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1. Abstract 
 
Designing steering systems which improve safety and comfort requires focus on the needs, 
wants and limitations of the driver, which in industry are defined by a certain “steering feel”. 
Many different steering feels have been proposed over the past decades, each describing the 
optimal relation between the torque applied on the steering wheel and the resulting steering 
wheel angle. As a result, traditional design methods rely heavily on evaluation with real cars 
or with driving simulators by expert drivers. This is a time consuming trial and error process, 
based on subjective driver opinions. Substituting the driver by a driver model can improve 
this evaluation method, and enables us to get insight into the poorly understood human 
driving behavior. If both vehicle and driver are replaced by a computer model, computerized 
optimization routines can be implemented to find the optimal steering system design.  
 
The requirements on the driver model necessitated the development of a new driver model, 
which is based on two models. A conventional preview driver model, which lacks the 
modeling of physical limitations and the response to steering torque feedback, and a 
neuromuscular driver model, which is limited to describing feedback behavior in a single 
operating point. Two major model adjustments over the original neuromuscular model were 
implemented to make the realized angle follow the desired angle without being constrained 
to a fixed operating point. First, a “moving reference” steering angle position was inserted, 
representing the expected steering wheel position. Second, the muscle forces needed to 
generate the desired steering wheel angle are calculated by an “inverse internal model”, 
which represents the driver’s learnt dynamics of his arms, the vehicle and the steering 
system. In absence of a capable driving simulator, several test cases were studied to show 
that the new driver model can describe realistic driver behavior and is capable of realizing 
large steering angles. 
 
Steering a vehicle during every-day driving situations requires adaptive driver behavior. 
Optimization is very likely the way drivers constantly (and unconsciously) adapt their 
parameters such as co-contraction, muscle spindle gain and preview time. Therefore it was 
shown that the model is capable of describing adaptive behavior by optimizing driver model 
parameters depending on different driving moods and environment conditions. These 
optimization routines were subsequently used to obtain different steering system parameter 
values. Both different environment conditions and driver moods showed to have a 
substantial influence on the optimal value of the three parameters that were tested. This 
indicates that there is room for improving steering systems. 
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2. Introduction 
 
Designing steering systems requires focus on the requirements imposed by the driver. In 
these are often defined by a “steering feel” which describes the relation between the torque 
applied to the steering wheel and the resulting steering wheel angle. Segel [39] was one of 
the first in 1964 to investigate the optimal steering feel. His work is still used by engineers to 
base their steering system requirements on. Although Segel, among many others (e.g. 
[28][40]), acknowledged that the desired steering feel is also dependent on the driver, few 
useful tangible requirements can be found that tie the steering feel to the driver’s 
characteristics or moods. Therefore, traditional design methods rely heavily on evaluation by 
expert drivers in a time consuming trial-and-error process. Evaluation by test drivers driving 
prototype vehicles provides the test engineers with only a limited adjustment range. Moving 
base driving simulators can be used at an earlier design stage since they offer a high 
steering system modeling flexibility. However, often actuator limits prevent testing of severe 
cornering situations. Substituting test drivers by a driver model enables the definition of an 
objective performance metric. Care should be taken to enable modeling of different driving 
styles, adaptation levels, disturbances and noise sources to realistically model driver 
behavior. If both the vehicle and the driver are replaced by a computer model, optimization 
routines can be implemented to quickly find the optimal steering system design.  
 
An important part in vehicle design is the focus on improving safety, which is why nowadays 
most vehicles are equipped with a so called vehicle stability control (VSC) system. The VSC 
acts on the brakes, steering wheel, suspension, engine or a combination of these. Typically, 
the VSC intervenes unexpectedly to the driver, who subsequently cannot use the full 
potential of the VSC, or even worse: the unexpected VSC actions can trigger a 
counterproductive panic reaction. Also, VSC activity can lead to a decrease in driver 
awareness. 
 

 

 
 

Figure 1. The Driver-Vehicle-VSC control 
structure where the driver and VSC each 
receive their own information and operate 
independently. The driver is not included 
in the VSC control loop 
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Figure 2. The Driver-Vehicle-VSC control 
structure where the driver is included in 
the control loop when the VSC decides to 
provide the driver artificial feedback via his 
controls 

 
 

A VSC system is described in Figure 1; the driver inputs gas, brake and steering actions and 
receives force and position feedback trough these controls as well as visual feedback from 
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the road and vestibular stimulation caused by the vehicle motion. If the VSC acts on the 
vehicle, the driver will only notice this indirectly via one of the above mentioned information 
channels. In Figure 2 a configuration is shown where the VSC directly acts on vehicle 
actuators as well as on one of the driver controls. This way he is immediately conscious of 
the VSC information and can decide to cooperate or to resist the VSC feedback. The VSC 
only bypasses the driver in case the bandwidth of the driver is too low to master the critical 
situation. Compared to the conventional VSC control system lay-out this can increase driver 
performance, comfort and awareness.  
 
There are several systems that already apply this principle of including the driver in the VSC 
control loop. Examples are lane keeping/changing systems [16][17][29], haptic gas pedals 
[2] and artificial steering wheel torque feedback systems [8]. By providing artificial torque 
feedback, additional information besides visual can be exchanged. Moreover, the human 
haptic reflexes holding the steering wheel are much quicker than the visual channel. The 
reflexes of the shoulder joints have an average bandwidth of 2.5 Hz, depending on the 
reflexive and intrinsic properties and the configuration of the joints [30], whereas the 
bandwidth of the visual feedback loop is about 1.0 Hz [31]. Additionally drivers are subject 
to an extensive amount of visual information, but the haptic senses remain relatively 
underused. Designing a VSC capable of delivering artificial torque feedback can greatly 
benefit from the development of a driver model capable of describing the (reflexive) driver 
response to torque feedback. But also once the VSC is installed in a vehicle, it can benefit 
from having a driver model in order to constantly tune its actions according to the driver’s 
needs.  
 

 
 

Figure 3. Driver-vehicle control-paths in case the driver is represented by a preview driver 
model. The driver receives visual feedback only 

 

 
 

Figure 4. Driver-vehicle control-paths in case the driver is represented by a preview driver 
model and a neuromuscular model. The driver receives haptic feedback via the steering wheel in 
addition to the visual feedback 

 
 
A driver model that has a high potential in fulfilling the above requirements is the 
neuromuscular (NMS) driver model developed by the Delft BioMechanics group, e.g. refer to 
[2][9]. This model incorporates limb inertia, instantaneous visco-elasticity from co-contracted 
muscles, and fast reflexive responses to force and displacement and can be seen as an 
extension to conventional preview driver models. In Figure 3 such a conventional preview 
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driver model is pictured, controlling the vehicle steering angle using visual information. In 
Figure 4 a NMS model has been inserted in between the preview controller and the vehicle. 
In the remainder of this report when referred to a “NMS” driver model, the structure of 
Figure 4 is depicted. This structure enables a force interface between the driver and vehicle 
and it is used to develop a haptic gas pedal and a lane keeping system, where it shows 
promising results [2]. However this model is developed for describing driver behavior only in 
a single operating point and up to now it has not been used for simulating scenarios where 
large steering angles are needed, which is a prerequisite for developing a driver model that 
serves as an objective driver behavior tool for developing steering systems.  
 

2.1. Problem statement  
 
To develop a steering system that enhances driver comfort and safety, the steering system 
design should be driver oriented. By having a driver model which is able to show adaptive 
behavior depending on different driving tasks, driver moods and environments, computer 
optimizations can be employed to obtain an optimal steering feel. 
 
Subsequently the following sub-objectives are derived: 

• Check if the current NMS model of the Delft Biomechanics group is suitable for 
describing scenarios where large steering angles occur. 

• Check if all required equations and parameters available. 
• Find the necessary neuromuscular aspects which need to be modeled. 
• Describe all major benefits of adding a NMS structure to the driver model. 
• Enable human adaptation to adapted steering force feedback. 
• See if the model can account for different driving styles, if not add to the model. 

 

2.2. Report structure 
 
In chapter 3 a short review on the most frequently used preview driver models is presented, 
followed by a detailed description of the preview model used in the succeeding chapters. 
Chapter 4 briefly explains all major parts of the NMS model of Abbink [2] and de Vlugt [9]. 
To make this model suitable for steering large angles, a new driver model is proposed in 
chapter 5, followed by a few tests indicating the improvements of the new model in section 
5.2. The new NMS model is compared to a single point preview model in section 6.2 in order 
to show its benefits. In section 6.5 the importance of choosing the right parameter values is 
indicated, followed by section 6.6 where the adaptive capabilities of the new model asr 
shown by calculating optimal parameter values that depend on the driving task (lane change 
or lane keeping) and driver mood (relaxed driving or aiming at optimal path tracking 
performance). In chapter 7 the benefits are presented of using the newly developed NMS 
driver model for designing steering systems. Finally, the findings of this report are discussed 
in chapter 8, the conclusions are listed in chapter 9 and the recommendations can be found 
in chapter 10. 
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3. Conventional driver modelling: The preview driver 
models 

 
Vehicle driver modeling started in the ’50, and initially focused on the compensatory control 
task of the driver. The driving task at that time was considered to be correcting for external 
disturbances while maintaining the desired steering wheel position. The scientific field was 
dominated by researchers from Systems Technology Inc., and mainly McRuer, e.g. 
[19][20][21][22]. He also developed the widely known and validated crossover model [7], 
which was one of the first models to describe the human adaptive behavior. McRuer claimed 
that the driver response is determined by an overall gain, a lead time constant representing 
the path preview and lag constants accounting for the brain response delay and 
neuromuscular delay. The second generation of driver models concentrated on the preview 
path tracking task of the driver, rather than on the compensatory task. The first preview 
model was proposed by Kondo [26]; it describes how a steering action is decided upon the 
lateral error between the desired road and the predicted vehicle position a certain distance 
ahead of the vehicle. Enlightened by his idea, many researchers developed various versions 
of the preview model. Although they achieved great resemblance with experimental data, 
the neuromuscular and brain delay (as was the core of the McRuer models) was often not 
accounted for. The single point preview models were succeeded by models incorporating 
more than one preview point; but it was not until Macadam wrote his renowned publication 
[3] in 1980 these were widely adopted. He utilized optimal control theory to calculate the 
resulting desired steering angle based on the weighted sum of the previewed lateral errors 
of each preview point. This model is widely used and implemented in several commercial 
software packages. However since the algorithm of Macadam does not use the yaw angle 
error as an input, the model is less useful on very curvy roads. Furthermore the Macadam 
model keeps the input (steering wheel angle) constant during the future vehicle estimation; 
a problem partly solved later by Ungoren [24]. Still this adjustment is not sufficient for 
driving trough sharp curves as real drivers tend not to keep the middle of the road as a 
reference, but they rather follow a “race line”. Also at this point the longitudinal vehicle 
control of the driver becomes important since it is likely that the driver brakes before or 
during severe cornering. Moreover because the tires can be well at their limit during severe 
cornering, the drive/brake torque on the tires can greatly determine the overall vehicle 
performance. A driver model accounting for most of the above mentioned extensions is the 
UMTRI model developed in 2000 by MacAdam [23].  
 
Because such a model adds complexity that will eventually blur analysis of the main goal of 
this report: describing the benefit and use of a NMS driver model, and because of the 
current disability to validate such a complicated model, a single point preview is used in this 
report. This model will be used in chapters 6 and 7, and is described in detail below. 
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Figure 5. Schematic representation of a preview controller. Here three preview points are 
pictured (k). The desired steering angle calculated by the preview controller can be tuned by 
independent gains on the lateral error (elat) and yaw angle error (ψroad - ψpreview) of each preview 
point.   

 
 
If in Figure 5 one preview point is used (k=1), the total calculated error is the sum of the 
lateral error e and the yaw angle error. The yaw angle error is defined by the difference 
between the road yaw angle, Ψroad, and the predicted vehicle yaw angle, Ψrpreview. To 
calculate the desired steering wheel angle each of the two errors are multiplied by an 
individual gain and added afterwards. Multi-point preview models often use a weighted sum 
of the errors of each individual preview point, where points located further ahead are usually 
assigned a lower weight factor. Additionally, the preview points can be evenly or oddly 
spaced on the preview distance. A widely used preview model that uses oddly spaced 
preview points with independent weight factors is developed by Sharp [33]. Instead of 
estimating the future vehicle position with a simplified model of the vehicle dynamics (as 
MacAdam and this thesis do, see below), he tunes the preview point gains to match a 
particular vehicle. The reader who is interested to know more about driver modelling is 
directed to [34][35][36][37][38], as the next section will continue with describing the single 
point preview into detail.  
 
The vehicle future position is estimated by using a “bicycle” vehicle model which lumps the 
dynamics of the two wheels on one axle into one wheel on the x-axis of the vehicle. 
Equations (1) – (13) describe the dynamical behaviour.  
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Figure 6. The “bicycle” vehicle model lay-out. This model is used to predict the future vehicle 
position in the preview controller and it represents the vehicle the driver model is controlling 
during simulations. Symbols are explained in the text  

 
 
At first, linear tire characteristics will be assumed, which can be justified only for small slip 
angles. The resulting lateral forces are presented in eq. (1):  
 

111 αCFy =  and 222 αCFy =         (1) 

 
Where C represents the tire cornering stiffness and αthe tire slip angle. The subscript 1 
refers to the front axle and 2 to the rear axle respectively. The slip angles can be expressed 
and linearized as: 
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With v and u representing the lateral and longitudinal velocities respectively, expressed in 
vehicle coordinates. The steering angle is noted with δ. Assuming longitudinal speed (u) 
equals forward speed (Vx ). The yaw rate influences the lateral speed per axle:  
 

ψ&avv +=1            (4a) 
ψ&bvv −=2            (4b) 
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Here, a and b represent the distance between the center of gravity and respectively the front 
and rear axle. Ψ represents the yaw angle of the vehicle. The substitution of equation (4) in 
(3), yields equations (5) and (6): 
 

δψα +
−−

=
xV
av &

1           (5) 

 

xV
bv ψα
&+−

=2           (6) 

 
The equations of motion read as follows: 
 

21 yy bFaFI −=ψ&&           (7a) 

21 yyy FFma +=           (7b) 

 
Where Fy is the lateral tire force and ay the lateral vehicle acceleration, which can be 
calculated by: 
 

ψ&&
xy Vva +=           (8) 

 
Substituting in the Newton and Euler equations of motion (7), and moving the state variables 
to the left hand side results in eq (9) and (10): 
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When these equations are substituted in the general state space lay-out: 
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The final state space equation reads: 
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The state ace syst es t s the 
vehicle dynamics used in chapters 5, 6 and 7, and it is used to calculate the future vehicle 

ation starts with the initial conditions obtained from the vehicle model: δ, 

 sp em of eq. (12) serv wo purposes in this report as it represent

position. This calcul
ψ , ψ& , V  and v. The steering angle, δ, and the vehicle velocity, V , are kept constant during x x

the preview calculation, which is executed in n steps. In each stepψ , Vx and v are used to 
determine the vehicle position, as displayed in eq. (14). The three parametersψ ,Vx and v 

und by solving the state space equation of eq. (12) each step. The complete preview 
calculation process is pictured in 

 
are fo

Figure 7.  
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Figure 7. Schematic representation of the future vehicle position calculator. The loop is 
executed n times and the switch is only set to the upper position for the first step. The initial 
values are obtained from the state space model that is described in equation (12). The vehicl
position is found using equation (14) 

e global vehicle position calculator, and the future 
cle position calculator represents the structure as pictured in Figure 7. The local road 

reads the actual global vehicle position coordinates (X, Y and Ψ), and passes 

c
e

e 

 
 
In Figure 9 the complete preview model is showed schematically. Equation (14) is used to 
calculate the global vehicle position in th
vehi
selector block 
trough a selection of the total desired road length from the actual vehicle position until a 
certain position ahead. This point should be located further away than the preview time, but 
lose enough to avoid calculating the error to an incorrect road point. This can occur for 
xample when driving on a circular road. The error calculator block calculates the lateral and 

yaw angle error. The yaw angle error is found by subtracting the (global) yaw coordinate of 
the predicted vehicle position from the yaw coordinate of the road point closest to the 
predicted vehicle position. This closest road point, together with the second closest road 
point is used for calculation of the lateral error, which is obtained by finding the area of the 
rectangle defined by the sides a, b and c (Figure 8). Side a is located between the nearest 
road point and the second nearest road point. The resulting lateral error, y, can be found by 
dividing the area of the rectangle by half the length of a. Finally the yaw error and lateral 
error each pass trough an individual gain in the error controller block and the sum of the two 
resulting values is the desired steering wheel angle.   
 
 



Master thesis report -- Conventional driver modelling: The preview driver models 
 

 13

 

 
 

Figure 8. The lateral error calculation between the previewed vehicle position and the desired 
road. Once the previewed vehicle position is calculated, the nearest and the second nearest road 
points are determined. The lateral error (y) is found by dividing the area of the rectangle a-b-c by 
half the length of side a  

sired steering angle signal, it is placed in series with the desired 
road generation. This way only a sudden change of desired vehicle trajectory will experience 
rain processing delay, and not an intended undisturbed trajectory such as a lane change.  

 
 
A brain processing delay is added to the model of 0.16 seconds [5]. Rather than being 
placed in series with the de

b
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Figure 9. Single point path following controller without NMS structure (based on Kondo [26]) 
and vehicle model 
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4. The original neuromuscular driver model 
 
A previewed vehicle position error drives the models in chapter 3 and hence, the error 
compensation in these models and nearly all its predecessors is limited to a response on 
visual feedback only (as displayed in Figure 3). It is known that drivers also rely heavily on 
neuromuscular feedback [4] (as pictured in Figure 4). Therefore kinesthetic features were 
introduced in a new type of driver models [1][2][5]. They incorporate limb inertia, 
instantaneous visco-elasticity from co-contracted muscles, and fast reflexive responses to 
force and displacement. By adding these dynamics the model can describe the driver’s 
physical limits, and reflexes that respond to steering wheel force feed-back.  
 
As mentioned in the introduction, a NMS model can be seen as an additional model that is 
inserted in between the error controller and steering and vehicle dynamics block in Figure 9. 
Pick and Cole [5] developed a comprehensive NMS model structure, as well as the 
researchers at the Delft Biomechanics group; refer for instance to Abbink [2] and de Vlugt 
[11]. The latter model contains parameters accurately identified for a steering task [25] with 
techniques developed by van der Helm [27]. Also, this model includes the hand grip 
dynamics on the steering wheel and Golgi Tendon Organs, which play an important role 
during force tasks (see Abbink [2]). Therefore this model is selected as a basis to develop 
the newly proposed driver model, see Figure 10. Here the complete preview controller of 
Figure 9 is lumped into the path following controller block. In section 4.1 the model structure 
is explained for each block separately. 
 
 

 
 

Figure 10. The Abbink [2] driver model building on NMS arm models by de Vlugt [9]. The 
preview controller and vehicle model which are used in this model are described in chapter 3. The 
steering system dynamics can be found in section 5.2.1 
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4.1. Original model structure 
The desired steering wheel angle is generated by the path following controller from chapter 
3. Since the model is developed to describe the driver’s feedback response to small 
deviations around a steady-state reference steering wheel position, the signal from the path 
following controller is normally quite low. This signal travels through the nervous system to 
the muscles, where the activation dynamics represent the chemical process converting this 
nervous signal into muscle forces. The activation dynamics block is modeled as a second 
order low pass filter, which is described in Chapter 3 of de Vlugt [9], (see eq. (15)). With 

values of the Eigen frequency 
π
ω
2

0=eigenf  = 2.17 Hz and the relative damping, β = 0.74 as 

found by de Vlugt for the system of shoulder muscles during a posture task. 
 
 

1
21

1
)(

2
2
0

++
=

ss
sH activation

ω
β

ω

        (15) 

 
The muscles generate forces that cause the arm inertia to change position. The muscle 
spindles are position and velocity dependent organs which feed back this information to 
maintain muscle length at a value commanded by the brain. Thus the reflexive muscle 
activity occurs in response to differences between the actual and expected hand position. 
The magnitude depends on the gain set by the brain and varies according to the nature of 
the control task. The system identification methods of Van der Helm [27] were used to 
unravel the feedback parameter values of the human shoulder muscles. Abbink [25] 
conducted a position task where the driver had to keep the steering wheel at a fixed position 
whilst being disturbed by toque perturbations. The identified spindle values of the 
experiments where the driver was instructed to relax his arms are used, which are 0 Nm/rad 
for the gain on the position, Kp,relax and 0.27 Nm/rad/s for the gain on the velocity 
respectively. A high muscle spindle gain results in a high bandwidth and better noise 
rejection without requiring the extra energy needed when using co-contraction. However, 
since a spinal time delay, τspin, is incorporated to model the transport time (set to 28.4 ms as 
identified for a shoulder during a position task [9]), the effectiveness of this feedback is 
limited at high frequencies. Schouten [10] showed the spindle activity to decrease in case 
the system has very low damping and/or high frequency disturbances and vice versa. 
Therefore the central nervous system constantly controls the feedback gains by trading off 
performance against stability by trying to identify the system the driver is controlling. This 
will be re-analyzed in chapter 6. 
 
The muscles behave like mechanical spring-dampers of which the damping and stiffness 
increases with activation level, hence muscles have non-linear mechanical properties. The 
overall damping and stiffness of a system of muscles contained in the driver’s arms is not 
only determined by the activation levels of each individual muscle, but also by the level of 
co-contraction. By co-contracting opposing muscles, muscle pairs are stiffened due to the 
aforementioned non-linear properties of the muscle. As can be seen in Figure 10 the intrinsic 
dynamics account for the increasing damping and stiffness of the driver’s arms due to 
elevated co-contraction. The intrinsic parameters change significantly if the muscles are co-
contracted, as was tested by Abbink [25] and Pick and Cole [6][5], who stated that during 
normal driving elevated co-contraction levels are mainly a sign of drivers inexperience trying 
to compensate for their own control imperfections or internal noise. However even 
experienced drivers employ co-contraction in order to be more robust to disturbances and to 
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compensate for their own inaccurate control actions, as will be illustrated in chapter 6. The 
same identification experiment conducted by Abbink [25] as described also gives us the 
stiffness (Kint,relax) and damping (Bint,relax) values of 4.9 Nm/rad and of 0.69 Nm/rad/s 
respectively. These properties represent the lumped dynamics of two arms holding a steering 
wheel. It is likely to assume that, similar to the spindle reflex gain, the co-contraction level is 
decided upon a tradeoff between the extra stiffness needed to control the system at a 
certain performance target and the extra energy required to achieve the higher level of co-
contraction. Again, in chapter 6 this mechanism will be investigated into more detail. 
 
The Golgi Tendon organs (GTO) are sensors which respond to muscle force. They are 

he contact dynamics account for the effect that the connection between the hands and 

4.1.1. Driver model parameters summarized 

ll parameters used in section 4.1 are listed in Table 1 to serve as a future reference. Since 

i

p

assumed to have the same neural transport delay as the muscle spindles: 28.4 ms. Spindles 
and co-contraction are best for position tasks, i.e. when force disturbances should be 
rejected, whereas force tasks are best accomplished when the subject is compliant and 
moves along perfectly with the imposed displacements caused by the changing forces. 
Intrinsic dynamics and muscle spindle feedback are therefore in this case counterproductive. 
It is hypothesized by [1][9] that during force tasks GTO feedback is pronounced and that 
muscle spindle feedback and intrinsic dynamics are reduced. How the driver chooses his GTO 
with respect to his co-contraction level and spindle gains is not clear yet. For reasons of 
clarity the GTO value is set to zero mainly because we assume conventional steering systems 
to result in steering being a position task. However if reliable force feed-back systems are 
developed, the driver can switch from a position tasks to a force tasks by using his GTO 
feedback, as was found by Abbink [2] who noticed this effect on his development of a haptic 
gas pedal. The benefit of GTO feedback is the same as using spindle feedback regarding 
energy consumption: it does not cost extra muscle energy if it is not needed. However, as is 
also encountered with the spindles, high frequency disturbances can cause instability due to 
the neural transport delay. 
 
T
steering wheel is not infinitely stiff. Therefore a simple spring and damper characteristic is 
added between the arm dynamics and the steering system to account for this fact. A 
stiffness value of 636.86 Nm/rad and damping of 13.27 Nm/rad/s are selected as identified 
by Abbink [25].  

 
A
these values were measured during a relax task, two additional scaling parameters are 
introduced to model tasks were higher co-contraction levels and/or spindle gains are 
employed (as in chapter 5 and 6). The first scaling parameter, ucc,, represents the co-
contraction level, which is 0 if no co-contraction is applied, (and the stiffness, Kint, damping, 
Bint are the relax values as shown in Table 1), and is 1 if full co-contraction is applied which 
s set to 100 Nm/rad for Kint and 1 Nm/rad/s for Bint [25]. The co-contraction level both scales 
Kint and Bint between the relax value and the full co-contraction value. The second scaling 
arameter adjusts both the spindle velocity gain and position feedback gain. If uspin = 0, the 

relax values are used as in Table 1 and if uspin = 1, the velocity dependent gain, kv is 3.37 
and the position dependent gain is 8.20, as from [12]. 
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Table 1. Relaxed and tensed driver model parameter values that are used in this report. All 
parameters originate from literature, except for the correction torque values which are established 
using heuristic methods 
 

Block Parameter Description Value Unit Source 
Torque limiter Tlimit Limit value 50  Nm [25] 
Activation 
dynamics 

f Bandwidth 
frequency 

2.17 Hz [11] 

β Damping 
constant 

0.74 - [11] 

GTO Kgto Gain 0 - - 
τGTO Delay 28.4 ms [11] 

Arm inertia Jarm inertia 0.16 kgm2 [25] 
Intrinsic dynamics Kint,relax (ucc = 0) Stiffness 4.9056 Nm/rad [25] 

Bint,relax (ucc = 0) Damping 0.6671 Nm/rad/s [25] 
Kint,tensed (ucc = 1) Stiffness 100 Nm/rad [25] 
Bint,tensed (ucc = 1) Damping 1 Nm/rad/s [25] 

Spindles Kp,relax (uspin = 0) Stiffness 0 Nm/rad [25] 
Kv,relax (uspin = 0) Damping 0.27 Nm/rad/s [25] 
Kp,tensed (uspin = 1) Stiffness 8.20 Nm/rad [12] 
Kv,tensed (uspin = 1) Damping 3.37 Nm/rad/s [12] 
τspin Delay 28.4 ms [11] 

Contact dynamics Kcont Stiffness 636.86 Nm/rad [25] 
Bcont Damping 13.27 Nm/rad/s [25] 

Correction torque* P Gain 0.6 Nm/rad - 
I Integrator 4 Nm/(rad s) - 
D Differentiator 0 Nm/rad/s - 

* see new model in section 5.1
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5. The new neuromuscular driver model 
 
The model of chapter 4 was developed and validated for stationary, near isometric 
conditions (the condition where the muscle length remains constant) and hence the structure 
of this model is such that when large steering wheel angles are necessary, as during an 
evasive maneuver or a rapid highway lane change, significant errors are introduced.  
Also the model does not have a structure that converts the desired steering angle to the 
muscle forces needed to achieve this angle. In the original model of chapter 4 the desired 
steering angle is directly applied to the input of the model, and therefore the model is unable 
to take into account the extra muscle force needed due to the dynamics of the system that is 
controlled.  
The new model structure that solves these two problems is presented in section 5.1. 
Simulations showing that the new model is able to steer during non-isometric conditions can 
be found in section 5.2. 
 

5.1. New Model structure 

5.1.1. A moving reference point 
The intrinsic dynamics and muscle spindles of the driver model of chapter 4 can be 
represented by the system of Figure 11. Here the intrinsic dynamics are modeled by a spring 
and damper connected to the fixed world to one side and connected to the muscle on the 
other side. The spindle dynamics feed back the muscle position and velocity with a constant 
gain to the supra spinal signal originating from the brain.  
 
 

Intrinsic dynamics
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Muscle
δSW,desired Activation 

dynamics+ -

Kspin
Bspin
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Wheel 
torque

-+

Muscle
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velocity 

Arm 
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inertia
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Figure 11. The core of the original driver model of Figure 10 pictured differently to show that the 
reference point of the intrinsic dynamics and spindle gains is fixed 

 
 
It can be seen in Figure 11 that for every steering action the driver needs to develop forces 
to overcome his own intrinsic dynamics and spindle reflexes. This is not realistic. The first 
step in making the model valid for non-isometric conditions would be to make a moving 
reference point, which is regarded as the expected muscle position. Only if a steering wheel 
disturbance causes the expected position to differ from the real position, the reflexes and 
intrinsic dynamics come into play (called intrinsic dynamics, CC in Figure 12). To obtain a 
more realistic Hill [32] type model structure a Series Elastic element (called intrinsic 
dynamics, FF in Figure 12) could be added in series with the Contractile Element (CE) in 
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Figure 11 to account for the muscle compliance. Due to the fact that the Parallel Element 
(PE) has a very minor role during regular movements it is not considered here. Also, non-
linear muscle force length and force velocity relationships can be defined, and agonists and 
antagonists could be separately described. Given the lack of readily available parameters, 
such a model would not necessarily be more accurate than the current model and no 
intrinsic dynamics FF as displayed in Figure 12 is added to the model at this moment, future 
work should point out its validity.  
 
 
 

 
 

Figure 12. The fixed reference position of Figure 11 converted to a moving reference position to 
enable realistic transient steering scenarios 

 
 
The structure as in Figure 12 (but without the intrinsic dynamics FF) has been implemented 
in the original driver model. The moving reference point is the expected muscle position, 
which could be found by taking the expected steering wheel position if no grip dynamics 
would be present. Due to the grip dynamics (see chapter 4), the moving reference point is 
not equal to the desired steering angle. In the next section it is explained how the expected 
hand position can be found with the aid of the inverse internal model. 
 

5.1.2. The inverse internal model 
 
As stated before, the NMS model of chapter 4 applies the desired steering wheel angle 
directly to the input of the model. However, the input of the model actually requires a 
command for the activation level of the muscles. The desired steering angle can only be 
reached if the exact required muscle force is commanded. One way to achieve this is by 
inverting a model of the dynamics of the NMS and the vehicle. The resulting inverted model 
subsequently has a desired steering angle as input and a muscular control signal as an 
output. The inverse model implemented in the new NMS model is actually split in two parts 
(the NMS and the vehicle inverse model) which are connected in series (see Figure 13). This 
enables the calculation of the expected hand position which is needed as a moving reference 
point for the reflexes. A fifth order 100 Hz Butterworth filter is integrated in this inverse 
model in order to maintain a model where the nominator is not of a higher order than the 
denominator. It is likely that the internal model of the driver has to incorporate some sort of 
linearized, reduced order version of the complex non-linear vehicle dynamics consisting of 
dozens of states. The influence of different internal models on the overall driver-vehicle 
performance will be investigated in chapter 6.  
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Figure 13. The new driver model structure, based upon the original NMS driver model of Abbink 
[2] (displayed in Figure 10). While the original NMS model is developed for steering around a fixed 
steering wheel position, the new model can account for transient steering of large angles. Green 
colored parts are newly introduced 

 
 
Because the inverse model has a very high gain at elevated frequencies, the model can 
output unrealistically high forces. Therefore a torque limiter is added in series. This limit is 
probably related to the length and velocity of the different muscles participating in the 
steering task and hence a future model expansion incorporating the exact speed-force 
dependency as determined by Hill [13] is desired. To start with, a fixed maximum value of 
50 Nm [25] is implemented. As can be seen in Figure 13 the torque limiter currently limits 
only the muscle torque as commanded by the brain, whereas part of the available torque is 
also used for co-contraction. Research is needed as to which extent this limit decreases 
when elevated co-contraction levels are employed, equation 23 in section 6.5 uses a relation 
established by Pick and Cole. 
 
The final block to be explained is the correction torque. If the inverse model dynamics do not 
match the real dynamics in a predictable way (for example due to a constant side-wind force 
disturbance), the driver will most likely not solve this through continuous feedback, but by 
an adaptation in feed-forward control. Therefore, he should adjust his internal model in 
order to achieve the desired steering wheel angle. Ideally, the model contains a system 
identification block to account for the adaptation process of the internal model that occurs in 
the brain. However in this study a simple PID controller was chosen to compensate for 
internal model mismatches, which is added in series with a brain processing delay of 0.5 
seconds. This delay accounts for the time it takes for the driver to identify the situation and 
adapt to it. Note that although this block is placed in parallel to the spindle feedback and has 
a similar function, it has a larger delay and includes an integrating component. 
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5.2. Driver model comparison tests 
 
In this section the driver models of chapter 4 and 5.1 are connected to a steering system 
and 2DOF bicycle vehicle model as explained in 5.2.1. Subsequently, a simulation comparing 
the behaviour of the two models while following a desired steering wheel angle is done in 
section 5.2.2. Here significant differences are expected since this scenario sparked the 
development of the new driver model. The simulation comparing the feedback behaviours of 
the two models to a force disturbance is conducted in section 5.2.3, where the difference is 
expected to be very low since this is an isometric scenario. 
 

5.2.1. Steering system and vehicle model used for evaluation 
 
Figure 14 visualizes the way the steering system and vehicle model are connected to the 
new driver model. The 2 DOF vehicle model parameters represent an E60 BMW 530i. The 
necessary chassis data properties were measured in the Automotive Lab at the Delft 
University of Technology and taken from the NHTSA [18]. They are summarized in Table 2.  
Special care was taken to model the steering system. The driver’s hands deliver torque to 
the steering wheel which is added to the torque in the steering column originating from the 
tires. The resulting torque accelerates the steering wheel inertia, Js, which is set to 0.16 
kgm2. A damping constant, bsw, of 0.07 Nm/rad/s counteracts this movement. The rack mass 
mr (50 kg) is connected with the steering wheel inertia via the pinion-rack gear ratio iswr  
(6000 deg/m) and the steering rod with its own stiffness ks (170 Nm/rad) and damping bs 
(0.2 Nm/rad/s). The resulting torque from the difference between the torque applied by the 
driver, Td and torque resulting from the tire forces, accelerates the rack mass and its 
displacement is fed trough a reduction factor representing the suspension kinematics in 
order to obtain the steer angle of the front wheels corresponding to the steering ratio isw , 
which is set to 14.7. No power steering is implemented (Tassist) because tis will blur analysis. 
The front wheel steering angle is used as an input to the state space system as described by 
equation (12). The outputs of this system, the yaw rate and lateral velocity are used, with 
the aid of equation (5) to find the front axle slip angle. Multiplying this angle with the tire 
stiffness, Cf  (60 kN/rad) yields the tire side force which is reduced by the tire force to rack 
force ratio isf , which is chosen to be 100. This finally yields the feedback of the tire forces on 
the rack.  
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Figure 14. The steering system and 2 DOF vehicle model (see chapter 3), as will be used in 
simulations to evaluate the driver models 
 

The above described dynamics are depicted in equations (16) to (20). The parameter values 
used in Figure 15 are explained in Table 2 which are mainly taken from Pfeffer [14].  
 

d s sw sw

swr

rs s s

r r
assist

f

αf
δ

 
 

Figure 15. The global steering system lay-out and symbol use. The input to the steering system 
model is the torque applied by the driver. The output is the steering angle at the wheels, which 
subsequently passes through the vehicle model of chapter 3 and enables the calculation of the tire 
side force. This side force passes through a reduction factor, e, to represent the suspension 
kinematics in order to give the force on the rack, Fr 
 

 

swswsdsws bTTJ θθ &&& −−=            (16) 

( ) ( )xrbxrkT swrswsswrswss
&& −+−= θθ          (17) 

( ) rrassistsr FxbTTxm −−+= &&&           (18) 
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With: 
 

e
CF ff

r
α

=              (19) 

 
And 
 

sw

swr

i
xr

=δ              (20) 

 
Where θsw = steering wheel angle, Td = driver torque, x = rack displacement, Tassist = power 
steering assist torque, Ts = torque in the steering rod, Fr = force on the rack originating from 
the tires, αf = front wheels slip angle, δ = steering angle front wheels. 
 
To get an impression whether the resulting steering feel is realistic, a Lissajous curve is 
plotted in Figure 16. Here, a low frequency response of the torque when a sinus shaped 
displacement profile is imposed on the steering wheel is simulated. In Figure 16 it can be 
seen that a realistic behavior is obtained. All vehicle and steering system data used are 
condensed in Table 2. 
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Figure 16. Lissajous curve at 0.5 Hz of the steering wheel angle vs. the steering wheel torque at 
a reference speed of 80 km/h. This result is used to judge the real life resemblance of the system 
developed in this chapter  
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Table 2. Vehicle and steering system parameter values used in this report. The parameters are 
described per block as displayed in Figure 11. All parameters derive from literature, except for the 
parameter e (determining the feedback of the lateral tire forces on the rack) and the tire 
stiffnesses which were linearized from unpublished internal tire data 
 

Block 
(Figure 14) 

Parameter Description Value Unit Source 

Steering wheel 
inertia 

Js Inertia 0.16 kgm2 [25] 
bsw  Damping 0.07 Nm/rad/s [14] 

Steering rod 
dynamics 

ks Stiffness 170 Nm/rad [14] 
bs Damping 0.2 Nm/rad/s [14] 

Steering ratio isw Ratio 1:14.7 - [14] 

Rack mass mr mass 50 kg  [14] 
br damping 0 Nm/m/s - 

Suspension 
kinematics 

e  Lumped ratio 
parameter 

100 - estimated 

rswr  Ratio 6000 deg/m [14] 

Vehicle state 
space 

Cf Tire stiffness 
front 

60000 N/rad Linearized from 
internal source 

Cr Tire stiffness 
rear 

60000 N/rad Linearized from 
internal source 

Jz,vehicle Vehicle inertia z-
axis 

2500 kgm2 [18] 

mvehicle Mass vehicle 1700 kg [18] 
a  Distance front 

axle to CG 
1.44 m [18] 

b   Distance rear 
axle to CG 

1.44 m [18] 

V Vehicle speed (80/3.6)=22.2 m/s Arbitrarily 
chosen 

Slip angle 
calculator 

V -- see above --    

Tire stiffness  Cf -- see above --    
 
 

5.2.2. Feed forward test: steering a desired steering wheel angle 
 
The old and new NMS models are compared in a feed-forward test. Here, feed-forward 
refers to tests where the model behaviour is dictated by the muscle force commands 
originating from the brain. Feed-back tests investigate the response to unexpected haptic 
feedback.  
  
A smooth step input of a desired steering wheel position of 1 rad (see magenta line in centre 
plot in Figure 17) is applied to the original NMS model (Figure 10) and to the new NMS 
model (Figure 13). The relax values as displayed in Table 1 are used and the correction 
torque block of the new NMS model is disabled to permit a better comparison. In Figure 17 
the time responses at different locations in the model are displayed. 
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Figure 17. Time responses at different locations within the original NMS model (green) and the 
new NMS model (red). The input to both systems is a desired steering wheel angle as displayed in 
the middle plot (magenta). The new model closely follows the desired steering angle whereas the 
original model is not able to achieve the desired angle 

 
 
In Figure 17 it can be seen that the new model accurately follows the desired angle. The 
driver does not show reflexive responses, since he has a perfect internal model calculating 
the exact forces necessary to obtain the desired steering wheel angle. However the driver as 
modelled in the original NMS model clearly has to counteract his own reflexes and intrinsic 
dynamics resulting in the final steering angle being too low.  
 

5.2.3. Feedback test: applying a force perturbation 
 
To investigate the feedback response of the driver models, an unexpected force disturbance 
is applied to the steering rack. Again, the relax values of Table 1 are used. The disturbance 
shape has been chosen smoothly to avoid the higher order dynamics associated with a step 
input (see upper left picture in Figure 18). In Figure 18 the time responses of the original 
model and the new NMS model can be found, where the latter is represented in four forms: 

• Without intrinsic dynamics, reflexes and correction torque, 
• Without reflexes and correction torque, with intrinsic dynamics active 
• Without correction torque, with intrinsic dynamics and reflexes active 
• With correction torque, intrinsic dynamics and reflexes all active.  
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Figure 18. A force disturbance of 200 N is applied to the rack as displayed in the upper left plot. 
Displayed are: time responses of different parts within the original model (magenta); the new 
model with no intrinsic dynamics, no reflexes and no correction torque (red); the new model with 
the intrinsic dynamics active, no reflexes and no correction torque (green); the new model with 
intrinsic dynamics and reflexes active and no correction torque (blue); and the new model with 
intrinsic dynamics, reflexes and correction torque all active (cyan) 
 

 
In Figure 18 it is evident that the best disturbance rejection is delivered by the model with 
the correction torque loop. It is able to completely compensate for the disturbance within 4 
seconds. The red line represents a driver with only the inertia of the arms and no stiffness or 
damping applied, which eventually gets unstable. The original model shows in this case the 
same result as the new model, since the desired steering angle is zero degrees (so no 
inverse internal model affects the response) and the reference position for the reflexes is 
also at zero degrees for both models. Finally it should be noted that the current co-
contraction and intrinsic reflex gains are very low and increasing them could greatly improve 
performance in this case. 
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6. The key to building a realistic model: Parameter 
analysis 

 
The newly proposed NMS driver model can describe more realistic behavior compared to the 
original NMS model. A moving reference point enables transient steering and the internal 
model ensures that the (by the driver estimated) correct muscle forces are commanded in 
order to achieve the desired steering wheel angle. The driver model parameters as showed 
in Table 1 are validated for a constant steering wheel angle (zero degrees in this case) and 
for a constant task (position a dot on the screen inside a box, without co-contraction). 
Steering a vehicle during every-day driving situations will require changing steering wheel 
angles, vehicle positions and co-contraction level. Optimization is very likely the way drivers 
(unconsciously) choose their parameters such as co-contraction, muscle spindle gain and 
preview time, therefore in this chapter the new model itself is used to determine the 
parameters by assuming that the driver selects them by using optimization techniques. This 
will show the adaptive capabilities of the driver model.  
 
It is hypothesized that the driver adapts his parameters according to two main conditions: 
the mood of the driver and the task he has to perform. Different driver “moods” are defined 
in section 6.5. Subsequently, in section 6.6 the driver model parameters are optimized. The 
degree to which the internal model of real drivers matches the real NMS and vehicle 
dynamics is still to be determined. However, to get a feel of the sensitivity of the internal 
model, the effect on driver performance of equipping the vehicle with non-linear tires is 
examined in section 6.3. Also, less competent drivers are simulated in section 6.4 where the 
order of the inverse internal model is lowered. But before this, in section 6.2 the new model 
will shown to be superior to a preview driver model. The values of the preview parameters 
are determined in section 6.1 together with the introduction of a double lane change test 
road. 
 

6.1. Adding a preview structure to the NMS model 
 
The single point preview model described in chapter 3 is added to the new NMS model. In 
the following sections this resulting model will be used to perform double lane change 
maneuvers and perturbed lane keeping tasks. The center line of an ISO 3888-1 double lane 
change is chosen as a reference road, with the vehicle forward velocity set to 80 km/h. The 
desired road trajectory is visualized in Figure 19.  
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Figure 19. The trajectory of the middle of the road of an ISO 3888-1 double lane change, test 
velocity is 80 km/h 

 
 
The preview model contains three parameters of which the value has to be established; the 
look-ahead time, the gain on the previewed lateral error and the gain on the previewed yaw 
angle error. Realistic vehicle behavior is maintained by taking care not to exceed 1.0 g lateral 
acceleration during the lane change. If the preview control gains are high, the linear tire 
model easily allows for lateral acceleration values up to 2.5g due to the non-saturating tire 
stiffness. In Figure 20 the lateral accelerations and the vehicle trajectories are plotted for 
gain values aiming at absolute maximum performance and aiming at maximum performance 
with a limit of 1 g lateral acceleration respectively. 
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Figure 20. Vehicle trajectories and lateral accelerations for two sets of preview controller gains; 
red = Py = 20, Pyaw = 20; green = Py = 1.6, Pyaw = 13. Whereas the red line can follow the 
desired trajectory with a higher accuracy, the lateral accelerations are unrealistic. The green line 
displays acceptable path tracking performance while maintaining realistic lateral acceleration 
values 

 
 
As can be seen in Figure 20, having a lateral error gain Py = 20, and a yaw angle error gain 
of Pψ = 20 results in the best path tracking performance. However 2.5g lateral acceleration is 
not a realistic value. Furthermore, as will turn out in Figure 33 and Figure 34 these values 
are very good in achieving the best performance, but at the cost of mental and physical 
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workload. Although having more realistic lateral acceleration values, the performance of the 
green line (Py = 1.6, Pψ = 13) in Figure 20 is moderate, especially during the first curve the 
controller seems to act too late. This is because the preview time is set to only 0.2 seconds. 
Increasing the preview time will improve performance in the first curve, but will also cause 
instability in the following curves due to the increasing previewed errors. More sophisticated 
preview models are required for simulating the path tracking behavior more realistically 
during this extreme maneuver. 
 

6.2. Comparing a preview and NMS model 
 
In this section a preview driver model as described in chapter 3 is compared to the new NMS 
model. The driver models again are coupled to the vehicle and steering system of section 
5.2.1 (Figure 14), together with a desired road profile and preview parameter values 
determined in section 6.1. When conducting the lane change, the preview driver model and 
the NMS driver model with or without co-contraction all show the same behavior in Figure 
21. This is because if the NMS driver model contains a perfect internal model of his own arm 
dynamics and the dynamics of the vehicle, it knows exactly which muscle forces to command 
in order to steer the trajectory as desired by the path following controller in the brain. Only 
in case the desired muscle forces are too high, the vehicle trajectories will differ due to the 
physical limitations that are embedded into the model.  
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Figure 21. Vehicle trajectories during an undisturbed lane change task; the red line represents a 
preview model without NMS structure (hence only visual feedback); the green line shows the 
response of the new NMS model with full co-contraction (ucc = 1); the blue line represents the 
new NMS model with no co-contraction (ucc = 0); the desired trajectory is pictured in cyan (results 
of the three models are virtually identical). The moderate path tracking performance is a result of 
the high vehicle velocity (80 km/h) and the limits of the single point preview controller  

 
 
If a perfect inverse model is used, and no force disturbances are introduced into the vehicle-
driver system, there is no benefit of adding a NMS structure to a preview driver model. 
However if the realized steering wheel position does not match the desired position due to 
either wrong feed forward control actions of the driver (wrong path planned, wrong error 
control method, or wrong muscle force commands) or due to force disturbances transmitted 
from the tires to the steering wheel, the behavior of a conventional preview driver model will 
differ compared to the newly proposed NMS driver model.  
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Figure 22. Force disturbance as applied to the front wheels 
 
 
The next test is a lane keeping task where an unexpected lateral force disturbance of 5000N 
is applied to the front axle as seen in Figure 22. The preview values are obtained from 
section 6.1 and the NMS values are listed in Table 1. The resulting vehicle behavior when 
controlled by three different model settings (only preview, NMS with no co-contraction and 
NMS with full co-contraction) can be seen in Figure 23, where the benefit of adding a NMS 
structure is clear. By using full co-contraction the disturbance can almost be completely 
compensated. The delay of the vehicle dynamics and the brain processing, which is set to 
0.16 seconds (and can be many times higher in real life), allows the vehicle to travel 
significantly more in lateral direction compared to the NMS model. Hence using a driver 
model without a NMS system or having a vehicle which prevents the NMS dynamics of the 
driver to act due to no feedback will result in a significantly less controllable vehicle. 
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Figure 23. The result of an unexpected force perturbation on vehicle trajectories during lane 
keeping (see Figure 22 for disturbance characteristics). Three responses are shown: only visual 
response to the resulting lane-keeping error (red line), the combined visual and neuromuscular 
response in case the driver is relaxed (blue line) and in case the driver is actively resisting force 
perturbations (green line). Corresponding parameters for relaxed state and resisting state are 
shown in Table 1. 

 
 

6.3. Linear vs. non-linear tires 
 
The linear tire stiffness of the vehicle model is replaced by a non-linear “magic formula” tire 
model developed by Pacejka [15], see equation (21).   
 

( )((( )))ααα BBEBCDFy arctanarctansin −−=       (21) 

 
Where α is the tire slip angle, and the values of B, C, D and E can be found in Table 3. The 
normal force, Fz, is obtained from Table 2. 
 
 

Table 3. Pacejka’s “magic formula” tire parameters 
 

Parameter  Value 
B 9.0 
C 2.4 
D = Fz = 8500  
E 1.0 

 
 
The linear and non-linear tire characteristics are pictured in Figure 24. During the lane 
change simulations where the vehicle is equipped with the non-linear tires, the inverse 
internal model still bases his actions on the assumption that the vehicle is equipped with 
linear tires. To increase the effect of changing to non-linear tires, the initial non-linear tire 
stiffness is higher than the linear variant, only to decrease rapidly after about 40 slip angle. 
The resulting effect is displayed in Figure 25, where the lane change of Figure 19 is 
conducted again.  
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Figure 24. The tire characteristics of the linear tire stiffness as modelled in chapter 3 (red line), 
and a Pacejka [15] non-linear tire stiffness of equation (21) (blue line). The rear axle has the 
same characteristics as the here pictured front axle 
 

 
The first thing that is noticed when viewing Figure 25 is the fact that the non-linear tires 
show better path tracking performance than the linear tires. This is due to the fact that the 
tire stiffness of the non-linear tires is higher at small slip angles (see Figure 24) compared to 
the linear tires which makes up for the late reaction of the preview model in the first corner. 
Secondly, the high lateral error preview gain which tries to make up for the lateral error 
caused by the short preview time causes quite some steering angle overshoot in the second 
corner. Non–linear tire characteristics damp out this effect, since they limit the side force at 
large steering angles.  
 
Coming back to the comparison between the preview and NMS model, only very minor 
differences are noticed. Changing the tire stiffness ratio between front and rear appears to 
have a more profound effect as showed next, where again linear tire stiffnesses are used. 
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Figure 25. Vehicle trajectories during a lane change task. The magenta line is the reference 
condition (same as Figure 21), all other 3 simulations were done with the vehicle equipped with 
non-linear tires (Figure 24) while the internal model based its actions still on linear tire 
characteristics. The red line represents the resulting driver behavior without NMS (visual feedback 
only), the green and blue lines represent the driver behavior with full co-contraction and relaxed 
state respectively. Values used are found in Table 1 (all values in relax state) 
 
 

In Figure 26 the result of another lane change simulation is displayed. Here the internal 
model remains constant (with the assumption that the vehicle is equipped with equal front 
and rear tire stiffness). The tire stiffnesses are linear. The red line represents the case when 
the tire stiffness ratio between front and rear is exactly as estimated by the driver, the green 
line represents an oversteering vehicle, the magenta line represents a heavily oversteering 
vehicle, the blue line pictures an understeering vehicle and the cyan line is the desired road. 
Understeering vehicles show a bad path tracking performance since the driver increases his 
steering angle to compensate for the increasing error. The best thing to do in this case 
would be to countersteer and regain a higher stiffness. Oversteering vehicle configurations 
track the path quite well until the oversteering is too severe and the vehicle becomes 
uncontrollable.  
 
It is interesting to note that only after reducing the rear tire stiffness to one sixth of the front 
tires stiffness, the vehicle becomes noticeably harder to control. As we saw in the preceeding 
section, equipping the vehicle with non-linear tires also did not have a big impact on the 
vehicle stability.  
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Figure 26. Vehicle trajectories during a lane change. The red line is the reference condition 
(same as Figure 21), in all other 3 scenarios the (linear) front or rear tire stiffness was changed 
while the internal model was not corrected for the change. The green line shows the vehicle 
trajectory when the rear tire stiffness is half the original stiffness, the blue line represents the 
path tracking after decreasing the front tire stiffness with 50% and the magenta line shows the 
vehicle trajectory in case the rear stiffness is only a 6th of the front tire stiffness at the rear. The 
cyan line pictures the desired road 

 
 

6.4. High vs. low order internal model 
 
Until now the driver is assumed to have a perfect inverted, linearized version of the NMS and 
vehicle dynamics. This internal model is of 11th order. In this section we will explore the 
impact of having three different internal models which are less accurate than the 11th order 
model. The first two internal models to be tested are a mass-spring-damper (2nd order) and 
a spring (zero order) representation of the original 11th order model. Also, the effect of 
neglecting the NMS dynamics (see the inverse NMS dynamics block in Figure 14) is tested by 
implementing an inverse model of only the vehicle. The bode plots of these four models can 
be seen in Figure 27. 
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Figure 27. Bode diagram of different internal models. The red line represents the reference 
internal model dynamics, where the internal model is equal to the inverse dynamics of the NMS 
and vehicle dynamics. The green line is a 2nd order representation of the reference 11th order 
model, the blue line represents the dynamics after the original model is reduced in order to a zero 
order model, and the cyan line pictures the dynamics of the internal model where the driver has 
only gained knowledge of the vehicle dynamics and neglects his own NMS dynamics. The input of 
all internal models is the desired steering wheel angle and the output is calculated muscle torque 

 
 
For each of the four different internal models (shown in Figure 27) the ISO double lane 
change is simulated. The simulation results are shown in Figure 28. 
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Figure 28. Vehicle trajectories during a lane change with the different internal models as pictured 
in Figure 27. The red line represents the original 11th order model, the green line the 2nd order 
approximation, the blue line the zero order approximation, and the magenta line the original 
model without inverse NMS dynamics. The cyan line is the desired trajectory 
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Interestingly, the second order approximation outperforms the original model, because it has 
a lower gain at the high frequency output of the preview controller in the second corner 
which compensates for the high preview gain on the lateral error. The zero order 
representation cannot follow the desired road because it lacks the increase in gain at high 
frequencies. The driver with an internal model assuming there are no dynamics in his NMS 
system seems to cope quite well with this handicap. This is mainly thanks to the big 
difference between the real steering angle and the desired angle. Therefore, the intrinsic 
dynamics and spindle reflexes help delivering the extra torque required to complete the lane 
change successfully. In Figure 29 it is clear that the intrinsic torque delivers up to 3 Nm, 
whereas all other three cases hardly use their intrinsic dynamics. For comparison: 3 Nm of 
muscle torque can steer the steering wheel 150 degrees, see Figure 16. The second order 
model needs only 0.01 Nm or intrinsic torque and the 11th order model none at all (zero 
order not regarded here due to its inability to complete the lane change). 
 

0 20 40 60 80 100 120 140 160 180 200
-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

2.5

3
Intrinsic torque

Position on track in x-direction [m]

To
rq

ue
 [

N
m

]

Original model
2nd order model
Zero order model
Only vehicle, no NMS model

 
Figure 29. Intrinsic torque for the simulations as pictured in Figure 28. In Figure 28 it can be 
seen that the driver neglecting his own NMS dynamics still shows reasonable performance. In this 
figure it is clear that the intrinsic torque is responsible for this, using up to 3 Nm to maintain the 
desired steering wheel angle. 3 Nm of muscle torque is enough to steer the steering wheel 150 
degrees when the vehicle travels at 80 km/h (see Figure 16). All other lines (red, green and blue) 
are within the 0 – 0.01 Nm range 

 
 

6.5. Parameter variation  
 
Already in 1964 Segel [39] suggested that the degree to which the steering wheel affects 
driving is dependent upon the type of control strategy used to drive: either “free control” 
driving which is relaxed or “fixed control” driving which is a high gain task. In this section 
five driver model parameters are selected and changed while monitoring the effect on three 
cost criteria representing different types of “control strategy”, or “moods”. They are the path 
tracking accuracy of the vehicle (P), the mental workload (MW) and the physical workload 
(PW). A low PW has the obvious benefit of requiring low energy levels, and therefore the 
driver is able to fulfill his task for a longer period. A low MW will allow the driver to quickly 
react in dangerous situations. This way the sensitivity of the model to each parameter can be 
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checked. At the same time it can be seen if the formulae used to calculate MW and PW are 
reasonable. 
 
The first parameter to be sensitivity analyzed is the co-contraction level, ucc. As displayed in 
Table 1, full co-contraction and no co-contraction is represented by ucc = 1 and ucc = 0 
respectively. The second parameter is the muscle spindle position and velocity feedback 
gain, uspin, which works analogous to ucc  and is also listed in Table 1. The following three 
parameters originate from the visual controller: the preview time, Tprev, the gain on the 
previewed lateral error, Py and the gain on the previewed yaw angle error, Pψ. All parameters 
under sensitivity analysis are summarized in Table 4. 
 
 

Table 4. Parameters of which the optimal value will be obtained via optimizations to different 
driver moods, for different driving tasks 

 
Parameter to be changed Description 
ucc Co contraction level 
uspin Muscle spindle position and velocity feedback scaling gain 
Tprev Look ahead time preview controller 
Py Gain on the lateral error, preview controller 
Pψ Gain on the yaw angle, preview controller 

 
 
The evaluation criteria P, MW and PW represent three independent driver “moods”. They are 
calculated as follows: 
 

• Maximizing lateral performance, P 
( ) 22

edesvehP yyyJ =−=          (22a) 
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yveh is the global lateral position of the vehicle and ydes is the global y-coordinate of the 
desired road. Jp is the cost value of the error between these parameters, which is averaged 
over n simulation time steps and divided by the average of the reference condition to yield P. 
The reference condition is defined by the NMS parameters as described in Table 1 and the 
preview parameters as described in section 6.1. A low value of P indicates a high lateral 
performance.  

 
• Minimizing mental workload, MW 

2
lsupraspina,FFMW TJ =           (23a) 
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Where TFF,supraspinal is the brain signal output from the preview controller added to the muscle 
spindle feedback; the higher this signal the more the driver has to use his brains to calculate 
the desired road.  

 
• Physical workload, PW 
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In which Tmuscle is equal to the muscle torque generated in response to the feed forward 
control actions originating from the brain and Tco-contraction represents the muscle torque 
needed to co-contract the muscles in order to increase the intrinsic stiffness Kint and damping 
Bint. The relation between Kint and the muscle torque Tco-contraction is established by Pick and 
Cole [5] as follows: 
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⋅=− 8.1

intK
eT ncontractioco          (25) 

 
This equation describes the co-contraction torque as a function of the realized joint stiffness. 
The factor e represents the percentage of the total time the driver uses co-contraction. e is 
assumed to be 1 in the scenario where a disturbance is applied, i.e. if the driver uses co-
contraction, he uses co-contraction the complete duration of the torque disturbance test. 
During the lane change e is smaller than 1 since the driver can preview the areas where 
thinks he will need co-contraction. One way to estimate the value of e during the lane 
change is by looking at the steering wheel torque applied by the driver during a lane change. 
By looking at the parts where the absolute value of the torque has a positive derivative, the 
largest driver interventions are selected. Introducing an error here has probably the biggest 
consequences and therefore it is assumed that during these parts the driver applies co-
contractions. The resulting values for e are displayed in Table 5. 
 

 
Table 5. Values for e during different scenarios, where e represents the fraction of the total 
simulation time that co-contraction is applied 
 

 Linear tires, 
perfect IM 

Linear tires, 
2nd order IM 

Non-linear tires, 
perfect IM 

Time Factor, e 0.396 0.242 0.388 
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An average of all three criteria (P, PW and MW) with equal weight factor is introduced as a 
fourth driver mood, and is called TOT. The value of TOT is calculated by dividing each 
individual cost criteria by the average value from the reference condition (called “ref” in 
Table 6), see eq. (26).  
 

PWMWPTOT ++=          (26) 
 
Table 6 shows the effect on the 4 driver moods of changing the 5 driver model parameters 
of Table 4. This test is repeated 3 times to also see the result of having a 2nd order version 
of the internal model, driving a vehicle with non-linear tires and driving an understeering 
vehicle. 
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Table 6. The cost values of the different driver moods (P, MW, PW and TOT), for two different environments (a lane change and a lane keeping task 
with 5000 N side force disturbance) and 4 scenarios (the original 11th order internal model with matching vehicle dynamics, a 2nd order internal model 
while keeping the original vehicle dynamics, the original internal model an the vehicle equipped with non-linear tires, and the original internal model while 
equipping the vehicle with tires at the front which have half the stiffness of the rear tires). Green and red colored cells indicate that the value is 10% or 
less and 10 % or more than the reference value respectively. The reference value used for the colored cells changes per scenario. 
 
  

 Lane change 5000 N Disturbance 
Scenario Variable Value P MW PW TOT P MW PW TOT
Linear tires, 
perfect Internal 
Model 

Uco-contraction 

 
0 = ref 1 1 1 3 31 1 1
0.5 0.8739 0.8088 2.4191 4.1019 0.0228 0.0250 18.1398 18.1877
1 0.8641 0.785 3.793 5.4433 0.0100 0.0109 35.3043 35.3253

uspindels 0 = ref 1 1 3 11 1 1 3
0.5 0.9389 0.9198 0.9295 2.7884 0.3225 0.3275 1.0715 1.7215
1 0.9125 0.8704 0.9452 2.7282 0.1649 0.1691 1.1434 1.4775

Tprev 0.05 1.2740 2.8410 2.4167 6.5321 1.1052 1.2586 0.0499 2.4343
0.2 = ref 1 1 3 1 1 31 1
0.3 0.98339 0.9749 0.9964 2.9548 0.9473 0.9655 0.9594 2.8723

Pyaw 6 1.8553 2.3332 0.5448 4.7334 2.2631 1.6551 0.0557 3.9757
13 = ref 1 1 3 1 1 31 1
19 0.9702 1.0644 1.2502 3.2847 6.8421 0.9482 0.1064 1.7502

Py 1.0 1.2945 0.7401 0.6469 2.6819 1.7368 1 4.6191 2.4520
1.6 = ref 1 1 3 1 1 31 1
2.2 0.9203 1.5962 0.8586 3.3755 0.6842 1.1200 0.0573 1.8526

Linear tires,  
2nd order 
Internal Model 

Uco-contraction 0 = ref 0.8221 0.7555 1.4153 2.9933 0.7368 0.6896 0.4665 1.4966
0.5 0.7103 0.5991 2.8588 4.1686 0.0174 0.0196 17.2655 17.3027
1 0.7039 0.5765 4.1954 5.4758 0.0076 0.0085 34.4995 34.5156

uspindels 0 = ref 0.8221 0.7555 1.4153 2.9933 0.7368 0.6896 0.4665 1.4966
0.5 0.7640 0.7143 1.3578 2.8363 0.2607 0.2413 0.1226 0.6287
1 0.7420 0.6642 1.4066 2.8131 0.1358 0.1421 0.2667 0.5448

Tprev 0.05 Uncontr. Uncontr. Uncontr. Uncontr. 0.8421 6.6379 5.1750 12.6693
0.2 = ref 0.8221 0.7555 1.4153 2.9933 0.7368 0.6896 0.4665 1.4966
0.3 0.7562 0.4355 0.6082 1.7999 0.7368 0.6724 0.0394 1.4220

Pyaw 6 1.7313 2.4663 2.1080 6.3056 1 0.8103 0.0486 1.8655
13 = ref 0.8221 0.7555 1.4153 2.9933 0.7368 0.6896 0.4665 1.4966
19 0.8324 0.6070 1.4504 2.8901 0.6315 0.6724 0.0468 1.3269

Py 1 1.1177 0.6077 1.2460 2.9717 1.5263 0.6896 0.0440 2.2749
1.6 = ref 0.8221 0.7555 1.4100 2.9933 0.7368 0.6896 0.4665 1.4966
2.2 0.6712 0.9563 1.6664 3.2940 0.4331 0.6896 0.0487 1.1785
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Table 6 - continued - 
 

 Lane change 5000 N Disturbance 
Scenario Variable Value P MW PW TOT P MW PW TOT
Non-linear tires, 
perfect Internal 
Model 

Uco-contraction 0 = ref 0.2857 0.6166 0.7227 1.6253 0.7368 0.9137 0.1998 1.8656
0.5 0.2198 0.4141 2.1981 2.8325 0.0178 0.0228 17.4152 17.4560
1 0.2169 0.4022 3.5449 4.1640 0.0078 0.0099 34.6513 34.6691

uspindels 0 = ref 0.2857 0.6166 0.7227 1.6253 0.7368 0.9137 0.1998 1.8656
0.5 0.2423 0.4917 0.7590 1.4930 0.2515 0.2931 0.2632 0.8108
1 0.2340 0.4642 0.7932 1.4914 0.1295 0.1684 0.3336 0.6316

Tprev 0.05 1.2440 5.0361 4.6128 10.8933 0.7894 0.9827 0.0433 1.8391
0.2 = ref 0.2857 0.6166 0.7227 1.6253 0.7368 0.9137 0.1998 1.8656
0.3 0.2711 0.6040 0.7200 1.5960 0.6842 0.9482 0.2256 1.8581

Pyaw 6 Uncontr. Uncontr. Uncontr. Uncontr. 1.1052 1.0172 0.0527 2.1709
13 = ref 0.2857 0.6166 0.7227 1.6253 0.7368 0.9137 0.1998 1.8656
19 0.2427 0.6430 1.4262 2.3130 0.5789 0.8793 0.2786 1.7397

Py 1 0.2486 0.3822 2.0654 2.6968 1.4736 0.9137 0.0565 2.4207
1.6 = ref 0.2857 0.6166 0.7227 1.6253 0.7368 0.9137 0.1998 1.8656
2.2 0.4860 2.0783 1.9134 4.4779 0.4661 0.9310 0.0697 1.4598

Linear tires, 
perfect Internal 
Model, front tire 
stiffness*0.5 

Uco-contraction 0 = ref 2.4616 1.8543 0.8497 5.1655 1 0.9137 1 2.2502
0.5 2.4150 1.7272 2.2176 6.3604 0.0231 0.0216 51.5385 17.5898
1 2.4162 1.7244 3.6130 7.7539 0.0101 0.0095 102.1409 34.7908

uspindels 0 = ref 2.4616 1.8543 0.8497 5.1655 1 0.9137 1 2.2502
0.5 2.4367 1.7838 0.8627 5.0833 0.3368 0.2931 1.2295 1.0547
1 2.4294 1.7591 0.8710 5.0592 0.1737 0.1570 1.5680 0.8646

Tprev 0.05 2.3234 4.3525 2.3480 8.7018 1.3157 1.2931 0.1181 2.6224
0.2 = ref 2.4616 1.8543 0.8497 5.1655 1 0.9137 1 2.2502
0.3 2.6018 1.7523 0.7923 5.1465 0.9473 0.8275 1.6799 2.3468

Pyaw 6 2.6971 2.5357 0.4339 5.6665 2.3157 1.500 0.1302 3.8576
13 = ref 2.4616 1.8543 0.8497 5.1655 1 0.9137 1 2.2502
19 2.0708 2.1778 1.5761 5.8247 0.7368 0.8620 0.9079 1.8819

Py 1 3.2344 1.4362 0.7027 5.3738 1.7368 0.8448 0.1501 2.6447
1.6 = ref 2.4616 1.8543 0.8497 5.1655 1 0.9137 1 2.2502
2.2 1.8207 2.4580 0.9626 5.2420 0.7368 1.0862 0.2000 1.8837
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In general, the best performance is achieved with a high gain on the lateral error and with 
maximum co-contraction. The lowest mental workload is seen to occur in case the preview 
gains are low and the lowest physical workload can be found when co-contraction is applied 
and the preview gains are low. The best overall performance seems to be when the spindle 
gains are high and the preview gain is moderate. The table furthermore does not reveal 
unrealistic definitions of P, MW and PW.   
 

6.6. Parameter optimization 
 
In this section the optimal value of each of the 5 parameters displayed in Table 4 is 
determined by using a bounded optimization algorithm. The driver model parameters of 
Table 1 are used, with uspin = ucc = 0.5. Besides the 2 environment conditions already used 
in Table 6 (the lane change and a 5000 N disturbance of Figure 22 during a lane keeping), a 
third condition is added. A high frequency force disturbance of 5000 N at 8 Hz was 
simulated, see Figure 30, to investigate if the spindle reflex gain actually has to be lowered 
due to the time lag on the response as was mentioned in section 4.1.  
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Figure 30. The “high frequency” disturbance. From 1 – 3 seconds a sinusoid with a frequency of 
8 Hz and amplitude of 5000 N is applied as a disturbance to the front tires.  

 
 
The optimal co-contraction ucc level is found in Figure 31. As expected, the optimal value is 
zero for minimizing PW for all scenarios. The optimal value of ucc for the total workload is 
zero for the lane change because very little improvement in MW and P is achieved by using 
full co-contraction whereas the PW does significantly increase.  
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Figure 31. Optimization of the co-contraction level for different moods (minimize physical 
workload, maximize path tracking performance, minimize mental workload and minimize the 
average of the three preceding moods) and environment conditions (an ISO 3888-1 double lane 
change, a lane keeping with a disturbance as displayed in Figure 22, and a lane keeping with a 
disturbance as displayed in Figure 31)  
 

 
The optimization result of the spindle gain (Figure 32) largely resembles the co-contraction 
optimization; however the high frequency disturbance case is indeed different. Due to the 
time delay of the spindle actions, the high frequency disturbance causes the vehicle to 
become less controllable, resulting in an optimum value of uspin of 0 for the mental workload 
minimization and an optimum value of 0.52 for the performance minimization.  
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Figure 32. Optimization of the spindle scaling gain uspin for different moods (minimize physical 
workload, maximize path tracking performance, minimize mental workload and minimize the 
average of the three preceding moods) and environment conditions (an ISO 3888-1 double lane 
change, a lane keeping with a disturbance as displayed in Figure 22, and a lane keeping with a 
disturbance as displayed in Figure 31) 
 

 
The next optimization was done on the lateral error gain. The scenarios with disturbances 
require the lateral error gain to be very low, as can be seen in Figure 33. Due to the time 
delay between the error and subsequent action a large gain quickly leads to instability. 
During the lane change a high lateral error gain is good for tracking performance. This is 
also the case for the minimization of the physical workload. The mental workload has its 
lowest value if no brain signal is generated at all, and therefore the optimal lateral error gain 
is zero in this case. 
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Figure 33. Optimization of the lateral error gain for different moods (minimize physical workload, 
maximize path tracking performance, minimize mental workload and minimize the average of the 
three preceding moods) and environment conditions (an ISO 3888-1 double lane change, a lane 
keeping with a disturbance as displayed in Figure 22, and a lane keeping with a disturbance as 
displayed in Figure 31)  

 
 

The optimal yaw angle error gain (Figure 34) is similar to the lateral error gain plot. 
Comparing the absolute values of the lateral error gain and yaw angle error gain during low 
frequency disturbances, it appears to be more efficient to steer the vehicle according to the 
yaw angle gain instead of the lateral error gain. This is also believed to be a driving 
technique used by experienced drivers. 
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Figure 34. Optimization of the yaw angle error gain for different moods (minimize physical 
workload, maximize path tracking performance, minimize mental workload and minimize the 
average of the three preceding moods) and environment conditions (an ISO 3888-1 double lane 
change, a lane keeping with a disturbance as displayed in Figure 22, and a lane keeping with a 
disturbance as displayed in Figure 31) 

 
 
The final optimization plot (Figure 35) pictures the optimal look-ahead time of the preview 
controller. During the lane change it is beneficial to look far ahead, but since the previewed 
error will also be larger, the physical workload prefers a short look-ahead time. This effect is 
less profound when multiple preview points would be used. The same applies to the 
disturbances: as already seen in the preceding two plots, the gain on the lateral and yaw 
angle error should not be too large. 
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Figure 35. Optimization of the preview time for different moods (minimize physical workload, 
maximize path tracking performance, minimize mental workload and minimize the average of the 
three preceding moods) and environment conditions (an ISO 3888-1 double lane change, a lane 
keeping with a disturbance as displayed in Figure 22, and a lane keeping with a disturbance as 
displayed in Figure 31) 
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7. An application: Using the driver model to design a 
steering system 

 
In chapter 5 the importance of adding a NMS structure to a driver model was shown, which 
was supported by simulation findings in section 6.2. In section 6.5 it was shown that the 
selection of realistic driver model parameters depends on the driver’s mood and the 
environment condition. Therefore it is hypothesized that the steering system configuration as 
desired by the driver also changes according to his mood and the environment condition. In 
this chapter it is shown that this is indeed true and a first step can be taken to focus more 
on the driver when defining the requirements for the steering system design. 
 
Three steering system parameters from the system described in section 5.2.1 are optimized: 
the power steering gain, the steering ratio and the steering wheel damping (encircled in 
Figure 36). The optimal value is calculated for the same 4 driver moods from section 6.5, but 
the environment conditions are altered. Since current steering systems often incorporate a 
velocity dependency, the lane change is conducted both at 80 km/h and at 20 km/h, as well 
as the lane keeping scenario with the force disturbance of 5000 N (refer to Figure 22). For 
reasons of brevity the high frequency disturbance is omitted in this section. 
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Figure 36. The steering system lay-out, with the red circles indicating the three parameters that 
are subjected to an optimization routine in this chapter (the power assist, Tassist,  the steering 
ratio, rswr, and the steering wheel damping, bsw). Figure repeated from section 5.2.1, all symbols 
and their values are listed there 

 
 
First the optimal power steering gain (Tassist in Figure 36 and eq. (18)) is calculated by 
allowing it to change between 0 and 10; which are values encountered in current steering 
systems. The driver’s internal model is constantly adapted to the different power steering 
gains. The optimization result is pictured in Figure 37, where it can be seen that in almost all 
cases the maximum gain is beneficial. Since the driver behaves optimal (no internal noise 
and an internal model that perfectly matches the NMS and vehicle dynamics), the high gains 
in the simulation do not lead to instability as would be in real life. When in the future the 
internal model is validated with real drivers and noise sources are found, these optimizations 
should be redone. A negative value is assigned to the maximum performance objective 
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during the lane change at 20 km/h, this is to indicate that the value for the performance 
metric is equal for all power steering gains. Only during the lane change at 80 km/h the 
physical workload minimization demands the power steering gain to be as low as possible. 
This can be explained by looking at Figure 38, where the bode plots of two internal models 
are pictured.  
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Figure 37. Optimal power steering gain for different moods (minimize physical workload, 
maximize path tracking performance, minimize mental workload and minimize the average of the 
three preceding moods) and environment conditions (an ISO 3888-1 double lane change at 20 
km/h and 80 km/h and a lane keeping with a disturbance as displayed in Figure 22 with 20 km/h 
and 80 km/h. Negative values indicate that the cost value for that particular mood and 
environment condition is equal for all different power steering gains 

 
 
The green line represents the internal model with no power steering gain and the red line 
indicates the internal model response if the power steering gain is set to 10 Nm/Nm. Since 
the lane change at 80 km/h is a very dynamic steering process, the internal model output is 
never lower than 2 rad/s. In this area the high power steering gain requires more muscle 
torque due to the lower damping (at 1 – 3 rad/s). It is interesting to see that the power 
steering gain in this system only helps to decrease physical workload at low frequencies. 
Future evaluations with real systems and/or improved steering system models should point 
out if this is generally the case. If so, the power steering system should be redesigned.  
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Figure 38. Bode diagram of two internal models; green = no power steering gain; red = a power 
steering gain of 10 Nm/Nm 
 
 

The next parameter optimization is carried out on the steering wheel damping (bsw  in Figure 
36 and eq. (16)). The damping value is allowed to change between 0 and 1 Nm/rad/s. The 
results are visualized in Figure 39. In the scenarios without disturbance the minimum 
physical workload could obviously be found when no damping was applied. The performance 
and mental workload were not affected by a change in damping, since the internal model 
could completely compensate for the effect. In the disturbed cases however, damping was 
desired because it absorbs part of the disturbance. This is also true at 80 km/h, however the 
mental and physical workload start to suffer from the extra muscle torque needed to steer 
the vehicle. In general, it seems wise to implement a very low steering wheel damping and 
let the damping of disturbance be done by the driver’s reflexes.  
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Figure 39. Optimal steering wheel damping for different moods (minimize physical workload, 
maximize path tracking performance, minimize mental workload and minimize the average of the 
three preceding moods) and environment conditions (an ISO 3888-1 double lane change at 20 
km/h and 80 km/h and a lane keeping with a disturbance as displayed in Figure 22 with 20 km/h 
and 80 km/h. Negative values indicate that the cost value for that particular mood and 
environment condition is equal for all different steering wheel damping values 

 
 
The final parameter to be varied is the steering ratio (isw in Figure 36 and eq. (20)). The 
steering ratio can be selected between 1:1 and 1:30). Again, it is assumed that the driver 
driving a vehicle equipped with a different steering ratio completely adapted to it. The results 
are pictured in Figure 40. In the disturbed scenarios a high steering ratio is beneficial due to 
the lower forces needed to counteract the disturbance. The subsequent higher steering 
wheel angle deviation provokes a higher torque from the intrinsic dynamics and reflexes 
which respond to changes in position and velocity. In reality, at very high steering wheel 
angles the disturbance cannot be sensed anymore by the driver, which will not trigger the 
fast reflexes of the driver and subsequently the performance drops. Also, in the model the 
inconvenience of steering to an angle more than the hands can achieve without changing 
position is not modeled. At large steering ratios this will become an issue. The lane change 
at 20 km/h prefers a low ratio, probably because of the lower steering wheel speeds and 
subsequent lower energy loss due to damping. At 80 km/h the optimal ratio is somewhat 
higher; at steering ratios below 1: 4 the muscle torque approaches the muscle torque limit 
set in Table 1: 50 Nm. The results comply with the variable steering ratio steering systems 
on the market, which often have a lower ratio at speeds within urban limits, albeit that in our 
simulations all optimal ratios are quite low. Comparison to steering systems on the market 
should point out if this is realistic.  
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Figure 40. Optimal steering ratios for different moods (minimize physical workload, maximize 
path tracking performance, minimize mental workload and minimize the average of the three 
preceding moods) and environment conditions (an ISO 3888-1 double lane change at 20 km/h 
and 80 km/h and a lane keeping with a disturbance as displayed in Figure 22 with 20 km/h and 80 
km/h. Negative values indicate that the cost value for that particular mood and environment 
condition is equal for all different steering wheel ratios 

 
 
Already in these 4 arbitrarily chosen scenarios the driver requires very different optimal 
power steering gains, steering wheel dampings and steering ratios. It was found that in 
accordance with commercial steering systems it is beneficial to have a higher steering ratio 
when the vehicle speed is increased. Also, it was noticed that a high power steering gain 
leads to increased physical workload during dynamics maneuvers due to the lower overall 
damping of the steering system.  
 
In this chapter it became also clear that the analyses probably can be improved by 
expanding the current steering system model, e.g. by incorporating compliance. Also, the 
driver model needs improvement by modeling realistic inaccurate driver control behavior and 
accounting for the effect of having to relocate your hands for large steering angles. However 
since modern steering systems in production vehicles (e.g. BMWs mechatronical Active 
Steering or Mercedes Benz’ mechanical ActivRak™) are not taking into account different 
driver moods and different disturbances and they do not have for instance adaptive wheel 
damping, it is clear that current steering system design can be improved. 
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8. Discussion 
 
 
Designing steering systems which improve safety and comfort requires focus on the needs, 
wants and limitations of the driver. In industry steering system requirements imposed by the 
driver are often defined by a certain “steering feel”. Many different steering feels have been 
proposed (e.g. [28][39][40]), describing different optimal relations between the torque 
applied on the steering wheel and the resulting angle. Although the researchers generally 
acknowledge that the desired steering feel is also dependent on the driver, few useful 
tangible requirements can be found that tie the steering feel to the driver characteristics or 
moods. Traditional design methods rely heavily on evaluations by expert drivers in a time 
consuming trial-and-error process. Evaluations with real cars is constrained by a very limited 
adjustment range of the steering system. Additionally, issues like repeatability; cost and time 
nominate the use of moving base driving simulators.  Still, they cannot provide a completely 
realistic driving feel because of the simplified vehicle dynamics, suboptimal graphics and the 
necessary vestibular stimulants during severe cornering situations due to actuator stroke 
limits. Fixed base simulators clearly do not cope with the latter problem but they do not 
provide the driver with vestibular motion cues.  
 
Although moving base driving simulators save time and cost because of the evaluation being 
possible at an early point in the design phase, they still have to deal with the subjective 
evaluation process. As outlined in this thesis, substituting the driver by a driver model can 
offer several advantages, summarized as:  

• The driver model serves as an objective performance metric. 
• Optimization of driver model parameters can predict the adaptive, driver dependent 

driving style (see chapter 6), according to different: 
o Steering systems 
o Driving conditions 
o Driving tasks 
o Available cues 
o Quality of the cues 
o Physical NMS limitations 
o Disturbances 
o Etcetera 

• The steering feel metric can be substituted by a driver model which contains 
measurable and quantifiable metrics such as mental or physical workload, which is 
adaptive to environments and can model different driver experience levels.  

• Since the vehicle and the driver are replaced by a computer model, optimization 
routines can be implemented to find the optimal steering system design (see chapter 
7). The evaluation can directly be done by the computer, saving considerable time. 

Obviously, the driver model cannot completely substitute real drivers in the evaluation 
process. One of the main reasons is the lack of current driver models to account for the 
response to vestibular and kinesthetic cues. But it will be used as a guideline that will speed 
up the design process. 
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8.1. The NMS driver model 
 
Steering system evaluation requires a driver model which is able to: 

• Follow a desired road trajectory 
• Describe the force interaction between the driver and steering wheel 
• Steer large angles 
• Model the limitations of the driver as a controller 
• Describe the adaptive behavior of the driver 
• Model different driving styles 

 
The driver model of Abbink [2] building on a NMS arm model of de Vlugt [9] can potentially 
fulfill these requirements; however it is developed and identified only for stationary 
conditions where the desired joint position remains constant. In Figure 41 the red blocks 
(except for the path following controller) derive from this model. The path following 
controller is a single point preview model [26] which estimates the vehicle future position 
using a 2 DOF linear vehicle model. The steering dynamics block contains a 2 DOF steering 
system, which is connected to a linear 2 DOF vehicle dynamics model. In order to test the 
original model of Abbink [2] in case large steering angles are desired, the response of the 
model was monitored while a desired steering wheel angle of 1 rad was applied to the input. 
The final steering angle reached was only 0.15 rad. Two major model adjustments over the 
original model were implemented to make the realized angle follow the desired angle. Those 
two adjustments resulted in the addition of the green colored parts in Figure 41. 
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Figure 41. The new NMS driver model, green parts are newly introduced parts compared to the 
original driver model of Abbink [2] building on NMS arm models of de Vlugt [9] (equal to Figure 
13) 

 
 
The first adjustment was made by introducing a “moving reference” steering angle position. 
For straight line lane keeping scenarios the original model with its fixed reference works 
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perfectly, whereas for scenarios where the desired steering angle is constantly changing (all 
other scenarios except lane keeping), a moving reference position is needed. Otherwise the 
driver counteracts his own intrinsic limb stiffness and damping (the “intrinsic dynamics”) and 
muscle spindle reflexes, which try to push the steering wheel position back to the fixed 
reference position. This moving reference position represents the expected steering wheel 
position. If the driver has an accurate representation of the vehicle dynamics, the expected 
and real steering wheel position will be quite similar and his reflexes and intrinsic dynamics 
will not come into play. However if the driver has a bad representation of the vehicle, he will 
command too much or too little force and the steering wheel will not follow the desired 
steering wheel angle, which is counteracted by his intrinsic dynamics and reflexes. The 
internal representation of the driver’s arms dynamics and the system he controls is modeled 
by the inverse internal model, which is discussed next. 
 
The driver turns the steering wheel by commanding a muscle force from the brain. The exact 
amount of force needed to achieve the desired steering angle depends on the dynamics of 
his NMS and the vehicle (with steering system). The knowledge of these two system gained 
by the driver is modeled in two blocks: the inverse model of the NMS and the inverse model 
of the vehicle including the steering column. Simulations showed that only after the moving 
reference and the inverse internal models were both implemented, the model could 
accurately follow the desired steering wheel angle in rapid lane changes. 
 
Since the internal inverse models invert the dynamics of the NMS and vehicle, the output of 
this model at high frequencies can be very high. Thus, a torque limiter saturating the output 
torque to 50 Nm was implemented. Part of this maximum available torque will also be used 
for co-contraction. In this report a relation established by Pick [5] is used to rate co-
contraction effort (the torque needed is the resulting intrinsic stiffness divided by 1.8), but 
since the parameters of the rest of the driver model are obtained using different evaluation 
methods (Van der Helm [27]) further investigation is required to confirm this relation. 
Considering a Hill-type model, the torque limit could also be dependent on the speed and 
position of the muscles. Also, adding a series element (SE) and parallel Hill type element 
(PE) will limit the bandwidth of the NMS dynamics even further. Again, it has to be 
experimentally investigated how the Hill characteristics can be integrated in the driver model. 
 
A simulation was done with a preview model and the new NMS model in section 6.2 where 
the driver was keeping the middle of a straight road, when suddenly a side wind force of 
5000 N was applied. Since the preview model can only notice the change in vehicle 
trajectory by the slow visual channel (0.16 seconds in this case), the vehicle was seen to 
drift 38 cm from the center and only very slowly able to stabilize the vehicle again (see 
Figure 23). However, the new model incorporates quick responses from the intrinsic 
dynamics and the muscle spindle reflexes (only a 28 ms delay), which results in a vehicle 
drift of only 8 cm from the road center. With full co-contraction the wind disturbance had 
hardly any effect on the vehicle trajectory.  
 
A subsequent simulation was conducted to compare the preview model with the new NMS 
model. In this case no disturbance was applied, but both models had to track a double lane 
change trajectory (Figure 21). As expected, the resulting vehicle trajectories were the equal. 
Concluding that in this scenario the user could just as well select the conventional preview 
model is not true. In this case the new model still has two main advantages over the preview 
model. The first advantage is that the new model incorporates physical limits. If the lane 
change would be conducted at a higher speed (and corresponding higher required muscle 
forces) the new model would eventually show a different response compared to the preview 
model. The second advantage is that the new model contains an inverse internal model. 
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Besides physical limitations or erroneous steering angle calculations, the internal inverse 
model is a third source where possible control disabilities of the human derive from. Finally, 
preview models do not model muscle forces, which are needed to evaluate the response of 
the driver on different steering system designs. These muscle forces are used as a measure 
for the physical workload during driving; one of the key judgment parameters for evaluating 
vehicular system designs in the modeling phase.  
 
 
To get a feel of how accurately the internal model should match with the real dynamics 
before the driver loses control of his vehicle three analyses were done in section 6.2.  
 

• In the first case the 11th order accurate internal steering system and vehicle model 
was reduced in order, by replacing it with a 2nd order model. This process 
maintained the functional integrity and only very minor differences were noticed. It 
was not until the internal model was replaced by a zero order (spring) representation 
that the driver model failed to complete the lane change maneuver. 

 
• In the second case the linear tires model of the vehicle was replaced by non-linear 

tires, which was not accounted for in the internal model. Differences in path tracking 
performance were noticeable, but the driver could maintain the vehicle path within a 
range of one meter.  
 

• Thirdly, the tire stiffness ratio between front and rear was changed, again without the 
driver being aware of this change. Only very low rear tire stiffness caused the driver 
to lose control of the vehicle.  
 

It is clear that the performance of the driver depends on the accuracy of his internal model, 
but apparently the driver can control the vehicle with an internal model that can differ 
substantially from the real vehicle dynamics. In the latter case the reflexes and co-
contraction play a very important role. Further research is needed to determine how the 
driver learns this model, what levels of accuracy he can achieve, how quick he learns, which 
factors are important in this learning process and to which extent the driver can cope with 
non-linear dynamics. 
 
When the vehicle suddenly changes its dynamic behavior (e.g. due to a sudden constant side 
wind), the internal model should be adjusted to compensate for this. As stated above, this 
learning process still needs to be investigated, but to temporarily compensate for a mismatch 
between the real and internal model, a simple controlling feature was added that adjusts the 
output torque command of the internal model. In case the desired steering angle differs 
from the realized steering angle for more than 0.5 seconds a PID controller adjusts the 
muscle torque. In chapter 5 this system proved its value when a sudden side force 
disturbance was applied during a lane keeping task; however validation is required here. 
 
As is the accuracy of the internal model important, so is the input to this model: the desired 
steering wheel angle. The angle is calculated by the preview model, which is represented by 
a single point preview in this report. At 80 km/h, the path tracking accuracy in the double 
lane change showed to be low for this controller. To improve the path tracking, extra 
preview points should be added and the steering angle should be allowed to change during 
the preview calculation process. Ungoren [24] developed such a model based on the 
Macadam model [3]. It is also desirable to have a model capable of simulating a “race line” 
trough tight corners and modeling longitudinal driver control (brake and throttle). The latter 
is important since during heavy cornering the tires can be well at their lateral friction limit. A 
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longitudinal gas- or brake torque decreases the lateral friction limit. Macadam developed the 
UMTRI model [23] to fulfill these requirements, which has been implemented in commercial 
software packages. In this UMTRI model (and many other models) the future vehicle path is 
predicted by using a simple, often 2 DOF vehicle model. This report enables the 
improvement of the preview path prediction of the vehicle by connecting a (simplified) NMS 
driver to the vehicle model.  
 
It can be concluded from the simulations in this report that the performance of the driver 
during severe cornering is mainly depending on the path planning, the vehicle path tracking 
error control and the inverse internal model. In case the latter two induce an error, the 
feedback parts (the co-contraction level and the spindle gains) determine the resulting 
performance. Feedback in the model is received both visually or haptic (via the steering 
wheel). The haptic feedback enables the reflexes and intrinsic dynamics to compensate for 
disturbances. The visual feedback is used by the vehicle error controller to adjust the desired 
steering angle or by the correction torque block to adjust the desired muscle torque. The 
haptic feedback parts (intrinsic dynamics and spindle reflexes) can be determined for 
instance by using the identification methods developed by van der Helm [27], the visual 
feedback path contains many parts that are much harder to validate or identify. For example 
the internal model, the path error controller and the path planning parts act in series and 
hence cannot be validated independently. Sophisticated validation methods need to be 
developed to get a realistic representation of these parts. 
 
The NMS parameters are identified for different steady-state tasks [2][9][29], where the 
environment is kept constant. Since driving during every day life contains numerous steady-
state tasks, identification is a very labourous process (and almost impossible for parameters 
in the visual feedback part, see above). Therefore in this report the driver model itself is 
used to determine the optimal parameter values, which at the same time will show that the 
new driver model is able to model adaptive driver behavior. It was hypothesized that the 
parameters are dependent on the driving task and the driver mood. The different moods 
selected are: 

• Minimizing physical workload,  
• Minimizing mental workload,  
• Maximizing path tracking performance. 

 
And the different environment conditions selected were: 

• Lane keeping with a disturbance 
• Lane keeping with a series of disturbances 
• Lane change at 80 km/h 

 
Optimal values of the co-contraction level, muscle spindle gains and preview gains showed to 
change significantly depending on the above mentioned driver moods and environment 
condition (lane keeping or lane change). A future step would be to find more objectives and 
environment conditions that influence the driver’s parameter choice.  
 

8.2. Our Vision of the driver NMS model in developing 
future steering systems 

 
Although finding the different moods of a real driver is rather tedious, we proved in chapter 
7 that such knowledge can aid the design of a steering system. Both different environment 
conditions (lane keeping with a disturbance and a lane change both at 20 km/h and 80 
km/h) and driver moods show to have a significant influence on the optimal value of all three 
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design parameters that were tested. Those parameters were the power steering gain, the 
steering wheel damping and the steering ratio. It would be an interesting comparison if this 
method yields similar steering system design as recent developments from e.g. BMWs Active 
steering or Mercedes Benz’ ActivRak™ where their design is proprietary and patented. 
However in commercial steering systems this parameter is usually not adaptive. In chapter 7 
the driver model parameters were kept constant, future analyses could benefit from also 
letting the driver adapt to the new steering system parameter values. 
 
In the future a steering system can be developed identifying the driver objectives and 
environment conditions real-time and change the steering system parameters accordingly. 

 
Although designing a steering system as described in chapter 7 will improve comfort and 
safety, the latter can be improved even more. For example the driver can be actively 
assisted during unsafe situations by providing artificial torque feedback. At the moment, 
vehicle stability control (VSC) systems maintain safety by acting without notifying the driver. 
This can cause panic reactions of the driver. VSC systems providing artificial torque feedback 
which already show good results are lane keeping systems, lane changing systems and 
haptic gas pedals [2][16][29]. Yuhara [8] is one of the very few on this subject who 
experimented with artificial torque feedback during severe cornering. He feeds back the 
predicted yaw rate with a certain gain to aid the driver in providing extra time. However he 
already indicates himself that this system can be experienced as steering against the driver’s 
intentions. Also it does not actively aid in finding the optimal path to prevent losing control 
or in case the driver already lost control. Systems that aid in steering the correct path need a 
map of the road since the steering wheel itself cannot be taken as a reference anymore. This 
would require complex vehicle systems and infrastructure with similar complex fault rejection 
systems. Furthermore, modeling of path tracking behavior, once the driver lost control over 
the vehicle, will also become an issue. However, first the focus is on developing a driver 
model that is able to model realistic driver behavior such that a optimal new steering system 
design can be obtained.  
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9. Conclusion 
 

The new NMS model is based on the NMS model developed over the years in the Delft 
Biomechanics group (refer to [2][9]). Two major changes were performed in order to cope 
with large steering angles: 

• Since the intrinsic dynamics and reflexes act with respect to a fixed reference point at 
zero degrees steering wheel angle, the driver has to counteract his own dynamics 
when applying large steering angles. Therefore a moving reference point was 
modelled, determined by the driver’s desired steering wheel angle. 

• The desired steering angle was originally scaled linearly to yield the muscle force 
command signal. However in case the system to be controlled incorporates first or 
higher order dynamics, the driver model needs an inverse internal model of this 
dynamics and his own NMS dynamics in order to command the appropriate muscle 
force to achieve the desired steering wheel angle.  
 

The NMS model shows clear advantages over a preview model: 
• It describes the response of the fast reflexes on steering wheel torque feedback in 

addition to visual (road trajectory) feedback. 
• It is able to model the physical limitations of the driver, such as: 

o The maximum available force 
o The bandwidth 

• It uncovers different time-variant driver parameters which partly account for different 
driving styles. For example: 

o The co-contraction level 
o The muscle spindle position and velocity gains 
o The path planning behaviour 
o The inverse internal model of the dynamics of the driver and the system to be 

controlled 
o The accuracy of the learnt inverse internal model is an important factor 

determining driver behaviour. 
 

The NMS model can benefit from the following model extensions: 
• Limiting the desired muscle torque as calculated by the inverse internal model.  
• Finding the driving factors that determine the value of the time-variant driver 

parameters 
• Finding different noise and disturbance sources, for example motor noise in the 

muscles or noise on the nervous signals 
 

The preview model has to be studied further for structure validation and the optimization of 
the parameters. This was beyond the scope of this research for which the primal goal was to 
introduce a realistic NMS driver model structure combining well established a driver models 
and NMS system model. The initial goal of this research was successfully met since the 
proposed structure proved to be an objective performance metric that enables the 
calculation of optimal steering system parameter values depending on different driving 
moods (maximum performance, minimum physical workload or minimum mental workload) 
and driving tasks. We are looking forward to extend this work and see this model describe 
the desired adaptive behaviour of the steering system to the driver.   
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10. Recommendations 
 
In addition to the conclusion, the following recommendations are cited: 
 

• Compare the old driver model of de Vlugt [9] to the new model described in chapter 
5 by conducting validation experiments. The experiments should either be lane 
keeping or lane change on a highway, since in these cases the old model is claimed 
to be valid by Tsoi [29]. 

• Evaluate the new driver model during more extreme driving situations, while not 
depending too much on the (not to be validated) preview model part. A circular drive 
with disturbances for example can be used. 

• Replace the single point preview with for example the UMTRI preview model of 
Macadam [23]. The model of Macadam incorporates: 

o Multi-point preview. 
o Race-line vehicle trajectories trough tight corners. 
o Longitudinal vehicle control; brake- as well as throttle control.  
o Steering angle adjustment possibility during the calculation of the future 

vehicle position. 
• Currently the future vehicle position is calculated without steering system and driver 

dynamics. If the steering angle adjustment is possible during the future vehicle 
position (as in Ungoren [24] and Macadam [23]), it is recommended to also connect 
a (simplified) driver model and steering system model to this vehicle model to 
improve the vehicle future path estimation. 

• The latter point necessitates also a more advanced vehicle dynamics model that at 
least incorporates: 

o Longitudinal velocity control. 
o Independent wheel rotation. 
o Accurate tire force calculation by: 

 Incorporating non-linear tire characteristics. 
 Modelling the friction circle that defines relation between the lateral 

and longitudinal force and the resulting maximum available tire force. 
 Modelling accurate normal forces on the tires, which in turn needs at 

least body roll and pitch modelling. 
• Regarding steering system optimization, a more detailed steering system model is 

needed. It should model: 
o Compliance / play  
o Friction 
o Wear  

• The most common disturbances on the steering system should be modelled. 
• Also, the internal disturbances and/or noise within the NMS should be found. 
• Research and model the path planning behaviour of drivers after they lose control of 

their vehicle. 
• Investigate the importance of adding kinaesthetic cues to the model, as well as the 

driver’s response to force cues applied via the gas and brake pedal. 
• Investigate if the proposed Hill-type muscle force and bandwidth limiting features are 

necessary. 
• Define additional driver moods. 
• Find out how these moods are affected by the task (lane change, lane keeping, high 

speed, low speed). 
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• Investigate which factors determine how drivers learn their internal model, how much 
time is needed, which accuracy is achieved and if the driver is able to learn non-linear 
dynamics. Especially focus on the (non-linear) vehicle dynamics parts that are hard to 
learn and have a great impact on overall stability. 

• The current NMS model assumes a perfect “ten to two” grasp of the hands on the 
steering wheel. The influence of different hand configurations on the final NMS model 
structure should be examined. 

• Investigate how a VSC system can best apply torque feedback to the driver, taking 
into account his actual driving mood (and therefore driver dynamical behavior). 
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