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Abstract
This paper presents a method for exploiting wideband spec-
tral information of real-valued radio frequency (RF) signals us-
ing the Nyquist Folding Receiver architecture. A new system
model based on a symmetric modulation matrix is introduced
so that the frequency band of the real input signals can be esti-
mated without in-phase and quadrature reception and process-
ing. To recover the original frequency of the input RF signal,
we use the parameter-free sparse learning via iterative mini-
mization (SLIM) method. Finally, the proposed model and the
success of the recovery algorithm are demonstrated with data
collected from an experimental testbed.

1 Introduction
Continuous spectrum monitoring is important for tracking
spectrum occupancy as well as detection and identification of
hostile or unauthorized transmission activities. Meanwhile, im-
provements in Radio Frequency (RF) hardware technologies
allow modern radars to operate up to terahertz frequencies,
which increases the difficulty of wideband spectrum monitor-
ing. The recently proposed Nyquist Folding Receiver (NYFR)
[1] folds a broadband signal into a narrow sampling bandwidth
prior to digitization by a narrowband analog-to-digital con-
verter (ADC) [2]. The captured data has a time-varying fre-
quency modulation that varies with Nyquist zone, such that the
embedded information can be used to identify a signal’s origi-
nal RF band.

A basic NYFR architecture is depicted in Figure 1. In the
NYFR, the local oscillator (LO) signal is modulated such that
its frequency varies with time. Harmonics of the LO signal
have increased amounts of frequency modulation. Therefore,
RF signals at increasingly higher frequencies are demodulated
with harmonics of the primary LO signal, and these harmonic
signals have unique modulation strengths that vary with har-
monic number [3]. Then, the baseband output of the NYFR has
a unique Nyquist-zone-dependent frequency modulation that
can be exploited to recover the original input signal.

Different approaches have been proposed in the literature to
exploit the information that is embedded in the received sig-

nal. X-Gram processing, which depends on demodulating the
input signal for all Nyquist zones of interest, is investigated in
[2]. It is reported that X-Gram is computationally intense since
it computes all Nyquist zone of interest. Moreover, it needs
a 2D peak detection algorithm to identify the input frequen-
cies. The measurement of induced modulation through time-
frequency analysis such as the spectrogram, wavelet transform,
and Wigner–Ville transform are studied in [2] and [3]. In
the spectrogram approach, the tradeoff between time and fre-
quency resolution makes it difficult to detect modulation infor-
mation [2]. A Wigner-Ville transform can be used to achieve
good time and frequency resolution; however, it is computa-
tionally intense due to the second order terms involved in the
processing.

In this paper, we first revisit the system model and modify it
so that real-valued signals can be represented without the need
of explicit in-phase and quadrature receiver paths. Next, we
investigate different compressive sensing (CS) methods to re-
cover real-valued signals. We propose a solution for informa-
tion recovery based on the sparse learning via iterative mini-
mization (SLIM) method, which unlike many other methods
in the literature, can identify the original RF band without any
user-dependent parameter selection. Finally, we demonstrate
the application of the proposed method with data from an ex-
perimental testbed.

2 System Model and Derivation
Let us assume that the input to the LO port of a harmonic mixer
is a frequency-modulated tone centered at ωs1 = 2πFs1 , such
that

sLO(t) = sin(ϕ(t)) (1)

where ϕ(t) = ωs1t + θ(t). The LO frequency should be con-
tinuously modulated to introduce a corresponding time-varying
and RF-dependent modulation on signals at the output. Thus,
one may define the information modulation of the LO signal as

θ(t) =
F∆

Fm
sin(2πFmt +α), (2)

where F∆ is the LO frequency deviation, Fm is the frequency
of the LO modulations (rate of the change of the frequency
deviations) and α is the known initial phase of modulation.
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Figure 1: Nyquist Folding Analog to Information (NYFR-A2I)
receiver architecture.

In a harmonic mixer, narrow pulses are produced at the zero
crossings of the LO signal, sLO(t) (in our case, positive-slope
zero crossings). In other words, the zero crossings occur when
ϕ(t) = 2πk. Because of the frequency modulation of the LO
signal, the spacing of these narrow ’sampling’ pulses are non-
uniform, and the time-varying rate is

Fs(t) =
1

2π
ϕ
′(t)

=
1

2π

d
dt
(ωs1t +θ(t))

= Fs1 +θ
′(t)

(3)

crossings per second.

By definition, a Dirac comb is constructed from a train of Dirac
delta functions according to

∆(t) =
∞

∑
k=−∞

δ (t− kT ), (4)

for some given period T . Multiplying any function by a Dirac
comb transforms it into a train of weighted impulses at the
nodes of the comb. If a real, narrowband RF input signal
x(t) ∈ R centered at ωc = 2πFc with phase φ is defined as

x(t) = cos(ωct +φ), (5)

then the output of the harmonic mixer can be expressed as

y(t) = x(t)∆(t)

= ∑
k

x(t)δ (t− tk). (6)

The conversion from zero crossings to impulses happens in-
side the harmonic mixer when t = tk, which occurs when
ϕ(t)|t=tk

= 2πk. According to the Dirac scaling property, the
non-uniform pulse train takes the form [1, 4]

∆̃(t) = ϕ
′(t)

∞

∑
k=−∞

2π δ (ϕ(t)− kT ). (7)

Using the identity [1, 5]

2π ∑
k

δ (v−2πk) = ∑
k

e jkv (8)

with v = ϕ(t) = ωs1t +θ(t), we can rewrite (7) as

∆̃(t) = ϕ
′(t)

∞

∑
k=−∞

e jk(ωs1 t+θ(t)). (9)

Because the frequency modulation is narrowband and satisfies
ωs1 �max |θ ′(t)|, it is possible to further simplify to

∆̃(t)≈ ωs1

∞

∑
k=−∞

e jk(ωs1 t+θ(t)). (10)

Substituting (5) and (10) into (6) results in

y(t)≈∑
k

cos(ωct +φ)e jk(ωs1 t+θ(t)), (11)

which can be expanded further to

y(t) = 1
2 ∑

k

(
e j(ωct+φ)+ e− j(ωct+φ)

)
e jk(ωs1 t+θ(t))

= 1
2 ∑

k
e j((ωc+kωs1)t+φ+kθ(t))+

e− j((ωc−kωs1)t+φ−kθ(t))

(12)

Let kH be the harmonic in the Fourier series of the impulse train
that satisfies |ωc− kHωs1 | ≤

1
2 ωS1 , then y(t) can be written as

y(t) =
1
2

e j((ωc+kH ωs1)t+φ+kH θ(t))+

e− j((ωc−kH ωs1)t+φ−kH θ(t))

+

1
2 ∑

k 6=kH

e j((ωc+kωs1)t+φ+kθ(t))+

e− j((ωc−kωs1)t+φ−kθ(t))

.

(13)

The output of the harmonic mixer y(t) is filtered with a lowpass
(LP) anti-aliasing filter before digitization. For now, assuming
an ideal filter with a cutoff frequency 1

2 ωS1 , only the terms with
RF frequency in the kH harmonic’s Nyquist zone pass the filter-
ing because |ωc−kHωs1 | ≤

1
2 ωS1 . Any other terms k 6= kH are

rejected by the LP filter. Thus, the output of the anti-aliasing
filter is

z(t) =
1
2

(
e j((ωc+kH ωs1)t+φ)+

e− j((ωc−kH ωs1)t+φ)
)

e jkH θ(t).
(14)

Note that the first two exponential terms in z(t) are the time-
domain representations of any signals (positive and negative
frequency of the spectrum) that passed through the LP filter.
The Nyquist-zone-dependent frequency modulation impressed
on z(t) is present in the last term e jkH θ(t).

2.1 NYFR Compressive Sensing (CS) Model

It is possible to express the input-output relationship of the
NYFR as a CS model to separate and recover the input signal.
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Figure 2: NYFR Compressive Sensing model for real-valued signals. (Matrix construction is modified from the construction in
[2] to address the real-valued signals.)

Let X = [X0,X1, · · · ,XN−1] be the length-N Discrete Fourier
Transform (DFT) of the Nyquist-rate sampled input signal x(t).
Because we previously defined x(t) as a real signal (which is
always true for physical RF signals), its DFT X has symmetry.
Moreover, X is highly compressible (sparse) in the frequency
domain due to the narrowband assumption. By defining a sens-
ing matrix H, the system model can be written in compact form
such that

z = HX, (15)

where z is the K × 1 measurement vector (real-valued ADC
samples). In this formulation, X consist of Z Nyquist zones
(folds) each of length K (Z = N/K).

As seen from Figure 2, the K×N sensing matrix can be explic-
itly written as

H = RSΨ, (16)

where Ψ is the block diagonal matrix comprising a modified
inverse Discrete Fourier Transform (IDFT) matrix D, such that

Ψ = IZ⊗D. (17)

The Z×Z identity matrix is represented by IZ , and ⊗ denotes
the Kronecker product. The modified Inverse Discrete Fourier
Transform matrix D transforms the positive and negative fre-
quency halves of each sub-Nyquist zone separately to a time-
domain signal in the form of (14). The traditional IDFT matrix
is defined by Wm,n = e j2πmn/K , which can be separated into
two halves that cover the positive and negative frequency of
the spectrum as

W =
[

W+ W−
]
. (18)

The 2K×K modified IDFT matrix D is formed from the sub-
parts of the regular K×K IDFT matrix W according to

D =

[
W+ 0K,K/2

0K,K/2 W−,

]
(19)

where 0m,n represents the m×n all-zero matrix.

The induced sample modulation matrix S is a conjugate-
symmetric 2N × 2N diagonal matrix whose entries are parti-
tioned into 2Z sub-blocks,

Sp = e jkH θ(ta) IK (20)

where p = [0,1, . . . ,Z], ta is discrete-time at the ADC sample
rate, and kH = round(ωc/ωs1) which is in the form of kH =
[0,1,1,2,2, . . . ,Z/2,Z/2].

The projection matrix R that folds the Z Nyquist bands onto
baseband is the horizontal concatenation of 2Z identity matri-
ces, each of size K×K,

R = J1,2Z⊗ IK (21)

where Jm,n is the m×n unit matrix (all-ones matrix).

3 Information Recovery
It is possible to recover (estimate) the original input RF signal
from the received signal by solving the system (15) introduced
in the previous section. The sensing matrix H is wider than it
is tall (N = ZK > K), which means the system has more un-
knowns than observations. This kind of system is known as
an under-determined system and has infinitely many solutions
under the assumption that HH∗ is invertible (where (.)∗ de-
notes conjugate transpose). It is possible to use the linear least-
squares approach (`2 norm) to solve this system of equations
[6]. However, the system in (15) has special sparsity properties
that can be further exploited by sparse solvers.

Sparsity-based signal reconstruction algorithms can be divided
into two categories. The first includes greedy algorithms in-
cluding Matching Pursuit (MP) [7] and Orthogonal Matching
Pursuit (OMP) [8]. The application of greedy algorithms to
the NYFR architecture and their weakness are discussed in [2].
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The second category incluees convex optimization algorithms
such as basis pursuit [9].

One may define a convex optimization problem to solve (15) as

argmin
X

λ‖X‖1

such that z = HX
(22)

where ‖X‖1 is the `1-norm of vector X.1 The optimization
defined in (22) is known as the basis pursuit (BP) problem and
is usually applied in cases where there is an under-determined
system of linear equations that must be exactly satisfied and the
sparsest solution in the `1 sense is desired one [9].

Note that in may cases, especially in real applications, the ob-
servation (received signal) is noisy,

z = HX+σN , (23)

and it does not make sense to solve (22) exactly. Instead, it
is desirable to trade off exact congruence in exchange for a
sparser estimation. In these cases, an approximate solution can
be found by minimizing the cost function,

argmin
X
‖z−HX‖2

2 +λ‖X‖1 (24)

which is known as the basis pursuit denoising (BPDN) prob-
lem. In this formulation, λ controls the trade-off between spar-
sity and reconstruction fidelity and needs to be selected appro-
priately to achieve a sparse solution.

Different approaches have been proposed in the literature to
solve basis pursuit (22) and basis pursuit denoising (24) opti-
mization problems such as FISTA [10], SpaRSA2 [11], SALSA
[12], etc. There is a tradeoff between BP and BPDN ap-
proaches. For instance, BP (22) preserves the input signal;
however, it is not suitable for real data because it does not
address the noise issue. On the other hand, BPDN needs an
appropriate λ value to recover the input signal in noisy envi-
ronment. It is possible to estimate a good value for λ when
N is standard white Gaussian noise and the noise level σ is
known [9], but λ also needs to be adjusted according to the
input signal level and signal sparsity.

In addition to the `1-norm approach, there are parameter-free
`q-norm approaches available in the literature (for 0 < q ≤ 1),
such as Sparse Learning via Iterative Minimization (SLIM)
[13, 14]. SLIM is a regularized minimization approach with
an `q-norm constraint and can also be regarded as a natural ex-
tension to `1-norm based approaches [14, 15]. SLIM considers
the reqularized minimization algorithm for sparse recovery as

min
X ,η

gq(X ,η), (25)

where

gq(X,η) = K logη +
1
η
‖z−HX‖2

2 +
N

∑
n=1

2
q
(|Xn|q−1) (26)

1For a length N signal u, the `1-norm is denoted by ‖u‖1 =
N−1
∑

n=0
|un| and the

"sum of squares" of u is denoted by ‖u‖2
2 =

N−1
∑

n=0
|un|2.

2The application of SparSA to the NYFR architecture is discussed in [2].

and η is the noise power. The first part of the cost function
K logη + 1

η
‖z−HX‖2

2 is a fitting term, and the second part
N
∑

n=1

2
q (|Xn|q−1) is the penalty term that promotes sparsity [13].

The user parameter q is determined automatically by using the
Bayesian Information Criterion (BIC) in SLIM [13].

4 Experimental Setup
An experimental testbed, shown in Figure 3a, was assembled
to verify the proposed NYFR architecture for real signal re-
covery. The testbed consisted of an arbitrary waveform gen-
erator (AWG) that generated the frequency-modulated LO in-
put signal sLO(t), at least two RF signal generators with an RF
combiner that provide the input test signal, Nyquist Folding
Receiver (actual hardware), a workstation with ADC for data
acquisition, and a pulse generator for triggering.

The top view of the NYFR box is shown in Figure 3b while
its high-level schematic is depicted in Figure 4. In its current
configuration, the ADC is set to operate at 1.5 GSPS. Thus,
the cutoff frequency of the low-pass filters after the harmonic
mixer and after the amplifier are set to 750 MHz.

During the course of the experiment, it was observed that unin-
tended high-order harmonics generated by the AWG operating
in loopback mode were mixed with the input RF signal to yield
shadows of the input RF signals with different modulation fac-
tors. To overcome this issue, a low-pass filter was placed be-
tween the AWG and mixer LO port as shown in Figure 4.

(a) NYFR connected to a host computer

(b) Top View of the NYFR Box

Figure 3: Testbed Setup
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The LO frequency deviation F∆ was set to ±4 MHz whereas
the frequency of the LO modulations Fm is set to 5 MHz. The
center frequency of the LO signal Fs1 was set to 1.5 GHz to
match the ADC sampling rate as well as the cutoff frequency of
the LP filters after the harmonic mixer. The initial phase the LO
modulation α was maintained at a constant value by triggering
the LO signal and data acquisition (ADC) simultaneously (α '
0).

A single-tone test signal was generated according to (5) where
the center frequency Fc was set to 3.2 GHz. Figure 5 shows the
comparison of the spectrum of the ideal system response and
the collected data. As seen from the figure, the spectrum of the
received signal (red line) corresponds to the proposed system
model (blue line). Although the input signal was a narrowband
tone, the received signal is modulated over a broader frequency
band due to the modulation introduced by the LO signal.

Figure 6 shows the spectrogram of the received signal for a test
signal that includes two tones at 2.5 and 9.4 GHz (with same
power). It can be seen in the figure that the induced modu-
lation has a 2 µsec period corresponding to the frequency of
the LO modulation Fm = 5 MHz (Fm = 1/Tm). The tone at
2.5 GHz (lower sideband of the 3-GHz harmonic) is folded to
500 MHz; Similarly, the tone at 9.4 GHz (upper sideband of
the 9-GHz harmonic) is folded to 400 MHz. A 180◦ phase
shift is observed in the modulation of the upper and lower side-
band signals, which fits the theoretical derivation in (14). The
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Figure 5: Spectrum of ideal system model and the collected
data for 3.2 GHz RF signal.

amount of frequency modulation is defined by the folding zone
(corresponding harmonic in the Fourier series), which is kH = 2
and kH = 6 for the 2.5- and 9.4-GHz input signals, respectively.
Thus, there is a factor of 6/2 = 3 difference in the modulation
between the two received signals (see in Figure 6).

Next, we set the frequency grid resolution (accuracy of the es-
timation) to 5 MHz and apply SLIM for signal estimation. The
recovered signal X̂ for the two-tone example is shown in Fig-
ure 7. SLIM algorithm estimates two tones exactly at 2.5 and
9.4 GHz without any user inputs (parameter).

5 Discussions
In Figure 7, it should be noted that the magnitude of the esti-
mated signals are different even though the input powers were
set to be the same. To investigate the power differences, we
empirically measured the frequency response of the NYFR
system, with the results shown in Figure 8. From the fig-
ure, the difference between the frequency responses at 2.5
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Figure 6: Spectrogram of received signal for two tones at 2.5
and 9.4 GHz RF signal.
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and 9.4 GHz is approximately 8.74 dB (factor of ≈ 2.74 in
magnitude). The peak magnitudes are observed at 179.8 and
709.3 for 9.4 and 2.5 GHz respectively. Therefore, the fac-
tor of 2.74 is not quite sufficient to equalize the output powers
(2.74 × 179.3 = 491.28), but accounts for some of the dif-
ference. Additional system calibration and characterization is
needed to improve the equalization across a wide RF spectrum
[4].

The rolloff of the anti-aliasing LP filters is seen to produce
notches at every 750 MHz difference from an LO harmonic.
This notching causes blind zones around k(Fc/2). It is obvious
that any input signal at (or around) multiples of 750 MHz (with
respect to an LO harmonic) is rejected by the LP filter and can
not be recovered by the NYFR system presented in this paper.
These blind frequencies are a tradeoff of the anti-aliasing filter
design. If the LPF cutoff is below 750 MHz, there will be gaps
as seen in the figure. But if the LPF cutoff is allowed to increase
beyond 750 MHz, additional aliasing will occur in addition to
the desired and structured aliasing intended by the NYFR.

6 Conclusion
We present the implementation of a Nyquist-Folding Receiver
architecture for recovery of wideband spectral information. A
sensing model is defined that exploits the symmetry of the
Fourier transform of real signals so that the frequency band
(upper or lower sideband) of the input RF signals can be re-
solvable without in-phase and quadrature processing. We in-
vestigate different CS formulations and discussed their pros
and cons, while demonstrating the use of the parameter-free
Sparse Learning via Iterative Minimization to recover the ori-
gin of the input RF signal. The proposed model was demon-
strated and verified through collected data with real hardware,
and the success of the recovery algorithm was demonstrated via
an experimental testbed.
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