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1. Introduction

Since it is usually very difficult to calculate the damping

force and added mass for heaving and pitching of three-dimensional

ships having a given forward speed, the strip method is generally

used. For this it is necessary to have information about the two-

dimensional values for infinitely-long cylinders having the ship's

cross-sections.

For the damping force one can use the source method of

Havelock (1]. This method giveB us an approximation to a certain

degree, but according to the experiments of Golovato (2], it seems

on the whole to show quite a large deviation fr the values

obtained frOEn experiment. For a circular cylinder, the exact

values have been obtained by Ursell (31. By using another method,

O. Grim [4] also obtained se quite accurate values for various

cross-sections; furthermore, he found a good approximate method

for cross-sections having their boundaries perpendicular to the

water surface.

For the added mass, there is an exact calculation for

circular cylinders by Ursell [3]. 0. Grim also made calculations

for a: few cross-sections, but the results seem to be doubtful.

A coefficient K4 which takes account of the free surface is needed

for calculating the added mass of ships; Korvin-Kroukovsky (51

used 0.75 for heaving and 1.20 for pitching. In [61, 1(4 of Uráell's

circular cylinder is used for other cross-sections. The saine

method has also been used by Professor Nakamura [7].
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In this paper the methc'd used by Ure1l [3] is extended to

alculate exactly the progressive-wave height and the added mass

Eor several kinds of infinitely-long cylinders with boundaries

erpendicular to the watet surface in forced vetica1 oscillation.

Jith the aid of the results obtained by this calculation, the

iamping forces and the added rnasses c the ships are calculated

) the strip method, and then ae ccpared with the experimental

results of Golovato (2] and Gerritsma (8]. For the damping force,

more reasonable method of calculation is still under study. The

urrent results are presented in this paper.

2. The Calculation of the Progressive-Wave
Height and Adced Mass Caused by the
Forced Reaving of Cylinders.

.l Boundary Conditions and Basic Conditions.

Constder an infinitely lcng cylinder, with cross-section in

he z-plane as shown in Fig. I, making sinusoidal heaving oscil-

Lations of small amplitude in the y-direction. There are two

Z-.pla

Fig0 i
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kinds of waves caused by this heaving: one is-a standing wave

which decreases in amplitude rapidly with distance from the body,

and the other isaregular progressive wave. If we neglect the

viscosity and the surface tension of the water, the flow has a

velocity potential 'c and a stream function )' and each of

them satisfies Laplace's equation. The free-surface boundary

condition will be:

K+89/8),=O (y=O, z>B/2) (1)

Here,

and w is the angular velocity of the circular motion corres-

ponding to the heaving oscillation. The motion is symetrical

with respect to the y-axis. Next let us suppose that the axis

of the cylinder, originally in the free surface (y-O), makes a

small displacement h - h cos(wt+), and let

d,*/dt=hc,sin(øS+s)U . (2)

If h is small, the boundary condition of the cylinder at its

average position (y-O) will be

0/th'= U(8y/8v) (3)

Here ? is the outward normal to the boundary.

2.2 Mathematical Representation of the Shape of the Cross-Section.

Consider the figure formed by adding to the figure shown

in Fig. 1 its reflection in the x-axis. The conformal mapping

function which maps the region outside the figure in the z-plane



onto the outside of the unit circle in the c-plane is

ZJM='+ Ec.-ir-
N- I

If the si.un terminates at n-2, then

Z/M= +ai/+ai/C'

which represents the shape of the cross-sections used by Lewis [91

and Grim [41 for their calculations. In this paper, a calculation

is made for Lewis cross-sections; however, for more general cases

the calculation can be done simiiàriy. For the Lewis cross-section,

ist

= j41-d

then
XIM_.m$jftg+gI.csjflg_..,....jßSg )- re'4
p/M.co.Dgig-acosg-s.g f . i tS)-

At th. boundary of the cr088-section, put 3-O, so that

g,/M=(1+s,)sinSm.s1n39 j 2s j - L 7ei! i .i
5t'

y1/M(1t)coaS+.scosSS-J ¿ir1 t r -
Let

B - bei at the water surface.

T - draft. q- '' :h;j
M - scale factor of the mapping.

en

+/(1 +ai +..)

E i 1+.i+..i
2 1-4i+.

2'%2) (1+ms+a.)"

s
ET i

k

('o



here
S - area of the cross-section,

ø'- cross-section area coefficient. RT

By suitable choice of the values of 81 and a3 in equations (9) and

(10) one can approximate the shape of a ship cross-section by a

Lewis Form.

2.3 The Calculation.

The method of calculation has been shown briefly in the

eppendix. If we calculate ¡ and K4 for elliptic cylinders of

- 1.5 and compare them with the results shown in Figure 2 of

rim (41, ve can obtain the results shown in Figure 2 of this

paper. For ¡, the values obtained by Grim by his accurate

nethod are very close to those of this paper. The upper dotted-

line represents the approximate values obtained by Grim and

given in Fig. 2 of (41. Grim also derived an approximate equa-

tion for the circular cylinder, but he did not present a similar

equation for other kinds of cross-sections. If ve apply Grim's

approximate method to Lewis cross-sections, we get the following:

(1 L\

For a circular cross-section, we put a1-a3-O and then

cosE.($l)
Ji

which is the seme as the result shown by Grim in the appendix of

(41. Th. broken line in Figure 2 shows the result of calculations

A-2e.

5
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A-21,1vi
Is' $1 + ß ,i (11)

l+S$+i [.{m'$'+3m'(1+a,+..)ß
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by equation (11). These values deviate from the rigorous values

of this paper up to 107. for . The values of ¡ obtained

by the source method (of Havelock) are also shown in the figure,

but the error is quite large. The calculated values of the free-

surface coefficient 1(4 for the added mass are shown by the curve

with double circles. The values of Grim (4] are also shown in

the figure and these values are quite small. Grim (4] stated

that 1(4 hould approach 8
;; logE. in the neighborhood of

7

Z0 -, 0. However, for ellipses, the value of 1(4 as o+0
was shown by Ursell (101 to be the following:

z. _-[1ogE.+iog(i+k)_o.
1

(12)

Fran this equation, we get Ki=r_-4logE._o.228 for H0 - 1.5. For

- 0.24, the values of K4 calculated in this paper are very

close to the curve of the above equation.

The calculated values of A and K4 of various Lewis cross-

sections for H0 - 0.2, 0.667, 1.0, 1.25, 1.50 are shown in Figures

4 to 12. Figure 3 shows how the values of 1(4 of each kind of

ellipse vary with different values of H0. The approximate values

frai equation (li) are also shown in Figure 5. The error increases

as becomes large and the cross-section becomes deeper. In

Figures 8 through 12, for cases with a3 '' 0, the values of 1(4 in

the neighborhood of O were approximated by the values of

1(4 for an elliptic cylinder of the same value of H0. 0
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3. Comparison of Model Experiments and Calculation.

The damping coefficients and the apparent masses of the

ship models used in the experiments of Golovato [21 and

Gerritsma [81 will be calculated by the strip method, using the

calculated values of A and K4 discussed above. Then the results

will be compared with those obtained from the experiments. Let

the x-axis be the direction of ship motion, the z-axis be the

direction of gravitational force, the y-axis be horizontal, and

locate the origin of the coordinate system in the midship-section

at the L.W.L.

L - Length of the ship.

B*_ Beam at the midship-section.

A- Displacement.

S - Cross-sectional area of the ship below the L.W.L.
at a distance x from the midship-section.

B - Beam at the L.W.L. at a distance x from the
midship-section.

m - A1g - mass of the ship.

I - Longitudinal moment of inertia of the cross-section.

N - Damping coefficient for heaving of the cylinder.

Nh, / - Damping coefficient and added mass for pure
Z heaving of the ship.

N ,p - Damping coefficient and added moment of
inertia for pure pitching of the-ship.

Since N - ( p g2/w 3) A2, its integration in the x-direction is

i,I
Na I Nix-Pg' I (13)

J-Lu I' A'
N, f N'x=Pg' x'ix (14)

¿&ga -iii 0

10



If we define the dimensionless coefficients

N,' =

N.,/tTN,-- 4V

then

Ni'- j'Ç f:_t;/isa A'N.'- C,TL' YTLL,I (e)' '
where

C,=block coefficient,

=

Since b_.._+aea () canbe determined fran and

B/B* of different cross-sections. With this iii get A fran

the figure and obtain A'/W')' for each cross-section.

Since 1/2.px.(B12)'C.K. is the added mass of the cylinder,

/' is equal to

1 Li' B' (17)

or, following Korvin-Kroukovsky [51, using S,

L's
i&1_PJ K,-S JC,is

LIS

K2 for a Lewis. form is K2 - (1 + a1)2 + 3/(l - a12 3e32) and

generally it is determined by the Lewis-Prohaska (11) method.

Similarly,
¿1$gs.p( X,S.Ka..'aJ i,, (19)

11

(15)
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Golovato E 21 performed experiments for the mathematical

hip-like 8hape given by Weinbitin (121. For this particular
hape, each cross-section is wall-sided; furthermore, the
implitude of heaving is quite small, so that it is quite
iuitable to compare theoretical calculations and experimental

results. The value of H0 at the midship-section is K- 1.25,

io that we calculate B, x, S, ø', and K2 for the cross-sections

if H0 - 1.25, 1.0, 2/3, 0.2, and also calculate , corresponding

:0 and obtain A, K4 from the figure. Then Nh and are

ibtained by graphical integration. (X is determined for y by inter-

olation and extrapolation.)
Figure 13 is obtained by plotting the calculated values of

this paper in Figure 5 of Golovato [21. Two sets of experimental

aluss, for Froude numbers 0.09 and 0.36, are also plotted in the

iame figure. (For another Froude number, the experimental points

fall between those of these two curves.) Compared to Grim's method,

the calculated values of this paper are closer to the experimental
alues. For K in Figure 14, the curve of the calculated values
f this paper passes through the experimental points very well for

, <2.5. The result of using K4 for Ursell's semi-circle over
the whole cross-section has also been shown in this figure.

Gerritsma (8] conducted experiments with models of Todd's

lenes 60. Since H - 1.25 for this case also, the sane method

as used to perform the graphical integration as was used before.

: Figures 15, 16, 17, 18, and 19, o, represented by the abscissa
f the axes, is plotted again8t Nh, p2, and p respectively.
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'or the damping coefficient Nb, the calculated values of this paper

ire too small and the source method presents quite a good result.

n the other hand, for N the calculated values of this paper give

i very good result but the source method gives values with a large

leviation as a whole. With respect to the deviation between the

xperimental values and the calculation, we have first to take

ote of three-dimensional effects. For this there are calculations

y Havelock [131 and Vossers [14]; furthermore, Nenan [15] has

ised the three-dimensional source method of havelock ti] to cal-

ulate the three-dimensional damping coefficient at zero velocity

or the experimental model used by Gerritsma. The value of Nh

iccording to this latter calculation is about 207. greater than that

btained by the two-dimensional strip method. (See Fig. i of [151.)

f we use this three-dimensional correction for the calculated

a1ues of this paper, we find them very close to the experimental

alues. Besides this three-dimensional effect, since the cross-

ections of the aft half of the models used by Gerritsma are not

rail-sided but have a certain inclination at the L.W.L., some

Leviation from the theoretical calculation may be expected as a

iatter of course. When the amplitude of the oscillation is large,

on-linear damping may also cause this deviation. Concerning these

roblens, the matter is still under investigation, mainly by

xperimental means.

The calculated values of and p, are very close to the

xperimental values except for small w where the measurement is

incertain. On the basis of the two experiments by Golovato and
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erritsma, it appears that7 and7 obtained by the strip method

ive very satisfactory values. From this fact we may conclude that

tcept for email the three-dimensional influence on the

pparent mass and moment of inertia is so email that we may disregard

t for practical problems.

4. Conclusions.

The following conclusions are obtained from the above calcu-

ations.

1) Since acme of the ¡ values in the figures of O. Grim (4] are

Dubtful, the equation used for its calculation has been shown as

11). The result obtained by Grim's approximate method using this

uation is generally quite close to the more exact values of this

aper. From comparison with the experiments of Golovato (2], it

s seen that the calculated values of this paper are more accurate

an those obtained by Grim's method. On the other hand, from

mnparison with the experiments of Gerritama (2], we know that

Drrection should be made for three-dimensional effects, the

ffect of non-wall-sided cross-sections, and the effect of finite

nplitude when we perform the calculation for the damping coeffi-

Lent of the actual ship shape.

Z) The value of K4 varies with the various shapes of croas-

ctions. By using the values of this paper for cylinder, one may

)tain by the strip method very satisfactory values of and

r ships.

Many thanks are due Professor Watanabe for his valuable

.iggestiona.
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Appendix

For the conformal transformation of (5), if we put

KBJ2-.flgß/2. then the free-surface boundary condition
bec aine s ( 3a..

1+a,+a. )_o (s_±.)
Consider the following potential function which satisfies

- O, the boundary condition (20) and is syninetrical with
respect to the y-axis:

-e'cos2sp,8+' E. r --i»
1+a+a. 2sus-1 cos(2as-1)S+ 2_+1

sal -('» cas(2 sp,+3)8] (*-1,2,3... )

The corresponding stream function is

E. r --im
I. 2*-1 ain(2 - 1)8+ 2_+1

34 (spi=iI, 2,3. ) (22)- 2is+3

Both çand )becoineOasa+.
Let us suppose a two-dimensional source placed at the origin,
following Ursell [3, in order to provide an expression repre-
senting progressive waves at infinity. For the stream function

)* one has

W.= f1. (W.(K. x. )cos* W.(K X, p)sin .4]

P.=suM1 sin K:
- I-I.V.- q x'+' (bslnhy+Kcoahi'}ihw.J. Kai

sin(2+1)

18



i

or by changing the parameters,

Y'. = -- (Y'.(.. s a. a. D)cos wi + W.(b.a. a.. a, O)sin ..t]
WO)

where 'i is the amplitude of the progressive wave at infinity.

The stream function which satisfies the basic conditions

and represents progressive waves at infinity is

c/n)'- W.(., a., a., a, é)cosw +W.(.. a,. a., a, S)sin oS

+cosøt EPr.i(f.)[ir" sin 2 mD +------J' sln(2s-1)S1+.,+i. ( 2m-1- I

- i('' sin(2'sln(2m+I)O 2m+3

E' --'
+slnO)t E i (e.)[. 1" sin 2.S+ i+a,+as 2m-1

.-.'sin2m+3)S}]+ 2+1 sin(2s+1)S 2m+3

We assume this series is uniformly convergent for

The stream function must satisfy the condition (3) on the

boundary of the cylinder, a. O. Then (3) becomes

(-8/89).= UM(cosü-$-aicosS-3a.cos3D)

The following relation is obtained from (25) and (26) on the

boundary of the cylinder, a.- O:

(w../r,)*.-.- W..(I.. a,, a,, S)cos col +Y'.(E., a,, g,, D)sin cot
r . Jsin(2i.i-1)S a..in(2m+1)S

1-f-a,-4-a, I 2m1 + 2m+1-i I.
- r

I-sineE,(I,)Isin2mS+ . J sln(2m-1)S + atsin(2m+1)9
1+a,+a. t 2m-1 2m-f-1as L

- -(wco/) UM(iin O+as sin Sa, sin 35)

Here, * and )# are the values of 1/% and
'co 80 c

3a.sln(2+3)S
2+3

3a,sin(2+3)S
2m-f-3

()

for a.- O.

19



From equation (27) with e we get

W.,(E.. c. as. */2)cos siS + a,. as u/2)sin siS

+cossiSEP(f.)
¿5

( 1)11{ i ci Sas

i+c,+a. 2m-1 - 2+1 2m+3 }

+sinlb)h--(-1)'h'{
1 ci 3.. t=(UM(1+c,+..). (28)- 1+a,+a. ' 2im-1 - 2m+i - 2ai+S J ,p f

Use this equation and (27) to compare coefficients of the term

COB W t and equate coefficients to obtain

sInS+.ssinO..sin3SP(,, c. as. S) 1+ci+a.

1+rn+a. 2si-1 2+1 2+3 }EPi.(b)[sin2IsS+ ¿, -{ sin(2m-1)S + c,sln(2ius+1)S 3a.sin(2*+3)S
i

¿.(-1) f i Sas )

(1+c,+.$)' I 2m-1 - 2m+1 - 2m+3 $sinS+casinS_iP.sinS)] .

Define

fi.i(E..as.asS)_[sin2asS+ ¿s_jsin(2s1i)S + c,sin(2+1)O _Sasn(2+3)S)
1+c,+as ( 2-1 Z_+1 2+3

+ ¿.(l) ( i a, 3m.
(1+ci+a.)l 2m-1 2m+1 2m+S }(sInS+a.sinS_aumin3s)]

Then (29) gives the first equation of (31) and a similar pro-

cedure with the coefficients of sin wt gives the second equation:

P..(h. ai. a.. S)

Wm(Es. CCs. S) -

sin S+a sinSassIn 35
i+c'+as

sin O+ci sin Sa. sin SS
1+c,+a.

20

Equation (31) is the relation used to determine p(0) and

2mo

(30)

as. as. al EPa.(Ee) fa,(t.. a..as. S)

(31)

' ,.(.. a, as. - luCEs, e,. as, S)



In equation (28), let

a' a. + c i) s f i Si 35.
2 , 1+a,+a.12mi 2Ns+1 2.+3}'

_i__ J i CI 1

2) a_ 1+.+a.( 2m-1 2m+1 2+3

Equation (28) then becomes

-(%ci/fl) UM(i +c, +a.) = «.,j +B.(.)sin øt

Then if we use (see (2) and (8))

U= h*sin(ot+s),

M=-f/1+ss+i.

the ratio X of the amplitude of the progressive wave to the

amplitude of heaving h is

- ,, wB i 4.A--a-
* g 2 A?+BÇy' A.'+B.

If we put a1 a O in equations (29), (30), (31), and

(32), we get the equations given for the semi-circle by Ursell [31.

The potential cp corresponding to (25) is

(%../n).-O.(e. s,, is, a S)cos* +L(E.. a,, a., a, S)ain .,
a

+cos. EP(E.)[. 2mS+--- ( co.(2si)O1+a,+.. i 2ii
3a.rC')

+ 2m+i cos(2w+i)S 2m+3 coe(2us+3)S}]

+shi w

s

g, g,

J
(34)

21
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where

a,. a.. a. 9) = gg ZVCO3 ¡Cx

.(f.. a,. a, a. 9) = uv sin ¡Cx- J (h coi h-Ksinhy}h

From p=p.8pIat we get the pressure on the cylinder. (The

density of the fluid is p.) The force in the y-direction acting

on a unit length of the cylinder is of the form

F-(---\P.B(M.cosr4-N.sln.,t), (36)

where M0, N0 are

+++;u,

tEIS cos9+a,cos9-3a.cos39
..(e..c,.a..$) ¿9

1+a,+a.

-
I i+a, 96. \

I E(-1)'q
4,,'-1 + 4&g)+ 4(1+aa+gs)

((1+as-rna..)fs_a.l.)]
L_-,

cosß+a;cos9-3a.cos39N,- I ,.(E..si.a.. S) ¿9
1+a,+a.i r 11+61 9a,

+ I E(-1)'pi.L 4m'l + 4m1_9)+ 4(1+a,+a.)
((1+as-a sPs_aiiP.}]. (37)

The acceleration of the motion, from (28) and (3l),is

__(_2git )A.(e.sin_B..)i . (30)
dl'

The cponent of the total force F that is opposite in phase to

the acceleration acts as a force proportional to the added mass.

This part is

-- .PB( M.B.+N.4. ){A.(f.)sin ø -B.(.)coao,S}
% \ A.'+B.'

(30)
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The ratio of (38) and (39) gives the added mass,

B ' M.B.+N.A, \
A.'+B.' I

From Lewis (9J, the added mass of a Lewis-form cylinder in

an unbounded fluid is 1/2.pC.(B/2)' where

(1+mi)'+3a'
C.- .

To take account of the free-surface we use a coefficient K

representing its effect:

A.M_-4-êii(-f)'.C.Ki

Then K is obtained from

L MB.+N.A. (1+i+a)
=; 44.'+B.' (1+a)'+3&

The average work per cycle of the cylinder oscillation is

P'/.(M,A.-N.B,). Since this is equal to the energy propagated

by waves to each side per unit time, 1j2pg'i'j. then

M,4.-NpB,-j2 . This was used to check the nunerical calculations.

The coefficients
2m'

q are obtained from equation (31)

23
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ski O+g sin S.ssinSS bIha..) H(S)

(41)

(43)



then H(0)=Hfrd2)=O. For 0(0(42

H(9) has been expanded into non-orthogonal series:

H(S)- E(f(E..'.".0)--I

his should converge uniformly for O(O'iT . In Ursell (31

161, (171, it has been proved that in the case of the circular

ylinder - a3 - O) this series converges for all values of

enerally it is difficult to determine the region of convergence

or the case a1 p1.0, a3 p1.0. If we assie its convergence, us.

he terms to m - 6, and perform the actual calculation, the

ignificant figures converge rapidly even when 3. In fact,

f we perform the numerical calculation of H(9) and f(C, a1, a3, 9)

or 9 - 100, 200, 300...800 and apply the method of th. least

quares, we obtain simultaneous linear equations in six variablas.

rom these equations we can obtain p2, p4, ... p12 and the corres-

onding q. Por - 0.2, the calculation has been dons only

ór 1.

2i


