
D
el

ft
U

ni
ve

rs
it

y
of

Te
ch

no
lo

gy

Green AI in Action:
Strategic Model Selection
for Ensembles in Production

Nienke Nijkamp



Green AI in Action:
Strategic Model Selection

for Ensembles in Production

by

Nienke Nijkamp

to obtain the degree of Master of Science
at the Delft University of Technology,

to be defended publicly on Thursday April 11, 2024 at 10:00 AM.

Thesis advisor: Arie van Deursen TU Delft
Daily supervisor: Luís Miranda da Cruz TU Delft
Daily co-supervisor: June Sallou TU Delft

Niels van der Heĳden Deloitte
Thesis committee: Luciano Cavalcante Siebert TU Delft

Student Number: 4659872
Programme: MSc Computer Science, Delft
Project Duration: September, 2023 - April, 2024



Preface

This thesis examines how model selection strategies can impact the accuracy and efficiency
of a live AI ensemble system. To achieve this, we collaborated with Deloitte NL to study the
AI system DocQMiner. This thesis is conducted to obtain the degree of Master of Science in
Computer Science.

Having spent a year working at Deloitte, I was excited to partner with them for my research.
I’m profoundly thankful for the chance to merge my interest in Sustainable AI with a real-
world industry context. This journey afforded me a practical understanding of the complexi-
ties and challenges inherent in AI systems within professional service settings.

I extend my sincerest gratitude to my thesis advisor, Arie van Deursen, and my daily super-
visors, Luís Miranda da Cruz, and June Sallou, whose guidance was instrumental in shaping
this research. Their expertise and patience were invaluable throughout this process. My grat-
itude also extends to Niels van der Heĳden from Deloitte, who provided invaluable industry
insights and always made time to share his knowledge during the many brainstorming ses-
sions.

Furthermore, I would like to thank my colleagues at Deloitte, especially the DocQMiner and
Platform team, for their patience and willingness to answer my countless questions. Their
valuable insights and viewpoints significantly influenced the execution of this research.

To my family and friends, your constant support and encouragement have been the corner-
stone of this thesis and my entire academic journey. I am incredibly thankful for the comfort-
ing spaces you provided, allowing me to focus and thrive during this time.

As I present this thesis for public defense, I reflect on the insights and knowledge gained by
this research. The journey has been challenging and transformative, and I share these findings
with a sense of accomplishment and anticipation.

Nienke Nĳkamp
Amsterdam, April 2024

i



Abstract

Integrating Artificial Intelligence (AI) into software systems has significantly enhanced their
capabilitieswhile escalating energydemands. Ensemble learning, combiningpredictions from
multiple models to form a single prediction, intensifies this problem due to cumulative energy
consumption.

This research presents a novel approach to model selection that addresses the challenge of
balancing the accuracy of AI models with their energy consumption in a live AI ensemble
system. We explore how reducing the number of models or improving the efficiency of model
usage within an ensemble during inference can reduce energy demands without substantially
sacrificing accuracy.

This study introduces and evaluates two model selection strategies, Static and Dynamic, for
optimizing ensemble learning systems’ performance while minimizing energy usage. Our re-
sults demonstrate that the Static strategy improves the F1 score beyond the baseline, reducing
average energy usage from 100% from the full ensemble to 62%. The Dynamic strategy further
enhances F1 scores, while using on average 76% compared to 100% of the full ensemble.

Moreover, we propose an approach that balances accuracy with resource consumption, sig-
nificantly reducing energy usage without substantially impacting accuracy. This method de-
creased the average energy usage of the Static strategy from approximately 62% to 14%, and
for the Dynamic strategy, from around 76% to 57%.

This research aligns with the principles of Green AI by demonstrating that strategic model
selection can achieve a balance between accuracy and computational efficiency.

Our field study of Green AI using an operational AI system developed by a large professional
services provider shows the practical applicability of adopting energy-conscious model selec-
tion strategies in live production environments.
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1
Introduction

Over recent years, the integration of Artificial Intelligence (AI) in modern software systems
has been growing [25]. However, the incorporation of AI, and specifically AI systems, has
led to a significant rise in resource demands, including the energy required for training and
deploying these models [51, 2]. Ensemble learning, a method that combines multiple models
to create a more effective solution, while highly effective, tends to intensify this energy con-
sumption problem due to the cumulative energy requirements of the individual models [37].
Our study is geared towards reducing energy consumption while maintaining accuracy in a
live AI system.

1.1. Green AI
Over recent years, the integration ofArtificial Intelligence (AI) inmodern software systems has
been growing [25]. Consequently, the incorporation of AI, specifically AI systems, has led to
a significant rise in resource demands, including the energy required for training, deploying,
and inferencing these models [51, 2, 11]. To illustrate, a ChatGPT-like application handling 11
million requests per hour is estimated to emit 12,800 tons of CO2 annually, making inference
25 times more carbon-intensive than training GPT-3 [11].

The focus of the AI research community has predominantly been on improving the accuracy
of AI models, overlooking the significant energy costs associated with them. AI’s rising envi-
ronmental and financial cost has led to a pressing need for a more balanced approach to AI
development that considers accuracy and energy efficiency [51]. The emerging field of Green
AI addresses this gap, promoting a favorable trade-off between efficiency and accuracy [47].

There exist various benefits to implementing Green AI, such as:

1



1.2. Ensemble Learning 2

• Reduced environmental impact: Green AI aims to minimize the energy consumption
and carbon emissions associated with AI models, thereby mitigating their environmen-
tal impact [51, 11]. This is critical in the context of global efforts to combat climate change
and reduce greenhouse gas emissions.

• Cost savings: By optimizing AI models for energy efficiency, organizations can achieve
significant cost savings, particularly in terms of reduced energy bills and lower infras-
tructure expenses[2]. ThismakesAImore accessible and affordable, especially for smaller
entities and startups.

• Enhanced performance: Green AI encourages the development of lightweight and ef-
ficient models, which can often perform better in resource-constrained environments.
This leads to faster inference times and improved usability of AI applications on edge
devices[27].

• Social responsibility: Adopting Green AI practices demonstrates a commitment to so-
cial responsibility and ethical AI development[13]. It aligns with the broader goals of
sustainable development and responsible technology use.

A significant gap remains in implementing Green AI principles within the industry [53]. De-
spite the growing awareness of the environmental impact of AI and the potential benefits of
Green AI, the adoption of sustainable practices in AI development is still limited. Challenges
such as the lack of standardized metrics for measuring the resource consumption of AI mod-
els, the absence of incentives for developing energy-efficient algorithms, and the need for a
cultural shift towards prioritizing sustainability in AI research and development are some of
the barriers to widespread implementation [47, 33, 57].

1.2. Ensemble Learning
Ensemble learning is a powerful technique in the field of machine learning that involves com-
bining multiple models to improve the overall performance of a system [59]. The concept of
ensemble learning can be traced back to the early 1990s, with significant contributions from
researchers such as Hansen and Salamon [28] and Breiman [5]. The primary motivation be-
hind ensemble learning is the recognition that different models may capture different aspects
of the data, and by aggregating their predictions, one can achieve a more robust and accurate
outcome.

There are various types of ensemble methods, each with its unique approach to combining
models:

• Bagging (Bootstrap Aggregating): Introduced by Breiman [5], bagging involves training
multiple models on different subsets of the training data (sampled with replacement)
and then averaging their predictions. Random Forest [6] is a well-known example of a
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bagging ensemble.

• Boosting: Boosting algorithms, such as AdaBoost [22] and Gradient Boosting [23], se-
quentially train models, with each model focusing on the instances that were misclassi-
fied by the previous models. The final prediction is a weighted sum of the individual
models’ predictions.

• Stacking: Stacking involves training multiple models on the same data and then using
a meta-model to combine their predictions [56]. The meta-model is trained on the pre-
dictions of the base models, allowing it to learn how to best combine their outputs.

Popular applications of ensemble learning are speech recognition [18, 36] and classification
[52, 42], image classification [54, 35, 31] and forecasting [44, 38, 7, 49]. Additionally, ensemble
methods have been successful in winning numerous machine learning competitions, such as
the Netflix Prize [3] and Kaggle competitions [10].

The relevance of ensemble learning extends beyond its predictive capabilities. In the context
of Green AI, ensemble methods pose both challenges and opportunities. While ensembles can
be more resource-intensive due to the use of multiple models [37, 15], they also offer a poten-
tial pathway for balancing accuracy and energy efficiency. By selectively combining models
or employing energy-efficient ensemble techniques, one can achieve high-performance AI sys-
tems that are also environmentally sustainable [37, 55].

1.3. Deloitte
Deloitte began as an accountancy firm but has since expanded into a broad range of profes-
sional services. Founded by William Welch Deloitte in 1845 in London, Deloitte initially fo-
cused on audit andfinancial advisory services. Over time, the firmhas significantly broadened
its service offerings to include management consulting, risk advisory, tax, and other related
services. Today, Deloitte is one of the ”Big Four” professional services networks and offers a
wide spectrum of services to clients across various industries around the world.

As the largest professional services network in theworld by revenue and number of profession-
als, Deloitte offers a multifaceted approach to risk management and mitigation. Leveraging
its expansive global footprint and cross-industry experience, Deloitte assists organizations in
navigating digital risks, from cybersecurity threats to compliance issues.

1.3.1. DocQMiner

DocQMiner is a tool developed byDeloitte’s Digital Risk Solutions (DRS) team. The DRS team
consists of around 65 professionals who assist businesses in effectively identifying, assessing,
and mitigating various types of risks using assets, ensuring resilience and compliance in the
corporate landscape.
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DocQMiner was developed upon a client request in 2018 when thousands of documents had
to be processed within three months. Development continued, and the tool is currently used
by many different customers in various domains, such as the public sector, life sciences, and
financial services.

1.4. Research question
Our research explores the intersection of Green AI and ensemble learning in a production en-
vironment, a domain that has yet to be thoroughly investigated. Simply running all models
every time is not an efficient strategy [60]. The challenge is finding amore intelligent approach
for running inference with ensemble learning [55], reducing energy consumption while main-
taining or improving accuracy.

Our research explores the intersection of Green AI and ensemble learning in a production en-
vironment, a domain that has yet to be thoroughly investigated. Simply running all models
every time is not an efficient strategy [60]. The challenge is finding amore intelligent approach
for running inference with ensemble learning [55], reducing energy consumption while main-
taining or improving accuracy.

In this research, we propose a solution that involves a selective approach to using models
within an ensemble. The core of this approach is the concept of model selection strategies, which
refers to various methods of selecting specific subsets of models for individual tasks rather
than using the complete set of models for every task [8]. Our goal in implementing these
model selection strategies is to balance achieving accuracy andmanaging computational costs.
This goal leads to the following research question.

Research Question: What are the impacts of implementing model selection strategies on the
accuracy and energy usage of ensemble learning systems?

Two model selection strategies, Static and Dynamic, are investigated for optimizing model per-
formance. Both strategies start by evaluating all subsets of the entire ensemble on a validation
set, selecting the combination with the highest accuracy. Static selection identifies the best
overall model selection, while Dynamic selection chooses the best selection per specific prop-
erty within the domain.

Additionally, we consider the computational cost per model by employing a metric that dis-
counts accuracy with energy consumption. This method is incorporated into both the Static
and Dynamic selection strategies, ensuring a balanced consideration of performance and re-
source efficiency.
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This research provides practical insights intomakingmodel ensemblesmore efficient by exam-
ining and implementing our model selection strategies within an ensemble learning context.
Our contributions to the field of AI in software systems using ensemble learning are the fol-
lowing:

1. A detailed evaluation of Static and Dynamic model selection strategies in a production
environment.

2. An approach to enhance these strategies by incorporating energy usage metrics, signifi-
cantly lowering energy consumption.

These contributions demonstrate that model selection strategies not only significantly reduce re-
source consumption but also have the potential to maintain or increase the accuracy of the AI
system.

Furthermore, these findings highlight the practicality and necessity of integrating Green AI
principles into AI development, working towards more sustainable and efficient AI applica-
tions in the industry¹.

1.5. Thesis outline
In this section, we go over the outline of the report. In Chapter 2, we delve into ensemble
learning and the principle of model selection strategies within such systems. We detail the
use case of the Deloitte DocQMiner AI system to highlight the relevance of ensemble learning
in information extraction tasks and the importance of considering energy consumptionwithin
these systems.

Following, Chapter 3 presents a comprehensive literature review encompassing the domains of
Green AI, model selection strategies, and their intersection with ensemble learning. It synthe-
sizes the existing research and situates our studywithin the broader context of energy-efficient
AI development.

In Chapter 4, we outline the strategies for model selection—Static and Dynamic- and our pro-
posed Energy-Aware approach. Additionally, we elaborate on the data sources used, experi-
mental setup, performance evaluation metrics, and the measurement of energy consumption
during the inference phase of the models.

In Chapter 5 we present the results of our experiments, comparing the performance of the
Static and Dynamic model selection strategies to the Full Ensemble baseline across the two
datasets. The chapter includes a detailed analysis of the precision-recall trade-offs and the
resource efficiency gains achieved by each strategy.

¹The replication package for this study is available at the following DOI link: 10.6084/m9.figshare.25481269
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In Chapter 6, we discuss the implications of our findings for Green AI and the practical con-
siderations for implementing these strategies in the industry. We also address our study’s
limitations and suggest avenues for future research.

Concluding the report, in Chapter 7 we summarize the key findings of the thesis, reaffirming
the significance of model selection strategies for achieving a favorable balance between accu-
racy and energy efficiency in ensemble learning systems. It shows the contribution of this
research to the pursuit of sustainable AI practices in production environments.



2
Background

In this section, we highlight the concept of ensemble learning, followed by a detailed study of
the use case and the infrastructure of the AI system.

2.1. Ensemble of models
Ensemble learning is a strategic approach that combines several individual anddiversemodels
to achieve better generalization performance [59]. The strength of ensemble learning lies in its
diversity; a combination of models can provide a more robust and accurate output than any
single model can [15, 24]. Popular applications of ensemble learning are speech recognition
[18, 36] and classification [52, 42], image classification [54, 35, 31] and forecasting [44, 38, 7,
49].

A well-known method within ensemble learning is bagging (Bootstrap Aggregating), which
enhances the stability and accuracy of machine learning algorithms by trainingmultiple learn-
ers on various subsets of the original dataset and then aggregating their predictions to form a
final decision [5].

At the core of our research are model selection strategies for ensembles. Model selection entails
selecting a subset of models from an ensemble of models to optimize for a particular perfor-
mance metric[8]. We use model selection within ensembles to reduce resource consumption in
alignment with Green AI principles.

2.2. DocQMiner
To evaluate the impact of using model selection strategies for ensemble learning in a live pro-
duction environment, we use the AI system DocQMiner [16], a proprietary tool owned and

7
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developed by Deloitte NL.

This system utilizes a diverse mixture of machine learning (ML) models and NLP technolo-
gies to extract, process, and analyze data from textual documents. The tool is an information
extraction tool and widely used in the industry across many different domains, for document
set sizes ranging from 100 to over 100,000 documents. In this work, we focus on the use case
of extracting relevant properties from contracts.

After processing a document, the AI system makes predictions for predefined key properties.
Users select properties relevant to their specific use case; for instance, Figure 2.1 illustrates
highlighted contract properties like Title, Parties, Start Date and Goal. The tool allows users to
input a contract and delivers the predictions for the properties of interest. This design makes
contract review more efficient, especially for complex documents [41].

Figure 2.1: This figure shows an example of a document with relevant properties highlighted. Title, Start date,
Parties, and Goal are highlighted to showcase how specific information can be extracted and structured from legal

documents.

Users go through a four-step process, as shown in Figure 2.2:

1. Suggest: DocQMiner reads the documents and gives suggestions for the properties to
extract from the documents.

2. Analyze and tag: Using these suggestions, users can quickly go through the documents
by either accepting the suggestions ormanually selecting the correct text in the document

3. Review: Through the four eyes principle done by the experts, the workflow process
always contains the correct information.

4. Learn: Using the tagged information, DocQMiner learns to provide better suggestions.
This further reduces processing time and improves quality.
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Figure 2.2: Workflow diagram of DocQMiner: This graphic illustrates the four-step workflow of DocQMiner,
starting from unstructured documents to producing structured information. Step 1 involves generating

suggestions for the documents, which are then analyzed and tagged in Step 2. The tagged documents undergo a
manual review in Step 3, and the system learns from this input to improve future suggestions in Step 4.

Figure 2.3 shows the user interface of DocQMiner. On the left, the user can see the property
and the suggestions, and on the right these suggestions are highlighted in the original docu-
ment.

Figure 2.3: Interface of DocQMiner: This screenshot showcases the DocQMiner tool in action, highlighting its
ability to suggest potential answers for identifying the name of the Counterparty in a commercial lease

agreement. The left panel displays the input fields for properties and their suggestions, while the right panel
shows the document, with the suggestions highlighted.

TheAI system employs a set of diverse (pre-)trainedmodels, as shown in Figure 2.4, to compile
a ranked top 5 of textual predictions for every property queried. For every property, each
model in the ensemble produces a set of predictions and they are aggregated to form the set
of five final predictions. The human-in-the-loop workflow highlighted in Figure 2.2 ensures
the validity of the processed data.
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Figure 2.4: Workflow of DocQMiner. (1) Initially, documents are processed using just the pre-trained models. (2)
After processing an initial set of documents, models are trained using the processed data. (3) After training

models, documents are processed using the pre-trained and trained models. (4) After processing more
documents, the trained models can be trained again on the newly processed documents. Steps 3-4 can be

continuously repeated.
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Figure 2.4 provides a conceptual diagram of the system’s processing workflow. Input docu-
ments are subjected to a pre-processing step, which ensures that the textwithin the documents
is prepared for subsequent analysis by the system’s models.
Out of the box, the ensemble contains a set of pre-trained models to create predictions for
the properties. Additionally, once a set of documents within a domain has been completely
processed by the system, an additional set of models can be trained using the in-domain data
from the processed documents, as depicted by the Labeled Data in Figure 2.4.

2.3. Energy consumption
This paper analyses the energy consumption of the AI system in a production environment.
Therefore, we will leverage the existing monitoring tool within the system, Datadog [14],
which offers an extensive set of features for extracting metrics from the system. This cloud
monitoring service provides a framework for tracking and analyzing energyusemetricswithin
our AI deployments, as noted in industry literature[40].

Figure 2.5 illustrates a snapshot of metrics (CPU Usage in this case) captured by Datadog at
the time of an upload of one document. The peaks in CPUUsage show the impact of operating
the DocQMiner model set compared.

DocQMiner uses a substantial amount of CPU when processing a single document. Consider-
ing DocQMiner processes document sets ranging in size from 100 to over 100,000 documents
per instance, there are environmental and financial implications. This energy usage escalates
operational costs and enlarges the carbon footprint of using DocQMiner, challenging the sus-
tainable principles of Deloitte[17].

Figure 2.5: Overview of CPU usage during inference of the model ensemble: This figure displays a snapshot of
CPU usage metrics captured by Datadog during the upload of a single document. The peaks in CPU usage

highlight the significant computational resources consumed by the DocQMiner model set.



3
Related work

Green AI, the intersection of energy efficiency and model accuracy in Artificial Intelligence
(AI) has sparked a growing interest amongst researchers [51, 47]. Our work focuses on re-
ducing resource consumption in ensemble learning using model selection strategies in a live
production environment. To the best of our knowledge, there is no other work combining all
elements. Below, we highlight the most significant contributions in the areas of model selec-
tion strategies and Green AI.

Zhou et al. [60] pivoted model selection in ensemble learning in 2002. Their work introduced
GASEN, an approach that begins by allocating initial weights to neural networks, then em-
ploys a genetic algorithm to refine these weights. The optimized weights are instrumental in
selecting the most effective subset of the ensemble. GASEN proves that incorporating the full
ensemble may not always be the optimal strategy, demonstrating the potential of selecting a
subset of models.

Li et al. [37] present a novel approach, IRENE, to ensemble learning that focuses on balancing
performance and computational cost for inference of ensemble learning. Using a learnable
selector, base models, and implementing early halting in a sequential model setup, IRENE
reduces inference costs by up to 56% while maintaining comparable performance to full en-
sembles. IRENE presents a highly effective strategy for ensemble learning in contexts where
sequential processing is feasible, as opposed to parallelism. However, the specific use case
addressed in this paper necessitates a parallel approach, and as such, does not accommodate
the sequential processing model that IRENE requires.

David et al. [15] propose an ensemble learning approach based on the consensus of multiple
models for class prediction. It operates under the assumption that once multiple models pre-

12
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dict a class it is likely the correct one. This approach significantly reduces computational costs
by about 50% while maintaining accuracy. Despite its effectiveness in classification tasks, this
approach is not directly applicable to ourwork, as our ensemble is geared towards information
extraction rather than classification, requiring a different methodological framework.

Kotary et al. [32] introduce a framework that combines machine learning and combinatorial
optimization for differentiable model selection in ensemble learning. Their method of storing
data for predicting optimal subsets in a neural network contrasts with our approach, which
involves a more straightforward collection and selection of models within an ensemble for
task-specific optimization. Additionally, as with the method from David et al. highlighted
above, the success achieved on classification tasks cannot immediately be transferred to infor-
mation extraction.

Cordeira et al. [12] present a new approach called Post-Selection Dynamic Ensemble Selection
(PS-DES). PS-DES evaluates ensembles selected by different DES techniques using different
metrics to determine the best ensemble for each query instance. Their work introduces static
and dynamic model selection based on evaluating a preliminary set of results. The relevance
of these selection methods to our study stems from their design goal of integration into AI
pipelines, which aligns with our focus on applying these strategies to a real-life use case. Con-
sequently, we adopt these methods to reduce the number of models during inference in en-
sembles.

Zhang et al. [58] propose a method named EDDE (Efficient Diversity-Driven Ensemble for
Deep Neural Networks) to improve ensemble accuracy while reducing training costs. By se-
lectively transferring generic knowledge and using a diversity-driven loss function, EDDE out-
performs other ensemblemethods in both Computer Vision andNatural Language Processing
tasks. The Boosting-based framework further enhances diversity, making EDDE an efficient
and effective ensemble learning approach for neural networks. EDDE proved to reduce the
cost of training ensemble models for NLP tasks, however the scope of our research lies within
reducing inference cost.

Shazeer et al. [48] discusses the implementation of a Sparsely-GatedMixture-of-Experts Layer
in neural networks, achieving significant improvements in model capacity and computational
efficiency. The approach outperforms state-of-the-art models in language modeling and ma-
chine translation tasks by addressing challenges such as load balancing and network band-
width. The hierarchical MoE structure allows for scalability and improved expert utiliza-
tion. This technique shows promise for enhancing deep learning models with large training
datasets. The approaches presented in the research change the training and inference pro-
cess within the models, while our work proposes an optimization for inference for ensembles
without changing the existing models.
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Savelka et al. [46] assess GPT-4’s performance compared to human annotators in analyzing
legal texts. Results show GPT-4 performs similarly to well-trained law student annotators,
indicating its capability in this specialized domain. This suggests GPT-4’s effectiveness in an-
alyzing legal concepts, offering potential cost and time savings in semantic annotation tasks
requiring specialized expertise. The context of extracting text from complex legal documents
aligns with the use case of our research, though their work is focused on GPT-4, and our work
is focused on the AI system DocQMiner.

Within this landscape of optimizing ensemble learning, the work of Gowda et al. [26] intro-
duces a critical consideration for assessingmodel efficiency. They propose ametric, the Green-
QuotientIndex (GQI), that penalizes high electricity consumption while considering accuracy.
The authors conduct a comprehensive study on the electricity consumption of different deep
learning models, highlighting the often overlooked trade-off between accuracy and energy ef-
ficiency. Our work takes this concept further by demonstrating the practical application of the
GQI in real-time production environments that rely on model ensembles.

Wu et al. [57] in collobaration with Facebook explore the environmental impact of AI, focus-
ing on data, algorithms, and system hardware. They highlight the exponential growth in
AI and the need for environmentally-responsible advancements. Key points include the car-
bon footprint of AI computing, challenges in data scaling, and the importance of optimizing
AI infrastructure for sustainability. Recommendations include developing resource-efficient
models, maximizing accelerator utilization, and incorporating environmental sustainability
in AI system design. Overall, the document emphasizes the importance of addressing the
environmental implications of AI growth through holistic and sustainable approaches.

Henderson et al. [29] introduces a framework for tracking the energy and carbon footprints of
machine learning experiments, aiming to promote energy-efficient research. It highlights the
complexities and inaccuracies of current estimation methods, emphasizing the importance of
accurate reporting for driving mitigation strategies. The framework enables easy reporting
of energy and carbon metrics, facilitating the creation of leaderboards to incentivize energy-
efficient algorithms. Immediate actions include utilizing the framework for reporting and
participating in energy efficiency leaderboards to promote sustainable machine learning prac-
tices. This work highlights the continued need for live monitoring in AI systems, and how
monitoring can entice AI practitioners to be more energy conscious when developing AI sys-
tems.

Schwartz et al. [47] concept of Green AI, advocating for more environmentally friendly and
inclusiveAI research. It highlights the increasing computational costs of deep learningmodels
and proposes measuring efficiency using Floating Point Operations (FPO). Researchers can
reduce computational expenses by reporting FPO and promoting efficiency as an evaluation
criterionwithout sacrificing performance. The paper emphasizesmaking AImore sustainable
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and accessible, encouraging a shift towards Green AI practices.

The review of Green AI literature by Verdecchia et al. [53] shows a growing interest in AI
models’ energy efficiency, focusing on monitoring, hyperparameter tuning, and model bench-
marking. Most studies target the training phase, with significant energy savings reported.
Industry involvement is limited, and tools for Green AI are scarce. The results suggest a need
to bridge academic research with industrial practice for broader impact.

Research by Salveka et al. [45] discusses using pre-trained language models to identify ex-
planatory sentences in legal case decisions. It highlights the effectiveness of transformer-based
models in detecting useful sentences for explaining legal concepts. The models outperform
traditional approaches and can learn sophisticated linguistic features. The results suggest
potential applications in legal information retrieval and statutory interpretation. This work
provides insights for improving legal text analysis and understanding statutory terms. The
work uses the same dataset for legal information extraction, the CUAD dataset [30]. However,
the performance was reported using the normalized discounted cumulative gain instead of
the F1 score in our work.

We have compiled an overview of the relevant literature highlighted in this chapter and their
main topics relevant to our work in Table 3.1. The overview shows that the works address
some topics; however, the knowledge gap addressed in this research combines all topics.
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Table 3.1: This table shows significant research papers across various domains of artificial intelligence,
categorized under Efficiency/Green AI, Ensemble Learning, Subset of Models for Inference, Information

Extraction, and Industry Involvement. Our work, ”Green AI in Action: Strategic Model Selection for Ensembles
in Production,” integrates all these aspects.

Paper Topic

Authors Title Year
Efficiency /
Green AI

Ensemble
learning

Subset of models
for inference

Information
extraction

Industry
involvement

Zhou et al. [60]
Ensembling neural networks: Many could
be better than all

2002 ✓ ✓

Shazeer et al. [48]
Outrageously Large Neural Networks:
The Sparsely-Gated Mixture-of-Experts Layer

2017 ✓ ✓ ✓

Zhang et al. [58]
Efficient Diversity-Driven Ensemble for
Deep Networks

2020 ✓ ✓ ✓

David et al. [15]
Adaptive consensus-based ensemble
for improved deep learning inference cost

2021 ✓ ✓ ✓

Savelka et al. [45]
Discovering explanatory sentences in legal
case decisions using pre-trained language
models

2021 ✓

Wu et al. [57]
Sustainable AI: Environmental implications,
challenges and opportunities

2022 ✓ ✓

Li et al. [37]
Towards Inference Efficient Deep
Ensemble Learning

2023 ✓ ✓ ✓

Kotary et al. [32]
Differentiable model selection for
ensemble learning

2023 ✓ ✓

Cordeira et al.[12]
A post-selection algorithm for improving
dynamic ensemble selection methods

2023 ✓ ✓

Gowda et al. [26]
Watt For What: Rethinking Deep Learning’s
Energy-Performance Relationship

2023 ✓

Savelka et al. [46]
Can GPT-4 Support Analysis of Textual
Data in Tasks Requiring Highly Specialized
Domain Expertise?

2023 ✓

Verdecchia et al. [53] A systematic review of Green AI 2023 ✓

Henderson et al. [29]
Towards the Systematic Reporting of the
Energy and Carbon Footprints of
Machine Learning

2023 ✓ ✓

This research
Green AI in Action: Strategic Model
Selection for Ensembles in Production

2024 ✓ ✓ ✓ ✓ ✓



4
Methodology

This section outlines the methodology and evaluation of our model selection strategies. We high-
light the two selection strategies, Static [39] and Dynamic [12], and describe our approach to
using them to reduce resource consumption even more efficiently, Energy-Aware selection.

We continue with data collection and analysis, followed by the experimental setup and the
performance evaluation metrics. Lastly, we explore the energy consumption of the models
during inference.

4.1. Model Selection
This study aims to analyze the impact of implementing model selection strategies in a live AI
system that uses an ensemble of models on its energy usage and accuracy. In this section, we
highlight how two selection strategies, Static [39] and Dynamic [12], can be used for this, and
we describe our approach to using them to reduce resource consumption evenmore efficiently,
Energy-Aware selection.

4.1.1. Model selection for energy efficiency

In pursuit of sustainable AI practices, our study assesses existing Static [39] and Dynamic [12]
model selection strategies to reduce energy consumption in a live AI system. These strategies
are used to reduce the number ofmodels or improve the efficiency ofmodel usage used during
inference, which is a significant determinant of overall energy usage [37].

The Static strategy selects an optimal subset of models for general tasks across the domain,
while the Dynamic strategy adapts model selection to the specifics of each task, aiming to con-
serve energy without compromising the system’s accuracy.

17
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Our main contribution lies in the novel Energy-Aware selection approach, which enhances the
standard Static and Dynamic strategies by integrating an energy-aware metric in their applica-
tion. This metric informs the selection process, ensuring that only the most energy-efficient
models are chosen for the task at hand.

4.1.2. Static selection

Static selection involves choosing the optimal subset of models for an entire domain. This
approach generalizes the unique characteristics of the domain and selects the optimal subset
across all queried properties. The following equation shows the process of Static selection.

𝑆𝑎∗ = 𝑎𝑟𝑔𝑚𝑎𝑥𝑆𝑖∈𝑆𝐹1(𝑆𝑖) (4.1)

where 𝑆 is the set of all possiblemodel subsets, F1(𝑆𝑖) is the F1 score of subset 𝑆𝑖 on the training
set, and 𝑆𝑎∗ as the optimal model subset chosen for evaluation.

4.1.3. Dynamic selection

Dynamic selection is based on the belief that a model subset might not be optimal for an entire
domain, but more specifically for the properties within the domain [12]. Therefore, we take
the optimal subset for every queried property within the domain. This approach could be
beneficial as the selection is more optimized per property. The following equation shows the
process of Dynamic selection.

𝑆𝑎∗(𝑝 𝑗) = 𝑎𝑟𝑔𝑚𝑎𝑥𝑆𝑖∈𝑆𝐹1(𝑆𝑖 , 𝑝 𝑗) (4.2)

We denote 𝑃 as the set of all properties within the domain. 𝐹1(𝑆𝑖 , 𝑝 𝑗) is the F1 score of subset
𝑆𝑖 for property 𝑝 𝑗 on the training set. 𝑆𝑎∗(𝑝 𝑗) is the optimal model subset for property 𝑝 𝑗 in 𝑃

chosen for evaluation.

4.1.4. Energy-Aware selection

Both selection strategies, Static and Dynamic, should reduce energy consumption because a
subset of models is used instead of all. However, neither strategy considers how different
models compare in terms of energy efficiency. For instance, one model could slightly improve
accuracy while costing a significantly larger amount of energy than another.

We propose an enhancement to the Static and Dynamic approach that discounts accuracy with
resource consumption in the selection of models, Energy-Aware selection. We use the Green-
QuotientIndex (GQI) [26] to factor the trade-off between accuracy and electricity usage. We
add GQI to both Static and Dynamic versions, and compute it as follows:
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𝐺𝑄𝐼𝑠𝑡𝑎𝑡𝑖𝑐 = 𝛽 × 𝐹1(𝑆𝑖)𝛼
𝑙𝑜𝑔10(𝐶(𝑆𝑖)) (4.3)

𝐺𝑄𝐼𝑑𝑦𝑛𝑎𝑚𝑖𝑐 = 𝛽 × 𝐹1(𝑆𝑖 , 𝑝 𝑗)𝛼
𝑙𝑜𝑔10(𝐶(𝑆𝑖)) (4.4)

This metric evaluates the trade-off between accuracy and power consumption, where 𝛼 and
𝛽 are constants used to scale the GQI. The power consumption (𝐶(𝑆𝑖)) can vary significantly
across different models, and therefore the logarithm of the power consumption is taken. Not
all accuracy points (𝐹1(𝑆𝑖) for 𝐺𝑄𝐼𝑠𝑡𝑎𝑡𝑖𝑐 and 𝐹1(𝑆𝑖 , 𝑝 𝑗) for 𝐺𝑄𝐼𝑑𝑦𝑛𝑎𝑚𝑖𝑐) have the same weight,
as it is much easier to get from 0.4 to 0.5 then it is to go from 0.8 to 0.9. Therefore, the power
(constant 𝛼) of the accuracy reflects the difference in difficulty.

Through the previously mentioned monitoring tool, Datadog [14], there is no availability for
power consumption. We, therefore, use CPU usage as a proxy to discount the accuracy. We
use this way of discounting the accuracy scores for both the Dynamic and the Static selection
approaches highlighted above.

4.2. Data
The datasets for our experiments are selected based on a set of criteria. Each document within
the dataset must contain contracts with a complete text, its associated properties, and anno-
tated responses corresponding to these properties. We employ open-source datasets for our
study, enhancing the reproducibility of our results. The CUAD [30] dataset and a dataset from
the work of Leivaditi et al. [34] are used in this study, both of which were designed to optimize
contract review processes and improve the effectiveness of information extraction.

4.2.1. CUAD

The Contract Understanding Atticus Dataset[30] (CUAD) is an extensive corpus tailored for
commercial legal contract analysis. It consists of more than 13,000 labels from 510 contracts
divided into 25 contract types. Each document contains one or more of 41 distinct proper-
ties. The dataset presents a challenging research benchmark that can be used to enhance deep
learning models’ performance for contract analysis/understanding [9].

Thedataset is designed to automate the process of contract review, traditionally a time-consuming
and expensive task when performed manually [30]. It also aims to evaluate the generalization
capabilities of NLP models in specialized domains.

This dataset is compiled by a team consisting of law students, practicing lawyers, andmachine
learning experts. Before beginning their annotation work, all team members underwent a
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training program lasting between 70 to 100 hours. To ensure accuracy and consistency, at least
three other team members reviewed and validated every annotation.

4.2.2. Lease Contracts

Leivaditi et al. [34] introduced a specialized benchmark dataset focused on lease agreement
documents. These documents were sourced from a publicly available dataset by the U.S. Secu-
rities and Exchange Commission (SEC, 2020). The dataset concentrates on extracting specific
properties, including information about the lessor and details of the leased space. This dataset
is specifically created to improve the efficiency and accuracy of contract review.

4.2.3. Analysis of datasets

Wecompare and analyze the datasets employed to understand the characteristics of the datasets
and ensure the validity of the results. Table 4.1 shows the comparison of relevant character-
istics. The CUAD and Lease Agreement datasets exhibit similar document lengths, with an
average of approximately 8,000 words per document, as indicated by the #WordsPerDocument
metric. Consequently, we will not regard document length as influencing our results.

Table 4.1: Comparison of characteristics between CUAD and Lease Agreement Datasets: This table provides a
detailed comparison of the CUAD and Lease Agreement datasets, including the number of documents, types of
documents, average words per document, number of annotated properties, total number of queries, number of

missing annotations, and the percentage of missing annotations.

Dataset CUAD [30]
Lease
Agreement [34]

#Documents 510 123
#TypesOfDocuments 25 1
#WordsPerDocument 7861 8053
#AnnotatedProperties 41 12
#TotalQueries 20,910 1476
#MissingAnnotations 13,959 494
MissingAnnotation (%) 66.77 33.47

The CUAD dataset encompasses a diverse collection of 25 types of contracts, reflecting a wide
range of legal agreements. In contrast, the Lease Agreement dataset focuses solely on a single
type of contract, specifically lease agreements. With the CUAD dataset’s variety, the model
selection process must account for the nuances and intricacies inherent in different types of
contracts. Conversely, the Lease Agreement dataset’s singular focus may allow for more spe-
cialized model tuning and optimization tailored specifically to lease agreements.

Additionally, there is a notable difference in the number of annotated properties between
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the two datasets. With #MissingAnnotations, we indicate the number of properties that were
queried but did not have a ground truth in the document, thus missing an annotation. Specifi-
cally, 66.77% of the queried properties in the CUAD dataset lack annotations, in contrast to the
Lease Agreement dataset, which is missing annotations for only 33.47% of its properties. De-
spite the significant number of missing annotations, we use these datasets to cover a broader
array of use cases, including documents where the answer might not always exist. The varied
percentage of missing annotations allows us to cover more ground in our results.

4.3. Experimental setup
To integrate models tailored for specific domains, we select a subset of documents from the
CUAD [30] and Lease Agreement [34] datasets that reflect the entire dataset. We process,
annotate, and train models on these documents. After training, we run an evaluation on a
held-out test set.

For both approaches, we run inference using the complete model ensemble on the documents
from the validation set. We then evaluate the performance of the entire ensemble and each
subset of models within the ensemble. The subset that demonstrates the highest performance,
as determined by F1 scores from the training set, is selected for further testing.

This optimally performing subset is applied to the test set documents to evaluate its effec-
tiveness on new data. To ensure the validity of the results, we create the validation and test
datasets through 5-fold cross-validation.

As implemented in the tool, the predictions made by the entire model ensemble establish the
performance evaluation baseline.

4.4. Performance Evaluation
When paired with the annotations, the ensemble’s predictions can result in various scenarios:
True Positive, where the prediction aligns with the annotation; False Positive, where a predic-
tion exists but fails to match the annotation; and False Negative, where a prediction exists but
no corresponding annotation for the property exists.

To evaluate the performance of the strategies and compare it to the baseline situation of using
all the models, we use the F1 score at k. F1 score is a balanced metric of Recall and Preci-
sion [43].

Precision: Precision [50] is the percentage of all predictions that match an annotation for the
top k predictions:

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛@𝑘 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑃
for the top k predictions (4.5)
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Recall: Recall [50] is the percentage of correctly predicted annotations for the top k predictions:

𝑅𝑒𝑐𝑎𝑙𝑙@𝑘 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
for the top k predictions (4.6)

Precision discounts for the number of False Positives and Recall for the number of False Nega-
tives. Increasing Precision typically reduces Recall, and vice versa: increasing Recall decreases
Precision. This trade-off underscores the importance of prioritizing one over the other based
on specific objectives.
F1 score: F1 score provides a balancedmeasure of Precision and Recall for the top k predictions.
To ensure the robustness and reliability of our research, we select a subset of models based on
the F1 score.

𝐹1@𝑘 = 2 · 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛@𝑘 · 𝑅𝑒𝑐𝑎𝑙𝑙@𝑘
𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛@𝑘 + 𝑅𝑒𝑐𝑎𝑙𝑙@𝑘

(4.7)

DocQMiner[16] only shows the top 5 predictions produced by the set ofmodels. Consequently,
we evaluate the results based on k set to five. F1@5 serves as our primary criterion for selecting
among different strategies, while we report Precision@5 and Recall@5 to provide a detailed
view of the factors contributing to the F1@5 score.

4.5. Resource consumption during inference
To find the most energy-efficient model subset, we need a measurement of the models’ con-
sumption during inference. DocQMiner is a live-production environment; therefore, we want
tomeasure the system’s resource consumption live. Due to this limitation, we focused on track-
ing the Central Processing Unit (CPU) usage. With the use of Datadog [14], we can record the
CPU usage per second for each process, which allows us to isolate the CPU usage per second,
specifically during the inference phase of the models. By taking the cumulative sum of the
CPU usage per second over the total duration of the process, we obtain the CPU seconds per
process [4]:

CPU seconds =
𝑛∑
𝑖=1

𝑢𝑖 (4.8)

𝑛 is the total number of seconds for the process, and 𝑢𝑖 is the CPU usage per second during 𝑖.
Datadog[14] performs this sum calculation.

This setup shows a clear view of each model’s performance, given that any other model does
not influence the CPU utilization of one model. We gather the data for processing each docu-
ment and eachmodel for a set of intervals of amount of queried properties, as shown in Figure
4.1.

Given that these measurements are taken in a live production environment, we designed our
approach to yield results that closely represent the most probable outcomes. We acknowledge
the inherent variability of a production environment, so we plot the measurements’ outcomes
to account for the variance in results. To ensure the validity of the collected data, we repeat
the measurement per number of queried properties 30 times.
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Figure 4.1: Estimated CPU seconds per number of Queried Properties: This figure illustrates the relationship
between the number of queried properties and the CPU seconds required for each model in a live production
environment. The measurements were taken using Datadog to record the CPU usage per second during the

inference phase. Each data point represents the average CPU seconds for processing documents with a specific
number of queried properties, averaged over 30 repetitions to account for the variability in a production

environment.
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Results

Our evaluation of selection strategies across two datasets—CUAD and Lease Agreement—
reveals significant differences in accuracy metrics, including Precision at 5 (P@5), Recall at
5 (R@5), F1 score, and the number of correct and incorrect predictions made by the models
involved (see Table 2). Full Ensemble reflects the baseline of using all the models for every
property within all documents.

5.1. Experimental context
5.1.1. Legal information extraction

Extracting relevant information from legal documents presents significant challenges due to
their complex nature. These texts often require identifying specific details within extensive
documents. This task notably differs frommore straightforward tasks like classification, where
an F1 score below 0.6 might be deemed insignificant. In the context of legal text analysis, the
F1 scores are typically lower, reflecting the intricate nature of the work involved.

These lower scores are supported in research conducted by Savelka et al.[46] using GPT-4 for
property extraction from complex legal documents, which reported a Precision of 0.63, a Recall
of 0.46, and an F1 score of 0.53. Despite being from a different dataset, these results show that
relevant information extraction from legal documents is not a trivial task, and the results from
the Full Ensemble should be interpreted as such.

5.1.2. Recall-oriented system

DocQMiner [16] is developedprioritizingRecall as the keymetric, which alignswith its human-
in-the-loop design. This design allows users to choose the best answer from the predictions
provided. Consequently, the model development concentrates on accurately identifying rele-

24
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Table 5.1: Comparison of Full Ensemble and Static and Dynamic Strategies for CUAD dataset [30]: This table
presents the performance of different strategies in terms of Precision (P@5), Recall (R@5), F1-Score (F1@5), the
number of correct and incorrect predictions, and relative CPU usage. The Full Ensemble serves as a baseline,

while Static and Dynamic strategies are evaluated in their original forms and with cost inclusion.

Strategy P@5 R@5 F1@5
# Correct

predictions
# Incorrect
predictions

Relative
CPU Usage

Full Ensemble 0.0871 0.5338 0.1495 490 5928 100%

Static
Original 0.6457 0.4872 0.5544 408 265 60.39%
Energy-Aware 0.6370 0.4652 0.5366 394 259 26.52%

Dynamic
Original 0.6118 0.5448 0.5750 446 322 71.28%
Energy-Aware 0.6099 0.5471 0.5756 446 326 67.11%

Table 5.2: Comparison of Full Ensemble and Static and Dynamic Strategies for Lease Agreement dataset[34]:
This table presents the performance of different strategies in terms of Precision (P@5), Recall (R@5), F1-Score

(F1@5), the number of correct and incorrect predictions, and relative CPU usage. The Full Ensemble serves as a
baseline, while Static and Dynamic strategies are evaluated in their original forms and with cost inclusion.

Strategy P@5 R@5 F1@5
# Correct

predictions
# Incorrect
predictions

Relative
CPU Usage

Full Ensemble 0.1386 0.4448 0.2203 90 584 100%

Static
Original 0.1763 0.3677 0.2545 77 376 64.62%
Energy-Aware 0.1817 0.2404 0.2054 57 278 0,82%

Dynamic
Original 0.1852 0.4732 0.2652 93 427 81.22%
Energy-Aware 0.2106 0.3415 0.2588 70 282 47.43%

vant properties rather than minimizing the prediction of incorrect properties.

5.2. Full Ensemble
For CUAD, the Full Ensemble strategy achieved a P@5 of 0.0871, R@5 of 0.5338, and F1 of 0.1495,
making 490 correct predictions and 5928 incorrect, with 100% CPU usage. For Lease Agree-
ment, Full Ensemble had a P@5 of 0.1386, R@5 of 0.4448, and F1 of 0.2203, with 90 correct and
584 incorrect predictions, at 100% CPU usage.

5.3. Static Strategy
For CUAD, the Static Original variant, as defined in Section 4.1.2, achieved a P@5 of 0.6457,
R@5 of 0.4872, and F1 of 0.5544, with 408 correct and 265 incorrect predictions, consuming
60.39% CPU compared to the Full Ensemble. For Lease Agreement, Static Original posted a
P@5 of 0.1763, R@5 of 0.3677, and F1 of 0.2545, with 77 correct and 376 incorrect predictions,
at 64.62% CPU usage.
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The Static Energy-Aware variation, as defined in Section 4.1.4, for CUAD showed a slight de-
crease in performance to an F1 of 0.5366, P@5 of 0.6370, R@5 of 0.4652, with 394 correct and
259 incorrect predictions, and reduced energy consumption to 26.52% CPU. For the Lease
Agreement dataset, it managed an F1 of 0.2054, P@5 of 0.1817, and R@5 of 0.2404, with 57
correct and 278 incorrect predictions, drastically cutting CPU use to 0.82%.

Compared to the Full Ensemble baseline, overall Recall has slightly declined; however, overall
Precision has increased, especially for the CUAD dataset. These results show that the Static
strategy can correctly identify many properties whilst reducing the ‘noise’ of incorrect predic-
tions.

5.4. Dynamic Strategy
For CUAD, the Dynamic Original strategy, as defined in Section 4.1.3, resulted in an F1 score of
0.5750, a P@5 of 0.6118, an R@5 of 0.5448, 446 correct and 322 incorrect predictions, at 71.28%
CPU consumption. For Lease Agreement, it achieved an F1 score of 0.2652, a P@5 of 0.1852,
an R@5 of 0.4732, 93 correct and 427 incorrect predictions, with 81.22% CPU usage compared
to the Full Ensemble.

The Dynamic Energy-Aware, defined in Section 4.1.4, showed for CUAD an F1 of 0.5756, P@5 of
0.6099, and R@5 of 0.5471, with 446 correct and 326 incorrect predictions, lowering CPU usage
to 67.11%. For the Lease Agreement dataset, the F1 was 0.2588, P@5 of 0.2106, R@5 of 0.3415,
with 70 correct and 282 incorrect predictions, reducing CPU consumption to 47.43%.

Overall, the Dynamic Original strategy outperforms the baseline on both Precision and Recall.
The increase in Recall is notable, considering DocQMiner is tailored to Recall. The increase in
Recall is suspected to be due to how the ensemble ‘dilutes’ the predictions, and the Dynamic
strategy specializes in specific properties.

5.5. Strategy selection
Identifying an optimal strategy for an ensemble of models hinges on a few considerations.
The evaluation of the Full Ensemble, Static, and Dynamic strategies across the CUAD and Lease
Agreement datasets provides valuable insights into their respective strengths andweaknesses.

5.5.1. Precision - Recall trade-off

For Precision The Static Original strategy stands out in the CUAD dataset with a Precision
(P@5) of 0.6457 and an F1 score of 0.5544, significantly reducing the noise of incorrect predic-
tions. Similarly, the Lease Agreement dataset performs with a Precision of 0.1763, compared
to 0.1386 Precision for the Full Ensemble. These numbers suggest that the Static Original strategy
offers a solution when minimising false positives is the goal.
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For Recall The Dynamic Original strategy shines by delivering a Recall (R@5) of 0.5448 for
CUADand 0.4732 for LeaseAgreement, coupledwith the highest F1 scores (0.5750 and 0.2652).
This strategy ensures that more relevant properties are captured, making it ideal when max-
imising the number of accurately identified properties, which is the goal.

5.5.2. Resource efficiency

In a resource constraint environment, their performance and efficiency balance should inform
the choice between the Static Energy-Aware and Dynamic Energy-Aware strategies.

Extreme Efficiency The Static Energy-Aware strategy is unparalleled, especially evident in the
Lease Agreement dataset, with CPU usage reduced to nearly 1%. This strategy is suitable for
projectswhere every bit of computational resource savedmakes an impact, even at the expense
of some accuracy.

Balanced Approach The Dynamic Energy-Aware strategy, while not as resource-efficient as its
Static counterpart, offers a balance between accuracy and resource usage. This balance makes
it ideal for scenarios where a moderate resource reduction is acceptable if it means retaining
a higher level of accuracy.

5.5.3. Specificity of properties

If the task involves identifying particular properties within legal documents, the specialisa-
tion afforded by the Dynamic strategies might yield better results. The Dynamic strategies are
fine-tuned to identify specific properties more effectively, possibly at the cost of broader ap-
plicability that Static strategies can offer.

However, the success of the Dynamic approach hinges on the availability of sufficient informa-
tion about the specific properties within the test set to identify the optimal subset accurately.
In cases where such specific information is unavailable, the Static strategy may be the more
suitable option, balancing the need for broader coverage with the available data.

5.6. Impact of selection strategies
Our results indicate that implementingmodel selection strategies can significantly impact both
the accuracy and resource consumption of ensemble learning systems. The evaluation of the
Static strategy suggests a notable improvement in Precision, reducing the number of incorrect
predictions. In comparison, the Dynamic strategy excels in Recall, effectively retrieving more
relevant instances while achieving a reduction in energy consumption, making it ideal for
applications where capturing as much relevant information as possible is critical.

Furthermore, by enhancing these strategieswith the cost-inclusiveGreenQuotientIndex (GQI) [26],
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we have demonstrated a method for reducing the models’ energy consumption without sub-
stantially sacrificing accuracy. For instance, the Static Energy-Aware strategy decreases the aver-
age energy usage from approximately 62% to 14% compared to the Full Ensemble, highlighting
the potential for significant energy savings. In the case of the Dynamic Energy-Aware strategy,
we observed an average reduction from around 76% to 57%, showing the effectiveness of this
approach in balancing performance with energy efficiency.

These findings confirm that model selection strategies, in their original form and particularly
our approach augmenting the original formwith an energy consumptionmetric, can combine
the objectives of maintaining high accuracywhile reducing the energy demands of AI systems
in a production environment.
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Discussion

This study presents several insights for strategic model selection for ensemble learning in live
AI systems, particularly in performance optimization and computational efficiency.

6.1. (Green) AI
For AI practitioners, the findings emphasize the importance and viability of balancing ac-
curacy with computational cost. In the current context, where computational efficiency is
both an economic and environmental concern, the study’s insights suggest that achieving this
balance—maintaining high levels of accuracy while being mindful of the computational re-
sources consumed—is essential for sustainable AI development [47].
These insights offer tangible benefits from an industry standpoint, particularly in strategizing
AI developments. The potential for resource-efficient model selection without significantly
compromising performance paves the way for greener AI solutions. Such solutions are par-
ticularly valuable in resource-intensive applications, contributing to efforts to reduce AI tech-
nologies’ environmental footprint.

6.2. Future of ensembles
With the rising popularity of large language models (LLMs), one might wonder whether ”old-
school” ensembles are still the way to go. Research has shown that for most NLP tasks con-
sidered state-of-the-art fine-tuned models like TULRv6 generally outperform LLMs by a con-
siderable margin, especially in languages other than English[1]. An LLM may not provide
superior solutions for the specific task of legal information extraction.

In addition to accuracy, we prioritize efficiency as a crucial metric. A straightforward auto-
regressive model like BERT𝐿𝑎𝑟𝑔𝑒 , which consists of approximately 340 million parameters[20],
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requires four days of training on 16 TPU processors[19]. In contrast, GPT-4 is rumored to have
1.7 trillion parameters and demands 90-100 days of training on 25,000 GPU processors[21].
Although OpenAI has not officially disclosed the energy consumption of these models, it is
reasonable to assume that their resource usage is significant. From the perspective of energy
consumption, ensembles of fine-tuned models are preferable to large language models.

6.3. Monitoring
Monitoring is critical to ensuring the sustainability of AI systems [29, 57]. Practitioners need
to be able to monitor their applications to understand their energy consumption and envi-
ronmental impact. Tools and interfaces that facilitate the development of AI systems should
also incorporate features for monitoring energy usage. Monitoring tools would enable practi-
tioners to create eco-friendly systems without significant effort, addressing the gap in making
sustainable AI more accessible and practical.

Moreover, by identifying themajor energy consumerswithin liveAI systems, practitioners can
focus on reducing energy consumption in the most impactful areas, leading to more efficient
and sustainable AI solutions.

6.4. Practical implications
Balancing theoretical performance with practical considerations is vital when choosing the
best model for a task. The Static strategy is typically more straightforward to deploy and com-
patible with a broader range of infrastructures, making it a practical option for many setups.
The Dynamic strategy, while potentiallymore effective for specific tasks, might demand amore
complex infrastructure setup. Therefore, the decision should consider the desired accuracy,
efficiency, and practicality of integrating and maintaining the strategy into existing systems.

Companies should prioritize sustainable AI development as the impact of AI on the work-
force continues to grow, accompanied by significant financial and environmental costs. Al-
though the Green AI field is expanding, its connection to the industry remains insufficient
[53]. This research demonstrates that making AI systems in production more sustainable is
feasible. Continued efforts in this direction can further convince companies of the practicality
and benefits of adopting sustainable AI practices.

6.5. Limitations
While this study provides valuable insights, it also has limitations. The evaluation was con-
ducted on two specific datasets within the legal domain, which may limit the generalizability
of the findings to other types of documents or domains. Future research could explore the ap-
plicability of these model selection strategies across a broader range of datasets and domains,
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not only within information extraction but also in other areas beyond the scope of NLP.

Additionally, our approach to discounting model selection based on resource consumption
relies on CPU seconds as a proxy for energy consumption. Future studies could incorporate
more direct metrics of energy consumption, such as power usage in kWh, to assess the envi-
ronmental impact and reduction in the carbon footprint of different model selection strategies.
This limitation aligns with the continued need for accurate and easy-to-use monitoring tools
for AI systems [29, 57] highlighted in Section 6.3.

Lastly, our study does not account for the energy costs associated with training or fine-tuning
models for specific domains within the ensemble. Future research should investigate whether
the accuracy improvements from domain-specific training, see blue models in Figure 2.4, jus-
tify these increased energy expenditures. This analysis could provide deeper insights into the
efficiency and effectiveness of employing specialized models within ensemble systems.



7
Conclusion

In response to the escalating energy demands of Artificial Intelligence (AI) systems, particu-
larly those employing ensemble learning [37], our empirical study explores model selection
strategies to optimize accuracy and energy efficiency. Our research introduces and evaluates
two model selection strategies, Static and Dynamic, aimed at optimizing the performance of
ensemble learning systems while minimizing their energy usage.

By evaluating the Static andDynamic strategies across theCUADandLeaseAgreement datasets,
we have highlighted the adaptability and potential of these approaches to meet diverse needs.
Our results reveal that the Static strategy improves the F1 score beyond the baseline, reducing
average energy usage from 100% from the full ensemble to 62%. The Dynamic strategy further
enhances F1 scores, while using on average 76% compared to 100% of the full ensemble.

Additionally, we propose an approach that discounts accuracy with resource consumption,
the Energy-Aware approach, showing potential for further reducing energy usage without sig-
nificantly impacting accuracy. This method further decreased the average energy usage of the
Static strategy from approximately 62% to about 14%, and for the optimal Dynamic strategy,
from around 76% to roughly 57%.

Our findings, especially the successful application of the Energy-Aware approach, align with
the principles of Green AI [47, 51], advocating for sustainable AI practices that maintain high-
performance standards.

This field study on DocQMiner, an AI system actively used in the industry, highlights our
research’s real-world applicability and significance in advancing sustainable, efficient AI tech-
nologies for live production environments.

These insights provide a valuable perspective for the industry on developing AI in a resource-
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conscious yet effective manner. They highlight the feasibility of using model selection strate-
gies to balance accuracy and computational efficiency, demonstrating the crucial need for
adopting strategies that account for accuracy and environmental impact for ensuring sustain-
able development as AI progresses.
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