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Abstract

During the period from January 1996 until December 1996, I worked on two different
projects at the Department of Ocean Engineering at the University of Hawaii at Manoa.
The State Department of Civil Defense initiated these projects as a result of the 1992
hurricane Iniki, which devastated the Island of Kauai and damaged the other Hawaiian
Islands as well. The objective of these projects is to develop a wave measurement

database and field verified wave models for use by the public and private sectors.

The first project, which took up about 90 % of my time, deals with the development of
computational capabilities to predict the refraction and diffraction of nonlinear,
directional random waves in the nearshore environment. The Green-Naghdi (G-N)
equations are used to determine the nonlinear diffraction of regular waves by topography
in a numerical wave tank. In the first case, the Level II G-N equations are used to
simulate monochromatic waves propagating over a steep shelf (slope 1:2) that reaches a
height of 70 % of the fluid depth. These results are compared with experimental data of
Ohyama et al. (1995) and the Level I G-N simulations of Ertekin and Becker (1996). In
the second case, the accuracy of the Level II G-N equations is assessed for the nonlinear
diffraction of monochromatic waves over a gentle shelf (slope 1:20) by comparing the
numerical simulations with the measurements of Ohyama et al. (1994). '

The results show that nonlinear diffraction is simulated more accurately over a larger -
range of wave frequencies by the Level II G-N equations than the Level I equations. The
frequency range over which the Level II G-N equations accurately simulate wave
propagation over both types of topography is consistent with the frequency range over
which the Level II G-N equations accurately model linear dispersion (Shields and
Webster, 1988). In addition, it is the frequency of the highest harmonic generated by the
nonlinear interactions that limits the accuracy of the Level II G-N simulations. The
present work also shows that the G-N equations can be used in accurately determining the

nonlinear diffraction of waves by submerged bodies, such as oil storage tanks and

il




breakwaters. Thus the G-N equations may be used as an alternative to the solution of the

fully nonlinear 3-D problem in modeling nonlinear diffraction.

The second project deals with the development of a methodology for estimating wave
conditions at unmonitored coastal sites around the Hawaiian Islands specifically, but for
reef-fringed islands in general.

Coastal field data is collected to test the accuracy of various wave transformation models.
Model results are evaluated in the vicinity of reefs and at sites influenced by island
sheltering. Computer simulations are used to determine the wave heights at selected sites
at the South and West side of the Island of Oahu. At locations where the wave height
increases considerably (hot spot), wave gages are deployed to measure the wave heights.
These measurements will be compared with the computer simulations in order to verify
the used computer models. A couple of the computer simulations have already been made
and the wave gages are deployed as well. The comparison between the experimental data

and the computer simulations is scheduled for the spring of 1997.
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1. Introduction

Although Hawaii seems to be paradise for most people, the islands of Hawaii (Fig. 1)
face many natural threats. The most destructive of these natural disasters are the
hurricanes and the tsunami’s (long period wave generated by earthquakes). After
hurricane Iniki hit the island of Kauai in 1992, the State Department of Civil Defense
wanted to develop a wave measurement database and field verified wave models, which
can be used by the public and private sectors. Based on this database, people at Civil
Defense can take precautions whenever they think it is necessary.

The Department of Ocean Engineering at the University of Hawaii at Manoa was funded
to conduct the measurements and develop the wave height prediction model. This project
has started in August 1995 and is expected to be completed in July 1997. I have been a

member of the project team from January 1996 until December 1996.

Most of my research was related to the development of computational capabilities to
predict the refraction and diffraction of nonlinear, directional, random waves in the
nearshore environment based on the input wave conditions offshore. It is necessary to
develop a theoretical-numerical model for predictions, because it is not economically
feasible to take measurements at a large number of sites.

The higher-order Green-Naghdi equations are used to model the wave transformation
process that includes the effects of nonlinearity and steep bottom topography. A finite
difference method is used to simulate the unsteady process. Actual bathymetry charts in -
digitized form will be used for variable water depth. The computer simulations will then
be compared with direct ocean measurements. |

The Green-Naghdi equations, the program used to do the numerical simulations, the

simulations and the results are described in chapter 2.

Part of my research was also related to developing a methodology for estimating wave

conditions at unmonitored coastal sites in the Hawaiian Island and in reef-fringed island




regions. Based on a linear numerical model, wave height predictions will be compared

with the field measurements. This is described in chapter 3.

Because I started working on both projects, while these projects had already started, an
extensive description of these projects is given in order to give a complete overview of
the projects. If the reader is interested, she/he can contact the Department of Ocean
Engineering at the University of Hawaii at Manoa to get the latest information on both
projects.

The views expressed in this report are my views and do not necessarily reflect the views

of other participating researchers.




2. Refraction-diffraction nonlinear waves

2.1 Project description

In order to capture the ‘big picture’ of this project, an extensive description is given
consisting out of the rationale, some background information, the problem definition, the

goals and objectives and the used research methods and approach.

2.1.1. Rationale

The action of waves has an important effect on coastal morphology. Waves erode beaches
and damage coral reefs and other marine habitats. To determine the effects of this wave
action on coastal areas, it is necessary to accurately monitor the wave climate. It is not
economically feasible, however, to directly monitor a large number of nearshore sites.
Hence, it is essential to develop accurate theoretical and numerical models to predict this
wave action. The usual approach to predict waves in the nearshore is to drive linear
refraction-diffraction models (as is used in chapter 3) with offshore measurements of
directional wave spectra. These models are limited by the assumption of linearity which
often is not valid in shallow waters. Therefor, it is necessary to develop models that
simulate nonlinear directional random waves moving-over an irregular sea floor in finite

water depth.

2.1.2. Background

The majority of the refraction-diffraction models currently in use are based on the work
of Berkhoff (1976) who derived an elliptic equation describing the wave transformation
process. This equation, also known as the mild-slope equation, later was simplified by
further assuming that the diffractive effects in the direction of wave propagation are
small. This led to the so-called parabolic approximation, Radder (1979) which was
extended to a higher-order by Kirby (1986). A variation of the parabolic wave-

transformation equation is solved numerically by Ebersole (1985). This model has since




become a standard in such calculations although extensions of the past theoretical and
numerical works on the subject are being pursued currently (e.g. Pan Chang and Pearce,
1991; Massel, 1993) to decrease the errors that result from the simplifying assumptions

made (such as the slowly varying sea floor).

2.1.3. Problem identification

Wave transformation in the nearshore must capture both refraction and diffraction effects:
The models that are based on refraction only (c.f. Longuet-Higgins, 1957) may be
particularly inadequate in the unique Pacific-basin island environment, because
significant diffraction occurs. The models that are based on linear theory for
‘monochromatic or random waves can be used in general; however, these models cannot
capture the nonlinear wave-wave interactions in finite-water depth. Thus, errors are
expected in predicting, for example, particle excursions which must be accurately
calculated especially in problems related to sediment transport and the resulting beach
erosion. The importance of nonlinearity has been demonstrated by 'Elgar et al. (1993) who

observed the shoaling of directionally spread nonlinear waves.

Wave speed, particle velocities and accelerations and wave elevation all are affected by
steep bottom slopes and nonlinear effects. Linear theory cannot predict the particle
excursions, velocities and accelerations above the still-water level, because waves are
assumed infinitesimally small in the theory. Therefore, it is necessary to develop a
theoretical-numerical model that can accommodate the nonlinear and topographic effects
in the wave transformation process. It is this process that the present project addresses by
- using a set of nonlinear water-wave equations in finite depth to model irregular,

directionally spread waves.

2.1.4 Goals and objectives
The overall goal of this project is to develop computational capabilities to predict the
refraction and diffraction of nonlinear, directional random waves in the nearshore

- environment. To attain this goal, the following objectives are pursued sequentially:




i)

Waves that propagate in two horizontal dimensions over realistic bottom topography
in relatively deep and shallow water will be modeled with the nonlinear Green-
Naghdi equations (see paragraph 2.2). This study includes determining the accuracy
of various levels of these equations when compared with experimental data in both
deep and shallow waters. Determining the minimum required accuracy to simulate
realistic wave transformation problems is very important because numerical
simulations of the higher level Green-Naghdi equations are computationally
demanding.

In conjunction with another project, which will be briefly discussed in chapter 3, the
deep ocean wave characteristics, in terms of energy content and directionality, will be
obtained. Available directional buoy measurements operated by the Army Corps of

Engineers and others will be utilized to achieve this objective.

iii) A three-dimensional numerical model will be developed to simulate the nonlinear

random wave transformation as an unsteady process. This numerical model, based on
the nonlinear wave equations of Green-Naghdi, will use the offshore wave
measurements as input. As the measurements only will be obtained at a limited
number of sites, it is initially assumed that the wave properties vary slowly over the
entrance boundary of the model. Further refinement of this assumption will include
using model results from the other project as input. The simulations also will use the
digitized Bathymetry charts to incorporate the effects of bottom irregularity. The
numerical model will be based on the time marching of nonlinear evolution equations,
and will be able to predict both the regular (monochromatic) and irregular wave

transformations in short- or long-crested (swell) waves.

2.1.5 Research methods/approach

The' literature on wave transformation in the nearshore recently has been reviewed by

Hamm et al. (1993) and Mei & Liu (1993). These works are referred to for references on

many different aspects of wave transformation in the coastal zone, including wave

breaking and dissipation mechanisms which may have a significant impact on the wave

dynamics in very shallow waters. While wave run-up and run-down is important, this




current study addresses wave motion driven by inertia and gravity forces. Then, the
typical approach to model wave transformation is to use the ideal flow assumption and to
incorporate energy dissipation sources by empirical methods. This approximate approach
currently is used due to the inability to model and solve the exact mathematical equations
of physics. Another major problem is the enormous computational resources required

when large-scale intensive computations must be done to solve the physical problem.

Although the ideal flow equations, namely the Laplace equation subject to the free-
surface and sea floor boundary conditions, are well established, their numerical solutions
are difficult to obtain due to the nonlinear boundary conditions. Some small-scale
problems both in two- and three-dimensions using the exact equations have been solved
only recently using the boundary-element method (c.f., Chian & Ertekin, 1992; Yang &
Ertekin, 1992). The large-scale problems extending, for example, from 1 km to 10 km in
the horizontal plane, cannot be solved by such methods. Therefore, it is essential to use
equations that can capture most of the physics of the problem. Liu et al. (1985) attempted
to do this in shallow waters by using the Boussinesq equations in two-dimensions
(vertical plane). As they invoked the parabolic approximation which is confined to a
small-angle of diffraction, the usefulness of their approach is limited in practical

problems.

2.2 Green-Naghdi equations

The general derivation of the G-N equations is lengthy and I refer the reader to selected
references (Shields and Webster, -1988; Demirbilek and Webster, 1992a) for details.
Briefly, Green and Naghdi (1976) developed a theory of directed fluid sheets in which the
kinematic and dynamic boundary conditions and the continuity equation are satisfied
exactly. The conservation of momentum, however, is satisfied by using a vertical

weighted average.




There are different Levels of Green-Naghdi equations, where for our purposes the
difference between the levels refers to the assumed form of the velocity variation in the
vertical direction across the fluid sheet. In Ertekin and Becker (1996), the 2-D G-N Level
I equations are used, where Level I refers to the horizontal velocity in the x-direction, i.e.,
u(x,t), is depth independent and the vertical velocity is a linear function of the vertical

coordinate, z. The 2-D G-N Level I equations are given by (e.g., Ertekin, 1984, 1988):

Dn+ (m+ hju, +uvh, =0 (1)

1
Du + gn, = —{@n + h),D'n - (2n - h),D’h + (n + K@D - D*h),} (2

where u is the horizontal particle velocity vector and D is the 1-D material time derivative

torD = > +ul G
operator P uax )

and D* = DD, is the second material time derivative. The Level I G-N equations also have
been used by Ertekin and Wehausen (1986) to study the diffraction of solitary waves over
a shelf.

In Shields and Webster (1988), a comparison between different G-N theories (Level I, IT
and III) and the exact solution for the dispersion relation for infinitesimal waves is made.
From this comparison, it is possible to obtain an indicétion of the range of validity of A/h
for a specific G-N theory. Based on their findings the G-N Level II equations should
provide acceptable results for A/h > 5 and the G-N Level I equations for A/h > 8. As will
be shown, it is the shortest wave length that corresponds to the highest harmonic
generated when a finite-amplitude wave encounters a topography change that must lie in
the range for which linear dispersion is"accurately modeled. This means that if the -
experiments show a significant amount of energy in. a certain higher -harmonic and the

corresponding ratio of the wave length over the water depth is outside the validity range;




the higher harmonic will not be picked up by the model and the accuracy of the

simulation will be degraded.

The Level IT G-N equations are based on the same dynamics as Eqgs. (1) and (2),

but the horizontal particle velocity u(x,zt) and the vertical velocity w(x,z,t) are expressed

as:
u(x,z,t) = uy(x,t) + u,(x,t)z 4)
W(X,2,1) = wo(x,t) + w(x,t) 2 + w,(x,t) Z* : (5)

Again the boundary conditions and the 3-D continuity equation are satisfied exactly, and
the 3-D momentum conservation is satisfied approximately. The G-N Level II equations
over a variable bathymetry consist of three equations for 1, u, and u,. These may be

found in Shields (1986) and Demirbilek and Webster (1992a).

2.3 ANALYSIS

The program GNWAVE, developed by Demirbilek and Webster (1992b), is used for the
calculations. It is based on the 2D G-N Level II equations over a variable bathymetry and
can be used for a A/h ratio between 2.5 and 100, where A and h are the wave length and
the water depth at the wave maker in the case of monochromatic sinusoidal waves. As
input, the horizontal extent of the computational domain, the maximum calculation time,
the bottom profile, the wave height and wave period are needed. GNWAVE determines
the amplitude of the wave (1) above the undisturbed free surface, the horizontal velocity
components u, and u,, the pressure measured at a user-defined depth, the integrated
- pressure (integrated from the bottom to the actual water surface) and the first moment of
the pressure (pressure multiplied by the vertical coordinate and integrated from the
bottom to the actual water surface) as a function of the spatial coordinate and time. The
spatial resolution Ax used in GNWAVE equals 1/100" of the incident wave length at the

wave maker and the time step At equals 1/100™ of the incident wave period.




The flow near the wave maker and near the right-hand boundary suffers from an alternate
point instability that may result in high and low oscillations of the three independent
variables (1, u, and u,) at neighboring points on the finite difference grid. In GNWAVE,
this 1s corrected by smoothing the first few and the last few points in the computational
domain. During our calculations, it was necessary to alter the existing filtering, because
the waves were breaking over the shelf. The filter which is used for these calculations is

given by (Shapiro (1975)):

f(i) = %[10 () + 4{fi+1) + fi-1} - {fi+2) + f(i-—2)}] (6)

where f(i) refers to either the surface elevation or the velocity components in the
computational domain. This filter is applied at every five time steps in order not to over-

filter the results.

2.4. Results

2.4.1. Setup #1

The first numerical set up corresponds to the wave tank used in Ohyama et al (1995) and
is given in Fig. 2, where all distances are made dimensionless using h,, where h, is the
water depth at the wave maker (h, = 0.5 m). The wave maker is located at the left end of
the numerical wave tank, at the right end there is an open boundary and at five different
locations, numerical wave gages are placed which record the surface elevation as a

function of time.

In this paper, three selected cases are presented for which the wave parameters are
presented in Table 1 (the case numbers correspond to Ohyama et al.,1995). The objective

of this numerical experiment is to compare the G-N Level II results with experimental




data and to compare the results of the G-N Level II equations with the results of the G-N

Level I equations (Ertekin and Becker, 1996).

Case # Period Length Height
ng/ho Alh, H/h, H/A
2 5.95 4.72 0.1 0.0212
4 8.92 8.16 0.1 0.0123
6 © 11.88 11.35 0.1 0.0088

Table 1 Wave parameters used in the calculations for set-up #1

In the Figs. 3a-f, the dimensionless surface elevation as a function of the dimensionless
time are shown for the three different cases at two different locations (at gages 3 and 5,
see Fig. 2). The time series are shifted to fit the peak of the wave elevation in the
calculations to the peak of the wave elevation in the experimental data. From these
figures it can be seen that the G-N Level II equations simulate the experimental data
better than the G-N Level I equations in particularly modeling the higher harmonics that
occur when finite-amplitude waves propagate over the steep shelf. In fact, the G-N II
equations exhibit almost all of the higher harmonics that were observed during the
experiments. They predict the general location and the amplitude of the surface elevation
peaks better. In general, the predictions of the surface elevation are better in front of the

shelf than behind the shelf, where energy is transferred to higher harmonics.

The Level I G-N equations provide a good prediction of the surface elevation at station 3
for case 2, although, as with the Level I G-N equations, the wave elevation is slightly
underestimated. A spectral analysis of the experimental data shows that only the first and
second harmonics are of importance at this station, and A/h equals 4.2 at this station,
based on the wave length of the second harmonic. That the Level II G-N equations do
better than the Level I G-N equations confirms what we expect from the work of Shields
and Webster (1988), which shows that the G-N Level Il and G-N Level I equations

describe the linear dispersion relation well for A/h > 5 and for A/h > 8 respectively. In

10




short, the Level II G-N equations do a better job at modeling the second harmonic at

station 3.

For case 2 at station 5, a spectral analysis of the experimental data (Fig. 4a indicates that
the first harmonic is most energetic and that the second and third harmonics are excited.
A spectral analysis of the numerical results (Fig. 4b however, show that the third
harmonic is not modeled well, which is consistent with the corresponding A/h ratio (A/h =
0.6) lying well outside the range of validity of the linear dispersion relationship for both
models. In addition, in the G-N Level II solution, the second harmonic contains more
energy than the first harmonic. A similar overestimation of the energy in the second
harmonic is seen in a numerical solution of the Stokes second-order model (Ohyama et

al., 1995 figure 7), where the third harmonic is not taken into account.

Cases 4 and 6 correspond to longer and less nonlinear waves than those of case 2, but the
accuracy of the G-N Level II predictions still depends upon how well the highest
harmonic generated is modeled. For cases 4 and 6 at station 3, the G-N Level II equations
model the wave height well. The highest harmonics excited at this station correspond to
A/h=2.6 and 4.2 for cases 4 and 6, respectively, so any discrepancies are likely due to the

A/h ratios being just outside the limit of the range of validity.

For case 4 at station 5, a spectral analysis of the experimental data (Fig. 4c) shows the
third harmonic is dominant. In contrast, the first harmonic dominates the numerical data
(Fig. 4d) as the third harmonic (Ah = 1.4) is too short to be modeled accurately. For case
6 at station 5, the energy in the fourth harmonic is significant and the corresponding ratio
of Ah equals 1.4. So it is expected and confirmed in the spectral analysis (compare Fig.
4e and 4f) that the model cannot capture this harmonic very well. That the G-N Level I -
equations provide less accurate predictions than the G-N Level II equations for these
experiments is expected, because the G-N Level I equations are accurate only for longer

waves.




2.4.2. Setup # 2

The second numerical set up corresponds to the wave tank used Ohyama et al. (1994),
and is given in Fig. 5a. In the experiments, a plane beach with coarse material was placed
as a wave absorber at the right end of the wave tank. In our calculations, this is modeled
as an open boundary (see Fig. 5b). Two monochromatic wave cases are studied for which
the corresponding wave parameters are presented in Table 2, where h, is the water depth

at the wave maker (h, = 0.4 m).

Incident Period Wave height Length

waves T\g/h H/h, Alh, H/A
long 9.90 0.05 9.24 0.005
short 6.19 0.0625 5:13 0.012

Table 2 Wave parameters used in the calculations for set-up #2

The initial wave height for the short wave case is larger, because it was attempted to keep
the nonlinearity parameter, i.e., the wave amplitude/water depth ratio, almost the same in

the shallowest region of the tank.

In the Figs. 6a-g the dimensionless results for the long monochromatic wave case at the
different wave gages are shown, where the numerical fesults after 10 periods from the
cold start have been used. As can be seen from these figures, the numerical data agree
well with the experimental data in front of and over the submerged bar. As the end of the
bar is reached, the ﬁgreement between the numerical simulations and the experimental ~
data is less satisfactory, but the model is still able to pick up almost all the higher

harmonics which occur.

The results for the short monochromatic wave case, 20 periods from the cold start, are

presented in the Figs. 7a-d. For this case, the numerical and experimental data agree well

12




for all the stations. It might be expected that the long wave case should give better results
than the short wave case, because the A/h ratio will be larger (based on the incident wave
length), but as is mentioned in Beji and Battjes (1992), higher harmonics occur due to
resonant interactions in the long wave case. These higher harmonics cannot be predicted
accurately here, as they exceed the A/h range of validity, which give discrepancies

between the experimental and numerical data.

2.5 Discussion

The Green-Naghdi Level II equations are used to determine the diffraction of nonlinear
waves by a submerged shelf. Two different numerical set ups are investigated and for
each set up, the numerical solutions are compared with the experimental data of Ohyama
et al. (1994) and Ohyama et al. (1995). For the monochromatic waves, the G-N Level II
equations showed a very good agreement in front of and over the shelf. The results of the
G-N Level II equations behind the shelf provide better predictions than the G-N Level I

equations, because the higher harmonics are modeled more accurately.

Considering the long wave case versus the short wave case over the gradual shelf, an
interesting phenomenon is observed. One would expect the G-N Level II equations to
predict the long wave case better, because the A/h ratio is larger, but at the same time
higher harmonics, due to resonant interactions, become more importént. If the
corresponding ratio of A/h of the highest harmonic, which is still of importance, lies
outside the range of validity, the predictions will be less accurate. In this case, the trade
off between more accuracy due to longer waves and less accuracy due to higher

harmonics is such that the short wave case predicts the wave heights better.
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3. Linear wave model verification

3.1 Project description
During the summer of 1996 I worked on another project as well. The description of that

project is given in the following paragraphs.

3.1.1. Rationale

The modeling of wave transformations due to variable bathymetry has received
considerable attention in recent decades (see Mei and Liu, 1993 for a review). Linear
numerical models that account for wave refraction and diffraction have been shown to
simulate wave properties at a variety of coastal settings (c.f., O’Reilly and Guza, 1993).
In practice, measurements of directional wave spectra in the deep ocean can be
transformed numerically into corresponding coastal wave spectra. This simple modeling
approach provides cost-effective means of assessing the impact of waves at unmonitored
sites. The ;:oastal wave database is essential for beach erosion and replenishment, the
mitigation of wave damage caused by hurricanes and tropical storms, and the
establishment of setbacks for coastal development.

Coastal wave prediction in the Hawaiian Island region has been limited until recently by
the lack of deep ocean directional wave data. The four NOAA (National Oceanic and
Atmospheric Administration) wave buoys (Fig. 8) measure wave energy but not
direction. Recently, the Army Corps of Engineers (CE), the State Department of
Transportation (DOT) and the US Navy (USN) have proposed the expansion of the
existing deep water wave gage network around Hawaii to include directional wave buoys.
Wave conditions at unmonitored coastal sites could then be predicted from a limited
number of offshore buoys using transformation models. This program would satisfy the
demand for wave climate data as well as short-range wave forecasts. An improved wave
prediction capability for the region has drawn strong support from the State Department

of Civil Defense, Transportation, Land and Natural Resources, the Coastal Zone




Management Program of the Office of State Planning, the National Weather Service and
local ocean engineering firms.

A key issue to be addressed prior to the expansion of the wave gage network is the
expected accuracy of the coastal wave estimates. O’Reilly and Guza (1991) note that
while linear transformation models and buoy data can produce realistic estimates of wave
properties in regions of complex topography, model performances tend to be site-specific
depending on the local bathymetry and deep water wave characteristics. Specifically, the
application of wave models that have been developed for wide, gently slope continental
shelves may not be entirely appropriate for the Hawaiian Island region where fringing
reef systems, steep bathymetric slopes and neighbor island sheltering effects are present.
A second issue specific to island regions is how well coastal waves can be estimated
shoreward of fringing reefs. Once waves break at offshore reefs, the linear
refraction/diffraction models no longer apply. Wave reformation may occur shoreward of
the reefs (c.f., Gerritsen, 1980, 1981), however, and here linear models may again prove
useful in estimating wave transformations towards shore.

The combination of this project with the one described in chapter 2 is very important in
that linear refraction-diffraction models provide useful results for wave propagation when
the topography is slowly-varying and outside the nearshore. As waves shoal or encounter
abrupt topographic features, however, linear models are no longer adequate and finite-
amplitude effects must be incorporated. So it is necessary to find out until what water
depths the linear models are still applicable and at what water depths nonlinear models
_ have to be used. It is very advantageous if the linear models would describe the wave
transformation accurately as close to the shore as possible, because these models are

computationally very efficient compared with the nonlinear models.

3.1.2. Goals and objective

The primary goal of this project is to develop a methodology for estimating wave
conditions at unmonitored coastal sites around the Hawaiian Islands specifically, but for
reef-fringed islands in general. A field experiment is proposed consisting of an array of -

directional and non-directional wave gages that will be deployed in intermediate water




depths (3-30 m) at various locations around the island of Oahu (Fig. 1). Two main

deployments will be made during the winter to measure wave conditions associated with

North Pacific swell and northeast trade winds and during the summer to measure swell

originating from the Southern Hemisphere and waves generated by local tropical storms

and hurricanes (Fig. 9). The summer deployment will also provide information on wave
wrap-around effects as Northeasterly trade wind-driven waves, which are at an annual
maximum, often arrive at the south-facing beaches at oblique angles.

The specific goals that will be addressed include:

i) The accuracy and precision of the model simulations as a function of dominant wave
direction, wave height and frequency, season and location. In particular, the ability of
the linear models to predict large wave conditions at the coast due to local and remote
storm events.

ii) The empirical relationship between deep water and reformed waves shoreward of
reefs.

iii) The performance of the transformation models offshore and shoreward of reefs.

iv) The accuracy of wave model estimates for sites where island sheltering is important.

v) The relative merits of refraction versus refraction/diffraction models as applied to
island regions with complex reef systems. Model verification will provide insight into

- whether refraction/diffraction models, which are considerably more intensive
computationally than refraction models, are necessary.

vi) The accuracy of the predictions near regions of steep topography where the mild-

slope assumptions for parabolic equation refraction/diffraction models are violated.

A practical objective of this study is to build a database of coastal measurements and -
model predictions that can be utilized for management, planning and research purposes.
Wave transformation coefficients for specific sites will be made available to compute -
shallow water spectra from offshore measurements of the wave field. To address the
specific needs of the State Civil Defense Department the feasibility of making real-time
predictions of wave height and direction that can be used for disaster response purposes -

will be examined.




3.1.3. Research methods/approach

The project is divided into two major tasks: (1) the collection of wave data for both
winter and summer conditions in representative topographic settings around the island of
Oahu, and (2) the modeling of wave transformations using offshore buoy data and linear
wave models the results of which will be compared with observations. The former
requires the deployment and recovery of battery powered instrument systems, while the
latter involves the establishment of an appropriate model grid and the acquisition and
implementation of refraction and refraction/diffraction models. The specific methods and

approach are outlined below. -

Field Measurements

To measure wave energy at the coast (non-directional), 4 pressure sensors developed at
the Scripps Institution of Oceanography will be used. The instrument packages contain a
pressure sensor (Setra Model 280E), battery, and 20 mbyte internal hard disk. Sampling
at 1 hz, continuous data can be acquired for approximately 3 months. The continuous
pressure data will provide high statistical stability for the wave estimates. The basic
instrument design has been tested in a field experiment in the Southern Califormnie Bight
and has been found to measure surface waves with periods: greater than 8 seconds in 25-
35m total water depth.

In addition to the new instrumentation, a pressure recorder will be borrowed from Look
Laboratories (laboratories of ‘the: Department of Ocean . Engineering) :for both -
deployments, and data form the waverider buoy at Makapu’u Point will be obtained from
the Coastal Data Information Program (CDIP). The Makapu’u Point data will be
particularly useful in that wave climatology has been well documented at this location by
CDIP. The study will provide insights into the establishment of this wave climate.
Directional wave data will be obtained using an Inter-Ocean S4A. The S4A contains an

electromagnetic current meter, a Paroscientific pressure sensor, battery pack, and 20
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mbyte internal memory. Sampling continuously at 1 hz, the sensor can collect data for
approximately 40 days.

Burst sampling can increase the deployment length as required. In addition to directional
wave estimates, the S4A will record current speed and direction which may prove useful
for investigating wave-driven flows. In order to limit costs for the initial project, the
instrument will be leased from Ecosystems in Carlsbad, CA. The accuracy and precision
of the S4A will be tested in the Look ocean test range prior to deployment.

Two field experiments are planned. The first will take place during the winter on the
windward coast of Oahu in order to measure waves generated by trade winds and
northern storms.

The deep water directional wave buoy north of the island of Molokai (Fig. 1) will provide
unsheltered estimates of the incoming waves associated with the northeast trade winds,
and for most northern swell directions. In order to measure waves in a full range of
locations, the sensors will be deployed in clusters at several different sites. This will
require a number of dive expeditions in order to reposition the sensors. The redeployment
of the sensors will allow for data recovery and analysis that will help in choosing
subsequent deployment sites. The exact location of the experiments also will be chosen
based on preliminary model simulation studies.

The second experiment will take place at south facing beaches that are exposed to
summer storms. The deep water wave gage off of the island of Lanai (Fig. 1) will provide
offshore wave spectra -for model initialization. The objective of this experiment is to
measure- waves form distant summer storms in the southern hemisphere, and large
amplitude waves due to local fronts or extra-tropical lows. Such conditions can lead to
extremely large significant wave heights (Fig. 10).

Anticipated deployments include sensor arrays on a transect over a fringing reef, in the
vicinity of a gap in the reef, at sheltered and unsheltered sites, shoreward of the steep
island slope, and near embayments and headlands. The goal is to test the model
simulations for a wide range of conditions that typify the island region. Typically, a deep
water deployment (i.e., offshore of any reefs) will be made for comparison with the deep

ocean wave gage spectra. In particular, the extent of local wind generated waves (i.e.,
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between the deep water and coastal sensors) will be assessed. Instruments also will be
placed on transects perpendicular to shore. Variations on the transect array will be made
depending on local topographic conditions. The instrument array will be relocated after 1
or 2 month deployments to new sites. The length of the deployments should be sufficient

to encounter a variety of incoming wave conditions.

Numerical Modeling

The transformation of wave properties form deep to shallow water will be accomplished
using both a spectral refraction model (Longuet-Higgins, 1957) and a combined
refraction-diffraction model based on a parabolic equation method (Kirby, 1986). The
refraction-diffraction model is currently being used by CDIP to model waves in the
Southern California Bight (O’Reilly and Guza, 1993).

Although the refraction-diffraction model assumes that topographic slopes are mild, the
model results have been found to be robust for some steep slope applications (O’Reilly,
communication, 1994). Field verification of the model estimates is essential, however,
before the numerical results are of practical use. An initial task will be the formation of a
topographic model grid. The density of sounding data around the islands is highly
uneven. In addition, reef location and geometry is often not well defined. Once study sites
have been designated, supplementary sounding data will be collected to improve the raw

data coverage.

3.2. Wave height predictions

In order to be able to determine the wave heights for a particular location the model based
on a parabolic equation method (Kirby, 1986) is used. The input for this program is the
incident wave height, the wave period (P) and the wave angle (o). This means that for
each run the wave height for a single wave component only will be determined, see for
example Fig. 11 and 12 where for two different locations (Waikiki beach and Kailua Bay,

see Fig. 13) the wave height predictions are given for a wave period of 10 seconds and a




wave angle of 205° and 65° relative to North, respectively. These simulations are based
on the bathymetries as shown in Fig. 14 and Fig. 15.

In order to simulate a directional wave spectrum S(w,0), different wave periods and wave
angles have to be taken into account, while the incident wave height is kept at 1 m. The
actual prediction of the wave heights H(x,y), due to this spectrum is obtained by
summing the influence of each of the individual wave components H,(x,y). Based on the
measured spectrum S(®,0), a weight factor w;(®,0) for these wave components can be
obtained, which equals the contribution of that wave component to the total variance of

the spectrum:

HOY) = Y fwi(@.0) B () )
Z":wi(m,e) = [[S(®.6) do do (8)

In Fig. 16 the prediction of the wave heights is shown for Waikiki when the wave period
ranges from 8 until 20 seconds with an increment of 2 seconds and the wave angle ranges
from 185° until 265° with an increment of 10°. For this case a hypothetical spectrum is
assumed with a significant wave height of 2 meters, and a normal distribution with p, =
14s,0,=4.32s, p, = 175° and 6, = 27.39°.

In Fig. 17 the same is shown for Kailua Bay, where the wave period range is kept the
same and the wave angle ranges from 55° until 85° with an increment of 10°. For this
case the same hypothetical spectrum is assumed with p, = 14 s, 6, = 4.32 s, u, = 70° and
c,=11.18°.

As can be seen from these figures, there are a couple of locations where the wave height
is significantly increased (so called hot spots). At these locations the wave gages are
deployed and the obtained field data will be compared with the model predictions in order

to check the validity of the used computer model.
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Figure 11 Wave height (m) for a single wave component for Waikiki beach
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Figure 12 Wave height (m) for a single wave component for Kailua Bay
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Figure 14 Bathymetry (m) for Waikiki beach
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Figure 15 Bathymetry (m) for Kailua Bay

21.48
- {1000

21.46
21.44 - 4 800

21.42
| 600

21.4

21.38
400

21.36
21.34 200

21.32

-157.76-157.74-157.72-157.7-157.68-157.66-157.64-157.62-157.6
Longitude (degrees west)

40




Figure 16 Wave height (m) for Waikiki beach
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Figure 17 Wave height (m) for Kailua Bay
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