
SCL-T
Template programming for Siemens SCL

Version of August 19, 2019

Jeffrey Goderie

SCL-T
Template programming for Siemens SCL

THESIS

submitted in partial fulfillment of the
requirements for the degree of

MASTER OF SCIENCE

in

COMPUTER SCIENCE

by

Jeffrey Goderie
born in Steenbergen, the Netherlands

Software Engineering Research Group
Department of Software Technology
Faculty EEMCS, Delft University of Technology
Delft, the Netherlands
www.ewi.tudelft.nl

CERN
Geneva, Switzerland

www.cern.ch

www.ewi.tudelft.nl
www.cern.ch

c©2019 Jeffrey Goderie. All rights reserved.

SCL-T
Template programming for Siemens SCL

Author: Jeffrey Goderie
Student id: 4006232
Email: c.j.m.goderie@student.tudelft.nl

Abstract

Programmable Logic Controllers (PLCs) are used to control large scale systems with
thousands of I/O devices. Writing and maintaining the logic for each of these is a cum-
bersome task, which is well suited to be abstracted through templating. For this purpose,
CERN developed the Unicos Application Builder (UAB). While UAB is successful at tem-
plating, it provides no guarantees over the validity of the outcome, leading to erroneous
generated code. This is where SCL-T comes in. It builds on the foundation of UAB to facil-
itate meta-programming for Siemens’ SCL. Unlike its predecessor, it guarantees syntactic
correctness and also draw conclusions regarding the semantic validity of the generated code.
Its architecture has been designed in such a way that support for other PLC languages can
be added using the same meta-language, reducing the cost of a having a meta-programming
language tailored for a specific PLC language.

Thesis Committee:

Chair: Prof. Dr. Eelco Visser
Committee Member: Dr. Casper Bach Poulsen
Committee Member: Dr. Christoph Lofi

c.j.m.goderie@student.tudelft.nl

Preface

First and foremost, I would like to thank Eelco Visser for guiding me through the process of
writing this thesis. Additionally, I would like to extend my gratitude to him, Guido Wachsmuth,
and CERN (in particular Ivan Prieto Barreiro and the PLC section) for giving me the opportunity
to take on this project on premise at CERN.

Jeffrey Goderie
Delft, the Netherlands

August 19, 2019

iii

Contents

Preface iii

Contents v

List of Figures vii

1 Introduction 1

2 Analysis of UAB 3
2.1 Introduction to UAB . 3
2.2 UAB’s limitations . 7
2.3 Evaluation . 18

3 Meta-programming approaches 21
3.1 Introduction to meta-programming . 21
3.2 Separation of languages . 23
3.3 Use time . 26
3.4 Separation of static and dynamic code . 27
3.5 Type of meta language . 28
3.6 Hygiene . 29
3.7 Type Validation in Meta-programming . 31
3.8 Evaluation . 32

4 Language Design 35
4.1 Introduction to SCL-T . 35
4.2 SCL-T by Example . 36
4.3 Data Types . 42
4.4 Functions . 49
4.5 Splicing . 50

5 Language Implementation 53

v

CONTENTS

5.1 Architecture . 53
5.2 Type System . 55
5.3 Object language . 56
5.4 Meta-Language . 61
5.5 Mixin Language . 71

6 Evaluation 77
6.1 Evaluation of SCL-T . 77
6.2 Prototype Reception at CERN . 79
6.3 Discussion . 80

7 Conclusions 83

Bibliography 85

A Glossary 91

B Simple Template 93

C Template in Old and New Syntax 95

D Meta-Language Functions and Methods 99

E Meta-Language Syntax 103

vi

List of Figures

2.1 UAB’s architecture . 6
2.2 UAB’s operational flow . 7
2.3 Example of a faulty but valid specification file . 9
2.4 Example of UAB output . 9
2.5 Source code . 10
2.6 Output from running Figure 2.5 in UAB . 10
2.7 Mixed indentation . 11
2.8 Missing keyword . 12
2.9 Variable lifting . 12
2.10 Arbitrary code constructs . 13
2.11 List comprehension . 14
2.12 Segmentation . 15
2.13 Representation of the ideal workflow. 17
2.14 More realistic representation of the workflow. 17

3.1 Homogeneous, string-based meta-programming 24
3.2 Heterogeneous, string-based meta-programming 24
3.3 Homogeneous meta-programming using Python3’s internal mechanisms 25
3.4 Run-time evaluation . 26
3.5 Compile-time evaluation . 27
3.6 Hygiene violation . 29
3.7 Precedence violation . 30

4.1 An example SCL-T template, based on an actual production code file. 37
4.2 Excerpt of Figure 4.1: lines 12 to 15. 38
4.3 Excerpt of Figure 4.1: lines 16 to 23. 39
4.4 Excerpt of Figure 4.1: line 25. 40
4.5 Exploded version of the statement in Figure 4.4 41
4.6 Mutable objects and copy operations . 43
4.7 Differences between lists and sets . 44

vii

LIST OF FIGURES

4.8 Methods to iterate over dictionaries . 45
4.9 Nested pairs . 46
4.10 Usage of <Var(T)> . 47
4.11 Statement concatenation through splicing . 48
4.12 UNKNOWN type propagation . 49
4.13 Programmatic expression formation . 49
4.14 Valid and invalid function overloading . 50
4.15 Mappings from meta-level objects to object-level types 51
4.16 Arbitrary code constructs . 51
4.17 Example of ‘generateIfElse’ function . 52
4.18 Output of ‘generateIfElse’ function in Figure 4.17 52

5.1 SCL-T’s language composition. The arrows indicate the direction of composition. . 54
5.2 Meta-language reuse among various PLC languages 54
5.3 Language composition based on varying the meta-language or the mixin-language . 55
5.4 Format and meaning of the various typing rules used in this chapter. 56
5.5 Type rules for variable declaration . 58
5.6 Type rules for units . 59
5.7 Type rules for function (block) calls . 61
5.8 Type rules related to Structs . 62
5.9 Noteworthy Meta-Language syntax rules . 63
5.10 Subtyping (<:) relationships for the meta-language 64
5.11 Type rules to iterate over statements . 65
5.12 Type rule for control statements . 66
5.13 Type rules for variable declaration . 66
5.14 Type rules for variable assignment . 67
5.15 Type rule for function declaration . 67
5.16 Type rules for return statements . 68
5.17 Type rule for function calls . 68
5.18 Type rule for the ‘len(e)’ standard function . 68
5.19 Type rules for the ‘.add(...)’ method . 69
5.20 Type rules for the ‘.add(...)’ method . 70
5.21 Field Validation for Compound Devices. ‘AutoOff’ is not a field in T2. 71
5.22 Mixin-Language syntax additions . 72
5.23 Type rules for quoting operations . 73
5.24 Type rules for splicing operations . 74
5.25 Type mappings from meta-level objects to object-level types 74
5.26 Type rule for expression splicing . 75
5.27 Mapping from meta-variable to object-level AST 76

C.1 New Syntax . 95
C.2 Old Syntax . 96
C.3 Missing keyword . 96
C.4 Missing Keyword . 97

viii

List of Figures

E.1 Meta-Language: Start Symbols . 103
E.2 Meta-Language: Types . 103
E.3 Meta-Language: Statements . 104
E.4 Meta-Language: Expressions . 105
E.5 Meta-Language: Functions . 105

ix

Chapter 1

Introduction

Programmable logic controllers have obtained their foothold in the domain of industrial automa-
tion because of their reliability. These real-time systems have proven to be resilient against harsh
conditions, like extreme temperatures and electric noise.

This resilience, combined with their overall ease of programming, is the reason why CERN
(Conseil Europen pour la Recherche Nuclaire) utilises them in large quantities. While they are
sometimes used in small setups, their main application is in immense control systems. These
systems consist of various PLCs combined with thousands of I/O devices.

The PLCs are loaded with logic files that act on the input/output of each I/O device. Some
systems have hundreds of logic files, which all need to be created and maintained. However, not
all of these files are truly unique. Many control setups have various sets of identical I/O devices
in various places, and therefore have logic files that are similar. These files vary mostly in iden-
tifiers, parameters or minor logic sections, but have a common ground. Despite the similarities,
creating and maintaining the code proved to be a cumbersome and error-prone task. Developers
started looking for ways to make their lives easier. Rather than writing each file by hand, they
started to create them by duplicating similar implementations. This way of working proved to
be problematic, as it was still easy to make a mistake, and validating cost a lot of time.

To effectively reduce the cost and effort associated with large PLC software projects at
CERN, the Unicos Application Builder (UAB) was designed. UAB offered a templating func-
tionality in Jython. Its purpose was to prevent developers from having to resort to the labour-
intensive, error-prone ’copy-paste’ workflow that they had adopted.

The templating facility allowed developers to write a single logic file, and combine it with
a specification file, to generate many different instances of the same logic. This allowed entire
systems to be reduced to a maintainable amount of logic templates, and a single specification
file. This also meant that in case of an adaptation, the developer no longer needed to touch up
numerous files, but instead simply had to change the template, and regenerate the code.

All in all, UAB proved rather successful in reducing the effort and cost of PLC programming.
Throughout its existence, it gained more foothold at CERN and outside. While acknowledging
its potential, there were users that refrained from using the tool due to its somewhat poorly de-
signed meta-language and its lack of features. The suggestion that something could be improved
was strengthened by the fact that source files and generated code started to diverge. Inquiring

1

1. INTRODUCTION

about this revealed that users experienced issues with UAB. In particular, they felt it was more
effective to fix errors in the generated code than it was to do so in the source.

This is where this document comes in. To allow the UAB framework to reach its full po-
tential, SCL-T has been created. SCL-T is a new meta-programming language for UAB that
provides meta capabilities for the Siemens SCL language. Rather than having the same meta-
programming language for all PLC languages, SCL-T is tailored only for SCL. This opens up
the possibility of providing PLC specific features.

SCL-T is not meant to completely overhaul the existing UAB framework. Instead it ad-
dresses some of the underlying meta-language’s most apparent weaknesses in an as unobtrusive
manner as possible. As such, the design for SCL-T combines the strengths of the original meta-
language and the insights gained from a thorough analysis of its weaknesses.

Unlike its predecessor, SCL-T allows developers to focus on writing PLC code, rather than
writing meta-code. Templates consist of PLC code enhanced with meta-level code. Developers
can use concrete SCL syntax to generate object-level code. Due to the changed format of the
templates, SCL-T can guarantee full syntactic correctness of the resulting SCL code. This alone
removes a large number of commonly made errors.

Besides syntactic validity of the generated code, SCL-T also ensures syntactic and semantic
validity of the template code. Since the meta-stage is sound, SCL-T is able to provide a signifi-
cant degree of cross-stage type safety. As a result, the generated code is guaranteed to be free of
certain semantic errors.

A large degree of the semantic guarantees on the resulting code come from the addition of
type checking UAB’s static information sources, e.g. its specification files. SCL-T does not
just allow users to query device instances and their respective attributes, it also ensures that the
queries and outcomes are well-typed.

Since UAB was made to support multiple PLC languages, reducing support to merely SCL
would be a huge step backwards. To counter this, UAB’s architecture has been addressed as
well. Where the original architecture was designed with scalability and flexibility in mind, it’s
implementation was thin. The new architecture builds on the original design, implementing the
new language based on a combination of a meta-language, an object language, and a mixin-
language. The meta-language is reusable between different PLC languages. Adding support for
additional languages only requires the object language and the mixin language to be designed.
As a result, PLC developers do not have to learn a new meta-language for each PLC they want
to program using UAB.

Before introducing the details of SCL-T, a thorough analysis of UAB’s current approach to
meta-programming will be detailed in Chapter 2. It looks into the how, what, and why of the
UAB framework to determine where the current approach can be improved upon. Chapter 3
summarises relevant, existing literature concerning code generation. It deals with various types
of meta-programming, as well as type safety. Using the obtained information it is possible to
design SCL-T, whose features are discussed in Chapter 4. Chapter 5 covers the underlying
implementation. In order to see how SCL-T holds it own, it is evaluated against the set goals.
Additionally, SCL-T reception by the users is covered. Both are done in Chapter 6. This chapter
is also used to identify potential follow-up research topics, and weak points in the study leading
up to SCL-T. Lastly, Chapter 7 provides an overall conclusion to this study.

2

Chapter 2

Analysis of UAB

Unicos Application Builder (UAB) is a collection of tools for the programming of Programmable
Logic Controllers (PLCs). UAB has been developed at CERN. It provides a templating facility
for various PLC languages (e.g. Siemens SCL, Schneider ST) that allows users to easily generate
many instances of the same logic based on a single template and some input parameters.

Having been used for several years, UAB’s characteristics have become apparent. Using the
insights in its strengths and weaknesses, it is possible to create an improved version of UAB
meta programming features.

2.1 Introduction to UAB

Before diving into the internals of UAB’s meta-programming language, it is important to under-
stand what UAB is, and how it came to be. For this, one needs to look at what problems it is
meant to solve, and what its architecture and process look like. This information is crucial in
understanding exactly why the current approach is sub-optimal.

First, the origin story of UAB will be told, in which it becomes apparent what problem UAB
is trying to solve. In this section it also will be made clear what design constraints UAB has, and
what the sub-goals of the framework are. This information is important when redesigning any
component of the framework, like the meta-programming language. Following the background
of UAB is an analysis of the architecture of the framework. Having an understanding of what
the internals look like is helpful in determining the impact of changes, but could also reveal
additional issues with the implementation.

2.1.1 Origin of UAB

At CERN experiments are conducted at enormous scales. Behind these experiments are Pro-
grammable Logic Controllers. PLCs manage the processes to ensure the desired functionality.
Their main selling point is that they are highly reliable, even in environments that are not ex-
actly electronics-friendly, e.g. exposure to dust, radioactivity, or extreme temperatures. The
controllers are provided with information originating from various sources, most of which are
sensors and timers. Based on the information, they are in charge of controlling a number of

3

2. ANALYSIS OF UAB

components, e.g. valves, switches. Each PLC can be in charge of managing hundreds of I/O
devices1. While there are endless possibilities in which a controller can be combined with input
and output devices, it is often the case that within a single system there are multiple identical
device setups. They serve the same purpose, but they might be used at 2 different stages of
the automation process, meaning that their precise workings might differ. However, since the
general functionality of the components is similar, their corresponding code (i.e. device specifi-
cation files, logic files) is most likely also similar.

Initially this meant that a developers had to create multiple nearly identical files when creat-
ing software for the complete chain. In most cases the files varied only in identifiers or parameter
values, while the actual functionality was identical. However, since developers would often fo-
cus on a single PLC at a time, not taking into account the rest of the chain, the same logic was
written multiple times, potentially by different developers. Writing each file by hand proved to
be a tedious and error-prone task, regardless of whether it was done by a novice or an experi-
enced person. As Wilson et al. [60] said, “sooner or later even the most careful person will
lose focus and make a mistake”. Besides the inevitable mistakes that might occur, having a fully
manual chain brings along problems regarding maintainability, consistency, and comprehensi-
bility. Since all files are rewritten in full, it is difficult to be consistent across the various files. As
a result, changes to be made cannot be copy-pasted around, as the code might not be the same
throughout all the files. Additionally, the inconsistencies make it harder to judge the function-
ality of the whole system, as it is not directly obvious that the different logic files provide the
same functionality.

Realising that this approach was all but efficient, the developers adopted the basic mindset
of making the computer work for them. They started creating the required files for single com-
ponent, and duplicated it for each of the similar instances. Afterwards the varying identifiers and
parameters were adapted for the derived instances, for example through find-and-replace. While
this was a huge time saver, this approach also proved to be prone to mistakes and still required a
significant amount of manual labour.

The main reason for this approach being erroneous was the developer being in charge of
adapting each file with the correct identifiers and parameters. It sometimes happened that a
single value was forgotten, or erroneously replaced, resulting in invalid code. Syntactic or se-
mantic errors were often caught at compile time or immediately at run-time. However, wrongly
replaced values and identifiers could result in logic files that were both syntactically and seman-
tically valid, but could result in faulty behaviour, which could remain undiscovered until that
specific faulty scenario was triggered in a physical setup.

Additionally, by duplicating a file, errors could be propagated. This meant that if the source
file contained a mistake, it was often necessary to retouch all derived files, which is a costly
action, which could even result in new errors and diverging logic. This is exactly why developers
(should) adhere to the DRY (Don’t Repeat Yourself) principle [27] whenever possible.

While copying and replacing code was no more error-prone and generally more efficient
than writing each file by hand, it still turned out to be an inefficient approach to obtaining files
that share common elements. Acknowledging that the human factor in the duplication process
was a common source of mistakes, CERN decides to come up with an automated approach. The

1http://unicos.web.cern.ch/applications

4

2.1. Introduction to UAB

initial attempt to code generation was based on Microsoft Access, but it did not meet the tech-
nical requirements [58]. Taking into account the lessons learned from the prototype, a second
iteration, focused on scalability and flexibility, was designed. This version was coined Unicos
Application Builder (UAB).

2.1.2 Goals of UAB

The goal of UAB is not to remove all human involvement with writing PLC code, but to facili-
tate the development of abstracted control system applications, effectively removing the repet-
itive nature of the task. The aim is to reduce the time involved in developing, configuring and
commissioning control code, and at the same time produce well-structured code.

Besides its main goal, the creators of UAB came up with a list of design constraints that
UAB has to meet. These requirements are:

• Flexibility

• Scalability

• User-friendly

• Versioning management

Even though UAB is meant for a niche market, namely PLCs, its diverse use-cases require it
to be flexible. There is no golden solution which fills in all the needs for the various applications.
Therefore the framework should support the addition of user-defined templates, functions, and
semantic checks.

UAB is supposed to be scalable, meaning that new PLC languages, objects, and components
can be added at any time. Scalability is important to guarantee the functionality of the tool in the
future, where CERN might use different PLC manufacturers or the manufacturers might change
their languages. In a way UAB’s scalability also contributes to its desire to be flexible.

The user-friendliness criteria of UAB is related to its GUI. It should prompt the user for the
mandatory data of the application, validate the user data and trigger the execution of the selected
plug-ins with the specified parameters.

Version management is important to guarantee backwards compatibility, which is a crucial
aspect of code generation for many different systems, some of which are legacy. Having a
mechanism to manage the evolution of software, in particular the evolution of device interfaces,
is crucial in being backwards compatible.

In general, these criteria either concern the whole UAB framework, or a component other
than the meta-programming language. However, it makes sense to also project them onto the
meta-programming language. This means that the language itself should be flexible, scalable,
user-friendly, and support versioning, where the latter involves both the language itself, as well
as the device definitions used within the language.

5

2. ANALYSIS OF UAB

2.1.3 Architecture of UAB

Armed with a basic introduction to what problem(s) UAB is trying to solve, the architecture can
be detailed and assessed. Aside from explaining what the architecture looks like, it will also be
addressed how the framework operates.

The first publicly available mention of UAB’s architecture originates from 2007 [16]. Its
corresponding diagram is visible in Figure 2.1.

Figure 2.1: UAB’s architecture

There are three main groups that can be identified. On the left there is the input, which con-
sist of various different files, each with their own purpose. On the right are the output files, which
are the result of running the UAB process. The largest group comprises the UAB application
itself. Architecturally, this group is also the most interesting.

Moving top-down, the plug-ins are up first. These plug-ins each have their own set of func-
tionalities and rules. They are independent of each other, and generally have only a single target
language. Below this layer of language-specific components is a set of utilities which are plug-in
independent. These provide methods and functions that are useful regardless of the target sys-
tem. Surrounding each component of the application is the UAB Core. As the name suggests,
this consists of the core elements of UAB, and is the backbone of the entire application.

The architecture shows how the different groups relate to each other, but provides no real
indication of how they interact. This is also important to understand in order to be able to judge
how well UAB realises the set goals. It also adds insight that an architectural overview alone
cannot provide.

Much like the architecture, the operational flow can be divided in a series of sections. The
flow is displayed in Figure 2.2, and consists of ’generation’, ’validation’, ’exportation’, and
’importation, compilation and execution’. The latter can also be fittingly named ’external’.

Aside from these phases, there are also things that happen when UAB is started. The CPC
Objects, the Application XML and the CPC Plugins are loaded on start-up through a bootstrap-

6

2.2. UAB’s limitations

Figure 2.2: UAB’s operational flow

ping mechanism. Bootstrapping allows UAB to support various device generations that might
otherwise cause interference. Having loaded these components, UAB is started, and the opera-
tional flow can commence.

The first operation is the ’generation’ phase. At the base of this phase are the user-created
templates, and the static information files. These are used to generate the eventual PLC code. In
general, most of the functionalities used at this stage are part of the core component. It is possible
for the developer to have utilised some of the methods available in the language specific plugins,
but this happens only sporadically.

The language-specific components become more apparent in what UAB considers the ’vali-
dation’ phase. Part of this phase overlaps with the generation, as a scripting error (i.e. a Python
error) will result in generation-time errors. After generation a set of validation and verifica-
tion checks are performed. Some of these are PLC-agnostic, but most of the available checks
are user-defined for a specific language. If an error occurs at generation-time, or during the
validation phase, the generation cycle is flagged unsuccessful.

In case there are no errors, the code will then be exported to an user-specified location. This
is where the user interaction with UAB stops. The user now to switch to the PLC manufacturer’s
own tooling, hence the name ’external’. The next step is to use this tool to import the project.
The project is then compiled, during which the whole project is syntactically and semantically
validated. If the compilation step is successful, the compiled programs are loaded onto the
appropriate devices, and are ready to be put to use.

Having obtained insight in both the architecture and the operational flow, it is safe to say
that these do not inhibit UAB in achieving its goals. The overall architecture is well suited
for flexibility and scalability, but simply is not used to its fullest extent. The operational flow
revealed only that validation of the generated code is largely put off till the end of the cycle. This
does not necessarily have to be harmful, depending on what errors can be caught in the earlier
validation stage. In order to determine how to better achieve its goals, one has to step away from
the overviews, and dive into UAB. Or more specifically, into its weaknesses.

2.2 UAB’s limitations

“Optimise Software Only after It Works” [60] is a great description of where UAB is currently
at. While it has stood the test of time, and has proven itself to be useful in a full-scale production
environment, its flaws have been exposed. The tool lacks some key features that would greatly
increase its usability, and some of the ones that are present are suboptimal.

In order to see how the current situation can be improved upon, it is crucial to investigate ex-
actly where the current approach runs short. In the following sections each of UAB’s limitations
are detailed. No additional attention will be given to its strengths, as the intention is to improve

7

2. ANALYSIS OF UAB

UAB where-ever possible, without making unnecessary changes to the current implementation.
This means that it is acceptable to adapt the tool if, and only if, it provides significant benefits,
or if the impact on the final product is negligible.

The scope of the analysis will be limited to the meta-programming language used to write
logic files and the information sources of UAB. These are the components the user has to interact
with the most, and as such the impact of an issue in one of these is more significant. As a result,
fixing an issue in these areas will yield the largest reward.

As detailed in section 2.1.3, UAB’s meta-programming language is suited for multiple PLC
languages. To concretise the issues with the meta-programming language, they will be illustrated
using Siemens SCL as the target PLC. The reason for this is that Siemens is CERN’s largest PLC
manufacturer, but it could have been any of the supported PLC languages.

The current meta-programming facility will be evaluated on its syntax, its implementation,
its validation, and its source of static information. The order in which these components are
addressed is of no particular importance.

2.2.1 Static information

As described in section 2.1.3, the UAB framework uses a set of parameters which are fed to
the generator as a pair of XML files. These are used to generate different logic files from the
same template. The configuration file, which contains a definition for the various device types,
is provided to the user. The other XML file contains the device instance specifications.

Using XML for parameter and specification files is not a novel approach. It is put into
practice in distributed systems[20], industrial engineering[25], data processing[26], and other
fields.

XML has quite some advantages[38]. One of these is its extensibility, as suggested by the
name XML, which stands for ’Extensible Markup Language’. Since the structure of XML is not
fixed, it can be adapted at any point in time without having to revise the associated parser. This
also allows for the creation of hierarchical structures[29], making it easier to group components.
Additionally, it is human and machine readable, and application-neutral, making it well-suited
for a variety of use cases.

The main downside to XML is its verbosity [14]. Swarmed with tags, the format is difficult
to read, and it is easy to make a mistake which invalidates the whole file. Expecting users to edit
an XML file thousands of lines long is generally not acceptable. That’s why the team behind
UAB created an XML that is properly editable from within Microsoft Excel. The visual editor
of Excel reduces the chances of users creating invalid specification files. Whereas XML requires
them to write both the correct structure and values, in Excel only the values suffice.

While this makes the specification files more user-friendly, the underlying XML is not used
to its fullest potential. The absence of an XML schema (e.g. XSD [44]) still allows the user to
define invalid specification files. The validation that is currently performed on the files is rather
simple. Some values are to be selected from a drop-down menu, and are therefore always valid,
but generally the only enforced requirement on each cell is that its content needs to be textual
(i.e. no formula, image). This check is very liberal in the sense that it accepts numeric values
where the parameter clearly requires an alphabetic input, and vice versa.

8

2.2. UAB’s limitations

Figure 2.3: Example of a faulty but valid specification file

An example of this is given in Figure 2.3. Parameter ’Range Max’ is supposed to be numer-
ical, as the name suggests. With the current validation the user can assign value ”ABC” to this
field, even though this is not a valid numerical value. The outcome of an arbitrary use case of
this specific example is displayed in Figure 2.4.

IF (SENSOR_1.IN1 < 0 OR SENSOR_1.IN1 > 100) THEN
//trigger alarm for SENSOR_1

END_IF
IF (SENSOR_2.IN1 < 0 OR SENSOR_2.IN1 > ABC) THEN

//trigger alarm for SENSOR_2
END_IF
IF (SENSOR_3.IN1 < 0 OR SENSOR_3.IN1 > 200) THEN

//trigger alarm for SENSOR_3
END_IF

Figure 2.4: Example of UAB output

Such mistakes will generally not break the generation, meaning that it will be detected during
compilation. As discussed earlier fixing errors at that stage is more costly. If variable ABC is
non-existent, or of a non-numeric type, a compilation error will occur. If the variable exists and
is of the right type, something unforeseen will most likely happen at run-time. No valid use case
can be thought of where a specification file should refer to a variable that may or may not exist
in the template. If a template developer needs to utilise such a reference, they can directly use
the local variable, rather than referring to the specification file.

The developers behind UAB noticed that XSD has its limitations with respect to the intended
purpose [4]. While their point is certainly justified, it can be debated whether an XSD that
validates some elements, is better or worse than a complete absence of validation.

Aside from validation issues, there is very little negative to say about the static information
sources. They fit their intended purposes, and have been purposefully made more user-friendly
than their datastructure originally is.

2.2.2 Syntax

Most problems with UAB are not related to the static information, but with the actual meta-
programming language. The biggest problem of which is its lack of an appropriate syntax. The
templates are Python programs are used to generate PLC code. The code to be generated is
passed as a String parameter to a custom Python function called ‘writeSiemensLogic’. Each

9

2. ANALYSIS OF UAB

String can be annotated with $ < variable > $, where < variable > is part of the current Python
heap. When running the template, the value of variable at the stage of execution where the code
is generated, will be spliced into the String, after which it is printed to the output file. A ‘Hello-
World’ example of this is shown in Figures 2.5 and 2.6, which display the source code and the
generated code, respectively.

username = "World"
plugin.writeSiemensLogic(’’’
Hello $username$!
’’’)
username = "John"
plugin.writeSiemensLogic(’’’
Hello $username$!
’’’)

Figure 2.5: Source code

Hello World!
Hello John!

Figure 2.6: Output from running Fig-
ure 2.5 in UAB

In case of the simplest template, where each inserted value is a constant, the String of SCL
code can be inserted by a single call to the Python functions, where the parameter is the anno-
tated SCL program. The logic is fixed, and the variables are replaced by a simple find/replace
mechanism, which could be done using a simple text editor. An example of such a template can
be found in Appendix B. As can be seen, the impact of the boilerplate code is minimal, but so is
the template’s functionality.

In practice, UAB templates are much more complex than this, with dynamic logic and
varying values. In these cases the resulting code is governed by the input parameters or the
control flow of the templates. Generally this involves templates that consist of multiple seg-
ments of SCL code. Each segment is directly surrounded by boilerplate Python code (i.e. ‘plu-
gin.writeSiemensLogic’), and is separated from another segment by one or more Python state-
ments. To understand the templates the developers have to read past the boilerplate code in order
to only consider the relevant elements. However, in the process of mentally filtering it is possible
to skip over significant code, especially when it is short and surrounded by multiple sections of
wrapper code.

Normally Python’s indentation rules, which will be discussed in more detail in Section 2.2.3,
should help in determining the control flow and logic of a template. However, the syntax of
the SCL code segments counters this indentation. If the developer intends to add indentation
to the resulting output code, this indentation has to be included in the String. However, this
indentation is absolute, and not relative to the Python indentation level. This means that if a
single tab (or its 4 space equivalent) is desired, the developer will type a single tab, even if the
template’s indentation level at that point is already 4 tabs. An example of this can be seen in
Figure 2.7. This clearly shows that the readability of the templates suffers heavily from the
mixed indentation rules. This effect becomes even worse if developers do not capitalise PLC
keywords, which is allowed since the languages are case-insensitive. The degree to which this
affects readability can be limited by using an editor that highlights the various code elements,
but this can only do so much. Additionally, this is a work-around for a poor design decision.

10

2.2. UAB’s limitations

...
if condition_1:

if condition_2:
plugin.writeSiemensLogic(’’’

IF DB_Global.Pulse_Ack THEN
$name$.AuRStart := TRUE;

END_IF;
’’’)

else:
plugin.writeSiemensLogic(’’’

IF DB_Global.Pulse_Ack THEN
$name$.AuRStart := FALSE;

END_IF;
’’’)

...

Figure 2.7: Mixed indentation

Aside from harming readability, the segmentation of code can facilitate template errors by
means of missing keywords. Since SCL is a block-structured language, each block of code (e.g.
type declarations, statement blocks, control statements) is clearly indicated by a keyword at the
beginning and at the end of each block. In case of segmented code, where the segmentation
occurs inside a block, it is very easy to miss the closing keyword of the surrounding block.
Especially when dealing with nested control statements one can forget to close the top level
statement, as displayed in Figure 2.8, which is missing a final ’END IF’. The more significant
code that separates the opening keyword of a control statement from its closing one, the greater
the chances of it being forgotten, especially if the closing keyword is utilised in one of the nested
segments.

There is yet another issue with segmentation, which is its impact on validation. Section 2.2.4
will cover UAB’s validation mechanics, but the bottom line is that due to the segmentation of
PLC code it hardly possible to draw any conclusions on the validity of the template, both seman-
tically and syntactically. This significantly increases the chances of the templates or generated
PLC code being faulty.

Most of the syntax-related problems are caused by code segmentation, but the developers
have expressed other grievances as well. It is only allowed to insert variables, which means that
in order to splice in the result of a simple expression, the developer has to lift the expression
into a variable, and splice that in, rather than being able to directly splice in the expression. An
example of this can be seen in Figure 2.9.

Another syntax-related issue that came to light when investigating the existing templates, is
the absence of any control on the format of the produced PLC code. There are no rules regarding
what constructs can be used to generate PLC code, allowing developers to come up with any way
to generate code that they feel is right. This can further harm the readability and re-usability of
the templates, as indicated in Figure 2.10.

11

2. ANALYSIS OF UAB

plugin.writeSiemensLogic(’’’
IF CONDITION_1 THEN

Common statements
A := 1;
B := 2;

’’’)
if condition_1:

plugin.writeSiemensLogic(’’’
IF CONDITION_2 THEN

$name$.AuRStart := TRUE;
END_IF;
’’’)

else:
plugin.writeSiemensLogic(’’’
IF CONDITION_3 THEN

$name$.AuRStop := TRUE;
END_IF;
’’’)

Figure 2.8: Missing keyword

Current situation
for i in range(10):

temp = i * 2
plugin.writeSiemensLogic(’’’A_i :=

$temp$;’’’)

Desirable situation
for i in range(10):

plugin.writeSiemensLogic(’’’A_i :=
$i * 2$;’’’)

Figure 2.9: Variable lifting

All in all, the issues detailed above indicate that the current syntax is counter-intuitive, error-
prone, and results in templates that are difficult to comprehend due to boilerplate code and poor
formatting. In order to improve upon this, the focus of the templates should shift from writing
Python code to writing SCL code, both for validation purposes and general comprehensibility.

In order to ease the transition between the old and the new situation, the decision was made
to stay as close to the current approach as possible. The reason for this is that large adaptations
to an established entity often fail as people are resistant to change. Through the process of
mimicry, keeping a strong link between the old and the new, changes can be hidden, and the
overall difficulty of introducing a new facility is reduced greatly [33]. For the new meta-language

12

2.2. UAB’s limitations

Wrong scenario (actual code example)
plugin.writeSiemensLogic(’’’BOOLEAN_VAR := ’’’)
for i in values:

plugin.writeSiemensLogic(’’’i OR ’’’)
plugin.writeSiemensLogic(’’0;’’’)

Better scenario
condition = " OR ".join(values.append(0));
plugin.writeSiemensLogic(’’’BOOLEAN_VAR := $condition$;’’’)

Figure 2.10: Arbitrary code constructs

this means that in order to get rid of the boilerplate code, the meta-language cannot be adapted
drastically, so Python should not be replaced by a scripting language with a completely different
look and feel.

2.2.3 Implementation

UAB is a Java program that interprets Python-based templates to generate PLC code. In case of
SCL, the generated code is then imported into a native PLC editor, e.g. Siemens SCL’s Step7.
After importing the code, it can be compiled and loaded onto the PLC devices.

Python is well suited as a meta language due to its dynamic typing system, its terse syntax,
and the ease of creating prototypes. In order to use these advantages with the existing UAB
backend, the decision was made to implement the template facility using Jython. Jython is a
Python implementation that runs on the JVM, making it possible to combine Java and Python
code. This enabled the full use of Python’s meta language capabilities, while at the same time
removing the need to refactor the UAB backend.

At first glance it seems there are no significant downsides to the implementation of the tem-
plating facility. However, through extensive usage several problems have surfaced, indicating
that improvements can be made in this area when creating a new templating language for SCL.

The implicit mixing of Java and Python code, though straightforward, resulted in an un-
foreseen issue. Since there is no direct mapping from Java classes to the corresponding Python
classes, it was up to the developer to map one to the other. The most common example of this
was mixing Java lists and Python lists, both of type List. Some of UAB’s default functions
returned a list in Java, that could not directly be used as a list in Jython. Helper classes were
created to perform the mapping of the common cases, but to a novice user the reason why they
should be used was experienced as confusing.

Since there are only a few Java classes which are utilised from within the templates, the
occurrences of the aforementioned issue were scarce, limited to once or twice in each template.
The majority of each template consisted of pure Python code, which revealed another potential
flaw of the current approach. ’Potential’ is an important nuance in this case, as opinions varied
among developers, mostly governed by their proficiency in Python. Using a general purpose lan-
guage as a meta language opens up the possibility to write powerful and complex code templates,

13

2. ANALYSIS OF UAB

often in multiple ways. The possibility to create virtually any piece of code was unanimously
accepted as an advantage, but novice developers indicated that they struggled to understand the
templates created by their more experienced peers. Further investigation of the ’complex’ tem-
plates revealed that they were not necessarily more complex than their counterparts, they simply
contained some of Python’s more advanced language constructs, like list comprehension and
lambda functions.

In most cases the incomprehensible template code could be replaced by a slightly more
verbose, but easier to understand version, as is displayed in Figure 2.11. This is a good indication
that Python is too extensive for the intended purpose. Normally requiring a certain level of
familiarity with a language is acceptable, but since the object language originates from a different
domain (mechanical engineering), one in which general programming experience is not required,
it is defendable that the templates should be as simple as possible.

#List comprehension
a = [f.strip() for f in feature.split(’=’ ,1)[-1].split(’,’)]

#Extended example
a = list()
for f in feature.split(’=’ ,1)[-1].split(’,’)

a.append(f.strip())

Figure 2.11: List comprehension

Aside from the problems with having to compensate for varying data types between Java and
Python, and Python’s extensive capabilities, there is another downside using Python as a meta
language for UAB. This issue is related to the readability of the templates, and is caused by a
significant difference between the structure of Python and PLC languages.

SCL code is syntactically based on Pascal, and is characterised by its clear block-structure.
Additionally, each statement is delimited by a semicolon, making multi-line code a commonly
used language feature. On the other hand, Python enforces a strict indentation-based format-
ting, in which new lines are used to delimit statements. The idea behind Python’s syntactically
significant whitespace is to improve readability [56]. Whether it is successful at this, is an area
of debate. Nonetheless, many of UAB’s users indicated that coming from a block-bounded lan-
guage in which whitespace is optional, using a language that enforces indentation required some
additional effort. Sheard [45] also discovered that “templates that ‘look like’ object language
programs are a great boon to the programmer”, which is in line with the experience that the
users had. The developers also indicated that for large template files, with many nested state-
ments, readability did in fact suffer from the lack of explicit block bounds.

It seems that Jython is technically well suited for UAB. However, disconnections caused by
lack of experience, differences in languages, and an imperfect mapping from the UAB backend
to the templates, harm its overall potential for this particular use case.

14

2.2. UAB’s limitations

2.2.4 Validation

As pointed out in 2.1.3, errors are not detected till a stage later in the generation and compilation
process. This is because UAB does not natively provide PLC code validation.

The validation of the UAB generation cycle is performed in 3 distinct phases. Template
files are validated upon execution, as any Python program. Each generated code file is then
run against a user-defined set of Python functions, which flag the generation as successful or
unsuccessful. Lastly, the generated code is imported into Siemens’ Step7 environment, where it
is validated upon compilation, which needs to be triggered manually.

As became clear from the sections on Syntax and Implementation, SCL templates are essen-
tially Python programs, and are run, and therefore validated as such. Since Python’s type system
is dynamic, SCL templates are validated at runtime.

Since the SCL programs are formed from String parameters passed to Python code, the de-
fault validation of Python code provides no detail about the quality of the generated code, not
even whether it is valid SCL syntax. A successful generation only means that the template was
executed without problems, in other words, the template was valid. In fact, it does not even
guarantee that the whole template is valid, rather that the executed path is valid. It might be
possible to write a regular expression-based validator for the SCL blocks. However, segmenta-
tion of the code blocks, and its dependence on the control flow of the surrounding logic, make
it difficult to draw conclusions on the code that will be generated. The degree of syntax and
semantic validation would generally be limited to an approximation at best. An example of this
can be seen in Figure 2.12.

Validating this specific use case comprises the parsing of the first block of SCL code, detect-
ing this is missing a segment, and validating that at some point the missing segment is provided.
This is actually a relatively easy example, which can be solved, despite the segmentation, but it
shows that segmentation greatly hinder the validation capabilities.

plugin.writeSiemensLogic(’’’
IF CONDITION_1 THEN
’’’)
if condition_1:

plugin.writeSiemensLogic(’’’
// arbitrary code
’’’)

else:
plugin.writeSiemensLogic(’’’
// arbitrary code
’’’)

plugin.writeSiemensLogic(’’’
END_IF
’’’)

Figure 2.12: Segmentation

15

2. ANALYSIS OF UAB

Since UAB does not feature any additional validation compared to regular Python, the pos-
sibility exists that a valid template always results in an invalid SCL code file. This shows that
a clear gap exists between the state of a template and its output. This gap contributes further to
the aforementioned disconnect between the goal of the templates and the way they are formed,
suggesting that the current approach is not desirable.

To provide some sort of validation, UAB allows template developers to write a set of Python
functions which can be used to validate the generated code. However, since no parser is present,
the validation largely needs to be performed based on regular expressions. While this is easier
to do on generated code than it is based on templates, it is still tedious. Based on the projects
that were analysed, this form of validation was rarely used. If it was utilised, it was mostly to
validate whether all declared parameters were actually set in the code.

After generation and importing the output SCL code, it can be validated at compile time.
In case of PLCs, runtime validation could prove to be disastrous, with critical errors not being
caught until the facility is up and running, so having compile time checking is a great feat.
However, in Step7 the manual trigger enforces a full compilation of the program, which can
sometimes take several minutes. This is a long time if the developer edits something inside the
editor and wants to see whether it results in valid code. While some errors might be costly to
detect on every code adaptation (e.g. array dimensions, cross-file interaction), there are many
that could be detected and reported to the user on every iteration (e.g. syntax validity, type
limitations, variable issues). This can be considered a limitation to the Step7 environment.
However, it should generally be avoided that the developers fix the generated code, rather than
the template.

An error in the generated code is often an indication that the template is wrong. Syntax
errors are most common, but semantic errors can also be the result of an erroneous template.
In other cases the error is caused by faulty data in the specification file, which will always lead
to semantic errors. As discussed in section 2.2.1, the specification file is very liberal in what is
considered valid, increasing chances of errors occurring. Each erroneous entry in the specifica-
tion file results in a single faulty output file, whereas an error in a template will propagate into
all output files originating from that template. This means that an error in a template is generally
more costly than a specification file containing a faulty entry. An ideal workflow would resemble
the one in Figure 2.13.

Regardless of the source of the error, developers often consider it faster to fix the errors inside
the SCL editor. The alternative of fixing the template/specification file, triggering a regeneration
cycle, and importing the project, is slow. As a result, the realistic workflow diverges from
the ideal one, and can be seen in Figure 2.14. The operational steps, introduced in Chapter
2.1.3, have been mapped onto the workflow. This mapping leads to a similar observation with
respect to the costliness of errors: The impact an error makes, increases the further the developer
progresses within the workflow.

So, even though making manual adaptations to the generated code is the most time-efficient,
it is unfavourable. Fixing code manually can cause new errors, especially when considering code
generated from a faulty template. In these cases the fix would have to be performed in several
generated code files, making it enticing to use the error-prone copy-paste method. Additionally,
with every change made in the generated code file, the result and the source diverge more. If the

16

2.2. UAB’s limitations

Figure 2.13: Representation of the ideal workflow.

Figure 2.14: More realistic representation of the workflow.

cause of the error is not fixed, the code loaded onto a PLC is no longer in line with the template
it originated from. This could cause issues when code has to be regenerated at a later stage as
the error must be fixed again, and there is no guarantee that it is fixed in the same way that time
around. Lastly, it would be much more effective if the developer of the current template fixes the
error in the template as they have intrinsic knowledge of it, and therefore are able to pinpoint the
error more easily. If the template is passed on to a new developer it will most likely take more
time for them to figure out the origin of the error, unnecessarily wasting time.

For these reasons, having a disconnect between the source files and the generated code is
a situation that must be avoided. CERN is aware of this, and as a result the UAB developers
were specifically asked to make sure that the templates were always kept up-to-date. However,
coercing people into performing additional tasks is often met with resistance. Additionally, it has
no guarantee of succeeding, at least not without (enforcing) serious consequences [10], which is
undesirable. For this reason it proved to be a gamble to leave it up to developer to ensure that
any change in the generated code was also made in the source files.

An alternative to the manual approach, might be to find a way to automatically infer changes
from the changed generated code, and propagate this back to the template or specification file.
In reality, this might be feasible, but could prove extremely difficult. Aside from the technical

17

2. ANALYSIS OF UAB

implications, dealing with multiple sources, and changes whose form is unknown beforehand,
back-porting changes is generally non-deterministic. As a result, the developer would still have
to make sure that the inferred changes are correct, which comes with the same difficulties as
the current approach. An approach without an additional manual phase is to detect errors ear-
lier. Structurally improving the templating facility in such a way that errors are detected be-
fore importing and compiling, preferably even before generation, reduces the chances of errors
occurring at compile time. Furthermore, it would reduce the labour involved in the overall de-
velopment cycle, which could aid in enticing the developers to fix the source rather than the
output.

2.3 Evaluation

Now that the ‘dirty’ laundry has been aired, it becomes possible to judge the framework’s im-
plementation against the goals set by the creators. It is obvious that UAB succeeds at effectively
reducing the time and effort involved in developing a new control system application. It features
a rich set of functionality that makes it possible to create abstractions of PLC code, which can
then be used to generate specific implementations. Therefore it is safe to say that UAB meets its
intended purpose.

Claiming that the generated code is well-structured is a different story. The developer is in
full control of the structure of the resulting PLC code. In fact, in Sections 2.2.2 and 2.2.4 it
was demonstrated that they can even generate something which is not PLC code at all. Based on
other documentation on the UNICOS framework (of which UAB is a component), the aim might
not have been to create well-structured code, but to have a uniform way of defining devices and
device instances across different manufacturers [23][39]. This they did succeed in, as the device
instance files are all well-structured and normalised. They can even be validated using custom
semantic checks written in Python.

The scalability criteria is hard to value. UAB’s architecture is designed in such a way that
new languages, object, and components can be added at any time. However,this is only because
the impact of each element is minimal, barely touching the core functionality of the tool. The
actual architecture, as presented in Section 2.1.3, shows that the only language-specific compo-
nents consist of a few Python functions. The plugins do not affect the meta-language in any way,
as this is fixated in the core component of UAB. An important note is that because the plugin
layer is so thin, the level of language-specific functionality is as well. Something that could be
improved in this area is to increase the depth of these elements, but overall it is a good approach
to have a plugin per object language.

Another requirement of UAB is to be user-friendly. The description focuses mainly on the
User Interface (UI), and barely on the templating language. This is weird as the user generally
spends significantly more time working with the meta-programming language compared to the
UI. As became obvious from the analysis in Section 2.2.2, the meta-programming language is
all but user-friendly. It is verbose, counter-intuitive, and features no real validation. On the other
hand, the UI seems to meet the standard, being both simple and intuitive. All in all, the criteria
is met based on the description, but the scope is too narrow, especially taking into account the
level of user interaction each component of UAB has. If the description were to include the

18

2.3. Evaluation

user-friendliness of the language, UAB would not live up to its design criteria, as it is not as
user-friendly as it should be.

The requirement for version-management is met. This is just because the requirement is
only meant to hold for the UAB framework, and not for the templates themselves. This has
been an explicit choice, which is justifiable. New device specifications are released to support
newer device instances, which are not bound to be backwards-compatible. For that reason it
makes sense to ensure that the tool can support older device generations, but that templates are
generally written for a single generation only. Using the same logic for a new device instance
will most likely require a set of adaptations to the template. UAB supports different device
specification versions through bootstrapping mechanics.

If one was to step away from the UAB definition of version-management, and simply look
at storing code and documenting its evolution, there is generally not that much that needs to be
done. Utilising any versioning tool like SVN or Git would allow this to be done. However, it is
important to note that in the current form, developers choose to fix errors after generation rather
than fixing the template. This creates a discrepancy between the actual code files, and the ones
that can be generated from the template. So while this is not in the actual goals of UAB, it is a
strong advocate for adding validation to the templates.

In short, evaluating the criteria against the implementation revealed that the most gain is
to be made in the syntax and the validation aspects of the meta-programming language. This
directly correlates to the large degree of user-unfriendliness and lack of structure. The scalability
requirement is currently met only because of the liberal nature of the programming language.
This means that when a new meta-programming language is introduced, it is important to re-
evaluate the scalability criteria, and how it is represented. The user-friendliness criteria will also
be tested against the new language implementation. The other criteria are either met because
of a different component of UAB, or because they are part of the intrinsic properties of a meta-
programming language. Therefore they can be assumed to remain in place when redesigning the
language.

Having this information makes it possible to define a list of explicit requirements that the
new meta-programming language needs to meet:

• The tool should support statically loaded information, i.e. configuration and specification
files, in all of its functionalities.

• The object and meta syntax should be distinguishable.

• The overall syntax should be readable.

• The user should feel like they are using an extended version of the object language.

• The boilerplate code should be kept to a minimum.

• Design one way to do something, and do it well.

• The meta-programs need to be validated, syntactically and semantically.

• The quality of the generated code should be safeguarded.

19

2. ANALYSIS OF UAB

• Meta-expressions should be eligible for splicing without having to be lifted into variables.

• The language design needs to be portable to other PLC languages, preferably by reusing
components.

These requirements can be seen as the goals for the new version of the UAB language facil-
ity. They embody both the original goals for UAB, as well as the improvements to be made to
the current situation. Aside from the criteria that apply to the language design, the actual imple-
mentation of the language should be implementable on top of the JVM to be able to incorporate
it into the existing architecture of the greater Unicos framework.

20

Chapter 3

Meta-programming approaches

In the previous section the flaws in the current approach were identified, which resulted in a
list of points to improve upon. One of the largest issues that was discovered was the counter-
intuitive way code is currently generated, i.e. writing sections of PLC code in Python strings.
This suggests that a different approach to templating is required to obtain a more usable template
facility.

In order to determine a better approach, the concept of meta-programming was explored in
detail, as well as various meta-programming solutions that were created in the past. The field
of meta-programming will be introduced in short, after which the gained insights are detailed,
resulting in a set of constraints for the new meta-programming language.

Afterwards various type system approaches as used in existing meta-languages will be com-
pared, leading to a general set of ideas on how to provision typing within a meta-programming
context.

3.1 Introduction to meta-programming

Meta-programming started off with the ability to manipulate programs at runtime, by implement-
ing the Von Neumann architecture [59], putting data and programs in the same space. Green-
wald et al. [24] expanded on this by defining a macro facility that made it possible to re-use
common code elements, increasing the efficiency of programming, and reducing the chances of
mistakes being made. The application of meta-programming has long since been extended sig-
nificantly, and proved useful in a variety of fields. e.g. shader programming [36] and industrial
automation [30]. Many of these applications originated from the academic world. However,
meta-programming is supported by a significant amount of general purpose languages in one
way or another, making it available to a larger public.

Besides being applied in different fields, meta-programming can be used for various pur-
poses. One of its prime uses is to improve developer productivity, and increase code reusability
and maintainability [50]. It is also used to improve performance, for example through par-
tial evaluation [12] or specialised code generation [28]. This specialised code generation also
facilitates DSLs and program transformers, like compiler-compilers [21]. Besides generation,
meta-programming also makes it possible to reason about object programs. These analysers can

21

3. META-PROGRAMMING APPROACHES

validate behaviour [9], can be used to construct theorem provers [5], or can perform introspec-
tion [19][22]. Lastly, Sheard [45] also recognises an educational element in meta-programming,
as complex algorithms can be dissected into intermediate stages.

The variation in its application is also represented in the definition of meta-programming.
In fact, there’s no single definition for meta-programming. Depending on the point of view,
multiple descriptions of meta-programming exist. Some focus on meta-programming as a con-
cept [57], others define it from a generator point of view [6][43][34][13], and some address its
analytic capabilities [7]. Sheard’s definition [45] is probably the most complete, as it addresses
both the generative and analytic nature of meta-programs:

“A meta-program may construct object-programs, combine object-program fragments into
larger object-programs, observe the structure and other properties of object-programs.”

Based on the definitions, it is up for discussion whether UAB’s approach to templating is
to be considered meta-programming. Its meta-capabilities are limited to generation only. Addi-
tionally, according to Štuikys and Damaševičius’ definition a meta-program handles a program
as data [48]. While UAB is indeed capable of generating a program from its data, it is also
capable of producing output which is not a syntactically valid PLC program. In that sense it is
simply handling String data which might result in a program, rather than a program itself. On
the other hand, Mainland [35] considers this ”printf purgatory” a form of code generation, which
means that the Python based templates are to be considered real meta-programs.

Regardless of whether UAB is to be considered meta-programming, chapter 2 revealed that
the current approach requires some reconsideration. In order to do so, it is important to look at
the various aspects of meta-programming, and decide what a more suited approach would be.

Simply looking at all available literature is likely to result in a collection of approaches
from which it is going to be impossible to distill a suitable one. Rather than blindly comparing
all the different meta-programming solutions, it is much more sensible to classify them based
on some clear characteristics, and make a decision based on those. To do so a taxonomy on
meta-programming can be used, of which several exist. There’s Sheard’s [45] and Pasalic’s [41]
versions, which cover similar aspects. In comparison to Štuikys and Damaševičius’ taxonomy
[15], these taxonomies are less detailed, and focus on meta-programming systems rather than
meta-programming as a concept.

Examining meta-programming from a conceptual point of view can yield precious insights.
However, given the context it makes more sense to compare meta-programming approaches
at a higher level. Additionally, the higher level separation is more clearly represented in the
literature on meta-programming, resulting in a better classification. Even though Sheard and
Pasalic consider many of the same aspects of a meta-programming system, there are a few
characteristics that are unique in either of them. Whether this puts one ahead of the other is
not important in classifying the different meta-programming approaches. In fact, it might be
beneficial to cover the complete set of characteristics as depicted in both taxonomies in order to
obtain a clear classification.

The list of characteristics of meta-programming languages obtained from merging both tax-
onomies is listed below. Each will be discussed separately in more detail:

• Separation of languages (homogeneous and heterogeneous)

22

3.2. Separation of languages

• Use time (static and run time)

• Separation of static and dynamic code (manual and automatic)

• Type of meta-language (open and closed)

Aside from the mentioned characteristics, both taxonomies also differentiate on the type of
meta-program. Both advocate that there are 2 distinct types: program generators, and program
analysers. Since the focus is to generate code, this distinction is omitted. This does not mean
that meta-languages used for analysis cannot provide useful insights, but they are simply out of
scope.

Beyond the aspects of meta-programming that are covered in the taxonomies, there are some
additional subjects which are worthwhile to address:

• Hygiene and variable capturing

• Type validation in meta-programming

3.2 Separation of languages

Aside from the distinction between generative and analytical meta-programs, both Sheard and
Pasalic categorise meta-languages based on what Štuikys and Damaševičius refer to as: ’the
separation of languages’. The name is somewhat poorly chosen, as their definition does not
concern how languages are separated. Instead, they distinguish languages based on whether the
meta-language is equal to the object-language, and whether the same compiler/interpreter can be
utilised to execute both meta-programs and object programs. Herein they define 2 possibilities,
namely homogeneous and heterogeneous meta-languages. As the prefix might suggest, homoge-
neous meta-programming is characterised by the ability to use the same tool to compile/interpret
the meta program as can be used for the object program. The execution patterns for a two-stage,
homogeneous meta-program look like this:

execx(meta–program)⇒ ob ject–program

execx(ob ject–program)⇒ result

execx(execx(meta–program))⇒ result

Examples of languages that follow this execution pattern are: MetaML [51], Template-
Haskell [46], and Converge [53].

For heterogeneous meta-programming this does not hold. In that case the meta-program is
executed in a different manner than the object program. The respective patterns for a two-stage,
heterogeneous meta-program are:

execx(meta–program)⇒ ob ject–program

execy(ob ject–program)⇒ result

execy(execx(meta–program))⇒ result

23

3. META-PROGRAMMING APPROACHES

F# [49], the C preprocessor [47], and MetaHaskell [35] are examples of heterogeneous meta-
programming languages.

Figures 3.1 and 3.2 show Hello World examples of both. Pasalic mentions that while it
might be meta-programming, it is hard to classify Figure 3.1 as being homogeneous meta-
programming. The reason for this is that it does not depend on Python’s internal mechanisms.
Instead, it creates a new file, based on a String, which is then executed. A Hello World ex-
ample which would meet Pasalic’s requirements, is given in Figure 3.3. This too is written in
Python, and makes use of the capability to define classes at runtime to go from a meta-program
to a result. It is obvious that this form of meta-programming is much more powerful than a
string-based approach, but it is also more complex.

execfile(’meta_program.py’)
execfile(’object_program.py’)

with open("object_program.py", "w") as text_file:
text_file.write("print(\"Hello World\")")

Figure 3.1: Homogeneous, string-based meta-programming

execfile(’meta_program.py’, r)

with open("object_program.sh", "w") as text_file:
text_file.write("#!/bin/bash")
text_file.write("echo \"hello world\"")

from within cmd
./object_program.sh

Figure 3.2: Heterogeneous, string-based meta-programming

Even though Figure 3.2 is only a few lines long, it shows one of the biggest downsides to het-
erogeneous meta-programming. This downside is not the product of the string-based approach
used in that example; it is characteristic of heterogeneity. It is the requirement to know multiple
languages. In the other examples only Python is used, meaning that a Python developer can at
least read them, and most likely understand them. In the heterogeneous example the developer
needs to know both Python and Bash.

Aside from the pedagogic advantage of only needing to master a single language, there are
benefits that are largely unique to homogeneous meta-programming. When the meta-language
is identical to the object language, the same type system can be used to validate each stage. This
not only facilitates maintainability, it also guarantees type safety across stages. Additionally,
because the meta-language is specialised for a single object language, it is possible to support
object-level evaluation. This allows sections of code to be executed and replaced by their re-
spective values, potentially improving performance.

24

3.2. Separation of languages

Define the meta class
class HelloMeta(type):

def hello(cls, a):
print("Hello %s" % (a))

def __call__(self , *args , **kwargs):
cls = type.__call__(self , *args)
setattr(cls, "hello", self.hello)
return cls

Define an implementation of the meta-class
class HelloWorld(object, metaclass=HelloMeta):

def greet(self):
self.hello("World")

Define another implementation of the meta-class
class HelloJohn(object, metaclass=HelloMeta):

def greet(self):
self.hello("John")

Call the object code
hello = HelloWorld()
hello.greet()
hello = HelloJohn()
hello.greet()

Figure 3.3: Homogeneous meta-programming using Python3’s internal
mechanisms

While not all homogeneous languages make use of these advantages, it is obvious that these
are powerful mechanisms. Heterogeneous language might lack these properties, but have their
own set of strong characteristics. The most prominent ones are their reusability and the fact that
they can be used without any restrictions on the host language [54].

In homogeneous situations, the meta-language and the object language are identical, and
therefore are only suited for that specific object language. This does not hold when using a
meta-language that is different from the object language. There is nothing that prevents the use
of the same meta-language with a different object language. As a result, a single meta-language
can provision many different use cases. It is important to keep in mind that creating a reusable
language is not without concessions. The language should effectively only support the minimal
unionised subset of features of the object languages it is meant to facilitate. Any feature outside
of this set might have no meaning for a certain object language, and therefore should not be
part of the meta-language. To avoid losing crucial meta-functionality, support for such features
needs to be achieved in an alternative manner, e.g. through extension of the meta-language.

25

3. META-PROGRAMMING APPROACHES

The two-language composition is not all bad. Because of it, heterogeneous languages ar-
guably enjoy a higher degree of comprehensibility. In case of different languages it is much
easier to differentiate between the two stages. As such, a developer can first try to understand
what goes on in the meta-phase, before moving on to the object code.

Additionally, the type safety that homogeneous meta-languages offer, can also be achieved
when considering two different languages. It would require a significant section of the object
language’s semantics to be encoded. Tratt [54] describes this as unrealistic for relatively large
DSLs, but not impossible. So while there are many benefits to homogeneity, there’s also potency
in heterogeneous meta-programming.

With a clear overview of the strengths and weaknesses it is possible to make a calculated
choice between the two, but it is crucial to also take the object language’s capabilities into ac-
count. A language that does not have meta functionalities, and cannot be extended with them,
is not suited for homogeneous meta-programming. In that case, a heterogeneous meta-language
is generally the only choice. Nonetheless, even for such cases, it is possible to mimic a ho-
mogeneous setup. Assuming the object language is powerful enough, one can always create a
new program for the same language, e.g. through string concatenation (see Figure 3.1) or AST
building. Alternatively, if the language is being reimplemented, mechanisms (e.g. annotations)
can be added that use the existing syntax to facilitate meta-programming. In this approach it is
important to stay as close to the original language as possible. Diverging too much from the ob-
ject language will limit the advantages that a homogeneous meta-language offers. Additionally,
it may cause confusion if a similar syntax is used, but methods and statements are added. For
example, a developer might try to use a meta-stage operation in an object stage. This obviously
would be caught by the interpreter or compiler, but the developer might not be able to tell why.

3.3 Use time

Sheard’s taxonomy recognises the split in the use time of various meta-programming approaches.
On the one hand there are static code generators, which produce object programs that are to be
processed by a different compiler or interpreter during a separately triggered execution phase.
On the other hand, there is run-time generation, where the generated code is executed within the
same execution phase. Berger et al. [8] describe run-time evaluation as ‘conceptually simple’,
as evaluation is done anew every single time. Evaluation occurs like with any other function,
making the impact of side effects predictable. Compile-time evaluation can have unexpected
side effects. Figures 3.4 and 3.5 are examples taken directly from Berger et al [8]. The former is
evaluated at run-time, and prints ‘1 3 6’, whereas the later is compiled and will print ‘3 1 6’ on
execution. This shows that compile-time evaluation can change the output of a system in such a
way that it is no longer in line with the order it was defined in.

print(1);
print(2 + eval(print(3); ASTInt(4)))

Figure 3.4: Run-time evaluation

26

3.4. Separation of static and dynamic code

print(1);
print(2 + ↓{print(3); ASTInt(4)})

Figure 3.5: Compile-time evaluation

Compile-time has the advantage that it has access to the internal of the object language. It
can enforce hygiene, and it can be exposed to the same optimalisation cycles that regular code
is put through. The only thing it cannot do, is reference variables, as these are not available until
run time. Run-time evaluation has this ability, which allows code to be specialised based on
dynamic values. For example, the code in Figure 3.4 would have worked identically if the value
‘4’ would have been passed to it via stdin. On the other hand, run-time evaluation cannot easily
make use of the internal of the language.

One big advantange to compile-time meta-programming is that it incurs no run-time perfor-
mance penalty. Using meta-programming at run-time has an impact on the overall performance,
but if this can be moved to the compilation phase, this impact moves with it. As a result, the
compilation might take longer, but the run-time remains unaffected. An additional advantage
to run-time meta-programming is that it can be applied in various stages. This is called multi-
stage meta-programming, and it means that the outcome of stage n is a program which is a
meta-program itself. This makes it possible to define layered abstractions, which can further
increase code re-use and specialisation at runtime. Technically multi-stage is also possible for
compile-time evaluation, but since all values are then known statically, it provides no gains over
a single-stage meta-program.

Examples of compile-time meta-languages are Template Haskell, Yacc, C++ and Lisp. Lisp
is special, as it also supports run-time evaluation. This also puts it in the list of run-time meta-
languages, together with JavaScript, Python and MetaMl.

3.4 Separation of static and dynamic code

Another aspect of meta-programming languages that Sheard covers in his taxonomy is the man-
ner of how meta-code is separated from object-code. In case of heterogeneous languages, this
can be done automatically by the interpreter, based on differences in the syntax between the
meta-language and the object language, assuming total disambiguity. In case of heterogeneous
languages this can be done through a process called Binding Time Analysis (BTA). BTA allows
the compiler to determine which values are static, and which are only available at run-time.

An alternative approach is to incorporate manual, or explicit, annotations. In those cases,
the developer is in charge of marking the static elements. Any unmarked element is assumed to
be dynamic. Template Haskell and MetaML use this form of annotations.

Automated separation of static and dynamic code is user-friendly in the sense that they
do not have to do anything. However, there are situations where it gets it wrong. BTA makes
assumptions in order to determine execution order, which might not be in line with what the user
intended. This becomes more likely in multi-stage setups, where BTA is performing poorly.
Additionally, BTA requires the syntaxes of both languages to be disambiguate. For manual

27

3. META-PROGRAMMING APPROACHES

annotation this is not required, assuming the parser is instructed how to treat annotated and
unannotated language components. Manual annotations gives the user more control over the
staging, but also requires them to write the annotations themselves.

While the statement that manual quotations are cumbersome has largely been debunked,
there is still something to say for cases where it is redundant or unimportant. If there is no chance
for BTA to get it wrong, or if the user does not need to know what goes on, requiring manual
annotations actually is cumbersome. In these cases a hybrid model might be implemented which
provides the best of both worlds.

Idris [11] uses such a hybrid model. Annotations are only required on elements where the
compiler cannot faultlessly determine whether it is static or not. This means that type classes,
which are always static, are automatically marked as such. Function calls on the other hand
require manual marking using the ‘%static’ annotation. Lisp does something similar, as macros
need to be explicitly defined, but their use is inferred, so that the user does not need to concern
themselves with that.

Hybrid models do require an additional level of clarity. From a user’s standpoint, there
should be no confusion on whether an annotation should be added or not. This requires a well-
defined collection of rules when and when not to add explicit annotations.

3.5 Type of meta language

Unlike Sheard, Pasalic also differentiates meta-languages by whether they can be extended or
not. A closed meta-language cannot be extended upon. Decisions regarding typing, syntax,
and variable capturing are made by the meta-language designer, rather than making it the users
responsibility. Additionally, pre-defining these aspects of a meta-programming language makes
it possible to guarantee certain meta-properties, e.g. type-safety and hygiene.

MetaML [51] is an example of a closed meta-language. It provides the user strong typing
guarantees and capture-avoiding mechanisms, putting these beyond the developer’s concern.
Because of its specialisation for a single language, it is powerful, but it lacks extensibility.

Closed meta-programming is the best choice when the object-language is fixed. However,
when the meta-programmer needs to be able to use varying object-languages, a closed approach
simply is not viable. It might be possible to support a few object-languages from a closed point
of view, but if it has to be truly dynamic, an open meta-language is the only option.

Open meta-languages can be tailored to the object language that the developer wants to use.
The downside is that the implementation of most of the language features is their responsibility.
The best the language designer can do is provide abstractions in the meta-language. These allow
programmers to easily adapt it to their intended object-language. Most open meta-language
provide ’interfaces’ for certain language aspects, like syntax or typing, but generally these are
incomplete.

For example, Standard ML [40] allows the user to define the syntax of the object-language,
guaranteeing that the generated code is syntactically correct. However, it does not allow the user
to define the semantics in a way that guarantees type safety.

There is a strong relation between the extensibility of the language, and whether the meta-
language is heterogeneous or homogeneous. As mentioned earlier, heterogeneous languages can

28

3.6. Hygiene

be reused with various object languages. However, for this to be able, the meta-language cannot
contain object-language specific knowledge. This specialisation has to be performed by the user
at a later stage. As such, the meta-language needs to be extendable.

Since extensibility in this case is a must, a closed, reusable, heterogeneous meta-language
does not make sense. It is either going to be so general that it lacks any feature, or it is only
specialised for a set of near-identical languages, and therefore not truly reusable. However,
closed, non-reusable, heterogeneous meta-language are a viable option, for example when the
host language doesn’t allow for homogeneity.

Something similar, but less definitive holds for open, homogeneous meta-programming. As
homogeinity applies for a single, well-defined object language, extensibility is often a wasted
feature of the accompanying meta-language. The only viable use case is when an object lan-
guage allows for extension of its own syntax or semantic rules. In that case the meta-language
should allow the same form of extension, however, no example of this was found.

3.6 Hygiene

Accidental variable capturing is a well-known problem in macro-based code generation. Hy-
giene, coined by Kohlbecker et al. [32], is the principal of avoiding this accidental capture upon
macro expansion. Unhygienic macros are a liability, as they will function correctly in all situ-
tations with the exception of at least 2n− 1, where n is the number of macro parameters. This
number is equal to all minimum set of parameter configurations in which at least one variable
is in danger of being captured. In short, hygiene violations can occur when the macro code is
scoped within the lexical context of the calling site.

#define INC1(i) do {int x=0;\
++i;\
printf("%d\n", i);\

} while(0)
int main() {

int x = 4, y = 4;
INC1(x); // prints 1
INC1(y); // prints 5
return 0;

}

Figure 3.6: Hygiene violation

An example of hygiene violation in C macros is shown in Figure 3.6. Since both inputs
have the same values, it is sensible to assume that their outcome would be identical as well,
which is clearly not the case. Since the macro is evaluated based on the caller’s lexical context,
the arguments do not receive a new binding. As a result variable ‘x’ in the calling site ends up
being shadowed within the expanded macro-code. If the lexical contexts were kept separate, the

29

3. META-PROGRAMMING APPROACHES

assigned binding for variable ‘i’ could never end up being shadowed by the macro’s variable ‘x’,
guaranteeing hygiene.

Macro expansion as done by the C-preprocessor [47] is based on string replacement, and is
not just vulnerable to accidental variable capturing. It also is susceptible to precedence issues.
The processor takes the macro parameter and splices it into the macro as is, which can lead to
unexpected results, as displayed in Figure 3.7.

#define EVEN(x) (x % 2 == 0)
int main() {

printf("%d\n", EVEN(2 + 2)); // prints 0
printf("%d\n", EVEN(4)); // prints 1
return 0;

}

Figure 3.7: Precedence violation

Once again, the arguments that are passed to the macro are semantically equivalent, while
their outcomes are not. As can be seen from the provided examples, non-hygienic macros can
severely influence the functionality. Including hygienic macros in the design of a new language
can prevent these issues from occurring.

A macro is referred to as a hygienic macro if the macro expander itself takes care of solv-
ing the hygiene problem. Languages like Rust [31], Scheme [17], and Racket [18] have such
macro systems in place. Some languages, like Elixir [37], allow the user to explicitly override
hygiene for a macro, giving them more control. In languages that do not have hygienic macros
(e.g. Common Lisp) the user is burdened with the responsibility to avoid accidental variable
capturing.

Manual solutions embody the use of obscure names which are unlikely to occur in practice,
using methods to generate unique names, or using a special syntactical element which is only
available within a macro [1]. Which approach works depends on the language. If no special for-
mat is supported, or if no ‘gensym’-like function is available, developers might have to prevent
variable capture themselves by coming up with random or obscure names.

In general hygienic macros are desirable, but the underlying issue is not easy to solve. The
solution also greatly depends on the languge’s features, which hinders a standardised approach.
If no hygienic system is put into place, the responsibility and the complexity moves towards
the user, and away from the implementation. This increases the chances of the hygiene prob-
lem manifesting itself, as a good understanding of the issue is required to avoid it. Both these
scenarios indicate that hygiene is a difficult subject.

As for PLC languages, this complexity is no different. An additional problem is that none of
the manual approaches work for languages adhering to the IEC standard [52]. These languages
require all variables to be defined before the logic sections. As such, if a hygiene violation would
occur within the logic sections, no new variable can be introduced. Similarly, if the macro uses
obscure names, these names will have to be declared in the template. This requires the developer
to have intrinsic knowledge of each macro that is used. It is also not robust as the obscure names
might be used within the template itself, or in another macro.

30

3.7. Type Validation in Meta-programming

For lack of a good solution, there are some potential workarounds. The first one is to iden-
tify which variables are statically introduced in the macro. Upon expansion the name of each of
these can be adapted (to avoid conflict), after which they can be added to the temporary variable
declaration at the top of the output file. However, this can severely impact the code’s functional-
ity, and since PLCs are physical machines, it also might unintentionally affect block allocation.
A different option is to accept macro expansion as is, and only invalidate generation when a case
of hygiene violation occurs. Since these situations are likely to be detected at runtime, it can
result in unexpected errors.

3.7 Type Validation in Meta-programming

Type systems in meta-programming know various forms. Similarly to regular type systems, there
is the distinction between static and dynamic type systems. Another distinction, which solely
applies to meta-programming is the one between isolated stages and cross-stage validation. In
isolated validation, each stage is validated individually.

Having a type system that can validate both the meta-stage and the generated object stage is
obviously more powerful than one that can validate only a single one. However, given the fact
that both stages are validated separately, it is still very likely to generate invalid object code. Not
being able to detect errors beforehand will lead to code regeneration which would otherwise be
preventable.

Validating the generated code from the meta-stage, that is where a new type system can
really prove its worth. In order to do this, it needs to be able to do cross-stage type checking.
MetaML is a meta-programming language with such a type system. It does not just ensure that
the resulting code is syntactically valid, but also semantically sound. Achieving such levels
of type safety is difficult. For homogeneous meta-languages it is possible to wrap the object
language’s types in a code object. The language’s type system can then be used to validate the
meta-stage. It might require some small additions to do so, but it’s generally less effort than
creating a new type system.

Sheard [45] recognises the difficulties of such an approach for heterogeneous meta-programming
language. For starters, a different type system might be required for each object language that
should be supported. Secondly, the type system might not be suited to be modelled using a code
data type. Such a type can still be used to lift object language elements into the meta-domain.
However, for objects anti-quoted into the object language it will not always suffice. Where a
homogeneous language has a code equivalent for each data type, this might not apply to a het-
erogeneous language. When dealing with two different languages, a type mapping has to be
created from the meta-language to the object language. This mapping might be obvious, but it
could also be a daunting task. This greatly depends on whether the type system from the ob-
ject language is compatible with that of the meta-language. MetaHaskell manages to guarantee
well-typedness of generated object language terms through the use of a quasiquotation mecha-
nism [35], proving that it is possible (to an extent). This is even more impressive considering
MetaHaskell is an open meta-language.

For closed heterogeneous meta-languages it might be easier to achieve cross-staged type-
safety. The same restrictions apply to closed languages and open languages. The main difference

31

3. META-PROGRAMMING APPROACHES

is that the object language is fixed. Therefore the meta-language does not have to support ways
to define or infer a type system for the target language. The language designers can concern
themselves with achieving type safety.

Besides depending on quasiquotation mechanism, it is also possible to use dependent types,
or even the less powerful Algebraic Data Types (ADTs) [41]. Dependent types are generally
more powerful than the code data type, as they represent types indexed by terms [42], rather
than types indexed by types. The problem with dependent types is that they are harder to debug,
and less transparent to the user.

While cross-stage type safety is something to be desired, it is not the case that validating each
stage separately is worthless. If a type system is sound for each individual stage, it still provides
a series of strong guarantees. Given the absence of errors when statically validating stage n, it is
ensured that no type errors will be encountered during the execution of stage n. Additionally, any
type error in the code generated during the execution of stage n will be detected when validating
stage n+1.

Extending the type system with fully sound cross-stage validation will add another guaran-
tee: If no errors are detected at stage n, the object code of stage n+1 will be free of type errors
as well. Whether the absence of type errors in stage n dictates anything about stage n+m (with
m > 1) depends on the information that is available at stage n.

3.8 Evaluation

The obtained theoretical insights can be mapped onto UAB’s use case. This should yield a set
of characteristics with which the new meta-programming facility can form an improvement over
the current installation.

Preliminary research revealed that the languages cannot be extended natively to support
meta-programming. As such, a true homogeneous approach is not feasible. Mimicking homo-
geneity is undesirable as the unique layers around the standard mean that there would be multiple
meta-languages to create and maintain, none of which are truly reusable. Additionally, since the
requirements for PLCs are focused on I/O operations, the languages’ capabilities are lacking for
the purpose of meta-programming. This means that creating a ’homogeneous’ meta-language
would require additions (e.g. methods, annotations, statements) to the object language. Each
one would make the outcome more heterogeneous. At some point the languages will differ to
such an extent, that the advantages of having a homogeneous language no longer apply. Addi-
tionally, for the PLC languages, this approach is not desirable. As the language is directly linked
to the physical domain, it might cause confusion when it is lifted into a software domain. These
reasons, combined with the re-usability that heterogeneity brings, vow for a heterogeneous ap-
proach, like its predecessor.

As for the type of language, taking into account the expertise of the users, combined with
UAB’s purpose, a closed language is desirable. That way, users do not have to concern them-
selves with the internals of the language. However, closed, heterogeneous meta-languages are
do not offer reusability. In case of the PLC languages, the meta-language cannot be uniformly
characterised as open or closed. To allow the meta-facility to support language specific elements,
while at the same time reusing the same meta-language, it is important that the language is open.

32

3.8. Evaluation

In other words, it can be extended upon based on the use case. However, after specialising the
meta-language for a single object language, the result should appear closed to the end-user.

A similar hybrid model is applicable in the separation of static and dynamic code. All PLC
code is static, whereas all meta-code is dynamic. Whenever it is deemed clear enough, the
interpreter infers whether a statement is dynamic or static. In the other situation, e.g. variable
splicing, the user is responsible of annotating the dynamic element. As mentioned, this requires
a clear definition of where it is and is not required.

Since PLC code is compiled within a different domain, the ‘use time’ is static in respect
to the whole process. However, looking only at the templating stage, it’s definitely a run-time
process, as not all information is available statically. This also means that there might be a use
for multi-stage meta-programming. However, currently a single layer of abstraction suffices
since the meta-stage is mostly limited to values and identifiers, and occasionally a segment of
logic.

Given the absence of multiple meta-stages, adding cross-stage type validation might seem
redundant. This is not entirely true, since the principals of such a type system also hold between
the meta- and object-stage. As explained in section 2.2.4, the absence of cross-stage validation
drives the developers towards fixing the generated code, rather than the templates. Adding cross-
stage type checking can prevent this, though the dynamic nature of the templates will result in
these checks being soundy at best. Therefore it is key to ensure that the type system is also
capable of validating each stage individually. The latter might result in errors being fixed in the
templates, as the code no longer needs to be transferred to be validated, but it cannot prevent
unnecessary code regeneration.

To facilitate the cross-stage type checking, a code data type will be introduced. This al-
lows the users to write object-level code in its concrete syntax within the meta-domain. This
improves the overall readability, and allow predictions on the validity of the generated code.
Dependent typing might have allowed for a more complete type system, but also would be much
more complex to implement. Additionally, much of the template parameters come from exter-
nal information sources, meaning that the terms are not known, just their types, limiting the
capabilities of dependent typing.

As discussed in section 3.6, writing PLC code has some implications when it comes to hy-
giene. Based on the existing templates and their corresponding user-defined functions, solving
the hygienic problem can be put off (for now). In case of code-generating functions, the required
identifiers were passed to the function, or were part of the global variables defined in the sym-
bols table. In line with this, hard-coded identifiers will be invalidated within code-generating
functions. This avoids hygienic issues from occurring altogether, but might turn out to be a
draconic measure. If this is indeed the case, an alternative solution needs to be thought of.

33

Chapter 4

Language Design

The previous chapter covered a series of different language characteristics for meta-programming
languages. The insights obtained during the analysis were used to determine a different approach
to meta-programming for UAB. This new approach is SCL-Templates, or SCL-T in short. As
the name suggests, it is a language that facilitates templating specifically for the Siemens SCL
language. SCL-T offers the developer an intuitive syntax to write templates for SCL, while
at the same time also providing static and semantic guarantees of the meta- and the resulting
object-code.

The details of SCL-T will be covered below. Firstly, an overall introduction of the language’s
features and its templating mechanism will be given. This is followed by a in-depth example
of how to use the language. After that the language’s data types and statements are covered.
Finally, some attention will be given to SCL-T’s interaction with the static information sources.

4.1 Introduction to SCL-T

SCL-T is a heterogeneous, closed, ‘run-time’ meta-programming language that uses explicit
annotations to separate the meta-stage and the object-stage. Unlike UAB’s original meta-facility,
this language is only suited for a single PLC language. In this case, the target language for the
templates is Siemens SCL.

One of SCL-T strongest features is the way the meta-code is embedded into the object-
level code. Instead of writing meta-level statements that generate object-level code, the user
now writes SCL code enhanced with templating parameters. What this looks like is covered
in section 4.2. Of course, the template parameters have to be assigned at one point or another,
which is why meta-level statements are allowed alongside the SCL code. The locations within
the SCL code where meta-programming is allowed are fixed to outside of SCL Unit blocks
and within the logic sections of each block. Inserting code into the object level domain is also
restricted. Standardising the use-sites not only opens the door to a more powerful language
regarding validation, it also adds a degree of conformity over the templates. This ensures that
the overall look and feel of a template resembles the outcome. Formatting the templates like
this not only makes them easier to read, it also removes much of the boilerplate code that UAB
forced onto the developers.

35

4. LANGUAGE DESIGN

Another characteristic of SCL-T which is noteworthy is its validation. UAB had run-time
validation of its meta-stage, and no incorporated validation of the object-code (pre- or post-
generation). SCL-T offers compile-time guarantees on the validity of the meta-stage which help
in ensuring that no type errors will occur when executing the template. Even though guarantees
regarding sound meta-execution are important to have, SCL-T’s real strength is in the validation
of the (to-be) generated code. SCL-T ensures syntactic validity of the resulting SCL code before
the code is generated. Because of this it is no longer possible to write a template which produces
syntactically incorrect SCL code. Besides syntactic checks, SCL-T also support semantic verifi-
cation at meta-level. This means that it can detect whether a type violation will be present in the
generated code. Unfortunately, this check is not fully sound, meaning that the absence of errors
in the template does not guarantee generation of valid SCL code. Nonetheless, SCL-T’s type
system can ensure that certain type of errors will always be detected before generation. After
generation most of the holes in the code have been filled, allowing the type system to eliminate
errors that were undetected while validating the template. Validating the outcome from within
the generation tool can prevent unnecessary migration to the Step7 program.

Besides the obvious changes to the language, SCL-T offers some quality-of-life improve-
ments over its predecessor. One of these is the removal of meaningful indentation. This makes it
possible to write templates using an indentation that promotes readability rather than functional-
ity. Additionally, since whitespace is no longer meaningful (outside of strings), it also becomes
possible to write multi-line meta-programming statements. Semi-colons are used to indicate the
end of a statement. Control statements are now bounded by explicit symbols (‘{...}’). As a
result, it now is easier to see where a block begins and ends, even for heavily nested blocks.

4.2 SCL-T by Example

Figure 4.1 shows an example of an SCL-T template. This is based on an actual logic file used
at CERN. Part of the body has been omitted to reduce the overall size of the code block. The
template is not overly complex, but a lot is happening in the template. This example will be used
to introduce some of SCL-T’s more prominent language elements.

Starting from the top, the first thing that is encountered is a series of ‘supplied’ declarations.
These variables are passed to the template as a parameter, and have to be explicitly typed. If
these variables would not be declared, the type system would not be able to fill in the gaps
created by these external parameters. If a template has no ‘supplied’ variables every execution
of the template will result in the exact same output (assuming the specifications haven’t changed
in between runs), as all information is present statically. Template parameters are constant in
their declaration, which means that they cannot be reassigned within the template. However,
their values can be mutable objects, a concept which is discussed in more detail in section 4.3.1.

Moving on to the first line of SCL code, an explicit annotation is encountered, ‘$...$’. This
annotation is a recurring element within SCL-T. It indicates splicing, which is the insertion of
a meta-level object into the object-level code. This is what gives SCL-T its meta-programming
functionality. SCL-T recognises 3 different types of splices: regular splices, suffixed splices,
and statement splices. The different types of splicing are covered within the example and will
be addressed when they are encountered.

36

4.2. SCL-T by Example

1 supplied <Var(UNKNOWN)> name;
2 supplied bool master;
3
4 FUNCTION $name$_GL : VOID
5
6 VAR_TEMP
7 old_status : DWORD;
8 END_VAR
9 BEGIN

10
11 list(<BOOLEAN>) conds = [];
12 var AllAI = findMatchingInstances(
13 "AnalogInput",
14 "’#FEDeviceIOConfig:FE Encoding Type#’=’1’"
15);
16 for var i in AllAI {
17 string AIDesc = i.getAttributeData ("DeviceDoc:Descr")
18 .lower()
19 .strip();
20 if AIDesc != ’spare ’{
21 conds.add(<i.IOErrorW>);
22 }
23 }
24 if master {
25 $<DB_Global.AI_Sensor_Alarm := $orBuilder(conds ,<0>)$;>$;
26 }
27
28 ...
29
30 IF UNICOS_LiveCounter - DB_Global.T_PulseAck > 1.0 THEN
31 $name$.Pulse_Ack := FALSE;
32 END_IF;
33 END_FUNCTION

Figure 4.1: An example SCL-T template, based on an actual production code file.

This particular case is a suffixed splice. It is a splice that appends a suffix to an SCL identifier.
In this relationship the suffix is constant, but the base identifier is not. Suffixed splicing are
particularly useful when iterating over SCL units or variables that have a common suffix based
on a dynamic value. They are allowed at any point where SCL accepts identifiers. Suffixed
splices cannot be typed, as the name of the newly created identifier is dynamic.

Executing the suffixed splice with ‘name’ being equal to ‘PCO 10’ would result in ‘PCO 10 GL’.
Valid suffixed splices have the guarantee to produce a valid SCL identifier. Any splice that vio-

37

4. LANGUAGE DESIGN

lates this guarantee will result in a type error.
Skipping over the SCL declaration section, line 11 contains the next SCL-T language com-

ponent: regular variables. Unlike template variables, regular variables have to be initialised upon
declaration. It is not allowed to declare a variable without directly assigning a value to it. For
collections it is possible to declare an empty collection. The initial declaration site of a regular
variable has to be explicitly marked. This can be done with the ‘var’ keyword, which indicates
that the type has to be inferred. This is possible because variable declarations are required to be
initialised. The type of the variable can then be inferred based on the assigned value. If required,
the type can be explicitly overridden, given that the assigned value is a subtype of the desired
type. An example of this can be seen in line 17. For collections, type inference is only possible
when the initialisation is not empty. In case of empty declarations, the type has to be explicitly
specified, so replacing line 11 by ‘var conditions = [];’ would be invalid.

Explicit variable declaration is required whenever a new variable is declared. As a result
it is also required in the header of a for-loop, inside control-statements, and inside user-defined
functions. Without the explicit annotation, the type system will assume the variable to have been
declared at an earlier point. If this is not the case, an error will be reported.

After they have been declared, variables can be reassigned given that the new value is a
subtype of the declared type. Reassignment sites should not have the ‘var’ keyword, or an
explicit type declaration. If the keyword or type is present, the type system will see it as an
initial declaration site, resulting in a duplicate declaration of the variable. Variable shadowing is
not allowed in any way. This means that if a variable has been declared, it cannot be redeclared
within the same or any subsequent scope. Variables introduced within a child scope will not
exist in the surrounding scope, and thus can be reintroduced within other sub-scopes.

Besides being the first encounter with regular variables, there is another interesting this about
the declaration of the ‘conds’ variable. Its type, and in particular the ‘<BOOLEAN>’ part of
the type is new in SCL-T. ‘<BOOLEAN>’ should be read as ‘code of BOOLEAN’. This type
is assigned to any meta-level object whose value represents a valid SCL expression of type
‘BOOLEAN’. The ‘code of ...’ construct can be used for any SCL data type. Objects of these
types play an important role in splicing.

Lines 11 to 26 consist of several meta-statements which contribute to a single purpose. The
block queries information from the specification files to build a list of ‘<BOOLEAN>’ objects,
which are then used to construct an SCL statement. Even though the various statements are
closely related, they will be covered individually to properly cover their functionality and that
of the underlying SCL features.

12 var AllAI = findMatchingInstances(
13 "AnalogInput ,DigitalInput",
14 "’#FEDeviceIOConfig:FE Encoding Type#’=’1’"
15);

Figure 4.2: Excerpt of Figure 4.1: lines 12 to 15.

Figure 4.2 is an excerpt of lines 12 to 15, which is a good example of SCL-T’s interaction
with the specification file. Anyone who worked with UAB before will recognise the syntax.

38

4.2. SCL-T by Example

The ‘findMatchingInstances’ function is what is used to extract the device information from the
specs. It takes a comma-separated list of device types, an optional Master object, and one or
more constraints. It queries the specification file for a list of device instances of the requested
type(s) that meet the condition(s). In this case the requested device types are ‘AnalogInput’
and ‘DigitalInput’. As a result the return type of the function will be ‘list(Device(AnalogInput,
DigitalInput))’. This will also be the inferred type of ‘AllAI’ since it has been declared with the
‘var’ keyword.

The ‘Device()’ data type is a new addition in SCL-T and is used to qualify information
obtained from the specification files and device definitions. This allows their information to be
used for static and semantic validation of the templates. Besides creating a dedicated output type
for the ‘findMatchingInstances’ function, SCL-T also offers validation on the query. The device
types are validated against the known list of devices, and each device type’s metadata is used to
determine the supported attributes. Querying an unknown device, or writing a condition based
on an attribute which does not exist will result in a type error. Because of this it is no longer
possible to write a non-sensical query.

One thing that is important to keep in mind is that attributes are validated against the inter-
section of the queried device types. This means that when dealing with multiple device types,
the attribute needs to be existent in each of them. For this concrete example it boils down to the
fact that the ‘findMatchingInstances’ call is valid if and only if attribute ‘FEDeviceIOConfig:FE
Encoding Type’ exists in both ‘AnalogInput’ and ‘DigitalInput’.

16 for var i in AllAI {
17 string AIDesc = i.getAttributeData ("DeviceDoc:Descr")
18 .lower()
19 .strip();
20 if AIDesc != ’spare ’{
21 conds.add(<i.IOErrorW>);
22 }
23 }

Figure 4.3: Excerpt of Figure 4.1: lines 16 to 23.

The next statement is the for-loop ranging from line 16 to 23, which is displayed once more
in Figure 4.3. The purpose of the loop is to iterate over the device instances that were obtained
in the previous statement, and build a list of conditions. The header of the for-loop will be
discussed first, after which the contained statements will be detailed.

As mentioned earlier, new variables introduced in the header of a for-loop also have to be
explicitly declared using either a ‘var’ keyword or one of the supported types. Since variable ‘i’
has not been introduced in the surrounding scopes, it has to be declared here. Its type is inferred
based on the type of ‘AllAI’, which is ‘list(Device(AnalogInput, DigitalInput))’ as specified
earlier. The type of ‘i’ will therefore be ‘Device(AnalogInput, DigitalInput)’.

The first child-statement of the loop takes the device instance ‘i’ and queries the parameter
file for its description (“DeviceDoc:Desc”). Like ‘findMatchingInstances’, the ‘getAttribute-
Data’ method is a remnant of UAB. Its purpose is to obtain the value of a single attribute for a

39

4. LANGUAGE DESIGN

specific device instance. The type of the returned value depends on the definition of the attribute.
In this particular case the queried attribute is of type ‘string’. The string is then turned into lower
case characters (‘.lower()’), after which the surrounding whitespace is removed (‘.strip()’). The
type system could easily infer the resulting type of ‘AIDesc’ based on this chain of expressions.
However, it has been declared explicitly as a ‘string’ to illustrate manual typing.

The validation rule for attributes for the ‘findMatchingInstances’ function also applies to
‘.getAttributeData’. If an attribute is not present in one of the device types that make up the type
of the instance the method is called upon, the type system will raise an exception.

The next statement checks whether the cleaned-up string in ‘AIDesc’ is equal to ‘spare’. If
it is not an element is added to the ‘conds’ list. The object that is added to the list is formed by
‘<i.IOErrorW>’ which is a construction that has not been encountered before. The ‘<...>’
construction represents an operation called quoting, and as the annotations might suggest, it
is related to the ‘code of ...’ data type. Quoting takes a valid SCL element, in this case an
expression, and lifts it into the meta-domain, turning it into an object. The type of the quoted
element depends on the type of the SCL element. If it is an ‘INT’, the quoted type is ‘<INT>’.
If it is a ‘STRING’, the outcome will be ‘<STRING>’. And if it concerns a statement rather
than an expression or identifier, quoting it will always result in an object of type ‘<Statement>’.

The expression that is being quoted is ‘i.IOErrorW’, which is a structured variable access.
The splice of ‘i’ is an example of a regular splice. Regular splices are used to insert an expression
or an identifier, as is the case here. Unlike suffixed splices, regular splices can be typed. Regular
splices always replace an entire identifier or expression, so the type after splice can be inferred
from the type of the spliced object. For example, splicing an object of type ‘<BOOLEAN>’
will always result in an SCL expression of type ‘BOOLEAN’.

Splicing an object of type ‘Device()’ requires some additional attention. Evaluating such
a splice always results in the instance’s name. This removes the need to explicitly query and
splice the name attribute for that device. Type-wise, the SCL equivalent of a ‘Device()’ is a
‘STRUCT()’, where the fields in the struct depend on the field declared in the device types. As
is the case with the attributes, the fields need to exist in each of the device types that compose
the ‘Device()’ type.

Given that variable ‘i’ is type ‘Device(AnalogInput, DigitalInput)’, the expression ‘i. IO-
ErrorW’ is invalid if ‘IOErrorW’ is not a field in both ‘AnalogInput’ and ‘DigitalInput’, or if their
types don’t match. In this particular example, both device types have a field called ‘IOErrorW’
of type ‘BOOLEAN’, so the expression is a valid SCL expression. Given this information, the
type of the expression resolves ‘BOOLEAN’. Since it is quoted, the type of the object that is
added to the list is ‘<BOOLEAN>’, which is in line with the type of the list. If the type of the
list and the added object were incompatible, a type error would occur.

$<DB_Global.AI_Sensor_Alarm := $orBuilder(conds ,<0>)$;>$;

Figure 4.4: Excerpt of Figure 4.1: line 25.

It is now time to look at the use site for the constructed list of ‘<BOOLEAN>’ objects
(Lines 24 to 26). The if-statement condition is assumed to be self-explanatory, and is therefore
skipped. What happens within the statement is less clear. Due to the quoting and splicing

40

4.2. SCL-T by Example

annotations being used in close proximity to each other it is hard to see, but this is a statement
splice. Determining this from the format used in Figure 4.4 can be challenging when one is not
familiar with the syntax. Figure 4.5 shows the same logic in an exploded form. The individual
components should be easier to comprehend than the compacted version.

<BOOLEAN> base = <0>;
<BOOLEAN> orExp = orBuilder(conds ,base);
<Statement> stmt = <DB_Global.AI_Sensor_Alarm := $orExp$;>;
$stmt$;

Figure 4.5: Exploded version of the statement in Figure 4.4

The first 2 lines of the exploded logic are used to build one large OR-expression.‘orBuilder’
is a user-defined function. Its implementation will be discussed in section 4.4, but it’s function
signature is:

list(<BOOLEAN>)→<BOOLEAN>→<BOOLEAN>

It takes a list of quoted ‘BOOLEAN’ objects, combines it with a ‘<BOOLEAN>’ base
condition, and turns it into a single ‘<BOOLEAN>’ expression. In this case the base condition
is an explicitly typed quoted of 0, which is a valid SCL ‘BOOLEAN’. The function is called on
the list that was filled earlier, and this base condition. This resulting expression is then spliced
into the right-hand side of a statement.

Once the splice has been evaluated, the result is a valid SCL statement, assuming that the
type of ‘DB Global.AI Sensor Alarm’ is a supertype of ‘<BOOLEAN>’. However, since
this code is part of the meta-domain (being inside a meta-level if-statement), it is not allowed
to write SCL code directly. Because of this just having a valid SCL statement won’t suffice. It
has to be turned into a meta-level object so that is can be handled by a meta-level operation. For
SCL statements, the only valid option is an object of type ‘<Statement>’. Such an object is
obtained by quoting the SCL statement.

The last line of the exploded statement is used to perform a statement splice. Suffixed splices
and regular splices deal with expressions and identifiers. Statement splices can be used to insert
quoted SCL statements, i.e. objects of type ‘<Statement>’. This can be done from within the
object-domain, or from within meta-level control statements. In both cases it is only allowed
within an SCL Unit’s logic section. Splicing from within control statements makes it possible
to generate SCL statements based on the data flow in the meta-phase. Without it, the statements
would have to be collected in a variable which could then be spliced outside of the control
statement.

This covers the dynamic section of the body. The remainder is pure SCL code with the ex-
ception of the ‘name’ splice. This too is a regular splice. Unlike the regular splice encountered
earlier, this one does not provide semantic guarantees. This is because the type of ‘name’ is
‘<Var(UNKNOWN)>’ whereas the type before was ‘Device()’. Splices have varying outputs
and capabilities depending on the object that is spliced in. Splicing ‘<Var()>’ ensures that the
result of the splice is a syntactically valid identifier. However, since the contained type is ‘UN-
KNOWN’ it is impossible to draw such conclusions on the semantics of the splice. Because of

41

4. LANGUAGE DESIGN

these (un)certainties it can be concluded that ‘$name$.Pulse Ack := FALSE;’ will always pro-
duce syntactically valid code, but the outcome might be semantically invalid. The type system
deals with this uncertainty by accepting everything involving an object of type ‘UNKNOWN’.
As a result, the absence of errors when dealing with objects of type ‘UNKNOWN’ does not
guarantee that there will be no errors in the output.

The Function, and in this case the template as well, is closed with the ‘END FUNCTION’
keyword. SCL-T only deals with semantically correct blocks of SCL code. As a result a syntax/-
parse error will be reported if this keyword is missing. The same holds for the SCL IF-statement
encountered earlier in the example.

This example does not cover the entire SCL-T language. This is not viable in a single tem-
plate. Since they are crucial for SCL-T, data types and user-defined functions will be discussed
in their own sections. Additionally, some more advanced information on splicing is given in
section 4.5.

4.3 Data Types

Most data types received no real attention in section 4.2 simply because there is a lot to say
about them. SCL-T consists of a variety of data types. The most basic group are the primitive
data types. These consist of strings, booleans, integers and doubles. Then there are collections,
which group objects of the same type together, and pairs, which can couple objects of different
types. Devices and code data types are used to bridge the gap between the meta-domain and the
object-level domain.

Each of the supported data types can be used when explicitly defining a variable’s type. The
allowed values for explicit type declaration are shown below. DTn is a declared DeviceType,
and EXP is any data type supported by SCL, or UNKNOWN. Tn is a nested data type, which
can also be any type from the list.

• bool

• string

• int

• real

• Device(DT1(,DTm)*)

• list(T1)

• set(T1)

• dict(T1,T2)

• pair(T1,T2)

• <EXP>

• <Var(EXP)>

• <Statement>

The various data types will now be discussed in more detail. The primitive data types are
considered to be straightforward, and therefore no additional explanation will be provided. De-
vices and their functionality has been covered in the previous section. The remaining data types
will be covered below. Throughout the sections some of the operations available to each data
type will be covered, but this list is incomplete. For the complete list, see Appendix D.

4.3.1 Collections

As the name suggests, collections are objects that group other objects together. The 3 types of
collections that are available are: lists, sets, and dictionaries.

42

4.3. Data Types

Each collection has its own characteristics, which will be discussed individually. One thing
they have in common is that they can be iterated over, and that their types are fixed. Since
collections are of a fixed type, it is no longer possible to add different types of objects to a single
collection. This might feel like a limitation, but it enforces the single responsibility principal,
and it improves the overall comprehensibility of the template.

An important thing to realise about collections is that they are mutable objects. This means
that elements can be added to or remove from the collection, while the collection object stays
the same. This also makes it possible to pass a collection around by reference. Assigning the
collection to a different context will be done by a memory pointer, meaning that the underlying
representation is the same. Any adaptation made to the collection will affect every variable
referencing the same collection. If a copy of a collection is required, the .copy() method can be
used. Keep in mind that this will only copy the collection itself, not its children. So any lower
level reference is still shared. This can be overcome by calling .deepcopy(). This will recursively
copy all elements, creating a full stand-alone copy of the collection. Figure 4.6 represents this.

list(list(int) ls1 = [[1]];
list(list(int) ls2 = ls1.copy();
list(list(int) ls3 = ls1.deepcopy();
list(list(int) ls4 = ls1;

print(ls1); // [[1]]
print(ls2); // [[1]]
print(ls3); // [[1]]
print(ls4); // [[1]]

ls1.add([2]);
print(ls1); // [[1],[2]]
print(ls2); // [[1]]
print(ls3); // [[1]]
print(ls4); // [[1],[2]]

ls1[0].add(3);
print(ls1); // [[1,3],[2]]
print(ls2); // [[1,3]]
print(ls3); // [[1]]
print(ls4); // [[1,3],[2]]

Figure 4.6: Mutable objects and copy operations

Lists

Lists represent a finite sequence of objects of the same type. They can be initialised empty using
‘[]’ or non-empty using ‘[obj1, ...,objn]’. Values can be added to the end of a list with the .add(x)

43

4. LANGUAGE DESIGN

method. Items exist in a list in the order they are added. Values in the list can be accessed by
iterating over the list. An example of how to do this is shown in Figure 4.7.

Besides iterating over a list, it is possible to access a specific value in a list. This can be
done by obtaining a value by its index. Here it is important to avoid accessing an index which is
not part of the list. Doing so will result in an exception. Using the len(l) function it is possible
to determine the maximum index available in a list. Index-based access can also be used to
override values at a specific index, given that this index is already assigned. Removing an object
at a given index will not leave a gap in the indices. Instead all higher indices are shifted left by
1, releasing the last index.

Sets

Sets are like lists, with 2 main exceptions. Adhering to their mathematical definition, sets do
not contain duplicate entries. This means that any cannot be 2 entries for which ‘e1 is e2’ holds.
Secondly, sets do not maintain order. Maintaining order would require consensus on what to do
with duplicate entries (i.e. discard the new or the old version), and foregoes the idea behind a
set. A set is meant to aggregate unique elements, not filter duplicate entries from a list. Given
that users cannot depend on the object’s order, sets cannot be accessed by index. Figure 4.7
shows the effect of sets on order, and also contains an example of invalid access of a set.

Sets can only be constructed from a list, using ‘set(list)’. This can be a new list, or a pre-
existing one. The list can be empty or filled. Creating a set from a list creates a shallow copy
of the list. As explained earlier, this means that any contained mutable object is shared between
the list and the set. Since sets do not allow index-based reference, the only way to change its
content is through the .add(obj) and .remove(obj) methods. Besides methods to manipulate a
set, and ones to analyse the content of a set, there are also some methods that facilitate set op-
erations: .union(set), .intersection(set), .difference(set), and .symmetric difference(set). These
operations return a new set, so they do not alter the original object. Like with lists, the contained
objects of the new set will be shallow copies of their original counterparts.

var l = [1,4,2,3,1];
var s = set(l);
for (var e in l) {

print(e); // prints 1,4,2,3,1
}
for (var e in s) {

print(e); // prints 1,2,3,4
}
var e = l[1] + s[2]; // Invalid set access

Figure 4.7: Differences between lists and sets

44

4.3. Data Types

Dictionaries

Where lists and sets contain only values, a dictionary consists of key-value pairs. The type of
the key and the value can be different. The key is limited to primitive data types. The value can
take on any type. Each key is unique, and adding the same key again with a different value will
override the old value. Accessing a key that does not exist will result in a runtime exception,
similar to trying to obtain a list item at an out-of-bound index. In order to make sure that these
exceptions do not occur at runtime, one can check map keys by calling ‘obj in dict’.

This weak coercion towards defensive programming adds some additional steps for the de-
veloper. However, it ensures that the optional nature of an object has been considered, and that
the templates are designed to handle these scenarios accordingly. If the object should be present,
and the template should fail upon its absence, the checks can be omitted. If the goal is not to
access a specific element, but go over all the entries of the dictionary, it is possible to iterate over
it.

Dictionaries are initialised using ‘{}’. None-empty dictionaries can be constructed with
‘{key1 : value1, ..., keyn : valuen}’. To add a value to a dictionary there are 2 approaches.
The first one is to call the ‘.add(key,value)’ method. The alternative way is to use key-based
assignment, i.e. ‘dict[key] = value’. Both approaches can also be utilised to override an existing
value in the map. ‘.remove(key)’ can be used to remove an entry from the dictionary. Execution
will fail if the key does not exist.

There are various ways to go over all the entries in a dictionary. The first one is by calling
the .keys() method, and accessing the map based on each found key. If the key is not important,
it is also possible to obtain a list of all values by calling .values() method. The preferred method
to iterate over each key-value pair is to call the .items() method. This returns a list of pairs.
Each pair consists of the key and the value. An example of each of these approaches is shown in
Figure 4.8.

var dict = {"a":1, "b":2};
for (var key in dict.keys()) {

var value = dict[key];
...

}
for (var value in dict.values()) {

...
}
for (var entry in dict.items()) {

var key = entry.left();
var value = entry.right();
...

}

Figure 4.8: Methods to iterate over dictionaries

45

4. LANGUAGE DESIGN

4.3.2 Pairs

Unlike collections, pairs are of a fixed length, and can contain objects of varying types. Addi-
tionally, pairs are immutable objects. The main function of pairs is to create compound objects
of elements that are closely related. Pairs can be nested to create larger tree-like structures, but
each pair will always consist of a left and a right element. Figure 4.9 shows an example of a
nested pair. While verbose, restricting the size to two elements, with explicit access methods
allows the type system to accurately resolve the type of each access.

An example of a usage for pairs is the generateIfElse function. This standard function is
covered in more detail in section 4.5, but its purpose is to generate a syntactically correct SCL
IF-statement. In order to do this, it takes a list of pairs of conditions and lists of statements, i.e.
‘list(pair(<BOOLEAN>, <Statement>))’. The reason to go with a pair is that each condition
is linked to a list of a statements. Technically, it would be possible to model the function using
two separate lists: one containing objects of type ‘<BOOLEAN>’, and the other containing
lists of ‘<Statement>’. However, the developer would have to make sure that elements of both
lists are in the correct indices, and the function would have to validate that both lists are equally
long. Using a list of pairs solves both issues.

On the one hand, pairs can be useful in function parameters to ensure that elements that
belong together are passed to the function together. On the other hand, they can be utilised to
return ’multiple’ objects. An example of this is shown in Figure 4.9.

def pair(string, pair(bool,int)) foo() {
return ("bar",(true, 1));

}

Figure 4.9: Nested pairs

Elements of a pair can be accessed by calling .left(), and .right() on the object. As their
names suggest, they return the left and right element of the pair, respectively. There are no
additional operations that can be applied to pairs, limiting their usability outside of function-
related contexts.

4.3.3 Code Data Type

The purpose of the code data type is to make it possible to pass syntactically correct object-level
code around as a meta-level object. Where the other data types have a purpose at meta-level,
even Devices, an object of the code data type can only be utilised in an object-level context. In
that sense, it is not like the other types, even though it is part of the meta-domain. The code
data type is crucial for SCL-T to achieve its level of static guarantees. The quoting and splicing
mechanisms that were be discussed in section 4.2 have a very strong relation to the code data
type.

SCL-T differentiates between 3 types of code objects. The first one is ‘<Var(T)>’, used to
enforce the notion that it concerns a quoted identifier. Secondly, there is ‘<T>’, which is the

46

4.3. Data Types

quoted equivalent of an SCL expression of type T. The last one is ‘<Statement>’. These objects
can contain valid SCL statements.

Code type: ‘<Var(T)>’ and ‘<T>’

The reason why ‘<Var(T)>’ and ‘<T>’ are mentioned together is that they have a lot in com-
mon. When used in the context of an expression, objects of these types are interchangeable.
Expressions work on values and are not concerned with whether this is a variable, a compound
expression, or only a value. Instead it is only important what the type is. This is different for
assignment sites and explicit variable references (e.g. function names and output parameters in
SCL function calls). In those cases the code can only be valid if the spliced in element is certain
to be an identifier. This is what the ‘<Var(T)>’ type is really for. It ensures that the object in
question contains a valid SCL identifier. Figure 4.10 shows what this means in practice.

var id = <A>; //id : <Var(BOOLEAN)>
var exp = <TRUE OR FALSE>; //exp : <BOOLEAN>

id := id;
id := exp;
exp := id; //invalid
exp := exp; //invalid

Figure 4.10: Usage of <Var(T)>

When an identifier is quoted, its SCL type T is inferred from the current SCL context, and
it is transformed into a code data type of the form ‘<Var(T)>’. If the identifier is unknown
within the local context, a typing error will be reported. ‘<Var(T)>’ is a subtype of ‘<T>’ and
therefore are allowed to be assigned to value of type ‘<T>’, but not vice versa.

Nearly all operations performed on variables of type ‘<Var(T)>’ will not return a value of
type ‘<Var()>’. The main reason is that the return value is no longer an identifier, or that it
cannot be guaranteed to be an identifier. In case of the latter, type safety has been chosen over
freedom, but it could lead to unexpected type errors. The one operation for which this does not
hold is a suffixed splice. Suffixing a splice of an object of type ‘<Var()>’ allows a new variable
to formed. The suffix has to adhere to the following regular expression ‘([]?[a-zA-Z0-9])+’ and
there can’t be any whitespace between the splice and the suffix. Suffixed splicing is only allowed
on objects of type ‘<Var()>’, and will always generate an object of type ‘Var(UNKNOWN)’.

If contextually there is no reason to use an identifier, declaring a parameter as ‘<Var(T)>’
will only form a self-imposed restriction as these variables can’t be assigned values of type
‘<T>’. In those cases there is no reason to use ‘<Var(T)>’ over ‘<T>’, but the user is free to
use the ‘<Var(T)>’ nonetheless.

47

4. LANGUAGE DESIGN

Code type: ‘<Statement>’

There might be scenarios in which splicing an expression or variable is not sufficient, for exam-
ple if entirely different logic should be inserted. A statement code type, ‘<Statement>’, was
added to support these abstractions.

SCL does not have a block which takes exactly one statement. This means that whenever
a statement can be spliced in, it is always syntactically valid to splice in multiple statements as
well. As a result, the ‘<Statement>’ can be an arbitrary number of statements, even zero.

Initialising ‘<Statement>’ variables can be done using an explicit statement, or simply
‘<>’, which is equivalent to zero statements. An empty statement list allows statements to
be constructed based on a for-loop without having to write special constructs for the first ele-
ment. ‘<Statement>’ objects can be appended to each other using the following format ‘<s1;
s2;>’. It will return an object of type ‘<Statement>’, as shown in Figure 4.11.

var stmts = <>; //stmts : <Statement>
for (var i : [1,2]) {

stmts = <$stmts$; A_i := i;>;
}

Figure 4.11: Statement concatenation through splicing

Since a ‘<Statement>’ object is equal to zero or more SCL statements, the decision was
made to disallow lists of ‘<Statement>’ objects (i.e. ’list(<Statement>)’). Splicing a list of
‘<Statement>’ objects or splicing a single compound ‘<Statement>’ would be semantically
equivalent, so there is no technical reason behind this decision. However, one of the goals of
the new language is to prevent ambiguous approaches to the same problem, so to standardise
the way ‘<Statement>’ objects are spliced into the object-level code, specifying lists of these
objects is disallowed.

4.3.4 UNKNOWN Data Type

The ‘UNKNOWN’ data type was already encountered in the example in section 4.2. It is a self-
defined object-level data type that indicates that the type system can’t draw any conclusions on
the semantic validity. The best example of this is an identifier passed to the template from the
calling site. It can be guaranteed that it is an identifier based on the specifications file’s meta-
data, but it is impossible to determine the corresponding type without knowing the content of
the specs. Since the content of the variable can change the outcome, there are scenarios in which
the resulting code is semantically invalid. However, syntactic correctness is still guaranteed.

Any object-level operation performed with an object of type ‘UNKNOWN’ is also ‘UN-
KNOWN’. For example, an assignment to a value of type ‘UNKNOWN’ is always valid. Build-
ing an expression where one of the terms is ‘UNKNOWN’ will have the return type ‘UN-
KNOWN’. Lastly, calling a function of which either the function name or any of the parameters
is ‘UNKNOWN’, will turn the entire call into an ‘UNKNOWN’ entity. Figure 4.12 shows the

48

4.4. Functions

propagating effect of an ‘UNKNOWN’ data type. The orange underline is put into place to
indicate that the referenced variable is of type ‘UNKNOWN’.

var a = <A>; //a : <Var(BOOLEAN)>
var _a = <a_SFXD>; //_a : <Var(UNKNOWN)>
var o1 = <a AND TRUE>; //o1 : <BOOLEAN>
var o2 = <$_a$ AND TRUE>; //o2 : <UNKNOWN>

Figure 4.12: UNKNOWN type propagation

4.4 Functions

Function calls have been touched upon in the example of section 4.2. However, since the exam-
ple only covers the template format and features, function declarations and their features/rules
were not covered. Functions can be used to specify commonly used functionality. They can
be called from within the template, or from within another function. By using functions it is
possible to reuse code, reducing the size of templates, and improving the overall maintainability.
The ‘orBuilder’ used in section 4.2 is a good example of this. Its implementation is shown in
Figure 4.13.

def <BOOLEAN> orBuilder(list(<BOOLEAN>) conditions ,
<BOOLEAN> base) {

var cnd = base;
for(var condition in conditions) {

cnd = <$condition$ OR cnd>;
}
return cnd;

}

Figure 4.13: Programmatic expression formation

Functions need to have a return type. This type can be any from the list in section 4.3, or type
‘void’. Void indicates that there is no return value. Since the only mutable types are collections,
the void data type only makes sense when the intention is to modify an object of these types.
In all other cases the function will not have any side-effects, meaning that the function does
nothing.

Functions can take zero or more parameters. These parameters are meant to pass information
from the calling site to the function. Like template parameters, function parameters are constant.
While they cannot be reassigned in the context of the function, their corresponding values might
be mutable. This means that the mutable nature of collections also applies within functions. Any
changes made in a function to a list which is passed as a parameter will affect the calling site.

The function header needs to be explicitly typed, both in parameters and return type. The
body of a function follows the same rules as statements do within the template itself. Functions

49

4. LANGUAGE DESIGN

consist of pure meta-level code. It is possible to define code type objects, but it is not allowed to
splice the code, or write SCL code altogether.

Functions need to be defined in different files than the templates, which is a measure to
enforce separation of concerns. Functions are available across the entire project. It is no longer
needed to import a package to get access to a function. Function overloading is only allowed
based on varying the number of parameters. Overloading based on parameter types or the return
type is not supported. Since SCL-T scans the entire project, this means that the combination
of function-name and amount of parameters has to be unique. An example of acceptable and
invalid function overloading is visible in Figure 4.14.

def int min(int i1, int i2) {
if (i1 < i2) {

return i1;
}
return i2;

}

def int min(int i1, int i2, int i3) {
return min(min(i1,i2),i3);

}

def real min(real r1, real r2) { //duplicate min_2
if (r1 < r2) {

return r1;
}
return r2;

}

Figure 4.14: Valid and invalid function overloading

4.5 Splicing

Much of the detail of splicing has been covered in section 4.2 and in the section on code data
types. However, there are some aspects that have not been addressed. In general lines, splicing
can be divided into 2 groups: Statements and Expressions/Identifiers.

Objects of type ‘<Statement>’ are the only ones that are eligible for statement splicing.
Statement splicing can be done anywhere when it concerns statement concatenation (as intro-
duced in section 4.3.3). Splicing statements into the object-level domain is only allowed inside
SCL Units’ logic sections. Splicing any type other than <Statement> is considered a Expres-
sion/Identifier splice. As discussed in section 4.2, this is rather straightforward for ‘code of ...’
data types. If the type of a code object is ‘< T>’ then the spliced type is ‘T’. For the other data

50

4.5. Splicing

int⇒ Implicit8BitConstant

real⇒ REAL

bool⇒ BOOLEAN

Device(DT s)⇒ STRUCT(s)

Figure 4.15: Mappings from meta-level objects to object-level types

types, it requires a more elaborate mapping as was the case for ‘Device()’. This mapping is
displayed in Figure 4.15.

In the mapping for devices DT s is a list of device types, and s is a scope containing decla-
rations for the intersection of the fields in each of the device types in DT s. Collections, strings
and pairs are missing from the mapping, as no sensible mapping exists. For this reason, these
data types are not eligible for splicing.

Precendence-wise, splices are always isolated, meaning that they are not affected by the con-
text they are spliced into. An example of this is ’< 1+2 > * 3 ’. If the surrounding precedence
rules were applied post-splicing, the result would be equivalent to ‘(1 + (2 * 3))’. This would
imply that the outcome of a splice depends on the context where it is inserted into. This could
lead to unexpected results (as discussed in section 3.6), and for that reason, the decision was
made to isolate splices by giving them the highest level of precedence. The above example is
therefore equal to ‘((1 + 2) * 3)’.

Through quoting and splicing, arbitrary code concatenation is a thing of the past. The new
approach provides syntactic security, and, to a large extent, semantic certainty. The ‘orBuilder’
function introduced in Figure 4.13 is the SCL-T equivalent of the UAB code in Figure 4.16.
The new function does not just ensure a correct expression syntactically. It also provides that
guarantee that the resulting expression is a ‘BOOLEAN’ expression.

for i in values:
plugin.writeSiemensLogic(’’’i OR ’’’)

plugin.writeSiemensLogic(’’’0;’’’)

Figure 4.16: Arbitrary code constructs

Even though it prevents a lot of erroneous constructs, eliminating arbitrary code concatena-
tion has made some things more difficult. Since statements are meant to be syntactically correct,
dynamically formed IF-statements and CASE-statements became a problem. Since the amount
of substatements could vary based on the input, the syntax could as well. Validating the dynami-
cally formed substatements would be difficult to do, especially without implementing some form
of data-flow analysis. On the other hand removing the possibility to generate such statements

51

4. LANGUAGE DESIGN

dynamically would be unacceptable. SCL-T offers a middle-ground.
Fixed format IF-statements and CASE-statements can still be written in the native syntax.

For the other situations, there now is a generateIfElse function that returns an IF-ELSIF-ELSE
statement and a generateIf that returns an IF-ELSIF statement. The functions take a parameter of
type ‘list(pair(<BOOLEAN>,<Statement>))’, and in case of the formIfElse, another parame-
ter of ‘<Statement>’ containing the statements for the ELSE block. Similarly, there is a case
creation statement with and without a default value.

Figure 4.17 shows an real-life example of how these helper functions can be put to use.
Assuming variable ‘name’ has a value of ‘PCO 10’, and ‘dev’ contains 2 devices called ‘Slave1’
and ‘Slave2’, the outcome of this function is visible in Figure 4.18. Since the amount of ELSIF
blocks is dynamic, the would be impossible to construct this in any other way.

var cond = <DB_Global.RealPowerCut_temp
AND NOT DB_Global.Pulse_Ack>;

var stmt = <$name$.AuAlAck := FALSE;
$name$.AuRStart := FALSE;>;

list(pair(<BOOLEAN>,<Statement>)) l = [(cond ,stmt)];
for var inst in dev {

cond = <$inst$.Pulse_Ack>;
stmt = <$inst$.AuAlAck := FALSE;

$inst$.AuRStart := FALSE;>;
l.add((cond ,stmt));

}

generateIf(l);

Figure 4.17: Example of ‘generateIfElse’ function

IF DB_Global.RealPowerCut_temp AND NOT DB_Global.Pulse_Ack THEN
PCO_10.AuAlAck := FALSE;
PCO_10.AuRStart := FALSE;

ELSIF Slave1.Pulse_Ack THEN
Slave1.AuAlAck := FALSE;
Slave1.AuRStart := FALSE;

ELSIF Slave2.Pulse_Ack THEN
Slave2.AuAlAck := FALSE;
Slave2.AuRStart := FALSE;

END_IF

Figure 4.18: Output of ‘generateIfElse’ function in Figure 4.17

52

Chapter 5

Language Implementation

The features of the SCL-T language were introduced in chapter 4. While this focuses on SCL-
T from the developers’ point of view, it does not provide any insight on the internals of the
language. This chapter goes over how SCL-T is implemented, and is therefore more interesting
from a language designer’s perspective.

SCL-T is composed of various languages, a concept which is discussed in section 5.1. The
languages that make up SCL-T will be discussed individually. Both the syntax and the type
rules of the components will be covered. However, before zooming in on the languages, the
underlying type system also deserves some attention.

5.1 Architecture

The architecture behind SCL-T is similar to UAB’s original one. There’s the UAB native back-
end (UAB Core), the CPC library and specification files, and a series of components related
to the supported languages. The new architecture differs mainly on the last part. The original
architecture had a single language for all supported PLCs. Language-specific plugins added
specialised functionality by means of functions. The new architecture has a single dedicated
language per supported PLC language. This tailored language is a composition of the object
language, i.e. the PLC language, and a meta-language. The composition for SCL-T is shown
in Figure 5.1. The composition happens in a third language, the mixin-language, which dictates
how the languages are intertwined. Additionally, it can add meta-programming features based
on the target language, and vice versa.

Having a language that is tailored to a specific target PLC makes it easier to support highly
specialised features like semantic validation. Furthermore, splitting the meta-language from the
object-language in a strict manner allows the languages to be maintained separately. The meta-
language is much more likely to evolve over time compared to the PLC language. Having a
hard cut between the meta-language and the object language allows them to evolve separately.
In case a change is made to one of the languages, at least one, and at most two components
have to be adapted. For example, a change made to the meta-language can result in the SLC-T
language needing to be adapted. However, it will never result in a change having to be made in

53

5. LANGUAGE IMPLEMENTATION

Figure 5.1: SCL-T’s language composition. The arrows indicate the direction of composition.

the coupled object languages. Similarly, a change made in SCL will at most result in a change
in the associated mixin-language, but it will never influence the meta-language.

The new architecture might seem like a step backwards from UAB’s original architecture
due to the fact that each target language now has to have its own dedicated meta-programming
language. In reality this is not the case. As mentioned before, a dedicated language allows for
more specialised features to be supported, making the language more powerful. Additionally,
the meta-language is completely language-agnostic. This means that it can be reused among the
various PLC languages, as displayed in Figure 5.2. Reusing the same meta-language not only
makes it easier on the developers who have familiarised themselves with its capabilities, it can
also lower the hurdle of adding a new PLC language.

Figure 5.2: Meta-language reuse among various PLC languages

Admittedly, there are also downsides to a split approach. Having the meta-language heavily
embedded in the object language generally leads to less complex language definitions and more
freedom in meta capabilities per language. However, there is also a significant cost associated
with this design. For every PLC language the meta-language, and its embedding, will have
to be designed prior to implementing the language. In the new setup the object language can

54

5.2. Type System

be designed without concerning oneself with the implementation of the meta-language at all.
How and where the meta-language is embedded can be decided and implemented later on in the
mixin-language. Additionally, since the meta-language has been pre-designed, this decision is
generally limited to defining the interfaces between the object and the meta-language, and how
to map meta-types to object types.

Furthermore, it is debatable whether the decreased freedom in language-specific meta-features
still applies to the suggested architecture. Specialised meta-level features can be added in the
mixin-language. Additionally, since components are interchangeable, it would also be possible
to use an alternative, more specialised meta-language. This goes against the idea of having a
shared meta-language, but the language composition makes it possible. An example of such a
composition can be seen in Figure 5.3. This level of flexibility, while at the same time ensuring
code reuse, would be difficult to achieve in a scenario where the meta-language is embedded.

Figure 5.3: Language composition based on varying the meta-language or the mixin-language

5.2 Type System

The type system is modelled based on scope graphs [3]. Scope graphs provide a tangible idea
of a type system, and make it possible to define a representation without having the actual
source. This allows UAB to inject scopes for library components (e.g. baseline objects, standard
functions) to facilitate type checking, without having to include the actual objects. Since the
implementations are not exposed to the developers, they cannot alter them, adding to the level
of standardisation.

Additionally, the languages consists of various distinct contexts (e.g. devices, symbols,
functions). Scope graphs make it possible to handle these separately. This isolates the resources,
which makes the rules easier to comprehend. Whenever contexts do depend on each other, scope
graphs make it easy to relate them. By creating an edge from one to the other, scopes can be
linked, allowing definitions to be resolved even though they are part of a different scope.

One recurring element in the type rules is the interaction with the context (ctx). Some rules
have constraints based on the context where they are used. For completeness they have been

55

5. LANGUAGE IMPLEMENTATION

C ` t : T ⇐⇒ Returns type T of term t given the context C

C ` t :: OK ||NOK ⇐⇒ Indicates whether typing term t in context C is successful or not

C ` t → S ⇐⇒ Typing term t in context C returns scope S

∇ S ⇐⇒ Returns a new scope S

S1
−→
E S2 ⇐⇒ Create edge E from scope S1 to scope S2

T1 <: T2 ⇐⇒ Verifies that T1 is a subtype of T2

S−→: NS(t) : T ⇐⇒ Declares term t as a member of namespace NS with type T in scope S

S ⇐ NS(t) : T ⇐⇒ Resolve term t within namespace NS in scope S to type T

Figure 5.4: Format and meaning of the various typing rules used in this chapter.

added to the type rules, but in practice it may be more sensible to perform such checks at a dif-
ferent stage in the validation process. Since none of the context-based rules has any interaction
with the other elements from the type system they could be performed in a standalone manner.
Executing them separately is also more desirable, as making them part of the type system re-
quires the context information to either be available or be passed down. In practice this is a
cumbersome process. Since the checks do not need any other typing information, they can be
performed during a stage where ASTs can freely be traversed. This makes the implementation
of these checks much simpler, without losing any functionality.

The format for the rules is explained in Figure 5.4. Whichever rule is applied is inferred
based on the context and the term that is evaluated. However, there are rules that are ambiguous
in the terms they are applied to. Their ambiguity is resolved within the corresponding premise.
Rule 1 can only succeed if rule 2 fails, and vice versa. There is also a scenario in which both
rules fail, which is the only scenario in which the entire rule call fails. If either of the ambiguous
rules succeeds, the call itself is also successful. If no rule has been specified for a specific term,
it will also default to failure.

5.3 Object language

The object language is the core component of SCL-T. It specifies the target language’s syntax
and type rules. In case of SCL-T, the object language is a direct implementation of Siemens’
SCL language.

56

5.3. Object language

5.3.1 Syntax

Since the syntax for SCL is documented in the official documentation1, it will not be covered
in great detail. During the implementation and testing phase of SCL-T it became apparent that
the documentation is not entirely correct. Since there is no documentation on SCL that is up-
to-date, the decision was made to model SCL after the most recently documented version. The
encountered errata are shown below.

• The documentation misses any mention of Block Attributes being allowed before the Dec-
laration Section for each of the SCL Units.

• The documentation states that Declaration Sections and Statement Sections cannot be
empty whereas the compiler accepts it. Furthermore each of the Subsections of the Dec-
laration Sections can be empty.

• The documentation fails to mention that Block attributes can be terminated with a semi-
colon.

These errors only concern non-functional differences, limiting their impact. However, the
inconsistency between the documented syntax and the implemented syntax can lead to template
files being flagged as incorrect while they might compile just fine. The problem is that without
information on what the implemented syntax looks like, one can only guess how to fix the rules.

5.3.2 Type Rules

While the syntax of SCL has its own chapter in the documentation, the semantics of the language
are scattered across the entire document. Most of the rules are simple and easy to transform
into a variant suited for scope graphs. However, there are a few linguistic elements that are
either complex to model, or for which a naive approach is undesirable. These elements will be
covered in detail below. The remainder of the rules can be easily conjured based on the original
documentation and following the examples for the more complex rules.

Symbols table

The symbols table deserves a dedicated section when it comes to typing. While it is not partic-
ularly difficult, its behaviour is mostly implicit and can be difficult to understand without some
explanation. Syntactically, each line in the symbols table is ‘identical’. There is no differen-
tiation among the lines. Semantically this is not the case. Obviously each declaration in the
table has its own type, but this can easily be covered within a single type rule. The interesting
semantic difference is the one between global variables and unit declarations. Global variable
declarations are mappings to a memory location. On the other hand, unit declarations provide
symbolic names to the absolute block identifiers, and indicate the type of the unit. The rules for
both types are included in Figure 5.5.

1https://cache.industry.siemens.com/dl/files/793/5581793/att 66783/v1/SCL e.pdf

57

5. LANGUAGE IMPLEMENTATION

(ST MTmeta)
isMemoryLocation(a) Sg −→: VAR(s) : T

Sg,Su ` s, a, T :: OK

(ST MTmeta)
isUnit(a) Su −→: SY MBOL(s) : (s,a,T)

Sg,Su ` s, a, T :: OK

Figure 5.5: Type rules for variable declaration

For global variables, the symbols table is the declaration site, whereas for units, it is merely
a declaration of the symbolic name. The differences in semantics also impacts how they are used
in the type system. Since variables have a declarative meaning, they should be included in SCL’s
global resolution scope, Sg. This scope spans the entire SCL project. Since the variables are part
of the global scope the type system can discover them when resolving variables. Contrary, unit
blocks only use the symbols table to lookup their own alternative name, and validate their own
types. They provide no additional information to the type system directly. Similarly, references
to unit blocks are also not concerned with what was declared in the symbols table. Therefore,
the unit declarations from the symbols table can be included as a stand-alone scope, Su.

The reason to disregard the declaration in the symbols table as a (preliminary) declaration
site is that it would give the users a false sense of security. If no actual implementation of a unit
is found, no validation could be performed on any reference to that block. Additionally, since
the existence of a declared unit is required for successful compilation, it is justified to expect the
file to exist.

Units

Units are the builing blocks for SCL programs. A program can consist of various files, and
each file can have zero or more SCL program units. Upon compilation, the whole project is
compiled, regardless of the underlying file structure. From a type-system point of view, units
are the highest level objects, together with global variables, which were discussed earlier.

Units are declared within the global scope, which is also the parent scope used to validate
a unit’s local context. Since unit declarations can be done using both absolute and symbolic
names, the scope rules for units require access to the Su scope as well. Organization Blocks
are only called by the operating system, and therefore cannot be referred to. The only reason
to store the declaration is to detect/prevent duplicate entries. This is also why the type of the
declaration is empty. Data Blocks and User Defined Datatypes (UDTs) are both Struct-based.
Functions and Function Blocks follow the pattern of the Organization Block with the exception
that the I/O information for these blocks is required to validate calls. These function calls will
be discussed in section 5.3.2.

58

5.3. Object language

(SCL PROGRAM)
Sg,Su ` unit :: OK Sg,Su ` units :: OK

Sg,Su ` [unit|units] :: OK

(SCL PROGRAM)
Sg,Su ` [] :: OK

(SCL UNIT)

∇Sl Sl
−→
I Sg Su ⇐ SYMBOL(f) : (sn,an, t) Sl ` ds → S′l

Su,S′l ` stmts :: OK Sg −→: UNIT(sn),UNIT(an) : OrgBlock()

Sg,Su ` ORG BLOCK f ds BEGIN stmts END OBLOCK :: OK

(SCL UNIT)

∇Sl
∇SIOs Sl

−→
I Sg Su ⇐ SYMBOL(f) : (sn,an, t) Sg ` t : T

Sl −→: VAR(sn),VAR(an) : T Sl ` ds → S′l extractIOs(ds,SIOs)
Su,S′l ` stmts :: OK Sg −→: UNIT(sn),UNIT(an) : Function(SIOs,T)

Sg,Su ` FUNCTION f : t ds BEGIN stmts END FUNCTION :: OK

(SCL UNIT)

∇Sl ∇SIOs Sl
−→
I Sg Su ⇐ SYMBOL(f) : (sn,an, t)

Sl ` ds → S′l extractIOs(ds,SIOs)
Su,S′l ` stmts :: OK Sg −→: UNIT(sn),UNIT(an) : FuncBlock(SIOs)

Sg,Su ` FUNCTION BLOCK f ds BEGIN stmts END FBLOCK :: OK

(SCL UNIT)

Su ⇐ SYMBOL(t) : (sn,an, t)
Sg ` s : T Sg −→: UNIT(sn),UNIT(an) : Type(T)

Sg,Su ` TYPE t s END TYPE :: OK

(SCL UNIT)

Sg ` ds : STRUCT(tm,Ss) Su,Ss ` stmts :: OK
Sg −→: UNIT(sn),UNIT(an) : DataBlock(STRUCT(tm,Ss))

Sg,Ss ` DATA BLOCK d ds BEGIN as END DATA BLOCK :: OK

Figure 5.6: Type rules for units

59

5. LANGUAGE IMPLEMENTATION

One element which is not covered in these scope rules is the fact that SCL enforces Unit
order within a program, but not between programs. The reason why this is not covered is because
there is no graph that resolves this constraint. SCL programs are anonymous within the global
scope, meaning that units are all declared at the same level, regardless of the file they are in.
As a result order will be enforced for all, or for none. Given the tendency to define a single
unit per template, the decision was made not to enforce order. This will result in false negatives
if the user defines multiple units that reference each other within the same SCL program. The
alternative is that the evaluation order would impact the outcome of the type system, which is
undesirable.

Function and Function Block Calls

As spoilered when discussing the rules for units, the rules for Functions and Function Blocks
are different. This is related to the effect of the declaration on the validation approach of a
call to these units. If all declarations regardless of usage were declared within the same scope,
extracting only the input and output variables would have required some effort. The information
would be present in the units’ scopes, but littered with declarations that are of no concern to a
function call. A more elaborate distinction in the variable namespace could solve this easily,
e.g. adding ‘INPUT(x)’ and ‘OUTPUT(x)’, but this would make the variable validation rules
unnecessarily complex, and they have to resolve against multiple namespaces.

Instead, the decision was made to build up a second scope which contains only the input
and output variables. The new scope is included in the type of a stored unit declaration, so that
it is available whenever the unit is referenced. Besides being declared in their own scope, the
variables are also still declared within the Function’s local scope for internal validation. Unlike
the local scope, the IO scope is unordered, as the order in which variables are declared has no
meaning outside of the local context.

Now that the non-standard rules regarding the declaration site have been addressed, it is
time to look at the validation of a Function (Block) call. Validating the calling site requires an
approach from multiple directions. This is caused by the fact that parameters are not passed by
order, but by name. Rather than simply having to compare a list of types on both sides, it now is
required to validate that all referenced names are valid (checking for correctness), but also that all
declared names have been referenced (checking for completeness). This means that in one stage
an iteration has to be done over all referenced names, and checking whether they exist in the
declaration and that their types match. In a different stage the IO scope of the callee’s declaration
is traversed, where each declaration is checked for presence in the function call. These rules are
displayed in Figure 5.7. The details of ‘validateCompleteness’ and ‘validateCorrectness’ have
been left out for terseness. These functions consist mostly of iterating over and comparing
entries.

Structs

In general SCL-T’s data types require no explanation. Except for Arrays and Structs they are
terminals, making their declaration simple. Arrays are composed of other data types, so require

60

5.4. Meta-Language

(ST MTSCL)

Sl ⇐ VAR(x) : FuncBlock(SIOs)
validateCompleteness(SIOs, params) validateCorrectness(params,SIOs)

Su,Sl ` x(params); :: OK

(EXPSCL)

Sl ⇐ UNIT(f c) : Function(SIOs,T)
validateCompleteness(SIOs, params) validateCorrectness(params,SIOs)

Sl ` f c(params) : T

Figure 5.7: Type rules for function (block) calls

a recursive call which is also straight-forward. Structs are a different story, as they represent a
complex nested object.

Structs are data types which can most easily be described using a sub-scope. This sub-scope
contains the underlying declarations of the struct. When resolving struct access, this is done
by looking for the accessed field within this sub-scope. Using scope graphs, structs become
relatively easy to implement in the type system. One thing that has to be taken into account is
the fact that initial assignments to fields in a struct are validated against the outermost scope.
This means that the outermost scope has to be passed along with the declaration of the struct and
any lower-level struct. Since this differs from how declarations are normally validated, struct
declarations require their own set of rules. The scope rules for structs are shown in Figure 5.8.

While scope graphs make it easy to model the nested nature of structs, they affect how to
validate complete structures assignment. SCL allows one struct to be assigned to the other if
their fields match in names, type, and order. It is possible to verify this using the scope graphs
from both structs, but this would require the scopes to maintain order, and they would have to be
traversed in entirety. Rather than doing this, the decision was made to also include a term-based
representation of the struct in the computed data type. This term can easily be compared to
the term of the other struct to check for equality. The declaration of a struct is therefore typed
‘STRUCT(tm,ss)’, where tm is the term representation of the struct, and ss is the struct’s scope
representation. The ‘structToTerm’ function takes the struct’s AST and desugars every initialised
declaration into an uninitiliased declaration. By removing the initially assigned values, a simple
equality check between the terms suffices, as displayed in the last rule of Figure 5.8.

5.4 Meta-Language

Unlike Siemens’ SCL language, the meta-language is a newly designed language. It provides
the scripting functionality to SCL-T. The language defines the data types that can be used to
manipulate templates and blocks of object-level code.

Since the meta-language is meant to be reusable between various target languages, it is

61

5. LANGUAGE IMPLEMENTATION

(DTSCL)
∇Ss Sc,Ss ` decls → S′s structToTerm(decls) → tm

Sl ` STRUCT decls END STRUCT : STRUCT(tm,s′s)

(ST RUCTSCL)
Sl,Ss ` decl → S′s Sl,S′s ` decls → S′′s

Sl,Ss ` [decl|decls] → S′′s

(ST RUCTSCL)
Sl,Ss ` [] → Sl

(SDECLSCL)

∇S′s S′s −→P Ss Sl ` t : T1
Sl ` v : T2 T2 <: T1 Ss −→: VAR(x) : T1

Sl,Ss ` x : t = v; → S′l

(SDECLSCL)
∇S′s S′s −→P Ss Sl ` t : T Ss −→: VAR(x) : T

Sl,Ss ` x : t; → S′l

(TY PESCL)
tm1 == tm2

STRUCT(tm1,)<: STRUCT(tm2)

Figure 5.8: Type rules related to Structs

important to make sure that it does not contain any language-specific elements for the object
language.

5.4.1 Syntax

Most of the interesting aspects of the meta-language’s syntax have already been covered in chap-
ter 4. There are 3 rules that require some explanation, the rest has been deemed straight-forward
and uninteresting. For this reason the full syntax description has been moved to Appendix E.

The syntax rules worth addressing are repeated in Figure 5.9. The <Program> rule allows
the meta-language to be used in a stand-alone context. The decision was made not to allow func-
tion definitions to be inlined with statements. While the value of a stand-alone meta-language is
small, it helps in ensuring that there is no relation to any object language.

Allowing the <Call> non-terminal at statement level makes it possible to perform function
and method calls to be done without assigning the output to a variable. This makes sense when
the return type is void, but can also make sense when the call has side effects that the caller
is interested in. Allowing any of the other expressions at statement-level would not be logical.
They either handle immutable objects, or they resemble pure operations. Because of this they
have no added value if their outcome is discarded.

62

5.4. Meta-Language

〈Program〉 ::= 〈Statement+〉
| 〈FunctionDef+〉

〈Statement〉 ::= 〈Call〉 ‘;’

〈Exp〉 ::= 〈Exp〉 ‘is not’ 〈Exp〉
| ‘not’ 〈Exp〉 {avoid}

Figure 5.9: Noteworthy Meta-Language syntax rules

The reason why the <Exp> rule is highlighted, is the avoid annotation on the negation.
This avoid is a disambiguating measure. It is required as e1 is not e2 would be ambiguous under
those rules without the annotation. Semantically this could check that e1 is not equal to e2, or
that e1 is equal to the negation of e2. The first one is valid for any combination of data types.
Contrary, e2 in the second scenario must be a subtype of ‘bool’. The ambiguity was resolved
in favour of the most applicable one, so e1 is not e2 checks the inequality of 2 objects. Besides
being usable for more data types, the variant with the negation can still be triggered by enclosing
the expression in brackets, i.e. e1 is (not e2). This would once again require e2 to be a subtype
of ‘bool’.

5.4.2 Type Rules

The type rules for the meta language generally take 3 different scopes. These scopes are the
local meta scope Sm, the global function scope S f , and the global device scope Sd . Sm contains
all variables that are available at the current level of the local scope. Their definition looks like
VAR(x) : T , where x is the variable name and T is its type. Scope S f contains all declared
functions and their required parameter types and count. Declarations of functions within that
scope are formed like FUNC(f nn) : (Tr,T sd). Here f n is the function name and n is the amount
of paramters. Tr is the function’s return type, and T sd is a list of expected parameter types, in
the order they are expected.

The devices scope contains two levels of definitions per device type. The first level contains
the attributes that each device can have, and therefore can be queried about. The other definition
defines which fields are available in each device. The former is important for the meta-level type
rules, whereas the latter is unimportant till the mixin-language gets introduced. Both levels of
the definition are modelled as scopes themselves. As such, a declaration for a device type looks
like DEV(dn) : (Sa,Sd f). Herein dn is the identifier of the device type, Sa is the scope containing
all the attributes, and Sd f contains all the device fields. Entries of Sa are ATTR(an) : T with an
being the attribute name, and T being its meta-level type. For Sd f this is VAR(f n) : T with f n

63

5. LANGUAGE IMPLEMENTATION

ε <: int <: real

T1 <: T2

list(T1) <: list(T2)

T1 <: T2

set(T1) <: set(T2)

T1 <: T3 T2 <: T4

dict(T1,T2) <: dict(T3,T4)

Figure 5.10: Subtyping (<:) relationships for the meta-language

as the fieldname, and T their PLC type 2.
The reason to separate these scopes is that they are all isolated. There isn’t a single scenario

in which a meta-language elements affects two of these scopes at once. When considering a
context in which one scope could potentially be changed, the others are either read-only, or do
not even exist yet. If desired, they could be modelled as a single scope, but this would require
the entire scope to be traversed even though one is explicitly looking for a function which is
declared outside the local context.

Many type rules reference the concept of subtyping (<:). It is therefore crucial to specify
properties of a subtype relationship, and define what relationships exists in the context of the
meta-language. The subtyping relationship is reflexive, meaning that T <: T always holds, and
it is transitive. Transitivity results in the following: If T1 <: T2 and T2 <: T3, then T1 <: T3. The
relationships for the meta-language are shown in Figure 5.10.

While the ε in the first rule is not truly a type, it plays an important role in indicating that the
type of a collection is unspecified. The user cannot reference the ε, and therefore is only meant
as an internal representation.

Below are the typing details for the more interesting elements of the meta-language. Expres-
sions have been omitted as it is assumed that their rules can easily be deduced from the typing
table in Appendix D.

Statements

Statements are a core component of the meta-language. They make up entire programs, but also
are a crucial element within control-statements. In most cases where a block supports statements,
it actually concerns a list of statements. This list has to be iterated over. A map function could
be used if the scopes did not change between each iterating element. It would be acceptable
if the scopes were mutated, as long as they always pointed to the same object. However, since
declaration-before-use is a must, a layering of scopes is required. This means that each statement
should return its local scope, which may not be equal to the input scope. This returned scope is

2Notice that this concerns a PLC type. This will be addressed in section 5.5.2

64

5.4. Meta-Language

(ST MT Smeta)
Sm,S f ,Sd ` stmt → S′m S′m,S f ,Sd ` ss :: OK

Sm,S f ,Sd ` [stmt|ss] :: OK

(ST MT Smeta)
Sm,S f ,Sd ` [] :: OK

Figure 5.11: Type rules to iterate over statements

the input for the next statement. The equivalent rules are shown in Figure 5.11. The statements
themselves are in charge of which scope they return, this is not managed by the iterating rule.

Variable assignments and function calls are covered in their own sections, so the control
statements are the only ones left to cover. These are displayed in Figure 5.12. As can be seen
from these rules, none of the control statements make adaptations to their surrounding scope.
The for-loop introduces a new sub-scope, but this only lives within the bounds of the control
statement.

Variable Declarations and Assignments

Figure 5.13 shows the scope rules for the initial declaration of variables. It covers both the
inferred and explicitly type variants. As visible, these rules are very similar. The difference is
that in case of implicit typing it has to be ensured that the type of the assigned expression is not
equal to an ε collection or to the type void. For explicitly typed declarations this is enforced
through the subtyping relationship between T1 and T .

Besides initial declarations, there are statements for the reassignment of variables. The
corresponding rules are shown in Figure 5.14. Reassignments can change the value, not the
type, therefore the type of the assigned value has to be a subtype of the already declared type.
Unlike declarative assignment, it is also possible to do index-based reassignment. For lists these
follow the same constraint as regular reassignment. For dictionaries it means that besides the
values, the declared key and the provided key also must be compatible. Reassignment doesn’t
change the local scope, and as such the rules for these statements return the input scope.

Functions and Function calls

Unlike functions in SCL, the functions in the meta-language have a fixed parameter order. This
greatly eases the declaration of the function, as it is only necessary to keep track of the expected
types. The declared type of a function is a pair of its return type, and the types of its parameters.
The scope rule for function declaration can be found in Figure 5.15. Defining a function changes
the global function scope, but since the declaration order is irrelevant for functions, no new scope
has to be introduced. Because of this it is also not necessary to return a scope.

65

5. LANGUAGE IMPLEMENTATION

(ST MTmeta)
Sm,S f ,Sd ` e : bool Sm,S f ,Sd ` ss :: OK

Sm,S f ,Sd ` while(e){ss} → Sm

(ST MTmeta)

Sm,S f ,Sd ` e1 : bool
Sm,S f ,Sd ` e2 : bool Sm,S f ,Sd ` ss1 :: OK
Sm,S f ,Sd ` ss2 :: OK Sm,S f ,Sd ` ss3 :: OK

Sm,S f ,Sd ` if(e1){ss1} elif(e2){ss2} else{ss3} → Sm

(ST MTmeta)

∇S′m S′m −→P Sm Sm,S f ,Sd ` e : list(T) || set(T)
T ! = ε S′m −→: VAR(v) : T S′m,S f ,Sd ` ss :: OK

Sm,S f ,Sd ` for(var v in e){ss} → Sm

(ST MTmeta)

∇S′m
S′m −→P Sm Sm,S f ,Sd ` e : list(T1) || set(T1) T1 ! = ε

Sm,S f ,Sd ` v : T2 T1 <: T2 S′m,S f ,Sd ` ss :: OK

Sm,S f ,Sd ` for(v in e){ss} → Sm

(ST MTmeta)
breakAllowed(ctx) :: OK isLastStmt(ctx) :: OK

Sm,S f ,Sd ` continue; → Sm

(ST MTmeta)
breakAllowed(ctx) :: OK isLastStmt(ctx) :: OK

Sm,S f ,Sd ` break; → Sm

Figure 5.12: Type rule for control statements

(ST MTmeta)

∇S′m
S′m −→P Sm Sm,S f ,Sd ` e : T1 T1 <: T S′m −→: VAR(v) : T

Sm,S f ,Sd ` T v = e; → S′m

(ST MTmeta)

∇S′m S′m −→P Sm Sm,S f ,Sd ` e : T
T ! = list(ε) || set(ε) || dict(ε,ε) || void S′m −→: VAR(v) : T

Sm,S f ,Sd ` var v = e; → S′m

Figure 5.13: Type rules for variable declaration

66

5.4. Meta-Language

(ST MTmeta)
Sm,S f ,Sd ` e : T1 Sm ⇐ VAR(v) : T2 T1 <: T2

Sm,S f ,Sd ` v = e; → Sm

(ST MTmeta)

Sm,S f ,Sd ` e : T1 Sm,S f ,Sd ` i : T2
Sm ⇐ VAR(v) : dict(T3,T4) T2 <: T3 T1 <: T4

Sm,S f ,Sd ` v[i] = e; → Sm

(ST MTmeta)

Sm,S f ,Sd ` e : T1
Sm,S f ,Sd ` i : int Sm ⇐ VAR(v) : list(T2) T1 <: T2

Sm,S f ,Sd ` v[i] = e; → Sm

Figure 5.14: Type rules for variable assignment

(FUNCmeta)

∇Sm len(params) = n extractTypes(params) = T sd
verifyFunction(ctx,ss) Sm −→: VAR(”@rt”) : T

Sm,S f ,Sd ` ss :: OK S f −→: FUNC(f nn) : (T,T sd) T sc <: T sd

S f ,Sd ` def T f n(params){ss} :: OK

Figure 5.15: Type rule for function declaration

As functions can be overloaded based on parameter count it is important that the parameter
count is part of the declaration and the reference. In the rules referred to above, the decision was
made to include this in the function name, but there are other possibilities.

One interesting aspect of the function definition rule is the declaration of VAR(”@rt”). This
variable stores the return type. This allow the type system to resolve any return statement it
encounters, without having the pass around the expected return type in the type rules. Figure
5.16 shows how return statements are verified.

The fixed parameter order also simplifies the validation of a function call, as displayed in
Figure 5.17. Rather than having to validate the calling site against the callee, and vice versa, it
now suffices to just address it from the calling site. When calling a function, the function scope
is queried for the function that matches the function name and the parameter length. The types
of the provided arguments are then determined (i.e. T sc) and compared to the expected types,
T sd . Each provided argument should be a subtype (<:) of the expected parameter. The type of
the function call is the return type of the function.

67

5. LANGUAGE IMPLEMENTATION

(ST MTmeta)

returnAllowed(ctx) :: OK
isLastStmt(ctx) :: OK Sm ⇐ VAR(”@rt”) : void

Sm,S f ,Sd ` return; → Sm

(ST MTmeta)

returnAllowed(ctx) :: OK isLastStmt(ctx) :: OK
Sm,S f ,Sd ` e : T1 Sm ⇐ VAR(”@rt”) : T2 T1 <: T2

Sm,S f ,Sd ` return e; → Sm

Figure 5.16: Type rules for return statements

(EXPmeta)

len(params) = m
Sm,S f ,Sd ` params : T sc S f ⇐ FUNC(f nm) : (T,T sd) T sc <: T sd

Sm,S f ,Sd ` f n(params) : T

Figure 5.17: Type rule for function calls

(EXPmeta)
Sm,S f ,Sd ` e : string || list() || set() || dict(,)

Sm,S f ,Sd ` len(e); : int

Figure 5.18: Type rule for the ‘len(e)’ standard function

The rules introduced above are applicable to user-defined function. Standard functions and
their respective calls are explicitly modelled in the type system. A good example of this is the
len(obj) function, displayed in Figure 5.18. The reason for this is that these do not necessarily
adhere to the overloading constraint that applies to the user-defined functions. Because of this
they cannot fall back upon the default ruleset. However, since these are functions intrinsic to the
meta-language they can easily be incorporated in the type system.

There is a way for standard functions to fall back onto the rules for the user defined functions.
This can be done by creating an internal type T for which {string, list,set,dict} <: T holds.
However, the introduction of such a type only fixes the issue for functions that take exactly that

68

5.4. Meta-Language

(EXPmeta)
Sm,S f ,Sd ` e1 : set(T1) || list(T1) Sm,S f ,Sd ` e2 : T2 T2 <: T1

Sm,S f ,Sd ` e1.add(e2) : bool

(EXPmeta)

Sm,S f ,Sd ` e1 : dict(T1,T2)
Sm,S f ,Sd ` e2 : T3 Sm,S f ,Sd ` e3 : T4 T3 <: T1 T4 <: T2

Sm,S f ,Sd ` e1.add(e2,e3) : bool

Figure 5.19: Type rules for the ‘.add(...)’ method

set of types. There might be other functions that require a different combination of types. Once
each unique combination is given a supertype, the standard functions can be modelled as user-
defined functions. To do so they simply have to be added to the function scope using the same
declaration format as the other functions. Assuming the supertype of string, list, set, and dict is
called ‘sequence’, the declaration for the len(obj) would be ‘FUNC(len1) : (int, [sequence])’.

While it is possible for functions to fall back on the default rules, methods cannot do that.
Their explicit and varying nature makes it difficult to design a scope rule that is universally
applicable. It is much easier to declare each method in its own rule. This is acceptable, especially
since methods are fixed entities and users cannot add new ones. An example of a rule for a
method call is shown in Figure 5.19.

Devices

Devices are a key factor in the parameterisation of the templates. They also function as a strong
linking-pin between the object domain and the meta-domain. Since they are born out of a re-
quirement related to the object-domain, it is not surprise that their meaning in the meta-language
is limited. Most of the interaction with objects of type Device happens when splicing them into
the object-level domain, which is of no concern to the meta-language. It will be covered in the
definition of the mixin-language, 5.5.2. However, there are a meta-level function and a method
that deals with them as well. These are ‘findMatchingInstances’ and ‘getAttributeData’. Their
typing rules are visible in Figure 5.20.

‘findMatchingInstances’ returns a list of Devices, but this is not all that interesting. How-
ever, it also requires the Device type when validating its second parameter, the condition. The
condition is used to filter out results based on a criteria. This criteria always concerns one or
more attributes declared within the device definition. The type rule has to check whether this
attribute is valid for the queried device types. If the attribute exists, the type of the returned value
is equal to the type of the attribute. If it does not exist, a type error will be returned. The rule for
‘getAttributeData’ is more or less identical to that of ‘findMatchingInstances’. It also validates
the parameters against the attributes in the Device’s attributes scope. Where it differs is that the
return type of the method depends on the attribute that is queried.

69

5. LANGUAGE IMPLEMENTATION

(EXPmeta)
Sd ⇐ DEV(DTs) : (Sa,) validateConditions(cond,Sa)

Sm,S f ,Sd ` findMatchingInstances(DTs,cond) : list(Device(DTs))

(EXPmeta)

Sm,S f ,Sd ` d : Device(DTs)
Sd ⇐ DEV(DTs) : (Sa,) Sa ⇐ ATTR(attr) : T

Sm,S f ,Sd ` d.getAttributeData(attr) : T

Figure 5.20: Type rules for the ‘.add(...)’ method

In the rules above, the assumption is made that the Device is a singular type with 2 scopes.
In reality, the Device type can represent various types of devices (e.g. Device<DigitalAlarm,
AnalogAlarm>), and is therefore composed of more than 2 scopes. However, these compounded
types can be reduced to just 2 scopes, which make the introduced rules applicable to these
scenarios as well. This reduction is done by calculating the intersection between the types of
devices.

Assuming that there are n types of devices, and that the combinations are always sorted, there
are 2n−1 possible combinations. Computing the intersection for each of these combinations is
an expensive operation, and generally unnecessary. In most projects the required compositions
of device types will be limited. Given that most of the 2n− 1 combinations will remain un-
used, computing them preemptively is a waste of resources. Instead it is much more sensible to
determine the intersection on a need-to-have basis. The calculation is done by recursively deter-
mining the intersection for both the attribute scopes and the field scopes of 2 devices types. The
low-level mechanics of the scope-intersection function have been omitted from the type rules,
but are based on iterating over all declarations in the scopes of one device type and checking
their presence in the scopes of the other device type. Since this operation is idempotent, the
results can be cached to further reduce computational effort.

One might wonder why it is that the intersection of the device types is used. Working with
the intersection of the different device types ensures validity regardless of the content of the
specification files, rather than providing guarantees based on assumptions/chance. If the type
rules would depend on the union instead of the intersection, the excerpt in Figure 5.21 would be
valid even though the field AutoOff does not exist in devices of type T2. There are scenarios in
which this could lead to valid generated code, e.g. when no device instance of type T2 is present
in the specification file. However, this success would depend on the content of the specification
file. If someone was to change the specification file without re-evaluating the template, invalid
code would be generated. Since the scenario for errors is more likely than those of false positives
(i.e. reported errors when there are none), the decision was made to base validation on the
intersection of the device types.

70

5.5. Mixin Language

var devices = findMatchingInstances("T1,T2", _, _);
for (var d in devices) {

$<$d$.AutoOff := TRUE;>$;
}

Figure 5.21: Field Validation for Compound Devices. ‘AutoOff’ is not a field in T2.

5.5 Mixin Language

The mixin-language is the glue between the object language and the meta-language. It is not
really a language in the sense that it needs a ’host’ language to latch onto.

If required, the mixin-language can introduce meta-programming elements specifically for
the target object language. This makes it possible to add functionality which is not desirable
to incorporate in the meta-language. If no additional functionality is required beyond what the
meta-language offers, the additive element of the mixin-language is greatly reduced. Beyond
adding laguage specific elements, the mixin-language governs where and how the meta-language
can be used within the object-level code.

5.5.1 Syntax

Syntax-wise, the mixin language is insignificant in size. It imports the syntax from both the
object and the meta-language. Importing the code stills result in two distinct languages. For that
reason the mixin language must define a set of connection rules. These rules define where meta-
level statements are allowed within the object language. Additionally, they specify how and
where quoting and splicing can be used. Besides these limited additions, the Mixin language’s
syntax is unchanged compared to those it builds upon. However, these supplements make it
significant in its functionality.

The BNF grammar specification in Figure 5.22 only shows the additions to the other syn-
taxes. For any predefined non-terminal on the left-hand side the rule must be read as another
choice for that non-terminal.

As can be seen from the grammar, meta-level statements are allowed alongside SCL Units.
This is achieved by making them an alternative for the existing <Unit> non-terminal. Further-
more, the statements can be used as object level statements and db-statements. This makes them
usable within the blocks’ logic sections. Within these logic sections it is also allowed to splice
meta-objects of type <Statement> (not to be confused with the non-terminal <Statement>).
This is why the “$<meta-expression>$;” rules are defined. Keep in mind that these rules don’t
enforce the type, this will be handled in the type system.

Identifiers can be formed through splicing. The fact that the <Identifiers> non-terminal is
used as a placeholder does not mean that only identifiers can be spliced, any meta-object can.
The reason for choosing identifiers as a placeholder is the fact that identifiers are allowed in
many different locations where splicing would be beneficial to have. Using identifiers allows
splicing in the left-hand side of an assignment, in the function name of a function call, in the
header of a unit block, and in any expression context. This rules also allows SCL variables to

71

5. LANGUAGE IMPLEMENTATION

〈Unit〉 ::= 〈STMT-meta〉

〈Statement〉 ::= 〈STMT-meta〉
| ‘$’〈EXP-meta〉‘$;’

〈Identifiers〉 ::= ‘$’〈EXP-meta〉‘$’
| ‘$’〈EXP-meta〉‘$’ (‘ ’? (〈Letter〉 | 〈Digit〉))+

〈EXP-meta〉 ::= ‘<’〈Statement〉‘>’
| ‘<’〈Expression〉‘>’

〈STMT-meta〉 ::= ‘$’〈EXP-meta〉‘$;’ {avoid}

Figure 5.22: Mixin-Language syntax additions

be declared dynamically, but only in a pre-specified quantity. This is the direct effect of not
allowing meta-level statements to be used within the Unit blocks’ declaration sections.

The second rule for the identifiers might seem somewhat obscure. It allows for suffixed
splicing. It is possible to achieve the same result through meta-level operations, but this syntax
is more readable than string concatenation.

Since the decision was made to make the Device-related functions part of the reusable meta-
language, the only addition that has to be made to the meta-level expressions is the addition of a
quotation mechanism. Quotes can be applied to object-level statements and expressions.

The last rule specifies specifies that splicing can be done directly from the meta-domain. The
‘avoid’ is required. Without the annotation it would lead to ambiguities with the new rules in
<Statement>. Adding it will solve the ambiguity in favor of the object language. Semantically
the outcome would be identical if the meta-language was preferred, and therefore the annotation
could just as well have been placed on the other violators instead.

One thing that still needs to be enforced is that splicing directly from the meta-context is only
allowed within a control-statement within an SCL Unit’s logic section. This could technically
be captured as part of the syntax, but it would add an unnecessary amount of complexity to the
grammar description. Instead, it will be incorporated in the type rules.

5.5.2 Type system

Contrary to the syntax, the type system requires some adaptations to be made to the rules from
the object- and meta-language. Since the contexts are now intertwined, the domains need to be

72

5.5. Mixin Language

(EXPmeta)
Sg,Ss,Sm,S f ` eSCL : Var(T)

Sg,Ss,Sm,S f ` < eSCL > : < Var(T) >

(EXPmeta)
Sg,Ss,Sm,S f ` e : T

Sg,Ss,Sm,S f ` < e > : < T >

(EXPmeta)
Sg,Ss,Sm,S f ` stmt :: OK

Sg,Ss,Sm,S f ` < stmt > : < Statement >

Figure 5.23: Type rules for quoting operations

aware of each other. In practice this means that the scopes for the meta-language need to be
passed to all SCL rules, since either splicing is allowed, or meta-level statements are allowed,
both of which require those scopes. Similarly, the current local SCL scope has to be available
to the meta-domain as quoting is possible anywhere where meta-code is allowed. Additionally,
object-level statements have to return the updated version of the meta-scope.

Besides these adaptations, the rules can be ported without changing a thing. The rest of the
typing rules for mixin-language are additions to the pre-defined rules. Obviously, the new rules
are related to the functionality that the mixin-language adds, which is quoting and splicing, but
it also covers the type mappings from the meta-level objects to the object domain. The new rules
are introduced in the following sections.

Quoting

The quotation rules from Figure 5.23 are rather simple. When quoting an expression, the current
SCL context is used to determine the type of the expression. Since this expression itself may
be formed through a series of meta-level operations, it is important to pass along the current
meta-scopes as well. Once the type T has been determined, an implicit check is performed to
see whether it concerns an SCL identifier. If it does, the quoted type is <Var(T)>. If it is not
an identifier, the quoted type is simply <T>. For statements it must hold that the quoted SCL
statement is a valid statement given the current scoping information. If it is, the quoted object is
of type <Statement>.

Splicing

Splicing statements is only valid for objects of type <Statement>. Splicing expressions depends
on a type mapping. Any type that is not part of this list is not eligible for splicing. The supported
mappings for SCL-T are displayed in Figure 5.25.

73

5. LANGUAGE IMPLEMENTATION

(ST MTSCL)
Sg,Ss,Sm,S f ` stmt : < Statement >

Sg,Ss,Sm,S f ` $stmt$; :: OK

(EXPSCL)
Sg,Ss,Sm,S f ` e : T 1 type map(T 1) = T 2

Sg,Ss,Sm,S f ` e : T 2

(EXPSCL)
Sg,Ss,Sm,S f ` e : <Var()>

Sg,Ss,Sm,S f ` esu f f ix : Var(UNKNOWN)

(VARSCL)
Sg,Ss,Sm,S f ` v : < Var(T) >

Sg,Ss,Sm,S f ` v : Var(T)

(VARSCL)
Sg,Ss,Sm,S f ` v : < Var() >

Sg,Ss,Sm,S f ` vsu f f ix : Var(UNKNOWN)

(ST MTmeta)

Sg,Ss,Sm,S f ` stmt : < Statement >
isUnitBlock(ctx) :: OK isControlStmt(ctx) :: OK

Sg,Ss,Sm,S f ` $stmt$; → Sm

Figure 5.24: Type rules for splicing operations

int⇒ Implicit8BitConstant

real⇒ REAL

bool⇒ BOOLEAN

Device(DT s)⇒ STRUCT(s)

< T >⇒ T

< Var(T) >⇒ Var(T)

Figure 5.25: Type mappings from meta-level objects to object-level types

74

5.5. Mixin Language

(EXPSCL)
Sg,Ss,Sm,S f ` e : T 1 type map(T 1) = T 2

Sg,Ss,Sm,S f ` e : T 2

Figure 5.26: Type rule for expression splicing

Var(T) is an intermediate type. When used within the object-level type system, it will be
converted to type T. In the meta domain it is only eligible for quoting, leading to an object of
type <Var(T)>.

Splice suffixing is only allowed for the objects of type <Var(T)>. This is due to the fact
that <Var(T)> is the only data type that has the intrinsic properties to ensure that suffixing it
will lead to another valid identifier. The type of the identifier cannot be determined, hence why
the resulting type is Var(UNKNOWN), but it is guaranteed to be a valid identifier. Quoting a
splice of an object of type <Var(T)> should still result in an object of type <Var(T)>. For this
reason it is important to maintain this type, even though for the object-level domain, only type
T is relevant. However, since type <Var(T)> is not part of the object language’s type system,
type validation would fail. To prevent this, an additional subtyping rule has to be defined for
the object language: Var(T) <: T . This will allow to type system to see those objects as their
internally represented type.

Splicing generally occurs from within the object language. However, there is one form of
splicing allowed from within the meta domain, which is statement splicing. It is only allowed
when inside the Statement Section of a Unit Block, and only if the splice occurs from within a
meta-level control statement. This restriction is depicted by the last rule in Figure 5.24. The first
rule allows splicing inside the Statement Section of a Unit Block without being in a meta-level
control statement. The difference is that this rule is part of the object-level type system, whereas
the other is part of the meta-language.

Devices

The rule in Figure 5.26 has been extracted from the larger set of splicing rules. One thing that
this rule hides is what happens when e is of type Device(). While there is indeed a type-
mapping, something else has preceded this event. This is related to the PLC type of the device
fields, something which was grazed upon in section 5.4.2.

The IEC standard [52] specifies the technical implementation of data type, however, it leaves
the implementing PLC languages free to support the type or not. For example, SCL does not
explicitly support the LINT data type. The languages are also free to introduce additional types
as they see fit. Because of these liberties it is not possible to assign a type to a device defini-
tion which is guaranteed to work in each target language. Instead, the device definitions use a
PLC agnostic set of types. The mixin language introduces a mapping to their object language’s
counterpart.

75

5. LANGUAGE IMPLEMENTATION

true⇒ BoolConstant(“T RUE”)

f alse⇒ BoolConstant(“FALSE”)

int(num)⇒ IntConstant(num)

real(num)⇒ RealConstant(num)

Device(name)⇒ RegularIdenti f ier(name)

Figure 5.27: Mapping from meta-variable to object-level AST

In case of SCL-T, this mapping turns devices into STRUCT containing fields of SCL sup-
ported types. From the perspective of SCL’s type system, a Device() is nothing more than a
STRUCT. By mapping devices this way, no additional rules have to be designed. Besides, en-
coding devices as STRUCTs is only marginally different from encoding them as a Data Block.
After all, Data Block are also build on STRUCTs.

So the step performed by the type system is to turn the device’s field scope into a STRUCT.
However, the type system has been provided with a language specific set of rules to be able to
do so. While it is trivial to do, it is crucial when building a similar language for a different PLC.

5.5.3 Object Representation

One thing which has not been addressed throughout this entire chapter is how to represent object-
level code. The easiest way to deal with splices is to insert AST terms in the surrounding AST.

For code data types, this is pretty straight-forward. When quoting a section of object-level
code, it is already parsed. If this AST is stored as the value of the code object, it can be spliced
in without needing any conversion. For the none-code data types a special AST mapping is
required. For the Device, int, real, and bool data types, this mapping to an object-level AST is
easy. Their respective conversions are shown in Figure 5.27. These conversions are all eligible
to be spliced in as an Expression. Since the type system enforces that these can only be spliced
in that context, this suffices. Collections, strings and pairs cannot be spliced, and for that reason
don’t have an AST mapping.

After all splices have been replaced the resulting AST can be exploded (i.e. pretty printed)
to its concrete equivalent. Exploding to concrete syntax is always possible as no unknown terms
can be produced through splicing. While it is guaranteed that the resulting code can be parsed
by SCL-T, there can be situations in which type violation occurs. This may be caused by the use
of suffixed splices.

76

Chapter 6

Evaluation

SCL-T has been introduced; its features have been introduced. Additionally, it has been com-
pared to UAB’s existing language to show the differences. While those results were promising,
they do not indicate how well SCL-T meets its goals. This is will be covered next. After that,
some light will be shed on how the tool was received at CERN. Lastly, the process, the lan-
guage’s contributions, and potential research subjects related to PLC meta-programming will be
discussed.

6.1 Evaluation of SCL-T

A list of goals for the new language facility was defined in section 2.3. These were formed by
taking UAB’s original goals, and adding to those the lessons that were taken from the initial
language setup.

To determine whether the redesign of the languages is successful, it will now be held against
these criteria:

• The tool should support statically loaded information, i.e. configuration and specification
files, in all of its functionalities.

• The object and meta syntax should be distinguishable.

• The overall syntax should be readable.

• The user should feel like they are using an extended version of the object language.

• The boilerplate code should be kept to a minimum.

• Design one way to do something, and do it good.

• The meta-programs need to be validated, syntactically and semantically.

• The quality of the generated code should be safeguarded.

• Meta-expressions should be eligible for splicing without having to be lifted into variables.

77

6. EVALUATION

• The language design needs to be portable to other PLC languages, preferably by reusing
components.

By embedding the meta-language in the object language, rather than the other way around,
the feeling of using an extended version of SCL is partially achieved. Since SCL is not suitable
for homogeneous meta-programming, and extending it to appear homogeneous is treacherous
(see section 3.2), a heterogeneous meta-language is the only option. Heterogeneity will always
limit the degree in which it feels like an extended version of the object language, therefore this
criteria is only partially achieved.

The reduction of boilerplate code also contributes to the feeling of using an extended lan-
guage, rather than a meta-tool that can generate object-level code. The languages are largely
distinguishable without explicit annotations. Whenever they are not, explicit annotations can be
used to indicate whether something is a meta- or an object level element. These explicit annota-
tions allow users to lift and splice meta-level code into object level code. The boilerplate code
has been entirely reduced to these annotations, which has benefits to the overall readability as
well.

Additionally, templates are now more resemblant of the final code and no longer suffer from
mixed indentation rules. This greatly improves the overall readability of the templates. The
comprehensibility is further improved by the removal of arbitrary code concatenation at object-
level, and the toning down of the meta-language. The idea behind the latter was to ’Design one
way to do something, and do it good’. The meta-facility should no longer allow the users to
achieve similar functionality in multiple ways.

The templates are not only easier to read, but are also validated syntactically, and are se-
mantically sound. If no error is detected when validating the template, it is guaranteed that
the generation phase will not encounter a typing problem. Since other validation mechanism
(e.g. data flow analysis) are not implemented, other type of execution errors might still occur at
runtime.

As for the quality of the generated code, there is an almost conclusive guarantee that the
code is syntactically correct. The only language features where this guarantee does not hold,
are the usages of dynamically-formed names. Semantics-wise, the generated code is soundy.
There are quite some elements that are either impossible to validate statically (since not all
information is present), or whose gains do not outweigh their respective costs. As a result, even if
all information was statically available, there would still be certain errors that remain undetected.
This offers room for improvement, but overall the type system is able to detect common errors.
If at any time the validation is deemed insufficient, only a few additional scoping rules would
have to be added.

SCL-T is composed of three sub-languages. The idea behind this is that components are in-
terchangeable, and can be reused to create new templating languages. The underlying architec-
ture is shown in Figure 5.1. The same meta-language can be used to provide meta-programming
for Siemens SCL, as well as for Schneider ST and other PLC languages. As detailed in sec-
tion 5.1, this is not limited to reusing the same meta-language; more exotic combinations are
possible.

78

6.2. Prototype Reception at CERN

All in all, it can be concluded that SCL-T meets the set requirements, though some only
partially. As a result, SCL-T does not just meet the original set of goals for UAB, but also fills
in the areas where the original language could be improved upon.

6.2 Prototype Reception at CERN

The decision to improve UAB with a new language was initially met with skepticism. Devel-
opers felt they had been promised a lot when UAB was initially released, and it did not always
deliver. As a result, the promise of improvement initially fell on deaf ears. Nonetheless, the
users were willing to share their experiences, which helped in gaining an understanding of how
UAB could be improved upon.

As mentioned in section 2.2.2 one way to successfully introduce a new tool is to mimic an
established one. The idea behind this is to reduce the hurdle of introducing a new language.
Throughout the design process, I tried to stay as close to the original language(s) as possible.
While there are still some obvious artifacts from the old approach, the languages have gone
through quite a transformation. The overall syntax has changed, the meta-language capabilities
have been altered, and the embedding of the language has been swapped around.

While still bearing some resemblance to the original approach, the concept of mimicry would
most likely have not been applicable to SCL-T. For this reason, the new languages were intro-
duced in smaller increments. As a result the developers were confronted with the changes in
iterations, reducing the perceived impact. A welcome side-effect of the iterative approach was
that the users’ feedback was received during the build process.

The key in each prototype was to introduce a change that was undeniably a step forward
from the previous, or to make the changes so minor that among all the things that were not
altered, their effect to the developers workflow was negligible.

As indicated in chapter 2, UAB’s original approach was sub-optimal, so many of the changes
offered a significant improvement over the old way. This allowed the new tool to gain a signif-
icant foothold from the first prototype onwards, which only featured the improved syntax and
syntactic validation.

Each prototype was created using Spoofax, a language workbench which makes it easy to
create DSLs. An added advantage of Spoofax is that its DSLs run on top of the JVM, making
them well suited for the intended purpose.

Advancing through the various prototypes, the down-scaled meta-language was introduced,
as well as two static, single-staged type systems, one for the meta code, and one for the object
code. While the addition of the type systems was welcomed dearly, the initial reactions on the
limitations imposed upon the meta-language were mixed. Some key users saw the advantages
of having restricted freedom (comprehensibility, consistency), where others were afraid that due
to the limitations they would no longer be able to write the logic they needed. To mitigate these
fears, some of the more complex templates were changed to the new format, showing that all
logic required was still accessible in one way or the other. The key users were also informed to
try and use the tool, and whenever they felt hindered in doing something, they were to report this.
With the exception of a few issues that could be mitigated by providing an alternative approach,

79

6. EVALUATION

there was no report of missing features, suggesting that the subset of functions and methods as
implemented by SCL-T suffices.

Since my internship agreement with CERN ended, no new prototypes have been introduced,
and no additional feedback was received on the latest prototype that exists at CERN. It is also
unknown whether this prototype is still being improved upon, or even being used at all. As
detailed in this study, the theoretical development of SCL-T has since continued. The syntax
has been enhanced further, and the cross-stage type validation has been added. Additionally, the
explicit annotations as mentioned in section 4.5 were added to give the users more control of
code insertion and staging. A prototype for the final design was also created. This was made
possible because the team behind Spoofax recently added Statix [55]: a DSL language which
provides the functionality to declare type systems based on scope graphs.

6.3 Discussion

6.3.1 Weaknesses and Liabilities

The biggest weakness of this study is that some of the arguments used are based on the point of
view from developers, both in the analysis of the existing language, and in the feedback on the
intermediate prototype, while there is no quantitative analysis of their opinions to back-up the
arguments. The only factual point that is documented with regards to the developers discontent
towards the current approach, is CERN’s request to redesign the language. The absence of
the quantitative analysis can be seen as a hindrance in driving home the point regarding the
improvement between the old language and the intermediate prototype. As a result it can also
weaken the foundation on which the final design of the language is based. However, I believe
that throughout this study I have presented enough objective evidence that suggests that the old
approach was sub-optimal, and that the new meta-programming language not only meets the
goals and requirements of UAB better, but is a better designed language overall.

Another identified external liability in this study is the absence of up-to-date documentation
of the Siemens’ SCL language. Apart from the additional work for the developers to fix the
erroneous logic files, the impact of this is minimal, since the suggested approach is language
independent. This means that any mistake made in the implemented object-language can be
corrected without harming the overall language composition. At worst it requires some changes
to be made to the object language and the mixin-language.

The last limitation in this study is that not all existing meta-programming approaches and
type systems were evaluated. As discussed in chapter 3, there are simply too many different
variants, and as such the analysis was done using a combination of taxonomies. By making
choices based on subdivisions made in the taxonomies, I might have prematurely eliminated
approaches which could have contained great ideas regarding meta-programming. Because of
this I realise that SCL-T might not be the best, or most advanced, meta-programming language.
However, as SCL-T meets all the set criteria, I do believe that for this purpose it is sufficient.
Additionally, I believe the overall language design is built to last, as it was designed to be
adaptable.

80

6.3. Discussion

6.3.2 Alternative Approach

SCL-T is a technical solution to a problem which is not entirely related to technical implemen-
tation. One aspect which has been mentioned, but not thoroughly addressed is the role which
the developers play in the problems encountered. For example, the varying levels of expertise
in Python, and the (understandable) tendency to fix errors in the generated code without back-
porting the solution.

I believe that some problems would have been easier or more effective to fix by taking a
procedural approach, rather than a technical one. The best example for this is related to code
validation. I’ve reduced the chances of faulty templates being created in the first place. However,
I’m in no way convinced that this problem is now resolved. In fact, as indicated in chapter 5, the
type system is not fully sound, meaning that there is a chance that the developers still manage to
produce erroneous generated code. This will now be more of an exception than a rule, as many
of the common errors are detected before generation. However, I wonder whether the developers
will not be even more enticed to fix the generated code rather than the templates. Addressing this
issue from a management perspective might have removed the problem altogether (without any
validation being added). My solution does not rule out a more procedural one from being put
into place. In fact, it might have made it easier. Since the chances of error occurring have been
reduced, putting in place a strict guideline might be met with less resistance, since the impact
has been limited.

As for the decision to replace Python by a slightly adapted, greatly reduced version, I still
stand by that approach, mainly because this was in line with the desired solution. However, I
do think that an educational approach would have yielded welcome results as well. My point of
view is that training the developers to ensure that a minimum level of Python knowledge existed,
would have avoided some of the pre-existing difficulties. This would have made it possible to
keep using the original Python meta-language. Of course, this would have had implications on
the final product. It would have been more powerful (allowing more freedom), but at the cost
of type validation. Additionally, it would also require a significant adaptation to the way the
meta-language is embedded within the object language,

6.3.3 Future Work

One interesting aspect of PLCs is that they all need to adhere to a certain standard, yet none seem
to be identical. In the current approach I have provided a meta-programming facility which is
specialised for a single target language. However, given that there is a some sort of common
ground, it feels like a lost opportunity not to chase a general meta-programming tool. Achieving
a general templating tool that can generate specialised and equivalent code for various PLC
manufacturers would be a powerful feat, as it would enable users to swap between manufacturers
at the touch of a button. Determining whether this is possible will take a lot of knowledge on the
various PLC language, especially to determine how they differ from each other. Additionally, it
would require users of the various target PLCs to provide their input on what is needed.

Another area which I find worthy of investigation is performance optimalisation of the gen-
erated code. Since the DSL has intrinsic knowledge of the PLC code it might be possible to
design a code generator that not only takes care of generating SCL code, but is also capable of

81

6. EVALUATION

optimising/suggesting optimisations for the code. PLCs are ”real time” systems which need to
process information within a restricted amount of time in order to prevent unintended effects,
therefore it could be beneficial to be able to optimise the code so that the system can run faster.
This is in line with the research being performed by Adiego et al [2], who try to achieve model
verification for different PLC languages.

Lastly, fully-automated template generation would be very interesting. As mentioned in
section 3.8, there currently is no need for multi-stage meta-programming. However, it was
also noted that there might be a possibility for higher-level abstractions across the templates. It
would be interesting to see whether these higher-level abstractions can be analysed and exploited
to predict and form the set of templates needed for a specific setup. This would allow users to
create an entire system solely by defining the device instances and their parameters.

82

Chapter 7

Conclusions

In this study SCL-T has been presented. It is a meta-programming language for Siemens’ SCL’s
Programmable Logic Controllers (PLCs).

SCL-T builds upon UAB’s approach to generate PLC code from templates. Even though
UAB was successful, it was in a sub-optimal form. Scrutinising its design revealed some major
weaknesses. Overall, the language design was counter-intuitive and it lacked any sensible valida-
tion. This severely impacted the tool’s potential. Building on what was good, these weaknesses
were used to formulate a set of goals that the successor to UAB’s meta-programming language
was meant to fulfill. Combining the lessons learned from UAB with a thorough analysis of
existing literature on meta-programming, led to the design of SCL-T.

SCL-T’s type system is based on scope graphs, and is statically and semantically sound with
respect to the meta-stage. Additionally, it is able to guarantee syntactic correctness of the to-
be-generated code. It also offers strong guarantees regarding the type-safety of that code, even
though it is not fully sound. SCL-T allows user to write SCL code with a twist. Meta-statement
are allowed at fixed locations in the syntax, and blocks of SCL code can be utilised through
quoting and splicing.

One of the goals set out for SCL-T was for its design to be applicable to other PLC language.
While SCL-T is tailored towards the SCL language, the underlying architecture allows a large
degree of code re-use and was designed to support other PLC languages with their own fitted
meta-programming language. The architecture makes it possible for components to be inter-
changeable, which allows for easier maintenance, and more freedom in language composition.
The intention is that SCL-T provides a well-documented example of how to implement a similar
meta-programming language for other PLC languages.

83

Bibliography

[1] Michael D Adams. Towards the essence of hygiene. In ACM SIGPLAN Notices, volume 50,
pages 457–469. ACM, 2015.

[2] Borja Fernández Adiego, Dániel Darvas, Jean-Charles Tournier, Enrique Blanco Viñuela,
and Vı́ctor M González Suárez. Bringing automated model checking to plc program de-
velopmenta cern case study. IFAC Proceedings Volumes, 47(2):394–399, 2014.

[3] Hendrik van Antwerpen, Pierre Néron, Andrew Tolmach, Eelco Visser, and Guido
Wachsmuth. A constraint language for static semantic analysis based on scope graphs.
In Proceedings of the 2016 ACM SIGPLAN Workshop on Partial Evaluation and Program
Manipulation, pages 49–60. ACM, 2016.

[4] R Barillere, R Nogueira Ferandes, E Blanco Vinuela, I Prieto Barreiro, and B Fernan-
dez Adiego. Model oriented application generation for industrial control systems. In Conf.
Proc., volume 111010, page WEAAULT02, 2011.

[5] Bruno Barras, Samuel Boutin, Cristina Cornes, Judicael Courant, Jean-Christophe Filliatre,
Eduardo Gimenez, Hugo Herbelin, Gerard Huet, Cesar Munoz, Chetan Murthy, et al. The
Coq proof assistant reference manual: Version 6.1. PhD thesis, Inria, 1997.

[6] Jonathan Bartlett. The art of metaprogramming. IBM developerWorks, October, 2005.

[7] Don Batory. Product-line architectures. In Smalltalk and Java Conference, 1998.

[8] Martin Berger, Laurence Tratt, and Christian Urban. Modelling homogeneous generative
meta-programming. arXiv preprint arXiv:1602.06568, 2016.

[9] Gilad Bracha and David Griswold. Strongtalk: Typechecking smalltalk in a production
environment. In OOPSLA, volume 93, pages 215–230. Citeseer, 1993.

[10] D. Bradutanu. Resistance to Change - a New Perspective: A Textbook for Managers Who
Plan to Implement a Change. Lulu.com, 2015.

85

BIBLIOGRAPHY

[11] Edwin Brady. Idris, a general-purpose dependently typed programming language: Design
and implementation. Journal of Functional Programming, 23(5):552–593, 2013.

[12] Edwin C Brady and Kevin Hammond. Scrapping your inefficient engine: using partial
evaluation to improve domain-specific language implementation. In ACM Sigplan Notices,
volume 45, pages 297–308. ACM, 2010.

[13] James R Cordy and Medha Shukla. Practical metaprogramming. In Proceedings of the
1992 conference of the Centre for Advanced Studies on Collaborative research-Volume 1,
pages 215–224. IBM Press, 1992.

[14] Frank Cullen. Bridging legacy data with xml. MYERSON, JM Enterprise Systems Integra-
tion. Second Edition. New York: Auerbach Publications, pages 137–142, 2001.

[15] Robertas Damaševičius and Vytautas Štuikys. Taxonomy of the fundamental concepts of
metaprogramming. Information Technology and Control, 37(2), 2008.

[16] Mathias D Dutour. Software factory techniques applied to process control at cern. Techni-
cal report, 2007.

[17] R Kent Dybvig, Robert Hieb, and Carl Bruggeman. Syntactic abstraction in scheme. Lisp
and symbolic computation, 5(4):295–326, 1993.

[18] Matthias Felleisen, Robert Bruce Findler, Matthew Flatt, Shriram Krishnamurthi, Eli
Barzilay, Jay McCarthy, and Sam Tobin-Hochstadt. The racket manifesto. In 1st Summit on
Advances in Programming Languages (SNAPL 2015). Schloss Dagstuhl-Leibniz-Zentrum
fuer Informatik, 2015.

[19] Ira R Forman, Nate Forman, and John Vlissides Ibm. Java reflection in action. 2004.

[20] Tokihiro Fukatsu, Masayuki Hirafuji, and Takuji Kiura. Massively distributed monitoring
system application of field monitoring servers using xml and java technology. In Proc.
of the Third Asian Conference for Information Technology in Agriculture, pages 414–417,
2002.

[21] Yoshihiko Futamura. Partial evaluation of ccomputation process-an approach to a
compiler-compiler. Systems, Compurters, Controls, 25:45–50, 1971.

[22] Richard P Gabriel, Jon L White, and Daniel G Bobrow. Clos: Integrating object-oriented
and functional programming. Communications of the ACM, 34(9):29–38, 1991.

[23] Philippe Gayet, Renaud Barillere, et al. Unicos a framework to build industry-like control
systems, principles and methodology. 10th ICALEPCS, 2005.

[24] Irwin D. Greenwald and Maureen Kane. The share 709 system: Programming and modifi-
cation. J. ACM, 6(2):128–133, April 1959.

86

Bibliography

[25] Qi Hao, Weiming Shen, Zhan Zhang, Seong-Whan Park, and Jai-Kyung Lee. Agent-based
collaborative product design engineering: An industrial case study. Computers in industry,
57(1):26–38, 2006.

[26] Lynn Hazan, Michaël Zugaro, and György Buzsáki. Klusters, neuroscope, ndmanager: a
free software suite for neurophysiological data processing and visualization. Journal of
neuroscience methods, 155(2):207–216, 2006.

[27] Andrew Hunt and David Thomas. The pragmatic programmer: from journeyman to master.
2000.

[28] Stephen C Johnson et al. Yacc: Yet another compiler-compiler, volume 32. Bell Laborato-
ries Murray Hill, NJ, 1975.

[29] Christopher A Jones and Fred L Drake Jr. Python & XML: XML Processing with Python.
” O’Reilly Media, Inc.”, 2001.

[30] Mika Karaila and Tarja Systa. Applying template meta-programming techniques for a
domain-specific visual language–an industrial experience report. In 29th International
Conference on Software Engineering (ICSE’07), pages 571–580. IEEE, 2007.

[31] Steve Klabnik and Carol Nichols. The Rust Programming Language. No Starch Press,
2018.

[32] Eugene Kohlbecker, Daniel P Friedman, Matthias Felleisen, and Bruce Duba. Hygienic
macro expansion. In Proceedings of the 1986 ACM conference on LISP and functional
programming, pages 151–161. ACM, 1986.

[33] Thomas Lawrence and Roy Suddaby. Institutions and institutional work. In Handbook of
Organization Studies, volume 2, pages 215–254. Sage, 01 2006.

[34] Leon S Levy. A metaprogramming method and its economic justification. IEEE Transac-
tions on Software Engineering, (2):272–277, 1986.

[35] Geoffrey Mainland. Explicitly heterogeneous metaprogramming with metahaskell. SIG-
PLAN Not., 47(9):311–322, September 2012.

[36] Michael D. McCool, Zheng Qin, and Tiberiu S. Popa. Shader metaprogramming. In Pro-
ceedings of the ACM SIGGRAPH/EUROGRAPHICS Conference on Graphics Hardware,
HWWS ’02, pages 57–68, Aire-la-Ville, Switzerland, Switzerland, 2002. Eurographics
Association.

[37] Chris McCord. Metaprogramming Elixir: Write Less Code, Get More Done (and Have
Fun!). Pragmatic Bookshelf, 2015.

[38] David Megginson. Imperfect XML: Rants, Raves, Tips, and Tricks ... From an Insider.
Addison-Wesley Professional, 2004.

87

BIBLIOGRAPHY

[39] Hervé Milcent, Enrique Blanco, Frédric Bernard, and Philippe Gayet. Unicos: An open
framework. Proceedings of ICALEPCS 2009, 2009.

[40] Robin Milner, Mads Tofte, Robert Harper, and David MacQueen. The definition of stan-
dard ML: revised. MIT press, 1997.

[41] Emir Pasalic. The Role of Type Equality in Meta-programming. PhD thesis, 2004.
AAI3151199.

[42] Benjamin C Pierce and C Benjamin. Types and programming languages. MIT press, 2002.

[43] F Rideau and DV Ban. Metaprogramming and free availability of sources. In Proc. of
Autour du Libre Conference, Bretagne, 1999.

[44] Jaideep Roy and Anupama Ramanujan. Xml schema language: taking xml to the next
level. IT professional, 3(2):37–40, 2001.

[45] Tim Sheard. Accomplishments and research challenges in meta-programming. In Walid
Taha, editor, Semantics, Applications, and Implementation of Program Generation, pages
2–44, Berlin, Heidelberg, 2001. Springer Berlin Heidelberg.

[46] Tim Sheard and Simon Peyton Jones. Template meta-programming for haskell. In Pro-
ceedings of the 2002 ACM SIGPLAN workshop on Haskell, pages 1–16. ACM, 2002.

[47] Richard M Stallman and Zachary Weinberg. The c preprocessor. Free Software Foundation,
1987.

[48] Vytautas Štuikys and Robertas Damaševičius. Meta-programming and model-driven meta-
program development: principles, processes and techniques, volume 5. Springer Science
& Business Media, 2012.

[49] Don Syme. Leveraging. net meta-programming components from f#: integrated queries
and interoperable heterogeneous execution. In Proceedings of the 2006 workshop on ML,
pages 43–54. ACM, 2006.

[50] Walid Taha. Multi-stage programming: Its theory and applications. PhD thesis, Oregon
Graduate Institute of Science and Technology, 1999.

[51] Walid Taha and Tim Sheard. Metaml and multi-stage programming with explicit annota-
tions. Theoretical computer science, 248(1-2):211–242, 2000.

[52] Michael Tiegelkamp and Karl-Heinz John. IEC 61131-3: Programming industrial au-
tomation systems. Springer, 1995.

[53] Laurence Tratt. Compile-time meta-programming in converge. 2004.

[54] Laurence Tratt. Domain specific language implementation via compile-time meta-
programming. ACM Transactions on Programming Languages and Systems (TOPLAS),
30(6):31, 2008.

88

Bibliography

[55] Hendrik van Antwerpen, Casper Bach Poulsen, Arjen Rouvoet, and Eelco Visser. Scopes
as types. Proc. ACM Program. Lang., 2(OOPSLA):114:1–114:30, October 2018.

[56] Guido Van Rossum et al. Python programming language. In USENIX Annual Technical
Conference, volume 41, page 36, 2007.

[57] Todd L. Veldhuizen. Tradeoffs in metaprogramming. In Proceedings of the 2006 ACM
SIGPLAN Symposium on Partial Evaluation and Semantics-based Program Manipulation,
PEPM ’06, pages 150–159, New York, NY, USA, 2006. ACM.

[58] E Blanco Viñuela, M Koutli, T Petrou, and J Rochez. Opening the floor to plcs and ipcs:
Codesys in unicos. ICALEPCS13, San Francisco, USA, 2013.

[59] John Von Neumann. First draft of a report on the edvac. IEEE Annals of the History of
Computing, 15(4):27–75, 1993.

[60] Greg Wilson, Dhavide A Aruliah, C Titus Brown, Neil P Chue Hong, Matt Davis,
Richard T Guy, Steven HD Haddock, Kathryn D Huff, Ian M Mitchell, Mark D Plumbley,
et al. Best practices for scientific computing. PLoS biology, 12(1):e1001745, 2014.

89

Appendix A

Glossary

In this appendix we give an overview of frequently used terms and abbreviations.

SCL: Structured Control Language (Siemens’ PLC language)

SCL-T: Templating language for Siemens SCL (SCL-Templating)

ST: Structured Text (Schneider’s PLC language)

PLC: Programmable Logic Controller

UAB: UNICOS Application Builder

UNICOS: UNified Industrial Control System

91

Appendix B

Simple Template

LpVector = given;
name = given;
master = given;
Lp1,Lp2,Lp3=S7_DefaultAlarms_Tplt.LpSplit(LpVector);
Unit = Lp3;

plugin.writeSiemensLogic(’’’
FUNCTION $name$_DL : VOID
TITLE = ’$name$_DL ’
AUTHOR: ’UNICOS ’
NAME: ’Logic_DL ’
FAMILY: ’PCO’

BEGIN
$name$.AuOnR := ($master$.RunOSt AND

(DB_GRAPH_$master$.RUN_UNIT$Unit$.X
OR
DB_GRAPH_$master$.START_UNIT$Unit$.X));

$name$.AuOffR := NOT $name$.AuOnR;
$name$.AuCStopR := 0;
$name$.AuOpMoR := 0.0;

(*IoSimu and IoError *****************)
DB_ERROR_SIMU.$name$_DL_E := 0; // To complete
DB_ERROR_SIMU.$name$_DL_S := 0; // To complete

END_FUNCTION
’’’)

93

Appendix C

Template in Old and New Syntax

supplied string name;
supplied string master;

FUNCTION $name$_CL : VOID
if master == name {

$<$name$.IhAuMRW := 1;>$;
}

$name$.CStopFin := 0;
if master == name or master.lower() == "no_master" {

$<$name$.AuOpMoR := 0.0;>$;
}

DB_ERROR_SIMU.$name$_CL_S := 0;
END_FUNCTION

Figure C.1: New Syntax

A basic example of the new syntax is given in Figure C.1. Figure C.2 displays the equivalent
template in the old format. For comparison the same highlighting has been applied to the old
template as can be achieved in the new, however for SCL-T this is syntax-based, whereas for
UAB specific keywords are highlighted. This means that in UAB invalid code constructs would
still be highlighted. As can be seen, there are still quite some resemblances between the old
and the new format, but much has changed. The most obvious change is the reduction in the
boilerplate code that is achieved by wrapping the meta-language in the object language, rather
than vice versa. Many of the other changes, like the new type system, are internal and therefore
do not directly influence the way the code looks.

Besides the new type system, SCL-T also offers full syntactic validation of the templates.
Figure C.3 is a duplication of the problematic scenario sketched in Figure 2.8. Where the error
would remain undetected in UAB, SCL-T is able to determine that the keyword is missing. The
equivalent scenario in the new syntax is provided in Figure C.4, where the red line indicates the
missing keyword “END IF”.

95

C. TEMPLATE IN OLD AND NEW SYNTAX

def func(name , master , plugin):
plugin.writeSiemensLogic(’’’

FUNCTION $name$_CL : VOID
’’’)

if master == name:
plugin.writeSiemensLogic(’’’
$name$.IhAuMRW := 1;
’’’)

plugin.writeSiemensLogic(’’’
$name$.CStopFin := 0;

’’’)
if master == name or master.lower() == "no_master":

plugin.writeSiemensLogic(’’’
$name$.AuOpMoR := 0.0;
’’’)

plugin.writeSiemensLogic(’’’
DB_ERROR_SIMU.$name$_CL_S := 0;

END_FUNCTION
’’’)

Figure C.2: Old Syntax

plugin.writeSiemensLogic(’’’
IF CONDITION_1 THEN

Common statements
A := 1;
B := 2;

’’’)
if condition_1:

plugin.writeSiemensLogic(’’’
IF CONDITION_2 THEN

$name$.AuRStart := TRUE;
END_IF;
’’’)

else:
plugin.writeSiemensLogic(’’’
IF CONDITION_3 THEN

$name$.AuRStop := TRUE;
END_IF;
’’’)

Figure C.3: Missing keyword

96

IF CONDITION_1 THEN
Common statements
A := 1;
B := 2;

if condition_1 {
$ < IF CONDITION_2 THEN

$name$.AuRStart := TRUE;
END_IF; > $;

}
else {

$ < IF CONDITION_3 THEN
$name$.AuRStop := TRUE;

END_IF; > $;
}
END_IF

Figure C.4: Missing Keyword

97

Appendix D

Meta-Language Functions and
Methods

len(s) int s:set()
x in s bool x:T; s:set(T)
x not in s bool x:T; s:set(T)
s.issubset(t) bool s:set(T); t:set(T)
s.issuperset(t) bool s:set(T); t:set(T)
s.union(t) set(T) s:set(T); t:set(T)
s.intersection(t) set(T) s:set(T); t:set(T)
s.difference(t) set(T) s:set(T); t:set(T)
s.symmetric difference(t) set(T) s:set(T); t:set(T)
s.copy() set(T) s:set(T)
s.deepcopy() set(T) s:set(T)
s.add(x) bool s:set(T); x:T
s.remove(x) bool s:set(T); x:T
set(l) set(T) l:list(T)

Table D.1: Set functions and methods

99

D. META-LANGUAGE FUNCTIONS AND METHODS

len(l) int l:list()
x in l bool x:T; l:list(T)
x not in l bool x:T; l:list(T)
l.copy() list(T) l:list(T)
l.deepcopy() list(T) l:list(T)
l.add(x) bool l:list(T); x:T
l.remove(x) bool l:list(T); x:T
l[i] T l:list(T); i:int

Table D.2: List functions and methods

len(m) int m:dict(,)
x in m bool x:K; m:dict(K,)
x not in m bool x:K; m:dict(K,)
m.copy() dict(K,V) m:dict(K,V)
m.deepcopy() dict(K,V) m:dict(K,V)
m.add(k,v) bool m:dict(K,V); k:K; v:V
m.remove(k) bool m:dict(K,V); k:K
m[k] V m:dict(K,V); k:K
m.keys() list(K) m:dict(K,V)
m.values() list(V) m:dict(K,V)
m.items() list(pair(K,V)) m:dict(K,V)

Table D.3: Dictionary functions and methods

p.left() L p:pair(L,R)
p.right() R p:pair(L,R)

Table D.4: Pair methods

len(s) int s:string
s.upper() string s:string
s.lower() string s:string
s1.join(s2) string s1:string; s2:string
s.strip() string s:string
s1.replace(s2,s3) string s1:string; s2:string; s3:string
s1.split(s2) string s1:string; s2:string

Table D.5: String functions and methods

100

abs(n) int n:int
abs(n) real n:real
any(l) bool l:list(bool)
all(l) bool l:list(bool)
range(i1,i2) list(int) i1:int; i2:int

Table D.6: General collection functions

not a bool a:bool
a and b bool a:bool; b:bool
a or b bool a:bool; b:bool

Table D.7: Logical operators

a is b bool a: ; b:
a is not b bool a: ; b:
a == b bool a: ; b:
a != b bool a: ; b:
a {<, <=, >, >=} b bool a:real; b:real

Table D.8: Equality operators

a + b string a: ; b:string
a + b string a:string; b:
a {+, -, *, /, **} b int a:int; b:int
a {+, -, *, /, **} b real a:real; b:real

Table D.9: Arithmetic operators

101

Appendix E

Meta-Language Syntax

〈Program〉 ::= 〈Statement+〉
| 〈FunctionDef+〉

Figure E.1: Meta-Language: Start Symbols

〈Type〉 ::= ‘bool’
| ‘int’
| ‘real’
| ‘string’
| ‘Device(’ 〈{ID”,”}+〉 ‘)’
| ‘Device(*)’
| ‘list(’ 〈Type〉 ‘)’
| ‘set(’ 〈Type〉 ‘)’
| ‘dict(’ 〈Type〉 ‘,’ 〈Type〉 ‘)’
| ‘pair(’ 〈Type〉 ‘,’ 〈Type〉 ‘)’

Figure E.2: Meta-Language: Types

103

E. META-LANGUAGE SYNTAX

〈Statement〉 ::= 〈ControlStatement〉
| 〈Assignment〉
| 〈Call〉 ‘;’

〈ControlStatement〉 ::= ‘if’ ‘(’ 〈Exp〉 ‘)’ ‘{’ 〈Statement*〉 ‘}’ 〈ElseIf*〉 (‘else’ ‘{’
〈Statement*〉 ‘}’)?

| ‘while’ ‘(’ 〈Exp〉 ‘)’ ‘{’ 〈Statement*〉 ‘}’
| ‘for’ ‘(’ 〈AssignmentVar〉 ‘in’ 〈Exp〉 ‘)’ ‘{’ 〈Statement*〉

‘}’
| ‘break’ ‘;’
| ‘continue’ ‘;’
| ‘return’ 〈Exp?〉 ‘;’

〈ElseIf 〉 ::= ‘elif’ 〈Exp〉 ‘{’ 〈Statement*〉 ‘}’

〈Assignment〉 ::= 〈AssignmentVar〉 ‘=’ 〈Exp〉 ‘;’
| 〈ID〉‘[’〈Exp〉‘]’ ‘=’ 〈Exp〉 ‘;’

〈AssignmentVar〉 ::= ‘var’ 〈ID〉
| 〈Type〉 〈ID〉
| 〈ID〉

Figure E.3: Meta-Language: Statements

104

〈Exp〉 ::= 〈ID〉
| 〈REAL〉
| 〈INT〉
| 〈STRING〉
| ‘true’
| ‘false’
| ‘[’ 〈{Exp”,”}*〉 ‘]’
| ‘(’ 〈Exp〉 ‘,’ 〈Exp〉 ‘)’
| ‘{’ 〈{DictEntry”,”}*〉 ‘}’
| 〈Exp〉 ‘[’ 〈Exp?〉 ‘:’ 〈Exp?〉 ‘]’
| 〈Exp〉 ‘[’ 〈Exp〉 ‘]’
| 〈Call〉
| 〈Exp〉 {‘+’|‘-’|‘*’|‘/’|‘%’|‘**’} 〈Exp〉
| 〈Exp〉 {‘==’|‘!=’|‘<’|‘<=’|‘>’|‘>=’|‘is’|‘is not’} 〈Exp〉
| 〈Exp〉 {‘and’|‘or’} 〈Exp〉
| not 〈Exp〉 {avoid}
| {‘+’|‘-’} 〈Exp〉
| ‘(’ 〈Exp〉 ‘)’

〈DictEntry〉 ::= 〈Exp〉 ‘:’ 〈Exp〉

Figure E.4: Meta-Language: Expressions

〈FunctionDef 〉 ::= ‘def’ 〈Type〉 〈ID〉 ‘(’ 〈{ParameterDecl”,”}*〉 ‘)’ ‘{’
〈Statement*〉 ‘}’

〈ParameterDecl〉 ::= 〈Type〉 〈ID〉

〈Call〉 ::= 〈ID〉 ‘(’ 〈Exp*〉 ‘)’
| 〈Exp〉 ‘.’ 〈ID〉 ‘(’ 〈Exp*〉 ‘)’

Figure E.5: Meta-Language: Functions

105

	Preface
	Contents
	List of Figures
	Introduction
	Analysis of UAB
	Introduction to UAB
	UAB's limitations
	Evaluation

	Meta-programming approaches
	Introduction to meta-programming
	Separation of languages
	Use time
	Separation of static and dynamic code
	Type of meta language
	Hygiene
	Type Validation in Meta-programming
	Evaluation

	Language Design
	Introduction to SCL-T
	SCL-T by Example
	Data Types
	Functions
	Splicing

	Language Implementation
	Architecture
	Type System
	Object language
	Meta-Language
	Mixin Language

	Evaluation
	Evaluation of SCL-T
	Prototype Reception at CERN
	Discussion

	Conclusions
	Bibliography
	Glossary
	Simple Template
	Template in Old and New Syntax
	Meta-Language Functions and Methods
	Meta-Language Syntax

