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Summary

This thesis investigates the connections between urban fragmentation and the spatial segre-
gation of non-EU immigrant communities in Europe. Previous research indicates that urban
fragmentation can be connected to the degree of segregation. Particularly, in the American
case, infrastructural barriers can be linked to the boundaries of ethnic groups. However, these
connections cannot be generalized to other contexts since these correspond to unique historical
causes. Therefore, merely identifying the existence of a connection between urban fragmenta-
tion and segregation is insufficient; these results need to be recontextualized in terms of the
local dynamics of each city. Our study aims not only to determine the link between the spatial
patterns of urban fragmentation and segregation, but also to examine how these connections
are interpreted when analyzed in greater detail across various cases.

The research utilizes a mixed-methods approach that provides a generalizable methodology
while still allowing for the detailed examination of specific cases. The quantitative component
involves constructing spatial patterns of urban fragmentation and segregation. Urban frag-
mentation patterns are identified using OpenStreetMap data to identify areas ‘enclosed’ by
large infrastructures that act as physical barriers. The patterns of segregation are constructed
using data from the Data for Integration (D4I) initiative from the European Commission and
following a regionalization approach to identify areas of high immigrant concentration. These
patterns are compared using mutual information, a metric for the assessing the similarity of
data partitions. To ensure that any observed similarities are not merely due to random chance,
we also generate a set of synthetic urban fragmentation patterns. These synthetic patterns are
designed to mimic the original urban fragmentation in terms of the number and distribution
of fragments. The qualitative component of the study consist on selecting a set of cities from
the different countries included in the study and observing their local context in relation to
their regions of concentration and infrastructure.

From the 106 cities included in the study, only 33 obtained statistically significant relations
between both patterns; 26 showed a positive correlation and 7 a negative correlation. These
results suggest that a relation between urban fragmentation and spatial segregation of immi-
grant communities does not exist as a generalizable phenomenon in the European context. Our
qualitative exploration focused on nine cities across seven countries. This city-level analysis
suggests that even in instances where there is a similarity between both patterns, the infrastruc-
ture does not appear to be the element actively driving segregation. Instead, other aspects of
the built environment, such as urban decay and the quality of housing stock, seem to be more
closely associated with the high concentrations of immigrants. Future research could explore
the segregation patterns of other social groups, such as the urban poor, or investigate other
potential impacts of infrastructure on vulnerable groups that go beyond urban fragmentation.
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1
Introduction

Our cities are divided, both physically and socially. The urban space contains gaps and barriers
that lead to the ‘concentration of disadvantages’ and the emergence of inequality (Monica et al.,
2018). These urban inequalities, in turn, negatively impact social relations and can foment so-
cietal discontent (Lenzi & Perucca, 2023; Wilkinson, 2006), illustrating a clear divide between
social groups within cities. However, in the urban context, inequalities assume an additional
connotation. Urban inequalities correspond to a larger socio-spatial context, meaning that
these must be understood through its geographies (Nelson, Warnier, & Verma, 2024). Inequal-
ities are thus interpreted not only through demographic characteristics but also through their
spatial distribution and their corresponding patterns of segregation. In simple terms, spatial
segregation refers to the uneven distribution of elements across space (Rasse, 2019). ‘Ele-
ments’ meaning individuals or groups of people with certain common characteristics, who are
overrepresented, concentrated, in certain areas. Spatial segregation, commonly associated with
residential segregation, can be connected to religion, ethnicity or socio-economic status aspects
depending on the context (Greenstein, Sabatini, & Smolka, 2020). As framed by Scarpa (2015),
‘residential segregation is the spatial representation of inequality’. It often coincides with social
exclusion and a range of related social issues, including limited access to the labour market,
fewer educational opportunities, or restricted participation in broader society (Kesteloot, 2005;
Musterd, 2005; van Kempen & Şule Özüekren, 1998). Moreover, spatial segregation can lead
to stigmatization, with neighbourhoods potentially becoming self-fulfilling regions of misery
based solely on their perceived identity (van Kempen & Şule Özüekren, 1998).

Even though issues of spatial segregation are as old as human settlements, with known
records of segregation patterns dating back to ancient Babylon (van Kempen & Şule Özüekren,
1998), recent decades have seen increased interest and concerns on spatial segregation by both
academics and politicians in the European context (Arbaci, 2007; Musterd, 2005; Musterd &
de Winter, 1998; Deborah Phillips, 2013; Semyonov & Glikman, 2009). Musterd and de Winter
(1998) argued that the increased attention to areas with large ethnic minority population was
the result of growing tensions between groups with different backgrounds. Tensions that have
manifested in the form of riots or right-wing voting; a concern that 26 years since the original
publication only seems more relevant than ever (Carroll & O’Carroll, 2023; Lauer & Durkin,
2023). Thus, spatial segregation continues to be a persistent issue affecting the European city; a
complex issue characterized by its multidimensionality. Spatial segregation needs to be treated
as an issue of ethnic and social spatial inequality, one that is influenced by various factors that
may mutually relate to one another and that cannot be understood on a ‘one-dimensional way’
(Musterd, 2005).

Among the various factors that influence spatial segregation, one dimension deserving par-

1



2

ticular attention is the role of urban form and infrastructure. The reason being that the built
environment, and its different configurations, influence social interactions (Miranda, 2020). As
argued by Hillier and Hanson (1989) (as cited in Vaughan and Arbaci (2011)):

‘...that through its ordering of space the man-made physical world is already a
social behaviour. It constitutes (not merely represents) a form of order in itself:
one which is created for social purposes, whether by design or accumulatively, and
through which society is both constrained and recognisable.’

Vaughan and Arbaci (2011) emphasize that a proper understanding of urban form is essential
for comprehending cities, migration, and settlement patterns. Such understanding necessitates
the consideration of infrastructure, particularly transportation infrastructures, which have,
throughout history and into the present day, shaped cities (Glaeser, 2020). Even though
transportation infrastructures can be defined as ‘the physical and organisational network which
allows movements between different locations’ (Schroten et al., 2019), these play a paradoxical
role in the urban space. In the process of connecting ‘premium’ locations, infrastructures not
only facilitate mobility but also produce division, reinforcing local boundaries as highlighted in
Splintering Urbanism (Stephen Graham, 2000; Steve Graham & Marvin, 2002). A process that
has been exacerbated by globalisation and the process of competition between cities, which led
to the emergence of spatial rearrangements and new infrastructures (Kesteloot, 2005). The
nature of infrastructures as barriers leads to urban fragmentation, a partition of the urban
space into distinct, and potentially isolated, patches.

Urban fragmentation and segregation are not unknown to each other. Previous research
has shown that the degree of urban fragmentation can be associated to the level of segregation
between black and white population in American cities (Ananat, 2011). This evidence has
motivated other researchers to adopt urban fragmentation as a means of assessing inequality
in the European context (Tóth et al., 2021). In both instances, urban fragmentation proved
to be a robust predictor, suggesting that the separation of social groups in cities can be con-
nected to its physical separation. However, these findings should be interpreted cautiously.
Identifying a potential relation, or none, between urban fragmentation and segregation is only
a partial answer. Properly understanding the connection between both requires addressing the
local context involved in each case. The observation that the barriers created by infrastructure
in America coincide with boundaries of spatial segregation of ethic groups (van Eldijk, Gil, &
Marcus, 2022), may raise questions of whether similar relations might be observable in Europe.
However, this relation corresponds to a unique historical context, since urban fragmentation
in America has partially resulted from purposed policies aimed at segregation. For instance,
in Atlanta, highway construction was intentionally intended to represent a barrier to sepa-
rate white and black populations (Bayor, 1988). Therefore, these relations cannot simply be
extrapolated to the European context. Rather, understanding issues of urban fragmentation
and spatial segregation necessitates not only identifying the relation, but also considering its
underlying motives.

Europe makes a compelling case to showcase the importance of accounting for local context
in the analysis of urban fragmentation and spatial segregation. The continent exhibits high
levels of urbanization alongside a dense network of roads and railways (Dyvik, 2023; Meijer,
Huijbregts, Schotten, & Schipper, 2018; Statista Research Department, 2023), meaning that
its urban context is in constant and close contact with infrastructure. Additionally, there
is evidence that vulnerable groups, such as immigrants and the urban poor, are subject to
spatial segregation in various cities across the continent (Kesteloot, 2005; Natale, Scipioni,
Alessandrini, et al., 2018; Van Ham, Marcińczak, Tammaru, & Musterd, 2015). Since Europe
is composed of a mixture of different national and historical contexts, it is unlikely for a single
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generalizable explanation to apply across all cities. Therefore, understanding these phenomena
in Europe necessitates a detailed investigation that considers the unique local contexts.

It is in consideration of this need to further examine the relation between urban fragmenta-
tion and spatial segregation while accounting for the local context that we pose the following
question:

‘What is the connection between the spatial segregation patterns of
non-EU immigrant groups and urban fragmentation patterns resulting

from transportation infrastructures across European cities?’

For this study, we have chosen to focus on immigrant communities, recognizing them as a
vulnerable demographic, particularly in terms of housing (Harrison, Law, & Phillips, 2006).
Furthermore, the spatial segregation of immigrant communities in Europe has already been
subject to quantitative studies (Lichter, Parisi, & Ambinakudige, 2020; Marcińczak, Mooses,
Strömgren, & Tammaru, 2023). While insightful, these studies follow quantitative approaches
that do not allow for more detailed exploration of context involved in each city, nor do they
consider aspects of urban fragmentation. The purpose of this study is twofold: firstly, to de-
termine whether the spatial segregation patterns of ethnic groups in Europe can be connected
to infrastructure as a barrier in a manner similar to those documented in the American con-
text; and secondly, to explore how the specific local contexts of the cities can enhance our
understanding of these connections.

The rest of the chapter presents our theoretical background and the connection to the
master program. The following chapter details the demographic and spatial data used in the
study. Chapter 3 explains our mixed-methods approach. It described the techniques and
processes used to identify the urban fragmentation and segregation patterns, along with an
explanation of the similarity analysis and the individual qualitative city analysis. The results
of the quantitative analysis are presented in Chapter 4 followed by a qualitative exploration of
nine cities to account for their local contexts. The report concludes with Chapter 5, discussion
and conclusion.

1.1. Theoretical Background
In this section, we explore the existing literature to provide a theoretical background that will
help define the structure of the study and the stages necessary to address the main research
question. In relation to spatial segregation, efforts across the literature have been varied, with
some focusing on the root causes (Musterd, 2005), others on measurement metrics (Reardon &
O’Sullivan, 2004; Yao, Wong, Bailey, & Minton, 2019), and some on the resulting patterns of
segregation (Caldeira, 1996; de Córdova, Fernández-Maldonado, & del Pozo, 2016). However,
this research is specifically centred around the interconnection between transportation infras-
tructure, urban fragmentation and spatial segregation. A literature overview was undertaken
to examine state-of-the-art academic research on these topics. In order to ensure consistency
during the review process, the search was limited exclusively to the Scopus research database.
Furthermore, it represented a systematic review process to determine the studies of more rel-
evance. The original search query used the string: (transport* AND infrastructure) AND
segregation AND city*. The search resulted in 73 publications, which were first filtered based
on title and abstract. The resulting 35 publications were further filtered based on the con-
tent of their introduction and conclusion. In addition to the original search, two extra search
queries were performed to provide more literature on the themes of barrier effect and urban
fragmentation. After following a similar filtering process to the original query, these searches
provided 4 additional papers. In the total, the literature overview included 12 publications.
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Figure 1.1: Selection flow for the literature review

One of the first points worth highlighting from the literature is the concept of the ‘barrier
effect’. Matos and Lobo (2023) defined the barrier effect as ‘a discontinuity in the urban struc-
ture caused by transport networks’. This definition is echoed across the literature, with each
publication adding additional context to the impacts of the barrier effect, such as decreased
local mobility (Anciaes, 2013) and local accessibility (van Eldijk, 2019), and reduced opportu-
nity for social contacts (van Eldijk et al., 2022). The concept of barrier effect is not monolithic,
since different infrastructures can produce different type of barriers. For example, Anciaes
(2013) categorized the barrier effect into three levels. The first level covers infrastructures
with limited crossings, ‘static barrier’; the second level includes road links with high volumes
of traffic, ‘dynamic barrier’; the third level even extends to non-transport infrastructures and
certain land-uses, such as ports and industrial sites. For a more extensive review of the barrier
effect, including its different dimensions, types and research directions, the reader is directed
to van Eldijk et al. (2022).

One concept that is frequently mentioned with barrier effect is ‘severance’, particularly
‘community severance’. Even though there is no consensus on its definition, severance refers
to the break of community cohesion product of the separations caused by the infrastructure
(van Eldijk et al., 2022). Anciaes (2013) argues that community severance is the largest impact
of the urban transportation system at the local scale. Furthermore, it has been mentioned that
vulnerable groups are the ones mainly affected by severance (Rodriguez Lara & Rodrigues da
Silva, 2019). Severance is considered a transport policy issue since transportation infrastruc-
tures represent the most common barrier that separate neighbourhoods in the urban space
(Anciaes, Boniface, Dhanani, Mindell, & Groce, 2016, 3). Due to the complexity of its nature,
research into the barrier effect and severance require a multidisciplinary approach (Anciaes
et al., 2016, 3; van Eldijk et al., 2022).

A similar subject that appears in the literature is the concept ‘socio-spatial fragmentation’.
As the names implies, socio-spatial fragmentation refers to the separation of the urban space
by social characteristics (Adugbila, Martinez, & Pfeffer, 2023). In some contexts, such as Rio
de Janeiro, the spatial fragmentation of the city can be closely related to social segregation
(Cruz & de Almeida Medeiros, 2019). The relevance of the concept arises from the potential
of infrastructure to be a driver of socio-spatial fragmentation. As the work of Adugbila et al.
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(2023) has shown, road expansion in the Global South can be linked to socio-spatial fragmen-
tation. Even though not mentioned explicitly, other publications make allusion to issues of
socio-spatial fragmentation in different contexts, such as Stockholm and Jerusalem (Rokem &
Vaughan, 2018, 2019, 12).
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Table 1.1: Publications obtained from the exploration of the literature.

Title Authors Year Key Concepts

Urban transport and community severance: Linking
research and policy to link people and places

Anciaes et al. 2016 Community severance, barrier ef-
fect, framework

Measuring community severance for transport policy
and project appraisal

Anciaes 2013 Barrier effect, spatial data analysis

Equity issues associated with transport barriers in a
Brazilian medium-sized city

Lara & Rodrigues da
Silva

2019 Community severance, spatial data
analysis, census data

The Barrier Effect and Pedestrian Mobility/Accessi-
bility on Urban Highways: An Analysis Based on the
Belo Horizonte/Minas Gerais/Brazil Ring Road

Matos & Lobo 2023 Barrier effect, severance, urban frag-
mentation

The Spatial Syntax of Urban Segregation Vaughan 2007 Spatial syntax, fragmentation

Geographies of ethnic segregation in Stockholm: The
role of mobility and co-presence in shaping the ‘di-
verse’ city

Rokem & Vaughan 2019 Spatial syntax, immigrant, accessi-
bility

Segregation, mobility and encounters in Jerusalem:
The role of public transport infrastructure in connect-
ing the ‘divided city’

Rokem & Vaughan 2018 Spatial syntax, public transporta-
tion infrastructure

Disentangling barrier effects of transport infrastruc-
ture: synthesising research for the practice of impact
assessment

van Eldijk et al. 2022 Barrier effect, review

The wrong side of the tracks: Quantifying barrier ef-
fects of transport infrastructure on local accessibility

van Eldijk 2019 Barrier effect, severance, accessibil-
ity

Rio de Janeiro: Urban Tissue and Society Porto Cruz & de
Almeida Medeiros

2019 Space syntax, socio-spatial fragmen-
tation

Continued on next page
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Table 1.1 – continued from previous page

Title Authors Year Key Concepts

Road infrastructure expansion and socio-spatial frag-
mentation in the peri-urban zone in Accra, Ghana

Adugbila et al. 2023 Socio-spatial fragmentation, road
expansion, case study

Making sense of segregation in a well-connected city:
The case of Berlin

Blokland & Vief 2021 social and residential segregation,
accessibility, activity dispersion
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1.2. Sub-questions
Based on the theoretical background, our study can be understood as investigating whether
the socio-spatial fragmentation of European cities correlate to the urban discontinuities and
barriers resulting from severance-inducing transportation infrastructures and the extent to
which these relations can be understood through local contexts. The complexity of our main
research question necessitates that the research process be divided into distinct stages. Since
the intention of the study is to contextualize these relations to local dynamics, a traditional
regression would not suffice. Rather, we need to observe the patterns of urban fragmentation
and segregation for each city individually. Therefore, the first stage would involve construction
of both sets of spatial patterns. The literature on the barrier effect will help guide the selection
of relevant infrastructures and the definition of the urban fragmentation patterns. Once the
patterns have been identified, both instances need to be compared to determine any potential
correlation. For such purpose, it is necessary to select an appropriate set of metrics and per-
form an adequate statistical analysis. This similarity analysis needs to be generalizable and
applicable for all cities in the study. Lastly, these quantitative results should be recontextual-
ized through a more detailed examination of specific cases of interest. Conducting a qualitative
analysis of the observed patterns of spatial segregation and their underlying mechanisms will
help understand the role that infrastructures play in these contexts, providing deeper insights
into the urban dynamics shaping segregation.

In order to structure the research, we have delineated a series of sub-questions that facilitate
a sequential approach to addressing our main issue:

SQ1. What are the urban fragmentation patterns resulting from severance-inducing
transportation infrastructure? (Chapter 3.1)

SQ2. What are the spatial segregation patterns for immigrant groups? (Chap-
ter 3.2)

SQ3. What metrics can be used to evaluate the similarity between both patterns?
(Chapter 3.3.1)

SQ4. Does a statistical significant relation exist between both patterns? (Chap-
ter 4.2)

SQ5. How does the local context of the city influence our interpretation of the
similarity analysis results? (Chapter 4.3)

1.3. Relation to CoSEM
Complex Systems Engineering and Management (CoSEM) as a programme centred around so-
ciotechnical systems is an appropriate study to investigate the challenges presented by urban
fragmentation and spatial segregation. Cities represent the most intricate and largest kind of
sociotechnical systems. The complexity of cities results from the various interaction within
the multiple (sub)systems that compose them. Transport infrastructure per se correspond
to a technical system that fulfil specific engineering requirements. Nevertheless, these infras-
tructures also have an influence on the population of cities, its social component. Transport
infrastructures are purposed system interventions resulting from public policy decisions that
inevitably impact individuals. Therefore, there is a need to balance the interest and values
of different stakeholders. These considerations fall within the scope of the CoSEM Transport
and Logistic (T&L) track, which addressed topics related to transport policy decision-making.
The relation between segregation and transport infrastructure carries crucial insights for the
way infrastructure projects are evaluated and for the overall design of transport policy and
urban planning. CoSEM T&L with its holistic approach to transport policy and its various
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considerations is well suited for addressing the connection between transport infrastructure
and spatial segregation.



2
Data

The format and limitations of the data conditioned to a large extent the type of analysis that
could be conducted. Therefore, prior to a description of the methodology, it is necessary to
provide additional details of the data, its processing and its sources. The data in this research
can be divided into two categories: demographic and spatial. Naturally, the demographic data
also contains a spatial component. However, its processing and format vary substantially from
the spatial data. The subsequent sections of the chapter discuss each data class in detail.

2.1. Demographic Data
The lack of comparative studies between segregation patterns across cities was defined as
one of the motivations behind the European Commission’s Data for Integration (D4I) project
(Alessandrini, Natale, Sermi, & Vespe, 2017; European Commission, 2020). The D4I initiative
produced a high-resolution and standardised dataset for the concentration of immigrant groups
across eight European countries (France, Germany, Ireland, Italy, Netherlands, Portugal, Spain,
and the United Kingdom). The dataset compiled demographic census data from each country
and harmonized labels and spatial units. The high resolution is attributed to the fact that the
data is arranged in a standard grid composed of 100m×100m cells. Based on the ETRS89-
LAEA Europe (EPSG:3035) coordinate reference system (CRS), each cell is given a unique
identifier based on the coordinates of its centroid.

The D4I dataset covers three levels of aggregation. The lowest level has information of the
country of origin. The second level has data aggregated by continent and lastly EU vs not
EU. As mentioned in the dataset documentation, the highest level of aggregation has the least
number of empty cells1 and it covers all eight countries, unlike the lower levels (Alessandrini
et al., 2017). This research uses the highest level of aggregation due to its completeness and
the lack of focus on immigrants of a particular subgroup.

The dataset is quite extensive, as it includes demographic data not just for large urban
areas but also small villages and rural towns. In order to ensure comparability, it is necessary to
limit the scope to urban areas of similar magnitudes. For applicable cases, cells in the dataset
were mapped to their respective Functional Urban Area (FUA). FUAs are spatially continuous
regions meant to represent the functional and economic extent of cities, a terminology used
both by the OECD and the EU (Dijkstra, Poelman, & Veneri, 2019). FUAs are classified into
4 classes: small, medium-sized, metropolitan and large metropolitan (OECD, 2022). Previous
studies have shown that the concentration of immigrants in OECD countries tends to be higher

1Some cells were made empty due to confidentially reasons. For more information, refer to the original
documentation (Alessandrini et al., 2017).

10
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in large metropolitan areas (Liebig & Spielvogel, 2021). Therefore, we limited the research
to the metropolitan and large metropolitan classes, with populations above 250,000 and 1.5
million, respectively. We used the latest FUA definitions as provided by the OECD (2022),
which resulted in a selection of 106 cities. Figure 2.1 shows the location of the cities across the
eight countries included in the study. Appendix A contains the full list of FUA.

The original dataset has demographic data arranged at the country level, as presented
in Table 2.1. We used centroid coordinates to match cells to their corresponding FUA by
verifying if the point is within its boundaries. Once the cells for each city have been defined,
we reorganized the data to ensure that each cell is represented by a single row that contains
all corresponding demographic information. In addition, two news columns were included to
represent the total population and the percentage of people with non-EU background, as shown
in Table 2.2. The restructured format facilitates further analysis, and serves as the backbone
for the regionalization process to identify segregated regions.

Table 2.1: Demographic data aggregated by country

GRID_ID origin pop
3080450N4040550E DEU X1

3080450N4040550E EU27 Y1

3080450N4040550E NOTEU Z1

... ... ...
Table 2.2: Demographic data aggregated at the city level

GRID_ID DEU EU27 NOTEU tot_pop NOTEU_perc
3080450N4040550E X1 Y1 Z1 W1 p1
3080550N4040550E X2 Y2 Z2 W2 p2
3080450N4040650E X3 Y3 Z3 W3 p3

... ... ... ... ... ...

2.2. Spatial Data
Spatial data refers to those elements that have specific coordinates and geometric properties
that can be represented in the 2D-space of a map. In the case of this research, there are two
sets of spatial elements that are required: city boundaries and infrastructure lines.

2.2.1. City Boundaries
City boundaries are a collection of polygon geometries that demarcate the spacial extent of a
city and serve to restrict the area of study. As previously mentioned, the scope of the research
is restricted to FUAs with populations larger than 250,000. A FUA is an ensemble composed
of two regions, the ‘urban core’ and its ‘commuting zone’ (Figure 2.2). The commuting zone
represents a portion of the FUA that is spatially large but not densely populated. We decided
to limit the area of study to urban cores, since these are the locations where the interaction
between infrastructure, as a barrier, and people would be more noticeable. Despite the conve-
nience of simply adopting the original boundaries, further adjustments to the boundaries were
needed, as the ones defined by the OECD had limitations as analytical units.

One of the issue is that while a FUA is spatially continuous, its urban core is not necessarily.
The size of urban cores can also be problematic, with some significant disparities in the size
and extent of urban cores across countries. This issue is partially the result of urban cores
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Figure 2.1: Location of cities included in the study
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Figure 2.2: Process of defining a FUA (Dijkstra, Poelman, & Veneri, 2019)

being conditioned by traditional administrative boundaries (Dijkstra et al., 2019). The use of
administrative units to construct the boundaries also results in the inclusion of non-relevant
areas (e.g. non-populated areas) in the urban core. Furthermore, the level of aggregation
of urban cores may be quite large, which could impact the results of the analysis for the
segregation patterns. The reason is that the original urban cores are constructed based on
the population density of a grid of 1 km2 cells. However, the D41 demographic data is on a
resolution of 0.01 km2. The mismatch in resolution means that the urban cores, as per OECD
resolution, may aggregate regions that could, or should, be analysed separately. Observing
Figure 2.3 these issues becomes apparent.

These issues were tackle by adjusting the boundaries of the urban core to obtain a single
continuous spatial unit based on the spatial distribution of the population using the 0.01 km2

resolution of the demographic data. The resulting adjusted urban cores (AUC) also have the
property that only populated areas that are sufficiently close will be aggregated to the same
urban core. Figure 2.4 presents a comparison between the original urban core and the AUC
for the case of Amsterdam. As can be noted, the AUC fall within the boundaries of the
original urban core, but its extension is more conservative. Appendix B provides a detailed
description of the construction of the new urban core boundaries. In addition, it contains a
visual comparison between the original OECD urban core and the adjusted versions for all
cities in the study. These AUCs represent the spatial unit of analysis that will be used to
define the segregation and fragmentation patterns.
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(a) Amsterdam. Notice the inclusion of smaller
cities such as Hoorn and Purmerend in the

urban core. In addition, a section of the
Markermeer is included in the urban core.

(b) Barcelona. Notice that the city of Barcelona and
the norther portions of the urban core are separated

by un-habitated green space.

Figure 2.3: Discontinues urban cores.

Figure 2.4: Original urban core as defined by the OECD (blue) and adjusted urban core (red) for
Amsterdam FUA
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2.2.2. Infrastructure Lines
Infrastructures are represented as line geometries that transverse the AUC and fall within
its boundaries. The infrastructural data was extracted from OpenStreetMap (OSM) (Open-
StreetMap contributors, 2024), a well-known ‘citizen-driven’ spatial data source, considered
one of the most successful example of Volunteered Geographic Information (VGI) (Mooney,
Minghini, et al., 2017). For most data, rather than extracting the data directly from OSM
using its API, we opted for OSM snapshots2 from 2014, available at the repository of Geofabrik
(Geofabrik, 2014). This decision was made to align more closely with the demographic data
from the 2011 census uses in the D41 dataset (Alessandrini et al., 2017), thereby minimizing the
temporal mismatch between the two data types by utilizing the oldest available country-level
snapshot from Geofabrik.

Selecting relevant infrastructures involved a harmonization between the terminology used
in the literature and the labelling definitions used by OSM. In the literature, van Eldijk et al.
(2022) argued that a barrier can be defined as any transportation infrastructure that limit
opportunities for movement. This definition extends beyond road to includes railways and
waterways. In OSM, map elements are labelled using tags, each containing a key and a value
(OpenStreetMap contributors, n.a.). The aforementioned infrastructure types can easily be
mapped to its corresponding keys: highway, railway and waterway. However, each key en-
compasses a variety of values that identify the different categories for each infrastructure type.
For instance, the highway key covers any type of road, from major 4-lane motorways to small
residential streets. Naturally, not all values are relevant, as only some may be classified as
‘barrier-effect inducing’ infrastructures.

The selected infrastructures adhere to the definition of a ‘static barrier’ as presented by
Anciaes (2013) and van Eldijk et al. (2022): an objective physical barrier with limited number of
crossings. Table 2.3 presents the selected tags and its description as provided by the OSM wiki
(OpenStreetMap contributors, n.a.). As can be noted, each value represents an infrastructure
type that restricts local mobility by nature of its physical composition. During the data filtering
process, a conscious effort was made to exclude ‘underground’ elements. Both railways and
highways can have long portions of their trajectories redirected underground, commonly near
or inside urban areas, which prevents the emergence of the barrier effect. It is worth noting
that we considered including secondary roads (highway:secondary) as infrastructures with a
dynamic barrier. The argument was that its classification served as a proxy for the presence
of a significant traffic volume on the road. However, due to the absence of adequate traffic
volume data to substantiate this claim and in the interest of maintaining a more conservative
and objective selection, we decided to exclude them from the analysis.

Figure 2.5 shows the line geometries extracted for the case Rotterdam AUC. One point
that most be mentioned is the processing of rivers. In OSM, rivers can be represented as
either a line or polygon geometries, or both. Narrow rivers tend to only be presented as line
geometries, but larger rivers also have a polygon representation. In the case of large rivers, the
line geometry obtained from the waterway tag does not fully capture its spatial dimensions.
Therefore, we decided to also extract the polygon geometries of large rivers. Since working
with polygons may difficult later stages of the research, these are represented as line based on
its boundaries, the ‘borders’ of the river 3.

2files in the .pbf format
3Polygon geometries for rivers were extracted using the API rather than the osm.pbf files due to large size

of files containing polygon geometries. These were extracted based on the tag natural=water.

https://www.openstreetmap.org
https://www.geofabrik.de/
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Table 2.3: Relevant OSM features. Description provided by OpenStreetMap contributors (n.a.).

Key Value Description
highway

motorway A restricted access major divided highway, normally
with 2 or more running lanes plus emergency hard
shoulder. Equivalent to the Freeway, Autobahn, etc.

trunk The most important roads in a country’s system that
aren’t motorways. (Need not necessarily be a divided
highway.)

primary The next most important roads in a country’s system.
(Often link larger towns.)

*_link The link roads (sliproads/ramps) leading to/from a
motorway, trunk or primary road

railway
rail Full sized passenger or freight train tracks in the stan-

dard gauge for the country or state.
light_rail1 A higher-standard tram system, normally in its own

right-of-way. Often it connects towns and thus reaches
a considerable length (tens of kilometres).

waterway
river Wide, natural watercourse that flows from a source to

an ocean, sea, lake or another river.
canal An artificial open flow waterway used to carry useful

water for transportation, waterpower, or irrigation
1 Not to be confused with a standard tram. An example of a light rail line would be the

Hoekse Lijn (Line B from Schiedam Centrum to Hoek van Holland) from the Rotterdam
Metro. It has dedicated tracks and limited interactions with road traffic.
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Figure 2.5: Lines extracted for the Rotterdam AUC



3
Methodology

In this chapter, we outline our methodological approach, which is summarized in Figure 3.1.
The methodology is structured into three main stages: generating the patterns, evaluating their
similarity, and conducting more detailed evaluations of selected cities. The first two stages com-
pose the quantitative portion of our research. Here, we generate spatial patterns based on the
data sources presented in the previous chapter. These patterns are then compared using mu-
tual information, a similarity measure to compare data partitions. This similarity analysis
involves the creation of a set of synthetic fragmentation patterns to account for any potential
similarities that could arise by random chance between the original patterns. Following the
quantitative analysis, we select a small set of cities for qualitative exploration to understand
the influence of local dynamics on its spatial segregation pattern and its interplay with infras-
tructure. This mixed-methods approach allows us to apply a generalizable framework across
a broad set of cities, while still providing the opportunity for a more detailed exploration to
account for the local context of each case.

18



19

Figure 3.1: The approach presented by our methodology as a sequential set of processes.
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3.1. Urban Fragmentation Patterns
The urban fragmentation patterns are defined as the spatial patterns resulting from the par-
tition of urban space by the presence of physical barriers. In this instance, physical barriers
refers to the transportation infrastructures and waterways as discussed in Chapter 2. These
infrastructures, represented as line geometries, intersect one another as they transverse the
urban space. The result of these interactions is that portions of the urban space become ‘sur-
rounded’, or ‘enclosed’, by physical barriers. However, not all enclosed areas are of analytical
relevance. For example, the middle of a roundabout is a spatial unit completely surrounded by
roads. Therefore, the classification of an area as an urban fragment depends on the presence
of a population within its boundaries. Since the research makes use of a standard grid for the
distribution of the population, an urban fragment can be defined as the collection of populated
cells that fall within an enclosed-region that has physical barriers as boundaries. The AUC is
divided into n polygons, each polygon representing a space enclosed by a set of infrastructural
lines. Each populated cell is assigned a fragment ID based on its belonging to one of these
polygons. First, we verify if a cell geometry fall completely within the boundaries of one of
these polygons. Cells that overlap with two fragments are assigned to the fragment with the
largest overlap.

Despite its simplicity, the cell assignment process is complicated by limitations in the OSM
data and the use of a standard grid. In OSM, a two-way road, such as a motorway, is depicted
using two line geometries, each representing traffic flowing in one direction, rather than a single
line for both directions, despite their immediate proximity. The area between these two lines
would be defined as an enclosed area. These polygon geometries have been termed face artefact
by Fleischmann and Vybornova (2023). In theory, this should not be problematic, since an
urban fragment, to be defined as such, requires the presence of a population. However, there
are cases where populated cells overlap with these face artefacts and are erroneously assigned
to such polygons, despite them being a ‘irrelevant’ fragments. A similar issue is produced by
the use of river borders as barrier lines. Populated cells may be assigned to a fragment that
in reality represent the river polygon geometry. These issues are addressed by applying extra
filters to the cell assignment process. We filter out any fragments that contain only less than
four cells and its fragment ID to limit the emergence of micro-fragments. In the case of rivers,
we reassign any cell that intersects with the river to the fragment of the nearest cell that does
not intersect the river.

Incomplete boundaries can be another recurrent issue. Occasionally, gaps are present in the
trajectory of an infrastructure. This may be caused by the exclusion of short underpasses, since
underground elements are excluded in the OSM feature extraction, or by tag misclassification
in OSM. As a result, despite the clear visual and conceptual presence of enclosed regions,
since the infrastructural lines that represents the boundaries contain a small gap, fragments
that should be treated separately are merged together. The solution was to implement a
conditioned spatial snap function. This function combines lines that are between a certain
tolerance from one another, allowing for the completion of boundaries. In our case, we used
a maximum tolerance of 150 metres. Implementing these additional filters and restrictions
improved the cell assignment to their respective urban fragments, resulting in more precise
urban fragmentation patterns.

1Different colours represent different fragments. However, for adjacent fragments that do not have adjacent
populated cells, the colour may be the same for both fragments.
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Figure 3.2: Infrastructure and waterways across the Eindhoven AUC.

Figure 3.3: Populated grids and infrastructural
lines across the Eindhoven AUC.

Figure 3.4: Urban fragmentation pattern of the
Eindhoven AUC. 1
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3.2. Segregation Patterns
While urban fragmentation patterns describe how space is physically divided, segregation pat-
terns represent the uneven distribution of populations across space. These are the patterns of
socio-spatial fragmentation, a partition resulting from the demographic variables and group
characteristics. Defining segregation patterns is inherently more challenging than delineat-
ing urban fragmentation patterns, as the latter relies on pre-existing physical boundaries. In
contrast, demographic data often exhibits variability and noise, which complicates the estab-
lishment of distinct boundaries between fragments. Chodrow (2017) argued that identifying
the spatial structure of segregation is a process of aggregating spatial units to boundaries that
represent ‘demographic transitions’, a regionalization task. Regionalization is a type of spa-
tially constrained clustering algorithm that can be used to identify regions with homogenous
internal characteristics (Wei, Rey, & Knaap, 2021). For this research, we adopt the regionaliza-
tion method presented by Spierenburg, van Cranenburgh, and Cats (2022, 2023, 2024), using
the percentage of resident with a non-EU immigration background as the variable of interest.

As discussed in Spierenburg et al. (2022), traditional regionalization methods are suscepti-
ble to small-scale fluctuations in the data, resulting in chaotic borders and overfitting. There-
fore, prior to the agglomerative clustering process, it is necessary to filter out these fluctuations
by means of a weighted averaged. This process requires the definition of a new variable, the
concentration coefficient (con_coeff). The value of the coefficient is determined by the per-
centage of non-EU residents in the cell and its surrounding area. Each grid cell, including
those without any population, is assigned a concentration coefficient score. This assignment
guarantees that spatially continuous regions with ‘smooth’ borders can be obtained during the
clustering process.

con_coeffi =

j∑
i

wij (3.1)

wij =

{
1 · noteu_perci : dij = 0

1250/d2 · noteu_percj : dij > 0
(3.2)

Equations 3.1 and 3.2 present the mathematical definition of the coefficient. The influence
of cell j on the score of cell i is inversely proportional to the square of the Euclidean distance
between cell pair ij2. We only account for the set of cells J = {1, 2, ...j}, whose centroids
are within a 850-metre radius from the centroid of cell i. Figure 3.5 shows the results of the
calculations for The Hague AUC. Comparing these results with Figure 3.6, which shows the
unfiltered input, we can observe that the concentration coefficient presents smoother transitions
between regions with low-high scores.

Once the concentration coefficient have been computed, it is possible to proceed to the ag-
glomerative clustering stage. This process involves merging adjacent cells into clusters based
on a ‘agglomeration criterion’ (Tokuda, Comin, & Costa, 2022). The criterion regulates the
selection of cells, or regions, to be merged and ensures that only those with the most sim-
ilar characteristics according to the defined metric are combined. In our case, we use the
Ward distance, as in Spierenburg et al. (2022, 2023), which involves merging adjacent cells
into larger regions, such that the within-region variance is minimized. The merging process
stops once a dissimilarity threshold has been exceeded. This threshold was tuned empirically,
and set at β · ncity, where ncity represents the number of cells in the AUC. The constant β

2Since c/d2 is not defined at d = 0, we define c = 1250 to match both parts of the equations. If c = 1250
and d = dref = 50/

√
2, then the second part of the equation is equal to 1. A cell with sides dref · 2 would have

half the area of the original cell.
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Figure 3.5: Concentration coefficient score across
The Hague AUC.

Figure 3.6: Percentage of non-EU residents across
The Hague AUC.

is adjusted inversely with ncity, as shown in Table 3.1. Adjusting the threshold is necessary
to prevent larger cities from being overly consolidated into fewer, larger regions, thereby pre-
serving a meaningful distinction between regions. Figure 3.7 shows the resulting regions from
the clustering process. These regions have the characteristic of being homogeneous in terms of
the demographic variable, the concentration coefficient (Spierenburg et al., 2024). As can be
noted, the AUC presents a high-level of fragmentation. However, it must be noted that some
of these regions simply represent the ‘gradient’ effect resulting from the spatial distribution of
the concentration coefficient. In other words, the structure of the regions show a ‘inner-outer’
ring behaviour centred around areas with high concentration scores.

Table 3.1: Dissimilarity threshold constant.

ncity β

<20,000 0.0032
20,000-60,000 0.0012
>60,000 0.0007

Given the regions obtained from the agglomerative clustering, the subsequent step involves
classifying each region into one of three classes: high concentration (1), mixed (0), and low con-
centration (-1). For this purpose, we compute the population-weighted average percentage of
non-EU residents for each region i, as delineated in Equation 3.3. Note that we use noteu_perc
rather than con_coeff for classification. The concentration coefficient was needed during the
clustering process to handle fluctuations and avoid chaotic borders. However, the demographic
variable of interest remains the percentage of non-EU residents. Since the regions have been
properly delineated, we can default back to the original variable. The classification is based on
the comparison between the calculated average against the upper and lower thresholds defined
in Equation 3.4. The variable α, set at 0.13, is a manually tuned constant initially calibrated
for a representative city and reapplied across the dataset. The term µcity represents the frac-
tion of the total population in the AUC with non-EU background. The square root component
of the equations captures the variance of a binomial distribution, since the probability of en-
countering a non-EU resident in subsequent random samples from the population adheres to
such distribution. The use of the variance of the binomial distribution in the thresholds is de-
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Figure 3.7: Agglomerative clustering results for The Hague AUC.

signed to capture significant deviations from the city’s average. Given that the distribution of
noteu_perc is right-skewed —indicating that most cells have a percentage below the average—
the regions exceeding the upper threshold are significantly marked by a higher concentration
of non-EU residents.

noteu_perciavg =

∑
j noteu_percj · tot_popj∑

j tot_popj
(3.3)

Tupper = µcity + α
√
µcity · (1− µcity) (3.4)

Tlower = µcity − α
√
µcity · (1− µcity) (3.5)

where α = 0.13

Once each region has been classified, we merge those adjacent regions that have the same
classification. Cells without any population are filtered out, similarly as with urban fragments.
The result is a segregation pattern as presented in Figure 3.8. Since the original regions are
spatially continuous, it is possible for populated cells that are not adjacent to correspond
to the same region. This is made possible by the filtered-input approach, which defines the
concentration coefficient for cells across the entire grid. Finally, each populated cell is assigned
a corresponding cluster ID based on its region.
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Figure 3.8: Segregation pattern for The Hague AUC.

3.3. Similarity Analysis
Once the urban fragmentation pattern and segregation patterns have been properly defined, the
next challenge becomes quantifying the similarity between them. One way to (re)conceptualize
this task is by viewing both sets of patterns as two distinctive partitions of the same set of cells.
Each partitions constructs clusters of cells based on different process.3 Therefore, we could view
the urban fragmentation pattern as a partition F and the segregation pattern as a partition
D. This perspective is beneficial because the similarity comparison of different partitions has
been extensively studied in the literature, with a variety of metrics already developed for this
purpose. In the following subsection, we introduce some of these metrics and their underlying
concepts. Later, we present our approach to quantifying the similarity between both patterns
by means of generating a set of synthetic fragmentation patterns.

3.3.1. Similarity Measures
External comparison metrics can be used to assess the similarity between two partitions, U
and V , on the same dataset (van der Hoef & Warrens, 2019). In particular, these measures are
used to validate the goodness of a partition V in relation to a ‘ground thruth’ (Romano, Vinh,
Bailey, & Verspoor, 2016). Comparison measures are most commonly classified into three
groups: pair-counting, information theoretic and set-matching (Hennig, Meila, Murtagh, &
Rocci, 2015; Schroten et al., 2019). Measures based on pair-counting focus on the relationships
between pairs of data points that are assigned to the same or different clusters across U
and V . Information theoretic measures, on the other hand, evaluate the amount of shared
information between the two partitions. They use concepts from information theory, such
as entropy and mutual information, to assess how much knowing the cluster assignment of
U reduces uncertainty about V , and vice versa (Meilă, 2007; Vinh, Epps, & Bailey, 2010).
We restrict ourselves to these two categories, excluding set-matching measures due to their

3The term partition and clustering are used interchangeably. For clarification, a clustering/partition can be
understood as a collection of clusters.
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inability to account for unmatched elements between clusters, which complicates comparisons
across partitions with differing numbers of clusters (Vinh et al., 2010; Warrens & van der Hoef,
2022).

Among the variety of pair-counting and information-theoretic measures available, the most
commonly used are the Rand Index and the Mutual Information Index, respectively (Romano
et al., 2016). The Rand Index (RI) can be intuitively understood as a ratio between pairs of
data points that are consistently assigned in both partitions. For a dataset with n elements, the
overlap between partitions U and V can obtained by calculating the number of pairs assigned
to the same cluster in both U and V (N11) and the number of pairs that are in different clusters
in both U and V (N00). In addition, we need to know the number of pairs that appear together
in U but not in V , and vice versa, N10 and N01 (Meilă, 2007). The formula for the Rand Index
can be defined as the proportion of agreement between both clusterings.

RI = (N00 +N11)/(N00 +N11 +N01 +N10) (3.6)

The Mutual Information Index (MI) quantifies the amount of information shared between two
partitions, reflecting their mutual dependence (Vinh et al., 2010). The concept underlying MI
is entropy, a measure of uncertainty or randomness within a dataset. The entropy of each
partition, H(U) and H(V ), represent their respective levels of randomness. H(V |U) is the
conditional entropy of V given U , it represents the uncertainty in V that remains once we
know U , similarly for H(U |V ). The MI is calculated as the reduction in entropy/uncertainty
from one partition given knowledge of the other. MI has a lower bound of zero, but no upper
bound (Imaizumi et al., 2020). Therefore, it is more common to work with the Normalized
Mutual Information (NMI) with a range [0,1]. Different versions of the NMI exist, depending
on the normalization factor (Vinh et al., 2010). In our case, we use NMImax as defined in
Equation 3.8.

Figure 3.9: Venn Diagram representation of MI components. Adapted from Vinh, Epps, and Bailey (2010).

MI = I(U, V ) = H(V )−H(V |U) = H(U)−H(U |V ) (3.7)

NMI =
I(U, V ))

max {H(U),H(V )}
(3.8)

Both the NMI and RI range from 0 to 1, where a score of 1 indicates perfect agreement
between the two partitions, and a score of 0 suggests complete independence. However, the
distribution of RI scores is not uniform across this range, and the RI score between two random
partitions does not obtain a value of zero (Hennig et al., 2015; Wagner & Wagner, 2007).
Similarly, the NMI can also show non-zero values even when the clustering assignments are
made randomly. This indicates that both metrics can sometimes reflect ‘agreement by chance’
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rather than genuine correspondence between partitions. Ideally, these measures should have
a baseline property that corrects for the agreement by change. This means that a value of
zero would imply that the agreement between the clusterings is no different from what would
be expected by random coincidence (Vinh et al., 2010). For such purpose, adjusted measures
have been developed that aim to correct for such limitation. Adjusted indexes subtract the
baseline value, represented by the expected score of the index, as shown in Equation 3.9 and
3.10 (Gates & Ahn, 2017; Hennig et al., 2015).

Adjusted RI =
RI − E(RI)

1− E(RI)
(3.9)

Adjusted MI =
MI − E(MI)

max {H(U),H(V )} − E(MI)
(3.10)

The key aspect of the formulation is the concept of the expected value of the index. As
discussed by Gates and Ahn (2017), the expected value originates from assessing similarity
in the context of a random ensemble of clusterings. Traditionally, the ARI and AMI utilize
a ‘permutation model’ that assumes that both partitions to be drawn from a set of random
partitions with identical number of clusters and size distribution (Gates & Ahn, 2017; Vinh
et al., 2010; Wagner & Wagner, 2007). The use of this model allows for an analytical derivation
of the expected value. However, as demonstrated by Gates and Ahn (2017), altering the model
and its underlying assumptions can change the result of the similarity comparison, implying
that this approach can not be universally applied and is context-dependent.

In our case, the assumptions of the permutation model are not applicable for the comparison
between D and F , as the number and size distribution of the clusters in each partition do not
necessarily match. Furthermore, as highlighted by Gates and Ahn (2017), assuming both
partitions to be drawn from the same random model is not ideal if we consider that one of the
two partitions represents a ground-truth. In such cases, it should be assumed that the structure
of the reference partition remains fixed and is present in all comparisons against partitions from
the random model. Given that D and F are the product of two distinct clustering process,
our comparison should treat one as the reference partition, rather than assuming both to be
drawn from the same random model.

The limitations inherent to the traditional ARI and AMI, which rely on the permutation
model, make them unsuitable for our purposes. However, defining our own random model to
allow for the analytical derivation of the expected value would be overly complex and beyond
our capabilities. Consequently, we opt for an alternative approach: generating a random
ensemble of partitions to estimate the expected value of the index. This method involves setting
either D or F as the reference partition and obtaining the adjusted index under the assumption
that the remaining partition is drawn from our random ensemble of partitions with the same
number of clusters and similar size distributions. This method, while less precise than an
analytical derivation, operates under assumptions more suitable for our analysis. Nevertheless,
it raises the question about which clustering should be considered the ground truth and how to
construct a representative ensemble of random partitions. These issues will be addressed in the
following subsection, which will discuss the creation of the synthetic fragmentation patterns.

3.3.2. Synthetic Fragmentation Patterns
Prior to the construction of the random ensemble of partition, we must decide which pattern
will be used as the reference partition and which will be ‘immitated’ in the ensemble. Con-
ceptually, either D or F could serve as the reference partition. F might seem more suitable
as the ground truth because it is based on tangible physical barriers, unlike D, which is de-
rived from a more complex regionalization process using demographic thresholds. However,
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the main concern should be that the random set of partitions in the ensemble are a proper
representation of its original counterpart. As noted by Gates and Ahn (2017), the random
model should be random enough to not encode all features of the original clustering, yet not
so random as to become unrepresentative. In this context, it is simpler to create synthetic sets
of urban fragmentation patterns rather than segregation patterns. This is because segregation
patterns involve spatial autocorrelation, where cells with similar demographic characteristics—
such as high or low concentrations of immigrants—are likely to be adjacent. Therefore, using
traditional methods like bootstrapping to construct new partitions is not suitable, as these
methods would not preserve the spatial autocorrelation inherent to the original pattern. Con-
versely, urban fragmentation patterns, which represent spatial partitions based on set physical
boundaries, are easier to simulate. Any form of spatial clustering would capture the prop-
erty that adjacent cells have a higher probability of belonging to the same cluster. Therefore,
as long as there is a reasonable level of similarity between the original and synthetic urban
fragmentation patterns, these synthetic partitions should form an appropriate ensemble for
estimation purposes.

Figure 3.10: Visual representation of a Voronoi tessellation and its seed points (Belmonte, n.a.).

For the construction of the synthetic fragmentation, we employ the concept of ‘tessella-
tion’, specifically Voronoi tessellation. A tessellation divides 2D space into non-overlapping
subregions (Daisy Phillips, 2014). Voronoi tessellation, in particular, partitions space into n
polygons that represent each representing the area of influence of one of the n ‘seeds points’.
Each polygon contains the points that are closest to the seed point (Fleischmann, Feliciotti,
Romice, & Porta, 2020; Daisy Phillips, 2014), as shown in Figure 3.10. The application of
Voronoi tessellation offers certain advantages. Firstly, it has been previously utilized in urban
studies for various forms of analysis (Abellanas & Palop, 2008; Fleischmann et al., 2020; Usui
& Asami, 2018). Notably, Usui and Asami (2018) commented that the size distribution of
Voronoi tessellations, when seeds are uniformly selected— also known as a Poisson Voronoi—
has similar properties as the size distribution of urban blocks. Secondly, the construction of
Voronoi polygons is computationally efficient, which is of great importance for generating a
sufficiently large ensemble of synthetic clustering for each city in the dataset. Nevertheless,
the most import factor in the selection of the Voronoi tessellation is that we can adjust its
construction to obtain an ensemble of clusterings that is representative of the original pattern.
Since the construction of the tessellation uses a fixed number of seed points, we can control
for the number of resulting polygons. Therefore, we can ensure that the number of fragments
always matches that of the urban fragmentation pattern.
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Figure 3.11: Normalized polygon size distribution of a Poisson Voronoi tessellation as estimated by Ferenc
and Néda (2007).

Figure 3.12: Histogram for the urban fragment size distribution and corresponding exponential decay fit.
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Figure 3.13: Rank size plot for the urban fragment size distribution. Notice the log-scale on the y-axis.
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The more challenging aspect involves replicating a size distribution similar to that observed
in the original urban fragmentation pattern. Research has shown that the size distribution of
polygons in a Poisson Voronoi tessellation typically follows a right-skewed gamma distribution
(Ferenc & Néda, 2007) (Figure 3.11). However, the size distribution of urban fragmentation
patterns, when measured by the number of populated cells per fragment, matches that of an
exponential decay, as seen in Figure 3.12 and Figure 3.13. Therefore, using a uniform selection
of seed points would not adequately match the size distributions of the synthetic cases to the
original ones. For that purpose, we utilize the GSTool package to generate sets of spatial
random fields (Heße, Prykhodko, Schlüter, & Attinger, 2014; Müller, Schüler, Zech, & Heße,
2022). The random fields define a value ωi for each cell, which would be used as a weight for
the selection of points. However, the issue remained identifying the set of parameters for the
random field that would lead to the desired fragment size distribution. For that purpose, we
fixed the parameters used for the construction of the Gaussian random field (Müller et al., 2022)
and take the resulting ωi values to an exponential k. We test 100 values of k evenly spaced
between 2 and 20, and generate a Voronoi tessellation for each iteration, as in Figure 3.16.
These tessellations are used to assign populated cells to synthetic fragmented, in the same
manner as with the urban fragments. For each instance, we compute the linear fit for the
rank-size distribution, similarly to Figure 3.13. By repeating this process across the range of
k, we observe a clear trend that higher values of k lead to more negative slopes, illustrated in
Figure 3.15. A linear regression can be fit into this trend and given that we know the slope of
the original urban fragment size, we can derive the optimal k value for each city. Once identified,
we use the corresponding k power of each city to generate 500 synthetic fragmentations per
city. These set of fragmentations serve as the ensemble of random cases for the estimation of
the expected index value. This method ensures that the synthetic cases closely match the size
distribution of the original urban fragments, thereby fulfilling the necessary assumptions for
the random ensembles.

Figure 3.14: Synthetic field for Rotterdam AUC (var=400, len_scale=1400, k=4).
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Figure 3.15: Linear regression - power k to slope for the Rotterdam AUC. (100 points)

Figure 3.16: Example of a Voronoi synthetic fragmentation for the Rotterdam AUC
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3.3.3. Index Estimation
Once the random clustering ensemble have been selected for each city, it is possible to proceed
with the estimation of the expected index value. Previously, we introduced two of the most
popular comparison measures, the Rand Index and the Mutual Information Index. Although
it is not uncommon to use both measures simultaneously, as in the case of Spierenburg et al.
(2022). As Romano et al. (2016) argues, ARI is suited for scenarios where the reference clus-
tering consists of large, equally-sized clusters. On the other hand, AMI is better for handling
cases with unbalanced cluster sizes and small clusters. In our case, the segregation pattern D,
which serves as our reference clustering, tend to exhibit cluster size imbalance, making MI the
preferred metric. Additionally, MI is also advantageous for its ability to capture non-linear
relationships in the data (van der Hoef & Warrens, 2019). Therefore, it was decided to limited
ourselves to the use of MI for the similarity evaluation.

M̃Iadj =
MI − Ẽ(MI)

max {H(U),H(V )} − Ẽ(MI)
(3.11)

Ẽ(MI) =
1

n

∑
MI(D,Sn) (3.12)

Figure 3.17: Comparisons required to obtain components of M̃Iadj

We define our estimated adjusted Mutual Information Index,M̃Iadj , as outlined in Equa-
tion 3.11. It should be noticed that this is the same formulation as Equation 3.10, the only
difference being the expected value component. The value of MI is obtained by the ‘original’
comparison between our actual demographic D and urban fragmentation F patterns. Com-
paring D and the ensemble of synthetic fragmentations Sn will produce a distribution of MI
scores, as shown in Figure 3.18. The estimated expected value is thus calculated as the mean of
the MI scores from this distribution, Equation 3.12. Once these elements have been computed,
we can obtain the value of M̃Iadj for each city. As with other adjusted indices, scores close to
zero indicate no relation between both patterns, beyond what is possible by random chance.
Positive scores indicate varying levels of agreement, while negative scores, which can also occur,
signify more disagreement than expected by chance (Gates & Ahn, 2017). The results of the
analysis will be presented in the following chapter.
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Figure 3.18: Distribution of the MI score for the London AUC, the largest city in the study. As it may be
observed, the set of comparison between the synthetic fragmentations and the spatial segregation pattern

generate a distribution of scores for the mutual information. The mean of said distribution is defined as the
estimated expected value.

3.4. City Analysis
The benefit of our approach is that by constructing the spatial patterns for each case, we
gain the ability to explore results at the city level. This allows for a more detailed inspection
of cases of interest and to consider the influence of local context. Due to the large range of
cities included in the study, it is not practical to examine each case individually. Instead, we
aim to select a diverse set of cities that represent different contexts. The selection of cities
is based on the outcomes of the quantitative analysis, with an emphasis on including cities
from across the different countries in the study to contrast local dynamics under different
national contexts. Priority is given to cities that show significant correlation between urban
fragmentation and spatial segregation, since the connection between these patterns is the
main focus of the study. In choosing the cities, we compare their levels of fragmentation
and segregation to the national median, aiming to include a mix of different scenarios. The
qualitative exploration consist on examining areas of high concentration and analysing the
local dynamics that may explain the resulting pattern of segregation. In cases with significant
similarity, we further examine the spatial distribution of the infrastructure and consider the
potential roles that urban fragmentation plays in such contexts. For cities without a clear
correlation between fragmentation and segregation, we explore alternative processes that may
drive concentration, which could be independent of infrastructural aspects or other physical
elements of the urban environment. The aim of the qualitative exploration is not to provide
definitive explanations for why segregation occurs in specific locations, but rather to illustrate
how the initial findings from the quantitative analysis might be interpreted differently once
the local context of each case is taken into consideration.



4
Results and Analysis

4.1. Urban Fragmentation as Predictor of Segregation
Prior to presenting the results of the similarity analysis, we aim to contest the generalizability
of previous results from the literature. As mentioned in the introduction, studies suggest that
urban fragmentation can act as a robust and unbiased predictor of segregation (Ananat, 2011;
Tóth et al., 2021). Although these studies applied the concept of urban fragmentation to dif-
ferent scenarios – with Ananat (2011) examining the black-white divide in American cities and
Tóth et al. (2021) focusing on inequality in Hungarian towns – both cases employ a consistent
measure, the Separation of Physical Barriers (SPB)1. Given the effectiveness of this measure
in those instances, the question arises whether its applicability can be extended to a predictor
of segregation in our case. Therefore, we decide to examine the value of urban fragmentation
as a predicator for the level of segregation of immigrant communities in European cities. To
measure the level of segregation, we computed both the dissimilarity index (DI), as originally
used by Ananat (2011), and the multigroup entropy index (H), a similar segregation metric
widely used in the literature (Iceland, 2004; Monkkonen & Zhang, 2014; Spierenburg et al.,
2023). In assessing urban fragmentation, in addition to the SPB, we included another set of
metrics used in the literature, such as the effective mesh size (meff ) (Jaeger, 2000; Schumacher
& Deilmann, 2019) and the infrastructure fragmentation index (IFI) (De Montis, Martín, Or-
tega, Ledda, & Serra, 2017). The inclusion of various metrics was intended to confirm that the
relationship between both phenomena was not biased by the type of indicators selected. For a
detailed description of each metric, the reader is directed to Appendix D.

The regression analysis shown in Table 4.1 demonstrates that none of the urban fragmenta-
tion metrics attained statistical significance. This lack of relation is also evident from Figure 4.1
and 4.2, where no discernible relationship is observed between the two sets of measures. These
findings suggest that the relation between urban fragmentation and the segregation of immi-
grant communities is practically non-existent in the European context. However, these sorts
of analyses suffer crucial limitations. First, they do not implicitly consider the spatial distribu-
tion of the patterns of segregation and urban fragmentation, only their degree. Second, these
results do not permit us to contextualize them in terms of the dynamics of each city. The
regression model’s assumption that the relationship is consistent across cities might produce
misleading conclusions, such as implying that no city exhibit a correlation between these pat-
terns. The results from the similarity analysis, based on the methodology described in the
previous chapter, will help to determine the actual extent of this relationship by examining

1Ananat (2011) originally named the metric the ‘Railway Division Index’, since their study only accounted
for railway lines. Nevertheless, the general formulation of the measure is the same in both instances.
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the connection between both spatial patterns individually for each city, while still allowing for
a detailed analysis of any case of interest.

Table 4.1: Urban fragmentation metrics as predictors of level of segregation.

β t-value P

H
SPB -0.0034 -0.073 0.942
meff 8.196e-6 1.081 0.282
IFI 5.736e-8 0.800 0.426

DI
SPB -0.0605 -0.490 0.490
meff 1.982e-5 1.399 0.165
IFI 5.433e-8 0.403 0.688
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Figure 4.1: Dissimilarity Index DI - Effective Mesh Size meff

Figure 4.2: Multigroup Entropy Index H - Separation of Physical Barriers SPB
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4.2. Similarity Analysis Results
We performed the similarity analysis and obtained the corresponding M̃Iadj score for each city.
As depicted in Figure 4.3, there is a noticeable concentration of cities with scores near zero.
However, before drawing any conclusions, it is important to consider that M̃Iadj depends on
the difference between the original comparison score and the estimated expected value, MI −
Ẽ(MI) in Equation 3.11. Since Ẽ(MI) is derived from the mean of a distribution, as shown
in Figure 3.18, we need to verify whether the value of the original comparison significantly
deviates from the such mean. This check is important because otherwise we cannot make
the assertion that MI ̸= Ẽ(MI). In addition, in the absence of a significant deviation, it is
reasonable to conclude that M̃Iadj is essentially equal to zero, indicating no similarity between
both patterns beyond what is expected by random chance.

In order to determine whether a significant deviation exists, we analysed the quantile
position of the original MI score relative to the distribution. Scores that fall on the upper and
lower quantiles – 0.05 and 0.95 – demonstrate a substantial deviation from the distribution
mean, Ẽ(MI). As shown in Figure 4.4, the vast majority of cities do not fall within these
quantiles. Out of the 106 cities analysed, only 33 exhibited statistically significantMI scores, as
detailed in Table 4.2 and Figure 4.6.2 Therefore, we can argue that for the majority of European
cities included in the study, there is no indication that the patterns of spatial segregation
experienced by immigrant communities relate to the fragmentation caused by infrastructure.

However, focusing on those cities with significant MI scores, we are confronted with sur-
prising results. As shown in Figure 4.5, cities can exhibit both negative and positive M̃Iadj
values. This indicates that the correlation between urban fragmentation and spatial segrega-
tion patterns can be either positive or negatively. Positive M̃Iadj values indicate a similarity
between urban fragmentation and spatial segregation beyond that expected by random chance.
Using the terminology of mutual information, observing one patterns reduces our uncertainty
on the structure of the other. Negative M̃Iadj values mean that the synthetic fragmentation
patterns ‘consistently’ outperform the actual urban fragmentation patterns, implying that it is
more likely for a synthetic scenario to resemble the segregation patterns than the actual urban
fragmentation itself. In those cases, the actual patterns are spatially ‘divorced’, reflecting a
disconnect between social and spatial fragmentation.

Contrary to the regression analysis, the similarity analysis provided more nuanced results,
as it is disaggregated at the city level. For the most part, the similarity analysis corroborated
the findings of the regression analysis, indicating that urban fragmentation generally does not
serve as a good predictor of the level of spatial segregation, as most cities showed no relation-
ship between the two patterns. However, this does not mean that all cities conform to the
same behaviour. Indeed, while a generalizable approach such as regression indicates no overall
relationship, the city-specific results from the similarity analysis reveal that urban fragmenta-
tion does correlate with spatial segregation in a meaningful number of cities. In addition, the
analysis also uncovered a negative correlation in a small set of cities, a counterintuitive result.
These contrasting results suggest that more complex underlying phenomenon must be consid-
ered. Simply observing the presence or absence of a connection between urban fragmentation
and spatial segregation is insufficient for a comprehensive understanding of their interplay.

2For a detailed description of the results of similarity analysis for each city, please refer to Appendix C.
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Figure 4.3: M̃Iadj score across the cities. Figure 4.4: Quantile of MI scores.

Figure 4.5: M̃Iadj score for cities with significant
deviation from Ẽ(MI).

Figure 4.6: Geographical distribution of cities with
significant correlation between both patterns
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Table 4.2: Cities that show significant (dis)similarity between urban fragmentation and segregation patterns.
Rows in green indicate that the city has been included in the qualitative analysis.

City Country M̃Iadj MI Ẽ(MI) Quantile

Freiburg im Breisgau DEU 0.217 1.282 0.964 0.990
Augsburg DEU 0.201 1.561 1.229 0.998
Eindhoven NLD 0.150 1.116 0.894 0.994
Leicester GBR 0.143 1.618 1.343 0.998
Rotterdam NLD 0.140 1.632 1.318 1.000
Frankfurt am Main DEU 0.117 2.065 1.818 1.000
Hanover DEU 0.108 1.279 1.084 0.970
Valencia ESP 0.101 1.624 1.435 0.970
Dusseldorf DEU 0.093 1.915 1.733 0.990
Milton Keynes GBR 0.093 0.975 0.771 1.000
Southampton GBR 0.081 1.518 1.349 0.976
Derby GBR 0.079 1.075 0.903 0.956
Mannheim-Ludwigshafen DEU 0.079 1.478 1.320 0.966
Saragossa ESP 0.072 1.372 1.187 0.994
Utrecht NLD 0.071 1.029 0.844 1.000
Cambridge GBR 0.059 0.688 0.555 0.996
Nuremberg DEU 0.058 1.321 1.173 1.000
Strasbourg FRA 0.056 1.154 1.009 0.994
Middlesbrough GBR 0.051 1.000 0.870 0.984
Rennes FRA 0.049 0.647 0.508 0.992
Montpellier FRA 0.047 0.411 0.300 0.974
Cologne DEU 0.045 2.088 1.994 0.954
Nantes FRA 0.036 0.498 0.388 0.996
Palermo ITA 0.035 0.258 0.183 0.984
Ruhr DEU 0.022 1.904 1.839 0.992
Leipzig DEU 0.017 0.271 0.215 0.964
Leeds GBR -0.031 1.310 1.419 0.000
Hamburg DEU -0.057 1.340 1.460 0.030
Rouen FRA -0.128 0.457 0.669 0.008
Naples ITA -0.141 0.124 0.272 0.030
Marseille FRA -0.151 0.668 0.895 0.026
Stuttgart DEU -0.191 1.473 1.755 0.032
Genoa ITA -0.267 0.742 1.026 0.024
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4.3. City Analysis
In this section, we present the qualitative analysis of the selected cities. Table 4.3 lists the nine
cities chosen for further exploration, spread across seven countries. Ireland is the only country
not represented, as Dublin–its only city included in the study–showed no correlation. The
selection process began with cities exhibiting dissimilarity, since these are the least common
cases and the more counterintuitive. This was followed by cities showing similarity and, finally,
those with no correlation. Cities were chosen based on their degree of segregation and/or
fragmentation relative to other cities in their respective countries. The two British cases are
an exception, since these were selected to contrast alternative processes of concentration. This
final selection provides a diverse set of contexts which allow for a comprehensive analysis
on how local dynamics influence their respective spatial patterns of segregation and urban
fragmentation.

Table 4.3: Cities selected for qualitative examination

City Country Correlation Segregation1 Fragmentation1

Naples ITA – + –
Marseilles FRA – + –
Augsburg DEU + + –
Saragossa ESP + + +
Rotterdam NLD + + +
Utrecht NLD + = +
Lisbon PRT 0 + =
Oxford GBR 0 – –
Guildford GBR 0 – =
1 Relative comparison to national median.

4.3.1. Naples
Naples offers an interesting analysis case as it combines low urban fragmentation–one of the
lowest in the whole study–, high degree of segregation and significant dissimilarity level. From
the map shown in Figure 4.7 , it is evident that the western side of the city shows minimal
fragmentation, while most fragmented areas are located in the north-east. Furthermore, we
notice that most regions of high concentration are clustered on the vicinity of railway station.
The dissimilarity is the result of the spatial mismatch between these patterns. Although
fragmentation itself does not provide much information on the formation of these patterns
of segregation, other spatial mechanism may serve to better understand the result pattern of
segregation. A partial answer may be found by considering the area around Napoli Centrale.
Since the 80s, the area has attracted immigrant communities due to its cheap rents and its
purpose as a commercial area (Dines, 2002). However, these neighbourhoods have also been
subject to a strong process of urban decay. The area has been described as a ‘badly lit, decaying
and menacing nightmare thick with graffiti, grime and filth’ (Pardo, 2019). In addition to the
poor social conditions, the housing stock does not bear much better, being composed mostly
of old tenement blocks (Dines, 2002). In the case of Naples, there seems to be clear overlap
with the presence of urban decay and the concentration of immigrant communities.
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Figure 4.7: Naples - Infrastructure and patterns of segregation. 1) Napoli Centrale and Piazza Garibaldi

4.3.2. Marseilles
Marseilles is France’s the second-largest city, its principal port, and the city with the highest
degree of segregation. Observing Figure 4.8, the port’s location in the north-west becomes ev-
ident from the dense concentration of infrastructure, such as highways and railways. However,
despite the significant presence of infrastructure, the similarity analysis reveals a significant
dissimilarity between patterns of segregation and urban fragmentation. Notably, the concen-
tration of infrastructure also overlaps with a region of high immigrant concentration. This area
is known as the ‘triangle of poverty’ (Grzegorczyk, 2012), a combination of districts that com-
posed the former industrial portion of the city. Originally inhabited by the industrial working
class, these districts consist predominantly of high-rises and represent the poorest portion of
the city. Currently, the area is characterized by a large immigrant population and high levels
of deprivation (Gripsiou & Bergouignan, 2022; Grzegorczyk, 2012).

Interestingly, the infrastructure within the triangle of poverty does not serve to define its
boundaries. Instead, the triangle of poverty extends beyond the urban fragments, indicating
that there is no ‘wrong side of the tracks’, as both sides correspond to the same overarching
region of concentration. Within the triangle of poverty, regardless of the urban fragment, these
neighbourhoods are generally unattractive and suffer from urban decay and abandonment.
However, the concentration of infrastructure in this region may also indicate another type
of relation. Historically, the wealthier classes of Marseilles withdrew from the city centre to
the southern and eastern parts of the city, leaving the working class and later immigrant
communities closer to the port area (Mitchell, 2011). Examining Figure 4.8 shows that urban
fragmentation is concentrated in the triangle of poverty, while the southern and eastern parts
of the city exhibit limited fragmentation. This pattern raises questions about whether the
infrastructure expansion in the triangle of poverty could have been influenced by a general
disregard for the traditionally underprivileged residents of these districts.
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Figure 4.8: Marseilles - Infrastructure and patterns of segregation. 1) Triangle of Poverty

4.3.3. Augsburg
Augsburg, among all cities studied, exhibited the second-highest magnitude of M̃Iadj , indi-
cating a ‘stronger’ relation between both patterns. Even though another German city had
higher magnitude, Freiburg im Breisgau, we decided to examine Augsburg due to its higher
level of segregation. Among districts in Augsburg, Oberhausen in the norther part of the city,
is notable for its pronounced concentration of immigrants, both in terms of percentage and
numbers, the highest in the city (Stadt Augsburg, 2024). In addition, the district can be char-
acterized by its surrounding ‘barriers’, with a river on the right and railway tracks on the left.
Historically, Oberhausen developed around the industrial complex of the ‘Gaswerken’, which
currently serves as a cultural centre (Gaswerk Augsburg, n.d.). Despite the industry’s decline,
its influence on the spatial structure of the district is still evident. Most of the current housing
stock still dates back to the industrialization period at the end of the 19th century (Stadt
Augsburg, n.d.-b). It is evident that processes of deindustrialization have affected the district,
both spatially and socially. The original native working-class population of the district have
gradually abandoned the area and have been substituted by immigrant communities, who may
have been attracted to affordable housing options in the area. The old housing stock has lead
to signs of urban decay, which have prompted the local government to adopt initiatives aimed
at urban revitalization (Stadt Augsburg, n.d.-a).

Even though the infrastructural barriers largely coincide with the demographic boundaries
of the neighbourhood, its connection seems more spurious than direct. The observed alignment
likely stems from a historical path dependency, where both industrial and urban development
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Figure 4.9: Augsburg - Infrastructure and patterns of segregation. 1) Oberhausen

mutually influenced each other. Initially, the Gaswerken attracted workers to its vicinity
due to employment opportunities. The railway track, which served the factory as means of
connectivity, also created a physical division between the industrial complex and the residential
areas. As the industrial activity declined, the area underwent a demographic transformation,
becoming a hub for immigrant populations. The location of the railway tracks are a legacy of
spatial processes dating back to the industrialization of the city, rather than active contributors
to the current concentration of immigrants. Instead of infrastructure shaping segregation
patterns, it is more probable that other characteristic of the built environment, such as the
quality of the housing stock, have resulted in the concentration of immigrants in the area.

4.3.4. Saragossa
Among Spanish cities, both Saragossa and Valencia exhibited significant levels of similarity
in our study. We chose to focus on Saragossa, the largest city in the landlocked province
of Aragon, due to its higher degree of segregation despite a lower percentage of immigrant
population. Observing the map of the city, we notice various regions of high-concentration
scattered throughout. However, many of these areas, such as the large northern regions overlap
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with industrial and recreational districts, and feature low population densities. The high
concentration in these areas may be attributed to the presence of immigrant workers in the
vicinity or individuals temporarily housed within these facilities.

Figure 4.10: Saragossa - Infrastructure and patterns of segregation. 1) Barrio Delicias

An area that is worthy of a more detailed discussion is the district of ‘Delicias’ in the
south-west of the city. The district is characterized by high density and by a large presence
of immigrants; in 2007 23% of all foreign-born resident of Saragossa were living in the district
(Sociedad Municipal de Rehabilitación Urbana de Zaragoza, 2007). The district experienced
rapid development during the 60s, when internal migration of Spanish workers drawn to the
city’s industries led to mass construction due to insufficient housing. These large apartment
buildings were constructed in small parcels in close proximity to one another (Zaragoceando,
2021). Currently, the urban fabric of the district has become subject to processes of urban
decay characteristic of urban peripheries, with a substantial portion of housing stock being
obsolete (Revitasud-Interreg, 2005). Notably, Delicias has a large percentage of abandoned
housing, usually the older constructions, reflecting the general state of decay of portions of
the building-stock. Recent housing developments have prompted some residents to transition
from renters to homeowners, making rental properties available to immigrants who have come
to replace the departing residents (Sociedad Municipal de Rehabilitación Urbana de Zaragoza,
2007). It should be noted that in recent decades, Delicias has been subject to efforts in
urban revitalization (Revitasud-Interreg, 2005; Sociedad Municipal de Rehabilitación Urbana
de Zaragoza, 2007).

The examination of the urban dynamics of Delicias does not indicate that infrastructure
influence the process of immigrant concentration. The roads that surround the district may
delineate its boundaries, but these do not differ from other portions of the city’s motorway
network that make up the ring and axial roads. Instead, the availability, condition of housing
stock and the attractiveness of the area seem more relevant factors. The process of concentra-
tion in Delicias seems to reflect similar mechanism as those present in Oberhausen, Augsburg
and the Triangle of Poverty, Marseille. Housing initially intended for industrial workers is
gradually vacated by the original population, with these areas consisting predominantly of
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older houses and representing less attractive portions of the city, being increasingly occupied
by immigrants.

4.3.5. Rotterdam and Utrecht
Three cities in the Netherlands showed significant relation between spatial segregation and
infrastructure: Eindhoven, Rotterdam and Utrecht. Dutch cities are particularly insightful
because, while they present patterns of concentration similar to those previously discussed,
they also introduce new contexts related post-war large housing estates. For the examination,
we focus on Utrecht and Rotterdam due to their higher degree of urban fragmentation.

In Rotterdam, there seems to be a connection between unemployment, poverty and the
concentration of immigrants, with large portion of these communities residing in the older
and poorer neighbours of the city (van Ostaaijen, 2014). Tarwewijk and Afrikaanderwijk
in Rotterdam South are such examples. These neighbourhoods emerged in the early 20th
century due to internal migration and were initially populated by the working-class drawn
by the port’s industry (Custers & Willems, 2024; van Ostaaijen, 2014). However, similar to
other industrial neighbourhoods previously discussed, the ‘native’ working-class population
gradually withdrew from the area, making space for an influx of foreign immigrant workers.
Nevertheless, this process of withdrawal is not exclusive to older neighbourhoods from the
industrialization period. In the post-war period, due to significant population growth and
housing shortages, Rotterdam expanded by developing neighbourhoods at the outskirts of the
city, such as Pendrecht (McCarthy, 1999). These new developments were characterized by
large housing estates with a significant presence of social housing and higher density dwellings.
Although Pendrecht was originally considered an attractive place to live, by the 90s, processes
of decay in the housing stock made the area unappealing for most but the least privileged (van
Ostaaijen, 2014). Over time, Pendrecht and other ‘garden city’ developments in Rotterdam
have since been classified as one of the most deprived neighbourhoods in the country, earning a
place on the list of the 40 Vogelaarwijken (KEI Kenniscentrum Stedelijke Vernieuwing, 2008).

Utrecht has experienced similar processes of concentration in its post-war housing devel-
opments, such as Kanaleneiland, Overvecht and Nieuw-Hoograven. These neighbourhoods are
characterized by the presence of large housing states, constructions meant to address housing
shortages during the population growth of the post-war years (Van Beckhoven & Van Kem-
pen, 2006). These developments had an emphasis in multifamily dwellings, such as apartment
blocks, and have a large presence of social housing providers (Aalbers, van Beckhoven, van Kem-
pen, Musterd, & Ostendorf, 2003; Van Beckhoven & Van Kempen, 2006). Despite originally
being considered attractive places to live, these estates have since suffered from relative and
absolute decline (Aalbers et al., 2003). Absolute decline refers to lack of proper maintenance
of the housing stock and its surrounding area, leading to urban decay. Relative decline refers
to the emergence of more attractive housing options in others of the city, making these estates
unattractive in comparison. These processes of degradation have rendered these housing es-
tates less popular among Dutch households, reducing competition for dwellings and thereby
facilitating the concentration of immigrants in these areas (Van Beckhoven & Van Kempen,
2006).

In both cities, the relationship between urban fragmentation and segregation patterns ap-
pears to be closely tied to the era in which the neighbourhoods were developed. The post-war
housing projects were typically constructed on the outskirts of the city, often in areas that
had little to no urban development. For example, Overvecht was agricultural land prior to its
development(50 jaar gastarbeiders, n.d.). Since these neighbourhoods are positioned at the
periphery, they were initially integrated through infrastructure to ensure connectivity. How-
ever, as in the case of Utrecht, these areas have remained isolated and have been described
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Figure 4.11: Rotterdam - Infrastructure and patterns of segregation. 1) Tarwewijk and Afrikaanderwijk 2)
Pendrecht

to be ‘surrounded by railway and national highways’ (Aalbers et al., 2003; Van Beckhoven &
Van Kempen, 2006). Thus, the presence of these physical barriers is not directly causal to the
segregation patterns, but rather an addition affliction that exacerbates the isolation of these
areas.
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Figure 4.12: Utrecht - Infrastructure and patterns of segregation. 1) Overvecht 2) Kanaleneiland 3)
Niew-Hoograven

4.3.6. Lisbon
In our study, no Portuguese city showed a clear relationship between urban fragmentation
and segregation patterns. Nonetheless, examining Lisbon, the largest metropolitan area in the
country, offered valuable insights into the dynamics of urban expansion. Observing Figure 4.13,
we notice that despite no relation between both patterns, areas of high concentration seem to be
frequently located near transportation infrastructure, particularly on the west side of the city.
One such neighbourhood is ‘Alto da Cova da Moura’, a small settlement situated between a
railway line and a highway. This area, described as a ‘shanty neighbourhood’, emerged through
the illegal construction of houses during a period of large rural-urban migration in Portugal
(Horta, 2006). Over time, Cova da Moura experienced a demographic shift, with many of the
original Portuguese residents being replaced by immigrants, particularly from former African
colonies (Horta, 2006).

The spatial process observed in Cova da Moura, including its origins and demographic
transition, are not unique. Similar slums and clandestine housing emerged in the peripheries
of Lisbon during the 50s and 60s as a result of internal migration (Malheiros, 2000). As foreign
migration increased, dwellings originally occupied by local Portuguese were increasingly trans-
ferred to the incoming immigrants. This shift resulted in a concentration of these communities
in the urban fringes and restricted inner suburbs (Malheiros, 2000). Although efforts for slum
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Figure 4.13: Lisbon - Infrastructure and patterns of segregation. 1) Alto da Cova da Moura

clearance have been made, they often merely relocated the population to large social housing
complexes, thereby preserving the patterns of segregation (Malheiros, 2000).

Even though urban fragments may not relate to segregation patterns, it does necessitate
that infrastructure does not. During the suburbanization process in the 1940s and 1960s, Lis-
bon’s growth was accompanied by a significant expansion of the transportation infrastructure
network (Santos, 2013). This apparent connection between high concentrations of population
and proximity to infrastructure may be linked to the temporal emergence of these suburban
‘irregular’ neighbourhoods. As the city expanded, suburbs and shanty towns appeared at its
periphery, and a corresponding set of infrastructures was developed in response to the mobility
demands of the growing population.

4.3.7. Oxford and Guildford
In the previous cities in our analysis, we observed the appearance of a recurring theme. Neigh-
bourhoods with high concentrations of immigrants typically represent relatively unattractive
portions of the city, often characterized by poorer housing conditions. However, it is worth
highlighting that this is not always the case, and immigrant concentration can result from
diverse dynamics. Although Oxford and Guildford do not exhibit any particular relationship
between urban fragmentation and segregation patterns, these cities still offer valuable insights
due to their demonstration of an alternative concentration mechanism influenced by the pro-
cess of globalization. Both cities are characterized by the presence of knowledge institutions,
Oxford University and the University of Surrey, which serve as major attractors for interna-
tional students and researchers, thereby fostering a concentration of highly skilled immigrants
in their vicinity. In Figure 4.14, we observe that Guildford presents two regions of high concen-
tration on the west side of the city, these correspond to the location Surrey’s main campus and
Surrey Research Park, Figure 4.15. The additional region in the north corresponds to Hazel
Farm, a student housing complex within a resident area (University of Surrey, n.d.). A similar
spatial concentration process can be observed in Oxford. The city contain various colleges, in-
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ternational schools, medical research centres, and student housing complexes, which spatially
concentrate a significant percentage of the knowledge-based immigrants. For the example,
the northernmost region of concentration can be attributed to a graduate student accommo-
dation, Figure 4.16 and Figure 4.17. The observations from Oxford and Guildford illustrate
that the concentration of immigrants should not automatically be associated with poor hous-
ing conditions, unattractive neighbourhoods, or broader issues of inequality. Furthermore, we
observe how knowledge institutions and modern labour dynamics can reshape the spatial and
demographic composition of cities in the process of attracting talent from abroad.

Figure 4.14: Guildford - Infrastructure and
patterns of segregation

Figure 4.15: Map of Guildford
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Figure 4.16: Oxford - Infrastructure and patterns
of segregation

Figure 4.17: Summertown Graduate
Accommodation in northern Oxford



5
Discussion & Conclusion

In this research, we aimed to address the connection between urban fragmentation and spatial
segregation patterns in the European context, focusing specifically on the role of transportation
infrastructures and the spatial distribution of non-EU immigrant groups. The purpose of
our study was not only identify the existence of a connection, but to contextualize these
relations in terms of the local dynamics of each city. Previous studies have indicated that
urban fragmentation could serve as a robust predictor of segregation, a notion influenced by
findings in the American case, where barriers resulting from infrastructure have served to
reinforce separation between social groups. However, these relations cannot be translated to
other instances, since each city corresponds to its own unique context. Our research challenged
the notion of urban fragmentation as a generalizable measure for evaluating segregation and
highlighted the importance of considering cases individually in more detailed. This final chapter
summarizes the main contributions and implications of our research, discusses its limitations,
and suggests directions for future studies.

5.1. Contributions and Implications
In terms of our results, the primary implication is that a connection between urban fragmen-
tation and the spatial segregation patterns of immigrants does not exist as a generalizable
phenomenon in the European context. Less than one-third of the cities in the study exhibited
any statistically significant relationship between these patterns. Furthermore, the nature of
these relationships varies, with some cities displaying positive correlations and others negative.
Importantly, even where significant similarities exist, infrastructural barriers do not seem to
actively shape segregation patterns. Instead, these connections are more likely influenced by
other dynamics related to each city’s urban development and historical context. Our qualita-
tive exploration of specific cases provided insights into the types of spatial processes at play. A
recurring theme is the transformation of areas that once housed lower-class industrial workers
into neighbourhoods now marked by urban decay and high concentrations of immigrant resi-
dents. This observation suggests a potential link between the historical path dependency of
cities and their current segregation patterns. Just as the presence of deprived neighbourhoods
on the east side of industrial cities has been associated with historically uneven exposure to
pollution from factories (Heblich, Trew, & Zylberberg, 2021), the concentration of immigrants
in certain areas may also be tied to their historical roles as zones predominantly occupied by
the urban lower classes.

Our approach provides a generalizable methodology while still enabling a detailed exam-
ination of individual cities through their unique geographies. This contrasts with previous
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research into the segregation of immigrant communities across Europe, which has often relied
on single segregation metrics, as those presented in Chapter 4.1 (Benassi, Naccarato, Iglesias-
Pascual, Salvati, & Strozza, 2023; Lichter et al., 2020), or studies that regress the degree
of urban fragmentation against the degree of segregation, (Ananat, 2011; Tóth et al., 2021).
Such methodologies, while useful for observing general trends, cannot capture elements unique
to the local dynamics of each city. Our study emphasizes the importance of understanding
segregation through its geographies, as advocated by Nelson et al. (2024), which led to the de-
velopment of unique urban fragmentation and spatial segregation patterns for each case. This
was the crucial process that enable the recontextualization of our quantitative results. The
city analysis showed how the interpretation of the similarity analysis can vary once we account
for such dynamics. For example, Utrecht and Saragossa both showed significant similarity
between patterns, however, each case corresponds to different histories of urban development.
In addition, our study uncovered both positive and negative correlations between urban frag-
mentation and segregation patterns. These contrasting results cannot be fully appreciated
without recontextualizing them in terms of each city’s spatial processes. Even in instances
where the relation is negative, as in Marseilles, or non-existent, as in Lisbon, transportation
infrastructure may still have connections to the patterns of segregation beyond its resulting
urban fragmentation.

These results offer valuable insights for those involved in urban planning and transport
policy design. The lack of a generalizable relation between urban fragmentation and segrega-
tion suggests that infrastructural removal is not an effective means of addressing segregation
between communities. On the contrary, land revalorization around areas of highway removal
can even result in the displacement of marginalized groups (Stehlin, 2023). Although the re-
moval of infrastructural barriers may still offer benefits in terms of increased local mobility, it
should not be considered a standalone solution for addressing segregation. Since relations vary
by context, policy approaches cannot be generalized either. Even under the same national
context, cities can exhibit significantly different relation, from similarity to dissimilarity or
no correlation at all. This diversity underscores that our understanding of spatial segregation
and urban fragmentation must adapt to local dynamics, indicating that policy-makers should
focus on localized solutions rather than one-size-fit-all policies. Additionally, our qualitative
exploration highlights that neighborhoods suffering from urban decay deserve special atten-
tion from planners, particularly because these areas often concentrate immigrant communities
across different contexts. This focus is necessary because, as noted by Andersen (2002), areas
of decay often experience self-perpetuating cycles and are unlikely to recover through their own
means. Lastly, although the eras of aggressive highway and railway expansion in Europe may
be foregone, future projects could still inadvertently lead to the separation of social groups.
Due to their size and longstanding nature, planners should make a conscious effort to minimize
the fragmentation caused by these infrastructures. Even if they are not explicitly designed to
act as barriers, demographic shifts and future urban development might mean that certain
groups become affected by these physical elements. The city analysis showed the strong effect
that historical path depence can have in relation to the patterns of segregation and urban
fragmentation. Therefore, it is better to try to minimize these negative impacts since their
inception.

5.2. Limitations
Concerning our methodology, there are two aspects are worth addressing. As Spierenburg
et al. (2024) detailed, the variability in the percentage of immigrants across cities means that
definition of low and high concentration can vary greatly between cities. The regionalization
approach used by Spierenburg et al. (2024) normalized the demographic variable of interest to
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account for this variation and make the resulting regions more comparable across cities. The
implementation time that would have been needed to incorporate this normalization would
have negatively impacted the developments of other portions of the projects, such as the urban
fragmentation and the synthetic cases, and was therefore not adopted in this project. This
more precise delineation of region is unlikely to impact the overall results of the similarity
analysis. However, better region classification could improve future qualitative analysis by
having a better identification of areas of interest.

The second issue concerns the synthetic fragmentation patterns. As mentioned in Chap-
ter 3.3.2, we used Voronoi tessellation to produce a set of random fragmentation patterns,
aiming to preserve the number of fragments and their size distribution of the original ur-
ban fragmentation pattern. However, questions remain about whether these synthetic cases
are sufficiently representative for estimating the expected value of the mutual information.
For instance, Voronoi polygons always exhibit ‘sharp boundaries’, whereas real infrastructural
boundaries take more complex shapes, including curves and other diverse geometries. Ad-
ditionally, the boundaries presented by rivers should remain constant even in the synthetic
cases, since they are ‘permanent’ elements of the urban form. Yet, our current approach was
not capable of incorporating such constrains. Future efforts could explore alternative forms of
tessellation, such as Manhattan Voronoi (Wang, Xing, & Zhang, 2023), which, although still
featuring sharp boundaries, results in polygons that are less triangular and more block-like,
potentially better mimicking urban layouts. Additionally, these efforts could experiment try
to preserve different properties of the original fragmentation patterns, such as the presence of
certain barriers.

5.3. Further Research
The results from this study present a foundation for future research to further our knowledge
on segregation in the European context. One promising direction is the implementation of
longitudinal studies, to account for infrastructural developments and demographics shifts. As
it stands, we can only assess the level of similarity at a single time period. However, in a city,
neither its population nor its urban form remain static; both are subject to changes over time.
Although infrastructures tend to be stable and long-lasting elements, the spatial distribution
of populations is much more dynamic. Therefore, even if a road was developed with the intent
to divide, it does not necessitate that it remains a boundary. For instance, despite highways
being used to divide black and white communities in Atlanta, this did not prove to be a long-
term barrier as the black population would still permeate to ‘the other side’ Bayor (1988).
The absence of historical analysis limits our ability to determine causal mechanisms in the
relationship between both patterns. The qualitative analysis was intended to partially address
this issue by exploring the potential spatial mechanisms that are involved in spatial segregation.
Nevertheless, without proper longitudinal analysis, these observations remain only partial.

Another opportunity for future research would be to compare the performance of urban
fragmentation against other patterns derived from the built environment. The insights from the
city analysis suggests that in relation to physical urban characteristics, the quality of dwelling
units and the material conditions of the building stock may serve as better spatial predictors for
the concentration of immigrant communities. New spatial patterns could be constructed based
on variables such as the average age of dwelling units or real-estate prices, which may act as
proxies for the overall state of the building stock. These patterns could then be compared to the
spatial segregation patterns using the same principles of the similarity analysis applied in this
study. The results from this new comparison could be directly contrasted with those concerning
urban fragmentation presented in this report. In essence, we could evaluate which patterns
derived from elements from the built environment exhibits a higher degree of similarity to
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the spatial segregation patterns. Extending the similarity analysis to include these additional
patterns could help determine if the significant relationships observed in some cities might be
explained by spurious associations with these other urban characteristics.

Lastly, the relation between spatial segregation and infrastructure could be reconsidered
under different analytical frameworks. In our case, we focused on urban fragmentation resulting
from infrastructure. However, the impact of infrastructure extends beyond creating divides;
it also introduces negative externalities such as noise and pollution, which may diminish the
attractiveness and liveability of neighbourhoods on ‘both sides of the border’. Research by
Mahajan (2024) in the American context indicate that these disamenities could be connected
to the ethnic composition of neighbourhoods near highways. Additionally, while our study
considered immigrant communities as our target demographic, other disadvantaged groups
in Europe might also be disproportionately affected by such infrastructures. For instance,
the spatial segregation patterns of the urban poor could show a stronger correlation with
urban fragmentation patterns compared to those of immigrants. The methodological approach
used in our study, including the regionalization technique, could be adapted to analyse other
demographic groups if data is available, potentially revealing that the connection between
urban fragmentation and segregation not only varies based on the context but also on the
demographic group.

5.4. Final Remarks
Infrastructures are crucial components of modern cities, providing important benefits in terms
of connectivity and reduced travel times. However, these benefits should not compromise
the wider integration of vulnerable groups into society. In our evaluation of the relationship
between urban fragmentation and spatial segregation of immigrants, we focused on fragmenta-
tion caused by prominent infrastructures that act as physical barriers to local mobility. While
the general absence of a strong connection might be seen positively, indicating a thoughtful
approach to infrastructural development in Europe, it also highlights the complexity of under-
standing the spatial configuration of segregation. Although other characteristics of the built
environment, such as urban decay, may offer a better chance at capturing the underlying
structure of spatial segregation, the challenge remains large. For instance, the boundaries that
divide communities may much more subtle than we assume. As commented by Stefanizzi and
Verdolini (2019), deprived areas may be separated from affluent areas by ‘one single street’.
This observation suggests the presence of ‘imaginary boundaries’ that may not necessarily be
explained simply through the composition of the physical space. The implication is profound;
even if we alter our physical environments to remove barriers, and even if urban revitaliza-
tion projects target areas of decay, segregation may persist if these boundaries remain in the
imaginary of the communities inhabiting these places.

Nevertheless, despite the complexities and challenges that spatial segregation presents, it is
crucial that we continue our efforts to study and understand it. Cities are not static; they are
always evolving. This dynamism presents opportunities to reshape our urban environments for
the better, making them more inclusive and equitable for all their residents. As Jane Jacobs
(1961) famously stated:

‘Cities have the capability of providing something for everybody, only because, and
only when, they are created by everybody.’
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A
List of FUA

Table A.1: Cities included in the study

FUA Country Population

Aachen DEU 534,000
Aberdeen GBR 477,000
Amsterdam NLD 2,751,000
Augsburg DEU 648,000
Barcelona ESP 4,746,000
Bari ITA 711,000
Berlin DEU 4,952,000
Bilbao ESP 930,000
Blackburn with Darwen GBR 289,000
Blackpool GBR 309,000
Bologna ITA 758,000
Bonn DEU 897,000
Bordeaux FRA 1,190,000
Bremen DEU 1,234,000
Brighton and Hove GBR 429,000
Bristol GBR 918,000
Cambridge GBR 376,000
Cardiff GBR 901,000
Catania ITA 620,000
Cheshire West and Chester GBR 485,000
Coimbra PRT 271,000
Colchester GBR 307,000
Cologne DEU 1,951,000
Coventry GBR 697,000

Continued on the next page
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Table A.1: Cities included in the study (continued)

FUA Country Population

Derby GBR 487,000
Doncaster GBR 311,000
Dresden DEU 1,316,000
Dublin IRL 1,825,000
Dundee City GBR 258,000
Dusseldorf DEU 1,519,000
Edinburgh GBR 842,000
Eindhoven NLD 736,000
Exeter GBR 450,000
Florence ITA 773,000
Frankfurt am Main DEU 2,577,000
Freiburg im Breisgau DEU 630,000
Genoa ITA 665,000
Glasgow GBR 1,786,000
Grenoble FRA 660,000
Guildford GBR 262,000
Hamburg DEU 3,173,000
Hanover DEU 1,271,000
Ipswich GBR 349,000
Karlsruhe DEU 733,000
Kingston upon Hull GBR 590,000
Leeds GBR 2,577,000
Leicester GBR 867,000
Leipzig DEU 971,000
Lille FRA 1,472,000
Lincoln GBR 303,000
Lisbon PRT 2,925,000
Liverpool GBR 1,484,000
London GBR 11,982,000
Lyon FRA 2,016,000
Madrid ESP 6,612,000
Malaga ESP 816,000
Manchester GBR 3,293,000
Mannheim-Ludwigshafen DEU 1,139,000
Marseille FRA 1,248,000
Medway GBR 263,000
Middlesbrough GBR 554,000

Continued on the next page



64

Table A.1: Cities included in the study (continued)

FUA Country Population

Milan ITA 4,762,000
Milton Keynes GBR 264,000
Montpellier FRA 686,000
Muenster DEU 526,000
Munich DEU 2,823,000
Nantes FRA 922,000
Naples ITA 3,293,000
Newcastle upon Tyne GBR 447,000
Nice FRA 1,013,000
Northampton GBR 465,000
Norwich GBR 392,000
Nottingham GBR 892,000
Nuremberg DEU 1,298,000
Oxford GBR 528,000
Palermo ITA 963,000
Paris FRA 12,794,000
Plymouth GBR 393,000
Porto PRT 1,265,000
Portsmouth GBR 510,000
Preston GBR 254,000
Reading GBR 310,000
Rennes FRA 672,000
Rome ITA 4,142,000
Rotterdam NLD 1,805,000
Rouen FRA 685,000
Ruhr DEU 5,020,000
Saarbrucken DEU 794,000
Saint-Etienne FRA 475,000
Saragossa ESP 748,000
Seville ESP 1,489,000
Sheffield GBR 1,164,000
Southampton GBR 664,000
Stoke-on-Trent GBR 470,000
Strasbourg FRA 805,000
Stuttgart DEU 2,659,000
Sunderland GBR 265,000
Swansea GBR 378,000

Continued on the next page
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Table A.1: Cities included in the study (continued)

FUA Country Population

The Hague NLD 1,052,000
Toulon FRA 535,000
Toulouse FRA 1,391,000
Turin ITA 1,741,000
Utrecht NLD 875,000
Valencia ESP 1,629,000
Venice ITA 506,000
West Midlands urban area GBR 3,020,000



B
Adjusted Urban Cores (AUCs)

The issue of discontinuity and (over)aggregation are the motivations for the redefinitions of the
boundaries of urban cores of the selected FUA. The objective is to generate a single continuous
spatial unit that captures the most relevant portions of the original urban core. The redefinition
process adheres to a replicable set of rules, mirroring the methodology originally employed to
define the urban cores (Alessandrini et al., 2017). The first step involves the construction of a
full grid to cover the extent of the original urban core. The original boundaries of the urban
cores were obtained from OECD’s official sources (OECD, n.a.). Based on the coordinates
provided by the demographic data, we identify which populated cells are within the boundaries
of the urban core. Using these coordinates and based on the fact that these lay in a standard
grid of 100x100m cells, we construct the rest of the grid to cover the whole extent of the urban
core. This process can be observed in Figure B.1.

(a) Populated cells in the urban core of the
Amsterdam FUA (b) Grid with full coverage of the urban core

Figure B.1: Construction process of the grid

As can be noted from Figure B.1a the distribution of the population is uneven and dis-
continuous. It is apparent that some of these populated cells could be grouped into separate,
distinct regions. However, even though some cells may not be directly connected to other
populated cells, their proximity indicates belonging to the same ‘area of influence’. Therefore,
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to properly delineate these regions, we construct a ‘heatmap’ based on the distribution and
concentration of population across cells.

In the heatmap, each cell in the entire grid is assigned a density coefficient (dencoeff)
score, reflecting the magnitude of its own population and that of its surroundings. The density
coefficient is equal to the summation of the weights of all Origin-Destination (OD) pairs ij
for a given cell i (Equation B.1). The weight of each OD pair is determined by its distance
and the population of the destination cell. Weights are inversely proportional to the distance,
reflecting the decreasing influence of cells further apart (Equation B.21)

These weights are computed using the Euclidean distance from the centroid of a cell i to
the centroid of any cell j within a radius of 850. It should be noted that the radius of 850 is an
arbitrary selection based on the memory limitations presented by the number of computations
required for large grids. This method assigns higher weights to neighbouring cells that are
closer and have larger populations, thereby capturing the influence of population density in
the surrounding area. In addition, even if a cell has no population but remains sufficiently
close to populated cells, its density coefficient will be non-zero.

dencoeff =

j∑
i

wij (B.1)

wij =

{
1 ∗ tot_popi : dij = 0

1250/d2 ∗ tot_popj : dij > 0
(B.2)

The computation of the density coefficient produces a heatmap as observed in Figure B.2.
The red portions of the map represent cells with dencoeff < 1. These are cells that not
sufficiently close of any (densely) populated area, and its inclusion in the urban core is of
limited contribution. The heatmaps highlights the existence of ‘islands’. Each island is a
continuous region that represent the agglomeration of (populated) cells sufficiently close to
be considered under the same area of influence. The term island from the fact that these
regions are separated by a ‘sea’ of cells with insufficient density scores. From the heatmap,
it also becomes apparent that among these islands, some have higher density score and/or
concentrate a larger number of people.

Once the density islands have been defined, the final part of the process is to select a single
island to obtain the boundaries of the adjusted urban core (AUC). In our case, we select the
island that contains the largest number of people. Figure B.3 to Figure B.11 show the AUC
for all the cities included in the study. In must be noted that there are three special instances
of the AUC. Liverpool and Portsmouth contain two regions rather than one. The reason being
that the original shape file of the urban core excluded the river that separated these regions.
Nevertheless, these regions remain sufficiently close to be categorized as parts of the same
continuous area of influence. The last exception is Venice, that is composed of the urban area
in the mainland and its islands.

1The constant value of 1250 was chosen to ensure that when d = 50/
√
2, the weight wij = 1. The distance

value of 50/
√
2 serves as a reference distance to align both parts of the equation, which allows for the handling

of cases where the distance is zero, since c/d2 is undefined at zero. A cell with sides dref ∗ 2 would have half
the area of the original cell.
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Figure B.2: Density coefficient heatmap for Amsterdam
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Figure B.3
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Figure B.4
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Figure B.5
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Figure B.6
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Figure B.7
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Figure B.8
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Figure B.9
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Figure B.10
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Figure B.11



C
Similarity Analysis Results

Table C.1: Results for the similarity analysis for the cities included in the study

City M̃Iadj MI Ẽ(MI) s2(MI) CI95%
lower CI95%

upper Quantile

Aachen 0.039 0.851 0.761 0.0064 0.754 0.768 0.912
Aberdeen 0.070 1.350 1.238 0.0273 1.223 1.253 0.718
Amsterdam 0.049 1.794 1.679 0.0073 1.672 1.687 0.946
Augsburg 0.201 1.561 1.229 0.0326 1.213 1.245 0.998
Barcelona -0.033 1.410 1.460 0.0155 1.449 1.471 0.258
Bari 0.015 0.296 0.266 0.0042 0.260 0.272 0.658
Berlin 0.026 1.745 1.679 0.0023 1.675 1.683 0.95
Bilbao 0.004 0.848 0.841 0.0163 0.830 0.852 0.442
Blackburn with Darwen 0.015 1.148 1.114 0.0057 1.107 1.120 0.622
Blackpool 0.014 0.609 0.586 0.0270 0.572 0.601 0.422
Bologna 0.011 0.845 0.825 0.0076 0.818 0.833 0.516
Bonn 0.055 1.126 1.039 0.0084 1.031 1.047 0.836
Bordeaux 0.033 0.775 0.691 0.0060 0.684 0.698 0.89
Bremen 0.097 1.752 1.590 0.0150 1.580 1.601 0.95
Brighton and Hove -0.006 0.576 0.586 0.0118 0.577 0.596 0.406
Bristol 0.034 0.729 0.642 0.0076 0.634 0.649 0.864
Cambridge 0.059 0.688 0.555 0.0051 0.549 0.561 0.996
Cardiff 0.028 0.946 0.871 0.0069 0.864 0.878 0.844
Catania -0.195 0.126 0.303 0.0122 0.293 0.312 0.076
Cheshire West and Chester 0.007 0.093 0.070 0.0004 0.068 0.072 0.87
Coimbra 0.016 0.290 0.250 0.0017 0.246 0.253 0.846
Colchester 0.011 0.729 0.708 0.0058 0.702 0.715 0.568
Cologne 0.045 2.088 1.994 0.0042 1.988 2.000 0.954
Coventry 0.020 1.200 1.149 0.0058 1.142 1.155 0.724

Continued on the next page
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Table C.1: Results for the similarity analysis for the cities included in the study (continued)

City M̃Iadj MI Ẽ(MI) s2(MI) CI95%
lower CI95%

upper Quantile

Derby 0.079 1.075 0.903 0.0165 0.891 0.914 0.956
Doncaster 0.002 0.198 0.192 0.0013 0.189 0.195 0.542
Dresden -0.026 0.221 0.291 0.0014 0.287 0.294 0.05
Dublin 0.097 0.856 0.732 0.0241 0.718 0.746 0.788
Dundee City 0.102 0.720 0.567 0.0198 0.555 0.579 0.866
Dusseldorf 0.093 1.915 1.733 0.0081 1.725 1.741 0.99
Edinburgh 0.025 0.608 0.533 0.0045 0.527 0.539 0.894
Eindhoven 0.150 1.116 0.894 0.0220 0.881 0.907 0.994
Exeter -0.020 0.501 0.529 0.0140 0.518 0.539 0.362
Florence -0.075 0.682 0.776 0.0137 0.766 0.787 0.17
Frankfurt am Main 0.117 2.065 1.818 0.0080 1.810 1.826 1.0
Freiburg im Breisgau 0.217 1.282 0.964 0.0351 0.948 0.981 0.99
Genoa -0.267 0.742 1.026 0.0116 1.016 1.035 0.024
Glasgow 0.003 1.117 1.105 0.0011 1.102 1.108 0.606
Grenoble 0.061 0.654 0.515 0.0102 0.506 0.524 0.926
Guildford 0.020 0.820 0.773 0.0104 0.764 0.782 0.616
Hamburg -0.057 1.340 1.460 0.0032 1.455 1.465 0.03
Hanover 0.108 1.279 1.084 0.0188 1.072 1.096 0.97
Ipswich 0.027 0.350 0.285 0.0047 0.279 0.291 0.814
Karlsruhe 0.076 1.556 1.439 0.0161 1.428 1.450 0.822
Kingston upon Hull 0.008 0.858 0.842 0.0160 0.831 0.853 0.444
Leeds -0.031 1.310 1.419 0.0010 1.416 1.422 0.0
Leicester 0.143 1.618 1.343 0.0220 1.330 1.356 0.998
Leipzig 0.017 0.271 0.215 0.0013 0.212 0.218 0.964
Lille -0.018 0.448 0.505 0.0028 0.500 0.509 0.152
Lincoln -0.002 0.083 0.087 0.0010 0.084 0.089 0.474
Lisbon -0.082 1.334 1.472 0.0058 1.465 1.478 0.052
Liverpool 0.001 1.123 1.119 0.0010 1.116 1.122 0.48
London 0.005 2.054 2.033 0.0003 2.031 2.034 0.904
Lyon -0.009 1.354 1.371 0.0111 1.362 1.381 0.37
Madrid 0.025 2.263 2.201 0.0035 2.196 2.206 0.846
Malaga -0.019 1.134 1.166 0.0077 1.158 1.173 0.316
Manchester -0.000 1.215 1.216 0.0005 1.214 1.218 0.418
Mannheim-Ludwigshafen 0.079 1.478 1.320 0.0129 1.310 1.330 0.966
Marseille -0.151 0.668 0.895 0.0085 0.887 0.903 0.026
Medway 0.034 0.594 0.526 0.0102 0.518 0.535 0.732
Middlesbrough 0.051 1.000 0.870 0.0063 0.863 0.877 0.984

Continued on the next page
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Table C.1: Results for the similarity analysis for the cities included in the study (continued)

City M̃Iadj MI Ẽ(MI) s2(MI) CI95%
lower CI95%

upper Quantile

Milan 0.038 1.182 1.107 0.0101 1.098 1.116 0.786
Milton Keynes 0.093 0.975 0.771 0.0096 0.763 0.780 1.0
Montpellier 0.047 0.411 0.300 0.0044 0.295 0.306 0.974
Muenster 0.076 1.390 1.243 0.0139 1.233 1.254 0.918
Munich 0.071 1.610 1.476 0.0101 1.468 1.485 0.942
Nantes 0.036 0.498 0.388 0.0030 0.383 0.393 0.996
Naples -0.141 0.124 0.272 0.0050 0.266 0.278 0.03
Newcastle upon Tyne -0.001 1.000 1.003 0.0026 0.998 1.007 0.428
Nice 0.017 1.144 1.116 0.0099 1.107 1.125 0.554
Northampton 0.037 0.823 0.728 0.0088 0.720 0.737 0.856
Norwich 0.036 0.720 0.645 0.0071 0.637 0.652 0.832
Nottingham 0.039 1.194 1.113 0.0180 1.101 1.124 0.684
Nuremberg 0.058 1.321 1.173 0.0046 1.167 1.179 1.0
Oxford -0.006 0.621 0.633 0.0073 0.625 0.640 0.388
Palermo 0.035 0.258 0.183 0.0019 0.179 0.187 0.984
Paris -0.002 1.819 1.826 0.0007 1.824 1.828 0.374
Plymouth -0.009 0.420 0.435 0.0140 0.425 0.445 0.398
Porto 0.003 0.626 0.617 0.0005 0.615 0.619 0.622
Portsmouth 0.045 0.944 0.862 0.0116 0.853 0.872 0.76
Preston 0.041 0.914 0.839 0.0122 0.829 0.849 0.744
Reading 0.103 1.046 0.866 0.0284 0.851 0.881 0.89
Rennes 0.049 0.647 0.508 0.0062 0.502 0.515 0.992
Rome -0.062 1.680 1.785 0.0072 1.778 1.793 0.106
Rotterdam 0.140 1.632 1.318 0.0124 1.308 1.327 1.0
Rouen -0.128 0.457 0.669 0.0061 0.662 0.675 0.008
Ruhr 0.022 1.904 1.839 0.0012 1.835 1.842 0.992
Saarbrucken 0.027 1.063 1.020 0.0190 1.007 1.032 0.564
Saint-Etienne -0.039 0.520 0.557 0.0276 0.542 0.572 0.376
Saragossa 0.072 1.372 1.187 0.0110 1.178 1.196 0.994
Seville 0.053 1.063 0.935 0.0115 0.925 0.944 0.938
Sheffield 0.005 1.467 1.453 0.0021 1.449 1.457 0.598
Southampton 0.081 1.518 1.349 0.0135 1.339 1.359 0.976
Stoke-on-Trent 0.016 0.859 0.815 0.0051 0.809 0.821 0.718
Strasbourg 0.056 1.154 1.009 0.0068 1.001 1.016 0.994
Stuttgart -0.191 1.473 1.755 0.0171 1.743 1.766 0.032
Sunderland -0.006 0.093 0.109 0.0009 0.106 0.111 0.316
Swansea 0.010 0.238 0.210 0.0016 0.206 0.213 0.732

Continued on the next page
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Table C.1: Results for the similarity analysis for the cities included in the study (continued)

City M̃Iadj MI Ẽ(MI) s2(MI) CI95%
lower CI95%

upper Quantile

The Hague 0.033 1.338 1.288 0.0109 1.279 1.297 0.682
Toulon -0.038 0.751 0.801 0.0117 0.791 0.810 0.236
Toulouse 0.044 1.028 0.926 0.0098 0.917 0.935 0.892
Turin 0.031 0.613 0.567 0.0136 0.557 0.578 0.598
Utrecht 0.071 1.029 0.844 0.0065 0.837 0.851 1.0
Valencia 0.101 1.624 1.435 0.0190 1.423 1.447 0.97
Venice 0.034 1.340 1.276 0.0094 1.268 1.285 0.716
West Midlands urban area -0.003 1.556 1.566 0.0012 1.563 1.569 0.332



D
Urban Fragmentation and Segregation

Measures

SPB is bounded between zero and one, with higher values indicating more fragmentation. For
meff , higher values indicate a lower degree of fragmentation. Higher values of IFI indicate
higher fragmentation.

SPB = 1−
n∑

i=1

(
Ai

Apc

)2

(D.1)

• Apc... Total number of populated cells in the AUC
• Ai... Number of populated in fragment i

meff =
1

Apc
·

n∑
i=1

A2
i (D.2)

• Apc... Total number of populated cells in the AUC
• Ai... Number of populated in fragment i

IFI =
(
∑n

i=1 Li ·Oi) ·Ng · Pg

Ag
(D.3)

• Li... Total length of infrastructure type i

• Oi... Occlusion coefficient for infrastructure type i 1

• Ng... Total number of fragments in the AUC
• Pg... Perimeter of the AUC
• Ag... Total area of the AUC

1We followed similar coefficients to those used by Ledda and De Montis (2019). 1 for motorways and railways.
0.5 for primary and trunk roads. 0.3 for canals and light-rail.
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Both H and D are bounded between zero and one, with higher values indicating more segre-
gation.

H = 1− 1

T · E

J∑
j=1

tj

M∑
m=1

πjm logM
1

πjm
(D.4)

E =

M∑
m=1

πm logM
1

πm
(D.5)

• T ... Total population in the AUC
• tj ... Population in spatial unit j
• E... Total entropy in the AUC
• πjm... Proportion of group m in spatial unit j
• M ... Number of (demographic) groups

D =
1

2

N∑
i=1

∣∣∣∣ Xi

Xtotal
− Yi

Ytotal

∣∣∣∣ (D.6)

• Xi... Population of group X in unit i
• Xtotal... Total population of group X

• Yi... Population of group Y in unit i
• Ytotal... Total population of group Y

Table D.1: Urban fragmentation and segregation levels for cities in the study

City SPB IFI meff H DI

Aachen 0.939 2.817e+03 2.219e+02 0.096 0.324
Aberdeen 0.922 1.788e+03 5.559e+02 0.080 0.317
Amsterdam 0.972 2.9998e+04 2.744e+02 0.093 0.307
Augsburg 0.923 1.392e+03 2.834e+02 0.102 0.315
Barcelona 0.911 1.4666e+04 1.468e+03 0.132 0.366
Bari 0.860 1.504e+03 5.829e+02 0.139 0.471
Berlin 0.978 3.2404e+04 8.382e+02 0.112 0.358
Bilbao 0.858 2.971e+03 4.225e+02 0.154 0.444
Blackburn with Darwen 0.948 6.112e+03 3.675e+02 0.222 0.559
Blackpool 0.860 4.736e+02 4.598e+02 0.041 0.254
Bologna 0.836 4.553e+03 1.015e+03 0.076 0.299
Bonn 0.882 3.786e+03 7.752e+02 0.089 0.305
Bordeaux 0.949 5.270e+03 8.976e+02 0.065 0.302
Bremen 0.946 8.234e+03 5.213e+02 0.087 0.310
Brighton and Hove 0.836 8.473e+02 8.329e+02 0.038 0.197

Continued on the next page
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Table D.1: Urban fragmentation and segregation levels for cities in the study (continued)

City SPB IFI meff H DI

Bristol 0.940 3.953e+03 5.594e+02 0.108 0.339
Cambridge 0.926 5.539e+02 2.250e+02 0.024 0.153
Cardiff 0.951 6.037e+03 4.256e+02 0.105 0.352
Catania 0.178 1.269e+02 2.597e+03 0.174 0.496
Cheshire West and Chester 0.940 3.377e+03 2.178e+02 0.036 0.225
Coimbra 0.889 4.481e+03 8.909e+02 0.035 0.208
Colchester 0.835 1.747e+03 9.643e+02 0.089 0.297
Cologne 0.974 3.759e+04 4.759e+02 0.102 0.333
Coventry 0.958 7.899e+03 5.505e+02 0.141 0.403
Derby 0.930 2.641e+03 4.659e+02 0.146 0.428
Doncaster 0.966 6.488e+03 2.981e+02 0.111 0.406
Dresden 0.920 4.385e+03 1.117e+03 0.144 0.430
Dublin 0.810 1.254e+02 1.969e+03 0.147 0.421
Dundee City 0.848 5.006e+02 6.132e+02 0.130 0.417
Dusseldorf 0.966 1.075e+04 3.322e+02 0.087 0.303
Edinburgh 0.958 3.167e+03 3.944e+02 0.074 0.291
Eindhoven 0.860 1.066e+03 7.447e+02 0.097 0.327
Exeter 0.754 4.108e+02 8.421e+02 0.084 0.327
Florence 0.795 1.101e+03 1.379e+03 0.076 0.290
Frankfurt am Main 0.973 1.366e+04 2.274e+02 0.061 0.250
Freiburg im Breisgau 0.866 1.109e+03 3.527e+02 0.080 0.286
Genoa 0.815 5.793e+03 1.182e+03 0.154 0.433
Glasgow 0.986 5.787e+04 3.651e+02 0.190 0.491
Grenoble 0.915 2.787e+03 3.673e+02 0.041 0.222
Guildford 0.933 2.946e+03 2.392e+02 0.058 0.226
Hamburg 0.945 2.105e+04 1.299e+03 0.098 0.323
Hanover 0.923 1.996e+03 5.376e+02 0.092 0.313
Ipswich 0.905 8.159e+02 3.433e+02 0.061 0.261
Karlsruhe 0.926 4.362e+03 3.084e+02 0.071 0.274
Kingston upon Hull 0.893 9.632e+02 6.717e+02 0.158 0.477
Leeds 0.989 1.875e+05 7.042e+02 0.203 0.515
Leicester 0.951 1.998e+03 3.239e+02 0.146 0.396
Leipzig 0.959 2.684e+03 3.171e+02 0.144 0.414
Lille 0.960 1.295e+04 6.861e+02 0.084 0.341
Lincoln 0.830 2.433e+02 4.452e+02 0.047 0.262
Lisbon 0.897 3.056e+04 2.889e+03 0.052 0.237
Liverpool 0.968 3.697e+04 8.028e+02 0.174 0.458

Continued on the next page



85

Table D.1: Urban fragmentation and segregation levels for cities in the study (continued)

City SPB IFI meff H DI

London 0.997 4.330e+05 3.662e+02 0.071 0.256
Lyon 0.931 1.150e+04 1.020e+03 0.056 0.261
Madrid 0.984 2.728e+05 8.702e+02 0.125 0.371
Malaga 0.888 1.130e+04 6.828e+02 0.179 0.482
Manchester 0.994 2.384e+05 4.522e+02 0.191 0.490
Mannheim-Ludwigshafen 0.950 8.579e+03 3.331e+02 0.090 0.318
Marseille 0.830 5.814e+03 2.716e+03 0.099 0.352
Medway 0.880 1.940e+03 7.860e+02 0.065 0.291
Middlesbrough 0.948 5.167e+03 5.134e+02 0.159 0.455
Milan 0.920 6.883e+03 939.011 0.120 0.367
Milton Keynes 0.914 2.533e+03 7.740e+02 0.055 0.239
Montpellier 0.910 1.446e+03 5.650e+02 0.067 0.269
Muenster 0.948 1.619e+03 2.652e+02 0.127 0.381
Munich 0.942 6.801e+03 870.215 0.069 0.269
Nantes 0.952 5.031e+03 560.315 0.065 0.300
Naples 0.506 1.674e+03 4.152e+03 0.201 0.562
Newcastle upon Tyne 0.981 2.093e+04 412.248 0.186 0.482
Nice 0.870 1.330e+04 2.097e+03 0.067 0.276
Northampton 0.949 2.971e+03 330.114 0.056 0.251
Norwich 0.907 947.246 324.732 0.071 0.265
Nottingham 0.937 3.181e+03 416.570 0.088 0.314
Nuremberg 0.967 1.026e+04 288.746 0.094 0.315
Oxford 0.867 1.111e+03 444.845 0.024 0.144
Palermo 0.847 1.917e+03 1.236e+03 0.259 0.605
Paris 0.992 3.951e+05 889.718 0.061 0.266
Plymouth 0.853 863.941 1.026e+03 0.076 0.343
Porto 0.973 6.838e+04 1.130e+03 0.045 0.250
Portsmouth 0.880 2.889e+03 681.698 0.080 0.323
Preston 0.887 2.023e+03 507.265 0.118 0.382
Reading 0.889 1.094e+03 392.194 0.073 0.279
Rennes 0.951 3.520e+03 213.803 0.047 0.260
Rome 0.950 4.105e+04 2.185e+03 0.176 0.400
Rotterdam 0.965 1.609e+04 562.510 0.149 0.409
Rouen 0.824 2.280e+03 1.029e+03 0.065 0.271
Ruhr 0.988 1.616e+05 573.810 0.123 0.374
Saarbrucken 0.893 3.002e+03 404.112 0.092 0.322
Saint-Etienne 0.476 230.440 1.910e+03 0.047 0.244

Continued on the next page
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Table D.1: Urban fragmentation and segregation levels for cities in the study (continued)

City SPB IFI meff H DI

Saragossa 0.967 1.872e+04 208.917 0.165 0.446
Seville 0.955 5.680e+03 317.934 0.212 0.543
Sheffield 0.979 4.494e+04 655.572 0.222 0.528
Southampton 0.957 5.976e+03 422.383 0.106 0.355
Stoke-on-Trent 0.955 6.641e+03 539.568 0.179 0.483
Strasbourg 0.960 6.312e+03 310.134 0.043 0.218
Stuttgart 0.754 4.056e+03 2.242e+03 0.074 0.279
Sunderland 0.925 3.226e+03 585.987 0.174 0.481
Swansea 0.924 3.916e+03 747.170 0.125 0.404
The Hague 0.882 5.144e+03 996.654 0.125 0.366
Toulon 0.830 2.161e+03 1.882e+03 0.098 0.394
Toulouse 0.947 7.808e+03 858.175 0.053 0.226
Turin 0.831 743.070 1.471e+03 0.139 0.407
Utrecht 0.954 1.072e+04 266.506 0.118 0.360
Valencia 0.944 1.499e+04 421.411 0.149 0.413
Venice 0.930 8.103e+03 307.496 0.143 0.419
West Midlands urban area 0.991 1.004e+05 589.507 0.175 0.462
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