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Abstract 
Semantic segmentation, a task vital in the creation of 3D point cloud models for buildings, is 

aimed at assigning meaning to individual points. However, due to the vast volume of 

unstructured point cloud data, precise semantic segmentation remains challenging. Significant 

progress has been observed in recent years with the application of deep learning techniques to 

point cloud segmentation, and the effectiveness of Dynamic Graph Convolutional Neural 

Network (DGCNN) and K-Nearest Neighbors (K-NN) in handling point cloud data has been 

recognized. 

In this study, Dynamic Graph Convolutional Neural Network (DGCNN) was utilized for 

semantic segmentation on a building's point cloud scene. We adopted K-Nearest Neighbors (K-

NN) as a crucial component of our methodology to optimize the segmentation process. By 

varying 'k' values in K-NN and exploring different block sizes, we aimed to obtain various 

segmentation results for comparison. When a block size of 1 meter was employed and 'k' was 

set to 20, an overall accuracy of 90.32%, mean accuracy of 87.64%, and IoU of 80.71% were 

achieved. However, the most favorable segmentation outcomes were observed when the block 

size remained 1 meter, and 'k' was set to 30, resulting in an overall accuracy of 93.86%, mean 

accuracy of 90.68%, and IoU of 84.97%. 

These experiments underscore the significance of parameter selection in optimizing the 

performance of DGCNN for point cloud segmentation. The findings reveal that adjustments to 

'k' values and block sizes can significantly influence segmentation accuracy and quality, 

emphasizing the importance of parameter optimization in the context of semantic segmentation 

for building point clouds using deep learning techniques. The utilization of K-NN played a 

crucial role in achieving these improvements by allowing us to adapt to the inherent variability 

in point cloud data. 
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1. Introduction 
In Section 1.1, the current situation and difficulty of application of 3D point cloud is introduced. 

In Section 1.2 and 1.3, semantic segmentation and deep learning on 3D data are introduced. In 

Section 1.4, the main research question and related sub-questions are proposed. 

1.1  Overview 

Nowadays, the generation and reconstruction of three-dimensional (3D) urban building models 

became a hotspot for many researchers, since it is important to many aspects such as vegetation 

monitoring, [1], navigation of autonomously driving cars, [2], environmental modeling, [3], 

creation and interaction of virtual reality, [4], and so forth. In order to achieve this, point clouds 

are one of the most important candidate data sources. Over the last decade, Light Detection and 

Ranging, which is also known as "LiDAR", is one of the most widespread technologies in the 

field of remote sensing to acquire massive amounts of 3D point clouds which act as the input 

data sets for the aforementioned applications. But in practice, it is really computational 

expensive to process such a huge amount of points clouds for building the corresponding model 

or perform related computational analysis, [5], while the modeling in terms of building 

information management, [6], keep proposing prominent challenges. And with no doubt this is 

the situation we are facing, especially when the buildings in the model contain a variety of non-

rectilinear features (e.g. curved windows) and sophisticated geometric items. 

 

1.2  Semantic Segmentation 

But different from non-semantic segmentation, semantic segmentation labels each point with 

semantic information. For the previous applications we describe, i.e. reconstruction of three-

dimensional urban area models, segmentation, especially semantic segmentation, plays a 

fundamental but critical part. As a terminology of computer vision, segmentation refers to the 

process of classifying point clouds into multiple homogeneous regions, where points in the 

same segment will have the same properties, [7]. When semantic segmentation is applied, it 

divides input point cloud into different parts showing distinct semantic meaning, followed by 

assigning each part a label indicating each part to one of the pre-defined classes semantically. 

Apart from the reconstruction of 3D urban models, there are many other applications where 

semantic segmentation also shows its value. For example, in robotics, we can use segmentation 

to label objects in the surrounding environment of a robot. This is essential since these semantic 

labels can help a robot to identify each object in its surrounding areas, so that it can make 

further judgement. 

 

Due to the increasing demand for 3D building models in environmental modeling, urban plan- 

ning and some other aspects, facades semantic segmentation, especially detailed segmentation 

for the windows and doors of level of detail (LoD3) building models in CityGML, [8], has been 

regarded as an important issue in urban reconstruction. The existing facades segmentation 

approaches are commonly based on grammar rules or basic computer vision methods, [9]. 

Despite the fact that these approaches can achieve relatively satisfying results, there still exists 

several problems. On the one hand, these grammar rules originate from weak architectural 
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principles, [10]. Furthermore, there are so many architecture styles in the world, which means 

the existing grammar rules are not sufficiently comprehensive for processing all kinds of build- 

ing facades, [11]. On the other hand, some basic computer vision methods, like edge detection 

and region growing, rely on local gradient or different values of local average grayscale, [10]. 

Therefore, these methods may lack universality and they are easily affected by noise. Generally, 

these traditional methods are limited. 

 

1.3  Deep Learning 

In the past ten years, progress in the understanding of 3D sensed data has been obtained with 

the help of deep learning. With a range of important applications from indoor robotics 

navigation to national scale remote sensing, there is a high demand for algorithms that can learn 

to automatically understand and classify 3D sensed data, such as point clouds, [12]. For the 3D 

point cloud processing, many frameworks based on deep learning techniques, such as PointNet, 

[13], PointNet++, [14], DLA-Net, [47], U-Net, [49], and RandLA-Net, [50], were developed, 

which also show considerable potential for gaining high performance in different aspects such 

as classification, segmentation, and so forth. Therefore, deep learning, as one of the most 

powerful techniques, will continue to boost the development related to 3D point cloud 

processing. 

 

For 3D point cloud tasks, traditional methods are usually conducted on the basis of specific 

handcrafted features, such as normals, with a specific classifier, and are often capable of 

producing satisfactory results, [15]. These handcrafted features can be based on geometry and 

frequency characteristics of point clouds. However, the extraction of crucial handcrafted 

features hinges on sufficient knowledge of the field and substantial experience, [15]. In contrast, 

deep learning algorithms possess the ability to learn so-called computer-designed features 

automatically, it normally requires complex network architecture and a considerable amount of 

calculation time, [15]. 

 

1.4  Research question and Sub-questions 

In this study, the main research question is How to apply a deep learning framework to 

perform point cloud semantic segmentation for building facades with high accuracy and 

efficiency? 

And some sub-questions are proposed below: 

⚫ How to determine the input feature set for the deep learning framework? 

⚫ How to determine the structure of our deep learning framework? 

⚫ What is the training strategy? 

⚫ How to use Domain Adaptation (a technique used to minimize the potential impact 

of differences in data distribution between training and test datasets.) to minimize 

possible impact caused by different distribution between training and test datasets? 

⚫ How to eliminate the influence of measurement geometry, if it’s necessary? 

⚫ Which evaluation metrics should be chosen to measure the performance? 

⚫ How does the segmentation outcome fit the ground truth? 



4 

 

⚫ How does the deep learning framework we apply perform in comparison to other 

deep or non-deep learning frameworks? 
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2. Related Work 
In this section, we will review previous methods for point cloud analysis briefly. Considering 

the procedure, point cloud semantic segmentation is quite similar to clustering-based point 

cloud segmentation. But different from non-semantic point cloud seg- mentation, point cloud 

semantic segmentation labels each semantic information for each point, which is more flexible 

compared to clustering-based method, [16]. 

2.1 Projection Networks 

In several methods, points are projected to a kind of intermediate grid structure. The point 

cloud is used to render a series of 2D images at different viewpoint, [17][18][19], which are 

then processed by image-based networks. We often refer this kind of methods as multi-view. 

When it comes to scene segmentation, these methods often behave poorly because of point 

density variation and occluded surfaces. Different from determining a global viewpoint, [20], 

some people declared that local neighborhood points could be processed with 2D 

convolutions after projecting them to local tangent planes. However, the results of this 

method are strongly dependent on the estimation of local tangent planes.  

 

In terms of voxel-based methods, points are usually projected on 3D voxel grids, 

[21][22][23]. Furthermore, larger grid size can be achieved through sparse structures such as 

hash-maps or octrees, which often lead to enhanced performance, [24][25]. However, these 

networks are often constrained by their kernels (usually 33 = 27 or 53 = 125 voxels), 

which means lack of flexibility. Moreover, for complicated tasks such as scene segmentation, 

it would make the design of their architectures more straightforward if intermediate structures 

like 2D images or 3D grid voxels can be avoided. 

 

2.2 Graph Convolution Networks 

There are several different ways about defining a convolution operator on a graph. A 

convolution on a graph is focused on the surface indicated by the graph, [26][27][28][29], or it 

can be computed as a multiplication on its spectral representation, [30][31], both of which learn 

filters on edge relationships. In other words, the graph convolution groups features on local 

surface patches, which can recover the missing topological information of a point cloud, thus 

enriching the representation power of point cloud. 

 

2.3 Pointwise MLP Networks 

PointNet is considered to be a milestone in point cloud deep learning, [32]. This network 

proposed using a shared MLP (Multilayer Perceptron, a class of feedforward artificial neural 

network, [33].) on each point individually, then a global max-pooling (a sample-based 

discretization process, the objective is to down-sample an input representation such as image, 

reducing its dimensionality.) is followed to produce global features. MLP in the network is like 

a series of learned encodings, and the global feature of the point cloud is obtained as the largest 

response of all the points in terms of each encoding. However, PointNet is also limited as the 
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local features of point clouds are excluded. From then on, several architectures such as 

PointNet++ have been designed to take local information into consideration with MLPs, 

[14][34][35]. 

 

2.4 Point Convolution Networks 

Recently, some works define the kernel point Convolution, which directly performs operation 

on the input point cloud, with no need of any intermediate representation. 

 

Pointwise CNN (Convolutional Neural Networks, a class of deep neural networks, [36].), 

[37] uses voxel bins to determine the kernel weights, which is a little bit similar to the voxel-

based network, and thus lacks flexibility. Moreover, expensive computation cost imposed by 

its normalization operation is also a problem. The kernels are modeled by linear functions in 

the Flex-convolution network, [38], resulting in its limited power of representation. 

Furthermore, this network also suffers from the problem of point density variation. In 

SpiderCNN, [39], a set of polynomial functions are used to model its kernel, with different 

weights for each neighborhood. However, this network is not spatially consistent, since the 

weight used for each neighborhood relies on the distance-wise order of the neighborhood. 

PCNN, [40], proposed the idea that the kernel weights could be carried by the points, and a 

correlation function is used to model these weights. Nonetheless, this neural network fails to 

account for neighboring points in its computations. This results in convolution computations 

being performed in a quadratic fashion with respect to the number of points, rendering the 

network non-scalable. KPConv, [32], also follows the general idea of PCNN that uses points 

to carry kernel weights, but differs in many details. For example, unlike PCNN, a simple 

linear correlation function is used in KPConv to model the weights, which greatly improves 

the gradient back-propagation operation. Moreover, KPConv also proposed a deformable 

point convolution for the first time, which can further boost the performance of point 

convolution for complicated tasks. 

 

2.5 Random Forest-Based Method 

Random Forest (RF) is a robust ensemble learning algorithm that leverages the power of 

decision trees. It has been effectively employed in the segmentation of 3D point clouds due to 

its ability to handle complex and high-dimensional data. Researchers have explored its 

application in diverse domains, including urban scene analysis, object detection, and building 

facade segmentation. 

 

A notable advantage of RF is its capacity to accommodate both geometric and contextual 

features extracted from point clouds. This versatility allows RF-based models to capture 

intricate relationships among points, making them well-suited for tasks like distinguishing 

between different facade components, such as windows, walls, and openings. 

 

The work by [46] represents a significant contribution in the field of point cloud segmentation, 

as it specifically focuses on the supervised detection of façade openings using thermal attributes. 
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While not a Random Forest-based approach, this research lays the foundation for exploring 

alternative methods that incorporate thermal information for improved segmentation accuracy. 
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3. Data Pre-processing 
In Section 3.1, the data used in the study is introduced. In Section 3.2, the denoising and 

labeling work are introduced. In the Section 3.3, the downsampling methods are introduced. 

3.1 Data Source 

The 3D point cloud data of buildings come from some teaching buildings and dormitory 

buildings of Nanjing University of Information Science and Technology. The 3D laser scanner 

is a RIEGL VZ 2000i with a scanning accuracy of 3mm and a maximum measurement range 

of 2500m. At the same time, it is a Riegl with a Nikon camera to collect the color information 

of the point cloud, which is suitable for building scanning scenarios. The main scanning area 

is the west building of Nanjing University of Information Science and Technology (yellow 

circle part in figure 1). 4 to 5 stations are set up for the same building to obtain the overall 

structure of the building, and multiple facades of the same style of building are also scanned. 

The specific building point cloud data is shown in Figure 2. 

 

Fig 1: Scanning area on Nanjing University of Information Science and Technology, indicated by a 

yellow circle on the left 

 

Fig 2: Part of the scanned building point cloud 
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3.2 Denoising and calibration of point cloud data 

It can be seen from Figure 2 that the original building point cloud contains a large number of 

irrelevant points, so it is necessary to denoise the point cloud and extract the facade part of the 

building. Façade extraction can be realized through automatic or manual extraction. The 

experimental data has too much redundancy and too much interference information. At the 

same time, it is not difficult to simply extract building facades, and the workload is not high, 

so manual extraction is adopted. In the process of building facade extraction, the choice of 

software for visualizing building point clouds is particularly important. This experiment mainly 

uses Cloud Compare software to visualize point cloud data, and the subsequent point cloud 

calibration is also completed on Cloud Compare. 

 
                            Fig 3: Manual denoising 

 

The architectural point cloud scanned in this experiment contains rich detailed features, such 

as walls, windows, air conditioners, doors and other detailed building components. The 

research objects of this paper are mainly windows and building exterior walls. Manually extract 

windows and distinguish different attribute features on building facades. In the process of 

processing, special structures that need to be distinguished are extracted. The purpose is to 

prepare data sets for subsequent network training, verification, and testing. 

 

Fig 4: Ground truth: manually classified building point cloud 

3.3 Downsampling 

Due to the massive and disordered nature of point clouds, direct processing requires high 

computational costs when searching for neighborhoods. A commonly used solution is to 

downsample the point cloud, and convert the operation of the entire point cloud to the points 

obtained by downsampling to reduce the amount of calculation. 

 

3.3.1 Uniform Downsampling 

There are many different sampling methods for uniform downsampling, [44], of which the 
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farthest point sampling is the most commonly used method. Select any point in the point cloud 

as the seed point, and set an interior point set. Place the seed point into the interior point set. 

Each time, find the point farthest from the interior point set from the point cloud and place it 

in the interior point set. The point placed in the interior point set is deleted from the point cloud. 

The distance between a point in a point cloud and an interior point set is the minimum distance 

between that point and all points in the interior point set. 

 

Fig 5: Uniform downsampling 

 

3.3.2 Curvature Downsampling 

Principle of curvature downsampling, [45]: In traditional surveying and mapping, in order to 

describe an object in detail, more piecemeal measurements are set in places with obvious 

changes, so that the fitting results are closer to the real situation. In areas with significant 

changes, the curvature of the point cloud also increases, so it is necessary to increase the density 

of the point cloud in that area. 

The characteristics of this sampling method are: in areas with significant changes, the higher 

the density of the point cloud in the obtained results, which can fully reflect the changing 

characteristics of that part; Classifying and sampling high and low curvature can ensure 

uniform sampling of specific terrain features. 

 

3.3.3 Voxel downsampling 

Voxel downsampling, [44], is the process of voxelizing a three-dimensional space and then 

sampling a point within each voxel. Typically, the center point or the point closest to the center 

can be used as the sampling point. The specific method is as follows: 

1. Create voxels: Calculate the bounding box of the point cloud, and then discretize the 

bounding box into small voxels 

2. Each voxel contains several points, and the center point or the point closest to the center 

point is set as the sampling point 

The characteristics of voxel sampling are: very high efficiency; The distribution of sampling 

points is relatively uniform, but the uniformity is not as high as uniform sampling; The distance 

between points can be controlled by the size of voxels; The number of sampling points cannot 

be precisely controlled. With reasonable parameters, voxel downsampling will produce 

sufficiently accurate results to reduce CPU power consumption; The voxelated point cloud data 

will be stored in an orderly manner in memory, which is beneficial for reducing random 

memory access and increasing data processing efficiency; Benefiting from the orderly storage 

and downsampling of data brought by voxelization, this method can process point cloud data 
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with large order of magnitude. 

 

Fig 6: Voxel downsampling 

 

This experiment needs a sampling method that can retain detail information, extract local 

features at multiple levels, and has high computational efficiency, so this experiment uses voxel 

downsampling method for downsampling. The uniform downsampling algorithm has a large 

amount of computation, a long time, and low efficiency. Curvature downsampling needs to 

calculate curvature information, which takes a long time, and is not suitable for this article; 

Building facades are mostly regular geometry, so surface downsampling is not used. 

 

Fig 7: Comparison before and after voxel downsampling 

 

The point cloud before down-sampling consists of 3,011,839 points, and after down-sampling 

of 911,095 points. 
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4. Method 
In Section 4.1, a data augmentation method is applied on training data to produce more façade 

data. In Section 4.2, the principle of the DGCNN model is introduced and the role of the loss 

function is discussed. In Section 4.3, the geometric method is introduced, which could also be 

used to complete the segmentation task on simple facades. 

4.1 Point Cloud Data Augmentation 

Data enhancement, [43] is a very effective method to solve the problem of overfitting. It is a 

common data preprocessing method of convolutional neural networks. For example, when the 

amount of data on hand is too small, some meaningful data can be generated manually for 

training. The prominent advantages of this data acquisition method are: low cost, good effect. 

In addition, when the data set used for classification has data skew, that is, one type of samples 

is much more than the other, data augmentation can be performed on a class with fewer samples. 

It assumes that more information can be extracted from the original dataset through 

augmentation, making the enhanced dataset represent a more comprehensive dataset, thereby 

narrowing the gap between the training set and the validation set. 

Due to the limited sample data collected in this experiment, it is necessary to increase the point 

cloud data required for training through data augmentation. At the same time, considering the 

main segmentation of walls and window construction, neural network learning mainly focuses 

on depth features. Therefore, the augmentation method of this experiment consists of 

performing a 90 transformation on the same wall around the Z-axis to generate four walls. 

 
Fig 8: Data augmentation 

 

 

 

 



13 

 

4.2 Network Design 

4.2.1 DGCNN Network Architecture 

The main structure of DGCNN, [41], refers to PointNet, [13], which inputs the entire point 

cloud data and directly outputs the segmentation results, all of which are end-to-end neural 

network structures. 

 

 

Fig 9: DGCNN Network Architecture 

 

Overview of DGCNN architecture, with each input point containing 3 features (such as x, y, 

and z). The segmentation model extends the classification model by combining global feature 

vectors with all local features generated by EdgeConv, [41]. The spatial transformation block 

is implemented through a 3 × 3 matrix to align the input point cloud. This matrix is expected 

to be an orthogonal matrix and is estimated during training. In EdgeConv operation, the 

dimension f of edge features of each point is calculated by applying a multi-layer perceptron. 

The number of layer neurons of a multi-layer perceptron is defined as {𝑎1,𝑎2,...,}. And after 

pooling the edge features, a tensor of shape (𝑛 × 𝑎𝑛) will be finally generated. 

 

In this study, DGCNN was used for semantic segmentation of point clouds, which takes the 

entire point set as input and outputs a semantic label for each point. DGCNN uses a basic 

version of PointNet as the backbone network. 

 

Based on the architecture of PointNet, DGCNN integrates local features by replacing MLP 

with edge convolution operations (EdgeConv). DGCNN first constructs a directed graph 𝐺 =

 (𝑉,   𝐸) representing the internal local structure of the point cloud, where 𝑉 =

 {1, … , 𝑁} denote vertices and 𝐸 ∈ 𝑉 × 𝑉 denote edges. In the simplest case, G is a k-nn 

adjacency graph. DGCNN does not directly convolution point features, but first calculates the 

K edge features related to its nearest neighboring points for each point, which can obtain local 

features of the point cloud. 
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4.2.2 Classification of Building Components Based on DGCNN 

Point cloud data is massive and uneven, so it cannot be directly calculated and needs to be 

divided into blocks. According to the requirements of neural network parameter settings, the 

number of points in each block is 4096. Point cloud blocks with less than 4096 points are 

upsampled and integrated into the point cloud block to increase the number of point clouds to 

the standard of 4096; Resampling dense point cloud blocks is used to reduce the number of 

point operations to the standard of 4096. 

 

In the feature dimension, the coordinates of the original point cloud after blocking are first 

centralized and normalized. All information is merged according to the original coordinates, 

centralized coordinates and normalized coordinates, added to the attribute information of the 

point cloud, and the Semantic information of the point cloud is merged together. The point 

cloud block is used as the processing unit, and the center of the point cloud block is set as the 

origin to establish a coordinate system, and the operation of recalculating each point cloud 

coordinate to the new coordinate system is centralization; Normalization involves linearly 

transforming the original coordinates into 0-1 to obtain the new coordinates. In this experiment, 

the annotation information of point clouds includes two types: walls and windows. For each 

point cloud, probability values are calculated based on the above three types for prediction. We 

take the category with the highest probability value as the category of the point. Therefore, in 

the training process of the neural network, the maximum probability value and the annotation 

are jointly used for loss calculation, and the parameters in the network are improved through 

backpropagation. During network training, in order to reduce the difference in contours of the 

same category, the point cloud blocks of each round of training are input in batches. 

 

In order to study the feasibility of DGCNN on aerial point clouds and the effect of different 

effective ranges, we conducted experiments using five block sizes (10m, 3m, 1m, 0.5m, and 

0.1m) and five k values (20, 25, 30, 35, and 40). To compare the performance of different 

settings, we first used k=30 as the default neighborhood size and changed the block size. Then, 

we used the block size that achieved the best segmentation result to explore the impact of 

different k values. 

 

4.2.3 Loss Function Design 

The loss function, [42], is an index used to measure the performance of the model. The larger 

the value of the loss function, the worse the performance of the model. The role of the neural 

network is to optimize the parameters to reduce the value of the loss function and find the best 

weight value for the performance of the entire neural network. The loss layer brings the 

predicted value and the real value into the loss function to obtain the current loss function and 

backpropagates it into the first layer of the neural network to continue training, improve the 

performance of the neural network, and achieve the minimum loss. The essence of 

classification and segmentation tasks in this paper is to classify point clouds. In neural networks, 
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cross entropy loss function is usually used for classification tasks. When the performance of 

the model is poor, the cross-entropy loss function can speed up the optimization of the model, 

improve the optimization efficiency and reduce the training time by greatly modifying the 

parameters. The cross-entropy function is mainly concerned with the difference between the 

real value and the predicted value, so it is the best choice for classification tasks. The formula 

of cross entropy loss function is as follows: 

 

Among them, 𝐶 is the loss value, 𝑛 is the number of samples, 𝑥 is the prediction vector 

dimension, 𝑦 is the true value, and 𝑎 is the predicted value. 

 

This experiment evaluates the performance of all experiments using several indicators. The 

overall accuracy (Acc) is calculated by dividing the number of correctly classified points in all 

categories by the total number of predictions, and is determined. The formula to calculate Acc 

is as follow: 

𝐴𝑐𝑐 =
𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑐𝑜𝑟𝑟𝑒𝑐𝑡𝑙𝑦 𝑐𝑙𝑎𝑠𝑠𝑖𝑓𝑖𝑒𝑑 𝑝𝑜𝑖𝑛𝑡𝑠

𝑇𝑜𝑡𝑎𝑙 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑝𝑜𝑖𝑛𝑡𝑠
 

 

Due to the uneven number of points in different categories, such as points from windows being 

much less than those from walls, the average accuracy of each category (mAcc) is also 

calculated. The formula to calculate mAcc is as follow: 

1

1 N ii

i

i

mAcc
N

C
t=

=   

Where: N  is the total number of classes; 
iiC   represents the number of points correctly 

classified in class i; 
it  denotes the total number of points in class i. 

In addition, we also evaluate the average of intersection over union (IoU) for each class. This 

is a commonly used indicator in semantic segmentation tasks. For point cloud data, the IoU 

from a class is calculated as: 

 

In this paper, TP represents the number of correctly predicted window point clouds; FP 

represents the number of point clouds that are wrongly predicted as windows; FN represents 

the number of point clouds that are incorrectly predicted as non-windows; TN represents the 

number of point clouds that are correctly predicted as non-windows. In this In this work, we 

also determined the confusion matrix, which contains information for all classes of TP, FP, FN 

and TN. 

 

4.3 Geometric Method 
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Apart from the deep learning method, a relatively simple method could also be adopted to carry 

out the segmentation task. 

 

The general principle is that a plane is fitted to the point cloud. Then the distances between 

points and best plane could be calculated, which could be called ‘façade distance’.  

 

The ‘façade distance’ could be a criterion to separate walls and windows, because the ‘façade 

distance’ of window points are usually different from the ‘façade distance’ of wall points. 

Therefore, a threshold could be adopted to separate two classes. 

 

In this study, the geometric method is also applied on the test data, and the results are shown 

in the result chapter. The plane fitting and distance calculations are done in CloudCompare. 
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5. Results 
In Section 5.1, training settings would be generally introduced, including training data, 

validation data and test data, plus other parameters such as batch_size and epoch. In Section 

5.2, visualized predicted results would be shown and be compared with the ground truth, and 

some accuracy indices (Acc, mAcc, IoU) with different parameters settings would be displayed. 

In Section 5.3, the results of geometric method are also shown. In Section 5.4, how different 

training settings lead to better / worse results would be discussed. In Section 5.5, performance 

of deep learning model in this paper would be compared with the expected performance of 

other methods. 

5.1 Training Settings 

To compare the influence of different parameter settings on the point cloud segmentation 

accuracy, this paper sets block size and k (number of nearby points) respectively, and the block 

size values are 1 and 10. The value of k is 10, 20, 30. 

 

In this study, the extracted point clouds of 15 building facades are filtered, and finally the point 

cloud data of 8 facades with complete information are selected. The data of these eight facades 

contains two types of facades of different types, and four of them are used as training set, two 

sides are used as the validation set, and the last two sides are used as the test set. Among them, 

considering the limited training data, this paper enhances the data of the four facades for 

training. In order to better enable the network to learn the features of windows and walls, this 

paper rotates the facades according to the size of 90°, and finally obtains 8 facades of training 

data. Table 1 shows the general introduction of the data used in this study, including training, 

validation and testing data. 

 

Table 1: Overall introduction of data 

 Number of 

Points 

Point Density 

Variation 

Tree 

Occlusions 

Complicated 

Windows 

Data 

Augmentation 

Role 

F1 123029 

 

No No No Training 

F2 123029 

 

No No Yes Training 

F3 617559 

 

Yes No No Training 

F4 617559 

 

Yes No Yes Training 

F5 208770 

 

No No No Training 

F6 208770 

 

No No Yes Training 

F7 629647 

 

Yes No No Training 
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F8 629647 

 

Yes No Yes Training 

F9 170382 

 

Yes No No Validation 

F10 755509 

 

No No No Validation 

F11 471130 

 

Yes No No Testing 

F12 382300 

 

No No No Testing 

 

 

We used an NVIDIA GeoForce RTX 3090 GPU with 24G graphics memory. During the 

training process, the batch_size is set to 8, which means that the input point cloud data can be 

cut into 8 pieces for training at a time. The epoch is set to 100, that is, a total of 100 iterations . 

In addition, Adam is used to optimize the network, and the initial learning rate is set to 0.001. 

 

5.2 Results and analysis (deep learning method) 

Table 2 summarizes the quantitative results of point cloud semantic segmentation with different 

parameter settings in the test. When k is the default value of 20, a block_size of 1m obtains the 

best segmentation accuracy: Acc: 90.32%, mAcc: 87.64%; IoU: 80.71 %. This result is also 

showing that a smaller block_size setting is more conducive to the extraction of window point 

clouds. The possible reason is that the range of the wall is small. When the block_size is set 

too large, the network may learn the overall features of the wall, while ignoring the features of 

the detailed structure. 

 

When the block_size is set to 1m, the value of k is 30 to obtain the best segmentation accuracy: 

Acc: 93.86%, mAcc: 90.68%; IoU: 84.97%. This shows that the larger the value of k, the higher 

the accuracy of the segmentation, because when the value of k is larger, the edge convolution 

(EdgeConv) can obtain more edge features, which means more local features. However, if the 

k value is set too large, it is possible to obtain mixed features of windows and walls, which is 

not conducive to the segmentation of point clouds. Moreover, due to the performance of the 

computer graphics card, too large a k value will cause the program fail to run. 

 

Table 2: Segmentation accuracy for different parameter settings 

Block_size(m) k Acc(%) mAcc(%) IoU(%) 

1 20 90.32 87.64 80.71 

10 20 87.53 80.65 75.68 

1 10 85.67 80.26 72.89 

1 20 89.56 83.72 79.28 
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1 30 93.86 90.68 84.97 

 

Figure 10 shows the results after segmentation. Compared with the ground truth, the network 

is not fully segmented in some details, which is the area that needs to be improved in the future. 

 

  

             ground truth                         predicted 

    

ground truth                          predicted 

  

           wall    window 

Fig 10: Segmentation results of F11 (above) and F12 (bottom) 

 

Firstly, the red circles in the figure show that when the façade point cloud is under occlusion, 

performance of network is not that well, the possible reason is that the occlusion causes damage 

of original structures of windows and walls, which increase the difficulty of segmentation. 
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Fig 11: Point density distribution of F11 (above) and F12 (bottom) 

 

Another one is that when it comes to the areas with low point density (figure 11 shows the point 

density distribution of tested façades), the accuracy of segmentation also goes down. The 

possible reason is that when the point density is low, the difference of features of windows and 

walls might be smaller, which makes it more difficult to distinguish them. 
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5.3 Results and analysis (geometric method) 

 
Fig 12: Outcomes of geometric method on F11 

Fig 12 shows the outcome of geometric method described in method chapter. The colors of 

facade in the figure denote the distance between points and fitted plane. From the figure, the 

difference between the color of wall points and that of window points is relatively obvious, and 

these two classes could be separated under a distance threshold. For F11, the threshold could 

be set to 0.06 meter. 

 

However, this method will only work for simple facades, since the feature is too simple and 

single, which is difficult to handle the complicated situations. For the facades with complicated 

structure, the deep learning method will work better. 

 

5.4 Settings discussion 

5.4.1 k 

The 'k' value, representing the number of nearest neighbors considered in the K-Nearest 

Neighbors (K-NN) scheme, plays a pivotal role in point cloud segmentation. Starting with 

'block size' set at 1 meter and 'k' at 10, the model exhibits an OA of 85.67%, MA of 80.26%, 

and IoU of 72.89%. In this scenario, the smaller 'k' value limits the contextual understanding 

of each point, as it considers fewer neighboring points during feature aggregation. 

Consequently, the model may overlook important contextual information, leading to a decrease 
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in segmentation accuracy, especially for complex structures with intricate geometries. 

 

Conversely, when 'k' is increased to 30 under the same 'block size' conditions, a remarkable 

improvement in segmentation accuracy is observed. The model achieves an OA of 93.86%, 

MA of 90.68%, and IoU of 84.97%. This improvement can be attributed to the larger 'k' value 

enabling the model to capture a more extensive contextual range by considering a greater 

number of nearest neighbors during feature aggregation. This broader contextual awareness is 

especially beneficial when dealing with complex and interconnected object structures. 

 

However, it's worth noting that an excessively large 'k' value may introduce computational 

complexity and memory resource challenges. Therefore, the choice of 'k' should strike a 

balance between obtaining a sufficiently broad contextual understanding and ensuring 

computational efficiency. 

5.4.2 Block size 

The impact of 'block size,' which refers to the spatial size of the units into which the point cloud 

is divided, on the point cloud segmentation outcomes is of paramount importance. When we 

set 'block size' to 1 meter while keeping 'k' constant at 20, the model demonstrates an 

impressive performance, achieving an Overall Accuracy (OA) of 90.32%, Mean Accuracy (MA) 

of 87.64%, and Intersection over Union (IoU) of 80.71%. This configuration effectively 

captures fine-grained details within smaller spatial units, contributing to higher segmentation 

accuracy. 

 

However, as we explore 'block size' variations, reducing it to 10 meters under the same 'k' 

conditions results in a noticeable decline in all three metrics. The OA decreases to 87.53%, MA 

to 80.65%, and IoU to 75.68%. This decline can be attributed to the larger 'block size,' which 

encompasses a more extensive spatial range, potentially introducing noise into the point cloud 

representation. In essence, the larger 'block size' dilutes the localized context within each block, 

making it challenging for the model to accurately classify points, especially along the 

boundaries of object features. 

 

Conversely, when 'block size' is excessively reduced, for instance, below 1 meter, it can lead 

to increased sensitivity to noise and the uneven representation of object surfaces. This 

sensitivity to noise may result in segmentation artifacts and inaccuracies. Therefore, while 

smaller 'block sizes' offer the advantage of capturing intricate details, they must be chosen 

judiciously to strike the right balance between capturing fine-grained features and managing 

potential noise. 

5.4.3 Rotation 

In the study, data augmentation is also adopted to enrich existing training data, and the 

augmentation method used in the study is rotation. Considering the relatively regular structure 

of windows and walls, the rotation angle is set to 90 degrees in this paper. After rotation, “new” 

façade data is obtained and can be used in the training process. 
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a. Expected Impact of Data Augmentation: 

In building facade point cloud segmentation, the implementation of data augmentation 

techniques, such as 90-degree rotations about the Z-axis, is expected to have a substantial 

influence on model performance. These augmentations are anticipated to provide several 

benefits: 

 

Increased Diversity: Data augmentation introduces additional viewpoint variations, allowing 

the model to be exposed to a more diverse set of training examples. This, in turn, should 

improve the model's ability to handle facade objects with different orientations and shapes. 

 

Improved Generalization: By training on augmented data, the model is likely to develop a 

more robust understanding of windows and walls. It should be better equipped to generalize its 

knowledge to real-world scenarios where facade objects may exhibit various configurations. 

 

Enhanced Accuracy: The augmented dataset is anticipated to enable the model to segment 

windows and walls more accurately, even in cases where these objects are presented at non-

standard angles or orientations. 

 

b. Potential Challenges without Data Augmentation: 

While data augmentation is expected to provide significant benefits, the absence of data 

augmentation may introduce certain challenges in building facade point cloud segmentation: 

 

Limited Training Data: Without data augmentation, the training dataset may remain relatively 

small, potentially hindering the model's ability to generalize effectively. The model's 

performance might suffer when confronted with facade objects not well-represented in the 

limited training data. 

 

Orientation Sensitivity: A model trained without data augmentation could be more sensitive 

to the orientation of facade objects. It may struggle to accurately segment objects that deviate 

from standard orientations, leading to lower segmentation accuracy. 

 

Overfitting Risk: With a smaller and less diverse training dataset, there is an increased risk of 

overfitting. The model might become overly specialized in recognizing specific orientations or 

configurations present in the limited training data, which may not align with real-world 

scenarios. 

 

c. Discussion: 

In the absence of actual baseline results, it's important to recognize that not using data 

augmentation can pose challenges in terms of limited training data and potential sensitivity to 

object orientations. While the specific segmentation performance metrics cannot be quantified 

without a baseline, it is reasonable to anticipate that data augmentation would likely improve 

the accuracy and generalization capabilities of the model, as discussed in section a. 

 

Furthermore, the model's ability to handle diverse facade configurations, especially those 
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deviating from standard orientations, is expected to be a significant benefit of data 

augmentation. 

 

Future work should consider conducting experiments to validate these expectations and 

quantify the actual improvements in segmentation accuracy when data augmentation is 

employed. Such experiments would provide concrete evidence of the benefits of data 

augmentation in building facade point cloud segmentation. 

 

5.5 Discussion 

The performance of deep learning model in this paper would be compared with the expected 

performance of other methods at table 3. 

 

Table 3: Comparison of (expected) performance of different methods. 

 Input 

Features 

Pre-

processing 

Feature 

Generation 

Training 

Effort 

Computational 

Cost 

Accuracy 

PointNet x, y, z 

coordinates 

Yes Automatic high medium medium 

PCNN x, y, z 

coordinates 

Yes Automatic high high high 

Random 

Forest 

x, y, z 

coordinates, 

hand-

crafted 

features 

Yes Manual and 

Automatic 

medium low low 

Geometric 

Method 

x, y, z 

coordinates  

Yes Manual low low low 

Ours x, y, z 

coordinates 

Yes Automatic high medium high 

 

For input features, only random forest method requires extra hand-crafted features. All methods 

require pre-processing. For feature generation, random forest method needs manually 

computed input features and geometric needs distance, which is also calculated manually. For 

training effort, random forest method usually needs to prepare lots of input features. For 

computational cost, the deep learning methods are usually more expensive than non-deep 

learning methods. For accuracy, the deep learning methods usually could obtain higher 

accuracy. 
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6.  Conclusion and Recommendations 
In Section 6.1, the research question and corresponding sub-questions are answered in order. 

In Section 6.2, several advices are proposed to improve the performance of deep learning model 

in the study. 

6.1 Conclusion 

At the beginning of this paper, the research question and some sub-questions are proposed. 

Here, these questions are going to be answered. 

 

How to apply a deep learning framework to perform point cloud semantic segmentation 

for building facades with high accuracy and efficiency? 

 

This work mainly studies the performance of the DGCNN network in point cloud segmentation 

of building facades, and sets different parameters to find out which parameter input results in 

the highest segmentation accuracy. Experiments have proved that DGCNN can be used for the 

segmentation of building facade point clouds, and the effect is good. Two block_sizes (1,10) 

and three k values (10,20,30) are set. When block_size is 1 and k is 30, the best segmentation 

accuracy is achieved: Acc: 93.86%, mAcc: 90.68%; IoU: 84.97%. Increasing the k value is 

beneficial to improve the overall segmentation accuracy. This paper only considers the two 

categories of walls and windows, and does not segment the complex structures of other 

categories such as air conditioners, balconies, and door posts. Subsequent experiments could 

consider adding other structures, and at the same time attach color information to the point 

cloud for segmentation. 

 

The main outstanding part of DGCNN is the network module dubbed EdgeConv. Point clouds 

inherently lack topological information so designing a model to recover topology can enrich 

the representation power of point clouds. To this end, EdgeConv is proposed, and it’s suitable 

for CNN-based high-level tasks on point clouds including classification and segmentation. 

EdgeConv acts on graphs dynamically computed in each layer of the network. It is 

differentiable and can be plugged into existing architectures. Compared to existing modules 

operating in extrinsic space or treating each point independently, EdgeConv has several 

appealing properties: It incorporates local neighborhood information; it can be stacked applied 

to learn global shape properties; and in multi-layer systems affinity in feature space captures 

semantic characteristics over potentially long distances in the original embedding, [41]. 

 

How to determine the input feature set for the deep learning framework? 

In this paper, the input feature set consists of the x, y, z coordinates of the façade point cloud. 

 

How to determine the structure of our deep learning framework? 

In this paper, the overall structure of deep learning framework is Dynamic Graph CNN, which 

is also called DGCNN. 

 

What is the training strategy? 
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In this paper, the training strategy is to change the value of k and block_size, then compare the 

accuracy of segmentation of different parameters settings. Meanwhile, data augmentation 

method is also adopted on training data in order to obtain more training data. 

 

How to use Domain Adaptation (a technique used to minimize the potential impact of 

differences in data distribution between training and test datasets.) to minimize possible 

impact caused by different distribution between training and test datasets? 

In order to use domain adaptation to minimize possible impact caused by different distribution 

between training and test datasets, different types of facades should be contained in training. 

In this study, several different facades make up the training data. 

 

How to eliminate the influence of measurement geometry, if it’s necessary? 

Generally, measurement geometry would affect the point density of the point cloud. According 

to the previous analysis, a too small point density would affect the segmentation accuracy. In 

order to avoid the influence of measurement geometry, the point density should not be too 

small. 

 

Which evaluation metrics should be chosen to measure the performance? 

In this paper, three evaluation metrics are chosen to measure the performance. The overall 

accuracy is calculated by dividing the number of correctly classified points in all categories 

by the total number of predictions, and is determined. Due to the uneven number of points in 

different categories, such as points from windows being much less than those from walls, the 

average accuracy of each category is also calculated. In addition, we also evaluate the 

average of intersection over union (IoU) for each class. This is a commonly used indicator 

in semantic segmentation tasks. 

 

How does the segmentation outcome fit the ground truth? 

According to the result chapter, when the block_size is set to 1m, the k is set to 30, the best 

segmentation accuracy is obtained: Acc: 93.86%, mAcc: 90.68%; IoU: 84.97%. 

 

How does the deep learning framework we apply perform in comparison to other deep or 

non-deep learning frameworks? 

In the chapter 5.5, several deep or non-deep learning methods are compared with the method 

applied in this study. Generally, the method applied in this study usually require pre-processing, 

can automatically generate features with medium training effort and computational cost, and 

the accuracy of segmentation is relatively high. 

 

6.2 Recommendations 

In this paper, the training set is small, the amount of data is not enough, and there is still room 

for improvement in the accuracy of the point cloud automatic semantic segmentation algorithm; 

the study also found that the accuracy is low when classifying the point cloud under occlusion 

and the point cloud with low density. Follow-up research improvements are as follows: 
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(1) Improve the automatic segmentation algorithm and improve the accuracy of the 

segmentation algorithm. EdgeConv considers the distance between the coordinates of the point 

and the neighboring points, and ignores the vector direction between adjacent points (the local 

neighborhood graph is an undirected graph, and it is not known who points to the central point 

and the neighboring points), and eventually loses part of the local geometric information. 

Moreover, some other details of implementation could be revised, e.g. incorporating fast data 

structures rather than computing pairwise distances to evaluate k-nearest neighbors queries. 

We could also consider higher-order relationships between larger tuples of points, rather than 

considering them pairwise. Another possible extension is to design a non-shared transformer 

network that works on each local patch differently, adding flexibility to the model, [41]. 

 

(2) Collect data from other buildings, divide buildings of different periods and styles, and 

import more and different types of windows into the training set so that there will be no data 

skew in the training set; Other feature elements such as air conditioners, and finally realize 

rapid and automatic modeling relying on 3D laser point cloud data. 

 

(3) In the follow-up research, the DGCNN network can be improved, such as changing the 

number of EdgeConv layers, and bringing the residual network idea into the neural network. 
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