
Computer Engineering
Mekelweg 4,

2628 CD Delft
The Netherlands

http://ce.et.tudelft.nl/

2014

MSc THESIS

Task Scheduling for Adaptive Reconfigurable
VLIW Multicore Processors

Georgios Andronikidis

Abstract

Faculty of Electrical Engineering, Mathematics and Computer Science

CE-MS-2014-16

Embedded Reconfigurable Architectures (ERA) is a project with the
objective to design a platform that combines reconfigurable compu-
ting and network elements which can adapt on-the-fly their composi-
tion, organization and even instruction-set architectures in an effort
to provide the best possible trade-offs in performance and power for
the given application(s). Although some of this adaptiveness is con-
trolled by software (mainly the operating system), the goal of the
ERA project is that great deal of this control actually takes place
automatically at hardware level, by the Hardware scheduler. This
thesis deals specifically with the problem of hardware task schedu-
ling. We studied a variety of possible implementations for the task
scheduling in the ERA platform. After getting an inside look of the
Processing component of the ERA platform and understanding the
particularities of it, as well as of its main building block, the ρ-VEX
core, we tried to find scheduling algorithms available in the bibliogra-
phy to implement as the Hardware scheduler of ERA. This literature
research did not yield any results, both because of the complexity of
the problem, as well as the pioneer characteristics of ERA that we
would like to take advantage of. We designed some simple schedul-
ing algorithms, especially tailored for the ERA platform and tested

them. The most important of them were Basic, which simply stalls the tasks until there are enough re-
sources for them, Versioning, which brings a different binary from the memory which is compiled to run on
a smaller core and Generic Binary which uses a binary that is especially compiled to run on any core, so
downgrading a task does not lead to the communication cost that Versioning suffers and upgrading a task
becomes possible. We present the most important of the experiments that took place within this thesis
and show that GB++ (a version of GB that supports forced priorities, interrupts and upgrading by de-
fault) is the most promising algorithm that can take advantage of all the characteristics and the abilities of
ERA, without being the fastest one, which is Versioning. Finally, we researched and defined the minimum
requirements of GB++ in order to become apart from the rest also the fastest algorithm for ERA.

Task Scheduling for Adaptive Reconfigurable
VLIW Multicore Processors

THESIS

submitted in partial fulfillment of the
requirements for the degree of

MASTER OF SCIENCE

in

COMPUTER ENGINEERING

by

Georgios Andronikidis
born in Ptolemais, West Macedonia, Greece

Computer Engineering
Department of Electrical Engineering
Faculty of Electrical Engineering, Mathematics and Computer Science
Delft University of Technology

Task Scheduling for Adaptive Reconfigurable
VLIW Multicore Processors

by Georgios Andronikidis

Abstract

Embedded Reconfigurable Architectures (ERA) is a project with the objective to design a
platform that combines reconfigurable computing and network elements which can adapt on-the-
fly their composition, organization and even instruction-set architectures in an effort to provide
the best possible trade-offs in performance and power for the given application(s). Although
some of this adaptiveness is controlled by software (mainly the operating system), the goal of
the ERA project is that great deal of this control actually takes place automatically at hardware
level, by the Hardware scheduler. This thesis deals specifically with the problem of hardware
task scheduling. We studied a variety of possible implementations for the task scheduling in the
ERA platform. After getting an inside look of the Processing component of the ERA platform
and understanding the particularities of it, as well as of its main building block, the ρ-VEX
core, we tried to find scheduling algorithms available in the bibliography to implement as the
Hardware scheduler of ERA. This literature research did not yield any results, both because of
the complexity of the problem, as well as the pioneer characteristics of ERA that we would like
to take advantage of. We designed some simple scheduling algorithms, especially tailored for the
ERA platform and tested them. The most important of them were Basic, which simply stalls
the tasks until there are enough resources for them, Versioning, which brings a different binary
from the memory which is compiled to run on a smaller core and Generic Binary which uses
a binary that is especially compiled to run on any core, so downgrading a task does not lead
to the communication cost that Versioning suffers and upgrading a task becomes possible. We
present the most important of the experiments that took place within this thesis and show that
GB++ (a version of GB that supports forced priorities, interrupts and upgrading by default) is
the most promising algorithm that can take advantage of all the characteristics and the abilities
of ERA, without being the fastest one, which is Versioning. Finally, we researched and defined
the minimum requirements of GB++ in order to become apart from the rest also the fastest
algorithm for ERA.

Laboratory : Computer Engineering
Codenumber : CE-MS-2014-16

Committee Members :

Advisor: Dr. ir. Stephan S. Wong, CE, TU Delft

Chairperson: Dr. ir. Stephan S. Wong, CE, TU Delft

Member: Dr. Zaid Al-Ars, CE, TU Delft

Member: Dr. ir. T.G.R.M van Leuken, CE, TU Delft

i

ii

To my beloved parents and in memory of Vasiliki Theodoridou:

«Της Βάσως τα εγγόνια να λένε...»

(“So that people talk about Vaso’s grandchildren...”)

iii

iv

Contents

List of Figures viii

List of Tables ix

List of Acronyms xi

List of Algorithms xiii

Acknowledgements xv

1 Introduction 1

1.1 The ERA project . 1

1.2 Motivation . 1

1.3 Goals . 2

1.4 Methodology . 2

1.5 Overview . 3

2 Background 5

2.1 The ρ-VEX VLIW processor . 5

2.2 The VLIW approach . 9

2.3 Parallel algorithms . 9

2.4 Related work . 12

2.4.1 Grid Computers . 12

2.4.2 Homogeneous Multicore Processors 12

2.4.3 Heterogeneous Multicore Processors and Multiprocessor Computers 13

2.5 Conclusion of Chapter 2 . 14

3 Implementation 15

3.1 A basic scheduling algorithm . 15

3.1.1 The naive approach . 15

3.1.2 Time complexity analysis . 17

3.1.3 A realistic basic algorithm . 17

3.2 Versioning . 18

3.2.1 Communication Penalty . 18

3.2.2 Time Complexity . 20

3.3 The Generic Binary . 21

3.3.1 Benefits and disadvantages . 21

3.3.2 Priority tasks . 22

3.3.3 Interrupts . 25

3.3.4 Time complexity . 25

v

3.3.5 GB++ . 26
3.4 AlgD and AlgBall8 . 27
3.5 Conclusion of Chapter 3 . 27

4 Simulator and benchmarks 29
4.1 The simulator . 29

4.1.1 Task list generator . 29
4.1.2 Priority scenario generator . 30
4.1.3 Algorithm simulator . 30
4.1.4 Small scripts . 31
4.1.5 Outputs . 31

4.2 Testing methodology . 31
4.2.1 Specific microtests . 32
4.2.2 Short-run testing . 32
4.2.3 Long-run testing . 33

4.3 Conclusion of Chapter 4 . 33

5 Results 35
5.1 Crosspoints . 35

5.1.1 Corespace . 36
5.1.2 Task list window . 37
5.1.3 Reloading penalty . 39
5.1.4 GB execution times . 40
5.1.5 Priorities and interrupts . 42
5.1.6 The effect on total execution times 42

5.2 Task latency . 44
5.2.1 The nature of the tasks . 44
5.2.2 Latency and priorities/interrupts 47

5.3 GB vs Versioning . 60
5.3.1 GB vs GB++ . 60
5.3.2 GB++ with Versioning execution times 60

5.4 Conclusion of Chapter 5 . 62
5.4.1 The upgrading paradox and 2D scheduling 62
5.4.2 Summing up the results . 64

6 Conclusions 67
6.1 Summary . 67
6.2 Main problem statement & contributions 68
6.3 Future work . 69

Bibliography 71

A Appendix A 75

vi

List of Figures

1.1 The ERA platform. 2
1.2 Flow chart showing of methodology for every goal. 3

2.1 The block diagramme of a VEX Multicore Processor. 5
2.2 The block diagramme of a 4-issue ρ-VEX. 6
2.3 How ρ-VEX cores can be combined to form bigger ones. 7
2.4 Datapath sharing in ρ-VEX cores. 8
2.5 A NOP in the 2nd position (bit-31 to bit-16) of a 4-issue VLIW. 9
2.6 Two of the many scheduling possibilities of just 4 tasks in ERA. 10
2.7 A scheduling graph with only 2-issue nodes. 11
2.8 Homogeneous multicore system . 13
2.9 Scheduling graph for a homogeneous multicore system 13

3.1 A 2-issue and a 4-issue task running in an ERA MCP. 15
3.2 A bubble created in the execution timeline. 16
3.3 The logic that detects available cores of any size (2,4,8,16) on an ERA

MCP of corespace 16. Output Low means available, whereas output
High means unavailable. 17

3.4 A scenario on AlgA (left) and on Versioning(right). 19
3.5 Parallelising downgrading. 20
3.6 GB (left) and Versioning (right) handling a new 4-issue task. 22
3.7 GB stealing resources from a task(left) or freezing it (right). 23
3.8 A 4-issue forced priority task in an ERA MCP of corespace 8. 24
3.9 A task suddenly gains priority. 25
3.10 Logic for parallelising default upgrading of core i. 26

4.1 An abstract diagramme of the simulator. 29

5.1 The 5 different situations in which a corespace 8 ERA MCP can be found. 36
5.2 The effect of the corespace in the performance of the algorithms. 36
5.3 Total execution times normalized to W=2. 38
5.4 Performance drop of Versioning as the penalty increases. 40
5.5 Comparison of GB 40% and 10% times and Versioning. 41
5.6 Penalty analysis for GB and Versioning. 42
5.7 The effect of priority density on total execution time of the task list. . . 43
5.8 Same as Figure 5.7 normalised to no priority execution times. 43
5.9 Versioning losing its speedup to GB as priority density increases. 44
5.10 The GB preferred execution times. 45
5.11 The Versioning/Basic preferred execution times. 45
5.12 Preferred core sizes per task in GB. 46
5.13 Preferred core sizes per task in Versioning/Basic. 46
5.14 GB execution time + latency slowdown to 0%-priorities for corespace 8. 47
5.15 Same as Figure 5.14 without task 2. 48

vii

5.16 Same as Figure 5.15 for corespace 16. 49
5.17 GB execution time + latency slowdown to 0%-priorities for priority den-

sity 5%. 50
5.18 Same as Figure 5.17 without task 2. 50
5.19 Same as Figure 5.18 for priority percentage 20%. 51
5.20 Versioning execution time + task latency slowdown to 0%-priorities for

corespace 8. 52
5.21 Same as Figure 5.20 for corespace 16. 53
5.22 Versioning execution time + latency slowdown to 0%-priorities for pri-

ority density 5%. 55
5.23 Same as Figure 5.22 for priority density 20%. 55
5.24 Execution time + latency slowdown of task 1 for all algorithms compared

to no priority times (corespace 8). 56
5.25 Same as Figure 5.24 for corespace 16. 56
5.26 Execution time + latency slowdown of task 13 for all algorithms com-

pared to no priority times (corespace 8). 57
5.27 Same as Figure 5.26 for corespace 16. 57
5.28 Task 1 average execution time (incl. latency) for each algorithm for

corespace 8. 58
5.29 Task 1 average execution time (incl. latency) for each algorithm for

corespace 16. 58
5.30 Task 13 average execution time (incl. latency) for each algorithm for

corespace 8. 59
5.31 Task 13 average execution time (incl. latency) for each algorithm for

corespace 8. 59
5.32 Speedup of GB++ to GB. 60
5.33 Running GB with Versioning execution times. 61
5.34 Speedup GB to Versioning for corespace 8. 62
5.35 The execution space of qurt for 2-issue (left) and 4-issue (right). 63
5.36 The execution space of qurt for 2-issue (left) and 4-issue (right). 63
5.37 Theoretical prerequisite in order to have speedup by upgrading. 64

A.1 Some early test results actually showed slowdown instead of speedup. . . 75
A.2 Some early test results of the total execution time speedup of GB and

Versioning (penalty=50) to RAlgA. 76
A.3 Early arbitrary Versioning penalty tests. 76
A.4 Early results from AlgD: total task list execution time. 77
A.5 Early results from AlgD: speedup to RAlgA. 77

viii

List of Tables

3.1 Execution times (in cycles) and GB slowdown to Versioning/Basic. . . . 21
3.2 Execution-time gain from upgrading (8-issue times common for all algo-

rithms) . 24
3.3 Overview of the developed algorithms. 28

4.1 The benchmarks used to create the testing task lists. 32

5.1 Utilisation of AlgA and RAlgA with and without Window. 39
5.2 Binary sizes in bytes for each task and core size. 41

ix

x

List of Acronyms

FPGA Field-Programmable Gate Array

ERA Embedded Reconfigurable Architectures

VLIW Very Long Instruction Word

MCP Multicore Processor

VEX VLIW Example

ISA Instruction Set Architecture

ILP Instruction Level Parallelism

DLP Data Level Parallelism

NOP No Operation

NOC Network on Chip

FIFO First In First Out

OS Operating System

AlgA Algorithm A

RAlgA Realistic Algorithm A

RAlgAW8 Realist Algorithm A, Window=8

GB Generic Binary

AlgB Algorithm B (Generic Binary)

AlgBall8 Algorithm B, all tasks are 8-issue

AlgD Alogirthm D

AlgDall8 Alogirthm D, all tasks are 8-issue

xi

xii

List of Algorithms

1 Basic or Algorithm A . 16
2 Versioning . 19
3 Generic Binary or Algorithm B . 25
4 Generic Binary++ or GB++ . 26

xiii

xiv

Acknowledgements

First of all, I would like to thank my supervisor, Stephan Wong, for the opportunity
he gave me to be a small part of the ERA project and his guidance throughout the
whole thesis. For his patience and his understanding as well as the way he handled my
particular character. The only thing I will never forgive him for, is making me learn and
use LATEX.

Of course Fakhar Anjam and Anthony Brandon for their unconditional help and
support. TU Delft is only lucky having such helpful and exceptional researchers.

Especially I want to thank my family, who stood by my side during the whole period
of my studies, in its goods and its bads, as well as Bram Masseur and Massimiliano
Marass, who did their best to keep all my distractions away during the period of this
thesis and generally all my friends who tried to give me courage and energy.

I am also very grateful to Inge Verhoeven and John Stals, without the support of
whom I might have never undertaken this project.

Finally, although he can’t read these lines any more, I want to thank Stamatis Vas-
siliadis, for making everything he could for me to come to TU Delft.

A very special thanks to all those small and big scientists that doubt, question and
challenge “reality” and “truth” constantly; for they are the true pioneers of science and
my inspiration.

Georgios Andronikidis
Delft, The Netherlands
November 5, 2014

xv

xvi

Introduction 1
When reconfigurable hardware was invented (especially Field-Programmable Gate Ar-
rays - FPGAs) a new era began for Computer Engineering. Custom solutions could be
designed for specific customers without the need of ordering millions of copies to make
each solution affordable, as is the case with wafer solutions. Research in small scale
and budget also became possible, spin-off companies’ pop-up boosted. What made re-
configurable hardware even more attractive was the possibility of an upgrade. A better
version of the hardware without making the old purchase useless, incredibly handy both
for research and industry.

Adaptive hardware changed the rules of hardware design for good; it was a great
innovation. But even more amazing opportunities arise the last years that technologies
are invented which allow more and more the hardware to adapt on-the-fly. No need to
switch off the system, re-arrange the hardware and switch it back on. Designers naturally
start thinking of the possibilities that arise when you can design a platform the hardware
of which can change any moment one wants, without putting the system down. This is
how the ERA project was born.

1.1 The ERA project

The idea behind ERA (Embedded Reconfigurable Architectures) is to design a platform
that combines reconfigurable computing and network elements which can adapt on-the-
fly their composition, organization and even instruction-set architectures in an effort to
provide the best possible trade-offs in performance and power for the given application(s).
On ERA, network elements and topologies as well as memory hierarchy organization can
be selected both statically at design time and dynamically at run-time [1]. That last one
is what makes ERA special, because the hardware adapts to the software that runs on
it on every cycle. All three basic hardware components of the ERA platform (Process-
ing component, Network component and Memory component) shown in Figure 1.1 are
actually dynamically adaptable. Although some of this adaptiveness is controlled by the
software (mainly the operating system), the goal of the ERA project is that great deal
of this control actually takes place automatically on hardware level, by the Hardware
scheduler.

1.2 Motivation

This thesis deals with the problem of task scheduling. The Task scheduler is the part of
the Hardware scheduler seen on Figure 1.1 which with help by the Monitoring hardware is
responsible for the reconfiguration of the Processing components. We will try to explore

1

2 CHAPTER 1. INTRODUCTION

Figure 1.1: The ERA platform.

possible implementations/algorithms for the task scheduling in the ERA platform. That
is, we will try to find or invent algorithms that can look at the several tasks which are
being executed every moment and try to map them on hardware within one or in any
case finite number of cycles. This is the core idea of the ERA project. If this is not
feasible, then the ERA platform would just be yet another VLIW system.

1.3 Goals

The main goal of this thesis is to explore and compare the several possibilities/algorithms
for task scheduling on the ERA platform. If no appropriate algorithms are available in
the literature, we will have to invent some. Those algorithms, wherever they come from
eventually, will have to be tested and compete with each other. The results should be
analysed and if there is time, the chosen algorithm could be implemented inside ERA to
see if it confirms the results of the research.

1.4 Methodology

In the most abstract level the methodology that will be followed is described by the
following steps:

• Define the problem.

• Set the scope of the research.

1.5. OVERVIEW 3

• Look in the bibliography for solutions.

• Invent own/custom solutions if necessary.

• Test solutions.

• Analyse the results and draw conclusions.

More specifically the methodology in every step is described by the Figure 1.2 below.

1.5 Overview

This thesis will be structured as follows. First, in Chapter 2 we are going to give some
background information necessary for the understanding of the problem and the way
we tried to tackle it, including the preliminary literature research performed. Then, in
Chapter 3, the several algorithms will be presented and in Chapter 4 the simulator that
we had to build to perform the research. In Chapter 5 the results of the research will
follow and Chapter 6 concludes the thesis with a summary of all the conclusions drawn
in the previous chapters, as well as some proposals for future work.

previous goal

collect
data

form a
hypothesis

test the
hypothesis

analyse
the results

is the
hypothesis
confirmed?

next goal

no

yes

Figure 1.2: Flow chart showing of methodology for every goal.

4 CHAPTER 1. INTRODUCTION

Background 2
In this chapter we provide some background information about the ERA project as well
as the literature research that took place in order to find out whether a solution that
can be implemented in ERA and makes use of its special characteristics already exists.

2.1 The ρ-VEX VLIW processor

In the previous chapter, specifically on Figure 1.1, we saw an abstract block diagramme
of the ERA platform. Since the focus of this thesis is on the Processing component
seen in the figure, it is important to look inside that box more carefully. The goal is
that the Processing component will be adapted constantly on the software running on
the platform on any moment. That is why a Multicore Processor (MCP) described in
[2] is implementing it, an abstract block diagramme of which is depicted in Figure 2.1
below. The originality lays on the fact that the core/cluster size and the number of
cores/clusters can be adapted on-the-run.

Figure 2.1: The block diagramme of a VEX Multicore Processor.

5

6 CHAPTER 2. BACKGROUND

Figure 2.2: The block diagramme of a 4-issue ρ-VEX.

The smallest core of this Multicore Processor is a 2-issue ρ-VEX VLIW processor[3].
ρ-VEX is a VLIW processor that implements the VEX ISA[4]. It is a reconfigurable and
parameterized processor[5], the most relevant parametre of which is the issue width. A
4-issue ρ-VEX for example is depicted in Figure 2.2 above.

Two clusters can be combined to form a bigger one. For example two 2-issue
cores can be combined to form one 4-issue core/cluster or two 4-issue cores can be
combined to form one 8-issue core or two 8-issue cores can be combined to form one
16-issue core and so on. Theoretically there is no limit, but practically (and especially
on FPGAs) the resources are limited and so is the parallelism VLIW processors
can exploit. There is no meaning in using a 16-issue core when we hardly ever
can find 16 operations that can be executed simultaneously. In that case it would be
wiser to use two 8-issue cores and let 2 tasks run simultaneously, which is what ERA does.

The clusters do not necessarily have to be homogeneous. For a example if we have
eight 2-issue cores available we can form four 2-issue clusters or two 2-issue and one
4-issue or two 4-issue or one 8-issue (core/cluster). Figure 2.3 summarises that.

2.1. THE ρ-VEX VLIW PROCESSOR 7

Figure 2.3: How ρ-VEX cores can be combined to form bigger ones.

It has to be noted here that not just any two cores can be combined. For example
assuming that N=4 in Figure 2.1 and that every cluster is a 2-issue core, in order to
form a 4-issue core we could combine cluster-0 and cluster-1 or cluster-2 with cluster-3,
but not cluster-1 and cluster-2. To imagine all the possible combinations, thus, we can
imagine the clusters as the leaves of a binary tree, where the 2nd and the 3rd leaf cannot
be combined since they belong to different branches.

We owe this limitation to the fact that ERA applies a datapath sharing method by
Anjam et al. [6] depicted in Figure 2.4. Without getting too much into the details of the
method, we can mention that Anjam et al. manage to halve the resources needed for the
execution units, by sharing resources. While one operation is writing back (WB) results
to the data memory, another operation can make use of the execution units. Apart from
the obvious benefits in resources, Anjam et al. report benefits in power consumption, an
important element in Embedded Architectures. The limitation brings some performance
drop for the Multicore Processor as we will show in Chapter 5, but that is not tragic and
it gets compensated by first of the core speedup which [6] reports by getting rid of the
inter-cluster communication delay and secondly the fact that this binary-tree topology
quite simplifies the design of the hardware scheduler, which brings benefits both in terms
of resources as well as clock speed.

Apart from the ability of the MCP to switch off cores to save energy [7], this design
can allow the ERA MCP extend its fault tolerant support (such as on-the-fly switching
on and off of fault-tolerance support to save energy [8]) by permanently deactivating

8 CHAPTER 2. BACKGROUND

cores that give errors constantly and proceed with task scheduling by ignoring them and
using only the rest of the computing resources.

Figure 2.4: Datapath sharing in ρ-VEX cores.

2.2. THE VLIW APPROACH 9

2.2 The VLIW approach

It has already been mentioned that ρ-VEX is a VLIW processor. A VLIW processor takes
advantage of Instruction Level Parallelism (ILP)[9] to execute independent operations
simultaneously next to each other utilising extra hardware that is available[10]. For
example if we have two processing units, an adder and a multiplier, there is no reason
to leave the adder idle, while the multiplier is busy. Thus we feed the adder (already
during compilation) with another operation which has no dependency to the operation
being executed in the multiplier.

The way superscalars do that, is to look further in the code to find independent oper-
ations. Most of the times they need to perform out-of-order execution of the operations
to reach high performance. To implement that, as well as to make sure that the final
result is equivalent to in-order execution, out-of-order superscalar processors make use of
a lot of extra control logic. Not ideal for Embedded applications, where less hardware is
not only cheaper and faster (also faster to build), but also less energy consuming. VLIW
architectures move that workload to the compiler. The compiler looks for independent
operations that can be executed simultaneously and packs them together into Very Long
Instruction Words (VLIW). This way VLIW hardware is much simpler and does not
have to support out-of-order execution.

The cost we pay with VLIW architectures is that not always is there enough instruc-
tion level parallelism to exploit. If we have a 4-issue VLIW processor for example, we
need to feed it 4 operations on every single cycle. That is not always possible. So often
we end up with No Operations (NOPs) in the code[11]. NOPs are zeros filling up the
gap of the operations we could not find to make a full Very Long Instruction Word.
Figure 2.5 depicts a NOP inside a 4-issue instruction word of a 16-bit operation width
VLIW architecture. A NOP means that the execution unit that will receive it, will do
nothing. Most VLIW research goes around the problem of minimising NOPs.

2.3 Parallel algorithms

ERA not only exploits ILP by using VLIW architecture, but in the same time the
clustering system tries to exploit Data Level Parallelism (DLP). Some applications
could benefit from splitting the data into blocks that can be processed in parallel and
calling the task independently for each block. Although the latter is not the job of the
hardware scheduler, making idle resources available for another programme or task sent
to ρ-VEX by the operating system for execution is.

Parallel algorithms theory has a lot to offer for exploitation of intro-task parallelism,
but not much when we are trying to map to hardware tasks totally independent from
each other, as this is considered an NP-hard problem [17]. For example it offers useful

63

1101110111011101 1011010110110101

48

0000000000000000

31

1110101111101011

15 0

Figure 2.5: A NOP in the 2nd position (bit-31 to bit-16) of a 4-issue VLIW.

10 CHAPTER 2. BACKGROUND

tools for problems including communication (like Networks on Chip - NOCs), tasks with
dependencies or communication with each other as well as divide and conquer methods
for solving matrix problems [12], but nothing when it comes to completely independent
tasks with no communication with each other competing for resources. Then the only
fair solution in that case seems to be simply a FIFO and strict in-order execution.

However, there is a difference in ERA platform. The tasks can run in cores of several
sizes, which creates some dependency between the tasks, cause some task B cannot use
the resources allocated to some task A, till task A finishes. That would be a simple
problem of balancing a tree graph, as painful as the word “simple” may sound in the
the limited world of FPGAs and Embedded System. Figure 2.6 depicts such a weighted
graph, where the nodes are the tasks and labeled by the name/number of the task and
the size of the core (2-issue, 4-issue, etc) and the edge is the cycles it takes to execute
this task in such a core. It is obvious that the bigger the core (thus the more resources
we dedicate to this task) the shorter the edge (the faster the task is executed that is).
On every level the sum of the core sizes is equal to the maximum resources we have.
Let’s say we have resources to build one 8-issue core or two 4-issue and so on as in the
example of Section 2.1. Then 8 would be the sum of all the core sizes on each level (we
let aside deactivating resources to save energy for now).

Since the maximum number of tasks we would be able to issue at such processor
on one cycle is 4, we only take into consideration the next 4 tasks in the task queue.
If all 4 can run simultaneously (Figure 2.6 left graph), obviously there is no need for
balancing. The slowest task is giving us the height of the tree. If we dedicate double
amount of resources though to the slowest task and let another task run only after this
one or another one finishes, then we can shorten the tree’s height. We managed to
shorten the total execution of those tasks from 12 to 8 cycles. But then, what if we had
made a different choice? Every task has 3 different versions (2-issue, 4-issue and 8-issue)
and there are 4 different tasks. That means the task scheduler would have to construct
34 = 81 possible trees (even though some of them are equivalent to others), calculate their
heights and choose the shortest one. That would demand a whole Multicore Processor
only for the scheduling, so it is out of option.

t1 , 2 t2, 2 t3, 2 t4, 2

done

t1 , 2 t2, 2 t4, 4

t3, 8

done

6

5 8 12 6 5

6

2

Figure 2.6: Two of the many scheduling possibilities of just 4 tasks in ERA.

2.3. PARALLEL ALGORITHMS 11

Another option is to consider all nodes as 2-issue tasks and represent an 8-issue task
as four 2-issue tasks with a line dependency. Then we we would end up with only one
tree/graph like that in Figure 2.7 which has to be balanced. Apart from the fact that
such a problem would still need a whole MCP on its own every time we would want to

t1 , 2 t2, 2 t3, 2 t4, 2

t2, 2 t3, 2

t2, 2 t3, 2 t4 , 2

t2, 2 t3, 2

t1 , 2 t4 , 2

t4, 2

t1 , 2

t1 , 2

done

4

2

4

2

4

2

4

2

Figure 2.7: A scheduling graph with only 2-issue nodes.

12 CHAPTER 2. BACKGROUND

reschedule the tasks, it is also not that accurate. In a perfect world the execution time
of a task in a 4-issue core would be half the execution time of the same task in a 2-issue
core. That means that we would manage to wrap all the operations of the 2-issue version
into half the amount of instruction words we had in the 2-issue version without creating
any new NOPs. Well, that is theoretically possible, but practically impossible, since no
programme has such a great amount of instruction level parallelism. With other words
pushing t1 up to execute it as a 4-issue task would not necessarily mean that the task
would have been executed within 8 cycles.

Theory of Parallel algorithms and Parallel processing or Graph theory did not offer
any solutions. However some investigation in the literature did take place, in case some
algorithms have already been developed for similar to ERA platforms or conditions.

2.4 Related work

Natural research domains that can be related to the hardware scheduling of ERA are Grid
Computers, heterogeneous multicore computers and homogeneous multicore computers.
Each of which failed to supply us with an algorithm relevant to ERA; each for its own
reasons. We present one typical research/case per cluster below.

2.4.1 Grid Computers

A Grid computer is a network of computers linked by software in such a way that
they function as a single computer. The computational power of all those computers
is combined to form a super computer[13]. The linking software has to perform task
scheduling. The computational power of each computer in the grid is different, which
could be related to the several ρ-VEX cores of different issue-widths inside the ERA
multicore processor, but those computers are not next to each other, like the ρ-VEX
cores, but they can even be at the other side of the planet. Thus most research on Grid
task scheduling [14, 15, 16] , for example that of Keqin Li in [14], focuses on minimising
the communication costs between the different computer elements. If the communication
cost is not the only factor of those specialised task scheduling algorithms (for example
in cases that all computers members of the gird are the same or quite similar) it is at
least the most important one. But in case of ERA the communication cost is irrelevant,
because it is the same, no matter what kind of core we are going to select.

2.4.2 Homogeneous Multicore Processors

Another cluster of research efforts is for scheduling on homogeneous multicore sy-
stems [17, 18, 19, 20]. Despite the fact that the geographical distances of the previous
category of systems is not there, communication still is an important issue in Youness
et al. [17], as the cores communicate with a shared memory through a bus as shown in
Figure 2.8. Thus the algorithm is making a graph with dependencies (Figure 2.9) where
round nodes is the execution time and hexagon nodes are communication costs. The
algorithm is worrying mostly about queuing up tasks with dependencies after each other
on the same core, in order for the next task to find the data ready in the core through

2.4. RELATED WORK 13

Figure 2.8: Homogeneous multicore system

Figure 2.9: Scheduling graph for a homogeneous multicore system

port-forwarding or core cache instead of having to use the bus to access the main mem-
ory. Such a scheme does not match the specifications of ERA, since we assume that
tasks are totally independent, but could be used later as an improvement. For now the
ability to run a task on a bigger core than the others and wether a scheduling that takes
advantage of that is possible is a much more interesting question and most likely not to
be answered by research efforts concerning homogeneous systems. Even in publications
where tasks are independent (as in [20], since the system is homogeneous, the algorithms
target mainly on workload balance which is core-oriented rather than task-oriented.

2.4.3 Heterogeneous Multicore Processors and Multiprocessor
Computers

With the exception of some moments that only cores of the same size are used, ERA
MCP can be considered a heterogeneous multicore system. Scheduling in heterogeneous
has also not been very impressive[21, 22, 23, 24, 25], most authors claiming simply
effective or efficient scheduling, but none of them optimal. The most interesting case is

14 CHAPTER 2. BACKGROUND

that of Tang et al. [21]. The authors use estimated execution time of the task for every
core in order to decide on which core the task will be assigned, but important role on
the decision takes the deadline, since this is research for, not just Embedded Systems,
but Real-Time Embedded Systems. Deadline miss rate is also the only criterium on
which they compare the different versions of their algorithm. Moreover it is a software
scheduler, although not that hard to implement in hardware. This could be a future
add-on for the ERA hardware scheduler in order to support real-time systems, but it
cannot be used as the basic scheduling algorithm.

2.5 Conclusion of Chapter 2

After getting an inside look of the Processing component of the ERA platform and
understanding the particularities of it, as well as of its main building block, the ρ-VEX
core, we tried to find in the bibliography an available scheduling algorithm to implement
as the Hardware scheduler of ERA. This literature research did not yield any results, both
because of the complexity of the problem, as well as the pioneer characteristics of ERA
that we would like to take advantage of. Thus, we will try to design simple scheduling
algorithms, especially tailored for the ERA platform and see how they perform.

Implementation 3
From the Introduction (Chapter 1) and the flow chart of Figure 1.2 the reader should
probably have imagined already that the evolution of this research would be nothing like
linear, which makes it rather difficult to lay on a book. However, this chapter and the
next one will attempt to present the research in a linear way.

We saw in the previous chapter that the relevant literature could not supply us with
the appropriate algorithm for the Hardware scheduler of the ERA platform. Thus, we
went on and designed 4 simple scheduling algorithms. Some of them were part of the
initial planning, whereas others came up or were abandoned during the course of the
research. In this chapter we present those algorithms, their characteristics and their
differences.

Imagine that our ERA Multicore Processor of Figure 2.1 is a co-processor in an
embedded system and the main processor sends to the MCP only the hardest tasks for
execution. The Hardware scheduler receives a task in a task list (FIFO) and tries to
decide what percentage of the resources it should allocate to this task.

The Monitoring hardware (Figure 1.1) supplies the Hardware scheduler with infor-
mation about the task. Information on how fast it has run in the past on every core-size
available, so that the Hardware scheduler can make a smarter decision. Smarter meaning
we do not have to offer an 8-issue core to a task if the execution-time gain compared to
this task run in a 4-issue core is just 5% or 10%. That means that there is not much
of Instruction Level Parallelism (ILP) to exploit in this task and that the 8-issue ver-
sion is full of NOPs. This information can also come from the Operating System (OS)
accompanying each task in order to save on hardware resources.

3.1 A basic scheduling algorithm

3.1.1 The naive approach

Assuming we have a MCP of corespace 8. That means that we have resources to im-
plement one 8-issue core or two 4-issue cores and so on, just like in the example of
Section 2.1. There are 2 tasks running, one on a 4-issue core and one on a 2-issue core.
That means that our only free resources is a 2-issue core. The situation is depicted in
Figure 3.1 below.

Task-102 Task-104

Figure 3.1: A 2-issue and a 4-issue task running in an ERA MCP.

15

16 CHAPTER 3. IMPLEMENTATION

Task-1013100:

Cycle

Task-102

Task-1033101: Task-104

Task-1033102: Task-104

Task-1033103: Task-104

Task-1033104: Task-104

Task-1033105: Task-104

Task-104Task-1053106:

bubble

Figure 3.2: A bubble created in the execution timeline.

If the first task in the task list, waiting for execution, comes with the indication of
preferably running on a 2-issue core, we got lucky. But if the task would prefer to run
on a 4-issue or 8-issue core, then the Hardware scheduler has a decision to make. The
simplest thing the Hardware scheduler can do is to wait until resources become available.
But that means a NOP would have to be added in the 2nd cluster till one of the two
tasks is finished. That creates a bubble in the execution timeline as seen in Figure 3.2.
Such bubbles cause the utilisation percentage to drop, increase the task latency, which
is the time from the moment a task arrives at the task list till the time its execution is
completed, and the total execution time for any chosen amount of tasks.

In order to minimize the number of the bubbles, we can allow the algorithm to look
further in the task list for smaller tasks that can be executed inside those bubbles. As in
hardware the resources are not infinite there should be a maximum window in the task
list that the algorithm can search for smaller tasks. This is the simplest algorithm we
can implement, it is called ‘Basic’ (or ‘Algorithm A’ or just ‘AlgA’ for short), and it is
depicted in Algorithm-figure 1 below.

Algorithm 1 Basic or Algorithm A

1: for i = 1→ 10 do
2: find space p where task(i) fits
3: if p 6= NULL then
4: allocate p to task(i)
5: end if
6: end for

3.1. A BASIC SCHEDULING ALGORITHM 17

3.1.2 Time complexity analysis

With the first look, one would estimate the time complexity of this algorithm to be
O(m× n), m being the window size and n being the maximum number of 2-issue cores
that the platform can offer to the tasks, or half the ‘corespace’, which can be defined as
the maximum ops that can be running on a specific ERA MCP at the same time. The
hardware world however has limitations and advantages that work on the benefit of our
algorithms. First of all, we do not expect the window to be too large because, as we
know from superscalars, that would seriously increase the complexity of the hardware
design. Even if the window-size is adaptable on-the-fly (instead of decided on design-
time) it would never exceed 10. That drops the time complexity to O(n). In the world
of software it is difficult to overcome the O(n) time complexity, which comes from the
search for an available core of the size that task(i) optimally runs (unless we use parallel
computing which still has its limitations), but in the world of hardware we can turn the
time complexity O(n) into workload complexity W (n) or any other W (). By means of
logic gate design we can come up with a circuit of OR gates, like the one in Figure 3.3
that manages to detect a suitable free core within 1 cycle, thus time complexity O(1).

3.1.3 A realistic basic algorithm

As we will see in Chapter 5, the Basic algorithm has a very important disadvantage
that makes it unusable. The algorithm tends to execute all 2-issue tasks in the list
first, then the 4-issue tasks and finally the 8-issue tasks. Even if we are not talking
about real-time systems, where tasks have deadlines, this is still a problem, because in
the real world that tasks keep coming constantly, it means that bigger tasks will never
be executed. They will be waiting forever for execution because 2-issue tasks will be

Figure 3.3: The logic that detects available cores of any size (2,4,8,16) on an ERA MCP
of corespace 16. Output Low means available, whereas output High means unavailable.

18 CHAPTER 3. IMPLEMENTATION

coming just on time to grab small cores immediately as soon as they become available.
For this reason a modification is necessary. One modification could be that we first
execute all tasks within the window-buffer before we start filling it up again with new
coming tasks. But that would cause bubbles again and thus the utilisation would drop.
Another similar modification is to introduce barriers/checkpoints wherever we meet an
8-issue task. That means that as soon as the algorithm detects an 8-issue task it will
stop feeding the window-buffer with new tasks, until it is empty. Until that 8-issue task
has been executed, that is. The 4-issue tasks are much more frequent than 8-issue ones.
So the window-buffer often gets full of them and eventually it is forced to run them.
That is sufficient so that they do not get postponed forever and works almost like the
barrier function. Introducing a barrier-function also for 4-issue tasks would create too
many bubbles. We call this version ‘Realistic Basic Algorithm’ or ‘Realistic Algorithm
A’ or ‘RAlgA’ for short.

3.2 Versioning

Some 4-issue (and above) tasks though are not that large, meaning, they do not take
that long to execute. Making them wait for several hundreds of thousands of cycles for
free resources, while they take several hundreds of cycles to execute, even in the smallest
cores, would be criminal. For those tasks it might be smarter to do the effort to bring
another version of the task, compiled to run on a smaller core and allocate to them on
such a smaller core which is available immediately. This algorithm is called ‘Versioning’.

3.2.1 Communication Penalty

We will suffer a communication penalty in that case, however, since we do not expect
the Instruction Memory (cache) to be big enough to hold 3 versions of every task in the
task list. Thus communication with the main memory is expected and that will bring
penalty to the execution time of the task. We hope this way that the overload from
the slower execution plus the penalty will be in total less than the time latency of the
task if it would be waiting for free resources as is the case with RAlgA. The size of the
penalty depends on the design of the platform, thus will be a subject of research.

An example is shown in Figure 3.4. Task 101, a 2-issue task is already running on
this MCP of corespace 4, when the 4-issue Task-102 arrives. AlgA would make Task-102
wait until Task-101 is done and thus enough resources are available. That would create
a bubble of 5 cycles and Task-102 would only start running at cycle 3106. RAlgA might
have done the same, unless it could find another 2-issue task to cover the bubble, but
if that task took more than 5 cycles to execute, that would be even worse for Task-102
because that would mean it would have to wait even more to start running. Assuming
that Task-102 takes 2 cycles to execute in a 4-issue core and 4 cycles in a 2-issue core
and that the penalty to bring the 2-issue version is 2 cycles, we see that the task would
finish 1 cycle earlier in Versioning, letting Task-103 also start earlier. Although 2 cycles

3.2. VERSIONING 19

Task-1013100:

Cycle

Task-101 penalty

Task-1013101: Task-101 penalty

Task-1013102: Task-101 Task-102

Task-1013103: Task-101 Task-102

Task-1013104: Task-101 Task-102

Task-1023105: Task-101 Task-102

Task-1023106: Task-103

Figure 3.4: A scenario on AlgA (left) and on Versioning(right).

reload penalty looks quite a heavy cost for a 2-cycle task, plus 2 cycles extra ex-
ecutional penalty (since 2-issue cores are slower than 4-issue cores) a total of 4 cycles
penalty, the execution time of the 4-issue task is not what the Versioning penalty is
competing with, but the task latency in the Basic Algorithm. Thus, as long as the
following is true

T (i, rest) + T (j, 2× s) > P (j, s) + T (j, s) (3.1)

(T being the execution time and P being the reload penalty, i being a task already
running (like Task-101 in Figure 3.4) and j being a new task coming (like Task-102 in
the same figure) and s being a core size) Versioning is better than the Basic algorithm.

Algorithm 2 Versioning

1: for s = task(i).size→ 2 do
2: find space p where task(i) fits
3: if p 6= NULL then
4: if s 6= task(i).size then
5: bring the right version of the task
6: end if
7: allocate p to task(i)
8: end if
9: end for

20 CHAPTER 3. IMPLEMENTATION

Trying to include (in)equation 3.1 in the Versioning algorithm would demand extra
resources (especially if we want to implement it within 1 cycle we would have to calculate
the T (i, rest) for every i, for every task running at the moment that is) and the benefit
would not be certain, since how long a task takes to run is not only dependent on the
size of the core it is running on, but also on the amount of data it has to process.
The algorithm would obviously fail if it let the new task wait, thinking a task would
soon finish, while the task running actually has to process this time double or triple the
amount of date it had to process last time.

Thus Versioning shall always schedule a task on every cycle (by reloading its binary
to a version that fits) provided that there is an idle core. That means that the hardware
utilization will be 100%, contrary to AlgA and RAlgA which produce task bubbles.

3.2.2 Time Complexity

The Versioning algorithm (seen in Algorithm-figure 2) has the same time complexity as
Basic, O(1). The number of the iterations of For cannot exceed logm, where m is the
size of the biggest core which that specific ERA design supports. If, for example, the
decision taken on design time is that the maximum core size is 8, then that For will
have to run once for s = 8, once for s = 4 and once for s = 2. A time complexity of
O(logm). Taking advantage of the logic circuit of Figure 3.3 (the output of which can
be controlling some multiplexers as shown in Figure 3.5) we can even perform all three
iterations in 1 cycle. That means the hardware version of the algorithm will have O(1)
time complexity.

core(8,1)

ORgate(8)

task.size.bit(2)

core(4,1)

core(4,2)

ORgate(4,2) ORgate(4,1)

task.size.bit(1)

core(2,8)

core(2,7)

core(2,6)

core(2,5)

core(2,4)

core(2,3)

core(2,2)

core(2,1)

core.status.register

8bits

Figure 3.5: Parallelising downgrading.

3.3. THE GENERIC BINARY 21

task
GB Ver./Basic slowdown

2-issue 4-issue 2-issue 4-issue 2-issue 4-issue

1001 29.750 20.229 31.546 18.376 -6% 10%

1002 1.003 614 807 516 24% 19%

1003 11.202 10.337 10.488 10.335 7% 0%

1004 143.178 105.316 128.600 98.526 11% 7%

1005 14.054 10.056 11.037 9.208 27% 9%

1006 80.272 50.562 73.550 45.248 9% 12%

1007 798.108 626.721 671.589 572.852 19% 9%

1008 640.728 481.976 552.000 448.218 16% 8%

1009 788.241 538.547 562.866 469.166 40% 15%

1010 1.897.159 1.339.742 1.599.351 1.220.330 19% 10%

1011 34.910 22.605 24.845 18.018 41% 25%

1012 39.644 29.880 35.334 27.781 12% 8%

1013 3.077.053 2.285.802 2.310.467 2.026.995 33% 13%

Table 3.1: Execution times (in cycles) and GB slowdown to Versioning/Basic.

3.3 The Generic Binary

A great innovation would be if we could change to another core size than the one that
task prefers, either from the beginning or in the middle of the execution of a task, without
paying that penalty. Brandon and Wong [26] achieved to compile any task to a binary
that can run on any core, even migrate to another core on-the-fly with a mere penalty of
155 cycles[27] and still run correctly. It is called generic binary and it makes the ERA ρ-
VEX the first reconfigurable VLIW processor that can do that[28]. The algorithm takes
the name from that special binary too, so for the rest of the thesis the term ‘Generic
Binary’ (GB) will refer to the algorithm, not the binary.

3.3.1 Benefits and disadvantages

The penalty of 155 cycles is not the only one, though. A task compiled for the
Generic Binary algorithm will not run as fast as if it were compiled specifically
for a 2-issue or a 4-issue core (8-issue cores have no difference compiled to GB or
not) for use in Versioning and AlgA. A task compiled for GB will usually take
about 10% to 40% more time to execute than the same task specifically compiled
for 2-issue or 4-issue (Table 3.1), depending on the task. However being able to
downgrade or upgrade will give us the opportunity to support priority tasks, in-
terrupts and save on energy, because downgrading with GB consumes less energy
than reloading with Versioning and generally running a task on a smaller core also
saves energy (assuming no other task comes to use the resources the downgraded task
left idle)[28].

22 CHAPTER 3. IMPLEMENTATION

Task-1013100:

Cycle

Task-102 Task-101 Task-102

Task-1013101: Task-101 penalty

Task-1013102: Task-101 Task-103

Task-1033103: Task-101 Task-103

Task-1033104: Task-101 Task-103

Task-1033105: Task-101 Task-103

Task-104 Task-1053106: Task-104 Task-103

Figure 3.6: GB (left) and Versioning (right) handling a new 4-issue task.

3.3.2 Priority tasks

Priority tasks are tasks that:

• either have a deadline, so they need to use more resources to finish on
time(Figure 3.6),

• or tasks that just came in and need to run now (Figure 3.7 and 3.8), even if it
appears there are no available resources

• or that tasks that the operating system for any reason decided that they are more
important than the rest(Figure 3.9).

Versioning cannot support those tasks. Switching to a bigger core to catch a deadline
or downgrade to a smaller core to let a priority task run would mean that we would have
to start running the task all the way from the beginning again. The only thing Versioning
could do and only for tasks that come in and have to run now (not tasks that are already
running and suddenly they acquire high priority) is freeze a (non-priority) task that is
running, store its context and let the priority task run in its place. As soon as it is
finished, the old task can be loaded again and start from where it had stopped.

GB on the other hand can handle all three kind of tasks described above. Tasks with
a deadline can be given priority, either they are running now or they just came in. If
the operating system (or the Hardware monitor) is afraid a task can lose a deadline, it
can upgrade it by letting the task take over adjacent resources instead of bringing in a
new task. At this moment the algorithm only looks for available recourses in adjacent
resources. But total relocation of the resources on every cycle is feasible with some
modifications. That means that the algorithm will switch location of two tasks, say A

3.3. THE GENERIC BINARY 23

Task-1013100:

Cycle

Task-101 Task-100

Task-1013101: Task-102 Task-101 Task-102

Task-1013102: Task-102 Task-101 Task-102

Task-1013103: Task-102 Task-101 Task-102

Task-1013104: Task-102 Task-101 Task-102

Task-1013105: Task-102 Task-101 Task-102

Task-1013106: Task-101 Task-100

Figure 3.7: GB stealing resources from a task(left) or freezing it (right).

and B, if it sees task A can take advantage also of adjacent idle resources of task B, if
task B cannot or simply would really benefit as much.

When a priority task comes in and no resources are available the algorithm can either
steal resources from another task. That could mean that the other task either has to
downgrade or that it should or freeze and be taken out of the MCP to give its resources
to the priority task. If victim-task is a non-priority task the choice is obvious. If it is
also a priority task the question what to do rises. For the time being the algorithm
supports only 1 level of priority. But it can easily be modified to support multiple levels
of priority. The task with the smallest priority obviously becomes the victim-task.

There is a figure exhibiting every one of those cases. In Figure 3.6 Task-101 and
Task-102 are running. Task-102 is done and the next task is Task-103, a task that
preferably runs on a 4-issue core. GB also notices that Task-101 is a 4-issue task which
has been downgraded. It upgrades to run in 4-issue so that it runs the 4 remaining words
(8 operations) in 2 cycles instead of bringing Task-103. Then there is enough space for
Task-103 to run on a 4-issue core, no need to downgrade. This way Task-103 finishes
within 3 cycles instead of 6. Versioning followed a different pattern. It cannot upgrade
Task-101, since it would have to make it run all the way from the beginning. So it has
to downgrade Task-103. Task-103 runs 15% faster on Versioning since it is compiled
especially for 2-issue, but it has to pay the re-loading penalty of at least 1 cycle. Both
tasks finish later in Versioning than in GB. Even in the case that the GB overload for
Task-103 was higher and thus Task-103 would also end on cycle 3105, there would still
be the benefit of Task-101 finishing earlier.

In the case that a new priority comes in and there is no place for it to run is depicted
in Figure 3.7. In the left scenario Task-101 is non-priority task (or a task with lower
priority) running already on a 4 issue core. Task-102 is a (high) priority task that comes
in and needs to run immediately. In that case Task-101 will be downgraded to a 2-issue

24 CHAPTER 3. IMPLEMENTATION

task
GB Versioning/Basic

execution times gain execution times gain
2-issue 4-issue 8-issue 2→4 4→8 2-issue 4-issue 2→4 4→8

adpcm 29750 20229 17025 32% 16% 31546 18376 42% 7%

bcnt 1003 614 515 39% 16% 807 516 36% 0%

blit 11202 10337 10334 8% 0% 10488 10335 1% 0%

compr. 143178 105316 95697 26% 9% 128600 98526 23% 3%

crc 14054 10056 9209 28% 8% 11037 9208 17% 0%

des 80272 50562 37729 37% 25% 73550 45248 38% 17%

engine 798108 626721 583252 21% 7% 671589 572852 15% -2%

fir 640728 481976 421147 25% 13% 552000 448218 19% 6%

g3fax 788241 538547 464712 32% 14% 562866 469166 17% 1%

jpeg 1897159 1339742 1130842 29% 16% 1599351 1220330 24% 7%

pocsag 34910 22605 17024 35% 25% 24845 18018 27% 6%

qurt 39644 29880 26053 21% 25% 35334 27781 13% 6%

v42 3077053 2285802 2006688 12% 26% 2310467 2026995 12% 1%

Table 3.2: Execution-time gain from upgrading (8-issue times common for all algorithms)

core to leave some resources available for Task-102. If Task-101 still running when Task-
102 finishes it can be upgraded again to a 4-issue core. On the right side, there are
two tasks running when (high) priority Task-102 comes in, specifically the (low) priority
Task-101 and the non-priority Task-100. GB will stall Task-100, store its context to
the memory and let Task-102 run. When Task-102 is done, Task-100 can come back
for execution. The scenario on the right side is what the other algorithms would do
too, even if there was a 4-issue task running that moment. The benefit of GB is that
it lets Task-101 keep running while the priority task is also running. That could be
compensated in the other algorithms by letting the priority task use as many resources
as possible. But not all tasks benefit significantly from bigger cores as we can see in
Table 3.2. The execution times as those of Table 3.1 are supplied by [26].

Task-101Cycle 3100: Task-102 Task-103

Task-1043101: Task-102 Task-103

Task-1043102: Task-102 Task-103

Task-1043103: Task-102 Task-101

Task-1043104: Task-102 Task-101

Figure 3.8: A 4-issue forced priority task in an ERA MCP of corespace 8.

3.3. THE GENERIC BINARY 25

Task-1013100:

Cycle

Task-102 Task-103 Task-104

Task-1013101: Task-103 Task-104

Task-1013102: Task-103 Task-104

Task-1013103: Task-103 Task-104

Task-1013104: Task-103 Task-102

Figure 3.9: A task suddenly gains priority.

Figure 3.8 presents the case of a forced priority task. That is a task that not only
has to run now, but it also has to run in the preferred core size, by all means. In that
case Task-101 is taken out of the processor and comes back after resources are available.
In this scenario one of the smaller tasks happens to finish before the forced priority task,
so Task-101 is downgraded and brought back to a smaller core instead of keep waiting
for the forced priority Task-104 to finish.

And finally Figure 3.9 depicts the case of a task that suddenly required priority and
needs to take over resources around it. In this case this is Task-101 and Task-102 has to
be taken out of execution. If another task is done in the meantime, like in this case Task-
104, then Task-102 can come back to execution. Otherwise it has to wait for Task-101
to finish.

3.3.3 Interrupts

A big advantage of GB is that it can handle interrupts without having to freeze all the
tasks running. Given that there is at least one 4-issue or higher task running at the
moment, we can downgrade it and let the interrupt be handled in the core that will be
set free. Interrupts are identical with priority tasks of the cases depicted in Figure 3.7.

3.3.4 Time complexity

GB can be represented in algorithmic form as seen in Algorithm-figure 3 below:

Algorithm 3 Generic Binary or Algorithm B

1: for s = task(i).size→ 2 do
2: find space p where task(i) fits
3: if p 6= NULL then
4: allocate p to task(i)
5: end if
6: end for

26 CHAPTER 3. IMPLEMENTATION

It looks exactly like versioning, but the reloading logic is missing. Thus, O(1) com-
plexity also for GB. Priorities could be implemented in parallel, in a similar way as the
logic in Figure 3.3 and 3.5 but using the information from the priority bit instead of the
allocated bit of the core-status register and using the size-check only if the task has a
forced priority. With a priority task we do not care if there is another task running on
the core or not, but only if it has a priority. After it is decided on which core the priority
task is going to run the core-status bit simply tells us if we have to freeze or downgrade
the running task before we bring the priority task.

3.3.5 GB++

Generic Binary with default upgrading can be implemented by adding a preliminary step
before the for as showed in Algorithm-figure 4 below:

Algorithm 4 Generic Binary++ or GB++

1: find task t such that p(t).size < task(i)size&&(p(t−1) = NULL||p(t+1) = NULL)
2: if t = NULL then
3: for s = task(i).size→ 2 do
4: find space p where task(i) fits
5: if p 6= NULL then
6: allocate p to task(i)
7: end if
8: end for
9: else

10: upgrade
11: end if

To sustain O(1) complexity we have to add logic to the circuits of Figure 3.3 and 3.5
but that would be only a couple of AND/OR gates of this kind:

task.size.bit(1)

task.size.bit(2)
core.status.register(i)

core.status.register(i+ 1)

Figure 3.10: Logic for parallelising default upgrading of core i.

This would be the logic per implementable core, which means also cores of 4-issue and
8 issue. The only difference for the bigger cores is that the core.status.register(i+ 1) in
Figure 3.10 is replaced by the outputs of the ORgates of Figure 3.3. Thus for corespace
8 we would need 8 + 2 + 1 = 11 times the circuit above. We pay W (n) complexity to
preserve O(1) time complexity.

3.4. ALGD AND ALGBALL8 27

3.4 AlgD and AlgBall8

If one looks at the scheduling historic of GB they will notice that the algorithm is
downgrading too much. Sooner or later 2-issue execution dominates and the chance that
two 2-issue tasks finish in the same time so that enough resources for a 4-issue task are
available is rather small. In an effort of preventing too much downgrading we tried to
switch the preferred core of all tasks to the biggest possible core (for this research that
is 8) in AlgB/GB ending up with ‘AlgBall8’. This is not really exactly a new algorithm,
it is still AlgB/GB, but the input is altered so that it appears that the preferred core of
every task is 8-issue. The results were not better as we will see in Chapter 5.

Another way of avoiding too much downgrading was to combine GB and AlgA,
creating AlgD. This algorithm downgrades the tasks only one level down. If there is still
no space to run the task it looks for another task in the window and tries again later
on. Unfortunately this algorithm showed worse results than GB, probably because it
combines the disadvantages of both algorithms, with most important the disadvantage
of AlgA to create bubbles.

3.5 Conclusion of Chapter 3

In this chapter we presented the several algorithms that were developed and tested
during this thesis, starting from a very Basic task scheduling algorithm, moving to
algorithms more specific to the ERA platform. Such as Versioning that downgrades the
task by scheduling it to run on a smaller core to avoid creating bubbles that Basic does.
Running in a smaller task means bringing from the memory a different binary of the
task, compiled especially for that core. That takes time, which is called the ‘reloading
penalty’. To deal with the reloading penalty Generic Binary was invented creating a
binary of a task that can run on any core. That also created the ability to downgrade
tasks on-the-fly to make space for new tasks, support priorities and handle interrupts
without big delays for the tasks already running. All these lead to a new algorithm, AlgB
or GB. But it also brought the idea of upgrading a task when resources become available,
instead of bringing immediately a new task for execution. That is GB++. Finally some
very unsuccessful algorithms like AlgBall8 and AlgD were mentioned. In Table 3.3 there
is an overview of all the algorithms that were developed, their characteristics and their
differences. It is time now to see how those algorithms performed and how they compare
to each other.

28 CHAPTER 3. IMPLEMENTATION

character.
/situation

algorithms
AlgA RAlgA GB GB++ Versioning AlgD

task does
not fit

stall task
stall task

unless
8-issue

downgrade
task till it

fits

downgrade
task till it

fits

downgrade
task till it

fits

downgrade
once then
stall if still
does not fit

window yes yes no no no yes

downgrad. no no yes yes
only before
execution

only once

upgrading no no no yes no no

penalty no no
practically
not (155
cycles)

practically
not (155
cycles)

yes
practically
not (155
cycles)

interrupts
replacing

bubbles or
stalling

replacing
bubbles or

stalling

downgrading
or stalling

downgrading
or stalling

12%

priorities only static only static only static
all

priorities
only static no

forced
priorities

only by
stalling

only by
stalling

yes
(without

upgrading)
yes

only by
stalling

no

binaries
per task

3 3 1 1 3 1

Table 3.3: Overview of the developed algorithms.

Simulator and benchmarks 4
4.1 The simulator

Although there is a simulator available for the ERA platform testing, it does not support
yet multitasking. That means the tasks have to run the one after another. Upgrading
and downgrading and interrupt support is already implemented, but still only when one
task is running. Going immediately in the simulator and implementing task scheduling
and all the algorithms above would add non-scientific overload to this thesis and it would
make every experiment slower.

Since we already have the average execution times of several benchmark tasks for
every core size available, it is a better idea for now to design a small, light and fast
simulator only for the task scheduling. The simulator was implemented in C, went
through 18 different versions during the development of all the algorithms we described
in Chapter 3, each version consisting of more than 2.000 lines of code.

The simulator in its final version has several tools as shown in Figure 4.1. Such tools
are the Task list generator, the Priority scenario generator, the Algorithm simulator
itself, as well as some small scripts that test the outputs of all the previous tools or give
statistics about them.

4.1.1 Task list generator

The Task list generator is where every experiment starts from. It takes as input a file
that includes the average execution times of the benchmarks for every type of core and
their preferred core, as well as the desired size of the task list as number of tasks. It gives
as an output a task list of the desired size made of the tasks of the input file randomly
placed all over the list.

Task list
generator

Priority scenario
generator

algorithm

screen output

reports
reports

reports

Figure 4.1: An abstract diagramme of the simulator.

29

30 CHAPTER 4. SIMULATOR AND BENCHMARKS

This is a typical line of a task list:

1002 4 807 516 515

The first number (1002) is the task-ID. The second number is the preferred core.
This one is derived from rest three numbers which are the typical/average execution
times of that task in (from left to right) 2-issue core, a 4-issue core and an 8-issue core
(a rather small taks in this case). The preferred core could be calculated just on the
cycle that we schedule the task. However, it is very handy to have it stored already
(especially when we try to see if a task is upgradable or checking priorities) and update
it only after a task has finished running. This could happen with dedicated hardware or
with software/interrupt.

4.1.2 Priority scenario generator

The priority scenario generator produces a random list of priorities. Its input parametres
are the name of the scenario, the number of tasks in the task list it is going to be used
with and the density of the priorities as a percentage. It then produces an output of
which the first line is the name of the scenario and the priority density (as a percentage)
and then a list zeros and ones, zero for a non-priority task and one for a priority task.
The Algorithm simulator couples those priorities with the task list generated by the
Task list generation. The length of the two lists should be equal. This the beginning of
a typical output of the Priority scenario generator:

45 10
0
1
0
0
0
...

It means that this is scenario 45 with 10% priority density and that the first and the
third task are non-priority tasks whereas the second is a priority task.

4.1.3 Algorithm simulator

The Algorithm simulator is the biggest part of the code. It takes as input the lists
the other two generators produce (the priority list is not compulsory) and simulates
the execution of the task list. Other input parametres are whether priorities/interrupts
should be used or not, whether the user wants output on the screen apart from the report
and the algorithm with which the task scheduling should be performed. The rest of the
input parametres depend on the algorithm. For AlgA and RalgA the user has to give
the window size, for Versioning the reloading penalty in cycles and GB and GB++ do
not need any extra input parametres. There is also a file that the simulator reads to
know in how many different and which corespaces it has to perform the simulation. The

4.2. TESTING METHODOLOGY 31

output is presented on the screen (if the user choses so), but for large task lists that is
impossible to follow. Thus, it is always also stored in a file, as well as other kinds of
statistics, like latency per task, downgrading slowdown, how many times and for which
tasks the Versioning reloading penalty was applied and total execution time of the whole
task list.

4.1.4 Small scripts

Finally there are some small scripts that validate either that the simulator is working
correct or simply do something handy for the user of the simulator. Those scripts:

• give the locations of priority tasks in a priority list,

• check if two task lists or two priority lists are identical,

• give statistics on a task list (to see if it’s really random or if all tasks appear pretty
much with the same frequency in the task list).

4.1.5 Outputs

The outputs and reports have been already described for every component of the sim-
ulator, except for the screen output of the Algorithm simulator. The output typically
looks like this:

Cycle 1: core 4 type chosen for job 1001, duration : 25786
Cycle 1: core 4 type chosen for job 1002, duration : 872
Cycle 873: core 4 type chosen for job 1003, duration : 10623
Cycle 11496: core 2 type chosen for job 1004, duration : 161560
Cycle 11496: core 2 type chosen for job 1005, duration : 14567
...
...
Cycle 941721: core 2 type chosen for job 1013, duration : 3388247
Total sim duration: 4329967

Other kind of information might also appear when applicable such as reloading
penalty, interrupt, priority, upgrading and generally every decision and action that the
algorithm takes.

4.2 Testing methodology

During the development and testing of every algorithm, 3 kinds of tests took place. All
three kinds are repeated every time there was a new version of the simulator or a change
in an algorithm to validate them.

32 CHAPTER 4. SIMULATOR AND BENCHMARKS

task task-ID
GB Versioning/Basic

execution times
pref.

execution times
pref.

2-issue 4-issue 8-issue 2-issue 4-issue

adpcm 1001 29750 20229 17025 4 31546 18376 4

bcnt 1002 1003 614 515 4 807 516 4

blit 1003 11202 10337 10334 2 10488 10335 2

compr. 1004 143178 105316 95697 4 128600 98526 4

crc 1005 14054 10056 9209 4 11037 9208 2

des 1006 80272 50562 37729 8 73550 45248 8

engine 1007 798108 626721 583252 2 671589 572852 2

fir 1008 640728 481976 421147 4 552000 448218 2

g3fax 1009 788241 538547 464712 4 562866 469166 2

jpeg 1010 1897159 1339742 1130842 4 1599351 1220330 2

pocsag 1011 34910 22605 17024 8 24845 18018 4

qurt 1012 39644 29880 26053 4 35334 27781 4

v42 1013 3077053 2285802 2006688 2 2310467 2026995 2

Table 4.1: The benchmarks used to create the testing task lists.

4.2.1 Specific microtests

Initially every algorithm is tested with a small task list running each of the 13 tasks of
Table 4.1 (which as already mentioned are supplied by [26]) only once. There are several
versions of those microtests, each of which is testing a specific situation to see if the
algorithm is indeed responding to it as expected. For example receiving a 4-issue task
when there is only a 2-issue core free or a task list that should upgrade after one next
to it is done running.

4.2.2 Short-run testing

After passing the mircotests algorithms are tested using small random task lists which
are checking how the several algorithms compete when there are not so many tasks to
execute. Such scenarios simulate the situation of a platform where the MCP does not
receive tasks constantly, but in waves. In this phase only total execution time of the task
list is recorded and utilisation of AlgA and RAlgA. Four random task lists are always
tested and only the averages are presented. All task lists are the same when it comes
to the coming order of the tasks but the preferred cores are not the same, since the
execution times differ between binaries compiled for Versioning or Basic and Binaries
compiled for GB and AlgD. The execution of the same task list evolves differently under
each algorithm, resulting is totally different outputs/historics.

4.3. CONCLUSION OF CHAPTER 4 33

4.2.3 Long-run testing

The final tests are the long random lists. Those lists typically consist of 18.000-20.000
tasks. It is the 13 known tasks thrown in the task list randomly but all in about the
same rate. Such long tests target to investigate the performance of the algorithms in
long usage of the platform with quite a lot of workload (tasks constantly coming for
execution). The more the tasks the more cases/circumstances the algorithm could have
to deal with in reality are covered.

4.3 Conclusion of Chapter 4

In this chapter we presented the simulator which we had to build to test the developed
algorithms, its components, the inputs and outputs of these components as well as their
parametres. We are now ready to present the results of the experiments that took place
on this simulator.

34 CHAPTER 4. SIMULATOR AND BENCHMARKS

Results 5
After having defined our algorithms, given enough background to understand both them
as well as how ρ-VEX and ERA platforms work and presented the simulator that we
developed, we are ready to test the algorithms and analyse the results, find out their
weaknesses and their strong points and see how they perform with each other.

5.1 Crosspoints

In order to research the characteristics and the behaviour of the several scheduling
algorithms in a systematic way, we detected several parametres and metrics. To
investigate the effect of those parametres in the performance of the algorithms we keep
for each test all parametres but one fixed/constant and we alter only one to see how that
affects the metrics. We expect to find tendencies which change at specific crosspoints
for each parametre. Our target is to detect those crosspoints.

The parametres are:

• corespace (number of resources available)

• task list window

• reloading penalty

• GB execution times (for instance 40% and 10%)

• priority density/percentage

Some metrics are:

• total execution time of the whole task list

• speedup or slowdown

• utilisation

• average execution time of a task

• latency (overload execution time)

35

36 CHAPTER 5. RESULTS

8-issue

4-issue 4-issue

4-issue 2-issue 2-issue

2-issue 2-issue 4-issue

2-issue 2-issue 2-issue 2-issue

Figure 5.1: The 5 different situations in which a corespace 8 ERA MCP can be found.

5.1.1 Corespace

Corespace is the available resources we have to implement ρ-VEX cores. With the
assumption that a 2-issue core takes up 2 units of corespace, a platform with corespace
8, as we saw in Section 2.1 can accommodate either one 8-issue core or two 4-issue cores
or one 4-issue and two 2-issue or four 4-issue cores (Figure 5.1).

It is expected that the more space we have to implement cores the faster our system
is going to be. Either because it is going to be able to implement more cores and thus
run more tasks simultaneously or because it can implement bigger cores and thus run the
tasks faster. For corespace 8 to 128, Figure 5.2 presents that speedup of each algorithm
to RAlgA, with the exceptions of the All-8 algorithms which present the speedup to their
original algorithm (AlgBall8 to AlgB and AlgDall8 to AlgD).

Figure 5.2: The effect of the corespace in the performance of the algorithms.

5.1. CROSSPOINTS 37

All algorithms are initially faster than the Basic algorithm (except for the All-8
versions), but as the corespace grows confirming our expectations. The reason GB and
AlgD are doing worse than RAlgA is because their binaries are less optimized for cores
their running on and thus their execution times are worse than those of RAlgA. As the
downgrading instead of bubbling starts happening less and less it stops balancing the
worse execution times, which start becoming a burden and eventually drive GB down.
But such high scorespace sizes are unrealistic with current technology, especially when
we are talking about embedded systems, so in the rest of the research we will not bother
with corespaces larger than 16. Note that all tests that we are running from now on are
using long task lists of 20.000 or so independent tasks.

One last thing to comment on this graph is the behaviour of All-8 algorithms. Those
algorithms are doing worse than all the others because they are trying to run everything
on 8-issue cores. And they succeed wherever the corespace is a multiple of 8. But that
lead to worse total execution time. Generally upgrading is good for a task, but not good
for the other tasks. It leads to better execution time for the task that upgrades to a larger
core, but other tasks waiting for resources have to wait and start executing later. That
increases the latency of the tasks and the total execution time of the task list, since a
task that starts executing later will also finish executing later. Although in real systems
a task list has no beginning or end, so measuring total execution time is impossible or
meaningless, it is though an indication about the latency. And the latency is perceived
as slower execution by the user. When a user opens a jpeg file, if the task doing it spends
2 seconds waiting for resources and 2 seconds processing the image, that is equivalent of
spending 4 seconds processing the image if the resources where immediately available.
For the user there is no difference. We will come back to the paradox of achieving worse
performance by upgrading later on again.

Corespace 10 is the only sample we have between 2 multiples of 8, but there is
no doubt the the diamond shape between the line of AlgBall8 and AlgDall8 appears
between any corespace sizes that are multiples of 8. With corespace sizes multiples of
8, all the tasks in both algorithms run on 8-issue cores. With other corespaces one task
will always not fit. AlgBall8 is outperforming AlgDall8 in those corespace sizes because
it downgrades whereas AlgDall8 is leaving a bubble. So RAlgA, AlgD and AlgDall8 are
doing nothing useful in those cores whereas all the other algorithms run a downgraded
task. The drop in the performance of AlgDall8 is so vast, because it is the only algorithm
that definitely will never use that extra 2-issue core, since all tasks are 8-issue and 8-issue
tasks in AlgD algorithms are allowed to downgrade only to 4-issue, never smaller.

After this, the further development of AlgD and both All-8 algorithms was aban-
doned. Alga also appears in the Task list window tests since the Basic Algorithm and
AlgD are the only 2 algorithms that use window in the task list.

5.1.2 Task list window

As already explained in Section 3.1.3, a window is the part of the task list visible to the
algorithm when it is looking for a fitting task to schedule. That holds only for RAlgA
and AlgD (and all their versions). The other algorithms only work with the first task
in the task list (FIFO). Since in hardware the resources are unlimited we cannot have a

38 CHAPTER 5. RESULTS

Figure 5.3: Total execution times normalized to W=2.

window of just any size. It is better to look for a balance between speedup and resources.
As we see in Figure 5.3, we generally keep benefitting from the increase of the window
(theoretically till the window becomes equal to the task list size and RAlgA turns into
AlgA), but the benefit is not linear. So a window of 8 will be used in the rest of the
experiments.

It is also interesting to see how the window size and the crosspiece affect the utilisation
of the resources. Table 5.1 utilisation of AlgA and RAlgA. Note that the utilisation here
is the complement of the sum of the bubbles. There are hidden NOPs in the tasks,
but we have no information about that. It is obvious from the micro-tests (13-task
lists) that the utilisation drops significantly. But this is a pseudo-drop, because while
the last task is running, the other cores are empty and the algorithm sees that as a
bubble. That ending-bubble has small effect on the utilisation of longer tasks its length
is smaller proportionally to the length of the execution historic. The utilisation drops
as the corespace increases because more and more cores are empty while the last task
is running, so this is also a pseudo-drop. Actually AlgA seems to have an excellent
utilisation, and by no surprise, searching the whole task list to find a fitting task, it
always finds one. There are practically no bubbles. But such an algorithm is impossible
in hardware since hardware resources can support small lists only.

Introducing a Window of size 8, brings a drop in the utilisation, because as predicted
it creates bubbles. In micro task lists it has no effect, but that comes not as a surprise,
since the size of the Window is almost the same as the size of the task list. What does
come as surprise is that it does not have an effect even for RAlgA longer lists. The reason
is that probably in those specific test lists, 8-issue tasks, which introduce checkpoints,
were relatively often, so that the effect of the Window would not manage to affect the
execution. That can by no means mean that the window is useless in RAlgA. In other
scenarios 8-issue task might be relatively rare, so the algorithm would need the window
so that tasks do not fall in a livelock.

5.1. CROSSPOINTS 39

CoreSpace
AlgA AlgAW8

13-task list

8 53,19%

no effect!
10 51,42%
16 32,61%
32 16,68%

208-task list

8 98,27% 81,72%

10 99,79% 86,90%

16 96,09% 87,18%

32 84,85% 79,77%

RAlgA RAlgAW:8
13-task list

8 51,45%

no effect!
10 50,63%
16 32,20%
32 16,68%

208-task list

8 53,28%

no effect!
10 71,94%
16 87,56%
32 79,25%

Table 5.1: Utilisation of AlgA and RAlgA with and without Window.

There might be a big drop in the utilisation of RAlgA, but from the results we
notice that for longer task lists it resists the pseudo-drop that comes with the increase
of the corespace. That means that RAlgA performs a more balanced execution, where
the bubbles are distributed along the execution and not gathered at the end of the
scenario. The poor results of corespace 8 compared to the rest come from the fact that
the algorithm really has to wait for all cores to empty, to start running that 8-issue task
that created the checkpoint. Whereas with larger corespaces there is always enough
space on the side to still do something useful.

5.1.3 Reloading penalty

A characteristic unique to Versioning is the reloading penalty. This penalty comes from
the fact that the algorithm calls for replacement of the binary of the task to downgrade,
with the binary of the downgraded version. Having an instruction memory that keeps
stored 3 versions of every task running or about to run on the MCP is out of question.
The new binary that has to come from the main memory. That costs time. Figure 5.4
depicts the performance drop of Versioning as Penalty rises from 5.000 cycles to 400.000

for several corespace sizes. The behavior in all corespace sizes is similar. The penalty
really starts having some effect on the performance after the 10.000 cycles and when

40 CHAPTER 5. RESULTS

Figure 5.4: Performance drop of Versioning as the penalty increases.

it reaches and exceeds 400.000 it makes the algorithm not worth of the effort and the
resources. But is such a high penalty possible?

The penalty is difficult to calculate because it depends mainly on two things: the
programme size and the platform. The programme size or the task size (but in terms
of number of operations, contrary to the way the term is used in this thesis as the
execution time of a task) is known and it is the easy part of the equation. In Table 5.2
the benchmarks and their binary sizes are enlisted. It is normal for the binary size to
increase with the size of the core since the perfect parallelisation of the previous binary
is impossible, so new NOPs are inserted during the compilation. The biggest binary is
the 8-issue version of compress 184.064 bytes, that is 46.016 32-bit OPs. Although the
instruction cache is banked, we assume the worst case that 1 op per cycle is coming.
That is 46.016 cycles. We proceed to the rest of the experiments with the rough number
of 50.000 cycles as the reloading penalty of Versioning. The researcher can improve the
simulator by assigning a different penalty for every task according to its binary size or
even support different loading rates depending on the platform instead of using the worst
case scenario. But that is left as a future research proposal.

5.1.4 GB execution times

During the evolution of this research Brandon & Wong announced an improved com-
pilation for GB, the execution times of which were on average only 10% worse than
Versioning/Basic compilation for 4-issue and 20% for 2-issue[26]. But not even the 10%
times manage to reach the performance of Versioning in terms of total execution time
as shown in Figure 5.5. Looking into the specifics of the penalties will give an idea why.
As we saw in Chapter 4, the simulator can extract reports on the penalty. Every time
an algorithm downgrades a task there is a performance penalty, since the task will take

5.1. CROSSPOINTS 41

task
binary size

8-issue 4-issue 2-issue

adpcm 143.136 75.328 50.880

bcnt 108.768 56.304 36.960

blit 115.808 60.368 39.696

compr. 184.064 94.864 60.736

crc 117.280 60.720 39.456

des 124.864 64.832 43.088

engine 146.688 75.536 47.688

fir 117.280 60.656 39.336

g3fax 133.280 68.752 44.648

jpeg 129.088 67.312 44.632

pocsag 142.208 75.376 49.952

qurt 126.592 65.216 41.464

v42 162.784 84.560 54.520

Table 5.2: Binary sizes in bytes for each task and core size.

more time to execute. Versioning has on top of that also a reloading penalty, since it
has to bring a different binary to the instruction memory. This one is more crucial than
the downgrading overload for Versioning (as seen in Figure 5.6 where the total cycles
of penalties paid during the execution of the whole task list is depicted), despite the
fact that the simulator recorded that 30% of the tasks were downgraded. GB on the
other hand suffered huge downgrading penalty. That comes from the the fact that not
only we expect worse performance because of running the task on a smaller core, but

Figure 5.5: Comparison of GB 40% and 10% times and Versioning.

42 CHAPTER 5. RESULTS

Figure 5.6: Penalty analysis for GB and Versioning.

extra deterioration from the fact that the binary is not optimally compiled for that core.
Naturally the question ‘Is GB ever going to be better than Versioning?’ is created. We
are going to try to answer this question later. First we have to take a look at the last
parametre: priorities and interrupts.

5.1.5 Priorities and interrupts

At this point we can activate the simulator’s priorities and interrupts support. Priorities
and interrupts were thoroughly explained in Chapter 3. It only has to be made clear
that we are talking about forced single-level priorities. Several priority scenarios were
generated and tested, all with the same task list containing 20.000 tasks. The effect of
the priority density (the percentage of the tasks that had priority, that is) on the total
execution time is depicted in Figure 5.7.

5.1.6 The effect on total execution times

It appears that every algorithm has a slowdown as a result of the priorities. Versioning
seems to be very sensitive to priorities. The more they increase the worse the performance
of Versioning becomes. The fact that on top of that GB benefits more from the increase
of the corespace than Versioning (due to the fact that as seen in Table 3.2 the execution
time gain from upgrading is bigger in GB than Versioning), brings the performance of
the algorithms closer and closer. For corespace 16 and 20% priority tasks they are almost
equal.

5.1. CROSSPOINTS 43

Figure 5.7: The effect of priority density on total execution time of the task list.

It becomes more clear when we normalise the values to no-priority values (Figure 5.8)
or when we plot the execution time gain of Versioning to GB (Figure 5.9): GB clearly
copes better with forced priorities and interrupts. And the bigger the corespace the faster
the difference between the two algorithms disappears. One was already mentioned: GB
benefits from upgrading a task more than Versioning. When Versioning gives extra
resources to a priority task it wastes resources but it does not enjoy speedup even for the
upgraded task (Table 3.2). Another reason is that in GB a task that comes back from
being frozen (because of another priority task) might actually have the chance to upgrade
when it comes back and finish faster. Versioning on the other hand does not support

Figure 5.8: Same as Figure 5.7 normalised to no priority execution times.

44 CHAPTER 5. RESULTS

Figure 5.9: Versioning losing its speedup to GB as priority density increases.

upgrading, it would have to start running the task all the way from the beginning.

Finally, GB performs better than Versioning because it can handle an interrupt by
downgrading a 4-issue or 8-issue task instead of freezing it. This way the overhead is
only the downgrading penalty of the old task, not even all of it, only of the remaining
part, whereas in Versioning the overhead of handling an interrupt is the whole execution
time of the interrupt.

5.2 Task latency

Achieving shorter execution time of the whole task list is an indication of smaller latency
for each task, but no guarantee. The simulator was, thus, improved to report on task
latency. It keeps an eye on every task from the first moment they come in contact with
the Task scheduler, until they have declared they are done with execution. That might
include waiting for execution or being frozen or being downgraded or upgraded. Task
latency is everything that does not include execution time.

In this part of the study lots of results were produced, quite a large amount of graphs,
since we are taking a look on each task independently. Luckily the tasks form clusters
in which they behave similarly, so not all the results have to be presented, but only the
results of one task of each group/cluster. Seeing some characteristics of the tasks will
help the reader understand the results better.

5.2.1 The nature of the tasks

The execution time of the tasks have already been presented in the tables of Chapter 3,
but a visual representation gives a better understanding of the huge differences between

5.2. TASK LATENCY 45

Figure 5.10: The GB preferred execution times.

them. In Figure 5.10 the preferred/optimal execution times of the tasks for GB are
presented and in Figure 5.11 those of Versioning/Basic.

For GB we easily spot 2 or 3 groups of tasks. Tasks 1 to 6 and tasks 11 and 12 are
small tasks. We can either group the rest (7, 8, 9, 10 and 13) up and call them the large
tasks or consider tasks 7, 8, 9 and 10 as medium task and distinguish 13 from them as
the only really large task.

For Versioning and basic the situation is pretty much the same. Perhaps Task 10
can be considered a large task and not a medium one, forming a separate group with
task 13.

Figure 5.11: The Versioning/Basic preferred execution times.

46 CHAPTER 5. RESULTS

Figure 5.12: Preferred core sizes per task in GB.

Another characteristic of the tasks is the preferred core. The preferred core is chosen
by starting from the 2-issue times and upgrade to a higher core only if the speedup is
more than 25%. The percentage is just chosen as the middle between no gain and the
theoretical maximum which is 50% (see Section 5.4.1), but it can be a subject of research.

In this way we see that for GB tasks 3, 7 and 13 are 2-issue, tasks 1, 2, 4, 5, 8, 9,
10 and 12 are 4-issue and tasks 6 and 11 are 8-issue. Versioning on the other hand has
only one 8-issue task. That is task 6. Further tasks 1, 2, 4, 11 and 12 are 4-issue and
tasks 3, 5, 7, 8, 9, 10 and 13 are 2-issue. Task 6 actually does not qualify for being
an 8-issue task, since its improvement is only 17% (Table 3.2), but considering Versioning

Figure 5.13: Preferred core sizes per task in Versioning/Basic.

5.2. TASK LATENCY 47

and Basic would have stayed without any 8-issue tasks and since its speedup
stand out compared to the rest of the tasks, we have chosen to consider it an 8-issue
task.

We already see that Versioning and Basic have a lot of 2-issue tasks. That could
explain why we found such small downgrading and reload penalties in the penalty analysis
(Figure 5.6). Even task 6, an 8-issue task, being so small (in terms of execution time) it
does not affect so much the development of the execution.

5.2.2 Latency and priorities/interrupts

It is high time we checked the results from task latency. Figure 5.14 presents the average
execution time per task which includes both the net useful execution time as well as
the task latency for GB and specifically corespace 8. The values are normalized to the
no-priority values. In other words we see the slowdown of every task as the priorities
increase. Since task 2 has a huge difference, it dominates the graph. It is no surprise;
task 2 is the smallest task, only a few hundred cycles long. We are going to take it out,
so that we can zoom in the area where most of the tasks are (Figure 5.15).

We see clearly that small tasks are more sensitive to interrupt/priority task density,
since all the small tasks are exploding in the graph, whereas bigger tasks are gathered
at the bottom. Core size does not seem to play a significant role, since our 8-issue tasks
did not manage to benefit from the priorities. The fact that they are small tasks seemed
to play a more important role. Unfortunately we do not have any large or even medium
tasks with 8 as its preferred core. But task 4, which is indeed the biggest among the
small tasks, but still 6 to 20 times smaller than the large tasks still manages to resist
priority density, and that might be because it benefits from the upgrades, being a 4-issue
task. The situation is pretty much the same for corespace 16 (Figure 5.16). The only
difference is that the magnitude (y-axis) is smaller.

Figure 5.14: GB execution time + latency slowdown to 0%-priorities for corespace 8.

48 CHAPTER 5. RESULTS

Figure 5.15: Same as Figure 5.14 without task 2.

5.2. TASK LATENCY 49

Figure 5.16: Same as Figure 5.15 for corespace 16.

50 CHAPTER 5. RESULTS

Figure 5.17: GB execution time + latency slowdown to 0%-priorities for priority
density 5%.

Figure 5.18: Same as Figure 5.17 without task 2.

5.2. TASK LATENCY 51

Now we keep priority density steady to see the reaction of every task to the increase
of the corespace (Figure 5.17). Once again we will have to remove the tiny task 2 to see
the details at the bottom of the graph (Figure 5.18). Corespace really helps GB cope
with priorities. We see the slowdown effect of the priorities even on small tasks dropping
a lot at corespace 16. That happens because, since the tasks are being executed in a
much wider area, the chances that a priority affects a small task is smaller. In an MCP
of corespace 16 (8 2-issue clusters that is) a priority that expands from cluster 7 to
cluster 8 will only affect the tasks that will make use of cluster 8. It even benefits tasks
that make use cluster 7 (since it is going to release it sooner than if it did not upgrade)
and it does not affect any task that will run in clusters 1 to 6 at all. The big slope we
see on figures Figure 5.18 and 5.19 is actually the magnitude drop that we notice when
we go from Figure 5.15 to 5.16 and vice versa.

Figure 5.19: Same as Figure 5.18 for priority percentage 20%.

52 CHAPTER 5. RESULTS

Figure 5.20: Versioning execution time + task latency slowdown to 0%-priorities for
corespace 8.

5.2. TASK LATENCY 53

Figure 5.21: Same as Figure 5.20 for corespace 16.

54 CHAPTER 5. RESULTS

The picture in Versioning is a little bit different. Here it is not about big and small
tasks. It is about core sizes. Figure 5.20 and 5.21 it is obvious that 2-issue tasks suffer
the most from latency. 4-issue tasks benefit when they are priority tasks, because they
will run faster. 2-issue tasks cannot do that, their only benefit from being priority tasks
is that they will not have any latency. Especially in Figure 5.21 the speedup that some
tasks are achieving is obvious. That speedup though is only among small tasks, so it
does not have a big effect on the total execution time of the task list. In contrast, task
13, which is the biggest task, suffers a lot more latency in Versioning than in GB. One
reason could be that although it is the biggest and most dominant task, like its GB
version, it is still 25% smaller than it. Which means that it gets more affected by the
priority of other tasks. On top of that, the other “big” tasks of Versioning are larger
(take longer to execute) than in GB also increasing their priority effect on other tasks. A
third reason might be that GB is better than Versioning when it comes to interrupts. GB
can downgrade a 4-issue task to make space for the handling of an interrupt. This way
all tasks keep running. Versioning cannot do that. It will freeze a 2-issue task to handle
the interrupt and task 13 is a 2-issue task. Looking at Figure 5.21 and considering that
task 13 is the slowest and most dominant task in the task list, we can conclude that it
is the main reason why Versioning performance drops down to GB levels at Figure 5.7
or 5.9, despite the speedup of the 4-issue tasks.

One wonders why 4-issue tasks manage speedup in Versioning and not in GB. They
probably do, but in GB tasks have another kind of negative effect from other tasks that
does not exist in Versioning: upgrading. Upgrading extends an adjacent task when a
2-issue or 4-issue priority task stops running, which does not happen in Versioning. That
means the frozen task has to wait also for the upgraded task to finish. Considering most
4-issue tasks are small this causes big latency. We expect more pressure from priority
tasks to other tasks in GB also because there are more 4-issue and 8-issue tasks (than in
Versioning) which affect the performance of other tasks more than 2-issue priority tasks
since they take more space (the effect on adcpm described in Figure 5.36 and found to
be fading with the increase of corespace). We can already notice that extra pressure
from priority tasks to non-priority tasks from the difference in magnitude of the y-axis
of Figure 5.15 and 5.20.

Just like with GB, we are exploring the effect of corespace in Versioning by keeping
priority density stable at 5% the one time and 20% the other time. From Figure 5.22
and 5.23 we see that Versioning does not really take advantage of corespace like GB
does (Figure 5.18 and 5.19). Only Tasks 3, 5 and 6 seem to benefit for corespace
16. Tasks 3 and 5, being 2-issue tasks have less chance to be affected by another
tasks priority in a bigger corespace and on top of that more chance that another task
will finish sooner and they can continue their execution in that cluster, rather than
the old one. Task 6 is an 8-issue task. In corespaces smaller than 16, the chance
is big that even if it is a priority task, it will fall on another priority task that is
already running and it will not manage to run. That is something 8-issue tasks
suffer from, both in GB and Versioning. For corespace 16, though, 8-issue tasks have
bigger chance to find enough (priority-task-free) space to take advantage of their priority.

5.2. TASK LATENCY 55

Figure 5.22: Versioning execution time + latency slowdown to 0%-priorities for priority
density 5%.

Figure 5.23: Same as Figure 5.22 for priority density 20%.

56 CHAPTER 5. RESULTS

Figure 5.24: Execution time + latency slowdown of task 1 for all algorithms compared
to no priority times (corespace 8).

The above results become more clear if we focus on two specific tasks. Firstly,
taking a more careful look to a small 4-issue task, such as Task 1, we see that it indeed
suffers more latency with GB than the other algorithms (Figure 5.24). In corespace 16
(Figure 5.25), however, we see the magnitude of the graph dropping impressively. It
confirms that GB takes advantage of corespace, since there is less chance that the task
will be affected by other priority tasks, more chance that it will find non-priority tasks
to freeze and take over their resources and more chance to find space to upgrade (the
last is not true for Versioning). Being a small task, it benefits from the fact that there
are not so many 4-issue and 8-issue tasks and it manages speedup for Versioning.

Figure 5.25: Same as Figure 5.24 for corespace 16.

5.2. TASK LATENCY 57

Figure 5.26: Execution time + latency slowdown of task 13 for all algorithms compared
to no priority times (corespace 8).

In big tasks, like tax 13, the image is reversed (Figure 5.26). GB is resisting the
increase of the interrupts whereas Versioning gives in to them. Once again GB benefits
from the increase of the corespace, dropping below 5% for corespace 16 (Figure 5.27),
but Versioning not. Those graphs can be misleading, because the algorithms are being
compared to themselves. Looking at the raw numbers we notice a reversed image.

Figure 5.27: Same as Figure 5.26 for corespace 16.

58 CHAPTER 5. RESULTS

Figure 5.28: Task 1 average execution time (incl. latency) for each algorithm for
corespace 8.

Although Versioning seemed to be the winner in small tasks, because of its small
slowdown and even speedup (with the RAlgA showing similar performance), the reality
is actually the opposite (Figure 5.28). Versioning might respond better to interrupts in
small tasks, but its latency is actually worse than GB. RalgA as expected has the worst
latencies, since the algorithms just stalls the tasks until there is enough space to run
them in their preferred core size. It is more clear for corespace 16 (Figure 5.29). The
speedup of Versioning and the slowdown of GB (Figure 5.25) are not enough to make
the two algorithms meet. GB is still faster.

Figure 5.29: Task 1 average execution time (incl. latency) for each algorithm for
corespace 16.

5.2. TASK LATENCY 59

Figure 5.30: Task 13 average execution time (incl. latency) for each algorithm for
corespace 8.

The image is reversed in big tasks, such as task 13 (Figure 5.30) too. Although GB
is coping better with priorities/interrupts, Versioning starts from much lower levels (we
have already mentioned that the Versioning binary of task 13 is 25% faster than that of
GB) and it only becomes worse than GB at priority density levels of 18% or higher. For
corespace 16 a little bit earlier, at 15% (Figure 5.31). Once again keeping in mind that
task 13 is the most dominant task and not upgradable (very bad combination), it could
be the reason GB has worse total task-list execution times than Versioning. This is also
the reason RAlgA seems to be doing better with this task than the other algorithms, in
contrast to what it happens with all the other tasks.

Figure 5.31: Task 13 average execution time (incl. latency) for each algorithm for
corespace 8.

60 CHAPTER 5. RESULTS

5.3 GB vs Versioning

5.3.1 GB vs GB++

With the introduction of priorities, GB got its final version: GB++. This version
of GB has improved execution times (10% to the Versioning ones), forced priorities
and upgrading by default. As shown in Figure 5.32, the algorithm seems to be doing
worse in no priority/interrupt environment, but already with 5% priority it is doing
better than GB in all corespace sizes and its performance is even enhanced as corespace
and especially priorities/interrupts increase. There are hardly any systems without
interrupts any more and priorities will probably be a popular feature, so there is no
reason not to make GB++ the standard version of GB.

5.3.2 GB++ with Versioning execution times

Despite all its improvements GB has not managed yet to beat Versioning in total execu-
tion time of a long task list. Even with the improved execution times of 10% and even
with priority density as 20% and corespace 16 it takes more time with GB scheduling
for a specific task list to execute than with Versioning. The main reason is the overhead
time of the generic binary compared to the optimal compilation of the Versioning binary.
The name 10% times that [26] gives to those GB execution times is tricky, considering
this is just the average of the individual speedups achieved with the improved compi-
lation (Table 3.1). That is, however, no indication that GB should be only 10% worse

Figure 5.32: Speedup of GB++ to GB.

5.3. GB VS VERSIONING 61

Figure 5.33: Running GB with Versioning execution times.

than Versioning. That average should have been a weighted average, since the tasks
have great differences with each other. Having only 8% execution time overhead after
compiling task 3 (a quite small task) cannot compensate for having 33% overhead for
task 13, a task-giant.

The last version of the simulator has as its goal to detect how much the compilation
has to improve so that GB reaches and exceeds Versioning’s total execution times. It
takes the Versioning execution times as input and schedules them with the GB algorithm
several times (with the typical 3 corespace options and the typical 4 interrupt/priority
density options), each-time making the times a little bit worse. It starts with exactly
Versioning times and it ends with times 20% worse than them. For Versioning 50.000
cycles reloading penalty was used as usually.

GB always achieves better total execution time when the typical execution times of
Versioning are used as an input (Figure 5.33). Confirming the previous results, GB’s
performance improves even further as priorities/interrupts increase and for corespace 16
there is even a small extra boost.

The Versioning execution times, however, are probably impossible to reach with GB
compilation. We research therefore how much worse GB execution times can be and still
GB be better than Versioning. The results are presented in Figure 5.34. Considering
0% interrupts is an unlikely situation and interrupt/priority percentage of 5% as a
minimum, GB has chance to become as good or faster than Versioning if its execution
times get on average no worse than 12% of those of Versioning. Since GB demands
simpler hardware, does not demand 3 different binaries for each task being stored in the
memory, supports task upgrading, copes better with interrupts and priorities and takes
advantage of increased corespace better than Versioning, the benefits would be great.

62 CHAPTER 5. RESULTS

Figure 5.34: Speedup GB to Versioning for corespace 8.

5.4 Conclusion of Chapter 5

5.4.1 The upgrading paradox and 2D scheduling

We mentioned many times in this chapter the upgrading paradox. That is the phe-
nomenon that despite the fact that each task is running faster on a bigger core, the
whole task list runs slower. One would assume that 2 tasks would run faster as 4-issue
one after the other rather than as 2-issue one next to each other.

Take task 1, adpcm, and task 11, qurt. They are both preferably 4 issue tasks. We
will round up their execution times for the example to 30k and 20k for adpcm and 40k
and 30k for qurt, or just 3, 2, 4 and 3. Running them next to each other as 2-issue would
take max(4, 3) = 4 cycles whereas running them one after another as 4-issue would take
3 + 2 = 5.

In all the research on ρ-VEX till now, running a task on a bigger core has been
considered as a good thing because the task was being executed faster. But now that
task is not the only one. There are also other tasks that compete for those resources
too, so the question of “Is it better/faster to run each task as fast as possible one after
another or is it better to let them run each a little bit slower but simultaneously next
to each other?” To answer this question we have to start thinking two-dimensionally.
Instead of taking into consideration only the execution time of a task, we should also
take into consideration the amount of resources it takes. We can call this product of
ExecutionT ime×Resources as ‘execution space’ of the task.

5.4. CONCLUSION OF CHAPTER 5 63

time ↓ 4

2 4
→

space

3

Figure 5.35: The execution space of qurt for 2-issue (left) and 4-issue (right).

Figure 5.35 depicts the core execution space of qurt in 2-issue and 4-issue, which
is 8 and 12 accordingly. Assuming that the corespace is 4, running the task in 2-issue
leaves execution space equal to 8 for another task to run in parallel. Running the task
in 4-issue leaves execution space only 4. That is why when we bring in adpcm too
(Figure 5.36) we see that it finishes later in 2-issue than in 4-issue. Qurt has benefited
1 cycle, but adpcm paid 2 for it.

Theoretically, when we upgrade, one dimension always doubles, so the other dimen-
sion has to halve if we want not to use more execution space than before upgrading. If
we want to have an acceleration then we should even have more than 50% improvement
in execution time (Figure 5.37). Which is by definition impossible, if one considers the
way VLIW instructions work.

qurt

adpcm qurt

adpcm

time ↓ 4

2 2

3

4
→

space

3

2

Figure 5.36: The execution space of qurt for 2-issue (left) and 4-issue (right).

64 CHAPTER 5. RESULTS

time ↓ 4

2 4
→

space

2

50%

37%

Figure 5.37: Theoretical prerequisite in order to have speedup by upgrading.

This is the reason why priorities cause slowdown to all algorithms. That does not
mean that we should always run everything on 2-issue or do not support priorities.
Without priorities the system would not be very interesting for real-time systems and
some tasks can really handle some extra delay and for some other it is really important
to finish a little bit earlier. Which algorithm does that better, for which tasks and for
which not, we are going to see at the next section that studies task latency.

5.4.2 Summing up the results

In this chapter we presented the most important of the experiments that took place
within this thesis. We calculated the utilisation of AlgA and RAlgA (Basic). We found
that a task list window larger than 8 does not benefit the Basic algorithm. We showed
that algorithms like AlgD and all-8 versions are achieving worse results, some of them
even worse than RAlgA. We defined corespace 16 as a realistic upper limit for this
research. We set a reloading penalty of 50.000 cycles for Versioning and discovered that
it is still not as much as the downgrading penalty of GB and that its own downgrading
penalty is even smaller, since most of its tasks are 2-issue.

We showed that GB++ copes better with priorities and interrupts than Versioning,
but its bad execution times and the mono-dimensional task scheduling are keeping it
behind Versioning. Along with priorities and interrupts came the notion of task latency.
The most important conclusions from the latency study were:

• Small (execution time) and 2-issue tasks suffer more latency (%) than big tasks.

• GB benefits more from corespace increase than Versioning (as far as latency is
concerned), especially on high priority density environments.

• Small tasks manage speedups with Versioning if they are 4-issue, with GB not,
probably because of the fact that there are many more 4-issue and 8-issue tasks,
whose priorities and upgrades increase even more the latency of small tasks.

5.4. CONCLUSION OF CHAPTER 5 65

• 8-issue tasks cannot make much use of their speedup, because they fall on other
priority tasks. Their slowdown increases with the increase of the priority density
and decreases with the increase of corespace.

• In tasks that GB can make use of its upgrading ability, it is the fastest algorithm.

• GB is an algorithm where we can be generous with priorities (which makes it a
good candidate for multi-level priorities) in contrast to Versioning. On top of that,
in high levels of priority density corespace increase improves its performance. Both
qualities are following the trends of technology.

Enhancing GB with all those tools (forced priorities, default upgrading, etc) lead to
the best GB version of all: GB++. This version not only performs better than Versioning
if they had the same typical execution times, but even if GB times were 12% worse than
those of Versioning.

66 CHAPTER 5. RESULTS

Conclusions 6
6.1 Summary

After getting an inside look of the Processing component of the ERA platform and
understanding the particularities of it, as well as of its main building block, the ρ-VEX
core, we tried to find in the bibliography an available scheduling algorithm to implement
as the Hardware scheduler of ERA. This literature research did not yield any results,
both because of the complexity of the problem, as well as the pioneer characteristics of
ERA that we would like to take advantage of. Thus, we tried to design simple scheduling
algorithms, especially tailored for the ERA platform and see how they perform.

We presented the several algorithms that were developed and tested during the the-
sis, starting from a very Basic task scheduling algorithm and moving to algorithms more
specific to the ERA platform. Such as Versioning, which downgrades the task by schedul-
ing it to run on a smaller core to avoid creating bubbles that Basic creates. Running on
a smaller core means bringing from the memory a different binary of the task, compiled
especially for that core. That takes time, which is called the ‘reloading penalty’. To
deal with the reloading penalty Generic Binary was invented creating a binary of a task
that can run on any core. That also created the ability to downgrade tasks on-the-fly
to make space for new tasks, support priorities and handle interrupts without big delays
for the tasks already running. All these lead to a new algorithm, AlgB or GB. But it
also brought the idea of upgrading a task when resources become available, instead of
bringing immediately a new task for execution. That is GB++. Some very unsuccessful
algorithms like AlgBall8 and AlgD were also developed.

The most important of the experiments that took place within this thesis were pre-
sented in Chapter 5. The utilisation of AlgA and RAlgA (Basic) was calculated. We
found that a task list window larger than 8 does not benefit the Basic algorithm. We
showed that algorithms like AlgD and all-8 versions are achieving worse results, some of
them even worse than RAlgA. We defined corespace 16 as a realistic upper limit for this
research. We set a reloading penalty of 50.000 cycles for Versioning and discovered that
it is still not as much as the downgrading penalty of GB and that its own downgrading
penalty is even smaller, since most of its tasks are 2-issue.

67

68 CHAPTER 6. CONCLUSIONS

We showed that GB++ copes better with priorities and interrupts than Versioning,
but its bad execution times and the mono-dimensional task scheduling are keeping it
behind Versioning. Along with priorities and interrupts came the notion of task latency.
The most important conclusions from the latency study were:

• Small (execution time) and 2-issue tasks suffer more latency (%) than big tasks.

• GB benefits more from corespace increase than Versioning (as far as latency is
concerned), especially on high priority density environments.

• Small tasks manage speedups with Versioning if they are 4-issue, with GB not,
probably because of the fact that in GB there are many more 4-issue and 8-issue
tasks, whose priorities and upgrades increase even more the latency of small tasks.

• 8-issue tasks cannot make much use of their speedup, because they fall on other
priority tasks. Their slowdown increases with the increase of the priority density
and decreases with the increase of corespace.

• In tasks that GB can make use of its upgrading ability, it is the fastest algorithm.

• GB is an algorithm where we can be generous with priorities (which makes it a
good candidate for multi-level priorities) in contrast to Versioning. On top of that,
in high levels of priority density corespace increase improves its performance. Both
qualities are following the trends of technology.

Enhancing GB with all those tools (forced priorities, default upgrading, etc) lead to
the best GB version of all: GB++. This version not only performs better than Versioning
if they had the same typical execution times, but even if GB times were 12% worse than
those of Versioning.

6.2 Main problem statement & contributions

The goal of this thesis was to find available or possible scheduling algorithms for the
ERA Multicore ρ-VEX Processor, test them and analyse the results.

• We delivered an open-source parametrised simulator of the Task scheduler of ERA,
on which future research can be performed on different test-cases, as well as deve-
lopment and testing of new task scheduling algorithms.

• This thesis showed that Generic Binary, though not the fastest algorithm, yet it is
the most promising one for now and the future, because it is scalable to corespace,
tolerant to interrupts and it has potential to be used in Real-time systems too.

• Versioning however was found to be the fastest algorithm in terms of total execution
time of a long task list.

• We found the minimum standard (exec. times maximum 12% worse than Version-
ing) that the Generic Binary has to comply with in order to be able to compete
with Versioning in terms of total execution time.

6.3. FUTURE WORK 69

• We showed that thinking about execution time only is not enough when we move
from linear to parallel execution in platforms like ERA and that we should start
thinking about two-dimensional scheduling, if the resources allow the luxury of a
more sophisticated algorithm.

• We finally showed that parallel execution is much more complicated than linear
execution and introducing characteristics that help on one aspect (task execution
speedup) can bring the opposite results somewhere else (slowdown of non-priority
tasks).

6.3 Future work

As proposal for future research I would recommend that the first thing that happens
is that the algorithms are implemented in hardware and tested in a real ERA setup.
Further, a more fair (for each task) and more accurate definition of the Versioning
reloading penalty would be beneficial. Finally, there should be some research on the
possibility of 2D task scheduling, that is scheduling according to the execution space,
not the execution time of a task.

70 CHAPTER 6. CONCLUSIONS

Bibliography

[1] S. Wong, A.A.C. Brandon, F. Anjam, R.A.E. Seedorf, R. Giorgi, N. Puzovic, S.
McKee, L. Carro, and G. Keramidas. Early Results from ERA – Embedded Re-
configurable Architectures. In Int. Conference on Industrial Informatics (INDIN),
pages 816-822, Lisbon, Portugal, July 2011.

[2] S. Wong and F. Anjam. The Delft Reconfigurable VLIW Processor. In International
Conference on Advanced Computing and Communications (ADCOM), pages 242-
251, 2009.

[3] S. Wong, T. van As, and G. Brown. ρ-VEX: A Reconfigurable and Extensible
Softcore VLIW Processor, in Proceedings IEEE International Conference on Field-
Programmable Technologies (ICFPT08), Dec 2008, pp. 369-372.

[4] J. Fisher, P. Faraboschi, and C. Young. Embedded Computing: A VLIW Approach
to Architecture, Compilers and Tools. Morgan Kaufmann, 2004.

[5] R.A.E. Seedorf, F. Anjam, A.A.C. Brandon, and S. Wong. Design of a Pipelined
and Parameterized VLIW Processor: ρ-VEX v.2.0. In 6th HiPEAC Workshop on
Reconfigurable Computing (WRC), 2012.

[6] F. Anjam, S. Wong, and M.F. Nadeem. A shared Reconfigurable VLIW Multi-
processor System. In International Parallel and Distributed Processing Symposium
(IPDPS-RAW), pages 1-8, 2010.

[7] Fakhar Anjam. Run-time Adaptable VLIW Processors. PhD Thesis, TU Delft, 2013.

[8] F. Anjam and S. Wong. Configurable Fault-Tolerance for a Configurable VLIW Pro-
cessor. In International Symposium on Applied Reconfigurable Computing (ARC),
pages 167-178, 2013.

[9] J. Hennessy and D. Patterson, Computer Architecture: A Quantitative Approach,
ser. The Morgan Kaufmann Series in Computer Architecture and Design. Elsevier
Science, 2006.

[10] Henk Corporaal. “Microprocessor architectures from VLIW to TTA”, Wiley, 1998.

[11] P. Faraboschi, G. Brown, J.A. Fisher, G. Desoli, and F. Homewood.“Lx: A Tech-
nology Platform for Customizable VLIW Embedded Processing”, in Proceedings
of the 27th annual International Symposium of Computer Architecture (ISCA 00),
June 2000, pp. 203 - 213.

[12] Anath Grama, Anshul Gupta, George Karypis, Vipin Kumar. Introduction to Pa-
rallel Computing, 2nd edition, 2002.

[13] I. Foster and C. Kesselman. The Grid: Blueprint for a New Computing Infrastruc-
ture, Morgan Kaufmann, San Francisco, CA, 1999.

71

72 CHAPTER 6. CONCLUSIONS

[14] Keqin Li. Experimental Performance Evaluation of Job Scheduling and Processor
Allocation Algorithms for Grid Computing on Metacomputers. Proceedings of the
18th International Parallel and Distributed Processing Symposium (IPDPS-04).

[15] Z. Xu, X. Hou and J. Sun, “Ant Algorithm-Based Task Scheduling in Grid Com-
puting”, Electrical and Computer Engineering, IEEE CCECE 2003, Canadian Con-
ference, 2003.

[16] Y. Zhang, C. Koelbel, and K. Kennedy, “Relative Performance of Scheduling Algo-
rithms in Grid Environments”, Proc. IEEE Seventh Int’l Conf. Cluster Computing
and the Grid, pp. 521-528, May 2007.

[17] H. Youness, et al. Efficient partitioning technique on multiple cores based on optimal
scheduling and mapping algorithm, Proceedings of IEEE International Symposium
on Circuits and Systems (ISCAS), pp. 3729-3732, 2010.

[18] Yi Pang, Lifeng Sun, Jiangtao Wen, Fengyan Zhang, WeiDong Hu,Wei Feng,
Shiqiang Yang, “A Framework for Heuristic Scheduling for Parallel Processing on
Multicore Architecture: A Case Study With Multiview Video Coding” IEEE Trans.
Circuits Syst. Video Techn. vol. 19, pp.1658-1666, Nov. 2009.

[19] Xiaozhong Geng, Gaochao Xu, Dan Wang, Ying Shi. “A Task Scheduling Algorithm
Based on Multi-Core Processors”, International Conference on Mechatronic Science.
Electric Engineering and Computer (MEC), 2011.

[20] R. Hoffmann, A. Prell, and T. Rauber. Dynamic task scheduling and load balancing
on cell processors. In Parallel, Distributed and Network- Based Processing (PDP),
2010 18th Euromicro International Conference on, pages 205-212, 2010.

[21] H. Tang, K. Rupnow, P. Ramanathan and K. Compton, “Dynamic binding and
scheduling of firm-deadline tasks on heterogeneous compute resources,” Proc. in
RTCSA, 2010, pp. 275-280.

[22] M. Diener, F. Madruga, E. Rodrigues, M. Alves, J. Schneider, P. Navaux and H.-U.
Heiss. Evaluating thread placement based on memory access patterns for multi-core
processors. In Proc. of HPCC’10, 2010.

[23] H. Topcuoglu, S. Hariri, and M. Wu, “Task Scheduling Algorithms for Heteroge-
neous Processors”. Proc. Heterogeneous Computing Workshop, pp. 3-15, Apr. 1999.

[24] A.P.D. Binotto, C.E. Pereira, A. Kuijper, A. Stork, and D.W. Fellner, “An Effective
Dynamic Scheduling Runtime and Tuning System for Heterogeneous Multi and
Many-Core Desktop Platforms”, in IEEE 13th International Conference on High
Performance Computing and Communications (HPCC), Sept. 2011, pp. 78-85.

[25] H.-K. Tang, P. Ramanathan, and K. Compton. “Combining hard periodic and soft
aperiodic real-time task scheduling on heterogeneous compute resources”. In Inter-
national Conference on Parallel Processing (ICPP), 2011, pp. 753-762.

6.3. FUTURE WORK 73

[26] A. Brandon and S. Wong. Support for Dynamic Issue Width in VLIW Processors
using Generic Binaries. In Design, Automation, and Test in Europe Conference
(DATE), pages 827-832, 2013.

[27] F. Anjam, Q. Kong, R.A.E. Seedorf, and S.Wong. A Run-time Task Migration
Scheme for an Adjustable Issue-slots Multi-core Processor. In International Sympo-
sium on Applied Reconfigurable Computing (ARC), pp. 102?113, 2012.

[28] F. Anjam, M. Nadeem, and S.Wong. Targeting Code Diversity with Run-time Ad-
justable Issue-slots in a Chip Multiprocessor. In Design, Automation and Test in
Europe Conference (DATE), pp. 1358-1363, 2011.

74 CHAPTER 6. CONCLUSIONS

Appendix A A
In this appendix some early research results are presented. Figure A.1 depicts some early
results from long-run test. For example the comparison of the total execution time of a
long list of Algorithm A (AlgA) to AlgB and AlgB to AlgBall8.

Surprisingly we find that GB is slower than AlgA. That happens because at this
point the algorithm did not have a window to limit it. So practically it could search to
infinite for a task that fits. This way AlgA was making a perfect allocations of all tasks,
almost without any bubbles. This very early version of GB cannot overcome the fact
that its average execution times suffer a big overload compared to the ideally compiled
versions of AlgA/Versioning binaries.

An effort to tackle that with setting the biggest core size (8) as preferred for all tasks
also fails. Specifically AlgBall8 takes twice the time to run than AlgB. That was an
early sign that, as we will see later on, at least in terms of total execution time of the
task list, we actually do not benefit from running tasks on larger cores, since we do not
run it two times faster but slower than that. A small proof of that is also the fact that
the algorithm is doing better for corespace 10 rather than for corespaces multiples of 4
or 8. Corespace is included on purpose in the tests in order to investigate fault-tolerance
(situations where one or more cores become defect) of the algorithms and generally
investigate the behavior of the algorithms in non-symmetric set-ups.

But the GB and Versioning are doing better to Realistic Algorithm A (RAlgA) as

Figure A.1: Some early test results actually showed slowdown instead of speedup.

75

76 APPENDIX A. APPENDIX A

Figure A.2: Some early test results of the total execution time speedup of GB and
Versioning (penalty=50) to RAlgA.

shown in Figure A.2. The benefit disappears as the corespace increases. That happens
because the Basic Algorithm finds more and more space to accommodate bigger tasks, so
less bubbles are created, whereas the other algorithms are more specialised in dealing with
lack of space. The disappointing performance of GB is a result of the execution times.
This group of execution times is on average 40% worse than Basic/Versioning times and
therefore is referred as ‘GB 40% times’. Later on better binaries were announced by [26]
after improved compilation, which are on average 10% worse than Basic/Versioning for
4-issue cores and about 20% for 2-issue cores, so it is referred as ‘GB 10% times’.

Those preliminary tests also show little influence of the reloading penalty for Version-

Figure A.3: Early arbitrary Versioning penalty tests.

77

Figure A.4: Early results from AlgD: total task list execution time.

ing. However these values (50 to 500) are arbitrary. In the following tests the value of
the penalty is more realistic and is expected to be much higher. The corespace definitely
contributes more crucially to the drop for the Versioning speedup to Basic (Figure A.3),
since, as mentioned before, more corespace causes less bubbles in Basic.

Another result from those early tests was the performance of AlgD. AlgD (a mix
of AlgB and AlgA) was invented to tackle the problem of too much downgrading. As
seen in Figure A.4 (total task-list execution time in cycles) and Figure A.5 (speedup to
RAlgA) AlgD is doing slightly worse than Generic Binary (GB). The All-8 versions of
AlgD and GB even have a slowdown instead of speedup (as shown in Figure A.5).

Figure A.5: Early results from AlgD: speedup to RAlgA.

	List of Figures
	List of Tables
	List of Acronyms
	List of Algorithms
	Acknowledgements
	Introduction
	The ERA project
	Motivation
	Goals
	Methodology
	Overview

	Background
	The -VEX VLIW processor
	The VLIW approach
	Parallel algorithms
	Related work
	Grid Computers
	Homogeneous Multicore Processors
	Heterogeneous Multicore Processors and Multiprocessor Computers

	Conclusion of Chapter 2

	Implementation
	A basic scheduling algorithm
	The naive approach
	Time complexity analysis
	A realistic basic algorithm

	Versioning
	Communication Penalty
	Time Complexity

	The Generic Binary
	Benefits and disadvantages
	Priority tasks
	Interrupts
	Time complexity
	GB++

	AlgD and AlgBall8
	Conclusion of Chapter 3

	Simulator and benchmarks
	The simulator
	Task list generator
	Priority scenario generator
	Algorithm simulator
	Small scripts
	Outputs

	Testing methodology
	Specific microtests
	Short-run testing
	Long-run testing

	Conclusion of Chapter 4

	Results
	Crosspoints
	Corespace
	Task list window
	Reloading penalty
	GB execution times
	Priorities and interrupts
	The effect on total execution times

	Task latency
	The nature of the tasks
	Latency and priorities/interrupts

	GB vs Versioning
	GB vs GB++
	GB++ with Versioning execution times

	Conclusion of Chapter 5
	The upgrading paradox and 2D scheduling
	Summing up the results

	Conclusions
	Summary
	Main problem statement & contributions
	Future work

	Bibliography
	Appendix A

