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1. Introduction

Since it is usually very difficult to calculate the damping
force and added mass for heaving and pitching of three-dimensional
ships having a given forward speed, the strip method is generally
used. For this it is necessary to have information about the two-
dimensional values for 1nf1n1te1y-long cylinders having the ship's
croes-sections.

For the damping force one can use the source method of
Havelock [1]. This method gives us an approximation to a certain
degree, but according to the experiments of Golovato [2], it seems
on the whole to show quite & large deviation from the values
obtained from experiment. For a circular cylinder, the exact
values have been obtained by Ursell [3]. By using another method,
0. Grim [4) also obtained some quite accurate values for various
cross-sections; furthermore, he found a good approximate method
for cross-sections having their boundaries perpendicular to the
water surface.

For the added mass, there is an exact calculation for
circular cylinders by Ursell [3]. O. Grim also made calculations
for a:few cross-sections, but the results seem to be doubtful.

A coefficient Kb which takes account of the free surface is needed
for calculating the added mass of ships; Korvin-Kroukovsky [5]

used 0.75 for heaving and 1.20 for pitching. 1In (6], K, of Urdell's
circular cylinder is used for other cross-sections. The same

method has also been used by Professor Nakamura [7].



In this paper the methcd used by Ursell [3] 1es extended to
:alculate exactly the progressive-wave height and the added mass
For several kinds cof infinitely-long cylinders with boundaries
pé:pethcular to the water surface in forced vertical oscillation.
Jith the aid of the results obtained by this calculation, the
iamping forces and the added masses of the ships are calculated
>y the strip method, and then ére compared with the experimental
results of Golovato [2] and Gerritsma [8]. For the damping force,
s more reascnable method of calculaticn is still under study. The

current results are presented in this paper.

2. The Calculation of the Progressive-Wave
Heignt and Added Mass Caused by the
Forced Heaving of Cylinders.

2.1 Boundary Conditiocns and Basic Conditions.
Coneider an infinitely iong cylinder, with cross-section in
*he z-plane as shown in Fig. 1, making sinusoidal heaving oscil-

lations of smail amplitude in the y-direction. There are two

Fig. 1




kinds of waves caused by this heaving: one is a standing wave
which decreases in amplitude rapidly with distance from the body,
and the other is a regular progressive wave. If we neglect the
viscosity and the surface tension of the water, the flow has a
velocity potential ¥ and a stream function » and each of
them satisfies Laplace's equation. The free-surface boundary
condition will be:

Ko+8¢/0y=0 (y=0, 2> BJ2) . (1)

Here, R
el X

snd o 1s the angular velocity of the circular motion corres-
ponding to the heaving oscillation. The motion is symmetrical
with respect to the y-axis. Next let us suppose that the axis
of the cylinder, originally in the free surface (y=0), makes &

small displacement Yy, = h cos(wt+¢c), and let

dyaldt = —hwsin(ot +8)=U . (2)

If h is small, the boundary condition of the cylinder at its
average position (y=0) will be
deldv=U(3yldv) . (3)

Here o 1is the outward normal to the boundary.

2.2 Mathematical Representation of the Shape of the Cross-Section.
Consider the figure formed by adding to the figure shown

in Fig. 1 1ts reflection in the x-axis. The conformal mapping

function which maps the region outside the figure in the z-plane




onto the outside of the unit circle in the

ZIM=f+ ﬁ'a,.;.r-;-m-n .

If the sum terminates at n=2, then

ZIM={+aill+all®

& -plane 1is

(4)

(6)

which represents the shape of the cross-sections used by Lewis [9]

and Grim [4]) for their calculations.

In this paper, a calculation

is wade for Lewis cross-sections; however, for more general cases

the calculation can be done s:l.milirly.

For the Lewis cross-section,

let
‘-“‘"‘.
then "
s/Mmetsind+a,0-%3in0—aes-*ginSP |- - 3
¥/AM=a® cos 0 —8,107% cos 0+ €e8~%* cosS @ (6)"
At the boundary of the cross-section, put a =0, so that
syM=(1+8)sin0—aesin30 A &5 b VO - 59 L
fos v 7
yWM=(1—8)cos0+aecos 30 - |7 = ag &7
Let
- B = beam at the water surface.
T = dreft. ~—r
M = scale factor of the mapping.
[hen
B
M= /(14614
and
3 l+¢|+¢l
/T i 1—-41+a £
s 2.(2)'._1_—:;'-_3&!.
2/ (1+e1+a)t’
= = Qo)
~r = B rarey




shere
S = area of the cross-section,

o = cross-section area coefficient.

By suitable choice of the values of a, and 33 in equations (9) and
(10) one can approximate the shape of a ship cross-section by a

Lewis Form.

2.3 The Calculation.
The method of calculation has been shown briefly in the

sppendix. If we calculate A and K, for elliptic cylinders of
Hy, = 1.5 and compare them with the results shown in Figure 2 of
5rim [4), we can obtain the results shown in Figure 2 of this
paper. For A, the values obtained by Grim by his accurate
wethod are very close to those of this paper. The upper dotted-
line zepresents the approximate values obtained by Grim and
givern in Fig. 2 of [4]. Grim also det;ved an approximate equa-
tion for the circular cylinder, but he did not present & similar
aquation for other kinds of cross-sections. If we apply Grim's
approximate method to Lewis cross-sections, we get tﬁe.followins:

(_t‘_"*‘&' rtgp'+3-. 2 ’
VLY M v "'[‘ (1+e1+e0)B "}]' e an

For & circular cross-section, we put al-a3-0 and then

1-2“/..2’%.&‘&.

which is the same as the result shown by Grim in the appendix of
[4). The broken line in Figure 2 shows the result of calculations
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by equation (11). These values deviate from the rigorous values
of this paper up to 10% for ts<2.5. The values of A obtained
by the source method (of Havelock) are also shown in the figure,
but the error is quite large. The calculated values of the free-
surface coefficient K, for the added mass are shown by the curve
with double circles. The values of Grim [4) are also shown in
the figure and these values are quite small. Grim [4] stated
that K, should approach _%no,;, in the neighborhood of

%o » 0. However, for ellipses, the value of K, as Zo»0

was shown by Ursell {10] to be the following:

K.-*%[loc€0+loc(l+§l.-—0L.23] : an

From this equat'ion, we get K4='—%logfo—0.2@ for Hy = L.5. For
- 0.24, the values of K‘. calculated in this paper are very _
close to the curve of the above equation.

The calculated values of A and Ka of various Lewis cross-
sections for Ho = 0,2, 0.667, 1.0, 1.25, 1.50 are shown in Figures
4 to 12, Figure 3 shows how the values of Ka of each kind of
ellipse vary with different values of llo. The approximate values
from equation (11) are also shown in Figure 5. The error increasee
as Z, becomes large and the cross-section becomes deeper. 1In
_Figures 8 through 12, for cases with a, wk 0, the values of K, in
the neighborhood of Zo + 0 were approximated by the values of

K

, for an elliptic cylinder of the same value of H,.
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3. Comparison of Model Experiments and Calculation.

The damping coefficients and the apparent masses of the
ship models used in the experiments of Golovato [2] and
Gerritsma [8] will be calculated by the strip method, using the
calculated values of A and Ka discussed above. Then the results
will be compared with those obtained from the experiments. Let
the x-axis be the direction of ship motion, the z-axis be the
direction of gravitational force, the y-axis be horizontal, and
locate the origin of the coordinate system in the midship-section
at the L.W.L.

L = Length of the ship.
B*= Beam at the midship-section.
A = Displacement.

S = Cross-sectional area of the ship below the L.W.L.
at a distance x from the midship-section.

B = Beam at the L.W.L. at a distance x from the
midship-section.

m = A/g = mass of the ship.
1 = Longitudinal moment of inertia of the cross-section.
N = Damping coefficient for heaving of the cylinder.

= Damping coefficient and added mass for pure
hr /2 heaving of the ship.

Roo fe® Damping coefficient and added moment of
P’/ ® {nertia for pure pitching of the-ship.

Since N = ( P gzlm 3) 4A2,, its integration in the x-direction is

o s A0

Nam j_mNdz-Pg’ j_m o ds as)
us _ mog

Np= [ N-ada=rg* [ o e
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If we define the dimensionless coefficients

Ny= & B 1t
then
e 2 & 2 (m' as
TR ko ae
where

Cy=block coeflicient,

tomoy 2

1 -io L-—‘- -L L *
Since fo=T. Jrm—g (f.‘)i.(a.) » ¥, can’'be determined from %) and
B/B* of different cross-sections. With this &  we get A from
the figure and obtain A%(&*)* for each cross-section.

Since 1/2.-sx-(B/2)%-Ce-Ks 18 the added mass of the cylinder,

/s 18 equal to
p.-—ij ( ) .Co Ka-ds an

or, following Korvin-Kroukovsky [5], using S,

pmt [ KeS-Kida a®
By 4y |

. 2 2 2 2
K, for a Lewis fqm is Kz = (1 + ﬂl) + 303 /(1 - 8 - 3a3 ) and

generally it is determined by the Lewis-Prohaska [1l1] method.

Similarly,
posp /_‘:'x.-s-x.-m as)



Golovato [2] performed experiments for the mathematical
hip-like shape given by Weinbium [12]. For this particular
hape, each cross-section is wall-sided; furthermore, the
mplitude of heaving is quite small, so that it is quite
uitable to compare theoretical calculations and experimental
esults. The value of Ho at the midship-section is R: = 1.25,

o that we calculate B, x, S, ¢, and Kz for the cross-sections

f By = 1.25, 1.0, 2/3, 0.2, and also calculate ¢, corresponding
0 Z,"{ and obtain A, K& from the figure. Then Nh and VY, are
btained by grephical integration. (A is determined for o« by inter-
jolation and extrapolation.)

Figure 13 is obtained by plotting the calculated values of
his paper in Figure 5 of Golovato [2]. Two sets of experimental
ralues, for Froude numbers 0.09 and 0.36, are also plotted in the
yame figure. (For another Froude number, the experimental points
’all between those of these two curves.) Compared to Grim's method,
he calculated values of this paper are closer to the experimental
ralues. For Kz in Figure 14, the curve of the calculated values
£ this paper passes through the experimental points very well for
4 : {2.5. The result of using Ka for Ursell's semi-circle over
he whole cross-section has also been shown in this figure.

Gerritsme [8] conducted experiments with models of Todd's
jeries 60. Since B: = 1.25 for this case also, the same method
ms used to perform the graphical integration as was used-before.
'n Figures 15, 16, 17, 18, and 19, o , represented by the abscissa
yf the axes, 18 plotted against Nh, NP, /'z, and /v, respectively.
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'or the damping coefficient Nh’ the calculated values of this paper
ire too small and the socurce method presents quite a good result.
m the other hand, for Np the calculated values of this paper give
| very good result but the source method gives vilues with a large
leviation as a whole. With respect to the deviation between the
wxperimental values and the calculation, we have first to take
iote of three-dimensional effects. For this there are calculations
'y Havelock [13] and Vossers [14]; furthermore, Newman [15] has
ised the three-dimensional source method of Havelock [1] to cal-
:ulate the three-dimensional damping coefficient at zero velocity
‘or the experimental model used by Gerritsma. The value of Nh
iccording to this latter calculation is about 20% greater than that
btained by the two-dimensional strip method. (See Fig. 1 of [15])
£ we use this thrée-dimensionél correction for the calculated
ralues of this paper, we find them very close to the experimental
ralues. Besides this three-dimensional effect, since the cross-
iections of the aft half of the models used by Gerritsma are not
rall-sided but have a certain inclination at the L.W.L., some
leviation from the theoretical calculation may be expected as a
atter of course. When the amplitude of the oscillation is large,
ion-linear damping may also cause this deviation. . Concerning these
wroblems, the matter is still under investigation, mainly by
:xperimental means.

The calculated values of Fe and /s 8re very close to the
xperimental values except for small ¢ where the measurement is

mcertain. On the basis of the two experiments by Golovato and
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erritsma, it appears that/p‘ and'/; obtained by the strip method

ive very satisfactory values. From this fact we may conclude that
xcept for small ’CI: the three-dimensional influence on the

pparent mess and moment of inertia is so small that we may disregard

t for practical problems.

4, Conclusions.

The following conclusions are obtained from the above calcu-
ations.
1) Since some of the A values in the figures of 0. Grim [4] are
oubtful, the equation used for its calculation has been shown as
11). The result obtained by Grim's approximate method using this
quation is generally quite close to the more exact values of this
eper. From comparison with the experiments of Golovato [2], it
8 seen that the calculated values of this paper are more accurate
han those obtained by Grim's method. On the other hand, from
omparison with the experiments of Gerritsma [2], we know that
srrection should be made for three-dimensional effects, the
Efect of non-wall-sided cross-sections, and the effect of finite
nplitude when we perform the calculation for the damping coeffi-
lent of the actual ship shape.
2) The value of K4 varies with the various shapes of cross-
sctione. By using the values of this paper for cylinder, one may
stain by the strip method very satisfactory values of /”z and/ﬂ'
>r ships.

Many thanks are due Professor Watanabe for his valuable

iggestions. i}
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Appendix

For the conformal transformation of (5), if we put

K-Bj2mo¥g-Bf2= ¢, then the free-surface boundary condition

() e (1msf) m

Consider the following potential function which satisfies

becomes

vxz ¢ = 0, the boundary condition (20) and is symmetrical with

respect to the y-axis:

~(Sm-1
et con 2md { i =0+ g m a1
- ’:‘:_3 »r("'"”coo(2-+3)0] (m=1,23.-- ) @)

The corresponding stream function is

$rme e sinzmt 4t [ EEE im0+ inamt 1
- z:‘;-s a-(w!n.in(z-+3)c] (m=1,2,3--- ) €

Both ®on and )"‘Zm become 0 as a -» ®.
Let us suppose a two-dimensional source placed at the origin,
following Ursell [3], in order to provide an expression repre-
senting progressive waves at infinity. For the stream function
¥ one has

WomLL(W,(K. 2. y)cosmt+ WK, 5, y)sinw]
€)

Vo=xe-XVsin Kz

| 41 /..' -x+.:.-,-{hln hy+ Kcoshy)dh—nesXVeoa K
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or by changing the parameters,

Wom L2 (W (fo. 00, 0.2, o080t + W olbo. 1, a0, x, sin o) @0

where % is the amplitude of the progressive wave at infinity.

The stream function which satisfies the basic conditions

and represents progressive waves at infinity is

(mw/gn)Pp=W (o, 61, 80 . 8)C08 0t + VW o(0.81. 0, ., O)sin 0t

o g (31 -
+cosotz.p-.(b)[ "“un2m0+—~—{l 2 “.{ Ty tin(am—1
.'.'(-0".

+ -T;-—l-‘l_ sin(2m+1)0— 2 :‘_:3 g~ (Ime0is gin(2 -+3)0}]

+sin of 5..: l-(fo)[c"‘- sin2mé+ fo { e sin(2m—1)¢

1+ai1+a | 2m—1
, c.oz"(::l sin(2m+1)0— 3:’ .-(wl)-sln(zn+9)‘}] ® (38)

We assume this series is uniformly convergent for @ >0
The stream function must satisfy the condition (3) on the

boundary of the cylinder, a = 0. Then (3) becomes

(—8%/30)a=s=UM(cos 8+ 61 cos §—3 ascos 36) (26

The following relation is obtained from (25) and (26) on the
boundary of the cylinder, a = O:

(m0/gn)Pa=e=W (Lo, 81, 8s, #)cos 0t + W o fo, 81, 8, )sin ot l
C £ {3in(2m—1)0  asin(2m+1)}0 3eesin(2m+3
"“‘"‘...5.-:.”"“‘)['“'z"“’+ Faral tmsl ¥ amel o ki )'}]
- ) { sin(2m—1)¢ a18in(2m+41)0 3aesin(2m+3
niud_}_:.c-(fo)[ainzaﬂ et e : —| = 2:_:; )‘}]

= —(mww/gn) UM(sin 8 +-6i3in 8 —assin 30) .

Here, rco‘ and rso are the values of “/‘c and )“8 for a= 0,
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From equation (27) with 6 = x /2 we get

V o (fo. 81, 80, %/2)c0s i + ¥ o (fo. 81, 80, x/2)8in -

= [{) - 1 8 _ &
+eoswt T pam(E) g e (—D) '{ Tl Tmil Im+s
. - ) s— 1 ___8. _ 3as -—f=0
Foinet 2 amb0 g e Y '{ 2ol ~ Zmil ~ Zm+3 } (m )'-"““’""'") - (@

Use this equation and (27) to compare coefficients of the term

cos wt and equate coefficients to obtain

Vol fs. 61,80, 0)— i ‘+.;_:i:::‘:‘ alndf wo(fo. 81, 8s, -:-)

e sin(2m—1)¢ = asin(2m+1)0 Sasin(Zm+3)¢
= z’..“.)['mzﬂ'*' 1+e1+6as { 2m—1 T 2m+1 2m+3
S(=1)=1t ( 1 e Sa _
K (l+a.+¢.)’{ 2m—1 2-'4.1 ~2m+3 }(oin0+¢uin0—-¢osinl)] ’ (29)

Define

£ {sﬁn(zm—l)l - a18in(2m+1)0 Sassin(2m+4-5)0
1+61+6 2m—1 2m+1 - 2m+3

_.l ¢ g a 3‘.
(1;'¢|+¢.)’{ 2-.—1 2-l+l 2m+43 }(""'-I-cuini—luinal)] & (30)

f-(b.cu.a.l)-~—[dnzuo+

+

Then (29) gives the first equation of (31) and a similar pro-

cedure with the coefficients of sin wt gives the second equation:

Iill""‘ll:.l::;;l..hll" P-(Eo &1, 8. )- 2’-(‘.) ,.(f..‘l.“.‘) ‘

Wer(fo, 61,80, 0)—

sind+4-a18in#—aqesin 30 v ”(g., &,

146 +6 6 %) - é.'h(ﬁ) San(le, 61, 00, 0)

Pu(be 61,8, 0)—

Equation (31) 1is the relation used to determine pzm(lo) and
Zm(zo)‘
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In equation (28), let

LAY S—— fo S p
Pabn oo 3 )+ Epmto (-0 oo s )

= & . 1 1 & 3ae ,
V"("""“'?%E.’"“‘“‘” 'l_+¢.+-.{ T T R T } =Bt |.

Equation (28) then becomes

=(xe/gn) UM(1 +8:+8s) = As(§s)cos it +Be(fe)sin et o
Then 1f we use (see (2) and (8))

U= —haosin(wt+e),

u=—‘;—/1+c.+-

the ratio A of the amplitude of the progressive wave to the

amplitude of heaving h is ‘

A xt B Y 1 o«
A B g 2 AS+Bd v AS+Bs  ° Q9

1If we put a, =a, = 0 in equations (29), (30), (31), and
(32), we get the equations given for the semi-circle by Ursell [(3). |
The po;ential.o‘corresponding to (25) is |

(we/gn)p=0s(Es. 81, 8. @, #)cos i + By (fs, 81, as. . D)sin ot

+eosel _i_l)-(f.)[r-mzmu : +fl'+‘. { ‘;':;' cos(2m—1)0
+sin d.i_ ‘C-(Eo)[ L] . " " » ] @0




a2

where

@e(fe.01,80. ¢, 8) =ne XY cos Kz
-

O:(Ee.01, as.a, ) =xe %vsin Kz~ | 3 —K%{lmh—xcinh}dg .

From p=—p-Befot we get the pressure on the cylinder. (The
density of the fluid is f.) The force in the y-direction acting

on a unit length of the cylinder is of the form
Fu(-2L)p. B(Mycos ot~ Nysinat] , (36)

where Ho, N, are

cos@+ay1cosd—3ascos 30 a0
1+4a1+as

1 1+6: . 9a _\, 3
s PGS i) H e p (Q+a—oee—ent ]

L . 3
e [ bt - .

P | [ & = 148 fa ‘f
lrate = ==t "'( 4»’-11 4-'-'—9 )+ 4(1+...+¢.) {(l'*'“""“)""‘!"}] . G0 |

Mam [ Oute. o1 00.0)

<

The acceleration of the motion, from (28) and (31),1is
a0 -(—ﬂ—){Ao(Eo)smut—Bo(Eo)mﬂ‘} o (38)

The component of the total force F that is opposite in phase to

the acceleration acts as a force proportional to the added mass.

This part 1s

M N, | )
B pp(MeBt I8 NAsGesin et —Bo(t)cosar) (%)
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The ratio of (38) and (39) gives the added mass,

e (3 (M)

From Lewis [9], the added mass of a Lewis-form cylinder in
an unbounded fluid is  1/2.pxCe(B[2)* where

(1+61)'+3a* C41)

A e e

To take account of the free-surface we use a coefficient K

4
representing its effect:
1 B\ \ ,
A.ll-—z-n(-z—) - » U]
Then Ka is obtained from
x.-—‘- MBe+NeAs _(14+é1t+a0)® | @

x Ad+B¢  (1+e)'+3ad

The average work per cycle of the cylinder oscillation is
Poty’inte-(MoAe—NoBs) - Since this is equal to the energy propagated
by waves to each side per unit time, 1/20g%e then

MoAy—NeBo=uti2 . This was used to check the numerical calculations.

The coefficients ph, 9y, aTC obtained from equation (31)

Let
sinf 4 sinf@—aesin 34
1+e14+a

Por(be. 01,00, 0)— P oo(te. 1,00, E) = H(0)




then H(0)=H(x/2)=0, For (P r< ] I
H(6) has been expanded into non-orthogonal series:

HO)= _i_.)-(&) Soa(fe. 61.00.0) -

his should converge uniformly for 0¢ 0 _1{_ . In Ursell (3],

16]), [17]), it has been proved that in the case of the circular
ylinder (a, = a, = 0) this series converges for all values of {,.
enerally it is difficult to determine the region of convergence
or the case a, %0, a, v 0. If we assume its convergence, use
he terms to m = 6, and perform the actual calculation, the
ignificant figures converge rapidly even when 3 3. In fact,

£f we perform the numerical calculation of H(Q) and fz-(l.. 8, 8y, 0)
or @ = 10°, 20°, 30°...80° and apply the method of the least
quares, we obtain simultaneous linear equations in six variables.
rom these equations we can obtain Pys Pyr e ’12 and the corres-
onding qh. Por llo = 0.2, the calculation has been done ou_ly

or {,4 1.




