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Abstract

Different methods exist to create a distributed controller for swarms of mobile robots. The
mobile robots considered in this thesis are six legged "Zebro" robots. These mobile robots
will use Radio Signal Strength (RSS) measurements to determine the distances towards other
mobile robots and radio beacons placed in the surroundings. A combination of distance mea-
surements and dead-reckoning is used to perform a localization of the relative positions of the
other mobile robots in the neighbourhood. The focus of the localization algorithm is to deal
with a bad performance of the distance estimation, because this will result in uncertain posi-
tion estimations. With knowledge about the bad performance of the localization an according
suitable swarm algorithm is designed. This swarm algorithm is will also be used to test how
valuable the position estimations can be as an addition to already existing swarm algorithms.

The localization method proposed uses equations from the Relative Pose Estimation (RPE) [1]
in combination with a trilateration of distance measurements between all swarm members,
so-called Multi-Robot Trilateration (MRT). An Unscented Kalman filter (UKF) is used to
perform the localization using both RPE and MRT. Given the estimated positions of the
other mobile robots a Virtual Potential Field (VPF) controller is used to control the heading
direction of a mobile robot. These VPF controllers use streaming functions [2, 3] to avoid
local minima. The first VPF controller will create cohesion of the robot swarm without letting
the mobile robots collide. From simulations it was investigated how much effect uncertain
position estimations can have on the cohesion of the swarm. A second VPF controller will
steer the robot swarm away from repulsive obstacles represented by radio beacons. Again from
simulations tests conclusions were drawn to see how much effect the uncertain positions have
on avoiding obstacles and which navigation algorithm is most suitable to navigate the swarm.
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Chapter 1

Introduction

Today’s society requires an increased level of automation to improve daily lives [4] and pro-
cesses [5]. One subject for automation is the use of robots for examining or exploring a given
environment. The use of robots can be helpful in cases that the environment is for example
to dangerous or inhabitable for humans. It is better to have multiple robots than one robot
for such tasks [6], because using a monolithic sophisticated robot would represent a single
point of failure and might also be much slower in accomplishing the task. Instead, a so-called
robotic swarm consists of simpler robots with less advanced and cheaper equipment. Another
advantage of a mobile robot swarm is that it is scalable and can work parallel to each other,
so multiple tasks can be performed simultaneously. Furthermore swarming robots are cheaper
and therefore can be mass-produced.

Last few decades multiple researchers have worked on robotic swarming technology. Today
robot swarms are a hot topic. In [7] a thousand little robots create complex two dimensional
shapes and in [8] an example is given about very small microbots. These microbots operate
with simple measurements, which result in a primitive way of swarming. One of the most
primitive swarms is presented in [9], these robots do not have any sensors at all. These robots
create a swarm which looks like a group of bacteria with only doing one particular movement
and colliding with each other. In this thesis project also a robotic swarm with a low amount
of available information is considered, because the robot swarm should work under various
circumstances. Therefore one of the requirements is the use of a minimal set of sensors and
equipment. This also allows reducing the amount of software and hardware faults on site and a
minimal amount of equipment uses less energy and therefore longer operation time is possible.
Letting the robot swarm function under various circumstances also includes situations where
external sensor systems such as GPS are not even available, for example in the underground
or outer space. Having an indication of the positions of the other mobile robots antenna’s
onboard each mobile robot are used to measure the distance to one another. The distance
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2 Introduction

is measured using Radio Signal Strength (RSS) measurements of received messages from the
other mobile robots. Distance measurements by measuring the RSS are very uncertain, dealing
with this will be the major challenge of this thesis. In conclusion the research question can be
formulated as:

How can a distributed controller for a robot swarm containing Zebro robots be designed using
uncertain distance measurements and minimal additional sensors?

An important question for creating such robotic swarm is: What kind of swarming behaviour
should be achieved? In nature there are multiple examples of swarming behaviour which
each use a different level of intelligence. For example whales can communicate over very
large distances, sometimes thousands of kilometers, to stay in contact. They also have a very
complex way of communication with high amounts of information [10]. In contrast, an ant
only communicates on short distances with his antennas and at larger distances only by odor
or pheromone trails left by other ants [11]. Using mainly these measurements an ant even
can stay close to the group, explore the surroundings and together accomplish large tasks as
constructing an entire an ant nest. This philosophy of the ant colony is also the basis for
the robot swarm. A similarity between the mobile robots and ants (or other insects) is that
they also only know about their direct surroundings visualized by (virtual) odors. In this
thesis a mobile robot uses the Radio Signal Strength (RSS) measurement of messages from
radio beacons on site in stead of real odors. Every mobile robot itself also transmits messages
(odors), which will also be used to communicate between each other. The description of the
Zebro robot as the considered mobile robot along with a description of its onboard sensors is
given in Chapter 2.

Many swarm algorithms already exist that can deal with virtual odors presented by distance
measurements from obstacles or attractive goal beacons. In the first concept for a swarm-
ing algorithm using the Zebro robot the robot only knew the distances towards objects. The
swarming algorithm used a genetic learning algorithm to converge to an optimal heading di-
rection. Having a notion of the positions of these objects will give a better heading direction.
Therefore in this thesis the goal is to prove that a localization algorithm can estimate the
positions of the other mobile robots and if so that it can be a valuable addition to the swarm
algorithms that only use distances. A localization algorithm to give a notion of the positions
of the other mobile robots is designed in Chapter 3. The major challenge of this localization
algorithm is to deal with very uncertain distance measurements from the RSS measurements,
which also results in uncertain position estimations.

The first step is to establish a distributed mobile robot swarm controller that to let the swarm
stay together while not colliding into each other. The Virtual Potential Field (VPF) controller
is one of the most used controllers that uses the position estimations to do so. A downside of
the VPF controller is that most researchers use a simulation environment with known positions
of all the swarm members. The effects of more uncertain and realistic position estimations of
the swarm members on VPF swarm controllers was not found in literature. Therefore these
effects will be researched in Chapter 4.

In the last chapter multiple algorithms are tested to let the complete mobile robot swarm
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interact with the environment. In this case only the distances towards the obstacles and
attractive goals are known. The goal is to combine the VPF swarm controller with an algorithm
that lets the swarm interact with its environment. A point of research will be again the effects
of uncertain position estimations and noisy distance measurements on the heading direction of
the swarm members.

In the end conclusions are drawn to see how valuable the uncertain position estimations from
the localization are and what effect they have on the existing swarm algorithms and algo-
rithms to interact with the environment. Based on the simulation results also multiple topic of
improvement are handled for future implementation and a better working swarm algorithm.
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Chapter 2

Motion and measurement models

Figure 2-1: The Zebro robot.

The first task to create a mobile robot swarm containing Zebro robots is to know the char-
acteristic of the Zebro robot. In this thesis these characteristics of Zebro robot are given by
the motion models of the Zebro robot. These motion models consist of a motion model of
the Zebro robot itself and a relative motion model to describe the relative motions of other
mobile robots from the perspective of a single Zebro robot. A relative motion model is needed,
because the mobile robots do not have a position reference to know their absolute coordinates.
In this thesis all mobile robots with the same motion model as the Zebro robot are considered.
Therefore the name Zebro robot will not be used, but the general name "mobile robot" that
represent all mobile robots with the same motion model as the Zebro robot.

Further on the sensors that are placed on board the mobile robot are handled. These sensors
have a goal to perform a localization to estimate the position of the other mobile robots and
obstacles. The first sensor is an antenna which measures the Radio Signal Strength (RSS)
between two antenna’s onboard two different mobile robots (or beacons). The measured RSS
will be converted to a measured distance between the two mobile robots. The second sensor
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6 Motion and measurement models

tracks the walked direction and distance of the mobile robot at each time sample, so called dead-
reckoning. The combination of the robot-to-robot distance and tracking its own movement will
be used to perform a localization of the neighbouring Zebro robots, which is handled in the
next chapter.

2-1 Motion model of the Zebro robot

This chapter starts with the motion model of a single Zebro robot. The Zebro robot is a
six legged robot designed by the Robotics Institute at the Delft University of Technology [12]
and looks like the mobile robot in Figure 2-1. The Zebro robot can be modelled as so-called
two-wheeled robots, unicycles or mono-cycle robots [13–15]. In this thesis all mobile robots
that can be modelled with the same motion model as the Zebro robot are considered. The
motion model is given by the non-linear state-space model given by equation (2-1) and Figure
A-3.

x̄(k + 1) =

x(k + 1)
y(k + 1)
θ(k + 1)

 = f(x̄(k), ū(k)) =

x(k) + uv(k) cos(θ + uθ(k))
y(k) + uv(k) sin(θ + uθ(k))

θ(k) + uθ(k)

 , (2-1)

Figure 2-2: The motion model of the mobile robot considered given in an absolute coordinate
system.

In Figure A-3 θ(k) is the pose at time k and is relative to the x-axis. The control inputs of the
motion model are the heading direction uθ and the travelled distance uv.

In general θ(k + 1) depends only on the previous heading direction uθ and pose θ(k). So one
might see that this motion model does not deal yet with situations where the new pose θ(k+1)
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2-2 Relative motion model 7

is not equal to θ(k) + uθ. An example when this happens is given in Figure 2-3. In practise
this could happen often, due to rough surfaces and the jerky movement of the Zebro robot.

Figure 2-3: A curved walked path, where u+
θ is a difference between addition of the previous pose

and the heading direction uθ.

In Figure 2-3 the motion of the mobile robot is not straight, but with a curve. In that case
θ(k + 1) 6= θ(k) + uθ holds and the new angle θ(k + 1) needs an addition of u+

θ , given as

θ(k + 1) = θ(k) + uθ + u+
θ (2-2)

The presented non-linear motion model is sufficient to describe the absolute heading θ and
absolute position (x, y) at each new time sample k with the control inputs uθ and uv, but
this model is not sufficient to model the movement of the mobile robot in a coordinate frame
without reference coordinates. In that case the robot does not know it absolute coordinates.
So a relative motion model also needs to be used. The relative motion model let the mobile
robot see the movement of the surrounding from its own perspective and is the topic of the
next section.

2-2 Relative motion model

In the previous section the motion model of the mobile robot was given. In this section a
relative motion model is presented, where the motions of the surroundings are seen from the
perspective of a mobile robot. This is necessary, because the mobile robots do not have a
reference point to know their absolute coordinates in the workspace. Therefore the mobile
robot uses a local coordinate system for the relative positions of the other mobile robots,
where the mobile robot itself is always placed in the origin headed along the x-axis, see Figure
2-4.
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8 Motion and measurement models

Figure 2-4: The surroundings seen from the perspective of a single mobile Zebro robot. The local
coordinate system is given by (x∗, y∗) and the heading direction (purple arrow) is always aligned
with the x-axis. The red symbols represent obstacles, where two of them lie outside the maximum
range rmax of what a mobile robot can perceive.

Doing so creates a motion where the surroundings translates and rotates around the mobile
robot. Figure 3-11 gives an overview on of the relative motion of mobile robot Zi seen from
mobile robot Z0 with both robots having the same motion models of the previous section.

Figure 2-5: The relative motion between mobile robots Z0 and Zi. The mobile robots Z0 and Zi
move with the vector V0,k and Vi,k respectively.

In Figure 3-11 two mobile robots Z0 and Zi have moved with vectors V0,k =
[
Vx,0(k)
Vy,0(k)

]
and

M.C.R. van der Klauw Master of Science Thesis



2-3 Distance measurement model using radio signal strength 9

Vi,k =
[
Vx,i(k)
Vy,i(k)

]
respectively. The heading direction (pose) Zi from the perspective of robot

Z0 is αi and α0 is the headed direction of Z0 itself, where α0 = uθ,0. If the previous position of
robot Zi is the vector Zi(k) inside the local system W̃k then the following equation gives the
updated next position Zi(k + 1) inside the new local system W̃k+1 [1].xi(k + 1)

yi(k + 1)
αi(k + 1)

 =
[
Zi(k + 1)
αi(k + 1)

]
=
[
R(−α0(k))[Zi(k) +R(αi(k))Vi,k − V0,k]

αi(k)− α0(k)

]
, (2-3)

where R(α) is the rotation transformation matrix that rotates with the angle α. Like with the
absolute motion model the pose angle α0 can also be not equal to the headed direction uθ,
because of curved movements. As a compensation the following function for α0 can be used.

α0 = uθ,0 + u+
θ,0 + u+

θ,i, (2-4)

where u+
θ,i is the angle between the headed direction uθ,i and final pose of mobile robot Zi,

which was already explained by Figure 2-3.

The relative motion model is basically the motion model of Section 2-1 with an adaptation,
where one looks from the perspective of mobile robot Z0. One should keep in mind that the
heading direction vectors V0,k and Vi,k are Cartesian vectors and not polar control input vectors
uθ and uv. Therefore the control input needs first to be converted to Cartesian coordinates to
be used for V0,k and Vi,k. Also the relative coordinates of Zi(xi, yi) are Cartesian coordinates,
but in this thesis a polar coordinate system will be used for the local coordinate system
W̃ . Why using polar coordinates is explained in Section 3-3. The only change to be made
is a conversion from Cartesian coordinates Zi(xi, yi) to polar coordinates using the function[
xi
yi

]
= fc→p

([
θi
vi

])
. The back-conversion is given by the function

[
xi
yi

]
= fp→c

([
uθ,i
uv,i

])
.

With the relative motion model the relative motion of another mobile robot from the perspec-
tive of a mobile robot can be described. Which is useful, because the mobile robot do not know
their absolute coordinates in the environment. The next section describes the model where
the RSS between two antenna’s is measured to find the distance between them. A discussion
about the sensors for dead-reckoning is given in Appendix B.

2-3 Distance measurement model using radio signal strength

All the mobile robots will have the same sensors to localize the other mobile robots and/or an-
tenna beacons. Distance measurements are performed using radio transceivers. The antenna’s
of the transceivers are placed on the mobile robots or as beacon placed somewhere in the sur-
roundings. The RSS measured of a transmitted message send from another antenna is used
to measure the distance r between the two antenna’s. When two antenna’s are further away
from each other the RSS will drop and therefore an indication of the distance can be given. A
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10 Motion and measurement models

RSS-to-distance r model is known not to be very accurate, therefore in this section the main
topic is to find the characteristics of the distance uncertainty. Knowing these characteristics
of the distance measurements a suitable localization algorithm can be chosen or needs to be
created.

The model chosen is the path loss Line-of-Sight model (LOS), which gives a good general indi-
cation of the distance in non-complex environments [16, 17]. The definition of the complexity
of an environment is based on the amount of radio signal blocking/reflecting objects such as
walls, humans and metal cabinets. There are models that give a better RSS-to-distance esti-
mation in more complex environments. Such two models are the Non-Line-of-Sight (NLOS)
models and fingerprint models [18, 19]. The downside is that these models need additional a
priory measurements to create a map or model. This is undesired in emergency cases, or if the
mission site is to dangerous for people or in remote places.

The chosen LOS model is given by the following equation

I(r) = I0 − 10β log10(r) + νI , (2-5)

where I is the RSS in decibel Watt and r the distance in meters. I0 is a constant also in decibel
Watt based on the power at one meter and β is a path-loss parameter. The parameter β gives
the declination of the RSS over the distance r and depends on the environment. A higher
value for β is used when the environment is more complex. The last parameter in Equation
(2-5) νI is an additional Gaussian white noise with a power σ2

I . From experimental data given
in Appendix the values for I0, β and σI were found to be

I0 = −53.71 β = 3.424 σI = 3.487

with a maximum distance rmax of 10 meters. When inverting Equation (2-5) the distance r
can be calculated from I.

r(I) = 10
−1
10β (I−I0+νI) (2-6)

Important is that the noise νI is in the power ten part, which indicates a probability distribution
of the distance r to be a log-normal distribution, see Figure 2-6 [13].
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2-3 Distance measurement model using radio signal strength 11

Figure 2-6: The mapping of a Gaussian noise distribution of the intensity to a log-normal distri-
bution of the distance. The dotted lines are the mean of the distributions.

Still a normal distribution noise variance can be approximated, because the log-normal still
looks quite similar to a normal distribution. For the approximation of a Gaussian noise stan-
dard deviation σr for the distance r a linear approximation is used. In Appendix C-1 it is
proven that σr using the linear approximation is given as

σr = r log(10) 1
10βσI (2-7)

Using this equation one should realise that the standard deviation of the intensity noise as
σI = 3.487 dB is equal to σr = 25% of the distance r! Therefore a main topic in this thesis is
how to deal with this given large amount of distance measurement noise. Also important to
see is that the noise variance σr of the distance r is relative to the distance itself r. In some
later functions the squared distance r2 is used as the distance measurement and as proven in
Appendix C-1 the following equation hold for the noise standard deviation σ∗r of the squared
distance r2

σ∗r = r2 log(10) 1
5βσI (2-8)

Using the linear approximation of σr and distance r in stead of the intensity I will result
in biased distances estimations later on. A solution for elimination of the offset could be to
rewrite all measured distances r̄ back to a RSS Ī "distance", because the measurement I has
an unbiased normal distribution. Later on the squared distance r2 is used and the following
function is used to map this to the RSS I.

I = I0 − 10β log(
√
r2) = I0 − 5β log(r2) (2-9)
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12 Motion and measurement models

Rewriting all distances r to RSS distances I in the localization algorithms resulted in worse
and wrong position estimations, because highly non-convex cost functions of the estimated
positions were created.

In conclusion, the Zebro robot can be generalized as a one-wheeled robot with a relative motion
model to model the motion of the surroundings from the perspective of a single mobile robot.
Additionally to know this relative position of the other mobile robot one of the measurements
used is a distance measurement. The distance is measured by measuring the RSS of the
messages send between two transceivers each placed on another mobile robot. The results
were as expected very noisy, σr = 25% as the standard deviation of the distance noise. The
measured headed direction uθ and travelled distance uv are used to perform dead-reckoning.
Both distance and dead-reckoning will be used for localization in the next chapter.
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Chapter 3

Localization of other mobile robots

Knowing only the models from the previous chapter will not create a robot swarm. Each robot
also needs to know in which direction they should walk to. There are algorithms that use
a genetic search or a reinforcement learning approach to find the optimal heading direction.
Mobile robots using these algorithms measure each time step how well they are positioned
relative to other mobile robots and obstacles and learn from their "mistakes" over time to
make better decisions. This can be done without a notion of the positions of the other mobile
robots or obstacles, but having a notion of the location of the other mobile robots could
create additional information. The additional knowledge about the positions of the other
mobile robots will make it easier to decide which direction to go. Therefore in this chapter a
localization algorithm is created to find the positions of the other mobile robots.

The localization algorithm uses distance measurements which were given in the previous chap-
ter. Methods using only distance measurements are called trilaterations. In practice trilat-
erations are used for localization of mobile robots, cars, persons and more [20]. The most
famous example is the Global Positioning System (GPS) [21]. The main difference with these
implementations is that the distances are mostly measured from sensors/beacons with known
positions. In this thesis the challenge is to create a localization algorithm where the position
of the distance sensors also have to be estimated. In literature localization algorithms exist
that do not require known positions of the distance sensors [22, 23]. The downside of these
implementations is that estimation of the location of the sensors do not have a priority and
still some a priory knowledge of the environment was required. Therefore a new localization
method needs to be designed with the specific needs of robotic swarms and the sensors available
on the Zebro robot.

First a general overview is given on how the trilateration normally is performed. As said earlier
this method requires known positions of the distance sensors, but since that is not the case
dead-reckoning is used as an additional measurement to perform a relative localization. The
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14 Localization of other mobile robots

first attempt using both distance and dead-reckoning measurements is by using a modification
of weighted Multi-dimensional Scaling (MDS) [24]. Due to poor results of the position estima-
tion of this MDS localization another attempt was necessary. A method called "relative pose
estimation" (RPE) by Roumeliotis [1] is specifically designed for relative position estimation
of another moving object by distance measurements and dead-reckoning. The RPE will be
combined with a modification of the trilateration using a Kalman filter to improve the perfor-
mance. Results and insights from simulations of this new localization algorithm are given at
the end of the chapter. The newly designed localization algorithm creates estimated relative
positions, which will be used as an input of the swarm controller in the next chapter.

3-1 Problem formulation

Before possible localization methods are covered the localization problem itself needs to be
formulated. This relative position estimation problem is given in Figure 3-1.

Figure 3-1: The relative position estimation problem. Here mobile robot Z0 will try to estimate
the position (θi, vi) of mobile robot Zi. Mobile robot Z0 will always center itself in the origin of
its own local coordinate system pointing to θ = 0.

The main goal is to estimate the position of the other mobile robots Zi from the perspective
of a robot Z0. Mobile robot Z0 has its own local polar coordinate system which is called W̃0.

The relative position vector of Zi is given as
[
θi
vi

]
, with angle θi = [−π, π] and the distance

vi = [0, rmax]. The distance rmax is the maximum range of the antenna system, given in Section
2-3. The heading direction of mobile robot Z0 always points along the axis of θ = 0. As one
also can see in Figure 3-1 the surrounding does not contain any static radio signal transmitting
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3-1 Problem formulation 15

beacons. If such a beacon with known coordinates existed the absolute coordinates of the
mobile robot and others could be estimated. For such a localization problem multiple solutions
and examples exist [20], but for this thesis the challenge is not having pre-knowledge about
the positions of any of the robots or static beacons.

The localization algorithm will use measurements of the distance between the mobile robots.
These distance measurements were discussed in Section 2-3 and are given by r̄i,j , with i 6= j,
where r̄i,j stand for the distance between mobile robot Zi towards mobile robot Zj . An impor-
tant extra feature of the system is the possibility to have information about RSS measurements
between two other robots Zi and Zj . This information can be communicated back to the mo-
bile robot Z0. Figure 3-2 gives an overview about which distance measurements then will be
available. This method where distance measurements between other mobile robots are also
used, is called "Multi-robot trilateration" (MRT).

Figure 3-2: In this figure the distance ri,0 with i > 0 presents the distance from mobile robot
Zi to the mobile robot Z0. A distance measurement r̄i,j between two other mobile robots Zi and
Zj are also used, but only when both mobile robots are in sight of Z0, therefore r̄0,i < rmax is
required for both mobile robots Zi and Zj .

Furthermore, the used nomenclature in this thesis used to distinguish different variables is
given in Figure 3-3.
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16 Localization of other mobile robots

Figure 3-3: Nomenclature rules: A -̄accent gives a measured value and a -̂accent an estimated
value. When no accent is used the true value is used.

In conclusion, the localization problem is formulated as the task where the relative position
of other mobile robot needs to be estimated. The challenge is to such without having static
beacons with known positions. Mainly distance measurements will be used to perform to lo-
calization, these distance measurement can also be distance measurements between two robots
in sight ri,j . Later also dead-reckoning measurements will become available as a necessity of
this relative position estimation problem.

3-2 A least squares solution for trilateration

In line with the previous section a solution will be presented to perform the trilateration.
The mathematical problem can be formulated in a linear trilateration problem. After a short
explanation how to solve the trilateration problem a modification of this trilateration is outlined
that uses the additional distances measurements so create the Multi-robot Trilateration. The
MRT also deals with the constraints of unknown distance sensor positions. In the end the
limitations of the MRT are given, which are solved in the next sections.

A trilateration uses only distance measurements to localize a mobile robot. Figure 3-4 presents
the trilateration problem, where (xZ , yZ) has to be localized.
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3-2 A least squares solution for trilateration 17

Figure 3-4: The trilateration problem. Each circle represents the possible positions of mobile
robot Z according to the distance measurement r̄i. The goal is to find the point (xZ , yZ) where
all circles intersect.

To solve this problem one can use the two equations below.

r2
1,Z − r2

2,Z = ((x1 − xZ)2 + (y1 − yZ)2)− ((x2 − xZ)2 + (y2 − yZ)2)
r2

1,Z − r2
3,Z = ((x1 − xZ)2 + (y1 − yZ)2)− ((x3 − xZ)2 + (y3 − yZ)2) (3-1)

These equations then needs to be solved for xZ and yZ by having at least two of such equations,
which correspondents to at least three distance measurements. Solving Equation (3-1) for xZ
and yZ can be done by a least-squares estimation. Therefore Equation (3-1) needs to be
rewritten in a linear matrix form of Ax̂ = b̄ as

r̄2
1,Z − r̄2

2,Z = 2x̂Z(x2 − x1) + 2ŷZ(y2 − y1) + x2
1 − x2

2 + y2
1 − y2

2
r̄2

1,Z − r̄2
3,Z = 2x̂Z(x3 − x1) + 2ŷZ(y3 − y1) + x2

1 − x2
3 + y2

1 − y2
3
, (3-2)

where b̄ contains the distance measurements r̄i,j and x̂ is the vector with the estimated positions
(x̂Z , ŷZ). With the use of knowledge about the uncertainty of the distance measurements σr
from Section 2-3 also a maximum likelihood approximation can be used to solve Equation
(3-2).

Although used in multiple implementations there is a limitation why the equations from Equa-
tion 3-2 can not be used directly. In Equation (3-2) it is assumed that the positions (xi, yi)
for i = 1, 2, 3 are known. As stated earlier this is not the case in this thesis, because those
beacons are moving mobile robots them self. It is still possible to create equations for every
measured distance r̄, i, j between mobile robots Zi and Zj , but every equation now have only
unknown variables on the right hand as

r̄2
1,Z − r̄2

2,Z = 2x̂Z(x̂2 − x̂1) + 2ŷZ(ŷ2 − ŷ1) + x̂2
1 − x̂2

2 + ŷ2
1 − ŷ2

2
r̄2

1,Z − r̄2
3,Z = 2x̂Z(x̂3 − x̂1) + 2ŷZ(ŷ3 − ŷ1) + x̂2

1 − x̂2
3 + ŷ2

1 − ŷ2
3
, (3-3)

This will create a non-linear equation which can not be solved by a linear state estimator
any more. The set of equations now contains all non-linear equations possible. Meaning all
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18 Localization of other mobile robots

functions resulting from all combinations of r̄2
i,Z − r̄2

j,Z , where i 6= j. The use of this complete
set of equations is called Multi-robot trilateration.

The second part of this section is about why Equation (3-3) is not sufficient to solve the
trilateration problem. As said the result of solving the multiple equations of the Multi-robot
trilateration is a shape of the group of robots like a graph. The graph can only be used to
estimate the distances v̂i,j from and between robot Z0 and robots Zi. Still multiple solutions
of the relative position of the other mobile robots exist, because the estimated orientation θ̂i
is arbitrary as explained with the help of Figure 3-5.

Figure 3-5: The problem of knowing only the distances between mobile robots. The graph has
multiple solutions, for the orientation θ. Even with 2 sensors the graph can mirror.

Figure 3-5 shows four times the same estimated graph of the robot group with the red coloured
robot as Z0. One can see on the left picture that with only knowing the distance between all
mobile robot the resulted graph can freely rotate around Z0 giving it infinite solutions. Also
when two antenna’s are used on a single robot the shape of the group has two solutions which
are mirrored. Therefore the distances v̂i have one solution, but the orientations θ̂i are arbitrary.
In the next section a method called dead-reckoning is added to find a single solution for the
orientations θ̂i .

3-3 Dead-reckoning as necessary additional measurement

The previous section showed a method to estimate all the distances v̂i from the robot Z0
towards and between the neighbouring robots Zi. The remaining issue was that the estimated
orientations θ̂i have infinite solutions. This section gives a solution in the form of using an
additional measurement, called dead-reckoning. These measurements create an estimate of the
walked path V̄i of each mobile robot Zi. Dead-reckoning in this case is performed by measuring
the headed angle ūθ and distance travelled ūv at each time step k. The sensors which can be
used to measure both are discussed in Appendix B. By adding dead-reckoning a mobile robot
can use the history of its walked path V̄i together with the according distance measured at
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3-3 Dead-reckoning as necessary additional measurement 19

the previous positions r̄i,j(k). Doing so creates additional measurements at points with known
positions in the local coordinate system. These extra known measurement points can be used
as additional points from which the distance towards the target is known. By having these
points a trilateration can be performed to estimate the position of the target as seen in Figure
3-6.

Figure 3-6: Use of additional measurements from dead-reckoning to create multiple known mea-
surement points.

A problem is that the mobile robot to localize Zi also moves as given by Figure 3-7. Solutions
to deal with both movements of the mobile robots are discussed in Sections 3-4 and 3-5.

Figure 3-7: A case where two mobile robots are moving and performing dead-reckoning. Here at
each time k a distance measurement was taken.

From one’s intuition it can be seen that the problem about the infinite solutions of the orien-
tation is solved, but for the mirroring problem it is also necessary not to walk in a straight line
(non-collinear movement). One other necessity is to keep walking. A mathematical prove for
both requirements is given in [1].

The walked path of a mobile robot Zi is given by a matrix Ṽi =
[
V0 V1 · · · Vm

]
, where
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20 Localization of other mobile robots

M is the amount of time samples ago a position is remembered. The point V0 is the current
position, which is always (0, 0). The other vectors Vm are the previous positions in the local
coordinate frame of the mobile robot, see Figure 3-8 for a more clear explanation.

Figure 3-8: An example of the previous walked path given by the matrix Ṽi = [V0 V1 · · · Vm].
The point V0 is always on the origin and position V1 is always aligned with the x-axis, which is also
the current heading of the mobile robot.

As one might sees, the dead-reckoning points Vm are vectors in a Cartesian coordinate system in
stead of polar coordinates, which are normally used for the local coordinate system. Choosing
a Cartesian coordinate system for Ṽ does not have an influence on the position estimation,
but is an easier way to add vectors. The complete matrix Ṽ is updated at each new time step
k by the following equation.

Ṽk+1 =
[[

0
0

]
R(−ūθ,k)[Ṽk,0→M−1 − fp→c

([
ūθ
ūv

])
[1]1,M−1]

]
(3-4)

In Equation (3-4) Ṽk,0→M−1 is equal to the part of the previous matrix Ṽk from the first vector
to the second last and the matrix R(θ) stands for the rotation transformation matrix based
on the angle θ. The values for ūθ and ūv are the measured values of control inputs uθ and
uv. The measured values are used, because the given command might differ from the actual
command by interacting with the environment and measurement noises. Think about walls
or uneven ground. Furthermore the formula fp→c() was given in Section 2-2 and transforms
polar coordinates to Cartesian coordinates.

Like the distance measurements between two antenna’s, the measured dead-reckoning points
are also a bit uncertain. Dead-reckoning uncertainty is a result of measurement noises on the
measured travelled path ūv and headed direction ūθ. The according noise powers σv and σθ
result in uncertainty regions of the previous remembered positions, which can be seen in Figure
3-9.
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3-4 Localization with Multi-dimensional scaling 21

Figure 3-9: The commands for the direction of a Zebro robot, where no simultaneous for-
ward/backward and turning movements is considered. Each time a additional tracked path is
added the uncertainty region of a dead-reckoning point increases.

As one can see the uncertainty regions increase for larger m and are "banana" shaped. The
banana-shape is a result of the polar like measurements ūv and ūθ [25]. The banana-shaped
uncertainty regions of the dead-reckoning will also result in banana-shaped like uncertainty
regions of the position estimation of the other mobile robots. These banana-shaped uncertainty
regions can be better captured by using polar states than using Cartesian states for all the
positions to estimate [25].

Summarized, this section presented extra measurements to deal with the problem of the un-
known orientation of the trilateration in Section 3-2. These added measurements are re-
membered positions of the walked path of a mobile robot in its own local coordinate system,
called dead-reckoning. Dead-reckoning uses the measurements from the walked distance ūv and
headed direction ūθ. Both measurements are used to define a travelled path given by positions
saved in the matrix Ṽ . Due noise on ūv and ūθ the uncertainty regions of the dead-reckoning
positions in Ṽ are ’banana’-shaped. Two methods that use these dead-reckoning data for a
localization are given in the next two sections. The first makes use of Multi-dimensional scaling
and the second uses a method called "relative pose estimation".

3-4 Localization with Multi-dimensional scaling

In this section the first proposed localization algorithm is presented. The localization algorithm
uses Multi-dimensional scaling (MDS) to solve the unknown orientation problem of the Multi-
robot trilateration (MRT). Therefore the algorithm combines the dead-reckoning data from
Section 3-3 and the MRT of Section 3-2. The algorithm uses a modification of the weighted-
MDS localization algorithm used in [24]. First a discription of the general MDS localization [26]
is given and afterwards the modified weighted-MDS localization is explained.

Multi-dimensional scaling localization in general is a method that only uses measured distances
between points Xi to create an estimated distance graph by using singular value decomposi-
tions. As given in [24] a weighted variant of the MDS gives better solutions compared to the
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22 Localization of other mobile robots

ordinary MDS localization algorithm. The weighted-MDS algorithm is an optimization algo-
rithm that minimizes the difference between the measured and estimated distances, given by
the so called STRESS function [26].

C(Ψ) =
N∑
i 6=j

wi,j(r̄i,j − di,j(Ψ))2 (3-5)

In Equation (3-5) N is the amount of points to localize and the following equation describes
the different variables.

X =
[
X1 X2 · · · XN

]
(3-6)

Xi =
[
xi
yi

]
(3-7)

Ψ =
[
XT

1 X1 X
T
2 X2 · · · XT

NXN

]
(3-8)

With Ψ and X known a distance matrix D holding the estimated distances between each point
Xi can be created and is calculated by the following function

D = ΨeT − 2XTX + eΨT , (3-9)

where e is a matrix of size 1 x N filled with ones. Every value di,j in Equation (3-5) is a pivot in
the distance matrix D at the position (i, j) presenting the distance between Zi and Zj . Parallel
to the distance matrix D a matrix R exists that contains the measured distances r̄i,j at the
same corresponding pivots of di,j in D. The third and last matrix needed is a weighting matrix
W which is the same size as matrices R and D. The matrixW contains the weightings given to
each distance measurement r̄i,j , where wi,j = 1/( 1

10βσI · r̄i,j). The weightings are chosen to be
the inverse of the measurement noise power, because like the maximum likelihood estimation
a high weighting is given to measurements more certain [26]. The weightings for the distances
not measured are given a zero weighting. With the weighting matrixW , distance matrix D and
distance measurement matrix R known a greatest descent algorithm can be used to optimize
the cost function of Equation (3-5). The update function of each iteration step in the greatest
descent algorithm is given in [26]. The result is a matrix X̂ containing the estimated positions
of the points Xi, with i = 1, 2, ...N . These points form a distance graph like the one of the
linear trilateration from Section 3-2. It holds the same problem of not knowing the angle θ,
therefore the following modification is proposed.

Therefore the first step of the modification is using the previous distance measurements between
mobile robots, green lines/triangles in Figure 3-10. The second is to translate the dead-
reckoning positions in matrix Ṽ into distances from each other, given by the black lines in
Figure 3-10.
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3-5 Relative pose estimation 23

Figure 3-10: The resulted distance graph with the use of dead-reckoning data and previous mea-
sured distances. The dead-reckoning data is translated into distances between the dead-reckoning
points (black lines) and the previous measured distances from the MRT create the green triangles.

Now it is like there are distance graphs for each mobile robot based on dead-reckoning. These
graphs can be placed relative to each other by minimizing the distance errors between the
mobile robots. If the dead-reckoning points (blue) of the mobile robot in question Z0 are
chosen to be constant the orientation θ of the other mobile robots can be found. That is,
because the orientation of the dead-reckoning points of mobile robot Z0 itself is known and
the other mobile robots their positions (red) will be rotated according to those dead-reckoning
points. The complete graph (red) will now rotate around the blue graph of Z0 until it finds a
best fit with the blue graph.

The use of MDS has been proven to be usable for localization of mobile robots [24, 27], but
it was never used in a setting without static beacons with known positions. Therefore a
modification was needed to create a localization algorithm with MDS to find positions relative
to each mobile robot. These modifications result in a MDS localization algorithm which also
uses dead-reckoning measurements and a weighted-MDS. A second attempt for the relative
localization problem uses "relative pose estimation" and is given in the next section.

3-5 Relative pose estimation

In the previous section a localization method was presented based on Multi-dimensional scaling.
In this section another proposed localization method to solve the relative position estimation
is handled and is based on a localization method called "relative pose estimation" (RPE) [1].
The RPE was specifically designed to deal with the same localization problem where there are
no static beacons with known positions, only distance and dead-reckoning measurements. In
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this section first the equations to solve the RPE problem are handled. Next a short discussion
on why the original solving method in [1] is not used. Therefore a new method is presented
which uses the equations of the RPE in combination with the Multi-robot trilateration from
Section 3-2. This new localization method will combine the two methods by using an Unscented
Kalman filter in section 3-6-2.

The relative pose estimation uses the travelled path captured by dead-reckoning from Section
3-3 and the distance measurements from Section 2-3. The basic idea of this method is made
clear with the use of Figure 3-11.

Figure 3-11: The relative position and movement of mobile robot Zi seen from mobile robot Z0,
where Zi(k −m) presents the relative position of Zi from m time samples ago. The vectors V0,m
and Vi,m are the positions of Z0 and Zi respectively from m time samples ago.

In this figure two mobile robots walk relative to one another. Mobile robot Z0 is the robot
that tries to localize mobile robot Zi. Robot Z0 knows the relative positions of the walked
path Ṽ0,m of itself up till time m ago and the same for Ṽi of robot Zi. How to create and how
the matrices with the tracked positions Ṽ0 and Ṽi are constructed is explained in Section 3-3.
The angle αi is the pose angle of Zi towards Z0. The next equation holds for all times samples
m ago.

Zi(k −m) = Zi(k) +R(αi)Vi,m − V0,m, (3-10)

with R(αi) as the rotation transformation matrix to rotate with angle αi. This equation
looks much like the relative motion equation from Equation (2-3), which is no coincidence.
The main difference is the elimination of the rotation transformation of the rotation Z0 has
made itself. Equation (3-10) can be converted into Equation (3-11) [1], where also the distance
measurements r̄0,i are implemented. The value r̄0,i,m stands for the measured distance between
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3-6 A Kalman Filter design to use the relative pose estimation 25

mobile robot Z0 and Zi from m time samples ago.

(Zi(k)− V0,m)R(αi)Vi,m − Zi(k)TV0,m = 0.5(r̄2
0,i,m − r̄2

0,i,0 − V T
i,mVi,m − V T

0,mV0,m) (3-11)

Equation (3-11) holds on the right side all distance measurements and the dead-reckoning
data from both mobile robots from the present k to time k −m. On the left side the states
position Zi and pose embedded R(αi) are positioned. Also on the left hand side measured
dead-reckoning points are placed. For now this is not considered a problem, because the
largest measurement noises do not come from dead-reckoning. Later simulations are done on
how much dead-reckoning noise has an influence, see Section 3-7-3. Roumeliotis proved in [1]
that at least five of these equations need to be solved to have a single solution.

Roumeliotis used a numerical exact solver to solve the problem created by Equations (3-11),
which will not be the solver in this thesis. The first argument is that the algorithm with the
exact solver used by Roumeliotis is inaccurate for relative distance noise as large the ones in
this thesis. In this thesis one should think about relative distance noise variance σr of more
than 10%, see Section 2-3. The simulation in [1] uses distance measurements around 1.5 meter.
A distance noise variance of σr = 10% results in an distance measurement noise variance of
at least σr = 15cm. From results in [1] σr = 15cm creates an RMS orientation θ error of one
radian or more, which is already a lot. A case of σr > 20% is not even considered.

A solution to let the RPE have a more accurate orientation θ estimation is to make use of the
other mobile robots of the swarm. As in Section 3-2 mentioned one can create more accurate
distance estimations v by using the Multi-robot trilateration (MRT). A method using extra
distance measurements between multiple robots is not mentioned by Roumeliotis. A solution
was found in combining the relative motion model of Section 2-2, Multi-robot trilateration
equations of Section 3-2 and the RPE equations (3-11) in to a Kalman filter setting. How and
why this is done will be the topic of the next Section.

3-6 A Kalman Filter design to use the relative pose estimation

In the previous section it was stated that the relative pose estimation needs the Multi-robot
trilateration to create a more precise estimation of the distances vi.j between the mobile robots
to improve the orientation θ estimation. Estimate the relative positions using the RPE, MRT
is done with a recursive state estimator. In the end of this section a unscented Kalman Filter
is chosen as the state estimator. First the non-linear discrete state-space representation of the
system is handled and in the second part the choice on why using the unscented Kalman filter
is discussed.
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3-6-1 A non-linear state-space representation

The state-space representation of the system is discrete, non-linear and can be given as follows.

x(k + 1) = f(x(k), ū(k + 1)) + νx (3-12)
y(k + 1) = h(x(k + 1)) + νy (3-13)

The main difference between an ordinary state-space representation is that Equation (3-15)
uses measured control inputs ū from time step k + 1 as the control input. The control input
noise of the measured control input ū is added to the noise vector νx. The noise models for
νx and νy are captured by the noise variance matrices Q and R formulated by the following
relation.

E

[[
νx(k)
νy(k)

] [
νx(k)T νy(k)T

]]
=
[
Q(k) 0

0 R(k)

]
(3-14)

Considered that there is no correlation between the state and control input noise and the
measurement noises. Also νx and νy are considered to be Gaussian white noise. As one might
have seen the state-update function f(x(k), ū(k+ 1)) is non-linear and is based on the relative
motion model given in Section 2-2.

θi(k + 1)
vi(k + 1)
αi(k + 1)
uθ,0(k + 1)
uv,0(k + 1)
uθ,i(k + 1)
uv,i(k + 1)


=



fc→p

(
R(−u0,θ)[fp→c

([
θi(k)
vi(k)

])
+R(αi)fp→c

([
ūi,θ
ūi,v

])
− fp→c

([
ū0,θ
ū0,v

])
]
)

αi(k)− ū0,θ(k)
ūθ,0(k + 1)
ūv,0(k + 1)
ūθ,i(k + 1)
ūv,i(k + 1)


(3-15)

The position states of Zi are θi and vi, which are polar coordinates. The functions fc→p() and
fp→c() are used to convert between the polar and Cartesian coordinate system. Arguments
why a polar coordinate system is used were discussed in Section 3-3 and in [25]. The third
state αi is the relative pose of robot Zi, see Figure 3-11. As one also can see, the control inputs
(walked distance ui,v and direction ui,θ) are present in the state vector. Doing this one can
add noise on the control inputs, where the state-noise matrix Q contains information about
this control input noise [28] given in Equation 3-16

Q(k) =



ε 0 0
0 ε 0 0
0 0 ε

0


σu 0 0 0
0 σv,reluv,0(k) 0 0
0 0 σu 0
0 0 0 σv,reluv,i(k)




, (3-16)

where σv,rel is the relative noise power of the travelled distance. To ensure positive definiteness
of the covariance matrix Pxx in the unscented Kalman filter later on, at least positive nonzero
numbers for ε should be chosen.
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The previous part outlined the state-update equation f(x(k), ū(k + 1)). The next part will
present the equations for the measurement update of Equation (3-13). The measurements are
divided into two types: ym represents the measurements to perform the Multi-robot trilater-
ation (MRT) from Section 3-2 and yr the relative pose estimation (RPE) of Roumeliotis in
Section 3-5.

The equations for the MRT are based on Equation (3-1), where the right hand side is ym as
the updated measurement and left hand side is ȳm as the measured part. The measurement
prediction part of the MRT ym is given as follows.

ymi,j,k(k + 1) = ((xi(k + 1)− xj(k + 1))2 + (yi(k + 1)− yj(k + 1))2)
−((xi(k + 1)− xk(k + 1))2 + (yi(k + 1)− yk(k + 1))2), (3-17)

where the positions xi(k + 1) and yi(k + 1) are the Cartesian coordinates from the updated
position state vector xi(k + 1). The updated measurement ymi,j,k(k + 1) uses the position
differences between robots Zi → Zj and Zi → Zk. Therefore Equation (3-17) is used for all

combinations of i,j and k, where i 6= j 6= k. In total this creates
(
Z + 1

3

)
amount of equations,

with Z as total amount of the robots used for the MRT.

The measured part of the MRT ȳm is given below.

ȳmi,j,k(k + 1) = r̄i,j(k + 1)2 − r̄i,k(k + 1)2 (3-18)

In equation (6-1) r̄i,j(k + 1) and r̄i,k(k + 1) stand for the measured distances between robots
Zi → Zj and Zi → Zk respectively. Information of the noise power of each measured ȳmi,j,k(k+1)
is preserved in the measurement noise variance matrix Rm where values Rmi,j,k are variables on
the diagonal.

Rmi,j,k = (r̄2
i,j log(10) 1

5βσI)
2 + (r̄2

i,k log(10) 1
5βσI)

2, (3-19)

with σ∗r = r̄2 log(10) 1
5βσI from Section 2-3. Also discussed in Section 2-3 the use of the

distances r̄ in stead of RSSs Ī leads to a biased state estimator. It was possible to rewrite
Equations (3-17) and (6-1) into an equation that uses Ī in stead of r̄2, but it creates worse
position estimations than using the distance r̄2.

Secondly, the updated RPE measurement yr and measured RPE values ȳr are outlined, using
(3-11).

yri,m(k + 1) = (Zi(k)− V0,m)TR(αi)Vi,m − Zi(k)TV0,m (3-20)

ȳri,m(k + 1) = 0.5(r̄2
0,i,m − r̄2

0,i,0 − V T
i,mVi,m − V T

0,mV0,m), (3-21)

where i is the identity of the other mobile robot Zi. The vector Vi,m is the m-th vector in
the tracked path matrix Ṽi of Zi. The matrix Ṽi contains the positions of the walked path by
performing dead-reckoning, discussed in Section 3-3. The amount of equations needed is Z ·M ,
with Z as all the mobile robots in the neighbourhood and M as the amount of remembered
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dead-reckoning positions. The according diagonals of the measurement noise variance matrix
Rr are given by

Rri,m = 0.5
(

(r̄2
i,j log(10) 1

5βσI)
2 + (r̄2

i,k log(10) 1
5βσI)

2 + 2(σv
M−1∑
m=0
|V vec
i,m |)4 + 2(σv

M−1∑
m=0
|V vec

0,m|)4
)

(3-22)
The summation is used to calculate the total distance travelled after m time samples, where
the value |V vec

i,m | refers to the length of the path taken between the time k−m and k−m+ 1.

Now equations for the Multi-robot trilateration and relative pose estimation measurements are
given both can be stacked in a single vector as follows.

y(k + 1) =



ym0,0,0(k + 1)
...

ymi,j,k(k + 1)
yr0,0(k + 1)

...
yri,m(k + 1)


ȳ(k + 1) =



ȳm0,0,0(k + 1)
...

ȳmi,j,k(k + 1)
ȳr0,0(k + 1)

...
ȳri,m(k + 1)


R =

[
Rm 0
0 Rr

]
(3-23)

An important aspect to have a decent state estimator is to have one optimal global solution of
the states. One global optimum for the states in this case also refers to one optimal solution
of the difference between the updated measurement y(k + 1) and measured ȳ(k + 1).

min
x,y,α

C = ‖y(k + 1)− ȳ(k + 1)‖ (3-24)

The cost function should be preferably convex, but it should have at least has no local minima
(unimodal). Local minima could indicate that more solutions exist for the position x, y and
pose α. The cost function of Equation (3-24) is a combination of the measurements used for
MRT and RPE. In case of the MRT the combination of Equations (3-17) and (6-1) results in a
quadratic cost function, which has a single solution of the distances between the mobile robots.
The solution for the distances always converges towards this minimum and the RPE part will
then use this solution of the distances to estimate an optimal pose. An empirical analysis was
used to prove unimodality of the RPE cost function given optimal distances measurements.
This was done by constructing the cost function with at least five measurements, which is
according to [1] the minimal amount of measurements needed to have a single solution. The
cost function value C was visualized by taking cut planes of the three dimensional cost function
with the pose angle constraint α = [−π, π]. It can be concluded empirical that the RPE part of
the cost function (3-24) is not convex, but unimodal. This only counts for observing one other
mobile robot. An analysis to see if local minima exist with multiple robots is not done, because
of the high amount of states to be analysed is Z ∗ 3. From simulation results it seems that
the total localization algorithm has some local minima solutions, which will be discussed in
Section 3-7-4. Based on arguments given earlier polar state coordinates are used in stead of the
Cartesian coordinates. The conversion of Cartesian coordinates to polar coordinates will not
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have an effect on the convexity and/or global minima characteristics, if the polar coordinate
is bounded by θ = [−π, π].

With all the equations from this section a non-linear discrete state-space representation is
created. The system now contains a state vector with the positions of all the neighbour mobile
robots Zi in polar coordinates. It also contains the control inputs ui,v and ui, θ of robot Z0 and
neighbour robots Zi. The state vector has an according state noise variance matrix Q given
in Equation (3-16) containing information about the input noise power of ui,v and ui,θ. The
output vector y(k+1) contains the state-updated measurements based on MRT and RPE. The
equations also show that there is one optimal solution if one mobile robot has to localized, but
not proven for localizing multiple robots. Later results show that with multiple mobile robots
the position estimation still converges towards the global minimum. So a state estimator can
be used to create the best approximation of the mobile robot Zi its position θi and vi. The
choice on what state estimator is used and a short description of this the chosen Unscented
Kalman filter is discussed in the next section.

3-6-2 The Unscented Kalman Filter

In the previous section the Multi-robot trilateration and relative pose estimation are combined
into a single state-space representation. For estimating the positions of the neighbouring mobile
robots a state estimator will be used. Why a unscented Kalman filter for the state estimator
is chosen will be the topic of this section.

The system given by Equation 3-15 in the previous section shows a non-linear state-update
function. Due to the non-linearity a linear Kalman filter can not be used. Using a sequential
Monte Carlo filter like the particle filter is also not preferred, because of the high amount of
states (Z ∗ 5 + 2) to estimate. Mainly two Kalman filters are used to cooperate with defined
non-linear state-space systems with assumed Gaussian white noise: The Extended Kalman
filter (EKF) [29] and the unscented Kalman filter (UKF) [30]. The EKF linearizes the system
around the newly predicted state to create a linear state-space representation. The UKF does
not uses a linearization and has a better non-linear state estimation of the system than the
EKF [30]. Also the UKF has the same computational complexity as the EKF. A short summary
with the use of Figure 3-12 will explain the principles of the UKF.
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Figure 3-12: A picture to give a notion of the update and filtering steps of the UKF.

If x(k) (black dot) is the previous estimated state then based on the spread of the previous es-
timated state covariance matrix Pxx(k) additional states X∗(k) are created (red dots). Doing
so creates a cloud of states X∗(k) which represents the uncertainty of the previous predic-
tion x(k). For every state in X∗(k) the next state is predicted by the state-update function
f(x(k), ū(k+1)). The unscented transform calculates the mean predicted state x(k+1|k) using
all predicted states X∗(k + 1). The same is done with the measurement update y(k + 1|k),
where the state cloud X∗(k) creates a cloud of predicted measurements Y ∗(k + 1|k) measure-
ment update using equation h(x(k)). The cloud of predicted measurements Y ∗(k + 1|k) also
use the unscented transform to calculate the mean predicted measurement y(k + 1|k). In the
end the Kalman gain is calculated by

K = Pxy
Pyy

, (3-25)

where Pxy is the cross-correlation matrix between the states in X∗(k + 1) and Y ∗(k + 1) and
Pyy is the auto-covariance matrix of Y ∗(k + 1|k). The Kalman gain K will be used to update
the previous states estimation and state-covariance matrix like an ordinary Kalman filter. For
a more detailed explanation of the UKF reading the paper of E.A. Wan and R. Van Der
Merwe [30] is suggested.

A downside of the UKF is that it has a problem with the possibility of creating a non-positive
definite matrix for P . Therefore a "scaled UKF" is used [31]. Furthermore in [32] a typical
problem of using Kalman filters for localization was outlined:" In the application of passive
target tracking, however, because of the large initial error and weak observability of the system,
the standard UKF also shows its weakness in robustness, convergence speed, and tracking
accuracy. In this correspondence, we propose an iterated UKF to address these problems."
This was also witnessed in this thesis with in the next section a mirrored position estimation
as a result.

In this section the best state estimator for the non-linear state-space system of the previous
section was discussed. The result is the scaled-UKF. The completed localization algorithm
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is a combination of a scaled UKF, the relative pose estimation and Multi-robot trilateration
and will be called the Multi-Robot Relative Pose Localization (MRRPL). The MRRPL will be
compared with the modified weighted-MDS localization in the next section.

3-7 Localization algorithm results

Previously in this chapter two localization methods were presented, the weighted-MDS and
MRRPL localization. These methods will be compared and analysed in this section. As
criteria which method is better the estimation error of the orientation θ and relative error of
the distance v are used. In the simulation a suitable walked path is chosen, which will be the
same every simulation run. Later more detailed characteristics of the MRRPL are given by
tuning the state noise variance matrix Q and measurement noise variance matrix R.

For the simulations a suitable movement of the mobile robots is used, which will be the same
for every test. So no swarm controller is used yet, because the swarm controller its outcome
depends on the performance of the position estimation and vice versa. This will result in
an undesired correlation between the localization and the swarm controller when only the
localization needs to be tested. The second requirement is not walking in a straight line as
outlined in Section 3-5. Another requirement is that every mobile robot does not make the
same movement parallel towards the other mobile robot, because that could result in multiple
results due to a mirror effect. A control input that is the same every run and full fills the given
requirements is given below

[
uθ,i
uv,i

]
=
[
sin(k/(1 + i · 0.1))

0.2

]
, (3-26)

where i is the identity number i = 1, 2, 3 . . . of mobile robot Zi. This creates a movement as
in Figure 3-13.
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Figure 3-13: The constant path the mobile robot will take for the localization test. Blue large
stars are the initial positions.

In the simulation the initial positions are known, this will still give a first indication of the
performance of the different localization methods. At the end of this section is concluded that
no clear data can be retrieved with unknown initial conditions in combination with the robot
movement in Figure 3-13.

The performance of the localization is measured by the error of the position estimation of
the orientation θ and distance v. The error of the orientation is given as the root-mean-
squares orientation estimation error of all the mobile robots calculated by all the mobile robots
themselves.

RMSθ =

√
1
N

N∑
(θij − θ̂ij)2, (3-27)

where θij − θ̂ij stands for the orientation error between mobile robot Zi and Zj . The value
N = Z(Z − 1) · T · Rruns is the total amount of estimations, where T is the length of the
simulation run and Rruns is the amount of simulation runs taken. For the distance a relative
RMS error is used, because the same absolute error is better at larger distances than at shorter
distances.

RMSv =

√√√√ 1
N

N∑(
v̂ij − vij
vij

)2

(3-28)

In the next section the first simulation test is performed to compare the presented localization
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algorithms, weighted-MDS and MRRPL.

3-7-1 Position estimation error distributions

With the simulation model of the previous section the two designed localization algorithms
weighted-MDS and MRRPL are compared. The first topic of discussion is to see how the errors
of the estimations are distributed for both localization algorithms. Both methods are tested
with the use of M = 10 remembered positions by dead-reckoning. The result of the position
estimation error of the orientation θ and relative distance v error is given in Figure 3-14.
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Figure 3-14: Error distribution of the weighted-MDS and MRRPL localization algorithm of
Nruns = 20 runs of T = 50 long and 5 mobile robots. The noise parameters used are: σθ = 5◦,
σv = 10% and σI = 1dB

The result shows an orientation estimation θ which is way worse using the weighted-MDS
localization, because there is no sign of estimating an angular measurement. The reason might
lie in the fact that the weighted-MDS is a non-convex optimization problem with possible wide
minima for the orientation. The weighted-MDS uses a greatest descent optimization solver,
which might have a problem dealing with such local minima. To solve this it might be smart
to look into adaptations to create a steeper global minimum by relaxation of the optimization
cost function [33] or make it more suitable for trilateration [27]. Although it might create some
improvement is seems that the large orientation error is a more fundamental problem. The
amount of time possible for this thesis was not enough to look more into the problems of the
weighted-MDS localization. Therefore the focus lies on the MRRPL which already created a
result that contains no irregularities.

With the localization algorithm chosen to be MRRPL the second topic of this section is the
distribution of the distance error. In Figure 3-14 one can see that the error distribution of the
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distance v is somewhat biased, meaning that most of the distance estimations is biased. Why
this is the case was explained in Section 2-3. It was possible to modify the MRRPL to one
with unbiased distance estimations, but as said in Section 2-3, this will create a worse position
estimation.

From the results in Figure 3-14 it is concluded that the weighted-MDS is not the best localiza-
tion method for now. Therefore the MRRPL is used for the swarm localization. In the next
section some characteristics and insides from simulations of the MRRPL are given to improve
the position estimation even more.

3-7-2 Results from tuning noise variance matrices Q and R

In the previous section the conclusion was that the MRRPL does a better position estimation
than the weighted-MDS. In this section a more detailed look of the characteristics of the
MRRPL is given. This is done by varying and tuning the noise variance matrices R and
Q to improve the position estimation. When tuning the matrices R and Q, these matrices
are considered to act like weighting matrices. An optimal tuning of R and Q is important
especially in cases of non-linear systems like the one used for the MRRPL. The optimal R and
Q are not simply found as proven in this section, because R and Q are heavily dependent on
the amplitudes of distance measurement noise variance σI , see Equations (3-19) and (3-22).
Therefore in this section also simulations are done to see what differences occur when the
distance noise variance σI is varied.

Before tuning R and Q remember that the state noise variance matrix Q contained a control
input noise part Qu and state noise part Qx. For the state noise variance small values were
given for Qx = 0.001. Now the matrix Q can be kept constant. A gain KR will be placed on
the noise variance matrix R, which becomes the varied parameter to tune the ratio between Q
and R. The result for different KR at different noise powers σI is given in Figure 3-15 below.
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Figure 3-15: Different gains KR on the noise variance matrix R tested for different distance
measurement noises σI . The simulation ran for 50 samples 20 times with a group of 5 mobile
robots with dead-reckoning noise parameters: σθ = 5◦,σv = 0.1%.

As one can see there are different optimal gains for R for different distance measurement noises
σI . The main surprise is that there is no clear trend between different σI and the optimal value
for KR. For example, for a low noise value σI = 0.1dB and a high noise value σI = 10dB the
optimum of KR is for both higher than with σI = 1dB. It will make it hard to find a exact
definition for the optimal noise variances matrices Q and R. Solutions for a live tuning of the
matrices R and Q will be discussed later.

Another ratio for the MRRPL that is important is the priority ratio between the MRT and
RPE. The MRT has the function to create a better estimate of the distances v , which in return
improves the orientation θ estimation of the RPE. The ratio is given by the parameter Kratio
and defined as follows.

R =
[

1
Kratio

Rm 0
0 KratioR

r

]
, (3-29)

The results are given in Figure 3-16 below.
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Figure 3-16: A relation between the importance of RPE and MRT at different amounts of distance
measurement noise σI . The simulation ran for 50 samples 20 times with a group of 5 mobile robots
with dead-reckoning noise parameters: σθ = 5◦,σv = 0.1. KQ = 0.001,KR = 1

In Figure 3-16 a relation between σI and the optimal Kratio is shown. When the distance
noise σI increases the optimal for Kratio shifts to the left. This shift to the left means a higher
priority of using the MRT than the RPE. Intuitively, this is correct, because a higher distance
noise requires more help of the Multi-robot trilateration to improve the distance measurement
v. Which is needed to perform a better relative pose estimation for the orientation estimation
θ.

From the previous results it can be concluded that it is necessary to find live optimal noise
variance matrices R and Q, because the optimal solutions are highly dependent on changes
of distance noise standard variance σI . The value for σI will also change for changes in
environment. A solution can be an Adaptive Kalman Filter (AKF) which also updates both
noise variance matrices R and Q [34]. The disadvantage is that fact that an AKF modification
for a UKF was not found in literature. Also the UKF was not specifically designed to deal
with a state dependent noise parameter

σ∗r = r̄2
i,j log(10) 1

5βσI (3-30)

Rewriting this equation into one that does not dependent on the distance only worsens the re-
sults, see Section 3-3. A solution might be another state-estimator for handling state-dependent
noise variance matrices, such as given in [35].

Using the chosen parameters KR = 1000 and Kratio = 10 for a distance measurement noise of
σI = 3dB a simulation is done to compare the MRRPL with only a relative pose estimation
part (UKF-RPE) of the localization algorithm, which is basically the MRRPL without the
Multi-robot trilateration. Doing this could conclude that the multi-robot trilateration does
give better distance estimations v and therefore also better angle θ estimations. No Kratio can
be used for the UKF-RPE, therefore the same KR will be used as for the MRRPL. The results
are given in the table below.
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Table 3-1: A comparison between MRRPL and a localization with only the RPE, which can tell
if the added Multi-robot trilateration does indeed creates a better overall position estimation.

UKF-RPE MRRPL
RMS error θ (rad) 1.0943 0.7116

Relative RMS error v (%) 75.49 31.00

In Table 3-1 it can be seen that the addition of the Multi-robot trilateration reduces the
distance error and therefore also the angular error. Compared with the original relative pose
estimation algorithm of Roumeliotis in [1] this is an improvement, because relative distance
errors above 20% are not even considered by Roumeliotis in [1] and if so that would create an
angular error larger than 1 rad.

3-7-3 Dead-reckoning noise influences

In this section the influence of the all the measurement noises is analysed. To do so, if not
varied, the following values will hold

KR = 1000, Kratio = 10, σθ = 5◦, σv = 0.1, σI = 3, N = 10, and β = 3.424 Z = 5,

where N is the amount of measurements used to perform dead-reckoning. This is also the first
parameter to change, because by intuition it sounds logic that a higher amount of measurements
can improve the position estimation. The results are given below
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Figure 3-17: Localization performance with different amount of dead-reckoning points N .

Surprisingly the higher amount of dead-reckoning points worsens the position estimation of the
angle θ. One or two causes might be involved. One is that the optimal ratios and amplitudes
KR and Kratio also dependent on N . Therefore a new optimal also has to be found for different
N . The second cause might be that the localization problem becomes too large such that the
UKF of the MRRPL convergences too slow and an iterative UKF is needed [32], as discussed
in Section 3-6-2.
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Next an analysis of the influence by the dead-reckoning noise parameters σθ and σv is given.
The results are given in Figures D-1 and D-4.
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Figure 3-18: Localization performance with different amount of heading direction σθ noise for
dead-reckoning.
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Figure 3-19: Localization performance with different amount of the travelled relative distance
noise σv for dead-reckoning

Clearly seen from both simulations is that the only major differences are caused by a higher
orientation noise σθ. This is from intuition quite straightforward, because if the walked angles
are not accurately known the relative angle towards the others is also not accurate. What
is surprisingly is that the noise on the travelled distance seems of no importance even at
σv = 30%.

In this section it is concluded that the amount of dead-reckoning points is surprisingly better
than with less points. Also the performance of the dead-reckoning is almost of no importance.
The important factor on the performance of the localization is therefore the distance noise
variance σI of the distance measured by taking the RSS between the two antennas on different
mobile robots.

All the simulations in the previous sections were performed with known initial positions. In
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practice this might not be the case. For example if the communication between mobile robots
fails or a new robot enters the neighbourhood of another mobile robot. Therefore in the next
section the influence of unknown initial positions is discussed.

3-7-4 Unknown initial positions

In the previous simulations the initial state was known. This will not always be the case and
a study needs to be performed to prove robustness if the state might become unknown during
the mission. The results to compare will not be given by the estimated RMS error of θ and v,
but looking if the estimated state always converges towards the real values. In Figure 3-20 a
picture of the estimated positions and real positions from the perspective of each mobile robot
is given. This picture is generated after a relatively long time, where the estimated positions
were already quite converged.
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Figure 3-20: A picture of each robot and it estimated states using a random unknown initial
position. The mobile robot in question is always at the origin and the other blue crosses are the
real positions. The estimated positions of the other mobile robots are given by the red dots. The
main problem here is that half of the mobile robots have estimated states that are mirrored.

As can be seen three of the six mobile robot have converged quite well to the real states, but
the other three did not. When looked more closely one might see that the states are mirrored
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with a symmetry line crossing the mobile robot itself. It looks like the estimated states are
trapped in a mirrored local minimum. A disadvantage of the UKF is proven here, because
the non-linear cost function C = ‖y(k + 1) − ȳ(k + 1)‖ from Section 3-6-1 seems to have
local minima. From multiple simulations it seems that this "mirroring" solution is a typical
result of the local minima. Later in this thesis it seems that it is possible to get to the global
minimum by walking in a more directions than in this simulation. In the next chapter the
swarm controller is designed, which should create such movements that prevents local minima.

3-8 Conclusions

In this chapter a localization algorithm was designed to perform a position estimation of the
other mobile robots by using the motion models and measurement model given in the first
chapter. The specific task is to create a localization algorithm that estimates the relative
position of each mobile robot in the neighbourhood without static beacons. Two solutions
were given, first a modified weighted Multi-dimensional scaling localization (weighted-MDS)
approach. The second attempt uses the relative pose estimation combined with the Multi-
robot trilateration in a Unscented Kalman filter setting (MRRPL). Based on simulations it
was concluded that the weighted-MDS did not converge to the correct orientation θ of the
other mobile robots. Therefore the MRRPL is chosen to use as the localization algorithm in
this thesis. From simulation results where the RSS noise was varied it was seen that tuning
the noise variance matrices Q and R was difficult. Also it seems that σI is the major factor
that needs to be improved to have better position estimations. It is still possible to do a well
position estimation with the MRRPL even when the distance measurement noise σI is quite
large.

Although it has been proven that the problem given in Section 3-6-1 can be solved with a Un-
scented Kalman Filter (UKF), it might be better to use other state estimators or adaptations
of the UKF. A hopeful adaptation seems to be an iterated UKF, because of the large measure-
ment noises and non-linear relations [32]. Another improvement can be gained by updating the
noise variance matrices Q and R every time step, in that case the localization can become more
robust to environment changes and/or improves the position estimation. An Adaptive Kalman
Filter [34] could perform such Q and R optimization, but an adaptive version of the UKF was
not found in literature. The last problem was that the estimated positions could get trapped
in a mirrored local minima by the UKF, because the cost function C = ‖y(k + 1)− ȳ(k + 1)‖
for the UKF of the MRRPL has local minima. In the next chapter the solution is given by a
less parallel walking behaviour of the mobile robots. This is a result of the Virtual potential
field swarm controller.
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Chapter 4

Virtual potential field control for
swarming behavior of mobile robots

In the following two chapters a controller is designed which let the mobile robot Z0 react to
other mobile robots and its environment. The goal is to stay away from dangerous places,
avoiding collisions with each other or objects and at the same time going to a possible place
of interest. Although a human or animal could do this with ease, the computational power
and amount of sensors in a small mobile robot is not very high therefore a less intelligent
but effective approach is needed. For example, think about the primitive mind of ants. With
much lower intelligence, but in large numbers they can accomplice complex tasks like building
and maintaining a complete ant nest. For doing so they only use simple rules for interacting
with an environment filth with odours left by other ants. Every odour has a function like
"stay away", "something interesting is around here" or as used in some path search algorithms
"someone was here". Like this ant the mobile robot will also react to its environment, but in
this case the odours are replaced by antenna beacons sending messages about what function
the beacon has.

The first part of the chapter only considers other mobile robots to be present and a controller is
designed to create a swarming behaviour of all the mobile robots together. For this controller
the localization algorithm in the previous chapter is used to estimate the relative positions of
other mobile robots in the neighbourhood. With a notion of the positions of the other mobile
robots a controller can be designed to give the next direction a mobile robot should go. This
direction is given as the control inputs uθ and uv for the heading angle and distance respectively.
A Virtual Potential Field controller (VPF controller) is chosen to let the mobile robots react
as the ants to avoid collisions with each other. The VPF controller has a very intuitive way on
how to react to the environment and other mobile robots. Also a lot of research is already done
on how to do so, but a combination of a localization algorithm with noisy measurements and
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the VPF controller was not yet found in literature. Therefore this part of the thesis researches
the effects of noisy position estimations on a VPF swarm controller is researched. Based on
these conclusions a VPF controller is designed that will deal with these effects.

First an explanation on how the VPF controller works is handled. Next a VPF swarm controller
for only reacting on other mobile robots is designed to avoid collisions and let them stay
together. The VPF swarm controller results in the swarming behaviour of the mobile robots
together. The results of the VPF swarm controller are given in the last section. How to use
the VPF controller to control the complete swarm in combination with the environment is
discussed in the next chapter.

4-1 The virtual potential field controller

In this section the Virtual Potential Field (VPF) controller is explained and which set of
functions are chosen to create the VPFs. Before going into detail first an intuitive explanation
of the VPF controller is given. One should imagine an environment like a field with obstacles
to avoid, but at the same time a location of interest (goal). If the obstacles are seen as small
hills and the goal is the lowest point of a valley one can create for example the following virtual
environment.

Figure 4-1: An example of a Virtual Potential Field, where the "hills" represent obstacles and the
bottom of the "valley" is the point of interest. When a ball is released it will move around the
obstacles towards the lowest point.

If a ball is placed on the left in this virtual environment it will move from a higher point
(high potential energy) towards the valley (goal, with low potential) while moving around
the obstacles (hills). If a mobile robot uses the same path of the ball it will also avoid the
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obstacles and go towards the goal. For the direction of the mobile robot (ball) the greatest
descent direction of this VPF is used. This type of controller was first created by Khatib [36],
where he uses an electrical potential field instead of a height potential field as inspiration. It is
also possible to add the second derivative (Hessian) [37], which has some advantages regarding
undesired oscillations and faster convergence to the global minimum. The downside is that the
used Hessian can become very computational intensive.

The greatest descent direction is calculated by using of all the directions ~di and distances |di|
towards objects, given in Figure 4-2.

Figure 4-2: Direction and distance towards obstacles, goals and other mobile robots. The heading
(purple arrow) is always pointed along the x-axis of the local coordinate system. The position of
Zi was estimated in polar coordinates (θ̂, v̂) and transformed to a Cartesian vector di, where ~di is
the normalized directional vector and |di| the length.

In Figure 4-2 the other mobile robot Zi is at the estimated relative position (θ̂i, v̂i) inside the
local coordinate system of the mobile robot Z0 in question. The use of these polar coordinates
is not always desired. For example, when adding vectors as needed for the VPF controller it
is more beneficial to use Cartesian vectors. Therefore the polar estimated position (θ̂i, v̂i) is
converted to a Cartesian vector called di, where the vector ~di stands for the normalized vector
used for directional purposes and |di| is the length of the vector di used to indicate the distance
between mobile robots. The vector ~di and value |di| have a strong relation with the values θi
and vi respectively, but are more easy to use in vector calculus.

For every object in the environment a function can be given that calculates the heading uθ
and step size uv the mobile robot should perform according to its position towards the object.
The set of objects can contain obstacles (repulsive), goals (attractive) and other mobile robots
(both attractive and repulsive). The following equations are the general formulations to create
a VPF with "height" P and greatest descent direction ∇P for every type of object i.

Pi = gr(|di|) + ga(|di|), (4-1)
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where the repulsive part gr(|di|) is a decreasing function and the attractive part ga(|di|) in-
creases for larger |di|. In case of an obstacle only the repulsive part gr(|di|) is used and for
a goal only the attractive function ga(|di|) is used. For a mobile robot the attractive and
repulsive part are both used, see the next section. The general greatest descent direction is
given by

−∇Pi = −~di(
∂gr(|di|)
∂|di|

+ ∂ga(|di|)
∂|di|

), (4-2)

where (∂gr(|di|)
∂|di| + ∂ga(|di|)

∂|di| ) stands for the heading amplitude uv and the direction ~di is the same
as the heading control input uθ.

The combination of all the virtual potential fields Pi of every object create the complete VPF
of the environment P . Two main approaches exist to combine all the potential fields Pi. One
used by Khatib [36] is to sum up all derivatives ∇Pi of Pi as

−∇P =
N∑
i

−∇Pi =
N∑
i

−~di(
∂gr(|di|)
∂|di|

+ ∂ga(|di|)
∂|di|

), (4-3)

with N as the total amount of objects. The other approach is first proposed by Rimon and
Koditschek [38] and is based on multiplication. It multiplies all the attractor functions ga(|di|)
to create γ(|di|) and also multiplies all the repulsive gr(|di|) functions into β(|di|). The multi-
plication functions γ(|di|) and β(|di|) are then used in the following function

P (|di|) = γ(|di|)
λβ(|di|) + γ(|di|)

(4-4)

which forms the complete VPF P , where λ is a shape parameter. With a numerical approach
it is possible to derive the greatest descent direction −∇P of P , which can be used as the input
direction uθ and uv of the mobile robot. The restriction of this method is that the functions
ga(|di|) and gr(|di|) have to be Morse functions [39].

An important aspect of creating a suitable VPF is that it contains no local minima. If a
local minima exists it is possible that with the greatest descent direction the mobile robot
navigates towards that local minimum, but not to the global minimum (goal). The method
used by Rimon and Koditschek is said to have less chance of a local minima than that of the
summation method by Khatib [38]. An important search was to find a method that has no
local minima at all. Such a method was found in a paper by Kim [2]. Proven in [2] there exists
a set of functions for VPFs Pi that can be summed up without the creation of local minima.
The result is a motion like a leaf in a water stream avoiding stones and the functions used are
called streaming functions [3].

Pi = λ log(|di|) (4-5)

−∇Pi = λ
~di
|di|

, (4-6)

where λ > 0 is used for attractive goals and λ < 0 for repulsive obstacles. The function
λ log(|di|) is a harmonic function with no local minima and also a summation of harmonic
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functions is a harmonic function, therefore the summation of these streaming functions has no
local minima [3].

Two disadvantages where found using these streaming functions. One is that−∇P at the global
minima of a goal is not zero, which will create no asymptotic stability of the system. Secondly
the set of streaming functions does not contain functions representing U-shape obstacles. Like
the leaf in a stream of water, on the edges of a stream there are non flowing pools created
mostly by U-shaped like obstacles, like in Figure 4-3.

Figure 4-3: An example of a local minimum when using streaming function. In this situation the
mobile robot got trapped in side the U-shaped obstacle.

Another observation made is that if one wants a global minimum at the goal, then the sum of
all the amplitudes for obstacles λo needs to be smaller or equal to the sum of all the amplitudes
of the goals λg, for the prove see Appendix C-3.

O∑
o

λo ≤
G∑
g

λg, (4-7)

where O is the total amount of obstacles and G is the total amount of goal points. This
constraint can easily be explained by the fact that for a stream of water "incoming flow ≤
outgoing capacity" holds. The question remaining now is: Can the streaming functions still be
used?. The answer is yes, because if these functions are only used for interaction with other
mobile robots the disadvantages do not exist. That is ,because other mobile robots are not
U-shaped obstacle and the goal part of the VPF of a mobile robot will never be reached, see
next section. Creation of a VPF to deal with obstacles and goals is the subject of the next
chapter.

4-2 Virtual potential field functions to create a swarm

Previously the VPF controller was explained. The VPF controller uses attractive and repulsive
functions to navigate a mobile robot by using the greatest descent direction−∇P of the VPF P .
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The set of functions for attractive and repulsive forces were chosen to be streaming functions,
which were given by

Pi = λ log(|di|) (4-8)

−∇Pi = λ
~di
|di|

, (4-9)

The goal of this section is to use these equations to create a VPF that is used for interacting
with other mobile robots. The result needs to be a controller that creates a swarming behaviour
of the robot swarm. For a swarming behaviour the following three requirements are given.

• No collisions between mobile robots

• Stable cohesion of the swarm. Meaning no separation of the swarm at all times.

• A randommoving behaviour for exploration between the boundaries given by the previous
two points.

The third requirement is partially already achieved by the fact that the position estimation
from the previous section is quite noisy. Therefore the VPFs are also quite noisy, which
results in a control input given by the greatest descent direction that is also more random.
Although this is not particularly a solution for exploration, it adds a little randomness to the
movement of the swarm. Although the noisy position estimation is beneficial for exploration
it is a disadvantage for the other two requirements, because by intuition if one wants to avoid
collision or stay with the swarm, one wants to know where the other members of the swarm
are. How to deal with this and more problems due to uncertain positions will be pointed out
and tried to be solved during this section.

First a general explanation of how the swarming VPF should look like. The goal was no
collisions between mobile robots and stable cohesion by not walking to far from each other. A
picture of such a VPF is given in Figure 4-4

Figure 4-4: The VPF that represents another mobile robot. This VPF has the goal of staying
close |r| < µmax to the other mobile robot, while not colliding into it |r| > µmin. The minimum
at µdes is the desired distance. The control input direction is then given by the derivative −∇P
of the VPF P .
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In Figure 4-4 three important parameters are given. Firstly, µmin gives the minimal distance
between two mobile robots to avoid collision. If a mobile robot has a significantly large inertia,
than a larger minimal distance would be required [40]. In case of the Zebro robot this is not
necessary, because the Zebro robot can almost stand still instantaneously. Second, the distance
µmax stands for the maximum distance two mobile robots should be apart from each other.
The maximum distance could depend on multiple factors, but in this thesis it depends on the
maximum connectivity range, which was 10 meters, see Section 2-3. With a large robot swarm
it is not necessary to stay in contact with all the mobile robots. In that case a mobile robot
can chose to only have a maximum distance if a minimal amount of mobile robots in range
is reached. The last parameter is µdes which is the desired distance towards another mobile
robot. The chosen functions for the VPF to represent another mobile robot is given by the
following equations.

Pi = − log(|di| − µmin)− µmax − µdes
µdes − µmin

log(µmax − |di|) (4-10)

−∇Pi = ~di

(
− 1
|di| − µmin

+ µmax − µdes
µdes − µmin

1
µmax − |di|

)
, (4-11)

This equation is constructed as follows. First the potential field function is chosen a form which
contains a part that attracts and a part that repulses with a balance parameter C between
both.

Pi = − log(|di| − µmin)− C log(µmax − |di|) (4-12)

If the distance |di| is µdes then the amplitude of the gradient of −∇Pi should be zero. This
leads to the following equation.

‖ − ∇Pi‖ = − 1
µdes − µmin

+ C
1

µmax − µdes
= 0 (4-13)

The solution for C is given as
C = µmax − µdes

µdes − µmin
(4-14)

Before Equation (4-10) can be applied non-imaginary values should be avoided when a mobile
robot is located outside the boundaries of µmin and µmax. This is necessary, because with
the noisy position estimations there is a possibility of suddenly having a distance outside the
boundaries of µmin and µmax.

if |di| < µmin(1 + ε) then |di| = µmin(1 + ε)
elseif |di| > µmax(1− ε) then |di| = µmin(1− ε), (4-15)

where ε is a small value to avoid having the result where −∞ = log(0). The resulted combined
vector for the direction and speed in case there are multiple mobile robots Zi is now given by

−∇P =
Z∑
i

−∇Pi, (4-16)
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where Z is the amount of mobile robots in the neighbourhood. A mobile robot always has
a maximum speed vmax, therefore a transformation of −∇P is used to set this speed limit.
This transformation needs to maintain the characteristics of −∇P of Equation (4-11), such as
maintaining the no local minima characteristic. A function that does so is a Gaussian function
given by

−∇P ∗ = −∇P
| − ∇P |

(
vmax − vmax exp−(2/α

√
− log(0.5)|−∇P |)2

)
(4-17)

Here α is used as a smoothing factor, explained later. In Figure 4-5 a summary of the different
functions for P , −∇P , the smoothing transformation and resulted −∇P ∗ is given when the
distance to one other mobile robot is given by |d|.

The influence of the smoothing factor α is given in Figure 4-6.
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Figure 4-6: The influence of the smoothing parameter α on the smoothed gradient −∇P ∗. With
a lower value for α a mobile robot will only have a large control input reaction when the limits
µmax = 5 and µmin = 1 are reached. With larger α large control input reactions are also present
at short difference from the desired distance µdes = 2.

As shown in Figure 4-6 the smoothing parameter α is of much influence on the behaviour of
the mobile robot. If α is large then a mobile robot will react with large speed amplitudes even
when the optimal desired position is almost reached. The opposite occurs for low values of α.
In that case the mobile robot has more freedom to move around without acting to much on
other individuals of the swarm. This might be a suitable solution if an exploration mission is
required. A downside of a low or high smoothing parameter α is larger speed differences due
to steeper walls of the VPF. This will be a probem when having uncertain estimated positions
of the other mobile robots. In that case the control input speed is also noisy and non-smooth.
For example, if in Figure 4-6 an α = 1 is chosen and the true distance |d| is 2 meters. A given
distance noise of 0.5 meter (or 25 percent) creates undesired back-and-forth oscillations of the
robot. As told in Chapter 2-3 within a more complex environment an estimated distance noise
of 25 percent is a realistic. If such oscillations needs to be avoided α = 0.5 in Figure 4-6 would
be around optimal, because it has less steep slopes. Summarized, a low smoothing factor α is
suitable for more freedom to explore and a large α creates a strong force to keep the mobile
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Figure 4-5: Front top to bottom: The potential field function for P from Equation (4-10).
The second graph presents the gradient | − ∇P |, see Equation (4-11). The third graph is the
smoothed gradient −∇P ∗ transformed by the smoothing function in the last graph with α = 0.2
and vmax = 1
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robots at the desired distance from each other. Both large and small values of α result in jerky
or oscillating movements, therefore a more averaged value α = 0.5 is desired.

An important topic is if the expected heading direction with noisy localization is the same as
with a perfect localization. The distribution of the angular error is like a normal distribution
and E[θ̂ − θ] = 0 holds, which will lead to the following result for every mobile robot i.

θi = ~di = ∠∇Pi (4-18)

θ̂i = ~̂
di = ∠∇P̂i (4-19)

⇒ E[∠∇P̂i − ∠∇Pi] = 0 (4-20)

where ∠∇Pi is the heading angle and the the same as the estimated angle θi of mobile robot
Zi. So the expected error on the heading ∠∇Pi of the mobile robot is zero. Also when Z
amount of multiple robots are used, see below.

E[∠∇P̂ − ∠∇P ] = E

[
Z∑
i

∠∇P̂i −
Z∑
i

∠∇Pi

]
=

Z∑
i

E[∠∇P̂i − ∠∇Pi] = 0 (4-21)

So the expected error of the estimated heading direction ûθ is uθ. In that case the robot swarm
has an "expected swarm behaviour".

4-3 Simulation results

In this section the previous swarming VPF controller with an smoothing factor of α = 0.5
is combined with the tuned MRRPL algorithm for the localization of the previous chapter.
The localization will create the estimated positions as the input of VPF swarm controller.
Simulations are done to find out if the VPF gives the desired result and also how the movements
of the VPF swarm controller have a correlation with the localization algorithm. In all the
cases the mobile robots do not know the initial relative positions of the other mobile robots
and therefore use a random initial estimated position close to zero.

The first analysis looks if the mobile robots are indeed moving like the VPF swarm controller
was designed for. A measure of cohesion is taken by taking the maximum over all distances
towards the center of the swarm δmax over all time for all mobile robots.

δmax = max
(
X1(t)−

∑Z
i X1(t)
Z

, . . . ,Xi(t)−
∑Z
i Xi(t)
Z

)
∀ i = 1, 2, . . . Z and t = 1, 2, . . . T,

(4-22)
where Z is the amount of mobile robots and Xi the position of Zi. When using this maximum
as a measure of the cohesion of the swarm a larger simulation time T is necessary to prove if
one of the robots really walks away. In this case a simulation time of T = 200 is chosen.

During this analysis it was already quickly found that the behaviour of the swarm was largely
dependent on the tuning parameters KR and Kratio of the UKF in the MRRPL localization
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algorithm. A more accurate tuning of the parameters KR and Kratio is needed to deal with this
relation. The same approach was taken as the tuning of the MRRPL in the previous section,
but in this case also in combination with the swarm controller and a measure of cohesion δmax.
For the tuning in this chapter with the VPF swarm controller the distance measurement noise
σI is kept constant at a value of 3dB from Chapter 2. In Appendix D the results are given for
different KR and Kratio. The new tuning parameters of the noise variances matrices Q and R
with the swarm controller are

KR = 1 Kratio = 1,

where Kratio should not be larger than 1 for all times. Compared to the results of the previous
chapter which were

KR = 1000 Kratio = 10

It seem not much of a difference, but the difference in values for Kratio makes a lot of difference
in the swarm its behaviour.

The next part of this section will give a feeling of the behaviour of the mobile robots individu-
ally. The optimal localization parameters KR = 1 and Kratio = 1 will be used to estimate the
positions. The simulation run for T = 200 time samples, with 5 swarm members starting at

X0 =
[
x1 x2 · · · x5
y1 y2 · · · y5

]
=
[
0 1 1 −1 −1
0 1 −1 1 −1

]
. In Figure 4-7 the absolute movements of

the swarm members of a simulation run are given. Each member has its own colour.
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Figure 4-7: An example of the route walked by the mobile robots using the VPF swarm controller.
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From Figure 4-7 it can be seen that all the members stay in a certain boundary, which shows
the wanted cohesive behaviour of the swarm. Also it shows that after a short while the
swarm members have created a well estimation of the position of the other members. After
the positions were estimated the members walk according to the VPF swarm controller to a
position where they are not to far away, but also not too close to each other. This equilibrium
point for each member create an according equilibrium graph shaped by the swarm members.
In this case of 5 swarm member a pentagram, more clearly in Figure 4-8. The behaviour after
this equilibrium is reached might be difficult to see. Some swarm members will sometime walk
away from the equilibrium point, because when standing still the localization gets worse. This
is due to the loss of the localization its observability requirement from Section 3-5 to keep
walking. By walking the position estimation gets better again and the swarm member goes
back to its new equilibrium point in the swarm. This "loop" of walk around → better position
estimation → reach an equilibrium → stop walking → position estimation worsens → walk
around, is self containing. One should watch out that there is always a slight chance that
this loop is broken, the chance doing so increases especially when changing the parameters
KR and Kratio. The next two figures give an indication on how well the position estimation
is performed. In Figure 4-8 it is show that the mirroring effect did not occur. In the previous
chapter the more random walk was said to be the solution of this mirroring problem and as
it was predicted the VPF swarm controller solved this problem. This was especially shown in
the animated version of Figure 4-8, which is the final position estimation of the simulation in
Figure 4-7.
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Figure 4-8: Individual relative position estimations, where blue is the true value and the red
stars the estimated values. One can see that compared to the position estimations of the previous
chapter the mirroring problem is solved by implementing the VPF swarm controller.
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The last figure shows the error distribution of all the position estimations done in the single
simulation of Figure 4-7.
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Figure 4-9: The error distibution of the estimated relative angle and distance of the relative
localization.

Compared with the results from the localization simulations in the previous chapter the local-
ization performance did even improve.

MRRPL with MRRPL with VPF swarm controller
localization test setup

RMS error θ (rad) 1.2925 0.8976
Relative RMS error v (%) 0.5219 0.1309

Table 4-1: A comparison of the localization error between the localization algorithm (MRRPL)
with and without the VPF swarm controller. For this 20 runs were taken for both simulations with
five swarm members. A simulation length T = 50 for the localization test setup and T = 200 for
the setup with the VPF swarm controller.

In the end the VPF swarm controller in combination with the MRRPL with relative large
distance measurement creates a swarm of mobile robots that shows cohesive behaviour. The
results also show a balanced behaviour between the position estimation and movement from the
VPF swarm controller. The resulted behaviour "loop" works as follows: walk around → better
position estimation → reach an equilibrium → stop walking → position estimation worsens
→ walk around. It was necessary to minimize the chance of instability and was done by a
well done tuning of the variance noise matrices R and Q. From simulations it was seen that
changes of the noise variance gain parameters KR and Kratio the chance of instability rapidly
increases, especially sensitive to Kratio. In the end the optimal gain on the matrices R and Q
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seem to lie around one, which could indicate that the matrices R and Q are formulated well.
It is still possible that other optimal values for R and Q needs to be found when the distance
noise variance σI does change by changes of the environment. Therefore as discussed in the
end of the previous chapter another state estimator or modification of the UKF needs to be
used.

4-4 Conclusions

In this chapter a Virtual Potential Field (VPF) swarm controller was designed. This controller
is based on VPFs which create a virtual version of the real surrounding. All objects to avoid
have a repulsive field around them and a point of interest has an attractive field. The great-
est descent direction of such a VPF is the heading direction a mobile robot. For the VPF
swarm controller another mobile robot is seen as a combination of a repulsive obstacle and
an attractive goal, because the mobile robots should stay close and not collide into the other
mobile robots. The VPFs used to define the function for a VPF of another mobile robot are
based on a summation of streaming functions. The summation of streaming functions do not
contain no local minima and the summation makes calculating the greatest descent direction
computational easy. The disadvantages of the streaming function were given in Section 4-1
and were discarded when only used to represent another mobile robot.

The results of Virtual Potential Field (VPF) swarm controller in combination with the MRRPL
position estimation were showing general cohesion of the swarm. From simulation a balanced
behaviour between the position estimation and movement from the VPF swarm controller was
shown. This expected balance or "loop" works as follows: walk around → better position
estimation → reach an equilibrium → stop walking → position estimation worsens → walk
around. It was necessary to minimize the chance of instability and was done by a well done
tuning of the variance noise matrices R and Q. Summarized, this chapter only creates a swarm
inside a completely empty environment. Therefore in the next chapter an overview of additions
for the VPF is given to let the swarm have interactions with a more real environment.
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Chapter 5

Obstacle avoidance and goal searching
using radio beacons

Figure 5-1: A visualization of a swarm heading towards a point of interest which position is
unknown. It does that by letting each member of the swarm walk towards the best positioned
members. In that case the complete swarm will move towards the attractive goal and walk away
from obstacles.

Knowing the location of the other robots and creating a swarm that sticks together is not
the only goal of a mobile robot swarm. The next and final step of this thesis is to give the
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swarm a function to full fill. There are multiple types of missions a mobile robot swarm can
be used for. Most of these can be summarized into two types: Exploration and goal search.
An exploring swarm explores or examines the surrounding while avoiding obstacles. In case
of a goal search there is a attractive goal which needs to be reached while avoiding obstacles
to get there. Both goal and obstacles are presented in this thesis by antenna beacons, where
the distance is given by the RSS measurements from Section 2-3. In this chapter both swarm
functions will be tested with different simulation scenarios. In all these scenarios the locations
of the obstacles and goal beacons will be unknown, because a real swarm individual does also
not know the exact location of obstacles or goal. It therefore uses information and movement
of the complete swarm to derive its individual heading direction, see Figure 5-1.

There are multiple ways to navigate the swarm without knowing the exact location of the
beacons. Three navigation algorithms that does do such are presented and tested in this
chapter and also to see which can deal with noisy distance measurements the best.

5-1 Virtual potential fields for obstacle and goal beacons

Like with the VPF swarm controller also a VPF of the surrounding Psurr can be created. The
main difference is that only the distance |di| towards the obstacles (and goal) are known, but
not the orientation ~di. So only the value or height of the surrounding VPF Psurr of every
mobile robot is known, see Figure 5-2.

Figure 5-2: An one dimensional example where every mobile robot only knows the value/height
of the surrounding VPF.

This "height" represents how well the mobile robot is positioned in the surrounding. A low
value means the mobile robot is at a suitable position away from obstacles or a position closer
towards a goal point. The opposite, a higher value tells that the mobile robot is at a less
suitable position or away from a goal beacon. In literature this value of the VPF is mainly
visualized as the concentration of toxic odor and the mobile robots are like insects avoiding
these toxic odors. In this chapter also the notion of toxic concentration will be used. The
toxic concentration level is given by the value OG (Obstacle-Goal value). If the OG values of
all mobile robots in the swarm are known a local impression of the surrounding can be given,
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see Figure 5-1, where the set of all the positions of the mobile robots Zi and their OG values
will be create a local VPF Plocal. The complete robot swarm will react according to this local
VPF Plocal, which results in a joint movement of the complete swarm. The result is a swarm
that acts like a single "organism". This single organism should navigate around the obstacles
and if needed goes towards a goal beacon.

For the surrounding VPF Psurr the same requirements as for the VPF swarm controller con-
troller VPF Pswarm are considered, which were given in Section 4-2. The most important
requirement in case of the surrounding VPF Psurr is to avoid the existence of local minima. If
there is a local minima the complete swarm could get trapped in it and does not go toward a
global minimum. To avoid this the streaming VPF functions from Section 4-2 are used again.
The VPF created by Equation (5-1) can be used for point obstacles and goals.

Psurr,i = λ log(|di|), (5-1)

where for an attractive goal λ > 0 is used and for obstacles λ < 0. Also the same constraint
to let the goal be the global minima holds.

O∑
o

λo <
G∑
g

λg, (5-2)

In this case the function λg = 1 + 2
∑O
i λo is chosen to full fill the constraint. The sum of all

the values Psurr,i from each obstacle or goal is the total value of the toxic concentration OG at
the position of the mobile robot, see below.

OG = Psurr =
O∑
λo log(|di,o|) +

G∑
λg log(|di,g|) (5-3)

The next part of this section tells about possible modifications of the obstacle VPF functions
PO = λo log(|do|) to create forbidden regions and line obstacles. First the VPF function PO
with a forbidden circular region is presented. Like with the VPF swarm controller obstacles
the forbidden circular region uses the following equation.

PO = −λo log(|dO| − µmin), (5-4)

where |dO| is the distance towards the obstacle and µmin the radius of the forbidden region.
It is necessary to assure a high positive toxic values OG in the forbidden region and therefore
the following constraint is given.

if |dO| − µmin < ε then PO = −λ log(ε), (5-5)

This constraint also assures real values for |dO| − µmin < ε and no infinite values for PO when
|dO| − µmin = 0 as explained in the figure below.
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Figure 5-3: The commands for the direction of a Zebro robot, where no simultaneous for-
ward/backward and turning movements is considered.

It is also possible to create a wall-like obstacle. This can be done if the distance towards two
points A and B representing the outer points of the wall are known.

PO,line = −λ log(|dO,A|+ |dO,B| − |dline|), (5-6)

where |dO,A| and |dO,B| are the distances from the mobile robot towards point A and point B
respectively and |dline| is the distance between point A and B. For the line obstacles also a
forbidden region can be created. This is given by

PO,line = −λO log(|dO,A|+ |dO,B|+ µmin − |dline|), (5-7)

where µmin is a distance added to |dO,A| + |dO,B| that lets the wall become wider. Like with
the circular obstacle the following constraint assures existing solutions

if |dO,A|+ |dO,B|+ µmin − dline < ε then Pline = −λ log(ε), (5-8)

where ε is a small positive number. One need to remember that no greatest descent directions
−∇PO can be given, because ~dO is unknown. Therefore solutions are given in this chapter to
deal with obstacles position whose orientations are unknown.

Summarized the swarm has no knowledge about the location of obstacles or goal beacons in
the surrounding. Only the distance |di| towards an obstacle or goal is measured. The obstacles
can be a point, circle or line obstacle. A VPF Psurr represents the surrounding filled with
obstacles and a possible goal point. Each mobile robot gets a value of the surroundings VPF
Psurr called OG representing a "toxic concentration". The combination of all OG values of
each mobile robot creates a local impression of the surrounding VPF Psurr. The heading of
a mobile robot depends on this impression and the result is a swarm which acts as a single
"organism". In the next section three methods are presented which let the swarm act based on
all OG concentration values of each member of the swarm.

5-2 Obstacle avoidance and goal search algorithms

In the previous section a VPF Psurr that describes the surrounding is given. This VPF Psurr is
unknown, but each mobile robot measures its toxic concentration value OG based on it value
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inside the surrounding VPF Psurr. Knowing all the OG values of the other mobile robots and
their relative positions gives an impression of the local surrounding. A individual heading
direction Fsurr is based on the OG concentration values and will be added to the VPF swarm
controller direction −∇Pswarm by the following function.

Ftot = vmax
−∇Pswarm + ηFsurr

‖ − ∇Pswarm‖+ ‖ηFsurr‖
, (5-9)

where −∇Pswarm is the smoothed VPF swarm control heading vector and Fsurr is the heading
vector from interacting with the surrounding. This equation has the advantage that it creates
a balance between the control input influenced by the surrounding and cohesion of the swarm.
When a mobile robot is in a good position relative to the swarm (−∇Pswarm = 0) then the
mobile robot will move with maximum speed vmax in the direction of Fsurr. If the swarm
has a good position towards the environment (Fsurr = 0) then it will focus on maintaining
the cohesion of the swarm. The balance between −∇Pswarm and Fsurr is given by a priority
parameter η > 0 and results in a speed which is always vmax. The following algorithms use the
concentration values OG to create the additional heading direction Fsurr. In the next section
these algorithms are simulated with some surrounding test cases.

The first algorithm is based on Particle Swarm Optimization (PSO) [41] and will be called
m-PSO. The main idea is to walk towards the "best" mobile robot at position ~dhigh and from
the "worst" mobile robot at position ~dlow, presented by the following equation.

Fsurr = ~dhigh − ~dlow, (5-10)

If the mobile robot itself has the highest or lowest value it only uses the lowest or highest value
respectively.

The second algorithm let every mobile robot follow the gradient of the toxic concentration
values OGi of all the swarm members Zi [42], which in literature is called chemotaxis. A least-
squares approximation is used to find this first order (plane) gradient by using all the OGi
values at the estimated positions Xi of the corresponding mobile robots Zi. It is also possible
to approximate the gradient of higher orders. This might give more detailed information of
the local surrounding, but is not confirmed by literature and not tested.

The third method is based on the combination of the previous two methods. It uses all the
OG values of all the mobile robots and compares it to its own OG value to decide to walk from
or towards the other mobile robot. One can say that another mobile robot with a higher OG
value is an repulsive obstacle and a mobile robot with a lower OG is an attractive goal. Then
the function will be

PZ,i = (OGi −OG0) log(‖di‖) (5-11)
Z−1∑
i

−∇PZ,i = Fsurr =
Z−1∑
i

(OGi −OG0)~di (5-12)

where OGi is the OG concentration value of the other mobile robot Zi and OG0 of itself.
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5-3 Obstacle avoidance and goal search simulation results

In this section simulation tests are done to compare the three different navigation algorithms
which interact with the surroundings. For each of the algorithms three types are considered:
Goal search, Goal search with obstacles and staying inside a virtual cage. Multiple other cases
are possible, but these three cases represent a basis of all the possibilities.

For the simulation tests the following settings from the previous chapters are used:

• Localization algorithm: MRRPL with optimal parameters: N = 10, Qx = .01, KR = 1
and Kratio = 1

• VPF swarm controller: µmin = 1m, µdes = 2m, µmax = 4m and α = 0.5.

• Maximum distance per time sample: vmax = 0.2m

• Amount of mobile robots: Z = 5

• Initial positions: Unknown, X0 =
[
x1 x2 · · · x5
y1 y2 · · · y5

]
=
[
0 1 1 −1 −1
0 1 −1 1 −1

]
.

• Measurement noise standard variances: σI = 3dB, σθ = 5◦ and σv = 10%

• Used heading priority ratios: m-PSO → η = 3, Chemotaxis → η = 2 and Compare
→ η = 3.

The parameters η for the different navigation algorithms are found empirical by doing multiple
simulations. The first simulation case consists of only of a goal beacon. The next three figures
show the result of each navigation algorithm, where the swarm tries to find the goal at position
(0, 10). If all measurements were (near) perfect a precise optimal path would be taken every
time. In this thesis it was the challenge to deal with highly uncertain measurements. Therefore
a density of the walked path of the swarm members is analysed to see if the localization
algorithm creates positions estimation well enough to guide a mobile robot swarm. This
density grid is created by counting how many times a mobile robot was in a specific area.
These areas are given by squares of 0.25 meter. For the goal search test 50 runs of T = 300
time samples long were taken. The first result is given below, where the m-PSO navigation
algorithm is used.
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Figure 5-4: m-PSO: A two dimensional density plot, where the density tells how many times a
mobile robot was inside that area of 0.25x0.25 meter. Areas with a counting higher than 100 are
all yellow. The case: Goal search with the m-PSO algorithm, where the swarm starts around (0, 0)
and the goal is positioned at (0, 10).

Figure 5-4 shows a quite satisfied behaviour of the swarm members going towards the goal with
the use of the m-PSO algorithm. The result proves that even with the most simple thinking
a swarm can be navigated. The large donut shaped density around the goal is caused by the
convergence of the swarm members around the goal and while maintaining the desired distance
µdes = 2m from each other. This behaviour will also been shown by other simulations. The
next simulation figure shows the result of the Chemotaxis algorithm.
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Figure 5-5: Chemotaxis: A two dimensional density plot, where the density tells how many times
a mobile robot was inside that area of 0.25x0.25 meter. Areas with a counting higher than 100 are
all yellow. The case: Goal search with the Chemotaxis algorithm, where the swarm starts around
(0, 0) and the goal is positioned at (0, 10).
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The result is rather dissatisfying. All the members of the swarm stay on a desired position from
each other, but there is no clear sign of a movement towards the goal beacon. The problem
might lie in the fact that the gradient of the plane constructed from OG values is to small. If
the gradient and in that case also the heading direction Fsurr is very noisy then the expected
heading E[Fsurr] is almost the zero vector. When this happens all the members of the swarm
stay around the same position. More priority to act on the surrounding by increasing η gave
only worse results, because the priority to stay together became to small. This resulted in a
less cohesive behaviour of the swarm. The last test to find a goal beacon is taken with the
Compare algorithm.
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Figure 5-6: Compare: A two dimensional density plot, where the density tells how many times
a mobile robot was inside that area of 0.25x0.25 meter. Areas with a counting higher than 100
are all yellow. The case: Goal search with the Comparealgorithm, where the swarm starts around
(0, 0) and the goal is positioned at (0, 10).

The result of the compare algorithm as showed in Figure 5-6 shows also a quite satisfying
behaviour of the swarm compared to the Chemotaxis algorithm. Although there is not much
difference between the Compare (Figure 5-6) and m-PSO algorithm (Figure 5-4) some things
can be said. The Compare algorithm gains some momentum towards the goal and the m-PSO
has a constant movement towards the goal. This behavior is of most likely correlated with
the shape of the VPF, because the surrounding VPF Psurr its gradient increases when getting
closer towards the goal. With the Compare algorithm this will result in larger amplitudes of
the heading direction Fsurr near the goal, where in the case of the m-PSO the amplitude stays
constant over all time.

From the previous results it can be concluded that the Chemotaxis is less suitable to navigate
through the VPF of the surrounding. Therefore the next tests are taken with only the use of
the m-PSO and Compare algorithm. The setup of the test makes use of the same goal point,
but with an obstacle beacon between the initial position and the goal. This is a classic case
to create a local minima in front of the obstacle. By deciding to use streaming functions these
local minima will not occur, but now a saddle point is created. It is now interesting to see
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what the results will be to find out if the streaming functions are indeed a way to deal with
local minima. For the tests N = 50 simulation runs of T = 500 time samples long were taken.
The first result of the the m-PSO is given below.
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Figure 5-7: Case: An obstacle between the initial position of the swarm and the goal using the
m-PSO algorithm. A two dimensional density plot, where the density tells how many times a mobile
robot was inside that area of 0.25x0.25 meter. Areas with a counting higher than 50 are all yellow.

The result is a desired behaviour that guides the swarm around the obstacle towards the goal,
which proves that the swarm does not get stuck inside a local minima. Due to a saddle point as
the replacement of the local minima it is hard to find a clear direction, therefore a large cloud
exists in front of the obstacle. This large cloud also includes the initial process of locating
each other and positioning each other at desired distances before dealing with the surround-
ing. Furthermore there is a slight chance that a swarm member walks very near/through the
obstacle, which is caused by worse localization results due to noisy measurements. Moreover
the choice of route to go around the obstacle is chosen randomly and depends on a sudden
better OG concentration measurement of one of the swarm members. With the same setup
the Compare algorithm is used for comparison with the modified PSO algorithm, see Figure
5-8.

Master of Science Thesis M.C.R. van der Klauw



64 Obstacle avoidance and goal searching using radio beacons

x (m)
-5 0 5 10 15

y 
(m

)

-8

-6

-4

-2

0

2

4

6

8

0

5

10

15

20

25

30

35

40

45

>50

Figure 5-8: Case: An obstacle between the initial position of the swarm and the goal using the
Compare method. A two dimensional density plot, where the density tells how many times a mobile
robot was inside that area of 0.25x0.25 meter. Areas with a counting higher than 50 are all yellow.

The result of the Compare method shows a similar behaviour as with the m-PSO algorithm. A
slight difference can be seen in the spread of the walk paths. In case of the Compare algorithm
the density of the walked path is a little more widely spread. An increase of the priority to stay
together did not decrease the spread of the walk path. In conclusion, the m-PSO algorithm
shows some better results.

The next simulation is taken to show and test the behaviour of the swarm in a bounded
workspace and in particular the case of the Cyberzoo at the TU Delft is taken. This requires
a system where all the mobile robot stay inside a virtual cage, see Figure 5-9.

Figure 5-9: A representation of the virtual cage created by four line obstacles of each 10 meters
long.
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This cage is constructed by four beacons placed on the corners of a 5x5 meter square and
connected as a line obstacle from the previous section. The main requirement it that the
mobile robots stay inside this virtual cage, therefore the analysis will mainly focus on the
chance of swarm members walking outside the virtual cage. A test will be done using 50 runs
with the chosen PSO algorithm of each T = 500 time samples long. 50 runs are taken to assure
enough different cases of initial localization and convergence sequences.
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Figure 5-10: Case: A virtual cage with the m-PSO algorithm for 50 runs of T = 500. Only 0.65%
of the positions of mobile robots were outside the cage.

From results given in the position density figure above it can be seen that most of the swarm
members stay inside the virtual cage. Only 0.65% of the positions of the mobile robots were
outside the cage. From single simulation runs it can be seen that if a mobile robot walks
outside the cage it convergence back most of the time. In this simulation a downside of using
a m-PSO, Chemtaxis or Compare algorithm can be seen, this has to do with not knowing
exactly the position of the obstacle beacons. If a mobile robot walks outside the cage it can
not distinguish if it is still inside the cage or outside the cage, because it only sees differences
between OG concentration values of itself and the others. Only knowing these it can not know
if there is a large peak of concentration between itself and the rest of the swarm. In the future
this should be solved by also looking at how the OG values of a single mobile robot changes
over time. Moreover in the chapter about future work.

More details about the swarm behaviour and it interaction with the surrounding can be ob-
tained by looking at figures like Figure 5-11.
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Figure 5-11: The priority ratio between swarm behaviour and interacting with the environment
over time. A larger value means a higher priority to interact with the environment.

Figure 5-11 shows what priority is given between the VPF swarm controller and the VPF
surrounding controller at each time sample k of each swarm member Zi, given by

Priority ratio = ‖ηFsurr,i‖
‖ − ∇Pswarm,i‖+ ‖ηFsurr,i‖

(5-13)

As one can see, the priority over time changes from a high swarm controller priority to one
where the surrounding controller is dominant. The reason for that is that the swarm first needs
to be established before trying to interact with the surrounding. From Figure 5-11 and 5-12
it is shown that the average priority ratio after the swarm is established is around 0.9. From
multiple experiments the ratio of 0.9 results in a desired behaviour, therefore a guideline is to
find a priority ratio near 0.9 by changing the priority parameter η. In the next figure another
example of the balance between the VPF swarm controller and VPF surrounding controller is
given.
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Figure 5-12: The priority graph over time corresponding to the swarm movement of Figure 5-13

with the according swarm movement given in Figure 5-13
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Figure 5-13: Movement of each swarm member for a single run of the Obstacle-goal setup using
the m-PSO and the initial positions are given by the black spots.

If Figure 5-12 a large dip in the graph is seen. This dip corresponds with the moment when a
swarm member (green) walks to far from the other members and therefore a high priority has
been given to keep the swarm together.

After all the simulation test with different navigation algorithms some conclusions can be
given. First is that the Chemotaxis algorithm has a to small gradient to give a clear navigation
direction. Increasing the priority of the VPF surrounding controller only created worse results.
Moreover, the m-PSO algorithm showed an average constant speed of the swarm and the
speed of the swarm using the Compare algorithm depended on the gradient of the VPF of the
surrounding. Both m-PSO and Compare algorithms succeeded to guide the swarm around an
obstacle towards a goal. The m-PSO had a slightly better results than the Compare algorithm,
because the spread of the walk path towards to goal was less. A larger spread of the walked
path also a relates with a larger chance of colliding with the obstacle, therefore the m-PSO was
chosen to be better. In the last simulation test a virtual cage was constructed and the m-PSO
algorithm was used a the navigation algorithm. The swarm stayed quite well inside the cage,
only 0.65% of the positions of the swarm members were outside the box and if so most of the
time converged back to the inside of the cage.

5-4 Conclusions

This chapter had the goal to give the swarm a purpose to full fill. This purpose was split in to
two types of missions: Exploration and goal search. The surrounding for exploration and goal
search contains obstacles and possible goal beacons given by radio transmitting beacons. For
navigation with a environment filled with obstacles and possible goals also a VPF is created,
where the obstacles are like hills and the goal is a valley. In this case only the distances
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towards the beacons are known and no localization is performed to find their exact position.
In that case every mobile robot only knows it height/concentration value OG of the VPF. Three
navigation algorithm were presented to navigate using only these values. First a modification
of the Particle swarm optimization and second a method called Chemotaxis which uses an
estimated gradient of the field. The last one compare let the mobile robots compare their own
OG values with the others to decide which direction to go.

Simulation tests were taken to test these three navigation algorithms. The results were given
by a probability density like graph giving an indication of the probability of the navigation
route. For the first simulation test only a goal was searched. It was seen that the Chemotaxis
was less suitable than the m-PSO and Compare algorithm. The cause might have been a to
small and noisy gradient which could not give a clear heading direction Fsurr. Furthermore
the streaming function used for the VPF to represent the surrounding indeed showed no sign
of local minima. Remaining saddlepoints at the local minima were overcome by the m-PSO
and Compare algorithms. These simulation tests used a classical case to create local minima
by placing an obstacle between the swarm and goal. Still there is a slight chance that a mobile
robot walks near/through an obstacle, but this is due to worse position estimations caused
by large measurement noises. In conclusion the m-PSO algorithm was chosen to be a better
navigation algorithm, because it has less spread of the walk path towards the goal beacon.
Using the m-PSO algorithm a last simulation test was performed wereby the swarm had to
stay inside a virtual cage. The result was a swarm that mostly stayed inside this virtual cage,
only 0.65% of the mobile robot positions were outside the cage. A particular problem was
seen in this test, which is that a mobile robot does not know if it is in the cage or not. When
only the OG values are known one can not say if there are large peaks or walls between them.
Solutions to solve this are given in the chapter Future work.

The last subject to analyse was to look in to the "mind" of swarm member on how to make
the decide between stay with the swarm or to act based on the surrounding. This balance was
presented by the priority graph, which showed the difference in amplitude between the vectors
of the VFP swarm controller −∇Pswarm and the VPF surrounding controller Fsurr. The result
was that when the swarm falls apart or the swarm members are not at the desired distance
from each other the VPF swarm controller indeed got more priority. From empirical results it
was concluded that a priority ratio between 0.6 and 0.8 is desired.

In the end the simulation results showed that with large measurement noises a mobile robot
and its swarm are able to navigate around an environment placed with obstacle and/or goal
beacons.
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Chapter 6

Conclusions and future work

6-1 Conclusions

From results in thesis multiple conclusions can be drawn, which will be presented in this section.
These conclusions are devided into four topics that lead to the design of the swarm controller
that uses Radio Signal Strength (RSS) measurements to have an indication of the distance
between mobile robots. The first chapter described the Zebro robot and its movements using
a general model and also a model that gives the relation between RSS measurements and
distance. Secondly, a localization algorithm was designed to estimate the relative positions of
the other mobile robots. With the use of these estimated relative positions of the other mobile
robots a distributed Virtual Potential Field (VPF) controller is designed. The VPF swarm
controller has as goal to create a swarm with stable cohesion and no collisions between swarm
members. In continuation of the design of the VPF swarm controller it was investigated to see
what the effects of uncertain position estimations is on the cohesion of the swarm. In the end
another VPF controller is used to let the swarm interact with its environment. In this thesis
the goal is avoiding obstacles and staying in a bounded area. Also the effects of uncertain
distance measurements and position estimations on the walked path of the swarm are studied.
These topics all had there own specific challenges and problems to deal with, which will be
shortly outlined with their corresponding solutions.

The swarm considered in this thesis consist of mobile robots called Zebros. These Zebro robots
are six-legged "cockroach" like walking robots, whose motion model in general is the same as a
so-called two-wheeled robot. Besides the movement model of the mobile robot itself a relative
motion model is necessary. The relative motion model gives the movement of the other mobile
robots from the perspective of a mobile robot in question. The necessity of the relative motion
model comes from the fact that all the mobile robots do not know their absolute positions
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in the working space, because there is no reference available to create an absolute coordinate
frame.

Next a localization algorithm is designed to find the relative position of the other mobile robots.
Having information about the relative positions of the other mobile robots can be a valuable
addition to the already existing distributed swarm controllers. In literature a localization with
the use of only distance measurements is called trilaterations. Most trilateration algorithms
consider well measured distances, which in this thesis is not the case. That is, because the
distance measured uses a receiving antenna to measure the Radio Signal Strength (RSS) of
a message coming from a transmitting antenna on another mobile robot. As model for the
RSS-to-distance a Line-Of-Sight (LOS) model is used that has a RSS noise standard variance
of σI = 3.487dB, which corresponds to a distance standard variance noise around σr = 25% of
the measured distance r̄. A large distance measurement noise was expected and considered to
be an important topic to keep in mind for the creation of a localization algorithm.

The localization of the relative positions was proven not to be possible with only distance
measurements, therefore dead-reckoning was introduced. Dead-reckoning is a method that
tracks the walk path of a mobile robot with the use of only sensors onboard the mobile robot.
Using both distance and dead-reckoning measurements a localization tries to find the polar
coordinates of another mobile robot given by an orientation θ and a distance v. Polar coordi-
nates are used, because this will lead to better approximations of the position variances which
also leads to improvement of the position estimation. Two algorithms were designed to do
this localization: A modified weighted Multi-dimensional Scaling localization (weighted-MDS)
and the Multi-Robot Relative Pose Localization (MRRPL). Both methods use a feature of the
system to communicate the distances between two other mobile robots. For the weighted-MDS
the tracked path of a mobile robot is converted into distances. Combined with the measured
distances between all the mobile robots an optimization algorithm tries to find the best fit over
all these measured distances. The other localization method MRRPL uses the functions of the
relative pose estimation and multi-robot localization in an Unscented Kalman Filter (UKF)
setting. The result of the performance of both localization algorithms it was found out that
the weighted-MDS had problems to estimate the orientation θ. The MRRPL proved to be
a better candidate, because the MRRPL showed better results and importantly also signs of
being a converging position estimator. By finding better values of the noise variance matrices
R and Q of the UKF the MRRPL could even improve more.

In the end an orientation estimation RMS error of 0.8976 rad and a relative distance estimation
RMS error of 13 % was established at a RSS noise standard deviation of σI = 3dB. Simulation
tests also showed that the distance measurement noise σI has a great influence on estimation of
the orientation θ and distance v. Additionally the amplitude of the noise of heading direction
σv had only a clear influence of the estimation position angle θ. So to improve the position
estimation the distance and heading direction measurements are the main factors that needs
to be improved.

When having a estimated position of the other mobile robots using the MRRPL a distributed
VPF swarm controller can be designed. The VPF swarm controller is based on using a VPF P
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which can be imagined as a mountain site, where obstacles represent mountains and a valley
corresponds to an attractive point of interest (goal). The greatest descent vector −∇P of this
VPF is the heading direction of the mobile robot. Streaming functions were used to formulate
the VPFs, because they eliminate the local minimum problem. A VPF to describe another
member of the swarm is a combination of the mobile robot being a repulsive obstacle and
having a circular wall around it that let the other mobile robots stay close. Doing so will lead
to a cohesive behaviour of the swarm by staying close to each other with no collisions between
each other. From early results it was seen that a correlation exists between the cohesion of the
swarm and the noise variance matrices R and Q of the MRRPL. By a fine tuning which also
took the cohesion of the swarm into consideration a more optimal choice of the noise variance
matrices R and Q was found. With the retuned matrices R and Q a VPF swarm controller was
established. Simulation tests showed that with high noise on the distance and dead-reckoning
measurements it is still possible to use a VPF swarm controller.

Next a task was given to the robot swarm. Another distributed VPF controller was created to
let the swarm interact with the surrounding. The surroundings contains radio beacons with
unknown positions presenting virtual obstacles or walls. Also the surrounding can contain
attractive goal points. The VPF swarm controller is used to perform cohesion of the swarm
while the VPF surrounding controller let the swarm interact with the surroundings. Each
mobile robot only knows a value OG that represents the "height" in the VPF of the surround-
ings. Larger OG values indicate an obstacle is near. Knowing the positions and OG values
of each mobile robot three methods were found to give a heading vector Fsurr to add to the
VPF swarm control heading −∇Pswarm. These three methods are: a modified Particle Swarm
Optimization (m-PSO), Chemotaxis and a method that compares a mobile robot its OG value
with the OG values of the other swarm members (Compare). These three methods were tested
with multiple cases and concluded that the Chemotaxis approach is not suitable, but the m-
PSO and Compare algorithms are. Also from all simulations is was seen that the localization
gives position information that is valuable enough as an addition to swarm algorithms that
do not use the exact positions. Still the high noise of the distance measurements give a slight
chance of wrong position estimations. These wrong position estimations let a mobile robot
going near/through obstacles or it walk to far away from the swarm. In almost all these cases
the heading of the mobile robot converged back to the desired heading direction as a result of
a converging localization.

In the end it is proven that a localization algorithm can estimate the positions of the other
mobile robots and it can be a valuable addition to the already existing distributed VPF swarm
controllers that only uses RSS distance measurements and optimization techniques. The local-
ization can therefore be used to generate better heading directions by knowing the positions of
the other swarm members and knowing information gained as a the swarm in total. Considering
the challenge of dealing with the large amount of measurement noises on the RSS-to-distance
and dead-reckoning this is a beneficial result.
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6-2 Future work

Although the results of this thesis are quite satisfying some problems occurred and there are
some points that need some extra attention in the future of the robot swarm project. The first
topic that needs some additional attention is the RSS-to-distance model. The experiment data
used to create the RSS-to-distance model showed some unexplainable results. It was as if the
RSS measurements Ī of the messages from the transmitting antenna had two values, because
two distinct RSS levels were measured at each distance r.
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Figure 6-1: Test results of the RSS-to-Distance experiment from one of the two tests. Each colour
represents the RSS data at a specific distance. The experiment shows unexplainable two distinct
levels of RSS for each distance.

With improvements to solve the unexplainable two RSS levels the noise σI could become
less, which would increase the distance estimation. Although it will become better it is still
necessary to create a localization algorithm that can deal with larger noises, because in real
implementations the distance measurement noise can be much larger in more complex environ-
ments. Although it is still preferred to let the mobile robot swarm operate in an environment
that is not too complex, because a not very complex environment is needed to preserve the
validity of the Line-Of-Sight (LOS) model. The boundary on how complex an environment
needs to be such that a LOS model is still accurate enough is unknown.

Another topic of improvement is to find better noise variances matrices Q and R. The optimal
Q and especially R matrices are highly depend on measurement noise variances. It is still
useful to know the measurement noise variances, but in this case not the distance measurement
noise variance σI and dead-reckoning noise variances σθ and σv. Why these are not the noise
variances to use will be explained.

Remember that the Unscented Kalman Filter (UKF) uses the measurements of the multi-robot
trilateration (MRT) and relative pose estimation (RPE) given by the following equations, more
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details in Section 3-6-1.

ȳmi,j,k(k + 1) = r̄i,j(k + 1)2 − r̄i,k(k + 1)2 (6-1)

and
ȳri,m(k + 1) = 0.5(r̄2

0,i,m − r̄2
0,i,0 − V T

i,mVi,m − V T
0,mV0,m), (6-2)

The noise variances of the two measurements ȳmi,j,k andȳri,m are now the noise variances to be
used to provide the optimal noise variance matrices Q and R. The noise variances for ȳmi,j,k
andȳri,m where given in 3-6-1, but as a combination of σI , σθ and σv. It is better to find
the noise variances of ȳmi,j,k andȳri,m themselves. Especially when it varies with the time and
surroundings. Finding an accurate value of these noise powers is hard. Already Kalman Filter
adaptations exist to estimate the measurement noises on ȳmi,j,k and ȳri,m on-line. One is the
Adaptive Kalman Filter (AKF) [34]. The downside of the AKF is that it is a modification of a
linear Kalman Filter and not of the non-linear Unscented Kalman Filter (UKF). In literature
an adaptive modification for the UKF was not found, but would certainly be interesting to
test. In that case the localization algorithm can deal with changing environments over time.
As said before in Section 3-6-2 a particle filter can used, but the use of the particle filter might
be to computational complex.

Next a small issue was found in the use of polar coordinates as the position states, especially
with the orientation θ. Inside the UKF multiple state predictions X̂(k|k−1) are created which
form a cloud of predicted states. The mean predicted state ˆ̄x(k|k − 1) is the average of all
these predicted states. If an average of the angle θ is taken of a specific set of predicted angles
a problem occurs, see Figure 6-2.

Figure 6-2: A possible situation of taking the average angle (green) of multiple predicted angles
(red)

The estimated average angle θ̂ is now 180 degrees off and will result in a heading direction 180
degrees off, which also results in a worse behaviour of the swarm member. Sometimes this hap-
pened, but with enough extra measurements and walking directions it converged back towards
the real orientation. Occasionally it did not converge back, because due to the resulting wrong
walking direction the swarm member walked too far from the swarm to have measurements
that are well enough to let the estimate angle θ̂ converge back to the real angle θ. This can be
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solved by converting the states to Cartesian states, then take the average and convert them
back to polar coordinates. Due to the large amount of estimated state vectors X̂ that have
to be averaged this method will increase the computation time. If another simpler solution is
found to take the average of the angles θ this would improve the localization algorithm.

A major topic for improvement comes from the problem that in the final results it was possible
for a mobile robot to walk through point and line obstacles. The reason this happens comes
from the fact that the complete swarm only knows the OG-values at the positions of the mobile
robots and therefore no information about the surrounding VPF between mobile robots is
known as in Figure 6-4.

Figure 6-3: A case where the OG-values give an estimation of the surrounding VPF which is not
true. In this case the blue mobile robot will walk through the obstacle, because the mobile robots
on the other side of the wall have lower OG-values.

The solution lies in the fact that the mobile robot also needs to make individual decisions
based on OG-values it had measured earlier. Doing so a mobile robot can have an indication
of it going the wrong way, see the figure below.

Figure 6-4: A representation where the mobile robot remembers the OG-values of the past.

One measurement available to the mobile robot not used yet for the VPF surrounding con-
troller is the measured walked path by performing dead-reckoning. An option to act based
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on this knowledge can be an additional individual VPF, which will be constructed by plac-
ing virtual obstacle points on previously tracked coordinates with higher OG-values. These
tracked coordinates were saved in the dead-reckoning position matrix Ṽ . Doing so the heading
direction will possibly be pointed away from obstacles.

Based on the main topic of this thesis the best solution should be found in using the localization
algorithm as an additional measurement to provide better heading directions. In the future
the resulted heading direction of the complete swarm controller Ftot of this thesis will be added
to swarm optimization algorithms that only uses distance estimations. Therefore in the future
the localization algorithm needs to be combined with the existing swarming algorithms. This
should be done in a way that the existing swarm algorithm always can be performed and the
localization algorithm will provide additional information to improve the choice of the heading
direction. Doing so a mobile robot can make decisions based on both position estimation and
distance measurements and the mobile robot makes decisions based on individual and group
knowledge.

The complete algorithm to create a swarm of mobile robots which is a real wish of most re-
searchers working on this subject. This thesis will provide extra insights about how to give more
information about the position of the swarm members and how the resulting noisy position
estimations effects the already existing VPF swarm and VPF surrounding controllers.
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Appendix A

Radio signal strength to distance
measurements

This appendix gives an overview on how the model parameters for the RSS to distance r are
found by experimental measurements. The measurements are taken with a transmitter which
sends constant open messages and a receiver which receives the messages and measures the
RSS from the Radio Signal Strength Indicator (RSSI). The transmitter and receiver used are
both Bluegiga BLE113 Bluetooth Smart Modules and the attached circuit board is designed
by the Electronics Research Laboratory, TU Delft. The communication between the antenna’s
is based on the 2.4GHz Bluetooth IEEE 802.15.1 protocol. The transmitter had a omni-
directional antenna attached to it, therefore the transmitter can be placed with every angle
relative to the receiver. The receiver antenna is not omni-directional, therefore the angle
towards the transmitters stayed constant. The computer board has a microSD-card reader
connected to it to save the data received from the RSSI. All the documents about this setup
are attached to this thesis.

The measurements where taken as follows. Place the transmitter and receiver from a chosen
distance to each other. Push the "start" button and walk away from the receiver within 10
seconds. This is necessary, because the human body blocks 2.4 GHz signal significantly. The
recording indicator LED lights up, and wait until the recording indicator light goes off. Now
400 measurements were taken. Repeat the whole sequence for every distance measured. A
picture of the surrounding where the measurement took place is given in Figure A-1, which is
clearly a non-complex environment.
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Figure A-1: The environment of the RSS-to-distance experiments.

The next figure gives the result of the measurements taken at different distances. The maximum
distance seemed to be around 10 meters.

Figure A-2: A histogram of the experimental measurements. The height indicates how many of
the packages received had a certain RSS. This was done for every distance r

The second graph follows the previous graph, but the height representing the amount of mea-
sured samples is removed. This graph shows the result of the RSS-to-distance model fitting.
The chosen model is

I(r) = I0 − 10β log10(r) + νI , (A-1)
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where νI has a noise variance of σI . Then the fitted parameters where

I0 = −53.71dB β = 3.424 σI = 3.487dB

Figure A-3: The result of the RSS-to-distance model fitting.
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Appendix B

Usable sensors to perform
dead-reckoning

In this section an overview about sensors to use for dead-reckoning is given. Dead-reckoning is
the method to measure the walked path of a mobile robot with sensors that are placed on the
mobile robot itself. Performing dead-reckoning is necessary, because distance measurements
were not enough to localize neighbouring mobile robots. For dead-reckoning in this thesis two
measurements are used: the covered distance v̄ and the corresponding heading angle θ̄ per
time step. Polar coordinate are used, because most sensors are based on angles and covered
distance.

To perform dead-reckoning by measuring the heading direction and covered distance multiple
sensors can be used. A requirement is that these sensors are relatively cheap, do not use a lot
of energy, low computational power and can work on all kinds of surfaces. A short overview
of sensors according to these requirements is given:

• Accelerometer: A sensor to measures accelerations and when integrated twice a distance
can be derived. Due of the necessity of a double integrator this sensor is very sensitive
to noise and jerky movements of a mobile robot.

• Gyroscope: A sensor that measures all three rotational speeds. This sensor needs only
one integrator to measure the angle of the heading direction θ̄. This sensor is also sensitive
to jerky movements

• Magnetometer: The magnetometer is a sensor that measures the three angles towards
the earth’s magnetic north and therefore can be used to measure the relative angle
displacement. The downside is that this sensor is sensitive to for example metal holding
objects nearby or even the metal components in the robot itself.
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• Counting steps: One can count the steps to know what the travelled distance is if the
travelled distance per step is known. In case of the Zebro the travelled distance per step
is not constant due to a large chance of slip.

• Light sensors: When multiple light sensors are placed in a circle they can detect a light
shift through the sensors resulting in knowing the relative changed angle.

• Optical sensor: An optical sensor can be used to scan the ground and measure the
difference between frames and by doing so measuring a displacement. Most of these
sensors have a focal point, which is undesired due to non-flat surfaces.

• Rolling wheel: A rolling wheel mounted for example on a carriage can be used to measure
the travelled distance. Due to jerky movements and rough surface this will not make
enough contact with the surface and therefore distance measurements become inaccurate.

In conclusion to perform dead-reckoning there is not a single sensor that could measure the
travelled distance v or heading direction θ for a Zebro robot well enough. Therefore the use
of multiple sensors are required. The minimal requirements for the accuracy of the combined
dead-reckoning systems are given in Section 3-7-3.

Dead-reckoning has measurement noises that create uncertainties on the path travelled. An
impression of the uncertainty of the travelled path is given in Figure B-1.

Figure B-1: An indication of the measured walked path uncertainty. Where σv is the noise variance
of the covered distance σv and σθ the noise variance of the heading direction.
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Appendix C

Mathematics

C-1 Obtaining σr and σ∗r

First the expression for the distance noise variance σr based on the intensity noise variance
σI is given and secondly the expression for noise standard deviation of r2. Both are obtained
by using a linear approximation. A second order approximation is not required, because the
linear approximation was already near enough the real value and the distance measurements
are already to noisy too give a clear indication.

r = g(I) σr = σI
∂g(I)
∂I

∣∣∣∣
I=µI

(C-1)

g(I) = 10−(I−I0)/(10β) (C-2)
∂g(I)
∂I

= 10−(I−I0)/(10β) log(10) 1
10β (C-3)

= r log(10) 1
10β (C-4)

σr = r log(10) 1
10βσI (C-5)
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The next calculations create an expression for the standard deviation σ∗r of the squared distance
r2 based on σI .

r2 = g(I)2 σ∗r = σI
∂g(I)2

∂I

∣∣∣∣
I=µI

(C-6)

g(I)2 = 10−(I−I0)/(10β)·2 (C-7)
∂g(I)2

∂I
= 10−(I−I0)/(10β)·22 log(10) 1

10β (C-8)

= r2 log(10) 1
5β (C-9)

σ∗r = r2 log(10) 1
5βσI (C-10)

C-2 Variance of a squared normal distribution

When X ∼ N (0, σ2), what is the variance of Y = X2? Using the Chi-squared distribution it
follows that

X2 ∼ σ2χ2
1, (C-11)

with χ2
1 as the one degree of freedom Chi-distribution. Since E[χ2

1] = 1 and V ar[χ2
1] = 2 the

result is

E[X2] = σ2 (C-12)
V ar[X2] = 2σ4 (C-13)

C-3 Prove of streaming function constraint on λ, Equation (4-7)

It needs to be proven that when a streaming function for a VPF is used the attractive goal
is always the global minimum. Therefore the attraction of the goal is always larger than the
repulsive forces at infinity distances. For proving the requirements of λg and λO point, circular
and wall obstacles are considered. First the requirements for λg and λO.i are given if only point

M.C.R. van der Klauw Master of Science Thesis



C-3 Prove of streaming function constraint on λ, Equation (4-7) 85

obstacles based on λi log(|XZ −Xi|) is considered.

P = −λg log(|XZ −Xg|) +
O∑
i

λi log(|XZ −Xi|) (C-14)

lim
XZ→∞

λg log(|XZ −Xg|) > lim
XZ→∞

O∑
i

λi log(|XZ −Xi|) (C-15)

lim
XZ→∞

λg log(|XZ −Xg|)∑O
i λi log(|XZ −Xi|)

> 1 (C-16)

lim
XZ→∞

log(|XZ −Xg|) = lim
XZ→∞

log(|XZ −Xi|) (C-17)

λg∑O
i λi

> 1 (C-18)

λg >
O∑
i

λi (C-19)

Next the same in the case of circular obstacles λi log(|XZ −Xi| − µmin)

lim
XZ→∞

λg log(|XZ −Xg|)∑O
i λi log(|XZ −Xi| − µmin)

> 1 (C-20)

lim
XZ→∞

log(|XZ −Xg|) = lim
XZ→∞

log(|XZ −Xi| − µmin) (C-21)

λg∑O
i λi

> 1 (C-22)

λg >
O∑
i

λi (C-23)

and last the wall obstacles given by log(|XZ −Xi|+ |XZ −Xj | − µmin)

lim
XZ→∞

λg log(|XZ −Xg|)∑L
i λi log(|XZ −Xi|+ |XZ −Xj | − µmin)

> 1 (C-24)

lim
XZ→∞

|XZ −Xi|
|XZ −Xj |

= 1 (C-25)

lim
XZ→∞

λg log(|XZ −Xg|)∑L
i λi log(2|XZ −Xi| − µmin)

> 1 (C-26)

lim
XZ→∞

log(2|XZ −Xi| − µmin) = (C-27)

lim
XZ→∞

log(2|XZ −Xi|) = (C-28)

lim
XZ→∞

log(2) + log(|XZ −Xi|)) = lim
XZ→∞

log(|XZ −Xg|) (C-29)

λg∑L
i λi

> 1 (C-30)

λg >
L∑
i

λi (C-31)
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Important is that these results do not prove that there are no local minima in the VPF with
circular or wall obstacles.
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Appendix D

KR and Kratio estimation with the
VPF swarm controller

The following graphs show the RMS errors of the estimated orientation θ and distance v using
different gains for the noise variances matrices Q and R.
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Figure D-1: KQ = 1,σθ = 5◦,σv = 0.1
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Figure D-2: KR = 1,σθ = 5◦,σv = 0.1
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List of Acronyms

3mE Mechanical, Maritime and Materials Engineering faculty

AKF Adaptive Kalman Filter

DCSC Delft Center for Systems and Control

EKF Extended Kalman Filter

GPS Global Positioning system

IEEE Institute of Electrical and Electronics Engineers

LED Light emitting diode

LOS Line-of-sight

m-PSO modified Particle Swarm Optimization

MDS Multi-dimensional scaling

MRRPL Multi-robot relative pose localization

MRT Multi-robot trilateration

NLOS non-Line-of-sight

OG Obstacle Goal value

PSO Particle Swarm Optimization

RMS Root mean squared

RPE Relative Pose Estimation

RSS Radio Signal Strength
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RSSI Radio Signal Strength Indicator

TU Delft Delft University of Technology

UKF Unscented Kalman Filter

UKF-RPE Unscented Kalman filter with only the relative pose estimation

VPF Virtual Potential Field

Zebro "Zes-benige robot", six legged robot
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