provide an overview
of several current challenges in decision-making and planning, which are then discussed in detail
in the subsequent sections.

2.1. Vehicle Dynamics and Control

At relatively low speeds, a kinematic model of the car can be employed for control. Given a refer-
ence path, proportional–integral–derivative (PID) control, feedback linearization (14), or model
predictive control can then be used to track it. However, operating at high speeds or performing
aggressive maneuvers requires employing the full dynamic model of the vehicle, including tire
forces (15–17). Nonlinear control (18), model predictive control (19), or feedback–feedforward
control (20) stabilizes the behavior of the vehicle while tracking the specified path. Good tracking
performance has been achieved with these vehicle models and controllers, even for autonomous
racing.
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These control methods rely on a model of the vehicle that needs to be identified. Both
optimization-based and learning-based techniques for system identification exist (21). The chosen
technique will depend on the amount and type of data available, the knowledge about the system
dynamics, and the control method to be employed. Since the conditions of the road and the vehicle
will vary with time, online model identification and lifelong system identification (22) will improve
the performance of autonomous vehicles. Tools from machine learning show great potential to
create models from the large amounts of data collected.

2.2. Parallel Autonomy

There are three types of collaborative autonomy: (a) series autonomy, in which the human or-
ders the vehicle to execute a function, which is similar to most self-driving approaches to date;
(b) interleaved autonomy, in which the human driver and the autonomous system take turns op-
erating the vehicle; and (c) parallel autonomy (also referred to as shared control), in which the
autonomous system functions as a guardian angel in the background to ensure safety while the
human driver is operating the vehicle. Whether drivers are distracted or are simply overwhelmed
by the difficulty of driving in challenging scenarios, a parallel autonomy framework offers addi-
tional safety. Many approaches for parallel autonomy have been proposed. In the following, we
provide a brief overview of the field.

The most intuitive way of merging the human input with the output of a safety system is by
linear combination of the two, as shown by Anderson et al. (23), who proposed threat measures
based on the dynamic limitations of the vehicle. There, the human input was combined with a
computed trajectory based on the severity of the threat. For example, shared control could be
achieved via haptic feedback (24).

An alternative to input mixing is to directly incorporate the human inputs into an optimization
framework in a minimally invasive manner. The objective is to minimize the deviation of the
autonomous system’s plan from the driver’s intent. In its most basic form, the driver’s intent
is given by the current steering and acceleration inputs. A convex constrained optimization was
employed by Alonso-Mora et al. (25) to compute safe inputs for shared control. However, the
method was limited to a single-step look-ahead. A typical assumption for intelligent vehicles has
been to consider the velocity of the vehicle as given and optimize only over the steering angle,
thus rendering the optimization problem tractable. For example, Shia et al. (26) minimized the
difference in steering wheel angle from the human predicted control input, which is necessary to
achieve safe trajectories. Alternatively, Erlien et al. (27) defined vehicle stability and environmental
envelopes to supply safe steering commands in a discretized environment, considering the vehicle
speed to be constant and solving a receding-horizon convex optimization. Thanks to advances in
fast nonlinear optimizers, it is now possible to optimize simultaneously over steering angle and
velocity or throttle input (28, 28a) to achieve minimal intervention.

2.3. Motion Planning for Autonomous Vehicles

Two recent reviews (29, 30) provide a clear overview of the state of the art in motion plan-
ning for autonomous cars. In short, most traditional methods to compute safe trajectories for
autonomous vehicles are based on one of three lines of thought. The first is input space dis-
cretization with collision checking, such as lattice planners (e.g., 31, 32) or road-aligned primi-
tives (e.g., 33), whose main advantage is their simplicity and effectiveness, especially in highway
scenarios. The second is randomized planning, such as rapidly exploring random trees (RRT)
(e.g., 34, 35), whose main advantage is the probabilistic exploration of large state spaces, albeit
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at a high computational cost. The third is constrained optimization and receding-horizon con-
trol (e.g., 19, 36), which have been applied mostly to path following but now can also compute
collision-free trajectories to avoid other traffic participants, as shown by Schwarting et al. (28),
who formulated a nonlinear model predictive controller and employed it to safely navigate an
intelligent vehicle. This has been possible thanks to recent advances in solvers for nonlinear
constrained optimization. The main advantage of constrained optimization is the smoothness of
trajectories and direct encoding of the vehicle model in the trajectory planning. Unfortunately,
if not convex, constrained optimization converges only to a locally optimal trajectory for the
vehicle.

Like human-driven cars, autonomous vehicles will also be subject to a large set of rules. These
rules impose constraints on the motion planner, which should always be satisfied. However, un-
der some circumstances (e.g., overtaking an illegally parked vehicle), they need to be violated.
In this case, computing a trajectory that maximizes visibility (37) may help reduce risk, but, in
general, the question of which rules shall be violated arises. If traffic rules are encoded in the
cost function, traditional motion planning methods can be employed to find the path or tra-
jectory of lowest cost. For example, Kuwata et al. (38) computed a cost map of the drivable
space of the car and employed the RRT approach to find the path with the lowest cost. An al-
ternative is to specify the rules as logic functions and utilize automatic control synthesis. For
a discrete model of a robotic system and to reach a goal state, Tumova et al. (39) described
a method to synthesize the motion that violates only the lowest-priority rules for the short-
est amount of time. Although promising, challenges of automatic control synthesis still include
their application to nondeterministic systems and environments, as well as continuous dynamic
models, which is the case for autonomous vehicles. Similarly, Vasile et al. (40) considered the
problem of minimum constraint violation in the context of integrated motion planning and
routing in a road network. They utilized syntactically co-safe linear temporal logic (scLTL)
formulae to specify the desired behavior of the vehicle and employed an RRT∗-based motion
planner to obtain a provably minimum-violation trajectory for a single-vehicle and single-trip
scenario. Minimum-violation routing in the contexts of fleet management and vehicle sharing
remains an open problem, which must be addressed to provide efficient transportation with min-
imal delays. In Section 6, we look at the fleet management and ride-sharing problem in more
detail.

Most of the methods in this section consider a prediction over future trajectories of other
traffic participants to be known. Yet real traffic scenarios include complex interactions among
various road users. Handling complex clutter and modeling the interactions with other road users
is necessary, and this remains an unsolved problem for autonomous driving. In Section 4, we
look at this challenge in more detail. But first, in the next section we provide an overview of the
state of the art in perception and end-to-end planning, which relies on machine learning. Finally,
verification of the correctness and safety of the motion-planning methods is required to achieve
broad applicability. We discuss this challenge in more detail in Section 5.

3. INTEGRATED PERCEPTION AND PLANNING

While the methods described in the previous section abstract perception away from planning,
perception is of utmost importance for autonomous vehicles. In this section, we provide a brief
overview of the state of the art in perception. This is followed by a description of end-to-end
methods for integrated perception and planning, which generate a control input for the vehicle
directly from sensory information and typically rely on machine learning.
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3.1. From Classical Perception to Current Challenges in Neural
Network–Based Perception Systems

A recent survey (41) includes both historical and the current state-of-the-art literature on several
specific topics, including recognition, reconstruction, motion estimation, tracking, scene under-
standing, and end-to-end learning on several benchmarking data sets, including the KITTI (42),
ISPRS (International Society for Photogrammetry and Remote Sensing), MOT (Multiple Object
Tracking), and Cityscapes (43) data sets.

Classical perception systems extract information in the form of manually designed features
from raw sensory data. The most notable examples are SIFT (Scale-Invariant Feature Transform)
(44, 45), BRISK (Binary Robust Invariant Scalable Keypoints) (46), SURF (Speeded Up Robust
Features) (47, 48), and ORB (Oriented FAST and Rotated BRIEF) (49, 50). Approaches building
on hand-designed feature generators are constrained by the adaptivity to generic environments.
By tracking these features, one can localize, estimate odometry, and map the environment in
a simultaneous manner [simultaneous localization and mapping (SLAM)], which has become
popular in the robotics community. While the current leaders in the KITTI Visual Odometry
benchmark are based on lidar or a combination of vision and lidar (51), fast and lightweight
approaches based purely on vision, such as ORB-SLAM2 (50), SVO (Semidirect Visual Odometry)
2.0 (52), and LSD-SLAM (Large-Scale Direct Monocular SLAM) (53), have matured to be able to
compete. The high costs of lidar sensors are a strong driver for commercial and academic research
and development in vision-based perception. While this may change owing to the development and
availability of solid-state lidar, high-resolution radar, or other cheap depth sensors, a combination
of multiple sensors with overlapping capabilities will most likely persist to achieve redundancy
and increased safety.

While it may seem desirable to map the world in its finest detail to ease localization and
planning in a predefined map, including pixel-perfect annotations of lane markings and traffic
signs, this comes with several significant disadvantages. It may not be possible to update maps to
reflect changes in the environment quickly enough. Highly detailed maps are expensive to create,
maintain, and transfer, since updates need to be constantly fed into and distributed by the system.
Therefore, it seems advantageous to keep only a light map containing condensed and semantic
information; all other information, such as position inside a lane, traffic lights and signs, cars, and
pedestrian detections, should be realized on the fly.

We refer the reader to an article by Bar Hillel et al. (54) for a survey on road and lane detection.
Object detections are typically done by a bounding-box detection, maximizing the likelihood of
detecting an object inside the box, or by semantic segmentation, classifying each pixel in the image
space. For both tasks, deep neural network architectures have become dominantly successful. The
current state of the art for object recognition may be found in the corresponding benchmarks, such
as the ImageNet Large Scale Visual Recognition Challenge (55). In general, real-time-capable
systems such as Faster R-CNN (Faster Regional Convolutional Neural Network) (56) exist.

By contrast, accurate semantic segmentation on high-resolution images in real time poses
a greater challenge. State-of-the-art decoder–encoder network architectures, such as ResNet38
(57) and PSPNet (Pyramid Scene Parsing Network) (58), achieve more than 80% mIoU (mean
intersection over union) in the Cityscapes data set (43) but take multiple seconds to propagate
on high-resolution images, since they require a large number of floating-point operations. More
recently, ENet (Efficient Neural Network) (59) achieved a 13-ms runtime on 1,024 × 2,048–pixel
images with 58% mIoU on the Cityscapes data set (43), while ICNet (Image Cascade Network) (60)
achieved 70% mIoU at 33 ms. ICNet incorporates multiresolution branches under proper label
guidance to combine low-resolution layers (from which it learns the representation and extracts the
most semantic information) and higher-resolution layers while simultaneously preserving details.
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Deep neural network architectures rely on large amounts of data to generalize well enough
to new environments and achieve sufficient variance reduction. Expensively manually labeled
real-world data sets, such as the Cityscapes data set (43) for benchmarking semantic urban scene
understanding, may contain only a limited amount of data. Artificial data from simulation, such as
the SYNTHIA data set (61), which contains images for semantic segmentation of urban scenes,
attempt to overcome this limitation. Johnson-Roberson et al. (62) offered a discussion of whether
virtual worlds may replace human-generated annotations for real-world tasks. They compared
training on an artificial data set of 200,000 images generated from simulation, based on the com-
puter game Grand Theft Auto V, with training on the Cityscapes data set and evaluated the resulting
networks on the KITTI data set (42) for vehicle detection. The network trained only on simulated
car images significantly outperformed the one trained on real imagery (Cityscapes) on labels of
all difficulties. Similarly, but for semantic segmentation, Richter et al. (63) created a data set from
Grand Theft Auto V. Experiments on semantic segmentation data sets show that using the acquired
data to supplement real-world images significantly increases accuracy and that the acquired data
can reduce the amount of hand-labeled real-world data: Models trained with game data and just
1/3 of the real-world training set outperformed models trained on the complete real-world train-
ing set. Nonetheless, both approaches result in increased data set bias, which can also be found in
real-world data sets (64).

A large issue of neural network–based perception systems is the insufficient feedback of uncer-
tainty. Bayesian deep learning forms the intersection between deep learning and Bayesian proba-
bility theory, offering principled uncertainty estimates within deep architectures. The network’s
model uncertainty may be estimated with Monte Carlo dropout sampling (65), by propagating the
given inputs through the network multiple times with different dropout weights. Evaluating the
resulting statistics gives an estimate of the model uncertainty. As suggested by McAllister et al.
(66), estimating and propagating uncertainty from every component throughout the entire system
pipeline using a principled Bayesian framework would enable the autonomous vehicle to cope
appropriately with high uncertainty.

The outputs of these low-level perception components are usually processed by a fusion com-
ponent to generate a representation of the vehicle’s environment (13). This environment model
is then used by a further component to plan and control the vehicle’s behavior. In the next sec-
tion, we investigate how merging perception and planning may achieve closer coupling of sensory
information and actuation.

3.2. End-to-End Planning

In conventional autonomous driving frameworks (13), functionalities are encapsulated with clear
observable interfaces between modules. This may also be referred to as mediated perception (67),
where objects of interest are detected and fused into a scene description, and driving commands
are then computed.

Instead of keeping perception and planning modules separate, an alternative framework is
to train certain parts of the perception module to incorporate partial tasks from the planning
module. Caltagirone et al. (68) generated driving paths by integrating lidar point clouds, GPS–
inertial measurement unit (IMU) information, and Google navigation information. The system
is based on a fully convolutional neural network that jointly learns to carry out perception and
path generation in the ground plane from real-world driving sequences. The method works in
a weakly supervised manner, since driving paths can be labeled automatically from past driving
data. Similarly, a semantic segmentation network may be employed to generate path proposals in
the camera image space (69). Previously driven paths and obstacles detected from a lidar scanner
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are labeled and projected into the image space in an automated fashion. During deployment,
only a camera image is needed to classify path proposals and obstacles. A major benefit of both
approaches is the possibility of generating vast amounts of labeled data in an automated fashion
without expensive manual label generation. Consequently, both systems may execute the path-
planning function in a conventional planning pipeline.

Going a step further, one can learn the entire task of lane and road following without manual
decomposition into road- or lane-marking detection, semantic abstraction, path planning, and
control. ALVINN (Autonomous Land Vehicle in a Neural Network) (70) pioneered end-to-end
driving in 1989 by teaching a neural network to output steering angles from camera images to keep
the vehicle driving on the road. Chen et al. (67) referred to this as the behavior reflex approach, and
by 2006, it was already possible to learn to avoid off-road obstacles from raw stereo-camera inputs
(71). Since then, owing to the rise of GPU-computing capabilities for efficient learning of con-
volutional neural networks, common networks have become deeper and now contain many more
parameters, increasing the overall performance of end-to-end driving. Researchers at NVIDIA
(72) trained a deep convolutional neural network to map raw images from a front-facing camera
directly to steering commands and were able to handle challenging scenarios such as driving on a
gravel road, passing through roadwork, and driving during the night in poorly lit environments.
During training, random shifts and rotations are applied to the original input image and virtual
human interventions are simulated to artificially increase the number of training samples that
require corrective control actions. By observing which regions of the input image contributed
most to the output of the network (i.e., the salient objects), Bojarski et al. (73) showed that the
network was capable of learning features resembling lane markings, road boundaries, and shapes
of other vehicles, in an effort to explain the resulting behavior. Gurghian et al. (74) allowed for a
close-up and uncluttered view of the lane by using two laterally mounted down-facing cameras and
estimated the position inside the lane in an end-to-end fashion. The output of the lateral in-lane
position may now be used to control the vehicle. Similarly, Chen et al. (67) trained a network to
output affordance indicators, essentially features for the position and orientation inside the lane
and other measures relative to other vehicles. Based on this simpler representation, a deterministic
controller subsequently computes speed and steering commands.

Xu et al. (75) used a large-scale driving video data set to train an end-to-end fully convolutional
long short-term memory network to predict both multimodal discrete behaviors (such as straight,
stop, left turn, and right turn) on a task-based level and continuous driving behaviors (such as
steering wheel angle control). The architecture for time-series prediction essentially fuses a long
short-term memory temporal encoder with a fully convolutional visual encoder. Semantic seg-
mentation as a side task further improves the model, following the privileged learning paradigm.
In the same work, a large-scale data set of crowd-sourced driving from 21,808 unlabeled dashboard
camera videos of different behaviors was automatically labeled and used for training.

DAgger (Dataset Aggregation) works in a setting where the reward is given only implicitly
and improves upon supervised learning by letting a primary policy collect training examples while
simultaneously running a reference policy. This dramatically improves the performance of a pri-
mary policy. SafeDAgger (76) is a query-efficient extension to DAgger (77). To achieve query
efficiency in SafeDAgger, a safety classifier is introduced to predict the error made by a primary
policy without querying a reference policy.

End-to-end motion planning has also been applied to robotics—for example, to learn a naviga-
tion policy in simulation from an expert operator, with a 2-D laser range finder and relative goal
position as inputs (78). It is then feasible to transfer the knowledge gained from training to unseen
real-world environments to perform target-oriented navigation and collision avoidance. Socially
aware collision avoidance with deep reinforcement learning was introduced to explain and induce
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socially aware behaviors capable of learning directly from multiagent scenarios by developing a
symmetrical neural network structure (79).

Robots that use learned perceptual models in the real world must be able to safely handle cases
where they are forced to make decisions in scenarios that are unlike any of their training examples.
Recent ensemble, bootstrap, and Monte Carlo dropout methods for quantifying neural network
uncertainty (Bayesian neural networks) may not be able to efficiently provide accurate uncertainty
estimates when queried with inputs that are very different from their training data. Therefore,
an autoencoder may be trained to recognize when to detect novelties in the input data (80) and
revert from an end-to-end approach to a safe non-learning-based behavior, such as the execution
of conventional motion primitives.

Another line of research learns driving behavior in simulation, making it suitable for reinforce-
ment learning because it is possible to observe failure cases during learning in a safe environment.
The approaches presented above inherit only normal driving behavior, which may indicate that
they cannot operate well in rare corner cases, such as crashes. In the best case, reinforcement learn-
ing may actively seek these difficult cases during exploration. Additionally, ground truth perception
information is available in simulation, easing the definition and computation of a reward function.
Wolf et al. (81) presented an approach for learning to steer a vehicle in a simulation environment
using a Deep Q-Network. Nonetheless, the action space is discrete, allowing only for coarse steer-
ing wheel adjustments. They found that, when benchmarking for distance from the lane center,
overall performance can be increased by adding other terms, such as the angle deviation of the
vehicle from the center line. The gap between simulation and real-world data could be closed
(82) by first segmenting the virtual image from the simulator with a segmentation network and
then translating it into a realistic-looking image employing a generative network. The generative
network is trained to create seemingly real-looking images from segmentations. To operate over
continuous action spaces, Lillicrap et al. (83) proposed an actor–critic and model-free algorithm
that is based on the deterministic policy gradient and relies on deep reinforcement learning. The
algorithm is able to learn a policy to remain on the track in a simulated car-driving environment.

4. BEHAVIOR-AWARE MOTION PLANNING

Most of the methods in Section 2 expect a prediction over the future trajectories of other traffic
participants in order to avoid collisions, but real traffic scenarios involve complex interactions
among various road users. Handling complex clutter and modeling interactions with other road
users are necessary to provide safety. In this section, we investigate this open challenge.

In the DARPA Urban Challenge, multiple solutions for tactical planning were proposed, al-
though they were specifically tailored to the challenge’s needs. Most approaches (e.g., 10, 11, 84)
use a state machine to switch between predefined behaviors. These rule-based approaches lack
the ability to generalize to unknown situations and deal with uncertainties.

Automated driving with humanlike driving behavior requires interactive and cooperative
decision-making. Other motorists’ intentions need to be deduced and integrated into a planning
framework that allows for reasonable cooperative decision-making without the need of intervehi-
cle communication. While autonomous vehicles need to be able to deduce the intentions of other
human traffic participants, they also need to enable others to reasonably infer the autonomous ve-
hicle’s intention. This results in interdependencies and interactions based on the seen and shown
behavior without the need for explicit communication.

We first present work in the area of cooperative and socially compliant behavior planning and
then expand in a later section to more general interactive planning, including interactiveness with
other agents and the environment by modeling, or actively reducing, uncertainty due to occlusions
and incomplete sensor information. We then discuss learning-based approaches.
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4.1. Cooperation and Interaction

Socially compliant driving, including cooperation and interactivity, not only are important to
create congruent behavior among real human drivers but also are vital for safe navigation in
cluttered, dynamic, and uncertain environments. Since an agent’s actions are interdependent on
all other agents’ actions, an uncertainty explosion in future states arises and results in the freezing-
robot problem (85) discussed in the robotics community. The robot comes to a complete stop
because all possible actions become unacceptably unsafe. If the robot does not come to a complete
stop, it will choose to follow highly evasive or arbitrary paths through the crowd that are often
not only suboptimal but potentially dangerous.

There are now essentially three ways to tackle the issue of exploding uncertainty:
� Find a better description of the dynamics of the environment, including dynamic obstacles,

as in partially closed-loop receding-horizon control (86), by modeling the anticipated future
information to reduce the uncertainty that is associated with future belief states. However,
even under perfect individual prediction and perfect knowledge of all agents’ trajectories,
the freezing-robot problem cannot always be prevented (85).

� Model cooperation based on a conditional formulation that models how the agents react
to the robot’s actions (as in 87). One problem is that modeling the reactions to the robot’s
behavior indirectly assumes the ability to fully control all other agents. Intuitively, assuming
full control over all agents may lead to aggressive and potentially dangerous behavior owing
to overconfidence in the behavior model.

� Model cooperation via joint distributions, i.e., essentially modeling the robot as one of the
other agents. Examples are joint probability distributions (85) and joint cost distributions
(88).

An agent’s behavior can be defined as cooperative if joint utility is knowingly and willingly in-
creased in comparison with a reference utility (89). For the purpose of comparability, we consider
approaches that, in some form, increase joint utility by incorporating the goals of other agents as
cooperative. In this context, cooperative motion planning may also be referred to as a goal for so-
cially compliant motion planning. A survey of cooperative planning (90) distinguishes cooperative
driving behavior into the two dimensions of intervehicle communication and cooperation in the
sense of collaboration. In this review, we focus on approaches that do not rely on communication
with other vehicles or infrastructure.

4.2. Game-Theoretic Approaches

It is a common pattern to model other vehicles’ behavior as expected utility maximizing—i.e.,
an agent is expected to execute the most beneficial controls (87). Therefore, a reward or utility
function needs to be known or learned. This can be done in a similar manner for probabilistic
approaches, where instead of optimizing for lowest cost, the vehicle’s controls are expected to
follow the rule of maximum likelihood or maximum a posteriori. The actions are typically rolled
out and scored over a fixed time horizon, resulting in a receding-horizon planner.

Another distinction between approaches is whether this optimization is done for a joint
cost or distribution or in a two-player game, where the autonomous vehicle first computes an
action and then models the other vehicle to react in a way that maximizes its own expected
reward. The emergent behavior can be highly interactive instead of reactive, because the
autonomous vehicle will optimize to maximize its own reward, which is dependent on the other
vehicle’s actions. The latter process results in an assumption of indirect control over the other
vehicle.
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While modeling interactions is an intriguing problem in itself, dealing with the increased com-
plexity is another challenge. Since all agents’ actions are affected and equally affect other agents’
actions, the number of interactions (and therefore the planning complexity) grows exponentially
with the number of agents. The simplest approach is to discretize the action space by motion
primitives and to exhaustively search through all possible options (89). Naturally, there are more
efficient methods of exploring the optimization space. In the deterministic case, one can cover
the decision-making process, often phrased in a game-theoretic setting (91), in a tree-type struc-
ture and apply a search over the tree. The tree, usually discretized by action time, consists of
discrete actions that each agent can choose to execute at each stage of the tree. Since each agent’s
reward depends not only on its own reward and actions but also on all other agents’ actions at
the previous stages, the tree grows exponentially with the number of agents. To achieve faster
optimization for an optimal (or approximately optimal) solution, other tree search algorithms,
such as Monte Carlo tree search (92), may be applied. To reduce computational complexity,
Schwarting & Pascheka (93) assumed that the following vehicles’ actions are dominated by their
predecessors and used this assumption to formulate a recursive conflict-resolution algorithm to
achieve only quadratic complexity in the number of agents.

Li et al. (94) modeled the decision-making in autonomous driving as a Stackelberg game.
The autonomous vehicle, the leader, chooses its actions to maximize its utility for the worst-case
actions that following vehicles might choose. All other vehicles act similarly in a leader–follower
chain. Therefore, not all vehicles’ actions are interdependent with all other vehicles’ actions, and
the complexity grows only linearly with the number of agents, as compared with decision trees.
The approach shows the feasibility of solving the decision-making game even for more than 30
vehicles in real time. Nonetheless, in a comparison of Stackelberg and decision trees for decision-
making, decision trees outperformed the Stackelberg approach in both average speed and number
of constraint violations.

4.3. Probabilistic Approaches

In a highway entry scenario involving an autonomous vehicle merging into moving traffic, Wei
et al. (95) planned for two vehicles to execute a set of possible high-level policies in a Markov
decision process. A search for the best policy is performed by forward simulating to find the most
likely traffic scenario and then executing the corresponding policy from the set of available policies
for the ego vehicle. Every policy is then scored against the ego vehicle’s cost function, and the
best policy is executed. The authors associated social behavior with a simple Bayes model: Other
vehicles are more likely to yield if decelerating and less likely to yield if accelerating. No reciprocal
reward-based model is employed.

Trajectories can also be sampled on a discretized manifold (96), similar to the work of Werling
et al. (33), and the environment’s reaction can be rolled out according to the intelligent driver
model. As a time-continuous car-following model for the simulation of freeway and urban traffic,
the intelligent driver model describes the dynamics of the longitudinal positions and velocities of
single vehicles in a traffic flow on a micro level. The approach incorporates cooperative behavior
by including other vehicles’ efforts (acceleration) into a joint cost function and therefore achieves
a certain level of cooperation. An additional constraint on the other vehicles’ maximal acceler-
ation is enforced. Hoermann et al. (97) used a particle filter to estimate the intelligent driver
model’s behavior parameters, corresponding to maximum acceleration, desired acceleration, de-
sired velocity, minimum distance, and desired time gap. The resulting posterior density is used
to probabilistically propagate the current state to receive probabilistic long-term predictions for
autonomous vehicles in a longitudinal direction.
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Dong et al. (98) used a probabilistic graphical model to describe the dependency among ob-
served data and estimate other cars’ intentions. The task of the probabilistic graphical model is to
generate an intention estimation with maximum probability, given observed information.

In interacting Gaussian processes (85), each agent’s trajectory is modeled via a Gaussian process.
Individual Gaussian processes are coupled through an interaction potential that models cooper-
ation between different agents’ trajectories. Terms for affordance, for progress, and to penalize
close distances to other agents can also be included in their joint cost function (88).

4.4. Partially Observable Markov Decision Processes

In the probabilistic case, the problem is often formulated as a partially observable Markov decision
process (POMDP), where the intentions and replanning procedures of the other agents are not
directly observable and are encoded in hidden variables. Publications in the POMDP community
typically focus on solving POMDP models offline. In this context, offline means that the focus
is typically to calculate the best possible action not for the current belief state but rather for
every imaginable belief state. Hence, they provide a policy—prior to the execution—of the best
action to execute in any possible situation. POMDP problems are PSPACE complete and thus
computationally intractable for large state spaces. Even for relatively small POMDP problems, it
takes several minutes to hours to calculate approximate offline solutions. By contrast, for decision
making in traffic environments, decisions need to be updated frequently (e.g., every 100 ms). Since
solving the most general POMDP is intractable in real-time applications, approximate POMDP
solutions to simplified problem formulations are employed to avoid the complexity of computing
a sophisticated, long-term policy.

A POMDP with the other vehicle’s intentions as hidden variables can be employed as well (99).
The proposed method simplifies the problem significantly by planning all vehicles’ motions on pre-
planned paths, reducing the dimensionality of the state space of the given problem. The POMDP
formulation readily incorporates trade-offs among exploration (the information-gathering pro-
cess) and exploitation (the progress toward a goal or reward). Nonetheless, the interaction model
simply consists of a constant braking action triggered if a time to collision falls below a threshold.
A POMDP integrating the road context and the motion intention of another vehicle in an urban
road scenario was solved by Liu et al. (100). A reference vehicle behavior corresponding to the
road context is defined, and the other vehicle’s reaction is inferred by observing the deviation from
the reference behavior. A discretization of the other vehicle’s intentions (i.e., a hidden variable)
allows the approach to infer other vehicles’ intentions, such as giving way or acting aggressively.

It is also possible to plan, without interactions, over specific regions of interest (101) instead
of the whole set of other vehicles and only for the current belief state. This is typically done by
a look-ahead search in the belief state space to explore only those belief states that are actually
reachable from the state right now.

Oftentimes, a large amount of domain knowledge can be incorporated into the action selection
process to simplify the decision-making; planning horizons are relatively short, since predictions
are accurate for less than 10 s. In both highway and city driving, the number of distinct actions,
although they may vary during execution, remains relatively small. Only limited planning accuracy
is needed in the far future. Planning on abstractions rather than detailed trajectories can lower
planning complexity significantly. Ulbrich & Maurer (101) applied a tree-based policy evaluation
that incorporated the above-described domain knowledge. The problem setting of growing com-
plexity is then again similar to the deterministic setting. Likewise, Galceran et al. (102) suggested a
custom POMDP solver that forward propagates multiple hand-defined policies, including hyper-
parameters, and computes the deterministic closed-loop feedback on the autonomous vehicle’s
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policies. The main approximation is in reducing the decision to a limited set of policies and per-
forming evaluations with a single set of policy assignments for each sample. Alternatively, Zhou
et al. (102a) proposed a real-time method for joint multipolicy behavior estimation and receding-
horizon trajectory planning in urban environments. The authors employed a coupled POMDP
to estimate the future trajectory of the interacting traffic participants and a chance-constrained
nonlinear MPC planner (extension of Reference 28) to compute safe trajectories.

Finding a suitable symbolic representation for the POMDP is difficult, as it heavily depends
on the specific task and situation. The usual approach is to use an equidistant discretization of the
continuous space. On the one hand, such a discretization is often too coarse and cannot represent
enough detail to find a solution to the problem. On the other hand, it encodes information
redundantly where high precision is not needed. Brechtel et al. (103) presented a continuous
POMDP with a focus on balancing exploration and exploitation in the scenario of occlusions and
incomplete perception. The continuous POMDP is solved by incremental learning of an efficient
space representation during value iteration. While reasoning about potentially hidden objects and
observation uncertainty, they also consider the interactions of road users.

A different approach, instead of solving the POMDP in a conventional way or by domain
knowledge and specific simplifications, is to employ nonparametric reinforcement learning (as
in 104), to immediately receive an approximately optimal policy without optimization. However,
generalization to arbitrary environments remains a challenge.

4.5. Learning-Based Approaches

In the previous sections, we have focused on the frameworks and models for interactions among
human-driven vehicles. We now turn to data-driven approaches. We exclude approaches related
to end-to-end driving, which were already presented in Section 3.2, and continue focusing on
behavior-aware motion planning.

Typical approaches decouple decision-making and planning. For instance, Vallon et al. (105)
trained a support vector machine for lane-change decision-making with features composed of
relative position and relative velocity. If a lane-change desire is triggered, a lane-change reference
trajectory is executed by a model predictive controller with the objective from minimal deviation
to the reference subject to a set of safety constraints.

Gaussian mixture models parameterized by neural networks with features based on the ego
vehicle’s and the surrounding vehicles’ states, past actions, and specifications and the road geometry
were trained in Lenz et al. (106) to predict the motion of a group of vehicles in a highway setting.
Fully connected layers were able to outperform recurrent neural networks as well as other able
classical models, such as the intelligent driver model.

An alternative is to employ a nonparametric prediction architecture (107). A sample generation
module consisting of a conditional variational autoencoder was able to learn a sampling model that,
given observations of past trajectories, produces a diverse set of prediction hypotheses to capture
the multimodality of the space of plausible futures. An inverse optimal control–based ranking
module determines the most likely hypothesis while incorporating scene context and interactions.
Interestingly, this work shows similarities to the sampling hypothesis and subsequent scoring and
refinement used by numerical POMDP solvers.

Inverse reinforcement learning (IRL) is a prominent framework. In the literature, IRL is also
often referred to as inverse optimal control. In all of these cases, an unknown reward function
is learned from expert demonstrations. In classical approaches, the cost function consists of a
weighted sum of hand-designed features �(s ) = ∑p

k=1 wkφk(s ), where the weights wk are to be
learned.
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As mentioned above, interactions can be modeled by indirect control over the other vehicle
(87), in the manner of an underactuated system. The proposed method learns the reward func-
tion via feature-based IRL from expert demonstrations. Manually designed features (i.e., cost
terms) incorporate objectives of staying inside lanes, collision avoidance, a measure for progress,
and control effort costs. Other vehicles’ behaviors follow from a two-player game where the
other vehicle maximizes its own reward in response to a given control trajectory of the autono-
mous vehicle. As such, the human driver is assumed to act egoistically. This approach is able
to leverage effects of the autonomous vehicle’s behavior on human actions. Emergent behavior
includes induced lane changes and changes in velocity at intersections and highway segments.
An extension (108) gathers information about the internal state of another vehicle’s driver by in-
cluding the information gain over a belief state in the objective function, effectively reducing the
entropy. The belief state encodes the affiliation with one of two discrete cost functions modeling
the driver behavior, e.g., attentive versus distracted. In contrast to related POMDP formulations,
the exploration–exploitation trade-off is not addressed yet and is encoded only by a linear combi-
nation of objectives in the reward function. By contrast, the weights of the reward function can
also be found by having a human driver choose a preferred trajectory iteratively from a set of two
candidate trajectories (109). This allows the vehicle to learn the reward function without a set of
expert trajectories and predefined labels.

In a further step toward communicating robot objective functions to people, Huang et al. (110)
recognized that, unlike robots, humans will not be exact in their IRL inference. They introduced
a collection of approximate-inference models and, in a user study, showed increased performance
in comparison with an exact-inference model.

An exemplary implementation of learning different driving styles in a highway simulation
showed the potential of Markov decision processes with an unknown reward function (111). Abbeel
et al. (112) demonstrated an improved version of the algorithm and its performance by generating
humanlike trajectories in parking lots, with only a few demonstrations required during learning.

Ziebart et al. (113) applied the principle of maximum-entropy IRL, which is a natural choice
to avoid overfitting since the maximum-entropy distribution shows the least commitment to the
data. Maximum-entropy IRL has been popular for learning cost functions in robotics and autono-
mous driving. Kuderer et al. (114), Kretzschmar et al. (88), and Pfeiffer et al. (115) described
learning socially compliant motion planning and human behavior. Herman et al. (116) presented
an approach for priority adaptive navigation, where a robot must choose navigation models of
different social acceptabilities based on task constraints. The behavioral models are learned by
maximum-entropy IRL from demonstrations of different social acceptabilities. A similar variant,
maximum margin planning (117), was applied to navigate a robot in complex unstructured terrain
(118) and to learn autonomous driving styles and maneuvers (119).

Continuous inverse optimal control with locally optimal examples (120) may be used to handle
continuous states and actions and the fact that expert demonstrations may be noisy and possibly
locally optimal. Levine & Koltun (120) showed the ability to learn aggressive and evasive driving
styles from demonstrations based on features consisting of speed, deviation from lane centers,
and Gaussian distributions covering the front, back, and sides of the other cars on the road.
Similarly, Sadigh et al. (87) demonstrated the ability to learn human driver rewards as a model
for human behavior.

Majumdar et al. (121) devised a framework for risk-sensitive IRL to be able to take an expert’s
risk sensitivity explicitly into account. This framework was capable of capturing ranges of different
risk preferences, from risk neutral to worst case. A linear programming–based algorithm was used
to infer an expert’s hidden risk metric.
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The maximum-entropy deep IRL framework (122) exploits the expressive capacity of deep
fully convolutional neural networks to represent the cost model underlying driving behaviors.
In general, deep fully convolutional neural networks, as robust, flexible, high-capacity function
approximators, are able to model the complex relationship between sensory input and reward
structure very well. Additionally, thanks to convolutional operators, they are able to capture spatial
correlations in the data. Wulfmeier et al. (123) were able to learn an end-to-end mapping from
raw input data to cost map from more than 25,000 demonstrations over 120 km of driving.

Lastly, Kuefler et al. (124) demonstrated the effectiveness of generative adversarial imitation
learning (125), extended to the optimization of recurrent policies. As discussed above, one approach
to learning policies from expert demonstrations is to recover the expert’s cost function with IRL
and then extract a policy from that cost function with reinforcement learning. Since this direct
procedure is usually slow, generative adversarial imitation learning poses a framework to extract
policies directly from data. The approach reproduces emergent behavior of human drivers, such
as congruent lane-change behavior, while maintaining validity over long time horizons.

5. VERIFICATION AND SYNTHESIS

Recent studies (126) have indicated that the minimal requirement to demonstrate safety for an
autonomous car is hundreds of millions of miles, taking possibly tens of years to complete. While
simulation and case-based testing are routinely employed to check the performance of autonomy
methods, they do not provide sufficient guarantees. This is especially true for safety-critical do-
mains such as autonomous driving, where unsafe events are rare and hard to characterize. To
meet these proof-of-safety demands, we need frameworks that provide analytical proofs of safety,
rather than checking a finite set of concrete traffic situations in simulation.

Given a model of the system and environment, safe controllers can be produced by model-based
correct-by-construction synthesis, meaning that trajectories of the closed-loop systems provably
meet the specification. Synthesis approaches typically rely on specifications given in linear temporal
logic and have been developed for low-complexity tasks such as adaptive cruise control (127) and
control of signalized vehicular networks (128). Yet controller synthesis is currently limited in scope
and deployment owing to its very large computational cost.

An alternative to correct-by-construction synthesis is formal verification, which typically has a
smaller computational footprint. Model checking is a widely used technique for formal verification
of distributed systems. It examines the complete reachable state space of a model in order to
determine whether the system satisfies its requirements or desired properties. This approach
was applied to formally verify the state consistency between different software modules of the
autonomous vehicle developed by the California Institute of Technology for the 2007 DARPA
Urban Challenge (129) and for verification of adaptive cruise control (130). Online verification
can be achieved with reachability analysis (131) when performing conservative linearization, using
zonotopes as a set representation and querying from a database of specific emergency maneuvers.
Online verification of general maneuvers would require a probabilistic representation of other
traffic participants and scenarios, which is still computationally challenging because of the high
complexity. The drivability of planned motions can also be checked for, and guaranteed, via
reachability analysis (132). Instead of verifying car controllers online, an alternative is to build
a library of local and verified road models, such as intersections and road segments, that are
composed together to certify safety over networks (133). Such an approach can work well to verify
controllers and networks (e.g., for urban planning) but do not yet account for all uncertainties in
the behavior of traffic participants.
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Formal synthesis and verification have been extensively studied in the field of control, and they
are prominent tools to guarantee the safety of autonomous vehicles, despite their high compu-
tational cost and associated limitations. In parallel, there has been an ever-increasing popularity
of artificial intelligence techniques, such as neural networks, which raise questions about safety
since their output response is not well known, especially outside of the training data regime. Al-
though traditional tools, such as short-term memory solvers, could be extended for verification
of deep neural networks (134), additional challenges exist for verification of artificial intelligence.
Seshia et al. (135) identified five challenges: modeling of the complex environment, modeling of
the system, formal specification of the desired properties of the system, scalability, and formal
quantification of the requirements for training data.

6. FLEET MANAGEMENT

Ride-sharing services are transforming urban mobility. Also known as vehicle-pooling options,
these systems allow several passengers to share a vehicle when traveling along similar routes. These
companies currently rely on drivers to operate the vehicles, but there is a push in the industry
toward autonomous self-driving vehicles. These fleets of autonomous vehicles are expected to
provide safe, reliable, and affordable transportation. In this section, we discuss approaches for
dynamic vehicle routing and passenger assignment.

Much of the fleet management literature for mobility-on-demand systems considers the
case of ride sharing without pooling requests, focusing on fluid approximations (136), queuing-
based formulations (137), and case studies in specific regions. With the growing interest and
rapid developments in autonomous vehicles, there is also an increasing focus on autonomous
mobility-on-demand systems (138). However, none of these works considered the ride-pooling
problem of servicing multiple rides with a single trip. The ride-pooling problem is more related
to the vehicle-routing problem and the dynamic pickup and delivery problem (139–141), where
spatiotemporally distributed demand must be picked up and delivered within prespecified time
windows. A major challenge when addressing this problem is the need to explore a very large
decision space while computing solutions fast enough to provide users with the experience of
real-time booking and service.

A study in New York City showed that up to 80% of the taxi trips in Manhattan could be
shared by two riders with an increase in the travel time of a few minutes (142) and also showed
the gains attainable by a “global oracle” with full knowledge of the future. These results were
confirmed by Alonso-Mora et al. (143), who introduced an anytime-optimal method for request
matching and dynamic vehicle routing in low- and high-capacity vehicles. The method, which
consists of three steps—pruning of feasible trip combinations, assignment of trips to vehicles, and
fleet rebalancing—showed that large-scale operation of vehicle fleets is possible.

These works, and their predecessors, have opened the way for several avenues of research,
where artificial intelligence will play a stronger role (144). Powerful data-mining tools and readily
available large data sets of public transit data (145) will allow us to build probabilistic models of
future travel patterns and use them to better position the fleet of vehicles for future requests. These
models will then be included in probabilistic and uncertainty-aware large-scale planning methods
that in expectation guarantee a certain quality of service. A recent review of stochastic routing
highlighted state-of-the-art works in this area (146). For instance, Alonso-Mora et al. (147) com-
puted a historical probability distribution of future requests and included random samples in the
dynamic routing of the vehicles and the passenger assignment, within the context of ride sharing.

With naive fleet management approaches and an ever-increasing number of vehicles and
people, congestion could be a problem (148). Real-time traffic data will also be employed
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to achieve congestion-aware routing and navigate autonomous cars in a way that minimizes
congestion. In this direction, Zhang et al. (149) described a constrained optimization method
for congestion-aware routing in single-seat vehicles, and Levin (150) introduced a fluid-
approximation approach that also accounts for vehicle sharing. Yet large-scale efficient routing
in real time is still a challenge, especially in the context of ride sharing. Furthermore, taking into
account the intentions of other autonomous vehicles is also important in the context of electric
vehicles, which can only charge their batteries at a finite number of locations (151).

In the future, we will see multimodal transportation with a combination of various autonomous
vehicles, such as taxis and buses. We believe that decoupling approaches (e.g., 143) are promising
for large-scale vehicle routing. But for now, the challenge resides in scaling current techniques
to city-sized problems involving millions of trips per day. Finally, regulation, privacy, and human
supervision of large fleets are also avenues of future research where artificial intelligence will play
an important role.

7. CONCLUSION

This review has provided an overview of current advances in planning and decision-making for
autonomous vehicles. While the field has made tremendous progress over the last few years, many
questions remain unanswered. The increased popularity of data-driven algorithms in both per-
ception systems and planning systems requires a second wave of innovation; verifiability, safety,
and explainability are key requirements to allow the transition from systems suitable for showcases
toward production-ready autonomous vehicles in our everyday lives. Additionally, autonomous
systems that operate in complex, dynamic, and interactive environments require artificial intel-
ligence that generalizes to unpredictable situations and reasons in a timely manner about the
interactions with many traffic participants. Autonomous systems still need to reach human-level
reliability in decision-making, planning, and perception, and current detection and segmentation
accuracies do not yet suffice in difficult conditions, such as inclement weather. Finally, autono-
mous vehicles will provide on-demand transportation potentially to anyone, anywhere, anytime.
To achieve this vision, further advances are also required in large-scale fleet management with
stochastic routing, online performance, and bounded quality of service. If we can overcome these
challenges, autonomous vehicles will have a tremendously beneficial impact on our lives.

FUTURE ISSUES

1. Planning methods are needed that provide safe and system-compliant performance
in complex cluttered environments while modeling the interaction with other traffic
participants.

2. Planning and perception need to be closely integrated for direct propagation of uncer-
tainty and features with safety guarantees.

3. Planning and control in inclement weather must be improved.

4. Machine learning approaches for planning and decision-making need to be developed,
evaluated, and integrated.

5. The methods employed in autonomous vehicles will require verification and safety
assessments.

6. Methods will need to be developed for large-scale fleet management with stochastic
routing, online performance, and bounded quality of service.
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