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The Quality of Lagged Products and Autoregressive
Yule–Walker Models as Autocorrelation Estimates

Piet M. T. Broersen

Abstract—The sample autocorrelation function is defined by
the mean lagged products (LPs) of random observations. It is the
inverse Fourier transform of the raw periodogram. Both contain
the same information, and the quality of the full-length sample
autocorrelation to represent random data is as poor as that of a
raw periodogram. The autoregressive (AR) Yule–Walker method
uses LP autocorrelation estimates to compute AR parameters
as a parametric model for the autocorrelation. The order of
the AR model can be taken as the full LP length, or it can
be determined with an order selection criterion. However, the
autocorrelation function can more accurately be estimated with a
general parametric time-series method. This parametric estimate
of the autocorrelation function always has better accuracy than
the LP estimates. The LP autocorrelation function is as long as the
observation window, but parametric estimates will eventually die
out. They allow an objective answer to the question of how long
the autocorrelation function really is.

Index Terms—Autoregressive (AR) process, correlation, identi-
fication, order selection, spectral estimation, time-series model.

I. INTRODUCTION

THE PROCESSING of random signals became a useful
computational tool after the rediscovery of the fast Fourier

transform (FFT) algorithm [1]. The square of the absolute value
of the FFT of the signal is the periodogram [2]. This algorithm
enabled the routine Fourier analysis of large sets of stochastic
data. The inverse Fourier transform of the periodogram is the
lagged-product (LP) autocovariance estimate. It is computa-
tionally efficient to calculate the autocorrelation function as the
inverse transform of the periodogram. Like the periodogram
for spectra, it has been treated in the literature as if it is the
obvious estimator for the autocorrelation function for random
data [2]–[6].

The length of the estimated LP autocorrelation is determined
either by the sample size or by the choice of the data analyst. It
is not determined by the character of the data. This may cause
problems in the analysis of the correlation length of measure-
ment data or the lifetime of physical processes. Recently, it
has been discovered that the lifetime of turbulent phenomena
is sometimes finite [7].

Only relative spectral differences or squared logarithmic
differences are advisable as measures for the spectral accuracy
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[8]. Unfortunately, the sum of squared differences between true
and estimated spectra or autocorrelations is certainly not an
adequate measure [9], although its use seems to be popular.
The accuracy in the time domain can be defined as a squared
prediction error (PE) on the level of the data, as a cepstral
distance for autocorrelations, or as a sum of squared differences
of the logarithms for spectral estimates. These three measures
and several other similar useful measures are strongly related
[9], [10]. They can be computed in simulation studies if the
true process characteristics are known.

Parametric time-series models are now the preferred methods
for spectral and autocorrelation analysis. A successful time-
series development was the maximum entropy spectral analysis
of Burg [11], [12] with autoregressive (AR) models. The idea of
entropy makes the autocorrelation function compatible with the
given data while remaining maximally noncommittal about the
data outside the observational window [11], [12]. AR modeling
still required order selection, for which Akaike [13] developed
the famous Akaike information criterion (AIC). The maximum-
likelihood (ML) theory provides the relation between
time-series models and good methods for spectral and autocor-
relation estimation. The estimated AR parameters are close to
the ML estimates. The invariance property of the ML theory
guarantees that, asymptotically, the ML estimates of functions
of parameters are just functions of the ML parameter estimates.
Therefore, autocovariance and spectral estimates are considered
as functions of the efficiently estimated AR parameters.

In the past, parametric AR estimation suffered from selec-
tion of overfitting models with the AIC, particularly in small
samples. Moreover, the class of AR models is not generic. In
addition, moving average (MA) and combined autoregressive
moving average (ARMA) models are required as candidate
models for arbitrary random data. No generally accepted re-
liable and numerically stable algorithms for MA and ARMA
were available in the past [3], [4]. Moreover, the selection
of the best model type for observed random data, i.e., AR,
MA, or ARMA, had not yet been solved. Recently, reliable
software has become available for the parametric time-series
estimation of autocorrelation functions [14]. The spectral ac-
curacy of the selected time-series model is mostly close to
the Cramér–Rao lower bound that is attainable for the given
data [10]. This gives high expectations for the quality of the
autocovariance or autocorrelation function computed with a
selected time-series model. The advantages of the time-series
approach to autocorrelation estimation have theoretically been
derived [5, p. 144]. In addition, examples have been given
where the Yule–Walker method of AR estimation gives poor
results [15].
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This paper describes estimators for the autocovariance and
autocorrelation functions, with LP or with time-series models
[2], [10]. LP estimates are compared with two parametric AR
approaches, namely, the Yule–Walker method [3] and the Burg
method [11], [12], which is part of a general automatic time-
series computer program [14]. Finite-sample relations are given
between accuracy measures for autocorrelation functions and
spectra and the residual variance. These can be used both for
LP estimates and for AR models. LP autocorrelation functions
have specific bias contributions [6], [16]. Furthermore, the
overall accuracy of LP does not become better if more data
are available [16]. Simulation results with stationary random
processes are presented here for the accuracy of the complete
autocorrelation function obtained from selected time-series
models and from LP. The differences between the Yule–Walker
and the Burg approach of AR estimation are demonstrated.

II. AUTOCORRELATION FUNCTION DEFINITIONS

The definition of the autocovariance function of a stationary
stochastic discrete-time process xn, with mean zero, is for lag k
given by [2]

r(k) = E(xnxn+k). (1)

For wide-sense stationary processes, this value only depends on
k and not on n. The expectations for all values of k together add
up to the autocovariance function. This function is symmetric
around lag k = 0. No value can be greater than r(0), which
is the variance of the signal. The normalized autocovariance
function is obtained by dividing (1) by the variance of the
process and is called the autocorrelation function. If the mean
of the process is not known to be zero, it should be subtracted
from the data before applying these definitions.

The average of the LPs xnxn+k obtained from a single
realization of a stochastic process might be used as an estimator
for the autocorrelation function at lag k. However, the estimated
function for all lags k together is not positive definite. This
is a theoretical requirement for true autocorrelation functions
[2]. To obtain a positive semidefinite estimator, a biased LP
autocovariance has been defined, dividing the sum of N − k
LPs by N [2], i.e.,

r̂LP(k) =
1
N

N−k∑
n=1

xnxn+k, 0 ≤ k < N. (2)

The positive semidefinite LP estimator for the normalized auto-
correlation function is given by

ρ̂LP(k) =

N−k∑
n=1

xnxn+k

N∑
n=1

x2
n

=
r̂LP(k)
r̂LP(0)

. (3)

Both estimators (2) and (3) use the fact that the expectation
of each product xnxn+k in the summation is the true auto-
covariance (1). It is a historical misconception that this LP
estimator has a statistical base [6]. Efficient estimators have to
be derived from the statistical properties of the errors in each

separate contribution, not only from the expectation in (1). As
each observation xn contributes to several LPs, the deviations in
the LPs become correlated. Hence, the estimators (2) and (3) are
not efficient [5]. They belong to the same category of estimators
like the sum of the largest plus the smallest observation divided
by 2 as an estimator for the mean value. This is another poor
estimator for normal random data, which will not improve for
greater data sets.

A parametric spectral or autocorrelation estimator is com-
puted as a function of the estimated parameters of a time-
series model. The time-series theory has three different model
types: 1) AR; 2) MA; and 3) combined ARMA. Each stationary
stochastic process can be described by a model in one of these
three classes [2]. An ARMA(p, q) process xn can be written
as [2]

xn + a1xn−1 + · · · + apxn−p = εn + b1εn−1 + · · · + bqεn−q

(4)

where εn is a purely random white noise process with zero
mean and variance σ2

ε . This ARMA(p, q) process becomes AR
for q = 0 and MA for p = 0. Estimates for the parameters and
the model type and order can automatically be obtained with the
ARMAsel program [14]. This paper deals with AR processes;
therefore, only the theory of AR models is treated in the sequel.

For AR models, all lags of the infinitely long true autocor-
relation function are determined by the p true AR parameters
of (4). The Yule–Walker relations [3] describe the relation
between the first p lags of the autocorrelation function of an
AR(p) process and the parameters, i.e.,

ρTS(k) + a1ρTS(k − 1) + · · · + apρTS(k − p) = 0, k > 0

ρTS(−k) = ρTS(k). (5)

The Levinson–Durbin recursion is a computationally efficient
recursive computation of the first p autocorrelations of an
AR(p) process for given parameter values [3]. The same re-
lation (5) can be used to compute true or estimated auto-
covariance functions by using true or estimated parameters,
respectively.

Substitution of the biased LP estimates (3) for the auto-
correlations in (5) defines the Yule–Walker method of AR
estimation (ARYW) [3], [8]. Therefore, the complete estimated
LP autocorrelation function from N observations is identical
with the autocorrelation of the ARYW(N − 1) model. In addi-
tion, the MA(N − 1) model, if computed with the method of
moments, would give exactly the same autocorrelation function
[3]. Hence, LP autocorrelations are equal to a special represen-
tation of time-series autocorrelations with the highest possible
AR or MA model orders.

The roots of the polynomial built with the AR(p) parameters
as coefficients, i.e.,

Ap(z) = 1 + a1z
−1 + · · · + apz

−p (6)

are denoted the poles of the AR(p) model. Always assume
that data represent a stationary stochastic process, which is
guaranteed if all poles of Ap(z) are inside the unit circle.
The power spectrum h(ω) of the AR(p) process is completely
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determined by the AR parameters, together with the variance
σ2

ε , and is given by

h(ω) =
σ2

ε

2π

1
|Ap (ejωi)|2 . (7)

The normalized spectrum ϕ(ω) is defined as the spectrum
divided by the variance of the signal: ϕ(ω) = h(ω)/σ2

x.

III. ACCURACY MEASURES

An important aspect of the accuracy of autocorrelation func-
tions is that no useful measure can be based on the autocor-
relation function itself. Small differences between correlations
can belong to large differences of the logarithms of spectra in
weak parts of the spectral density [9]. The sum of squared dif-
ferences between true and estimated spectra or autocorrelations
is certainly not an adequate measure.

The spectral distortion (SD) is a relative error measure that
has been defined as [10]

SD =
0.5
2π

π∫
−π

[
ln {h(ω)} − ln

{
ĥ(ω)

}]2

dω

=
0.5
2π

π∫
−π

{
ln

h(ω)

ĥ(ω)

}2

dω (8)

where h is the true spectral density, and ĥ denotes the estimated
spectral density.

The cepstrum is a measure that has been defined as an
accuracy measure in the time domain [8]. It is the inverse
Fourier transform of the logarithm of the normalized spectral
density, i.e.,

c(k) =

π∫
−π

ln {φ(ω)} ejωkdω, k = 0,±1,±2, . . . . (9)

For an AR process, the parameters ak can be used for a
recursive calculation of the cepstral coefficients c(n) [8] as

−nc(n) − nan =
n−1∑
k=1

(n − k)c(n − k)ak, n > 0. (10)

The same coefficients can be found with (9). The Parseval’s
relation gives the equivalence in the time and the frequency do-
main between the cepstrum and the logarithm of the normalized
spectrum, i.e.,

∞∑
k=−∞

{c(k) − ĉ(k)}2 =
1
2π

π∫
−π

[ln {ϕ(ω)} − ln {ϕ̂(ω)}]2 dω

(11)

where ĉ(k) is the estimated cepstral coefficient, and ϕ̂ is the
estimated normalized spectral density. A comparison with the
SD of (8) shows that the cepstral distance is almost the same as
the SD, apart from a constant 2 and some variance normaliza-
tion. The model with the smallest SD will also have the smallest
cepstral distance.

For time series, the squared error of prediction of future data
is an obvious good choice as the uncertainty measure. The
squared error of prediction is often simply called the PE or the
one-step-ahead PE. In simulations, where the true process is
known, this can be expressed as [10]

PE =
σ2

ε

2π

π∫
−π

h(ω)

ĥ(ω)
dω =

σ2
ε

2π

π∫
−π

∣∣∣∣∣ Â(ejω)
A(ejω)

∣∣∣∣∣
2

dω. (12)

The PE has a strong relation with the SD of (8) and the
cepstral measure of (11). For small deviations between the true
process and the estimated model parameters, they only differ by
some normalization constants. For larger deviations, the global
performance of the measures keeps a similarity. Accuracy
measures of time series can also be used for the quality of
the LP autocorrelation estimate, by using the parameters of the
ARYW(N − 1) model.

Several methods exist for AR estimation [3]. The maximum
entropy method of Burg [11], [12] is often used for AR estima-
tion in practice [10]. The asymptotical theory for the residual
variance s2

K and PE(K) do not depend on the estimation
method. If the model order K is at least the true AR order p,
the expectations for unbiased models are determined by [10]

E
[
s2

K

]
=σ2

ε

(
1 − K

N

)
, K ≥ p (13)

E [PE(K)] =σ2
ε

(
1 +

K

N

)
, K ≥ p. (14)

This asymptotical result can be applied in practice with reason-
able accuracy if K is less than 0.1 N . It might be useful to
introduce a normalized PE by dividing it by σ2

ε . However, this
coincides with the PE here because σ2

ε will be taken as 1 in the
examples.

For model orders higher than 0.1 N , the finite-sample theory
has been introduced [10]. This theory uses empirical approx-
imations for the variance of reflection coefficients, which are
used in the Levinson–Durbin recursion [3]. The asymptotical
variance 1/N is replaced by the variance coefficients, i.e.,

vi,YW =
N − i

N(N + 2)

vi,Burg =
1

N + 1 − i
(15)

for Yule–Walker and Burg estimates, respectively [10].
Yule–Walker variances are smaller than the asymptotical 1/N
because of the triangular bias. In contrast, Burg variances
are greater because each new Burg reflection coefficient is
estimated from a shorter filtered signal [10]. The finite-sample
expressions for s2

K and PE(K) have been defined as

EFS

[
s2

K

]
= σ2

ε

K∏
i=1

(1 − vi,.), K ≥ p (16)

EFS [PE(K)] = σ2
ε

K∏
i=1

(1 + vi,.), K ≥ p. (17)
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By substituting the Yule–Walker or Burg variance coefficients
for vi, different finite-sample results are obtained for both
estimation methods [10].

The residual variance s2
K is known for measured data, be-

cause it is minimized to compute the parameters. A practical
approximation for the prediction accuracy of measured data can
be derived with (16) and (17). It is a finite-sample equivalent of
the final PE (FPE) of Akaike [13], i.e.,

FPEFS(K) = s2
K

K∏
i=1

(1 + vi,.)

K∏
i=1

(1 − vi,.)
. (18)

This approximation for the PE can be used for all model orders.
The values of s2

K and FPEFS(K) are mainly determined by
the true values of the reflection coefficients for the model
orders K < p [10]. They are independent of the true process
parameters for K ≥ p, for unbiased models.

IV. LP AND AR AUTOCORRELATIONS

Only the first LP autocovariances until lag p − q are es-
timated asymptotically efficient in an ARMA(p, q) process
[5]. All further LP estimates are not asymptotically efficient.
This means that their variance in estimations is greater than
minimally obtainable. For AR(p) processes, only the first p LP
estimators are efficient and sufficient. A theoretical asymptot-
ical analysis has been given for the accuracy of LP and AR
autocorrelations of AR(1) processes [6]. The nice asymptotical
theoretical properties of time-series estimates turn out to be also
relevant for practical estimates from finite samples [10].

The general asymptotic expression for the covariance be-
tween the estimators of the LP autocovariance function at
the lags k and k + v is well known [2]. This covariance is
inversely proportional to the sample size N ; hence, it will
finally approach zero. For larger lags k, where the true ρ(k)
becomes zero, an approximation for the variance of the LP
estimates is given by [2]

var {ρ̂LP(k)} ∼= 1
N

∞∑
m=−∞

ρ2(m). (19)

This variance decreases with 1/N , but the number of lags with
nonzero LP estimates increases with the same value of N .
The practical importance of this formula is that the statistical
accuracy of LP estimates of decaying autocorrelation functions
is a constant for all lags where the true autocorrelation ρ(k)
died out. Therefore, it is not possible to detect with acceptable
accuracy where a correlation dies out; lifetime measurements
are not well possible with LP autocorrelations. The nonzero
length of the LP autocovariance function (2) is always equal to
the sample size N . Taking twice as much observations roughly
gives twice as much LP estimates, each with halved variance.
This explains why the quality of the autocorrelation as a whole
function does not improve with the sample size N but remains
a constant [16].

The LP autocorrelation estimator (3) has a triangular bias
and several additional bias terms [6], [16]. The LP estimator

Fig. 1. True autocorrelation function of an AR(5) process with β = 0.7, the
selected AR(5) Burg and YW estimates, and the LP estimate for N = 100.
The ARYW(N − 1), MA(N − 1), and LP estimates are identical for all lags.
The PE values are 1.042, 1.034, and 1.796 for Burg, ARYW(5), and LP or
ARYW(99), respectively.

is asymptotically unbiased. Asymptotical roughly means that
terms with 1/N disappear for increasing N and terms with
1/N2 can be neglected in comparison with the terms with 1/N
for all sample sizes. The influence of the triangular bias on LP
and ARYW estimates can be evaluated for a true AR(1) process
with the parameter −a. The true autocorrelation function is
ρTS(k) = ak, as found with (5). The biased expectation of
the ARYW(1) parameter becomes −a(1 − 1/N). The exact
expectation of the biased LP estimate (3) for lag k becomes
ak(1 − k/N), which is asymptotically the same as [a(1 −
1/N)]k but has a different finite-sample value. This implies
that the triangular bias transforms the true AR(1) process into
an ARYW model of infinite order. The parameters may be
small, but they are not identically zero. Only asymptotically,
the ARYW order of a true AR(1) process will again become 1.
The consequences in order selection will be investigated.

Monte Carlo simulations have been done with AR(5)
processes with all poles of the same radius β. All data have been
generated with σ2

ε = 1. Therefore, normalized error measures
that can be obtained by dividing by σ2

ε are the same as the
measures in Section III. The AR(5) data have been generated
by using the following true reflection coefficients:

(−β), (−β)2, (−β)3, (−β)4, (−β)5.

The radius and the sample size N have been varied. For N
greater than about 100, the results of ARYW and AR Burg were
quite close as long as β is smaller than 0.7. Fig. 1 gives the true
and estimated autocorrelation functions for one realization of
100 observations, with β = 0.7. The selected orders for ARYW

and AR Burg were mostly the same, in many simulation runs
with this example. Their PE values were close to 1.05, which is
the theoretical value of (14) for the AR(5) model. In some runs,
the selected orders were 3 or 4. Sometimes, the Burg method
is better, sometimes, the YW estimates give a smaller PE, but
both methods give reliable results in this example.

Authorized licensed use limited to: TU Delft Library. Downloaded on July 06,2010 at 12:04:49 UTC from IEEE Xplore.  Restrictions apply. 



BROERSEN: QUALITY OF LAGGED PRODUCTS AND AR YULE–WALKER MODELS AS AUTOCORRELATION ESTIMATES 3871

It is possible to express the influence of the triangular bias in
a PE value. The true autocorrelations at the first five lags k are
multiplied with 1 − k/N , and the AR parameters are computed
with these biased correlations substituted in the Yule–Walker
equations (5). The PE value of the theoretical triangular bias
with β = 0.7 is 1.0090 for N = 100. It would become 1.00012
for N = 1000. Therefore, the bias contribution is much smaller
than the estimation uncertainty of (14). For these situations, the
Burg and Yule–Walker estimates are similar if order selection is
used. The accuracy of the complete LP autocorrelation function
of length N − 1 is always poor for all examples.

It is not possible to extract or approximate the PE values
with the information available in Fig. 1. Only large differences
between true and estimated autocorrelations can, with certainty,
be attributed to poor estimates; small differences might belong
to either good or poor estimates. This influence of small dif-
ferences can be demonstrated as follows: The LP estimate has
PE = 1.796 here. The estimated LP autocorrelation for lag 99
was −0.0040. The periodogram is the inverse Fourier transform
of the LP and is positive for all frequencies, as it should be.
The inverse Fourier transform has also been computed for the
LP autocorrelation with only the estimate for the highest lag
99 equated to zero. The inverse transform was now negative at
5 of the 100 FFT frequencies. The SD of (8) and the PE are
computed with the logarithm of the spectrum, which does not
anymore exist for negative spectral estimates. The very small
variation of the LP autocorrelation function changes the PE
from a finite to an infinite number. The same effect of negative
spectral estimates can be obtained by adding or subtracting a
small amount from LP estimates at arbitrary lags.

The LP estimate does not die out in Fig. 1 because of (19).
The true and estimated AR autocorrelations are extinct for lags
greater than 15 or 20. LP and ARYW(5) are identical for the
first five lags and become different for greater lags. It is clear
that the LP estimates cannot be used to estimate the length of
the autocorrelation function in this example. It has already been
demonstrated with 1000 observations of an AR(4) example
that LP estimates are not extinct [16]. With (19), the squares
of all nonzero autocorrelations contribute to the LP variance
at greater lags. This prohibits the search for lags where the
correlation stays at values less than a value such as 1/

√
N .

Hence, the nonzero length of LP estimates is N − 1. It is
determined by the length of the observation window and not
by the character of the data [16].

The estimated model accuracy can be computed for all model
orders, for Yule–Walker and Burg estimates. They are given
in Fig. 2, together with their finite-sample expectations. It is
clear that both methods have different results in finite samples.
The finite-sample theory always gives close results for all
AR methods if orders are lower than N/10, for all N . The
estimated accuracy of model orders lower than 5 is poor for
an AR(5) example, because (17) does not include true process
parameters. The finite-sample expectation has been computed
with (17) for all model orders, as if the true process were white
noise. The asymptotical theory of (14) would give a straight
line to the PE value 2 for order 100, for both methods. This
agrees with the lines in Fig. 2 for low orders and is between the
given finite-sample lines for higher orders. It has been shown in

Fig. 2. Estimated FPEFS of (18) and the expectation EFS[PE] of (17) as a
function of the model order for Yule–Walker and Burg estimates. Results of the
single representative simulation run of Fig. 1 are given until order N − 1 for
Yule–Walker estimates and until N/2 for Burg. The accuracy of Yule–Walker
for order N − 1 is the LP accuracy.

many examples that the average of many runs converges to the
theoretical expectations for model orders higher than the true
order [10]. The expectation of the accuracy PE of the LP esti-
mate for order N − 1 is computed for unbiased models. This
is rather accurate here, because the triangular bias is negligible.
The PE quality of LP estimates is about 1.65, independent of N .
The triangular bias of the Yule–Walker estimates is the cause
of the inaccuracy of higher orders being somewhat better than
the Burg inaccuracy. However, the accuracy of the selected
models of order 5 is about the same.

The accuracy of LP is the worst of all AR candidates of
the Yule–Walker method, except that of orders lower than 5.
Therefore, order selection between the Yule–Walker candidates
gives an important improvement of the quality of the model.
With the theoretical invariance property of the ML theory, this
applies to its autocorrelation function and estimated spectral
density. It has been shown in numerous simulations that this
property may be applied to practical time-series estimates of
selected models obtained with the ARMASA toolbox [14]. This
toolbox uses the Burg method for AR estimation [10].

V. INFLUENTIAL TRIANGULAR BIAS

Asymptotically, the influence of the triangular bias will al-
ways disappear. However, for N = 100, it becomes important
in an AR(5) process with five poles at equal radii if the radius
β is greater than 0.8. Fig. 3 gives the true poles of the AR(5)
process with β = 0.85 and the poles of the true biased process,
computed with the expectation of the triangular bias for the
first five lags of the autocorrelation function. The biased poles
are far away from the true poles, particularly the pole on the
real axis. The PE of the true biased model, without estimation
uncertainty, is 1.619 for N = 100, and it would become 1.039
for N = 1000.

Table I gives the true and biased reflection coefficients that
belong to the poles in Fig. 3. The first κb has a bias of 1/N , the
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Fig. 3. True poles of the AR(5) process with β = 0.85 and the poles after
applying the triangular bias to the first five lags of the true correlation function,
for N = 100. The PE of the biased true process is 1.619.

TABLE I
TRUE REFLECTION COEFFICIENTS κ AND BIASED REFLECTION

COEFFICIENTS κb THAT BELONG TO THE POLES OF FIG. 3

Fig. 4. True autocorrelation function of an AR(5) process with β = 0.85, the
selected AR(5) Burg and AR(4) YW estimates, and the LP estimate for N =
100. The PE values in this realization are 1.026, 1.359, and 2.173 for Burg,
ARYW(4), and LP or ARYW(99), respectively.

fourth κb is only 1/3 of the true value, and the fifth κb has the
wrong sign. For increasing sample sizes, the biased poles will
converge to true values.

Fig. 4 gives the true and some estimated autocorrelation
functions. The LP estimate remains irregular at greater lags, as
expected. The AR estimates with the Burg and Yule–Walker

Fig. 5. Estimated FPEFS of (18) and its expectation EFS[PE] of (17), both as
a function of the model order. The results of the single run of Fig. 4 are given.
The bias of ARYW has an effect on all model orders and is not diminished or
compensated by using higher model orders.

methods converge to zero. Although it is not possible to derive
an objective accuracy measure from this figure, it is obvious
that the character of LP is completely different from the true
process. In repeated simulations, the Burg methods selected
order 5 in the majority of runs. A lower order has never been
selected, and only in about 10% of the runs have order 6 been
selected. The average PE of the selected Burg model was about
1.05. The selected order and the PE of the Yule–Walker method
varied much more: The order was between 2 and 7, and the PE
was between 1.2 and 2.

Fig. 5 shows the estimated model accuracy and the expecta-
tions that have been derived for unbiased estimates. The accu-
racy of AR Burg estimates is comparable with that in Fig. 2.
The inaccuracy of ARYW is much higher than the unbiased ex-
pectation. The numerical values of the different error measures
are no longer exactly the same for the large errors involved. The
triangular bias of the Yule–Walker estimates has two visible
consequences in Fig. 2: First, the level of the inaccuracy is much
higher than the theoretical unbiased level for all model orders.
Second, the slope at high frequencies flattens out because of the
large triangular bias at lags close to N . This is also visible in
the finite-sample theory. In contrast, the slope of Burg estimates
becomes steeper at higher orders.

The true and estimated power spectral densities are given in
Fig. 6 for the 100 observations that have been used. The selected
AR Burg spectrum is close to the true spectrum. The selected
ARYW spectrum roughly follows the biased expectation of the
spectrum. The periodogram as inverse transform of the LP has
the same bias and would also be around the biased expectation,
with much larger variations.

If a linear plot of the spectrum would be presented, all four
lines would almost be completely shrunken to the axis for
frequencies above 0.25 Hz, and they would have the same value
of zero there. The differences seem to be small in linear plots.
To emphasize the importance of the differences in the high-
frequency part of the spectrum, adequate measures for spectra
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Fig. 6. True power spectral density of the realization of an AR(5) process with
β = 0.85, the biased expectation, and the selected AR(5) Burg and AR(4) YW
estimates for N = 100. The simulation run of Fig. 4 has been used.

are based on the logarithms or the quotients of spectra. It has
been verified that the four spectra in Fig. 6 coincide within the
line width if N = 10 000 observations of the same true process
are used. In addition, the true and estimated accuracy in Fig. 5
would be very close then.

The autocorrelations selected with the AR method of Burg
can only become inaccurate if not enough data are available
to obtain accurate estimates. Furthermore, an occasional small
estimate of the last parameter may sometimes give a lower
order with order selection. This can happen with statistical
criteria. LP and ARYW autocorrelations, however, cannot be
accurate either in these circumstances. LP and ARYW estimates
can become inaccurate for very significant details, due to the
bias. Hence, examples can be given where LP and ARYW

autocorrelation estimates do not represent the characteristics of
the data, whereas the AR Burg autocorrelation function shows
all relevant details.

VI. CONCLUDING REMARKS

Although the triangular bias in the autocorrelation function
is of the magnitude 1/N , the influence of that small bias on the
estimated characteristics of the data can be very significant. LP,
periodograms, and AR estimates of the Yule–Walker method
suffer from this bias, whereas the AR method of Burg is free
of it. Therefore, the Burg’s method is a better choice as part of
an automatic analysis of measured random data with unknown
characteristics.

The LP estimate for the autocorrelation function is the same
as the autocorrelation of the ARYW(N − 1) model. The accu-
racy of the LP estimates for the autocorrelation function as a
whole does not become better if more data are available. Only
the accuracy for single lags improves. Selection of the best

order between all ARYW candidates gives a better estimate
of the autocorrelation function than LP. It can be of the same
quality as a selected AR model estimated with the Burg’s
method, but only if triangular bias is negligible. The influence
of the triangular bias can be evaluated by comparing the PE of
the biased AR model with the expected PE of estimated true
order models.

The lifetime of a process can be defined as the length of
the autocorrelation function. This can be estimated from time-
series correlations and not from LPs.
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