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INTRODUCTION

Although various numerical analysis and optimization tools such as those based on fi-
nite element methods have been developed for decades, there are still plethora of chal-
lenging applications that require to push the state-of-the-art further. One such appli-
cation is the design synthesis of compliant mechanisms (CMs), which in essence are
mechanisms that deform during actuation. Such mechanisms can be designed mono-
lithic, providing various advantages over traditional mechanisms, such as reduced wear
and backlash, as well as no lubrication and assembly. Two interesting subcategories of
CMs are contact-aided compliant mechanisms (CCMs) and cellular arrays of contact-
aided compliant mechanisms (C3Ms). Initially introduced by Mankame and Anantha-
suresh as a way to design CMs that follow a non-linear, non-smooth actuation path [1],
these mechanisms experience internal or external contact during actuation. The dif-
ference between CCMs and C3Ms is that the latter is a pattern of a unit cell, where an
isolated unit cell can be regarded as a CCM. The distinction between the two is made be-
cause patterning a unit cell designed to meet specific properties is common practice in
the field of metamaterial design. Example applications of CCMs include high precision
safety and arming devices [2], ornithopters [3], and surgical instruments [4, 5, 6]. Poten-
tial applications for C3Ms being investigated are passively morphing aircraft skins [7],
and thermal switches for spacecraft [8]. Usually these mechanisms are either based on
their rigid counterparts or designed based on experience and intuition, greatly limiting
the design potential. Topology optimization could be used to generate novel, unbiased
designs but applying it to synthesis of CCMs and C3Ms has proven to be challenging
since it requires a general optimization framework that can accurately analyse 3D struc-
tures in contact and under large deformations.

The first reported work on CCM or C3M topology optimization was published by
Mankame and Ananthasuresh [9]. The objective was to trace non-smooth paths and
the objective function was defined as the distance error between a set of points along
the desired and achieved paths. The optimization procedure either removed or inserted
frame elements at predefined locations and orientations. Frictionless, adhesionless con-
tact with an external rigid body was assumed. The model considered only small de-
formations and a linear elastic material model in 2D. The same authors later extended
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the model to support large deformations and redefined the objective function in terms
of Fourier shape descriptors (FSDs) [10]. Mehta et al.[11] optimized unit cells to max-
imise global strain in a two step procedure. First, an inverse homogenization optimiza-
tion problem was defined and solved using SIMP for a continuum 2D cell. After that,
the cell was converted to a frame structure with a certain number of points along it.
A simple contact mechanism resembling a dashpot was inserted to connect any two
non-neighboring points, and an exhaustive search was performed to see if any contact
mechanism configuration further improves the results of the initial optimization. Na-
gendra Reddy ef al.[12] further developed the frame element topology optimization ap-
proach presented by Mankame and Ananthasuresh [9, 10]. A contact search algorithm
was implemented allowing to model self-contact. The frame elements were allowed to
be curved, and also friction was considered. A mutation based stochastic optimization
algorithm was used to avoid design sensitivity calculation. The only continuum contact
topology optimization model specific to CCMs currently present in the literature was
developed by Kumar ez al.[13]. The objective was to trace a non-smooth path, defined
by FSDs. They used circular masks to remove material or add rigid surfaces in the de-
sign domain. The position ,as well as the radius of the masks, were set as the design
variables of the optimization problem. An active set in conjunction with the Augmented
Lagrangian multiplier method were used to enforce contact constraints in a 2D, large de-
formation setting. A stochastic hill climber search algorithm was then used to advance
the design. More recently, the model was extended to handle self-contact [14] and sev-
eral design optimization examples were presented in [15].

Regarding general (not specific to CCM or C3M design), gradient-based optimization
of continuum structures in contact, the main developments can be categorized in den-
sity methods such as Solid Isotropic Material with Penalisation (SIMP) or level-set func-
tion (LSF) methods [16]. In the context of SIMP-based models, Luo et al.[17] first extend
the topology optimization to support contact in the geometrically non-linear regime.
Contact interfaces were approximated using artificial springs. Jeong et al.[18] discretized
contact interfaces using the mortar method and optimized the pressure distribution at
contact interfaces. Niu et al.[19] presented an elastic-elastic body contact optimization
method, but assumed that contact surfaces do no change shape. In a later paper [20],
the same authors developed a set of rules for a more efficient adjoint sensitivity analysis.
Kristiansen et al.[21] developed an optimization objective allowing to minimize contact
pressure variance for an unknown contact surface area of a deformable body in contact
with a rigid surface. Bluhm et al.[22] showed that the void elements often used to define
the optimization domain can be used to model contact without explicitly enforcing any
contact constraints. A detailed comparison of the LSF method implemented in XFEM
(LSF-XFEM) and the SIMP method was done by Villanueva and Maute [23]. They con-
cluded that LSF-XFEM can resolve crisp boundaries and accurate contact pressures with
coarser meshes compared to SIMP. They also point out that unlike SIMP, LSF-XFEM lacks
feature size control and is considerably more difficult to extend to 3D. Lawry and Maute
[24] then used LSF-XFEM to optimize 2D elastic-elastic body contact in the small defor-
mation regime and found that XFEM causes convergence issues due to stress oscillations
near small intersections. Stability was improved by the same authors using a so-called
ghost penalty method [25]. Fernandez et al.[26] presented an optimization strategy al-



lowing to optimize multiple contacting 3D deformable bodies in the large deformation
regime. The geometry is represented exactly using B-splines and the contact pressures
are resolved using the Augmented Lagrangian and mortar methods. So far none of the
mentioned frameworks can be used in a truly general large deformation, contact topol-
ogy optimization setting in 3D. Although [26] comes close, its major disadvantages are
the limitations of XFEM such as non-trivial application of Dirichlet boundary conditions
or solution accuracy in blending elements. Most of these issues are addressed in more re-
cent enriched finite element methods such as the Interface-enriched Generalized Finite
Element Method (IGFEM) [27], providing a better backbone for a truly general contact
topology optimization framework.

Inspired by the potential applications of CCMs/C3Ms and informed about the short-
comings of current state-of-the-art frameworks, this research aims to pave the way to-
wards the synthesis of novel CCMs/C3Ms using topology optimization using IGFEM.
So far, a novel topology optimization method has been developed by van den Boom et
al.[28], in which Radial Basis Functions (RBFs) are used to construct the level set func-
tion in addition to an elegant contact discretization strategy developed by Liu et al.' that
places enriched nodes at regions of contact to establish a Node-to-Node (NTN) formu-
lation, overcoming the limitations of early NTN and Surface-to-Surface (STS) methods,
complexity of Mortar methods, as well as stress oscillations reported in [24].

However, before general contact topology optimization can be accomplished, sev-
eral smaller objectives still need to be pursued. The specific objectives of this paper is to
incorporate and verify large deformation theory in the current IGFEM formulation. Ad-
ditionally, it aims to clearly illustrate common issues of large deformation and contact
problems when the structure of interest is immersed in a void domain, as is common-
place in topology optimization, and develop a strategy to bypass these issues.

The sections of the paper are organized as follows. The first chapter introduces the
reader to the relevant existing research and motivates the goal of this project 2.1. Then
the problem mechanics and all relevant parameters are defined 2.2. The proposed method
for dealing with void element instability is given in 2.3 and several examples are explored
in 2.4. Concluding remarks follow in 2.5 and a personal reflection of the project is written
in 3.

1 Article currently under review







AN INTERFACE-ENRICHED FINITE ELEMENT
METHOD FOR IMMERSED CONTACT UNDER LARGE
DEFORMATION KINEMATICS

2.1. INTRODUCTION

Studying and optimizing structures that experience self or external contact while also de-
forming significantly is necessary in various engineering disciplines. For example, such
studies can help improve manufacturing processes in metallurgy, improve the safety of
vehicles by means of crashworthiness analysis in the automotive industry, or even im-
prove surgical instruments [6]. However, contact introduces several challenges that sci-
entists have been trying to solve for decades.

In contact problems it is required to enforce additional kinematic constraints be-
tween contacting surfaces to guarantee impenetrability and accurate pressure estimates.
Calculating constraint conditions for all possible node pairs would be extremely ineffi-
cient, so it is common to either specify the contacting surfaces a priori or develop an al-
gorithm to automatically detect contacting points/surfaces. The later approach is more
challenging, but also a necessity in certain scenarios such as topology optimization or
remeshing. Another challenging aspect of solving contact problems is system stabil-
ity. Due to the highly nonlinear, non-smooth system behaviour, caused by the abrupt
changes between states of contact and no contact, the solution algorithm can easily
fail. This was especially true for early kinematic constraint enforcement strategies based
solely on penalty terms in the stiffness matrix or the introduction of Lagrange multipli-
ers.

The penalty method continuously increases the stiffness of nodes as the gap between
them decreases. It is only an approximate enforcement of contact kinematics and can
lead to surface penetration if the penalty parameter is too low. Conversely, if the penalty
parameter is too high, the system of equations becomes ill-conditioned. In the Lagrange
multiplier method, the multipliers are added to the system as additional unknowns and
physically can be interpreted as the contact force. These methods are the foundations
for more advanced approaches, and the interested reader is advised to study Chapter 1
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of Wriggers’s textbook [29] for a more thorough explanation. Because the Lagrange mul-
tiplier is a force while structural contact problems typically solve for displacement, the
final formulation consists of mixed type of variables Mixed formulations (also called hy-
brid), need to satisfy the inf-sup condition, also known as the Ladyzhenskaya-Babuska-
Brezzi (LBB) condition [30]. In practice, verifying this condition is not trivial and analyt-
ical proofs are rare. The most widely used method to enforce contact constraints in cur-
rent literature is a hybrid procedure called the augmented Lagrange multiplier method.
Here, Lagrange multipliers representing the contact force are added to the system as
unknowns and a smoothing penalty term is added to the stiffness matrix for stability.
The penalty and multipliers are related by a mathematical expression such that accurate
tractions can always be recovered. To avoid increasing the size of the system, research
is also being done on Nitsche methods, or simply stable penalty methods [31, 32, 33].
In these methods the continuity of the solution is enforced weakly by considering the
stress in each body and adding an additional penalty term, hence the derivation of these
methods is confined to a specific constitutive model and cannot be applied in a general
setting.

Besides enforcing kinematic constraints, another challenge is discretization of the
contact problem. Various methods have been developed over the years for the standard
formulation of FEM such as Node-to-Node (NTN) [34], Node-to-Surface (NTS) [35], or
Surface-to-Surface (STS) [36], however all of them suffer from additional issues. NTN
is narrowly confined to problems with conforming contact meshes. Meaning, if an el-
ement node along one of the contacting surfaces does not overlap with a node on the
other surface, the displacement field becomes discontinuous. However, in a general set-
ting it is not realistic to expect meshes where nodes at contacting surfaces perfectly over-
lap. Besides that, NTN is also only applicable for problems with small deformations and
no sliding. Single pass (one master and one slave surface) NTS fails to pass the con-
tact patch test while a dual pass (both surfaces are master and slave) leads to locking
due to overconstraining. STS surpasses the limitations of NTN and NTS, but might not
always work well in practice because many difficult exception cases need to be consid-
ered, see 8.4.1 in [29]. Another family of methods are the Mortar methods, in which the
nodes of both surfaces are projected in to a fictitious intermediate surface. Across this
surface contact kinematics are enforced using the augmented Lagrange multipliers in a
weak sense, integrated, and then the displacement is interpolated back to the original
surfaces. The implementation of such methods can be highly complex, especially for 3D
problems [37, 38, 26].

A simpler strategy to contact discretization is offered by enriched FEM formulations.
These methods enrich the standard FEM formulation with additional functions along
discontinuities, which allows to decouple the interfacing surfaces from the mesh. Be-
cause contact bears resemblance with a fractured surface in the sense that both lead to
a discontinuous displacement field, the majority of the contact problem literature using
enriched methods has focused on the eXtended finite element method (XFEM) [39, 40],
which was initially developed to solve fracture mechanics problems. It has been shown
in [24] that XFEM alone is not sufficient to recover accurate tractions, leading to the
development of complex hybrid XFEM-Mortar methods [26, 41] or other stabilization
techniques [25, 42]. XFEM also has other fundamental issues such as reduced solution
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accuracy in blending elements and the inability to strongly enforce essential (Dirichlet)
boundary conditions, and these issues are addressed by other enriched methods such
as the interface-enriched generalized finite element method (IGFEM) [27]. A method
to solve geometrically linear contact problems in IGFEM has been developed in where
enriched nodes are placed at locations that match a node along the other contacting
surface, leading to a simple NTN-like discretization approach '.

Besides convenient discretization of interfaces, there are other benefits of enriched
methods. Because standard FEM requires to create geometry conforming meshes, some
shapes can be notoriously difficult to mesh efficiently and can lead to ill-shaped ele-
ments, which degrade the accuracy of the final result. Using enriched methods such
as IGFEM, it becomes possible to immerse complex geometries in a simple background
structured mesh [43]. Besides simplifying meshing, immersion of geometry within some
domain is also typical for level set based topology optimization methods. When a geom-
etry is immersed, the surrounding material is typically assigned a void material. The
void is assigned minuscule stiffness such that it has as little of an influence on the fi-
nal solution as possible, but also does not lead to an ill-conditioned stiffness matrix.
This approach works well in the small deformation regime but can lead to instabilities in
an iterative solution procedure or non-physical behaviour due to deformation-induced
stiffness in the void elements [22]. Various approaches have been proposed to deal with
this problem. Buhl, Pedersen, and Sigmund [44, 45] relaxed the solution convergence
criterion by removing degrees of freedom next to void elements from the error estimate.
Klarbring et al. [46] used common hyperelastic constitutive laws to model the void while
Lahuerta et al. [47] investigated the use of polyconvex materials. Yoon et al. [48] kept the
entire domain solid by the introduction of zero-length elements with stiffness and inter-
element connectivity information. These additional elements can disappear during op-
timization by means of penalization. Wang et al. [49] reduced the analysis of void ele-
ments from non-linear to liner to avoid displacement-induced effects. Bruns et al. [50]
developed a void element removal and reintroduction strategy. Behrou et al. [51] built
upon [50] to achieve better computational performance by using a more sophisticated
density filter. They also mention that, after testing all the other mentioned methods,
none provided satisfactory results in all of their test cases. So far, all of these methods
have been developed for standard FEM in the context of density-based topology opti-
mization.

So far it was discussed that IGFEM has the potential to more accurately solve contact
problems compared to XFEM and that it can be used to immerse geometry for com-
plex meshing scenarios or topology optimization. The primary goal of this project is to
combine the works of ! and [43] and extend the capabilities to solve large deformation,
immersed contact problems. In anticipation of the mentioned void element issues in the
large deformation regime, this project also aims to develop a method for void element
removal and reintroduction in IGFEM. Besides the obvious ability to solve geometrically
non-linear, immersed contact problems, the proposed work would also pave way for ge-
ometrically non-linear contact topology optimization in IGFEM.

1 Article currently under review
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2.2. PROBLEM DESCRIPTION AND FORMULATION

Consider a domain Q in d-dimensional Euclidian space, i.e., Q c R4 (for convenience,
Q is displayed as a 2D domain in Figure 2.1). It consists of two deformable bodies in
their undeformed Q; and deformed w; states. The undeformed state is called the initial
or reference configuration while the deformed state can be referred to as the current
configuration. In this work, a total Lagrangian formulation is used, meaning the initial
configuration is used as the basis for equilibrium and constitutive relations.

The body Q; boundaries are given by 0Q; = I'; and their normals by N;. Following the
body notation, lowercase letters are used to describe the boundaries and their normals
in the deformed configuration. These boundaries consist of several disjoint regions I';' n
F§ = ¢ attributed to different types of boundary conditions I'; =T'}/ Ul“l?ul“f uI'{. Dirichlet
(essential) and Neumann (natural) boundary conditions are denoted by T'* and I’ ! while
interface and contact boundaries by I'® and I'“ respectively. Potential contact surfaces,
shown by dashed lines in Figure 2.1, are usually identified a priori for computational
efficiency.

The motion of a body is described by the mapping ¢ : Q — w < R?. Across this mo-
tion, each particle in the body X € Q is displaced to x = ¢(X) = X+ u(X), with u denoting
the displacement.

Undeformed Deformed

Figure 2.1: Problem schematic showing two bodies that come into contact in their deformed states. Capital
letters are used for the undeformed state, lowercase letters for the deformed. Subscript indices are used to
number the bodies.

Given a body force b; : Q; — R%, prescribed displacement i : ry— R4, and traction

t: I“l? — R4, the goal is to find the displacement field u from the elastostatics equilibrium
equation, expressed in strong form as
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V-(F;iS;)+b; =0 in Q;, 2.1

while subjected to boundary conditions
u; = ii; onT}, 2.2)
(FiSin; =1; onT}, 2.3)

and contact conditions

pn=1-n1<0 ony°¢, (2.4)
gn=M2-x1)-n =0 on Yy, (2.5)
Pngn=0 ony°. (2.6)

In these equations, F = V¢ = I+ Vu is the deformation gradient, § is the second
Piola-Kirchhoff stress tensoris S, and the product of the two is the well-known Cauchy
stress tensor o = FS. A nearly incompressible Mooney-Rivlin material formulation with
a strain energy density function W(Jy, J», J3) = C19(J1 —3) + Co1(J2 —3) + D1 (J5 — 1)% was
used to describe solid material, while in some cases in an emmersed setting a basic
St. Venant-Kirchhoff formulation W (E) = % [tr(E)]? + ptr(Ez) was used for void material.
Details of these constitutive laws are provided in Appendix A. Displacements and trac-
tions are transferred across the perfectly bonded interfaces I’ fj while contact kinematics
are enforced by the Hertz-Signorini-Moreau conditions, also referred to as Karush-Kuhn-
Tucker conditions [29]. These conditions state that the contact pressure p; can only be
compressive (2.4), that contacting bodies cannot penetrate each other (2.5), and that
there is no contact pressure if there is a contact gap (2.6).

The weak form of the governing equations can be expressed as a minimization prob-
lem of the functional

3
D (u, A8, A°) = ) T0;(w;) + (w1, uz, AS), 2.7)
i=1

in which I1; is the strain energy of the deformable bodies, while I18 and II¢ are terms
associated with interface and contact constraints:

l'[i(u,-):f Vw-SdV - w~de—/ FwdA=0, 2.8)
Q; Q; rt
c 1 A \2 2
e (w,2,A%) = | [Aw)* = 22] ar 2.9)
re 2€p

A standard method using Lagrange multipliers A8 is used to enforce the interface
conditions and an augmented Lagrange multiplier method using A¢ as the multipliers
is implemented to enforce the contact conditions, because for contact problems the
standard method is prone to stability issues. The augmented multiplier is defined as

An = An +€,8n, where €, is the penalty parameter and 1,, = A° - n is the Lagrange multi-
plier normal component. Lastly, < ¢ > is the Macaulay bracket notation.
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If a domain A c R% is defined that fully encloses the original domain A 2 Q and dis-
cretized A" = U;e; into non-overlapping finite elements e; N e i =®,Yi# j, then the dis-
cretized weak form of the governing equations can be solved by choosing a trial solution
and weight function from the interface-enriched finite element space

o= |u @)= Y Ni@ui+ Y sigi@ai, uia; eRY. (2.10)
i€ty i€l
std. FEM enric‘l;ment

Here the solution consists of two contributions. One is from the standard FEM with ¢;,
being the index set of all standard nodes and N; the ith Lagrange shape function associ-
ated with degrees of freedom u;. The second contribution comes from the enrichments,
where similarly ¢, denotes the index set of all enriched nodes and v; is the enrichment
function associated with the enriched degrees of freedom «;. A scaling factor s; is added
to improve the condition number of the system matrix. As shown in Figure 2.2, enriched
nodes are created at contact and material interfaces and intersected elements are di-
vided into integration elements. A hierarchical structure is kept to resolve cases where
an element is intersected by multiple interfaces. Further details of the immersed for-
mulation can be found in [43]. A publication on the contact method is currently under
review.

Figure 2.2: Example of locations where enriched nodes are created in an immersed analysis (left) and the
creation of integration elements (right). The boundary is discretized in the process and becomes faceted. The
blue node represents a contact node while red nodes are interface nodes.
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2.3. APPROACH TO VOID ELEMENT INSTABILITY

Immersion can help solve problems where the domain is too complex to create a geometry-

conforming mesh. Itis also prevalent in topology optimization and fluid-structure inter-
action problems. For example, in topology optimization it is commonplace to fill the de-
sign domain not occupied by the solid structure with void elements. These elements are
not needed to solve a system for equilibrium but greatly simplifies updating the topology
because the standard degree-of-freedom order in the system is preserved. Ideally, the
stiffness of void elements should be zero to not influence the solution, but this would
lead to a singular stiffness matrix. Although various methods have been proposed to ad-
dress void instability [44, 45, 46, 47, 48, 49, 50, 51], only the void element removal tech-
niques by Bruns and Tortorelli [50] and Behrou et al. [51] would truly solve the induced
stiffness issue. Their method, as well as all the others, is specifically designed for density-
based topology optimization and would not work in a simple immersed contact analysis
setting. Hence, a simple method for removing and reintroducing void elements within a
single analysis step is introduced here.

Given an assembled system KU = F, where K is the stiffness matrix, F the force vector,
and U the displacement vector, an m x n, n < m transformation matrix T is defined

——
I 0 0
0 I 0
T=m ’ ’ , (2.11)
oo . . . I

and is used to reduce the original system of m degrees of freedom (DOFs) to a system
KO = F of n DOFs. The reduced stiffness matrix K is defined as K = TTKT and the re-
duced force vector as F = TTF. To assemble T, an m x m matrix Ty is initialized. For every
DOF m that should be preserved and mapped to 7i, the m x /m entry of Ty is set to 1. For
all other DOFs the value is set to 0. Once done, the empty columns can be removed to
arrive at the final m x n matrix T. Although the reduced system allows to remove any
single DOE in practice removing all DOFs associated with a particular node is required.
In other words, if a 2D problem has 2 DOFs for each node, removing just 1 of the 2 would
not solve the instability issues for that node. Hence, T can be written in smaller matrices
T;, where each T; groups DOFs of node i, and is either an identity matrix or a matrix full
of zeros. It is important to note that the DOFs discussed here are only those associated
with the standard FEM formulation. The reduced system is solved as usual, and then
the original DOF order can be recovered by the transformation U = TU. A step-by-step
schematic of the full procedure is shown in Figure 2.3.

This method is an alternative void removal and reintroduction for standard large de-
formation analyses. Since the removal criterion is associated with a material type, not
element density, this method is not directly applicable to density-based topology opti-
mizations. Because all void elements are removed, this method also supports contact
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analyses. As will be shown in a later example, void elements can alter contact kinemat-
ics, so stability in the large deformation setting alone is not enough for accurate results in
large deformation contact problems. Additionally, the void elements are both removed
and reintroduced in the analysis step, whereas in [51] the optimization step is performed
on the reduced system and DOFs are reintroduced based on sensitivity analysis results.

6,7 4,5 0 1.2 3 45
* 01 010 0100

1o 1.0 010 0

2|0 0,1 0,0 0

3 /00,0 1,00

4{00'00'0 0

51000000

6 [0 0001 0

& », 70010 010 1

Figure 2.3: A simple system with 1 solid and 1 void element, where each node has 2 DOFs (left figure). The DOF
numbers are shown at each node. Assembled transformation matrix T in order to remove the top right node
(right figure).

2.4. EXAMPLES

2.4.1. 2D LARGE DEFORMATION BENCHMARK TEST

A 2D C-shaped structure originally published by Yoon and Kim [48] is a popular large
deformation example among other researchers [47, 22]. A similar setup is used in this
example to verify the large deformation kinematics in 2D.

Fy

w

Figure 2.4: C-bar example setup (left) and the deformed shape with marked nodes for which the displacement
is verified using commercial finite element analysis software (right)
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Here, the 2D C-shaped structure has a height H equal to its width H = W = 10. The size
of each rectangular partition containing two triangular elements is H/10 by W/10. The
left-most edge is fixed and there are two tractions Fy = 0.03 and F), = 0.02 acting on the
nodes of a single element’s edge. A nearly incompressible Neo-Hookean material model
was used with plane strain conditions and constants Cy = 0.1925, D; = 0.833 that match
linear elastic properties E = 1, v = 0.3 in the small deformation regime. Note that the
parameters are given without units for compatibility with any consistent unit system.

Because the inner corners of the structure exhibits a stress singularity, a consistent
estimate of the strain energy could not be obtained. Since the mesh used in this example
as well as in [48] is coarse, the final displacement varies a lot with even slight mesh modi-
fications. Moreover, the current implementation of the geometric engine uses triangular
elements in 2D so it makes sense to verify these, but [48] used rectangular elements,
making it even harder to compare results. As an alternative, the results were compared
with [48] and commercially available finite element analysis software where the triangu-
lar mesh could be replicated exactly. The obtained displacements U ! of nodes i = {A, B}
in x-direction U’ and y-direction UJ‘; were

Software Uz U f UuB U f
Hybrida (in-house) -3.95728 | -6.69314 | 0.306307 | 0.501446
Abaqus (commercial) | -3.95730 | -6.69315 | 0.306307 | 0.501446

An immersed analysis with and without void removal was also performed. The geometry
was kept the same and a simple Neo-Hookean formulation was used for the void with
coefficients equivalent to E = 107'2 and v = 0 in linear elasticity. The deformed shapes
are shown in Figure 2.5, and in both cases the obtained displacements for control nodes
A and B were the same.

VY

Figure 2.5: Deformed shape of the C-structure in an immersed analysis (left) and the deformed shape for the
same problem using the proposed void elimination strategy. The obtained displacement at the control nodes
A and B was the same, meaning that for this level of deformation voids do not influence the result significantly.
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2.4.2. 3D LARGE DEFORMATION BENCHMARK TEST

A simply supported unit cube shown in Figure 2.6 is subjected to a uniaxial traction load
T = 1000 in the x-direction on face 3. The load is applied in 10 equal increments. Faces
5, 6, and 4 are constrained in x, y, and z-directions respectively. Nearly incompressible
Mooney-Rivlin material model was used with coefficients Cyyp = 80, Cp; =20, and K =1-
107 for the solid cube and a St. Venant-Kirchhoff model with Young’s modulus E = 1-107°
and Poisson’s ratio v = 0 was used for the void elements. The test was performed in both
a non-immersed as well as an immersed setting.

¥4

Figure 2.6: 3D unit cube reference.

Figure 2.7: Constant Cauchy stress distribution in the deformed 3D unit cube. The deformation was scaled
0.5x. The obtained Cauchy stress value was 6028. The undeformed shape is shown in grey with reduced opacity.
The same result is obtained in immersed analysis using the proposed void elimination strategy.

Figure 2.7 shows that an elongation several times the length of the cube yields a con-
stant stress field, as it was expected. The obtained Cauchy stress was 6028, and the same
results were obtained in commercially available finite element analysis software. How-
ever, the same problem in an immersed setting ran into convergence issues. Figure 2.8
shows that after the first load step, while the deformation is still relatively small, the solu-
tion visually seems fine but in the last converged step the void elements have deformed
in an obscure way. Even though the stress distribution is still uniform in the solid ele-
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ments and zero in the void elements, the solution diverges in the next load step. To try
and improve convergence, bigger background meshes were tested to accommodate the
deformed cube. In some cases an extra load step converged but never the full analysis,
which goes to show that convergence depends on the chosen background mesh. Even
if a much larger background mesh would completely converge, there is no guarantee,
and for time-costly analyses the extra step of finding a stable background mesh is not
a viable option. These issues can be partially alleviated by using more stable material
formulations [47], but, as will be shown in the next example, these enhanced materials
are not suitable for immersed contact analysis.

Using the proposed void elimination strategy, the same solution was obtained as in
the non-immersed analysis, and is shown in Figure 2.7.

Figure 2.8: Undeformed shape (grey) and deformed shape (red) of the solid cube immersed in background
mesh (blue) after 1 load step (top figure) and 7 load steps (bottom figure). A constant stress field is recovered
in the solid, and the stress is zero in the void, but the analysis nonetheless diverges in the next load step.




2. AN INTERFACE-ENRICHED FINITE ELEMENT METHOD FOR IMMERSED CONTACT UNDER
16 LARGE DEFORMATION KINEMATICS

2.4.3. LARGE DEFORMATION CONTACT ANALYSIS

This examples covers non-immersed large deformation contact analysis in 2D and dis-
cusses fundamental issues regarding contact in immersed analysis. The C-shaped struc-
ture from Section 2.4.1 was slightly modified for this example by extending the top sec-
tion by 2 units. Also, the horizontal traction Fyx was removed. The geometry along with
the mesh for the non-immersed case is shown in Figure 2.9 and for the immersed case
in Figure 2.10. In the immersed analysis Neo-Hookean material was used for the void
elements with constants Cjp = 2.5-10~7 and K = 3.33-1077, equivalent to aYoung’s mod-
ulus E = 1-107% and Poisson’s ratio v = 0 in linear elasticity. Everything else was kept the
same.

Figure 2.9: Undeformed geometry for the non-immersed large deformation contact analysis with marked con-
trol nodes A and B (left). Deformed geometry (right).

Figure 2.10: Adjusted c-bar structure with an elongated top section for the immersed analysis.
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The deformed geometry for the non-immersed large deformation contact analysis is
shown in Figure 2.9, and displacement for the control nodes A and B are

Software Uz U, UB Uy
Hybrida (in-house) | -5.40459 | -8.62097 | -0.142732 | -1.09039
Abaqus (commercial) | -5.39129 | -8.61451 | -0.139777 | -1.07664

Displacements at these nodes were compared with commercially available finite ele-
ment analysis software. Reasons for such a comparison method were discussed in detail
in Section 2.4.1. The difference in displacement magnitude between the results is only
0.12% for node A and 1.29% for node B. Given that the methods used to discretize the
equations of motion are completely different, such a small error margin is fair.

For the immersed analysis the deformed shape is shown in Figure 2.11 and it is clearly

visible that the bottom bar has displaced even though no force was applied to it, nor did
it come into contact with the top part, and, above all, no kinematic constraints were es-
tablished in the problem definition. This happens because hyperelastic materials are
defined such that the strain energy tends to infinity as the material is compressed. In
other words, the more a hyperelastic material is compressed, the stiffer it becomes. Even
though void elements are assigned a minuscule stiffness, the deformation-induced stift-
ness can be so large that these elements start to transfer a load. This is a fundamental
issue for immersed contact analyses because there will always be a severely squished
void element in-between contacting surfaces, unless the surfaces are already in contact
in the undeformed state. In an immersed large deformation setting this stiffening can
also be an issue, but in such cases existing methods using enhanced strain energy den-
sity formulations could be used to alleviate this problem [47]. Even with a simple hy-
perelastic material formulation an immersed analysis can converge for relatively large
deformations, as was shown in a similar example in Section 2.4.1. This stiffening issue
stems from the physical description of a material rather than from the numerical imple-
mentation, meaning that as long as there are hyperelastic void elements, this stiffening
can be an issue. Non-hyperelastic formulations can be used but these can easily lead to
stability issues in the large deformation regime, as was shown in 2.4.2. Bluhm et al. [22]
used this effect to their advantage as an alternative contact analysis method. Such an
approach is called the third medium contact method. Although showing good results,
the resulting behaviour of this method is non-physical and it is not clear from their pa-
per if this approach is general or applicable only in certain cases. What is certain though
is that the stiffening behaviour is not an issue if no void elements are present in the first
place.
Unfortunately, the attempt to extend the immersed large deformation analysis to include
contact failed. The unforeseen issues with void elements delayed the project, and the fi-
nal task of merging the geometric immersion engine and the contact analysis procedures
is still ongoing.
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Figure 2.11: Deformed shape of the adjusted C-bar example in an immersed domain with a zoomed-in section
of severly compressed elements (top). Deformed shape (red) of the same example with the undeformed shape
(grey) in the background and a zoomed-in section showing that the bottom bar has displaced even though no
parts of the solid structure are in contact and contact kinematics are not implemented in the analysis (bottom).
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2.5. CONCLUSIONS

The purpose of this project was to extend the current capabilities of the finite element
analysis library Hybrida (developed at TU Delft by A. Aragén and coworkers) to support
large deformation contact analysis in an immersed setting.

The set out goal has been achieved partially. Current implementation supports large
deformation contact analysis in a non-immersed setting, but only large deformation
analysis in an immersed setting. Implementation of the later did not fail, rather the
project simply ran out of time before it could be finished. This is in large part due to
unforeseen issues with void elements in this type of analysis.

Although void material instabilities were a known issue, the extent to which void ma-
terials impact the solution in a contact analysis was unknown to the author. Various en-
hanced hyperelastic constitutive laws have been formulated to improve void material
convergence in the large deformation regime, but contact analysis presents new issues.
As any two elements approach contact, the void element in-between is deformed to an
extent that the deformation-induced stiffness allows the void element to transfer a load,
even though the premise of the void elements is to have as little impact on the final out-
come as possible. In other words, the strain energy of the void element tends to infinity,
and so does its stiffness. This is a common property for hyperleastic materials, and the
only known exception to the author - St. Venant-Kirchhoff material - is known to be
unstable (also shown in this study).

To solve this issue, an additional literature study was performed to investigate ex-
isting options to deal with these void elements. It was decided to develop a method to
eliminate the voids for the analysis part and afterwards reintroduce them without losing
the original node order defined in the beginning. The preservation of node order would
be useful in topology optimization, if such a research direction is pursued in the future.

The final task left to finish the set out goal is to merge the geometric engine respon-
sible for immersion with the contact analysis procedures. Initial work on this topic has
already begun, but initial time estimates proved to underestimate the extent of the task
and the current issue with the merging is not fully understood. After that, only minor
adjustments are expected to extend the merged solution to support large deformation
kinematics, as that was also the case for non-immersed analysis.







REFLECTION

Initially, the goal of the project was centered around topology optimization of self con-
tacting compliant mechanisms. The most important required components such as the
topology optimization framework or the contact analysis procedure had already been
implemented, and it was expected that only large deformation analysis was missing be-
fore work on topology optimization could begin. As such, the literature study focused
mostly on topology optimization and the methodologies of solving the physical prob-
lem were only broadly studied for a general overview. After all, the contact analysis was
already in place and large deformation kinematics is a solved problem. However, as sup-
port for large deformation kinematics was finished, a previously unexpected issue with
void elements arose that later became the center point of the project. The complex re-
lationship between material and geometrical non-linearities was underestimated and,
frankly, almost completely unreported in the work studied during the literature study.
Only one study on large deformation contact topology optimization addressed this is-
sue, and this study was made public only during this project.

Amidst the initial excitement and ambition, it is easy to become too reliant on a
smooth road towards success, so this project served as a good lesson to always plan for
contingencies and expect that there will be issues that one does not know about at the
time of making the plan. Also, even though I initially perceived the change of plans as a
failure of the initial goal, in the big picture it is actually quite exciting to see that there are
still many interesting challenges to solve in a decades-old field, and the the end result
has so much potential. Even if just one researcher finds this work insightful and it helps
them better identify future research topics, I would consider this project as a success.

Beyond the theory and literature, this project required learning multiple other valu-
able skills that will likely benefit in the future like dealing with version control tools, ef-
ficiently debugging the code, or writing robust unit tests. It is also the experience of
being immersed in a programming project of a completely different scale compared to
course assignments and homework that has immense value. From personal experience,
the coursework programming assignments are mostly focused on getting some desired
result. How efficiently this is achieved rarely matters and these codes rarely span more
than a few hundred lines of code. When starting this project, I was suddenly faced with
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a library spanning several tens of thousands lines of code, with a steep learning curve
and little documentation. The problem at hand no longer required just any solution,
but a scalable solution that fits well into the existing code architecture. Although there
were times where the lack of instructions how to operate within this code was frustrat-
ing, overall I enjoyed tinkering around and trying to understand why things are being
done the way they are.

Lastly, even though the initial objective was not achieved, I cannot say the same
about my personal goals. My first hands-on experience with finite element analysis
(FEA) was at a student rocketry team Delft Aerospace Rocket Engineering (DARE) during
Bachelor’s studies. Here I worked on predicting the failure load of a thin-walled com-
posite shell structure. I was eager to learn more in-depth about how these complex
programs work under the hood, and this experience inspired the choice of my Master’s
degree specialization. Having completed several courses on numerical methods and ad-
vanced mechanics, as well as having contributed during this project to a state-of-the-art
FEA library to solve problems that were few people can solve, I can proudly say that I
have surpassed my expectations for this degree program and that I am looking forward
to applying this knowledge to solving important real-world problems.



CONSTITUTIVE MODELS

A nearly incompressible neo-Hookean and a St. Venant-Kirchhoff material laws were
used throughout this work. The neo-Hookean model was derived from a nearly incom-
pressible Mooney-Rivlin material model, described by the strain energy density function

W1, J2,J3) = CroU1 —3) + Co1 J2 —3) + D1 U3 — 1)%, (A.1)

which is defined in terms of the reduced invariants J; = 1113_”3, = 1213_2/3, J3 = 13”2,
where I, I, I3 are the invariants of the right Cauchy-Green tensor C. The reduced in-
variants separate the dilatation (volume change) and distortion parts of the strain en-
ergy. Since nearly incompressible hyperelastic materials are stiff in dilatation (volume
change) but compliant in distortion, it is necessary to separate energies of these de-
formation modes because the large difference in stiffness can otherwise cause numeri-
cal instability [52]. The Cyp and Cy; terms in W are material coefficients and D; is the
penalty term imposing near incompressibility. All 3 terms are set by the user.

In the special case when Cp; = 0, this model reduces to the nearly incompressible
neo-Hookean model and is a more convenient choice because it has a simple connection
to linear elasticity — in the small deformation regime the constant Cyo = u/2 relates to the
shear modulus y, and D; = K/2 to the bulk modulus K.

The 2™ Piola-Kirchhoff stress § = CioJ1,E+ Co1J2,E +2D1(J3 — 1) J3 g is obtained by
differentiating the strain energy density function W with respect to the Green-Lagrange
strain E = 1/2(C - I), where J; g is the vector of all derivatives of J; with respect to E. The
constitutive tensor € is obtained by differentiating W twice with respect to E.

Besides the neo-Hookean model, in some examples the St. Venant-Kirchhoff mate-
rial model was used for void elements. This model is an extension of linear elasticity and
defines a linear stress-strain relationship between the energetically conjugate E and S.
Its strain energy density is given by

A 2 2
WI(E) = ) (tr(E)]” + utr(E7), (A.2)

where A is Lamé’s first parameter. The procedure for obtaining the stress vector and
constitutive matrix is the same as before.
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