
 
 

Delft University of Technology

Graph-Time Convolutional Neural Networks
Architecture and Theoretical Analysis
Sabbaqi, Mohammad; Isufi, Elvin

DOI
10.1109/TPAMI.2023.3311912
Publication date
2023
Document Version
Final published version
Published in
IEEE Transactions on Pattern Analysis and Machine Intelligence

Citation (APA)
Sabbaqi, M., & Isufi, E. (2023). Graph-Time Convolutional Neural Networks: Architecture and Theoretical
Analysis. IEEE Transactions on Pattern Analysis and Machine Intelligence, 45(12), 14625-14638.
https://doi.org/10.1109/TPAMI.2023.3311912

Important note
To cite this publication, please use the final published version (if applicable).
Please check the document version above.

Copyright
Other than for strictly personal use, it is not permitted to download, forward or distribute the text or part of it, without the consent
of the author(s) and/or copyright holder(s), unless the work is under an open content license such as Creative Commons.

Takedown policy
Please contact us and provide details if you believe this document breaches copyrights.
We will remove access to the work immediately and investigate your claim.

This work is downloaded from Delft University of Technology.
For technical reasons the number of authors shown on this cover page is limited to a maximum of 10.

https://doi.org/10.1109/TPAMI.2023.3311912
https://doi.org/10.1109/TPAMI.2023.3311912


Green Open Access added to TU Delft Institutional Repository 

'You share, we take care!' - Taverne project  
 

https://www.openaccess.nl/en/you-share-we-take-care 

Otherwise as indicated in the copyright section: the publisher 
is the copyright holder of this work and the author uses the 
Dutch legislation to make this work public. 

 
 



IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. 45, NO. 12, DECEMBER 2023 14625

Graph-Time Convolutional Neural Networks:
Architecture and Theoretical Analysis

Mohammad Sabbaqi and Elvin Isufi

Abstract—Devising and analysing learning models for spa-
tiotemporal network data is of importance for tasks including fore-
casting, anomaly detection, and multi-agent coordination, among
others. Graph Convolutional Neural Networks (GCNNs) are an es-
tablished approach to learn from time-invariant network data. The
graph convolution operation offers a principled approach to ag-
gregate information and offers mathematical analysis by exploring
tools from graph signal processing. This analysis provides insights
into the equivariance properties of GCNNs; spectral behaviour
of the learned filters; and the stability to graph perturbations,
which arise from support perturbations or uncertainties. However,
extending the convolutional learning and respective analysis to the
spatiotemporal domain is challenging because spatiotemporal data
have more intrinsic dependencies. Hence, a higher flexibility to
capture jointly the spatial and temporal dependencies is required to
learn meaningful higher-order representations. Here, we leverage
product graphs to represent the spatiotemporal dependencies in
the data and introduce Graph-Time Convolutional Neural Net-
works (GTCNNs) as a principled architecture. We also introduce
a parametric product graph to learn the spatiotemporal coupling.
The convolution principle further allows a similar mathematical
tractability as for GCNNs. In particular, the stability result shows
GTCNNs are stable to spatial perturbations. owever, there is an
implicit trade-off between discriminability and robustness; i.e.,
the more complex the model, the less stable. Extensive numerical
results on benchmark datasets corroborate our findings and show
the GTCNN compares favorably with state-of-the-art solutions. We
anticipate the GTCNN to be a starting point for more sophisticated
models that achieve good performance but are also fundamentally
grounded.

Index Terms—Graph convolutional neural networks, graph
signal processing, graph-time neural networks, stability to
perturbations.

I. INTRODUCTION

L EARNING from multivariate temporal data is a challeng-
ing task due to their intrinsic spatiotemporal dependencies.

This problem arises in applications such as time series forecast-
ing, classification, action recognition, and anomaly detection [2],
[3], [4], [5]. The spatial dependencies can be captured by a graph
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either explicitly such as in transportation networks or implicitly
such as in recommender systems [6]. Therefore, graph-based
inductive biases should be considered during learning to exploit
the spatial dependencies alongside with temporal patterns in a
computationally and data efficient manner. Based on advances
in processing and learning over graphs [7], [8], a handful of
approaches have been proposed to learn from multivariate tem-
poral data [9]. The main challenge is to capture the spatiotem-
poral dependencies by built-in effective biases in a principled
manner [10].

The convolution principle has been key to build learning
solutions for graph-based data [11], [12]. By cascading graph
convolutional filters and pointwise nonlinearities, graph con-
volutional neural networks (GCNNs) have been developed as
non-linear models for graph-based data [13], [14]. Such a prin-
ciple reduces both the number of learnable parameters and the
computational complexity in the GCNN, ultimately, overcoming
the curse of dimensionality [10], [12]. The convolution operation
allows also for a mathematical tractability of GCNNs. On the
one hand, it is a permutation equivariant operation, implying
that it can capture structural symmetries to aid learning [12],
[15]. On the other hand, it enjoys a spectral duality by means
of a graph signal processing analysis [7], which, in turn, can
be used to characterize the stability of GCNNs to perturbations
in the support [15], [16], [17], [18]. The overreaching goal of
this paper is to leverage the convolution principle to learn from
spatiotemporal data as well as study the theoretical properties
of this model.

A. Related Works

There are two stream of works related to this paper: one
developing architectures; and one studying their stability.

Architectures. Spatiotemporal graph-based learning models
can be divided into hybrid and fused models. Hybrid models
combine distinct learning algorithms for graph and temporal
data. They use GCNNs to extract higher-level spatial features
and process these features by a temporal RNN, CNN, or variants
of them. The works in [19], [20], [21] concatenate a GCNN
by an LSTM where the former is applied per timestamp and
the latter per node. Instead, the work in [22] uses an RNN
followed by a GCNN. Another work in [2] uses a narrower graph
convolutional layer in between two temporal gated convolution
layers, whereas [23] combines graph diffusion with temporal
convolutions. Another approach is to ignore the graph structure
and use temporal CNNs augmented by the attention mechanism
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to reduce the number of parameters and ease training [24].
Graph WaveNet uses a gated dilated temporal convolution fol-
lowed by a first order graph convolution [25]. Fused models
impose the graph structure into conventional spatiotemporal
models to jointly capture the spatiotemporal relationships [3],
[26], [27], [28], [29]. The fully connected blocks are replaced
by graph convolutions to generate graph-based latent embed-
dings. The work in [26] proposed graph-based VARMA to learn
spatiotemporal embeddings. The authors in [27], [29] employ
variants of RNN models with graph convolution-based blocks,
while [28] also designs a graph-based gating module. In another
approach, the spatial graph is passed through a continuous tem-
poral shift operator to define a spatiotemporal convolution [30].
The work in [3] starts with a graph partitioning and defines
a spatiotemporal neighborhood in each partition to perform
message passing. The works in [31], [32] use diffusion schemes
where the output is a function of the signals of at most one hop
neighbors. Since diffusion is considered in a causal fashion the
information from the k-hop spatiotemporal neighbors is con-
sidered in subsequent layers, which may be limiting to extract
patterns.

The advantage of hybrid models lies within their simple and
efficient implementation since they benefit from modular spatial
and temporal blocks. However, this modularity makes it unclear
how to best combine them for the task at hand and analyze
theoretically their inner-working mechanisms. Moreover, they
are disjoint and sequential in nature (first graph and then tem-
poral processing or vice-versa); thus, are more restrictive and
require each node to accumulate global information. Instead,
fused models overcome these issues but they mostly use a
low-order spatiotemporal aggregation which limits their effec-
tiveness in capturing spatiotemporal patterns. We address this
challenge by leveraging product graphs to represent multivariate
time series [33]. Product graphs have been widely used for
modeling complex data [34], the matrices [35], and developing
a graph-time signal processing framework [36]. However, their
use for learning from spatiotemporal data has been limited.
The work in [37] builds spatiotemporal scattering transforms
using product graphs and shows their advantages over alternative
data representative solutions. Here, we use product graphs as a
platform to run spatiotemporal convolutions and build neural
network solutions with it. The work in [3] implicitly uses the
Cartesian product graph to build a spatiotemporal neighborhood.
Differently, we develop a principled convolutional framework
for learning via any product graph, multi-resolution neighbor-
hood information aggregation in each layer ( [3] focuses only
on immediate neighbors), and introduce a parametric product
graph to learn the spatiotemporal coupling.

Stability. Studying the stability of graph neural networks to
graph perturbation reveals their potentials and limitations w.r.t.
the underlying support. The work in [16] provided a stability
scheme to relative perturbations on the graph for GCNNs by
enforcing graph convolutional filters to vary smoothly over high
graph frequencies. Authors in [38] proposed a linear stability
bound to graph arbitrary perturbation for a large class of graph
filters named Cayley smooth space. The work in [39] considers
an edge rewiring model for perturbation and provides an upper

bound for output changes. The authors in [17] proved that GC-
NNs are stable to stochastic perturbation model where links have
a probability of existence in the graph. In case of spatiotemporal
graph neural networks, the work in [28] developed a stability
analysis to graph perturbation following the model in [16]. The
authors in [30] have used the relative perturbation model in [16]
to investigate their model stability properties. We also pursue a
similar analysis as [16] for the graph-time convolutional neural
network to approve its capabilities and observe the effects of
time component in the stability and transferability properties
of them. The similar base of stability analysis allows us to
compare the proposed model with previous works in [28], [30]
and collect insights into how different learning solutions for
spatiotemporal data handle uncertainty in the spatial support.
Differently from the latter, the proposed stability results via
product graphs provides direct links with that of GCNNs if time
is invariant, highlighting also the impact of how the temporal
component is accounted for a joint spatiotemporal learning.

B. Contribution

We consider the convolutional principle over product graphs
as an inductive bias to build graph-time convolutional neural
network (GTCNN) for learning from multivariate temporal data.
Our specific contributions are:

C1) Principled architecture: We develop an architecture that
leverages graph-time convolutions and product graphs
as a spatiotemporal inductive bias to reduce the com-
putational cost and the number of trainable parameters.
We also propose a solution to learn the spatiotemporal
coupling and a recursive implementation to tackle the
high dimensionality of the product graphs.

C2) Theoretical properties: We prove GTCNNs are per-
mutation equivariant. Then, leveraging concepts from
graph-time signal processing, we show the learned filters
act in the joint graph and temporal spectral domain as
point-wise multiplication between the learnt frequency
response and the graph-time Fourier transform of the
input.

C3) Stability: We prove the GTCNN is stable to perturbations
in the spatial graph. Our result shows the GTCNN be-
comes less stable for larger graphs and that the temporal
window in the product graph affects it more severely than
increasing the number of nodes. We provide a thorough
discussion of our stability bound w.r.t. baselines and
alternative approaches.

C4) Numerical performance: We compare the GTCNN with
baseline and state-of-the-art solutions in different tasks
about time series classification and forecasting. The
GTCNN outperforms the baseline GCNN model that
ignores the temporal dimension and compares well with
alternatives on benchmark datasets.

The structure of this paper is as follows. Section II, introduces
product graphs and signals over them to formulate our problem.
In Section III-B, the GTCNN is proposed and its properties are
discussed. Section IV is dedicated to stability analysis of GTC-
NNs. Section V contains the numerical results and experiments
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Fig. 1. Spatial and temporal graphs along with signals over their nodes. (Left)
Spatial graph and graph signal at time t. Scalar xt(2) is the signal and node
two recorded at time t. It is proximal with signals at nodes one, three, and four.
(Right) Temporal graph and ith time series illustrated as graph signal. Edges in
green are those of a directed line graph, while edges green and grey are of a
cyclic graph.

to corroborate the strengths of GTCNNs. Finally, Section VI
concludes the paper.

II. PROBLEM FORMULATION

Here, we first introduce some background material about
product graphs and their use to represent multivariate time-
series. Then, we motivate the problem of learning from mul-
tivariate time-series via an inductive bias perspective.

A. Product Graphs for Spatiotemporal Coupling

Consider an N × 1 multivariate signal xt collected over T
time instances in matrix X = [x1, . . . ,xT ]. The tth column
xt = [xt(1), . . . , xt(N)]� may be measurements of different
sensors in a sensor network at time t, whereas the ith row
xi = [x1(i), . . . , xT (i)]

� may be the time series of sensor i
over the T time instants. When learning representations from
the data in X we are interested in exploiting both the spatial
dependencies in xt and the temporal dependencies in xi. How-
ever, despite learning from these spatial and temporal relations
is important to extract patterns in X, we need to devise meth-
ods that exploit them jointly as an inductive bias for learning
representations [10].

When data xt have a (hidden) underlying structure, we can
capture their spatial relations through a spatial graph G =
(V, E) of N nodes in set V = {1, . . . , N} and |E| edges in
set E ⊆ V × V . We represent the structure of G via its graph
shift operator (GSO) matrixS ∈ RN×N which is a sparse matrix
with non-zero entries [S]ij �= 0 only if (i, j) ∈ E or i = j [7].
We can view xt as a graph signal with scalar xt(i) residing
on node i. Likewise, we can capture the temporal relations in
xi through a temporal graph GT = (VT , ET ) of T nodes in set
VT = {1, . . . , T} and |ET | edges in set ET ∈ VT × VT . Each
node represents one time instant t and set ET contains an edge
if signals at instances t and t′ are related. Also, we represent the
structure of GT with its GSO matrix ST ∈ RT×T . Data xi can
be seen as a graph signal with scalar xt(i) being the value at
node t. Examples of GT are the directed line graph that assumes
signal xt(i) depends only on the former instance xt−1(i), the
cyclic graph that accounts for periodicity, or any other graph
that encodes the temporal dependencies in xi, see Fig. 1.

Fig. 2. Different product graphs and the formation of multivariate temporal
data over them. (grey edges) Kronecker product G⊗ = GT⊗G. (green and
red edges) Cartesian product G× = GT×G. (All edges) Strong product G� =
GT�G..

Given graphs G, GT , we can capture the spatiotemporal rela-
tions in the data X through product graphs

G� = GT � G = (V�, E�,S�) . (1)

The node set V� = VT × V is the Cartesian product between VT

and V with cardinality |V�| = NT and node i� ∈ V represents
the space-time location (i, t); see Fig. 2. The edge set E� ⊆
V� × V� connects now space-time locations, which structure
and respective GSO S� ∈ RNT×NT are dictated by the type
of product graph. Typical product graphs are [33]:
� Kronecker product: G⊗ = GT⊗G = (V⊗, E⊗,S⊗) has the

GSO S⊗ = ST ⊗ S. The number of edges is |E⊗| =
2|E||ET |. The Kronecker product translates the spatial
coupling into a temporal coupling in which spatiotemporal
nodes i� = (i, t) and j� = (j, t+ 1) are connected only if
the spatial nodes i, j are connected in G and the temporal
nodes t and t+ 1 are connected in GT ; grey edges in Fig. 2.

� Cartesian product: G× = GT×G = (V×, E×,S×) has the
GSO S× = ST ⊗ IN + IT ⊗ S. The number of edges is
|E×| = T |E|+N |ET |. The Cartesian product implies a
temporal coupling by connecting each spatial node to
itself in consecutive instants as dictated by GT , i.e., the
spatiotemporal nodes i� = (i, t) and j� = (i, t+ 1) are
connected if time instants t and t+ 1 are adjacent; red
and green edges in Fig. 2.

� Strong product: G� = GT�G = (V�, E�,S�) has the
GSOS� = ST ⊗ IN + IT ⊗ S+ ST ⊗ S. The number of
edges is |E�| = |E||ET |+ T |E|+N |ET |. The strong prod-
uct is the union of the Kronecker and Cartesian products.
Here, spatiotemporal nodes i� = (i, t) and j� = (j, t+ 1)
are connected if time instants t and t+ 1 are adjacent in
the temporal graph GT and spatial nodes i and j are either
neighbors or i = j in graph G; red, green, and grey edges
in Fig. 2.

Column-vectorizing X into x� = vec(X) ∈ RNT we obtain
a product graph signal in which the ith entry is the signal value at
the spatiotemporal node i�. Some of such values are illustrated
in Fig. 2.

B. Problem Motivation

We are interested in learning representations from the spa-
tiotemporal data in X for a particular task such as inferring
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the source of a signal [40], forecasting future values [2], or
classifying time series [3]. While the product graph is a viable
mathematical tool to represent the structure in X, we can also
ignore it and process X with standard approaches such as the
vector autoregressive (VAR) models [41], multilayer percep-
trons (MLPs) [42], or recurrent neural networks (RNNs) [43].
However, such techniques face two main limitations. First,
their number of parameters and computational complexity is
of order O(N2) as they involve dense layers, suffering the
curse of dimensionality [12]. Second, they depend on the fixed
order of the time series. The latter is a challenge because the
learned representations do not permute with the time series
and, when a new time series becomes available, the whole
system needs to be retrained. Consequently, these models are not
transferable.

One strategy to overcome such challenges is to exploit sepa-
rately the spatial and the temporal structure by first processing
X column-wise with a graph neural network (GNN) [44] and
successively with a temporal convolution or RNN [19], [22].
However, such strategy fails to exploit the spatiotemporal cou-
pling in the data and leverages only the coupling in the learned
higher-level representation of the GNN, ultimately, limiting the
performance and interpretability. One way to overcome this
challenge is to embed a graph structure within a recursive model
such as VAR [26] or RNN [27], [28]. Working with graph-based
VAR models is limiting because they work in the linear space,
while graph-based RNN works only with a fixed latent-space
dimension of N (number of the nodes) or require an addi-
tional pooling step. Both the latter are uncomfortable because
RNN-type of algorithms work best with a lower-dimensional
latent space and finding the appropriate pooling strategy adds
an extra challenge to the whole system [44]. Another aspect of
RNNs is that they suffer training issues in their vanilla form;
hence, LSTMs [45] or GRUs [46] are needed, which put more
emphasis on the temporal dependencies rather than on the joint
spatiotemporal ones.

Differently, we propose a first-principle neural network so-
lution that exploits product graphs as an inductive bias for the
spatiotemproal coupling, that is modular to any pooling tech-
nique, and that puts equal emphasis on the joint spatiotemporal
learning. Building on first principles allows for a mathematical
tractability akin to that of the principled spatial CNN [11]. To
achieve these goals, we leverage the shift-and-sum principle of
the convolution operation [47] to propagate information over the
product graph but differently from a GCNN [11] we leverage the
sparsity of the product graph to handle its large dimensionality.
Working with the convolution principle allows also developing
an architecture that is equivariant to permutations [11], enjoys a
spectral analysis via the graph-time Fourier transform [36], [48]
(Section III-B), and that is stable to perturbations in the spatial
support (Section IV).

III. GRAPH-TIME CONVOLUTIONAL NEURAL NETWORKS

In this section, we define the graph-time convolutional neural
network (GTCNN) and discuss its properties both in the vertex
and in the spectral domain.

A. Graph-Time Convolutional Filters

The key element to build a GTCNN is the graph-time convo-
lutional filter. For a product graph G� = (V�, E�,S�) and signal
x�, the output y� of a graph-time convolutional filter of order K
is

y� = H(S�)x� =
K∑

k=0

hkS
k
�x� (2)

where h0, . . . , hK are the parameters and H(S�) :=
∑K

k=0

hkS
k
� denotes the filtering matrix. The qualifier convolution for

filter (2) comes from the fact that it shifts the input x� up to K
times over the product graph S0

�x�,S
1
�x�, . . . ,S

K
� x� and builds

the output y� as a scaled sum of these shifts; see Fig. 3. Since
S� is spatiotemporally local, the shift S�x� diffuses the signal
from the spatiotemporal node i� to any other immediate spa-
tiotemporal neighbor j�. From recursion Sk

�x� = S�(S
k−1
� x�),

we can see that higher-order powers Sk
� diffuse the signal to

spatiotemporal neighbors that up to k−hops. This implies that
filter (2) is spatiotemporally local in a neighborhood of radius
K. The filter resolution depends on the order K but also on
the type of product graph. For instance, the Kronecker product
ignores the information present at time t limiting the spatial
resolution but has a high temporal one; the Cartesian product
brings in the spatial information of time t but accounts for the
temporal proximity only for signal values at the same node; the
strong product accounts for both and needs a lower order K
to cover a particular neighborhood; Fig. 3. The locality of S�
allows obtaining the output y� in (2) with a computational cost
of order O(K|E�|). The latter can be achieved by leveraging
the recursion Sk

�x� = S�(S
k−1
� x�). This complexity order is

appealing despite we work with a large GSO and input vector.
However, it should be noted that |E�| is in turn governed by the
type of product graph [cf. Fig. 2], thus making the strong product
a suitable choice only if the spatial graph is highly sparse. It also
follows from (2) that the order of parameters is O(K) and it is
independent on the spatial and temporal dimensions.

B. Gtcnns

A graph-time convolutional neural network (GTCNN) is a
composition of graph-time convolutional filters with pointwise
nonlinearities. Specifically, consider an architecture composed
of L layers � = 1, . . . , L and let H�(S�) =

∑K
k=0 hk�S

k
� be the

filter used at layer �. The GTCNN propagation rule is

x�,� = σ (H�(S�)x�,�−1) =

(
K∑

k=0

hk�S
k
�x�,�−1

)
(3)

where x�,0 := x� is the GTCNN input. Fig. 4 illustrates a
GTCNN of three layers. To augment the representation power,
we consider multiple nodal features per layer in matrixX�,�−1 =
[x1

�,�−1, . . . ,x
F
�,�−1] ∈ RNT×F where each column xg

�,�−1 is a
graph-time signal feature at layer �− 1. These features are
passed through a bank of graph-time convolutional filters and
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Fig. 3. Graph time convolutional filter of order two illustrated for a Cartesian product graph. Each block shifts the signal x� over the product graph by its graph
shift operator S�. Each shift implies a neighborhood coverage highlighted in yellow for a particular node. Each shifted signal Sk

� x� is scaled by its filter coefficient
hk and summed up to build the output y�. Changing the product graph implies a different spatiotemporal neighborhood coverage.

Fig. 4. GTCNN block diagram. On each layer a graph time convolutional
filter [cf. (2)] is composed by a point-wise non-linearity, and all these layers are
cascaded to generate the output.

pointwise nonlinearities to yield the output features of layer �

X�,� = σ

(
K∑

k=0

Sk
�X�,�−1Hk�

)
(4)

where Hk� ∈ RF×F is the parameter matrix containing the
coefficients of the filter bank at layer �. To ease the analysis of
the filer bank in (4), we make explicit the input-output relation
between the f th output feature xf

�,� and the gth input feature
xg
�,�−1 as

xf
�,� = σ

( F∑
g=1

Hfg
� (S�)x

g
�,�−1

)
= σ

( F∑
g=1

K∑
k=0

hfg
k�S

k
�x

g
�,�−1

)
(5)

for all f = 1, . . . , F and whereHfg
� (S�) =

∑K
k=0 h

fg
k�S

k
� is one

of the F 2 filters used in layer �.
Recursions (4) (resp. (5)) are repeated for all layers. In the

last layer � = L, we consider without loss of generality the
number of output features is one, i.e., x�,L := x1

�,L. This output
is a function of the input x� and the collection of all filter
banks Hfg

� (S�) [cf. (2)]. Grouping all filters in the filter tensor
H(S�) = {Hfg

� (S�)}�fg , we can define the GTCNN output as
the mapping

x�,L := Φ(x�;H(S�)) with H(S�) = {Hfg
� (S�)}�fg. (6)

The GTCNN parameters are learned to minimize a loss
L(xL,Y) computed over a training set of input-output pairs
T = {x�,Y}. As it follows from (2), the number of parameters
in each filter is K + 1. This gets scaled by the number of filters
per layer F 2 and the number of layers L, yielding an order
of O(KF 2 L) parameters defining the GTCNN. Likewise, the
computational complexity for running the filter bank forL layers
is of order O(KF 2L|E�|). Such orders are similar to those of
conventional GCNNs working with time invariant signals. This
is a consequence of exploiting the sparsity of product graphs
and the spatiotemporal coupling via graph convolutional filters
[cf. (2)]. In the next section, we shall discuss how to learn this
spatiotemporal coupling.

Alternative Graph-Time Neural Networks. Once the product
graph is built, we can employ any aggregation scheme to collect
spatiotemporal information. For the sake of completness, we
detail here the message passing neural network (MPNN) [8]
and the graph attention network (GAT) [49]. MPNNs update a
spatiotemporal node’s latent representation x�,� by passing a
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message from its neighborhood as

m
(i)
�,�−1 = f(x�,�−1[j] : (i, j) ∈ E�) (7)

where m
(i)
�,�−1 is the message vector for node i, x�,�−1[j] is the

output of layer �− 1 at node j, and f(·) is a differentiable and
permutation equivariant function. Each node’s latent vector can
be updated based on inferred messages and its current feature
vector as

x�,� = g(x�,�−1,M�,�−1) (8)

where M�,�−1 = {m(i)
�,�−1} collects all the messages for each

node and g(·) is an arbitrary differentiable function (i.e., neural
networks). Since we are considering the spatiotemporal product
graph, the messages are including spatiotemporal information,
and the type of product graph dictates which nodes are forward-
ing these messages.

GATs use an attention mechanism to update latent represen-
tation of each node based on its neighborhood as

x�,l+1[i] = σ

⎛
⎝ ∑

(i,j)∈E�

αijHx�,�[j]

⎞
⎠ (9)

where αij indicates attention coefficients and H ∈ RF×F is a
linear transformation to map the features between layers. The
type of product graph rules the attention coefficients αij and
their calculation.

In both MPNN and GAT models, we can split the rule over
space and time to have a different message passing or attention
scheme. All in all, these represent different principles to learn
spatiotemporal representation with product graphs. We continue
with convolutional principle since it provides theoretical tools
for their analysis and leave the MPNNs and GATs to interested
readers.

C. Learning the Spatiotemporal Coupling

The GTCNN output in (6) is influenced by the type of product
graph but it is unclear which form is most suitable for a specific
problem. To avoid imposing a wrong inductive bias, we consider
the parametric product graph GSO

S� =
1∑

i=0

1∑
j=0

sij
(
Si
T ⊗ Sj

)
, (10)

where by learning the four scalars {sij} we learn the spatiotem-
poral coupling. The parametric product graph generalizes the
three product graphs seen in Section II-A. For instance, setting
s11 = 1 and the rest zero we get the Kronecker product. But
allowing each sij to take any real value weigh accordingly the
impact of the spatial and temporal graphs into the final product
graph. Note also that s00 �= 0 implies the presence of spatiotem-
poral self-loops. If all sij’s are non-zero, the parametric product
graph has |E�| = |E�|+NT edges, which are NT more edges
than the strong product because of these self-loops.

Building a GTCNN with the graph-time convolutional fil-
ter (2) but with the GSO (10) matches the spatiotemporal cou-
pling with the task at hand. However, treating {sij} as learnable

parameters is practical only if we fix the filter order to K = 1.1

For higher orders K ≥ 2 this implies pre-computing the powers
Sk
� of (10) and storing them in the memory as the computa-

tional complexity of each multiplication is of order O((NT )3).
Yet, storing the powers in the memory is still impractical for
large spatial graphs. Another way to mitigate these issues is to
rearrange the whole filter expression as shown next.

Proposition 1: Consider the spatial graph G with shift op-
erator S and the temporal graph GT with shift operator ST .
The graph-time convolutional filter in (2) operating with the
parametric product graph in (10) is a particular case of

H(S,ST ) =

K̄∑
k=0

K̃∑
l=0

hkl(S
l
T ⊗ Sk) (11)

where K̄ and K̃ are the orders over the spatial and temporal
graphs respectively and {hkl} are the parameters.

Proof: See Appendix A, available online. �
Building a GTCNN with a filter tensor H(S,ST ) =

{Hfg
� (S,ST )}�fg yields an architecture that is more flexible

than (6). This is because of:
1) Filter H(S,ST ) [cf. (11)] has more freedom to control

the spatial and temporal resolution in each layer through
orders K̄ and K̃. Differently, filter H(S�) [cf. (2)] does
not allow for such an independent control, in which order
K influences the spatiotemporal resolution in a coupled
manner. This allows exploiting more resolution in a par-
ticular domain.

2) Filter H(S,ST ) learns how the spatiotemporal coupling
influences the graph-time convolution through parameters
{hkl}. This happens for each layer and feature. This is also
more powerful than learning {sij} and {hk} disjointly
as in H(S�) because it matches the importance of the
multihop resolutions with the spatiotemporal links.

3) Filter H(S,ST ) enjoys the same computational cost of
H(S�). Computing the output y� = H(S,ST )x� requires
computing all shiftsx(k,l)

� = (Sl
T ⊗ Sk)x� for all k ∈ [K̄]

and l ∈ [K̃]. These shifts can be written in a recursive
manner as

x(k,l)
� = (STS

l−1
T ⊗ SSk−1)x�. (12)

Exploiting the properties of the Kronecker product2, we
can write the latter as

x(k,l)
� = (ST ⊗ S)(Sl−1

T ⊗ Sk−1)x�

= (ST ⊗ IN )(IT ⊗ S)(Sl−1
T ⊗ Sk−1)x�. (13)

Thus, we can compute x
(k,l)
� recursively as

x(k,l)
� = (ST ⊗ IN )x(k,l−1)

�

= (ST ⊗ IN )(IT ⊗ S)x(k−1,l−1)
� (14)

where x
(k,l−1)
� = (IT ⊗ S)x

(k−1,l−1)
� is the spatially

shifted signal and x
(0,0)
� := x�. Recursion (14) implies

1This would be the spatiotemporal form of GCN [50].
2(A⊗B)(C⊗D) = AC⊗BD [51].
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that we can compute x(k,l)
� from x

(k−1,l−1)
� with a cost of

O(T |E|+N |ET |). Since we need to perform the latter
for all k ∈ [K̄] and l ∈ [K̃], we have a computational
cost of order O(K̄T |E|+ K̃N |ET |), which is linear in
the product graph dimension. The GTCNN cost is F 2 L
times the latter.

D. Properties

The convolution principle allows studying two fundamental
properties: equivariances to permutations in the vertex domain
and the filters’ frequency response in the frequency domain.
We shall discuss these properties for a GTCNN with the more
general filter H(S,ST ) [c.f. (11)] but the results hold also for
filter H(S�) [c.f. (2)].

Permutation equivariance allows assigning an arbitrary order-
ing to the nodes. This is a desirable property since a graph does
not change by the permutation of its nodes, hence the GTCNN
output should stay unchanged up to a reordering. The GTCNN is
permutation equivariant as shown by the following proposition.

Proposition 2: Let x� = vec(X) be the signal over the prod-
uct graph G� with shift operator S� = ST � S. Consider also the
output of a graph-time filter H(ST ,S)x�. Then, for a permuta-
tion matrix P belonging to the set

P = {P = {0, 1}N×N : P1 = 1,P�1 = 1}

it holds that

P�vec−1(Φ(x�;H(ST ,S)))=Φ(x�;H(ST ,P
�SP))vec(P�X).

(15)
Proof: See Appendix B, available online. �
That is, the GTCNN operating on a multivariate time-series

over a spatial graph S has the equally permuted output of
the GTCNN operating on permuted spatial graph P�SP. This
property allows the GTCNN to exploit the spatiotemporal data
dependencies and symmetries encoded in the product graph to
enhance learning [12].

Spectral analysis of filter (11) can help us to study their
behaviors and what spectral features they learn for a specific
task. It also provides a fundamental framework for further
analyzing the robustness of the GTCNNs to perturbations as
we shall detail in the next section. To do so, consider the eigen-
decomposition of the spatial GSO S = VΛVH with eigenvev-
tors V = [v1, . . . ,vN ] and eigenvalues Λ = diag(λ1, . . . , λN ).
Consider also the eigendecomposition of the temporal GSO
ST = VTΛTV

H
T whereVT = [vT,1, . . . ,vT,T ] is the matrix of

temporal eigenvectors and ΛT = diag(λT,1, . . . , λT,T ) is that
of temporal eigenvalues. Then, the GSO of the product graph S�
can be eigendecomposed as

S� = V�Λ�V
H
� = (VT ⊗V)(ΛT �Λ)(VT ⊗V)H (16)

with eigenvectors are V� = VT ⊗V and eigenvalues Λ� =
ΛT �Λ dictated by the product graph. Then, we can define
the graph-time Fourier transform of signal x� as x̃� = (VT ⊗
V)Hx� [33], [36]. This transform represents the variation of
the multivariate time-series over the product graph in terms of

product graph eigenvectors. Using these concepts, the following
proposition characterizes the spectral behavior of filter (11).

Proposition 3: Consider the eigendecomposition of the spa-
tial GSOS = VΛVH and the temporal GSOST = VTΛTV

H
T .

Consider also the graph-time Fourier transform of the output
signal ỹ� = (VT ⊗V)Hy� and the input signal x̃� = (VT ⊗
V)Hx�. Then, the filtering operation (11) operates in the graph-
time frequency domain as

ỹ� = h (ΛT ,Λ) x̃� (17)

with the filter frequency response matrix

h (ΛT ,Λ) =
K̄∑

k=0

K̃∑
l=0

hkl(Λ
l
T ⊗Λk) (18)

with diagonal entries [h(ΛT ,Λ)]kk = h(λTt, λi) and k =
N(t− 1) + i for i = 1, . . . , N and t = 1, . . . , T .

Proof: See Appendix C, available online. �
That is, the graph-time filtered version y� of x� with the

filter H(ST ,S) corresponds to an element-wise multiplica-
tion in the graph-time frequency representation, i.e., ŷti =
h([ΛT ]t, [Λ]i)x̂ti. This is a direct extension of the convolution
theorem [47] to the spatiotemporal setting, ultimately, justifying
the qualifier convolution for filter (11). It shows that by learning
the parameters hkl we not only learn spatiotemporal coupling
in the vertex domain with desirable properties but also the
frequency response of these filters to extract relevant spectral
patterns.

IV. STABILITY ANALYSIS

We now investigate the stability properties of GTCNNs w.r.t.
perturbations on the spatial graph to characterize its learning
capabilities. Analyzing stability is important as we often may
not have access to the ground truth spatial graph. In some
cases, the inferred graph may be imperfect and we have to train
the GTCNN over a perturbed graph; in other cases, practical
physical networks (e.g., water or power networks) slightly differ
from the one we train the GTCNN, e.g., because of model
mismatches. So, having a stable GTCNN is desirable to perform
the task reliably and allow transference [15]. We analyze the
stability w.r.t. the relative perturbation over the spatial graph

Ŝ = S+ (ES+ SE) (19)

where Ŝ is the perturbed GSO and E is the perturbation ma-
trix [16]. Such model suggests that the graph perturbation de-
pends on its structure, i.e., a node with more connected edges is
relatively more prone to more perturbation. To characterize the
GTCNN stability, we consider graph-time convolutional filters
with a frequency response that varies slightly in the high spatial
frequencies (eigenvalues Λ) and arbitrarily in the temporal one,
see Fig. 5.

Definition 1: Given a graph-time filter with an analytic fre-
quency response h(λT , λ) [cf. (18)]. We say this filter is graph
integral Lipschitz if there exists constant C > 0 such that for all

Authorized licensed use limited to: TU Delft Library. Downloaded on November 23,2023 at 08:53:39 UTC from IEEE Xplore.  Restrictions apply. 



14632 IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. 45, NO. 12, DECEMBER 2023

Fig. 5. Spatial Lipschitz graph-time filter. The frequency response varies
smoothly over high graph frequencies, while it has sudden changes on temporal
frequencies.

graph frequencies λ1, λ2 ∈ Λ, it holds that

|h(λT , λ2)− h(λT , λ1)| ≤ C
|λ2 − λ1|

|λ2 + λ1|/2
. (20)

Expression (20) implies that the filter’s two-dimensional fre-
quency response is Lipschitz in any interval (λ1, λ2) of graph
frequencies where the Lipschitz constant depends on their gap
|λ2 + λ1|/2. The latter is similar to the integral Lipschitz prop-
erty for GCNNs working on time invariant signals [16] since
we treat spatial perturbations, but it does not restrict the tem-
poral behavior of the filter.3 For the two-dimensional frequency
response, this implies that its partial derivative is restricted as∣∣∣∣λ∂h(λT , λ)

∂λ

∣∣∣∣ ≤ C, (21)

i.e., the filters in a GTCNN have a frequency response that cannot
vary drastically on high graph frequencies for all temporal
frequencies but the filter can vary arbitrary over the temporal
frequencies. Fig. 5 illustrates this property.

Definition 2: Consider a graph-time convolutional filter with
an analytic frequency response h(λT , λ) [cf. (18)]. We say this
filter has a normalized spectral response if |h(λT , λ)| ≤ 1 for all
λ, λT .

This implies that the filter’s gain B = ‖H(ST ,S)‖ to be less
or equal to 1,B ≤ 1, w.r.t. an l2-measure. Definition 2 is required
as the output of each layer should not magnify the input norm,
otherwise, the system will become less stable as the number
of layers increase, even in absence of perturbation. Otherwise,

3If we would ignore the product graph structure and discuss the stability
results using [16] straightforwardly the filter needed be spatiotemporal integral
Lipschitz. This in turn affects discriminability [15].

constant B would also appear in the following stability result of
the GTCNN.

Theorem 1: Let S = VΛVH and STVTΛTV
H
T be spatial

and temporal graph shift operators, respectively. Let also Ŝ be the
relatively perturbed graph shift operator [cf. (19)]. Consider the
error matrix has the eigendecomposition E = UMUH where
U are the eigenvectors and M is the diagonal matrix of eigen-
values. Assume the error matrix has a bounded operator norm
‖E‖ ≤ ε. Consider a GTCNN with L layers, F features and
integral Lipschitz spatial-temporal graph filters [cf. Definition 1]
with normalized spectral responses [cf. Definition 2]. Let also
its nonlinearities be 1-Lipschitz, i.e., |σ(a)− σ(b)| < |a− b|,
such as ReLU. Then, the distance between the GTCNN outputs
Φ(x�;ST ,S,H) on the nominal graph and Φ(x�;ST , Ŝ,H) on
the perturbed graph is upper bounded by

‖Φ(x�;H(ST ,S))− Φ(x�;H(ST , Ŝ))‖2 ≤ LFL−1Δε‖x�‖2
(22)

where Δ = 2C(1 + δT
√
N), δ = (‖U−V‖2 + 1)2 − 1 indi-

cates the eigenvector misalignment between the spatial graph
shift operator S and error matrix E, N is the size of spatial
graph, and T is the size of temporal graph.

Proof: See Appendix D, available online. �
Result (22) generalizes the findings in [16] to the spatiotem-

poral domain and states that GTCNNs are stable to relative per-
turbations in the spatial graph for integral Lipschitz graph-time
convolutional filters in the graph frequency domain (modifying
of [16] for product graphs enforces this assumption on both
time and graph frequency domains). Together with the per-
mutaiton equivariance [Proposition 2], results (22) shows that
GTCNNs allow for inductive learning and that are transferable
architectures. Such result provides three main insight on its
stability/transferability:

1) The GTCNN is less stable for larger graphs (
√
N ) as

more nodes are exchanging information over a perturbed
graph. Instead, its stability is more affected by the temporal
resolution as increasing T implies replicating the entire
perturbed spatial graph.

2) The GTCNN is less stable if it is more discriminative
in the nominal graph. This is reflected by term LFL−1

and it is due to the larger number of filters operating on
the perturbed graphs. Such a observation shows also an
inherit trade-off between stability and discriminability of
GTCNNs.

3) Finally, we see the impact of each individual filter via the
Lipschitz constant C. The latter in turn controls the filter
discriminability on high graph frequencies to improve
stability.

Comparison With Alternative Bounds. We discuss now that
exploring the product graph sparsity with GTCNN provides
more stable solutions compared with baselines that ignore it. We
discuss also the relation of result (22) with the stability result
for spatiotemporal learning [28], [30].

Product graph GCNN: One trivial learning solution on prod-
uct graphs is to ignore what different edges represent and naively
deploy a GCNN over this large graph ofNT nodes. Generalizing
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the results in [16] for the product graph with NT nodes yields
a stability bound of ΔGCNN = 2C

√
T (1 + δ

√
NT ) since it as-

sumes the perturbation over all the edges in the product graph
including temporal ones, so, the noise energy scales by

√
T and

it applies over NT nodes. The latter leads to a stability bound
2CT times looser than (22). Moreover, Theorem 1 restrains the
graph-time filter variability only on spatial frequencies, while
if we apply directly the results of [16], we restrain also high
temporal frequency variations.

GCNNs: Another way to approach spatiotemporal learning is
to treat the time series as features over the nodes and deploy a
conventional GCNN. Leveraging again the result of [16], such a
solution will have a stability boundΔGCNN = 2CTL(1 + δ

√
N)

as we replicate filters in each layer T times for each feature,
including the input layer. This bound is magnificently large due
to factor TL.

GGRNN [28]: Graph gated recurrent neural networks
(GGRNNs) replace the linear transformations in a recurrent neu-
ral network with graph filters to learn spatiotemporal patterns.
They have a stability bound ΔGGRNN = C(1 +

√
Nδ)(T 2 +

3T ). Comparing with (22), ΔGGRNN expands at a higher rate
by a factor of T , but note that the term T 2 + 3T also implicitly
contains the effect of layers L in itself. The assumptions behind
the stability theorem in [28] are similar to Theorem 1, i.e.,
spatial integral Lipschitz filters and 1-Lipschitz nonlinearity. In
conclusion, Theorem 1 and [28] present closely related stability
bounds based similar conditions but for different models.

ST-GNN [30]: Space-time graph neural network (ST-GNN)
linearly composes a GSO with a continuous time shift operator
to define a space-time shift operator. The stability to relative
perturbation on the spatial graph is equal to GCNN [11], i.e.,
ΔSTGNN = 2C(1 + δ

√
N). This bound suggests that ST-GNN

can process temporal properties of times series robustly under
spatial perturbation. The result (22) reflects the effect of time
series length on stability of GTCNN as it involves time directly
into convolutional filters to capture spatiotemporal patterns in
the data.

V. NUMERICAL RESULTS

This section evaluates the GTCNN performance in different
scenarios and compares it with other state-of-the-art algorithms.
In all experiments, the ADAM optimizer is used to train the
model and an unweighted directed line graph is selected as
the temporal graph. A complete hyperparameter selection is
reported in Appendix E, available online.

A. Source Localization

The task is to detect the source of a diffusion process over
a graph by observing the time-series of length T . The graph is
an undirected stochastic block model with C = 5 communities
andN = 100 nodes. The edges are randomly and independently
drawn with probability 0.8 for nodes in a same community and
0.2 for nodes in different communities. At t = 0, a random node
takes a unitary value and diffuses it throughout the network
30 times as e−tL. The model is fed with a multivariate time
series {xt−T , . . . ,xt−1} randomly selected after at least t = 15

Fig. 6. Comparison of GCNN with parametric and non-parametric GTCNN
performances on source localization task to emphasize on the role of spatiotem-
poral couplings.

diffusion and the goal is to detect the community corresponding
to the source node. Our aim here is to study the role of the
different product graphs; hence, we compare different GTCNNs
with the baseline GCNN that ignores the temporal connections
and treats time as feature.

The dataset contains 2000 samples with an 80/10/10 split.
All architectures have two layers with two second order filters.
The cross-entropy loss is used for all models except for the
parametric which its cost is also regularized by an l1-norm
of product graph parameters {sij} with regularization weight
β = 0.05 to enforce sparse spatiotemporal connections. The
temporal windows are selected from T ∈ {2, 3, 4, 5} and the
features from F1, F2 ∈ {4, 8, 16, 32}. The models are trained
for 1000 epochs with 100 batch size. Each experiment is done for
10 different random graphs and 10 different dataset realization.

The results in Fig. 6 suggest that accounting for the temporal
connections even through a fixed product graph improves the
performance. Considering consecutive times as features in the
GCNN can be translated as a fully connected temporal graph, so,
the improved performance by enforcing a reasonable structure
to temporal samples was expected. Better results are achieved
by using parametric product graph as it learns the temporal
connections for the specific task. This flexibility reduces also
the number of failed training attempts compared with the fixed
product graphs and the GCNN.

B. Multivariate Time-Series Forecasting

We applied the GTCNN to address traffic and weather fore-
casting on four benchmark datasets. On the traffic forecasting
task, we used parametric product graph while the recursive
model is applied for the weather forecasting problem. The goal is
to show that both solutions compare well with alternatives. The
results are compared with baseline methods to provide insights
into the GTCNN capabilities and limitations. For baselines, we
considered:
� ARIMA: auto-regressive integrated moving average model

using Kalman filter [52]. This model treats each time series
individually.

� G-VARMA: graph vector auto-regressive moving average
model [26]. This model works upon statistical assumptions
on the data and takes the spatial graph into account.
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TABLE I
PERFORMANCE COMPARISON OF GTCNN AND OTHER BASELINE MODELS FOR DIFFERENT PREDICTION HORIZONS. THE BEST PERFORMANCE IS SHOWN IN BOLD

AND THE SECOND BEST IS UNDERLINED. THE STANDARD DEVIATION OF ALL MODELS ARE OF THE ORDER 10−3 AND ARE OMITTED

TO AVOID AN OVERCROWDED TABLE

� GP-VAR: graph polynomial auto-regressive model [26]. It
has fewer parameters than G-VARMA yet considers the
spatial graph.

� FC-LSTM [52]: fully connected LSTM performing inde-
pendently on time series, i.e., one LSTM per time series.

� Graph WaveNet: A hybrid convolutional model for time-
series over graph [25].

� GMAN: A multi-attention graph-based network designed
for traffic prediction [53]

� STGCN: spatial-temporal graph convolution network
which uses graph convolution module alongside with 1D
convolution [2].

� GGRNN: gated graph recurrent neural network which re-
place linear transforms in a RNN by graph convolutional
filters [28].

Traffic forecasting. We considered the traffic network datasets
METR-LA and PEMS-BAY. METR-LA contains four months
of recorded traffic data over 207 nodes on the highways of Los
Angeles County with 5 minutes resolution [52]. PEMS-BAY
includes six months of traffic information over 325 nodes in Bay
Area with similar resolution of METR-LA. We considered the
same setting as in [54]. The shift operator is a directed adjacency
matrix constructed by applying a Gaussian threshold kernel over
the road network distance matrix. The goal is to predict the
traffic load in time horizons 15− 30− 60 minutes having the
time series for last 30 minutes, i.e., T = 6.

Both datasets are divided into an 80/10/10 split chrono-
logically. The GTCNN is fixed and contains two layers with
third order filters and the parametric product graph. We

evaluated the number of features in each layer from F ∈
{4, 8, 16}. The objective function is the regularized mean
squared error (MSE) via the l1-norm on the product graph
parameters s, i.e., L = MSE(x̂t+1,xt+1) + β‖s‖1. The reg-
ularization weight is chosen from β ∈ {0, 0.05, 0.1}. For the
GGRNN, we evaluated features F ∈ {4, 8, 16} and filter orders
K ∈ {3, 4, 5}. For the other models, the parameters have been
set similar to [25]. The evaluation metrics are the mean absolute
error (MAE), the root mean squared error (RMSE), and the mean
absolute percentage error (MAPE).

Table I compares the performance of GTCNN and other
baseline models. The GTCNN outperforms the other models in
a short horizon while Graph WaveNet and GMAN work better
for longer horizons. The benefits in the short term are due to high
order spatiotemporal aggregation in the GTCNN which allows
capturing efficiently the spatiotemporal patterns in the data. On
the longer term, the Graph WaveNet works better because it
captures longer term patterns by increasing the receptive field
of the model through dilated convolutions. Graph Wavenet can
also be fed with a longer time series as it works only with the
spatial graph. GMAN also captures long-term pattern in the
data through its multi-attention mechanism among different time
stamps. Differently, the GTCNN does not capture them and an
efficient implementation remains an interesting extension.

Weather forecasting. We considered two benchmark datasets,
Molene and NOAA. The Molene dataset contains 744 hourly
temperature measurement across 32 stations in a region of
France. The NOAA dataset contains 8579 hourly temperature
measurement across 109 stations in the U.S.. The same setting
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TABLE II
THE PERFORMANCE OF THE GTCNN COMPARED WITH BASELINE METHODS ON THE WEATHER FORECASTING TASK. THE BEST PERFORMANCE IS SHOWN IN

BOLD AND THE SECOND BEST IS UNDERLINED. THE STANDARD DEVIATION OF ALL MODELS ARE OF THE ORDER 10−2 FOR THE MOLENE DATASET AND 10−3

FOR THE NOAA DATASET AND THEY ARE OMITTED TO AVOID AN OVERCROWDED TABLE

as [26] is used in this experiment. Our aim is to make a prediction
of the temperature for 1− 3− 5 hours ahead having the time
series for last 10 hours.

The model is fixed and consists of two recursive GTCNN
[c.f. (11)] layers with temporal locality selected from K̃ ∈
{3, 4, 5} and spatial locality from K̄ ∈ {3, 5, 7}. For the neural
network models, the number of features is chosen via grid search
fromF ∈ {4, 8, 16}. The GGRNN filter orders are varied among
K ∈ {3, 4, 5}. For the statistical models we set the parameters
similar to [26]. The number of LSTM hidden units are selected
from {8, 16, 32, 64}. The loss function is the MSE at 1-step
prediction.

Table II indicates the model performance for different pre-
diction horizons. In the Molene dataset, graph-based statistical
methods outperform the rest as the dataset contains fewer sam-
ples and the time series have clear patterns in their temporal
variation. Hence, leveraging a statistical assumption for the
data compensates for the lack of samples and leads to a better
performance. Among these methods, G-VARMA performs the
best which indicates the importance of inducing the graph in
the model. Due to the temporal connections, the GTCNN still
performs better than the neural network counterparts. In the
NOAA dataset, the abundance of training data allows the neural
network models to learn complicated patterns and outperform
statistical-based models. All the neural network alternatives
perform closely, however, in higher forecasting horizons LSTM
starts to take over the other variants while GTCNN performs
better in short horizons. Overall, the GTCNN can be considered

as a valid alternative for learning spatiotemporal representations
in both cases where the training set is limited or large.

C. Stability Analysis

To investigate the stability of the GTCNN, we tested the
trained models in the source localization and weather forecasting
experiments under perturbed graphs with different signal to
noise ratios (SNR)

SNR = 10 log10
‖S‖2F
2‖E‖2F

. (23)

The noise energy is doubled as it appears twice in the relative
perturbation model [c.f. (19)].

Fig. 7(a) shows the average classification accuracy for differ-
ent amounts of perturbations. The GTCNN performs decently
even in noisy scenarios around 5 dB. Fig. 7(b) represents the
performance for different number of nodes in the graph. We
trained the GTCNN over different graph sizes and evaluated the
results using a perturbed graph to observe the effect of graph
size on stability. The accuracy reduces steadily with the graph
size as Theorem 1 suggests. To investigate GTCNN stability
itself and its relation with bound (22), we analyzed the output
embeddings of a fixed GTCNN network between the nominal
and the perturbed graph. Fig. 7(c) and (d) depicts theoretical
bound versus GTCNN empirical performance. We can observe
that the bound reflects the same behavior of the empirical results
with respect to both noise energy and time series length. In
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Fig. 7. Stability results for different scenarios of the parametric GTCNN and the best alternative for a fixed product graph (Kronecker, Cartesian, Strong). We also
consider the vanilla GCNN as a baseline. (a) Results for different SNRs. (b) Performance for different graph sizes in 5 dB perturbation. (c) Embedding difference
in terms of rNMSE between the trained GTCNN on the nominal graph and the perturbed one. (d) Embedding difference for different time series lengths in 5 dB
perturbation.

Fig. 8. Stability results for different scenarios of the parametric GTCNN,
recursive GTCNN, baseline GCNN, and GGRNN on NOAA dataset. (a) Results
for different SNRs. (b) Performance for different time series lengths in 5 dB
perturbation.

addition, from all results we see the GTCNN offers a more stable
performance compared with the vanilla GCNN by using the
temporal data as features. This in turn highlights our theoretical
insights after Theorem 1.

To compare the GTCNN stability with baseline models, we
replicated the weather forecasting experiment on NOAA dataset
and employed perturbed graphs with different SNRs in the
testing phase. Fig. 8(a) illustrates the performance of GTCNN
alongside with GGRNN and the baseline GCNN for different
noise levels. All models show a similar empirical performance
but most importantly we corroborate the findings of Theorem 1.
The proposed models (recursive and parametric) become looser
with the rate shown by result (22). Fig. 8(b) studies the effect
of temporal window T by depicting the performance for fixed
noise and different time series lengths. The GTCNN performs
better than the rest and it also loses performance on a lower rate
than alternatives as the time window increases. The latter also
aligns with the theoretical analysis in Theorem 1.

Finally, in Fig. 9 we investigate the frequency response of
the learned filters. The frequency responses vary smoothly over
high graph frequencies for the trained filters while the temporal
frequencies have more variations throughout of the spectrum.
This also shows the integral Lipschitz property of said filters.

D. Ablation Study

To investigate the role of each component in the GTCNN
and the difference between its variations, an ablation study
is performed. The experiments include source localization on
synthetic data, traffic prediction on METR-LA dataset, and

TABLE III
ABLATION STUDY OF THE GTCNN. THE PERFORMANCE METRIC FOR SOURCE

LOCALIZATION TASK IS ACCURACY, TRAFFIC PREDICTION IS RNMSE, AND

WEATHER FORECASTING IS RNMSE. COMPUTATION IS THE AVERAGE TIME

(SECOND) PER EPOCH FOR ALL THE EXPERIMENTS

weather forecasting on NOAA dataset. The performance metric
for the first is accuracy and the others are measured with rNMSE.
Notice that the design of the models are similar to the performed
applications. The GTCNN variants studied include:
� Baseline GCNN: The vanilla GCNN where each time

stamp is considered as a specific feature over the graph.
� Fixed: Best performance of a fixed product graph (Carte-

sian, Kronecker, Strong) used in the GTCNN.
� Parametric: Uses the parametric product graph in the

GTCNN alongside a l1-norm regularizer for parameters
s with weight β.

� Recursive: The GTCNN structure using the recursive
graph-time convolutional filter (11).

� Shared parametric: Recursive model where parametershkl

are shared in a certain way yielding the parametric product
graph model.

Table III shows the performance of different variations of the
GTCNN. As the results suggest, using a product graph, even a
fixed one, improves the model’s performance and increases com-
putational cost slightly. Instead, using a regularized parametric
product graph further improves the performance in exchange of
considerable model complexity. The recursive model not only
reduces the computational cost of parametric model, but it also
improves the performance slightly by providing more degrees of
freedom. Shared parametric variation reduces the computational
complexity, however, the performance drops near the parametric
model as Proposition 1 claims.

Fig. 10 shows the performance of parametric model on
weather forecasting application for different regularizer weights
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Fig. 9. (a) Normalized frequency response of a trained recursive GTCNN with two layers and four filters per layer. The bright color represents 1 while the dark
color stands for 0. (b) Examples of the filter frequency response variation to normalized frequencies. continuous line belongs to graph frequencies λ and dashed
ones are related to temporal frequencies λT .

Fig. 10. The performance of parametric model for different values of regular-
ization weight β on NOAA dataset.

β. The result shows that the parametric GTCNN is highly
sensitive to the regularizer weightβ as it varies considerably with
respect to this parameter. The main reason is polynomial relation
of product graph parameters s with the model output which
magnifies the effect of regularizer weight. Hence, another added
merit of recursive model is eliminating polynomial parameters
and improving model’s sensitivity.

VI. CONCLUSION

We introduced graph-time convolutional neural networks as
a model to learn from spatiotemporal data. The GTCNN uses
product graph to convert dynamic data over network into static
data over a larger graph. Afterward, a shift-and-sum convolution
mechanism conveys the information over the product graph to
exploit spatiotemporal dependencies in the data. The product
graph itself can also be parametric to enable the model to learn
temporal relationships directly from data, and also allows us
to implement the GTCNN recursively and avoid storing and
processing large graphs. We proposed a spectral domain analysis
for graph-time convolutional filters and showed they operate as
point-wise multiplication between the filters frequency response
and the time series graph-time Fourier transform. Such a spectral
analysis allowed us to study the stability of the GTCNN to
perturbations in the spatial support. We showed that the GTCNN
becomes linearly less stable as the time series length increases.
However, it is yet more stable than the case where we consider

time as distinct features and approach the problem via GCNNs.
The numerical results also approved that GTCNNs performs
better than a baseline GCNN model. Moreover, GTCNN com-
pares well on benchmark datasets to state-of-the-art graph-based
models but it suffered to capture long term patterns in the data.
This is because the GTCNN works with large graphs and cannot
maintain long input time series. The presented recursive model
overcomes the memory consumption problem for large graphs
and long time series while computational complexity needs to
be improved yet as a direction for future works.
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