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Abstract: In this survey we present the state of the art about the asymptotic behavior and stability
of the modified Mullins–Sekerka flow and the surface diffusion flow of smooth sets, mainly due
to E. Acerbi, N. Fusco, V. Julin and M. Morini. First we discuss in detail the properties of the
nonlocal Area functional under a volume constraint, of which the two flows are the gradient flow
with respect to suitable norms, in particular, we define the strict stability property for a critical set of
such functional and we show that it is a necessary and sufficient condition for minimality under W2,p–
perturbations, holding in any dimension. Then, we show that, in dimensions two and three, for initial
sets sufficiently “close” to a smooth strictly stable critical set E, both flows exist for all positive times
and asymptotically “converge” to a translate of E.

Keywords: nonlocal Area functional; Mullins–Sekerka flow; surface diffusion flow; global existence;
asymptotic stability

1. Introduction

Geometric evolutions are a fascinating topic naturally arising from the study of dynamical models
in physics and material sciences. Concrete examples are, for instance, the analysis of the behavior in
time of the interfaces surfaces in phase changes of materials or in the flows of immiscible fluids. From
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the mathematical point of view, they describe the motion of geometric objects or structures, usually
driven by systems of partial differential equations.

In this work we rethink, expand the details and present in a unified treatment the results of E. Acerbi,
N. Fusco, V. Julin and M. Morini [1,2] about two of the most recent of such geometric motions, namely,
the modified Mullins–Sekerka flow and the surface diffusion flow.

Both flows deal with an evolution in time of smooth subsets Et of an open set Ω ⊆ Rn, with
d(Et, ∂Ω) > 0, for every t in a time interval [0,T ), such that their boundaries ∂Et, which are smooth
hypersurfaces, move with some “outer” normal velocity Vt that, in the first case, is obtained as solution
of the following “mixed” system

Vt = [∂νtwt] on ∂Et

∆wt = 0 in Ω \ ∂Et

wt = Ht + 4γvt on ∂Et

−∆vt = uEt −
ffl

Ω
uEt dx in Ω (distributionally)

(mMSF)

where γ is a nonnegative parameter, v,w : [0,T ) × Ω → R are continuous functions such that, setting
wt = w(t, ·) and vt = v(t, ·), the functions vt and wt are smooth in Ω \ ∂Et, for every t ∈ [0,T ); the
functions νt,Ht are the “outer” normal and the relative mean curvature of ∂Et and uEt = 2χ

Et
− 1;

finally, the velocity of the motion is given by [∂νtwt] which denotes ∂νtw
+
t − ∂νtw

−
t , that, is the “jump”

of the normal derivative of wt on ∂Et, where w+
t and w−t are the restrictions of wt to Ω \ Et and Et,

respectively.
The resulting motion, called modified Mullins–Sekerka flow [46] (see also [11,33] and [22] for a very

clear and nice introduction to such flow), arises as a singular limit of a nonlocal version of the Cahn–
Hilliard equation [4, 41, 50], to describe phase separation in diblock copolymer melts (see also [49]).
It has been also called Hele–Shaw model [7], or Hele–Shaw model with surface tension [19–21]. We
mention that the adjective “modified” comes from the introduction of the parameter γ > 0 in the
system (mMSF), while choosing γ = 0 we have the original flow proposed by Mullins and Sekerka
in [46].

In the second case, we will say that a flow of sets Et as above, is a solution of the surface diffusion
flow if the normal velocity is pointwise given by

Vt = ∆tHt on ∂Et, (SDF)

where ∆t is the Laplacian of the hypersurface ∂Et, for all t ∈ [0,T ). Such flow was first proposed by
Mullins in [45] to study thermal grooving in material sciences (see also [17] for a nice presentation),
in particular, in the physically relevant case of three–dimensional space, it describes the evolution of
interfaces between solid phases of a system, which are studied in a variety of physical settings
including phase transitions, epitaxial deposition and grain growth (see for instance [34] and the
references therein).

Notice that, while in this latter case, the velocity flow is immediately well defined, the
system (mMSF) is clearly undetermined as it is, since the behavior of the functions wt and vt is not
prescribed on the boundary of Ω (which is also possibly not bounded). By simplicity, we will consider
flows in the whole Euclidean space and we assume that all the functions and sets involved are periodic
with respect to the standard lattice Zn of Rn. It is then clear that this is equivalent to “ambient” the
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problem in the n–dimensional “flat” torus Tn = Rn/Zn, hence in the sequel we will assume Ω = Tn,
modifying the definitions above accordingly. Another possibility would be asking that Ω ⊆ Rn is
bounded, the moving sets do not “touch” the boundary of Ω and that all the functions wt and vt are
subject to homogeneous (zero) Neumann boundary conditions on ∂Ω (see Subsection 4.3).

A very important property of these geometric flows is that both are the gradient flow of a functional,
which clearly gives a natural “energy”, decreasing in time during the evolution (the velocity Vt is minus
the gradient, that is, the Euler–Lagrange equation of a functional).

Precisely, in any dimension n ∈ N, the modified Mullins–Sekerka flow is the H−1/2–gradient flow
of the following nonlocal Area functional

J(E) = A(∂E) + γ

ˆ
Tn

ˆ
Tn

G(x, y)uE(x)uE(y) dx dy , (1.1)

under the constraint that the volume Vol(E) = L n(E) is fixed, where (here and in the whole paper),

A(∂E) =

ˆ
∂E

dµ

is the classical Area functional that gives the area of the (n − 1)–dimensional smooth boundary of any
sets E (µ is the “canonical” measure associated to the Riemannian metric on ∂E induced by metric of
Tn coming from the scalar product of Rn, which coincides with the n–dimensional Hausdorff measure
Hn) and G is the Green function of Tn (see [41], for details).

Similarly, the surface diffusion flow can be regarded as the H−1–gradient flow of the Area functional
A with fixed volume.

Then, it clearly follows that, in both cases, the volume of the evolving sets Vol(Et) is constant in
time, while neither convexity (see [16] and [36]) is maintained, nor there holds the so–called
“comparison property” asserting that if two initial sets are one contained into the other, they stay so
during the two flows. This is due to the lack of the maximum principle for parabolic equations or
systems of order larger than two. We remind that such properties are shared by the more famous mean
curvature flow, which is also a gradient flow of the Area functional (without the constraint on the
volume), but with respect to the L2–norm (see [42], for instance).

Parametrizing the moving smooth surfaces ∂Et by some maps (embeddings) ψt : M → Tn such
that ψt(M) = ∂Et, where M is a fixed smooth, compact (n − 1)–dimensional differentiable manifold
and νt is the outer unit normal vector to ∂Et as above, the evolution laws (mMSF) and (SDF) can be
respectively expressed as

∂

∂t
ψt = Vtνt = [∂νtwt]νt ,

and
∂

∂t
ψt = (∆tHt)νt .

Due to the parabolic nature (not actually so explicit in the first case) of these systems of PDEs, it is
known that for every smooth initial set E0 in Tn, with boundary described by ψ0 : M → Tn, both
flows with such initial data exist unique and are smooth in some positive time interval [0,T ). Indeed,
such short time existence and uniqueness results were proved by Escher and Simonett [19–21] and
independently by Chen, Hong and Yi [8] for the modified Mullins–Sekerka flow and by Escher, Mayer
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and Simonett in [17] for the surface diffusion flow of a smooth compact hypersurface in domains of
the Euclidean space of any dimension. With minor modifications, their proof can be adapted to get the
same conclusion also for smooth initial hypersurfaces of Tn.

The aim of this work is to show that, in dimensions two and three, for initial data sufficiently “close”
to a smooth strictly stable critical set E for the relative “energy” functional (the nonlocal or the usual
Area functional) under a volume constraint, the flows exist for all positive times and asymptotically
converge in some sense to a “translate” of E.

The notions of criticality and stability are as usual defined in terms of first and second variations
of J and A. We say that a smooth subset E ⊆ Tn is critical for J (or for A, simply choosing γ = 0
in formula (1.1)) if for any smooth one–parameter family of diffeomorphisms Φt : Tn → Tn, such
that Vol(Φt(E)) = Vol(E), for t ∈ (−ε, ε) and Φ0 = Id (Et = Φt(E) will be called volume–preserving
variation of E), we have

d
dt

J(Φt(E))
∣∣∣∣
t=0

= 0 .

We will see that this condition is equivalent to the existence of a constant λ ∈ R such that

H + 4γvE = λ on ∂E,

where H is the mean curvature of ∂E and vE is the potential defined as

vE(x) =

ˆ
Tn

G(x, y)uE(y)dy ,

with G the Green function of the torus Tn and uE = χ
E
− χ

Tn\E
.

The second variation of J at a critical set E, leading to the central notion of stability, is more
involved and, differently by the original papers, we will compute it with the tools and methods of
differential/Riemannian geometry (like the first variation). We will see that at a critical set E, the second
variation of J (the second derivative at t = 0 of J(Et)) along a volume–preserving variation Et = Φt(E)
only depends on the normal component ϕ on ∂E of the infinitesimal generator field X = ∂Φt

∂t

∣∣∣
t=0

of the
variation. The volume constraint on the admissible deformations of E implies that the functions ϕmust
have zero integral on ∂E, hence it is natural to define a quadratic form ΠE on such space of functions
which is related to the second variation of J by the following equality

ΠE(ϕ) =
d2

dt2 J(Φt(E))
∣∣∣∣
t=0

(1.2)

where Et = Φt(E) is a volume–preserving variation of E such that〈
νE

∣∣∣∣∂Φt

∂t

∣∣∣∣
t=0

〉
= ϕ

on ∂E, with νE the outer unit normal vector of ∂E.
Because of the obvious translation invariance of the functional J, it is easy to see (by means of the

formula (1.2)) that the form ΠE vanishes on the finite dimensional vector space given by the functions
ψ = 〈νE |η〉, for every vector η ∈ Rn. We underline that the presence of such “natural” degenerate
subspace of the quadratic form ΠE (or, equivalently, the translation invariance of J) is the main reason
of several technical difficulties.

Mathematics in Engineering Volume 4, Issue 6, 1–104.
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We then say that a smooth critical set E ⊆ Tn is strictly stable if

ΠE(ϕ) > 0

for all non–zero functions ϕ : ∂E → R, with zero integral and L2–orthogonal to every function ψ =

〈νE |η〉.
Then, the heuristic idea is that in a region around a strictly stable critical set E, we have a

“potential well” for the “energy” J (and the set E is a local minimum) and, defining a suitable notion
of “closedness”, if one set starts close enough to E, during its evolution by (minus) the gradient of
such energy, it cannot “escape” the well and asymptotically converges to a set of (local) minimal
energy, which must be a translate of E. That is, the strict stability of E implies a “dynamical” stability
in a neighborhood.

At the moment, this conclusion, that we state precisely below, can be shown only in dimension at
most three, because of missing estimates in higher dimensions (see the discussion at the beginning of
Section 4). When n > 3 this and several other questions on these flows remain open. Anyway, this
is sufficient for the application to some physically relevant models, since the evolution laws (mMSF)
and (SDF) describe, respectively, pattern–forming processes such as the solidification in pure liquids
and the evolution of interfaces between solid phases of a system, driven by surface diffusion of atoms
under the action of a chemical potential (see for instance [34] and the references therein). In this paper,
we will only deal with the three–dimensional case, but we underline that all the results and arguments
hold, without relevant modifications, also in the two–dimensional situation of T2 = R2/Z2, where the
moving boundaries of the sets are curves.

Moreover, we mention here that all the results also hold in a bounded open subset Ω of R2 or R3,
for moving sets which do not “touch” the boundary of Ω, imposing that the functions wt and vt in the
definition of the modified Mullins–Sekerka flow satisfy a zero Neumann boundary condition (as we
mentioned above), instead than choosing the “toric ambient” (see Subsection 4.3 for more details).

Theorem (Theorem 4.6 and Remark 4.7). Let E ⊆ T3 be a smooth strictly stable critical set for the
nonlocal Area functional under a volume constraint and Nε a suitable tubular neighborhood of ∂E.
For every α ∈ (0, 1/2) there exists M > 0 such that, if E0 is a smooth set satisfying

• Vol(E0) = Vol(E),

• Vol(E04E) ≤ M,

• the boundary of E0 is contained in Nε and can be represented as

∂E0 = {y + ψE0(y)νE(y) : y ∈ ∂E},

for some function ψE0 : ∂E → R such that ‖ψE0‖C1,α(∂E) ≤ M,

• there holds
ˆ
T3
|∇wE0 |

2 dx ≤ M ,

where w0 = wE0 is the function relative to E0, as in system (mMSF),
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then, there exists a unique smooth solution Et of the modified Mullins–Sekerka flow (with parameter
γ ≥ 0) starting from E0, which is defined for all t ≥ 0. Moreover, Et → E + η exponentially fast in Ck

as t → +∞, for every k ∈ N, for some η ∈ R3, with the meaning that the functions ψη,t : ∂E + η → R

representing ∂Et as “normal graphs” on ∂E + η, that is,

∂Et = {y + ψη,t(y)νE+η(y) : y ∈ ∂E + η},

satisfy for every k ∈ N, the estimates

‖ψη,t‖Ck(∂E+η) ≤ Cke−βkt

for every t ∈ [0,+∞), for some positive constants Ck and βk.

Theorem (Theorem 4.19 and Remark 4.20). Let E ⊆ T3 be a strictly stable critical set for the Area
functional under a volume constraint and let Nε be a tubular neighborhood of ∂E. For every α ∈
(0, 1/2) there exists M > 0 such that, if E0 is a smooth set satisfying

• Vol(E0) = Vol(E),

• Vol(E04E) ≤ M,

• the boundary of E0 is contained in Nε and can be represented as

∂E0 = {y + ψE0(y)νE(y) : y ∈ ∂E} ,

for some function ψE0 : ∂F → R such that ‖ψE0‖C1,α(∂E) ≤ M,

• there holds ˆ
∂E0

|∇H0|
2 dµ0 ≤ M ,

then there exists a unique smooth solution Et of the surface diffusion flow starting from E0, which is
defined for all t ≥ 0. Moreover, Et → E + η exponentially fast in Ck as t → +∞, for some η ∈ R3, with
the same meaning as above.

We remark that the line of the proof in [1] that we are going to present, is based on suitable energy
identities and compactness arguments to establish these global existence and exponential stability
results. This was actually a completely new approach to manage the translation invariance of the
functional J, in previous literature dealt with by means of semigroup techniques.

Summarizing, the work is organized as follows: in Section 2 we study the nonlocal Area functional
(constrained or not) and we compute its first and second variation, then we discuss the notions of
criticality, stability and local minimality of a set and their mutual relations, in this context. In Section 3
we introduce the modified Mullins–Sekerka and the surface diffusion flow and we analyze their basic
properties. Section 4 is devoted to show the two main theorems above, while finally in Section 5, we
discuss the classification of the stable and strictly stable critical sets (to whom then the two stability
results apply).
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2. The nonlocal Area functional

We start by introducing the nonlocal Area functional and its basic properties.
In the following we denote by Tn the n–dimensional flat torus of unit volume which is defined as

the Riemannian quotient of Rn with respect to the equivalence relation x ∼ y ⇐⇒ x − y ∈ Zn, with
Zn the standard integer lattice of Rn. Then, the functional space Wk,p(Tn), with k ∈ N and p ≥ 1,
can be identified with the subspace of Wk,p

loc (Rn) of the functions that are 1–periodic with respect to all
coordinate directions. A set E ⊆ Tn is of class Ck (or smooth) if its “1–periodic extension” to Rn is of
class Ck (or smooth,) which means that its boundary is locally a graph of a function of class Ck around
every point. We will denote with Vol(E) = L n(E) the volume of E ⊆ Tn.

Given a smooth set E ⊆ Tn, we consider the associated potential

vE(x) =

ˆ
Tn

G(x, y)uE(y)dy , (2.1)

where G is the Green function (of the Laplacian) of the torus Tn and uE = χ
E
− χ

Tn\E
. More precisely,

G is the (distributional) solution of

−∆xG(x, y) = δy − 1 in Tn with
ˆ
Tn

G(x, y) dx = 0, (2.2)

for every fixed y ∈ Tn, where δy denotes the Dirac delta measure at y ∈ Tn (the n–torus Tn has unit
volume).

By the properties of the Green function, vE is then the unique solution of
−∆vE = uE − m in Tn (distributionally)ˆ
Tn

vE(x) dx = 0
(2.3)

where m = Vol(E) − Vol(Tn \ E) = 2Vol(E) − 1.

Remark 2.1. By standard elliptic regularity arguments (see [29], for instance), vE ∈ W2,p(Tn) for all
p ∈ [1,+∞). More precisely, there exists a constant C = C(n, p) such that ‖vE‖W2,p(Tn) ≤ C, for all
E ⊆ Tn such that Vol(E) − Vol(Tn \ E) = m.

Then, we define the following nonlocal Area functional (see [40, 47, 64], for instance).

Definition 2.2 (Nonlocal Area functional). Given γ ≥ 0, the nonlocal Area functional J is defined as

J(E) = A(∂E) + γ

ˆ
Tn
|∇vE(x)|2 dx, (2.4)

for every smooth set E ⊆ Tn, where the function vE : Tn → R is given by formulas (2.1)–(2.3) and

A(∂E) =

ˆ
∂E

dµ

is the Area functional , where µ is the “canonical” measure associated to the Riemannian metric on
∂E induced by the metric tensor of Tn, coming from the scalar product of Rn (it is easy to see that µ
coincides with the (n − 1)–dimensional Hausdorff measure restricted to ∂E).
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Since the nonlocal Area functional is defined adding to the Area functional a constant γ ≥ 0 times
a nonlocal term, all the results of this section will also hold for the Area functional, taking γ = 0.

Multiplying by vE both sides of the first equation in system (2.3) and integrating by parts (and using
also the second equation), we obtain

ˆ
Tn
|∇vE(x)|2 dx = −

ˆ
Tn

vE(x)∆vE(x) dx

=

ˆ
Tn

vE(x)(uE(x) − m) dx

=

ˆ
Tn

vE(x)uE(x) dx

=

ˆ
Tn

ˆ
Tn

G(x, y)uE(x)uE(y) dx dy, (2.5)

hence, the functional J can be also written in the useful form

J(E) = A(∂E) + γ

ˆ
Tn

ˆ
Tn

G(x, y)uE(x)uE(y) dx dy.

2.1. First and second variation

We start by computing the first variation of the functional J.

Definition 2.3. Let E ⊆ Tn be a smooth set. Given a smooth map Φ : (−ε, ε)×Tn → Tn, for ε > 0, such
that Φt = Φ(t, ·) : Tn → Tn is a one–parameter family of diffeomorphism with Φ0 = Id, we say that
Et = Φt(E) is the variation of E associated to Φ (or to Φt). If moreover there holds Vol(Et) = Vol(E)
for every t ∈ (−ε, ε), we call Et a volume–preserving variation of E.

The vector field X ∈ C∞(Tn;Rn) defined as X = ∂Φt
∂t

∣∣∣
t=0

, is called the infinitesimal generator of the
variation Et.

Remark 2.4. As we are going to consider only smooth sets E, it is easy to see that this definition of
variation is equivalent to have a family of diffeomorphisms Φt of E only, indeed these latter can always
be extended to the whole Tn. Moreover, as the relevant objects are actually the boundaries of the sets
E and in view of the sequel, we could even consider only smooth “deformations” of ∂E. We chose the
above definition since it is easier and more convenient for the computations that are following.

Definition 2.5. Given a variation Et of E, coming from the one–parameter family of diffeomorphism
Φt, the first variation of J at E with respect to Φt is given by

d
dt

J(Et)
∣∣∣∣
t=0
.

We say that E is a critical set for J, if all the first variations relative to variations Et of E are zero.
We say that E is a critical set for J under a volume constraint, if all the first variations relative to
volume–preserving variations Et of E are zero.

It is clear that if E is a minimum for J (under a volume constraint), then it is a critical set for J (under
a volume constraint). We are now going to compute the first variation of J and see that it depends only
on the restriction to ∂E of the infinitesimal generator X of the variation Et of E.

Mathematics in Engineering Volume 4, Issue 6, 1–104.
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We briefly recall some “geometric” notations and results about the (Riemannian) geometry of the
hypersurfaces in Rn, referring to [26, 42, 51] for instance.

In the whole work, we will adopt the convention of summing over the repeated indices.
Given any smooth immersion ψ : M → Tn of the smooth, (n − 1)–dimensional, compact manifold

M, representing a hypersurface ψ(M) of Tn, considering local coordinates around any p ∈ M, we
have local bases of the tangent space TpM, which can be identified with the (n − 1)–dimensional
hyperplane dψp(TpM) of Rn ≈ Tψ(p)T

n which is tangent to ψ(M) at ψ(p), and of the cotangent space
T ∗pM, respectively given by vectors

{ ∂
∂xi

}
and 1–forms {dx j}. So we denote the vectors on M by X =

Xi ∂
∂xi

and the 1–forms by ω = ω jdx j, where the indices refer to the chosen local coordinate chart of M.
With the above identification, we have clearly ∂

∂xi
≈

∂ψ

∂xi
, for every i ∈ {1, . . . , n − 1}.

The manifold M gets in a natural way a metric tensor g, pull–back via the map ψ of the metric
tensor of Tn, coming from the standard scalar product of Rn (as Tn ≈ Rn/Zn), hence, turning it into a
Riemannian manifold (M, g). Then, the components of g in a local chart are

gi j =

〈
∂ψ

∂xi

∣∣∣∣∣ ∂ψ∂x j

〉
and the “canonical” measure µ, induced on M by the metric g is then given by µ =

√
det gi j L n−1,

where L n−1 is the standard Lebesgue measure on Rn−1.
Thus, supposing that M has a global coordinate chart, we can write the Area functional on the

hypersurface ψ(M) in the following way,

A(ψ(M)) =

ˆ
M

dµ =

ˆ
M

√
det gi j(x) dx . (2.6)

When this is not the case (as it is usual), we need several local charts (Uk, ϕk) and a subordinated
partitions of unity fk : M → [0, 1] (that is, the compact support of fk : M → [0, 1] is contained in the
open set Uk ⊆ M, for every k ∈ I), then

A(ψ(M)) =

ˆ
M

dµ =
∑
k∈I

ˆ
M

fk dµ =
∑
k∈I

ˆ
Uk

fk(x)
√

det gk
i j(x) dx ,

where gk
i j are the coefficients of the metric g in the local chart (Uk, ϕk).

In order to work with coordinates, in the computations with integrals in this section we will assume
that all the hypersurfaces have a global coordinate chart, by simplicity. All the results actually hold
also in the general case by using partitions of unity as above.

The induced Levi–Civita covariant derivative on (M, g) of a vector field X and of a 1–form ω are
respectively given by

∇ jXi =
∂Xi

∂x j
+ Γi

jkXk , ∇ jωi =
∂ωi

∂x j
− Γk

jiωk ,

where Γi
jk are the Christoffel symbols of the connection ∇, expressed by the formula

Γi
jk =

1
2

gil
( ∂
∂x j

gkl +
∂

∂xk
g jl −

∂

∂xl
g jk

)
.
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Moreover, the gradient∇ f of a function, the divergence div X of a tangent vector field and the Laplacian
∆ f at a point p ∈ M, are defined respectively by

g(∇ f (p), v) = d fp(v) ∀v ∈ TpM ,

div X = tr∇X = ∇iXi =
∂Xi

∂xi
+ Γi

ikXk

(in a local chart) and ∆ f = div∇ f . We then recall that by the divergence theorem for compact
manifolds (without boundary), there holds

ˆ
M

div X dµ = 0 , (2.7)

for every tangent vector field X on M, which in particular implies
ˆ

M
∆ f dµ = 0 ,

for every smooth function f : M → R.
Assuming that we have a globally defined unit normal vector field ν : M → Rn to ϕ(M) (this will

hold in our situation where the hypersurfaces will be boundaries of smooth sets E ⊆ Tn, hence we
will always consider ν to be the outer unit normal vector at every point of ∂E), we define the second
fundamental form B which is a symmetric bilinear form given, in a local charts, by its components

hi j = −

〈
∂2ψ

∂xi∂x j

∣∣∣∣∣ ν〉
and whose trace is the mean curvature H = gi jhi j of the hypersurface (with these choices, the standard
sphere of Rn has positive mean curvature).
The symmetry properties of the covariant derivative of B are given by the Codazzi–Mainardi equations

∇ih jk = ∇ jhik = ∇khi j . (2.8)

In the sequel, the following Gauss–Weingarten relations will be fundamental,

∂2ψ

∂xi∂x j
= Γk

i j
∂ψ

∂xk
− hi jν

∂ν

∂x j
= h jlgls ∂ψ

∂xs
, (2.9)

which imply

∆ψ = gi j
( ∂2ψ

∂xi∂x j
− Γk

i j
∂ψ

∂xk

)
= −gi jhi jν = −Hν . (2.10)

Moreover, we have the formula
∆ν = ∇H − |B|2ν , (2.11)

indeed, computing in normal coordinates at a point p ∈ M,

∆ν = gi j
( ∂2ν

∂xi∂x j
− Γk

i j
∂ν

∂xk

)
Mathematics in Engineering Volume 4, Issue 6, 1–104.
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= gi j ∂

∂xi

(
h jlgls ∂ψ

∂xs

)
= gi j∇ih jlgls ∂ψ

∂xs
+ gi jh jlgls ∂2ψ

∂xi∂xs

= gi j∇lhi jgls ∂ψ

∂xs
− gi jh jlglshisν

=∇H − |B|2ν ,

since all Γk
i j and ∂

∂xi
g jk are zero at p ∈ M in such coordinates and we used Codazzi–Mainardi

equations (2.8).
In the following, when it is clear by the context, we will write ∇, div and ∆ for both the Riemannian

operators on a hypersurface and the standard operators of Tn ≈ Rn/Zn, but these latter will be instead
denoted by ∇T

n
, divT

n
and ∆T

n
when they will be computed at a point of a hypersurface, in order to

avoid any possibility of misunderstanding.

Theorem 2.6 (First variation of the functional J). Let E ⊆ Tn a smooth set and Φ : (−ε, ε) × Tn → Tn

a smooth map giving a variation Et = Φt(E) with infinitesimal generator X ∈ C∞(Tn;Rn). Then,

d
dt

J(Et)
∣∣∣∣
t=0

=

ˆ
∂E

(H + 4γvE)〈X|νE〉 dµ (2.12)

where νE is the outer unit normal vector and H the mean curvature of the boundary ∂E (as defined
above, relative to νE), while the function vE : Tn → R is the potential associated to E, defined by
formulas (2.1)–(2.3).
In particular, the first variation of the functional J depends only on the normal component of the
restriction of the infinitesimal generator X to ∂E.
Clearly, when γ = 0 we get the well known first variation of the Area functional at a smooth set E,

d
dt
A(∂Et)

∣∣∣∣
t=0

=

ˆ
∂E

H〈X|νE〉 dµ .

Proof. We start by computing the derivative of the Area functional term of J. We let ψt : ∂E → Tn be
the embedding given by

ψt(x) = Φ(t, x) ,

for x ∈ ∂E and t ∈ (−ε, ε), then ψt(∂E) = ∂Et and ∂tψt

∣∣∣
t=0

= X at every point of ∂E, moreover ψ0 is
simply the inclusion map of ∂E in Tn.
Denoting by gi j = gi j(t) the induced metrics (via ψt, as above) on the smooth hypersurfaces ∂Et and
setting ψ = ψ0, in a local chart we have

∂

∂t
gi j

∣∣∣∣
t=0

=
∂

∂t

〈
∂ψt

∂xi

∣∣∣∣∣ ∂ψt

∂x j

〉∣∣∣∣∣∣
t=0

=

〈
∂X
∂xi

∣∣∣∣∣ ∂ψ∂x j

〉
+

〈
∂X
∂x j

∣∣∣∣∣∣ ∂ψ∂xi

〉
=
∂

∂xi

〈
X

∣∣∣∣∣∣ ∂ψ∂x j

〉
+

∂

∂x j

〈
X

∣∣∣∣∣ ∂ψ∂xi

〉
− 2

〈
X

∣∣∣∣∣∣ ∂2ψ

∂xi∂x j

〉
Mathematics in Engineering Volume 4, Issue 6, 1–104.
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=
∂

∂xi

〈
Xτ

∣∣∣∣∣∣ ∂ψ∂x j

〉
+

∂

∂x j

〈
Xτ

∣∣∣∣∣ ∂ψ∂xi

〉
− 2Γk

i j

〈
Xτ

∣∣∣∣∣ ∂ψ∂xk

〉
+ 2hi j〈X | νE〉 ,

where we used the Gauss–Weingarten relations (2.9) in the last step and we denoted with
Xτ = X − 〈X|νE〉νE the “tangential part” of the vector field X along the hypersurface ∂E (seeing Tx∂E
as a hyperplane of Rn ≈ TxT

n).
Letting ω be the 1–form defined by ω(Y) = g(Xτ,Y), this formula can be rewritten as

∂

∂t
gi j

∣∣∣∣
t=0

=
∂ω j

∂xi
+
∂ωi

∂x j
− 2Γk

i jωk + 2hi j〈X|νE〉 = ∇iω j + ∇ jωi + 2hi j〈X|νE〉 . (2.13)

Hence, by the formula
d
dt

det A(t) = det A(t) tr [A−1(t) ◦ A′(t)] , (2.14)

holding for any n × n squared matrix A(t) dependent on t, we get

∂

∂t

√
det gi j

∣∣∣∣
t=0

=

√
det gi j gi j ∂

∂t gi j

∣∣∣
t=0

2

=

√
det gi j gi j(∇iω j + ∇ jωi + 2hi j〈X | νE〉

)
2

=

√
det gi j

(
divXτ + H〈X | νE〉

)
, (2.15)

where the divergence is the (Riemannian) one relative to the hypersurface ∂E. Then, we conclude
(recalling the discussion after formula (2.6))

∂

∂t
A(∂Et)

∣∣∣∣
t=0

=
∂

∂t
A(ψt(∂E))

∣∣∣∣
t=0

=
∂

∂t

ˆ
∂E

dµt

∣∣∣∣
t=0

=
∂

∂t

ˆ
∂E

√
det gi j dx

∣∣∣∣
t=0

=

ˆ
∂E

∂

∂t

√
det gi j

∣∣∣∣
t=0

dx

=

ˆ
∂E

(
divXτ+H〈X | νE〉

)√
det gi j dx

=

ˆ
∂E

(
divXτ+H〈X | νE〉

)
dµ

=

ˆ
∂E

H〈X | νE〉 dµ (2.16)

where in the last step we applied the divergence theorem, that is, formula (2.7), on ∂E.
In order to compute the derivative of the nonlocal term, we set

v(t, x) = vEt(x) =

ˆ
Tn

G(x, y)uEt(x) dy =

ˆ
Et

G(x, y) dy −
ˆ

Ec
t

G(x, y) dy,

where Ec
t = Tn \ Et. Then,

d
dt

(ˆ
Tn
|∇vEt(x)|2 dx

)∣∣∣∣
t=0

=
d
dt

(ˆ
Tn
|∇v(t, x)|2 dx

)∣∣∣∣
t=0
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= 2
ˆ
Tn
∇vE(x)

∂

∂t
∇v(t, x)

∣∣∣∣
t=0

dx

= 2
ˆ
Tn

(uE(x) − m)
∂

∂t
v(t, x)

∣∣∣∣
t=0

dx,

where in the last equality we used the fact that −∆vE = uE − m and we integrated by parts. Now, we
note that

∂

∂t
v(t, x) =

∂

∂t

( ˆ
Et

G(x, y) dy
)
−
∂

∂t

(ˆ
Ec

t

G(x, y) dy
)
, (2.17)

and, by a change of variable,

∂

∂t

(ˆ
Et

G(x, y) dy
)∣∣∣∣

t=0
=
∂

∂t

(ˆ
E

G(x,Φ(t, z))JΦ(t, z) dz
)∣∣∣∣

t=0
, (2.18)

where JΦ(t, ·) is the Jacobian of Φ(t, ·). Then, as JΦ(t, z) = det[dΦ(t, z)], using again formula (2.14),
we have

∂

∂t
JΦ(t, z)

∣∣∣∣
t=0

= JΦ(t, z) tr
[
dΦ(t, z)−1 ◦

∂

∂t
dΦ(t, z)

] ∣∣∣∣
t=0

= JΦ(t, z) tr
[
dΦ(t, z)−1 ◦ d

∂

∂t
Φ(t, z)

] ∣∣∣∣
t=0

= tr dX(z)
= div X(z) ,

by the definition of X and being Φ(0, z) = z. Thus, carrying the time derivative inside the integral in
Eq (2.18), we obtain

∂

∂t

(ˆ
Et

G(x, y) dy
)∣∣∣∣

t=0
=

ˆ
E

(
〈∇yG(x, y)|X(y)〉 + G(x, y) divX(y)

)
dy

=

ˆ
E

divy
(
G(x, y)X(y)

)
dy

=

ˆ
∂E

G(x, y)〈X(y)|νE(y)〉 dµ(y) .

By a very analogous computation we get

−
∂

∂t

(ˆ
Ec

t

G(x, y) dy
)∣∣∣∣

t=0
=

ˆ
∂E

G(x, y)〈X(y)|νE(y)〉 dµ(y) , (2.19)

then, using equalities (2.1) and (2.2), we conclude

d
dt

ˆ
Tn
|∇vEt(x)|2 dx

∣∣∣∣∣
t=0

= 4
ˆ
Tn

(uE(x) − m)
(ˆ

∂E
G(x, y)〈X(y)|νE(y)〉 dµ(y)

)
dx

= 4
ˆ
∂E

(ˆ
Tn

G(x, y)(uE(x) − m) dx
)
〈X(y)|νE(y)〉 dµ(y)

= 4
ˆ
∂E

vE(y)〈X(y)|νE(y)〉 dµ(y) . (2.20)

Combining formulas (2.16) and (2.20), we finally obtain formula (2.12). �
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Given a smooth set E and any vector field X ∈ C∞(Tn;Rn), considering the associated smooth flow
Φ : (−ε, ε) × Tn → Tn, defined by the system∂Φ

∂t (t, x) = X(Φ(t, x)),
Φ(0, x) = x

(2.21)

for every x ∈ Tn and t ∈ (−ε, ε), for some ε > 0, we have a variation Et = Φt(E) with infinitesimal
generator X. We call this variation the special variation associated to X. Moreover, given any smooth
vector field X ∈ C∞(∂E;Rn), it can be extended easily to a smooth vector field X ∈ C∞(Tn;Rn) with
X|∂E = X.

Hence, if E is a critical set for J there holdsˆ
∂E

(H + 4γvE)〈X|νE〉 dµ = 0 ,

for every X ∈ C∞(Tn;Rn). Choosing a smooth vector field X ∈ C∞(Tn;Rn) with X|∂E = (H + 4γvE)νE,
we then obtain the following corollary.

Corollary 2.7. A smooth set E ⊆ Tn is a critical set for J if and only if the function H + 4γvE is zero
on ∂E. When γ = 0, we recover the classical condition H = 0 for a minimal surface in Rn.

It is less easy to characterize the infinitesimal generators of the volume–preserving variations of
E, in order to find an analogous criticality condition on a set E, for the functional J under a volume
constraint.
Given Φ : (−ε, ε) × Tn → Tn such that Vol(Φt(E)) = Vol(Et) = Vol(E) for all t ∈ (−ε, ε), we let
Xt ∈ C∞(Tn;Rn) be the family of the vector fields (well) defined by the formula

Xt(Φ(t, z)) =
∂Φ

∂t
(t, z),

for every t ∈ (−ε, ε) and z ∈ Tn, hence, if t = 0, the vector field X = X0 is the infinitesimal generator of
the volume–preserving variation Et. Then, by changing variables, we have

0 =
d
dt

Vol(Et) =
d
dt

ˆ
Et

dx =
d
dt

ˆ
E

JΦ(t, z) dz =

ˆ
E

∂

∂t
JΦ(t, z) dz . (2.22)

As JΦ(t, z) = det[dΦ(t, z)], by means of formula (2.14), we obtain

∂

∂t
JΦ(t, z) = JΦ(t, z) tr [dΦ(t, z)−1 ◦ dXt(Φ(t, z)) ◦ dΦ(t, z)],

since, by the definition of Xt above,

∂

∂t
dΦ(t, z) = d

∂Φ

∂t
(t, z) = d[Xt(Φ(t, z))] = dXt(Φ(t, z)) ◦ dΦ(t, z).

Being the trace of a matrix invariant by conjugation, we conclude

∂

∂t
JΦ(t, z) = JΦ(t, z) tr [dXt(Φ(t, z))] = JΦ(t, z) divXt(Φ(t, z)),
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hence, by equality (2.22) and the divergence theorem (in Tn), it follows

0 =

ˆ
E

divXt(Φ(t, z))JΦ(t, z) dz =

ˆ
Et

divXt(x) dx =

ˆ
∂E
〈Xt ◦ Φt|νEt〉 dµt , (2.23)

where νEt is the outer unit normal vector and µt the canonical Riemannian measure of the smooth
hypersurface ∂Et, given by the embedding ψt = Φt : ∂E → Tn. Thus, letting t = 0,

d
dt

Vol(Et)
∣∣∣∣
t=0

=

ˆ
∂E
〈X|νE〉 dµ = 0 (2.24)

and we conclude that if X ∈ C∞(Tn;Rn) is the infinitesimal generator of a volume–preserving variation
for E, its normal component ϕ = 〈X|νE〉 on ∂E has zero integral (with respect to the measure µ).
Conversely, we have the following lemma whose proof is postponed after Lemma 2.32, since the
arguments in the two proofs are very similar.

Lemma 2.8. Let ϕ : ∂E → R a smooth function with zero integral with respect to the measure µ on
∂E. Then, there exists a smooth vector field X ∈ C∞(Tn;Rn) such that ϕ = 〈X|νE〉, divX = 0 in a
neighborhood of ∂E and the flow Φ defined by system (2.21) having X as infinitesimal generator, gives
a volume–preserving variation Et = Φt(E) of E.

Hence, with this characterization of the infinitesimal generators of the volume–preserving variations
for E, by Theorem 2.6 we have that E is a critical set for the functional J under a volume constraint if
and only if ˆ

∂E
(H + 4γvE)〈X|νE〉 dµ = 0 ,

for every X ∈ C∞(Tn;Rn) such that 〈X|νE〉 has zero integral on ∂E. By Lemma 2.8, this is similarly to
say that ˆ

∂E
(H + 4γvE)ϕ dµ = 0 ,

for all ϕ ∈ C∞(∂E) such that
´
∂E ϕ dµ = 0, which is equivalent to the existence of a constant λ ∈ R

such that
H + 4γvE = λ on ∂E.

Remark 2.9. The parameter λ may be clearly interpreted as a Lagrange multiplier associated with the
volume constraint for J.

Proposition 2.10. A smooth set E ⊆ Tn is a critical set for J under a volume constraint if and only if
the function H+4γvE is constant on ∂E. When γ = 0, we recover the classical constant mean curvature
condition for hypersurfaces in Rn.

Now we deal with the second variation of the functional J.

Definition 2.11. Given a variation Et of E, coming from the one–parameter family of diffeomorphism
Φt, the second variation of J at E with respect to Φt is given by

d2

dt2 J(Et)
∣∣∣∣
t=0
.
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In the following proposition we compute the second variation of the Area functional. Then, we do
the same for the nonlocal term of J and we conclude with the second variation of the functional J.

Proposition 2.12 (Second variation of A). Let E ⊆ Tn a smooth set and Φ : (−ε, ε) × Tn → Tn a
smooth map giving a variation Et = Φt(E) with infinitesimal generator X ∈ C∞(Tn;Rn). Then,

d2

dt2A(∂Et)
∣∣∣∣
t=0

=

ˆ
∂E

(
|∇〈X|νE〉|

2 − 〈X|νE〉
2|B|2

)
dµ

+

ˆ
∂E

H
(
H〈X|νE〉

2 + 〈Z|νE〉 − 2〈Xτ|∇〈X|νE〉〉 + B(Xτ, Xτ)
)

dµ ,

where Xτ = X − 〈X|νE〉νE is the tangential part of X on ∂E, B and H are respectively the second
fundamental form and the mean curvature of ∂E, and

Z =
∂2Φ

∂t2 (0, ·) =
∂

∂t
[Xt(Φ(t, ·))]

∣∣∣∣
t=0

=
∂Xt

∂t

∣∣∣∣
t=0

+ dX(X) , (2.25)

where, for every t ∈ (−ε, ε), the vector field Xt ∈ C∞(Tn;Rn) is defined by the formula

Xt(Φ(t, z)) =
∂Φ

∂t
(t, z),

for every z ∈ Tn, hence, X0 = X.

Proof. We let ψt = Φ(t, ·)|∂E. By arguing as in the first part of the proof of Theorem 2.6 (without taking
t = 0), we have

d
dt
A(∂Et) =

ˆ
∂E

Ht〈Xt ◦ Φt|νEt〉 dµt,

where Ht is the mean curvature of ∂Et. Consequently, we have

d2

dt2A(∂Et)
∣∣∣∣
t=0

=
d
dt

ˆ
∂E

Ht〈Xt ◦ Φt|νEt〉

√
det gi j dx

∣∣∣∣
t=0

where gi j = gi j(t).
In order to simplify the notation in the following computations, we drop the subscripts, that is, we

let H(t, ·) = Ht, ν(t, ·) = νEt , ϕ(t, ·) = 〈Xt ◦ Φt|νEt〉, ψ(t, ·) = ψt and X(t, ·) = Xt ◦ Φt (by a little abuse of
notation, since X is already the infinitesimal generator of the variation).

We then need to compute the derivatives

∂H
∂t

∣∣∣∣
t=0

and
∂

∂t
〈X|ν〉

∣∣∣∣
t=0

(2.26)

since we already know, by formula (2.15), that

∂

∂t

√
det gi j

∣∣∣∣
t=0

=
(
divXτ + Hϕ

)√
det gi j

∣∣∣∣
t=0
,

hence, this derivative gives the following contribution to the second variation,ˆ
∂E

(ϕH divXτ + ϕ2H2) dµ .
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Then, we compute (recalling formula (2.25))

∂〈X|ν〉
∂t

∣∣∣∣∣
t=0

=

〈
∂X
∂t

∣∣∣∣∣ν〉∣∣∣∣∣
t=0

+

〈
X
∣∣∣∣∣∂ν∂t

〉∣∣∣∣∣
t=0

= 〈Z|ν〉 +
〈
X
∣∣∣∣∣∂ν∂t

〉∣∣∣∣∣
t=0

and using the fact that ∂ν
∂t

∣∣∣
t=0

is tangent to ∂E, in a local coordinate chart we obtain〈
X
∣∣∣∣∣∂ν∂t

〉∣∣∣∣∣
t=0

= Xp
τ

〈
∂ψ

∂xp

∣∣∣∣∣∂ν∂t

〉∣∣∣∣∣
t=0
,

where in the last inequality we used the notation Xτ = Xp
τ
∂ψ

∂xp
. Notice that,

〈 ∂ψ

∂xp

∣∣∣ν〉 = 0 for every
p ∈ {1, . . . , n − 1} and t ∈ (−ε, ε), hence, using the Gauss–Weingarten relations (2.9),

0 =
∂

∂t

〈
∂ψ

∂xp

∣∣∣∣∣ν〉∣∣∣∣∣
t=0

=

〈
∂X
∂xp

∣∣∣∣∣ν〉 +

〈
∂ψ

∂xp

∣∣∣∣∣∂ν∂t

〉∣∣∣∣∣
t=0

=
∂

∂xp
〈X|ν〉 −

〈
X
∣∣∣∣∣ ∂ν∂xp

〉
+

〈
∂ψ

∂xp

∣∣∣∣∣∂ν∂t

〉∣∣∣∣∣
t=0

=
∂ϕ

∂xp
−

〈
Xτ

∣∣∣∣∣ ∂ν∂xp

〉
+

〈
∂ψ

∂xp

∣∣∣∣∣∂ν∂t

〉∣∣∣∣∣
t=0

=
∂ϕ

∂xp
− Xq

τ

〈
∂ψ

∂xq

∣∣∣∣∣ ∂ν∂xp

〉
+

〈
∂ψ

∂xp

∣∣∣∣∣∂ν∂t

〉∣∣∣∣∣
t=0

=
∂ϕ

∂xp
− Xq

τ

〈
∂ψ

∂xq

∣∣∣∣∣hplgli ∂ψ

∂xi

〉
+

〈
∂ψ

∂xp

∣∣∣∣∣∂ν∂t

〉∣∣∣∣∣
t=0

=
∂ϕ

∂xp
− Xq

τhplgligqi +

〈
∂ψ

∂xp

∣∣∣∣∣∂ν∂t

〉∣∣∣∣∣
t=0

and we can conclude that 〈
∂ψ

∂xp

∣∣∣∣∣∂ν∂t

〉∣∣∣∣∣
t=0

= −
∂ϕ

∂xp
+ Xq

τhpq , (2.27)

where hpq are the components of the second fundamental form B of ∂E in the local chart. Thus, we
obtain the following identity

∂

∂t
〈X|ν〉

∣∣∣∣
t=0

= 〈Z|ν〉 + Xp
τ

〈
∂ψ

∂xp

∣∣∣∣∣∂ν∂t

〉∣∣∣∣∣
t=0

= 〈Z|ν〉 −
∂ϕ

∂xp
Xp
τ + Xp

τ Xq
τhpq

= 〈Z|ν〉 − 〈Xτ|∇〈X|ν〉〉 + B(Xτ, Xτ) (2.28)

and the relative contribution to the second variation is given byˆ
∂E

H
(
〈Z|ν〉 − 〈Xτ|∇〈X|ν〉〉 + B(Xτ, Xτ)

)
dµ .

Now we conclude by computing the first derivative in (2.26). To this aim, we note that

H = −

〈
∂2ψ

∂xi∂x j

∣∣∣∣∣ν〉 gi j
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hence, we need the following terms
∂gi j

∂t

∣∣∣∣
t=0

(2.29)〈
∂2ψ

∂xi∂x j

∣∣∣∣∣∂ν∂t

〉∣∣∣∣∣
t=0

(2.30)〈
∂

∂t
∂2ψ

∂xi∂x j

∣∣∣∣∣ν〉∣∣∣∣∣
t=0
. (2.31)

We start with the term (2.29), recalling that

∂gi j

∂t

∣∣∣∣
t=0

= ∇iω j + ∇ jωi + 2hi j〈X|ν〉

by Eq (2.13), where ω is the 1–form defined by ω(Y) = g(Xτ,Y).
Using the fact that gi jg jk = 0, we obtain

0 =
∂gi j

∂t

∣∣∣∣
t=0

g jk + gi j
∂g jk

∂t

∣∣∣∣
t=0

= g jk(∇iω j + ∇ jωi + 2hi j〈X|ν〉
)
+gi j

∂g jk

∂t

∣∣∣∣
t=0

then,
∂gpk

∂t

∣∣∣∣
t=0

= −g jpgik
(
∇iω j + ∇ jωi + 2hi j〈X|ν〉

)
= −∇pXk

τ − ∇
kXp

τ − 2hpkϕ . (2.32)

We then proceed with the computation of the term (2.30), by means of Eq (2.27),〈
∂2ψ

∂xi∂x j

∣∣∣∣∣∂ν∂t

〉∣∣∣∣∣
t=0

= Γk
i j

〈
∂ψ

∂xk

∣∣∣∣∣∂ν∂t

〉∣∣∣∣∣
t=0

= Γk
i j
(
−
∂ϕ

∂xk
+ Xq

τhqk
)

and finally we compute the term (2.31),〈
∂

∂t
∂2ψ

∂xi∂x j

∣∣∣∣∣ν〉 =

〈
∂2X
∂xi∂x j

∣∣∣∣∣ν〉∣∣∣∣∣
t=0

=

〈
∂2(ϕν)
∂xi∂x j

∣∣∣∣∣ν〉 +

〈
∂2Xτ

∂xi∂x j

∣∣∣∣∣ν〉 .
We have 〈

∂2(ϕν)
∂xi∂x j

∣∣∣∣∣ν〉 =
∂2ϕ

∂xi∂x j
+

〈
∂2ν

∂xi∂x j

∣∣∣∣∣ν〉ϕ
=

∂2ϕ

∂xi∂x j
+

〈
∂

∂xi

(
h jlglp ∂ψ

∂xp

)∣∣∣∣∣ν〉ϕ
=

∂2ϕ

∂xi∂x j
+ h jlglp

〈
∂2ψ

∂xi∂x j

∣∣∣∣∣ν〉ϕ
=

∂2ϕ

∂xi∂x j
+ ϕh jlglphip

and 〈
∂2Xτ

∂xi∂x j

∣∣∣∣∣ν〉 =
∂

∂xi

〈
∂Xτ

∂x j

∣∣∣∣∣ν〉 − 〈
∂Xτ

∂x j

∣∣∣∣∣ ∂ν∂xi

〉
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=
∂

∂xi

〈
∂

∂x j

(
Xp
τ

∂ψ

∂xp

)∣∣∣∣∣ν〉 − 〈
∂Xτ

∂x j

∣∣∣∣∣ ∂ν∂xi

〉
=

∂

∂xi

[
Xp
τ

〈
∂2ψ

∂x j∂xp

∣∣∣∣∣ν〉 ]
−

〈
∂Xτ

∂x j

∣∣∣∣∣ ∂ν∂xi

〉
= −

∂

∂xi

(
Xp
τ hp j

)
−

〈
∂Xτ

∂x j

∣∣∣∣∣ ∂ν∂xi

〉
= −

∂

∂xi

(
Xp
τ hp j

)
−

〈
∂

∂x j

(
Xp
τ

∂ψ

∂xp

)∣∣∣∣∣ ∂ν∂xi

〉
= −

∂

∂xi

(
Xp
τ hp j

)
−Xp

τ

〈
∂2ψ

∂x j∂xp

∣∣∣∣∣ ∂ν∂xi

〉
−
∂Xp

τ

∂x j

〈
∂ψ

∂xp

∣∣∣∣∣ ∂ν∂xi

〉
= −

∂

∂xi

(
Xp
τ hp j

)
−Xp

τΓk
jp

〈
∂ψ

∂xk

∣∣∣∣∣ ∂ν∂xi

〉
−
∂Xp

τ

∂x j

〈
∂ψ

∂xp

∣∣∣∣∣ ∂ν∂xi

〉
= −

∂

∂xi

(
Xp
τ hp j

)
−Xp

τΓk
jphilglqgkq −

∂Xp

∂x j
hilglqgpq

= −
∂

∂xi

(
Xp
τ hp j

)
−Xp

τΓk
jphik −

∂Xk

∂x j
hik.

Hence, we finally get

∂H
∂t

∣∣∣∣
t=0

= − 2hi j∇
iX j

τ − 2〈X|ν〉|B|2 − gi j ∂2ϕ

∂xi∂x j
+ gi jΓk

i j
∂ϕ

∂xk

+ |B|2〈X|ν〉 − gi jΓk
i jhkqXq

τ + gi j ∂

∂xi
(Xp

τ hp j) + hi j∇
iX j

j

= − |B|2〈X|ν〉 − hi j∇
iX j

τ − ∆ϕ

+ gi j
[ ∂
∂xi

(
Xp
τ hp j

)
−Γk

i j

(
Xp
τ hpk

)]
= − ϕ|B|2 − ∆ϕ − hi j∇

iX j
τ + gi j∇i(Xp

τ hp j)
= − ϕ|B|2 − ∆ϕ − hi j∇

iX j
τ + div(Xp

τ hp j)
= − ϕ|B|2 − ∆ϕ + 〈Xτ| divB〉

= − ϕ|B|2 − ∆ϕ + 〈Xτ|∇H〉 , (2.33)

where in the last equality we used the Codazzi–Mainardi equations (see [42]). We conclude that the
contribution of the first term in (2.26) is then

ˆ
∂E
ϕ
(
− ϕ|B|2 − ∆ϕ + 〈Xτ|∇H〉

)
dµ.

Putting all these contributions together, we obtain the second variation of the Area functional,

d2

dt2A(∂Et)
∣∣∣∣
t=0

=

ˆ
∂E

[
−ϕ∆ϕ − ϕ2|B|2 + ϕ〈Xτ|∇H〉 + ϕH divXτ + ϕ2H2

+ H
(
〈Z|ν〉 − 〈Xτ|∇ϕ〉 + B(Xτ, Xτ)

)]
dµ .
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Integrating by parts, we have
ˆ
∂E
ϕ〈Xτ|∇H〉 dµ = −

ˆ
∂E

[
H〈Xτ|∇ϕ〉 + Hϕ divXτ

]
dµ

and we can conclude

d2

dt2A(∂Et)
∣∣∣∣
t=0

=

ˆ
∂E

[
|∇ϕ|2 − ϕ2|B|2 + ϕ2H2 + H(〈Z|ν〉 − 2〈Xτ|∇ϕ〉 + B(Xτ, Xτ))

]
dµ ,

which is the formula we wanted. �

Proposition 2.13 (Second variation of the nonlocal term). Let E ⊆ Tn, Φ, Et, X, Xτ, Xt, H, B and Z as
in the previous proposition. Then, setting

N(t) =

ˆ
Tn
|∇vEt(x)|2 dx ,

where vEt : Tn → R is the function defined by formulas (2.1)–(2.3) and ∂νE vE = 〈∇T
n
vE |νE〉, the

following formula holds

d2

dt2 N(t)
∣∣∣∣
t=0

= 8
ˆ
∂E

ˆ
∂E

G(x, y)〈X(x)|νE(x)〉〈X(y)|νE(y)〉 dµ(x)dµ(y)

+ 4
ˆ
∂E

[
vE

(
H〈X | νE〉

2 + 〈Z|νE〉 − 2〈Xτ|∇〈X|νE〉〉 + B(Xτ, Xτ)
)

+ ∂νE vE〈X|νE〉
2
]

dµ , (2.34)

giving the second variation of the nonlocal term of J.

Proof. By arguing as in the second part of the proof of Theorem 2.6 (equations (2.17)–(2.20)), we have

d
dt

N(t) = 4
ˆ
∂E

vEt〈Xt ◦ Φt|νEt〉 dµt = 4
ˆ
∂E

vEt〈Xt ◦ Φt|νEt〉

√
det gi j dx .

Setting v(t, x) = vEt(x), vt = ∂v
∂t (0, ·), vi = ∂v

∂xi
(0, ·) and adopting the same notation of the proof of the

previous proposition, that is, we let H(t, ·) = Ht, ν(t, ·) = νEt and X(t, ·) = Xt ◦ Φt, we have

d2

dt2 N(t)
∣∣∣∣
t=0

= 4
d
dt

ˆ
∂E

v〈X|ν〉
√

det gi j dx
∣∣∣∣
t=0

= 4
ˆ
∂E

[
vt〈X|ν〉 + viXi〈X|ν〉 + v〈X|ν〉 divXτ

+ vH〈X|ν〉2 + v
∂

∂t
〈X|ν〉

∣∣∣∣
t=0

]
dµ

= 4
ˆ
∂E

[
vt〈X|ν〉 + viXi〈X|ν〉 + v〈X|ν〉 divXτ

+ v
(
H〈X|ν〉2 + 〈Z|ν〉 − 〈Xτ|∇〈X|ν〉〉 + B(Xτ, Xτ)

) ]
dµ ,
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by formulas (2.15) and (2.28). Then, integrating by parts the divergence, we obtain

d2

dt2 N(t)
∣∣∣∣
t=0

= 4
ˆ
∂E

[
vt〈X|ν〉 + viXi〈X|ν〉 − 〈∇v|Xτ〉〈X|ν〉

+ v
(
H〈X|ν〉2 + 〈Z|ν〉 − 2〈Xτ|∇〈X|ν〉〉 + B(Xτ, Xτ)

) ]
dµ

= 4
ˆ
∂E

[
vt〈X|ν〉 + ∂νv〈X|ν〉2

+ v
(
H〈X|ν〉2 + 〈Z|ν〉 − 2〈Xτ|∇〈X|ν〉〉 + B(Xτ, Xτ)

) ]
dµ

where ∂νv = 〈∇T
n
v|ν〉.

Now, by Eqs (2.17)–(2.19), there holds

vt(0, x) = 2
ˆ
∂E

G(x, y) 〈X(y)|ν(y)〉 dµ(y) , (2.35)

hence, substituting this expression for vt in the equation above we have formula (2.34). �

Putting together Propositions 2.12 and 2.13, we then obtain the second variation of the nonlocal
Area functional J.

Theorem 2.14 (Second variation of the functional J). Let E ⊆ Tn a smooth set and Φ : (−ε, ε)×Tn →

Tn a smooth map giving a variation Et with infinitesimal generator X ∈ C∞(Tn;Rn). Then,

d2

dt2 J(Et)
∣∣∣∣
t=0

=

ˆ
∂E

(
|∇〈X|νE〉|

2 − 〈X|νE〉
2|B|2

)
dµ

+ 8γ
ˆ
∂E

ˆ
∂E

G(x, y)〈X|νE(x)〉〈X|νE(y)〉 dµ(x) dµ(y)

+ 4γ
ˆ
∂E
∂νE vE〈X|νE〉

2 dµ + R , (2.36)

with the “remainder term” R given by

R =

ˆ
∂E

(H + 4γvE)
(
H〈X|ν〉2 + 〈Z|ν〉 − 2〈Xτ|∇〈X|ν〉〉 + B(Xτ, Xτ)

)
dµ

=

ˆ
∂E

(H + 4γvE)
[
〈X|νE〉 divT

n
X − div

(
〈X|νE〉Xτ

)
+

〈∂Xt

∂t

∣∣∣∣
t=0

∣∣∣∣νE

〉 ]
dµ

where νE is the outer unit normal vector to ∂E, Xτ = X−〈X|νE〉νE is the tangential part of X on ∂E, vE :
Tn → R is the function defined by formulas (2.1)–(2.3), ∂νE vE = 〈∇T

n
vE |νE〉, B and H are respectively

the second fundamental form and the mean curvature of ∂E, the vector field Xt ∈ C∞(Tn;Rn) is defined
by the formula Xt(Φ(t, z)) = ∂Φ

∂t (t, z) for every t ∈ (−ε, ε) and z ∈ Tn, and

Z =
∂2Φ

∂t2 (0, ·) =
∂

∂t
[Xt(Φ(t, ·))]

∣∣∣∣
t=0

=
∂Xt

∂t

∣∣∣∣
t=0

+ dX(X) .

Proof. Formula (2.36) and the first equality for R follows simply adding (after multiplying the
nonlinear term by γ) the expressions for d2

dt2A(∂Et)
∣∣∣
t=0

and d2

dt2
´
Tn |∇ vEt |

2 dx
∣∣∣
t=0

we found in
Propositions 2.12 and 2.13.
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If now we show that

H〈X| νE〉
2 + 〈Z|νE〉 − 2〈Xτ|∇〈X|νE〉〉 + B(Xτ, Xτ)

= 〈X|νE〉 divT
n
X − div(〈X|νE〉Xτ) +

〈∂Xt

∂t

∣∣∣∣
t=0

∣∣∣∣νE

〉
, (2.37)

we clearly obtain the second expression for R.
We note that, being every derivative of νE a tangent vector field,

〈Xτ|∇〈X|νE〉〉 = 〈νE |dX(Xτ)〉 + 〈X|〈Xτ|∇νE〉〉

= 〈νE |dX(Xτ)〉 + 〈Xτ|〈Xτ|∇νE〉〉

= 〈νE |dX(Xτ)〉 + B(Xτ, Xτ) ,

by the Gauss–Weingarten relations (2.9).
Therefore, since Z − ∂Xt

∂t

∣∣∣
t=0

= dX(X), we have

H〈X|νE〉
2 + 〈Z|νE〉 − 2〈Xτ|∇〈X|νE〉〉 + B(Xτ, Xτ) −

〈∂Xt

∂t

∣∣∣∣
t=0

∣∣∣∣ν〉
= H〈X|νE〉

2 + 〈νE |dX(X)〉 − 〈Xτ|∇〈X|νE〉〉 − 〈νE |dX(Xτ)〉
= H〈X|νE〉

2 + 〈νE |dX(〈X|νE〉νE)〉 − 〈Xτ|∇〈X|νE〉〉

= H〈X|νE〉
2 + 〈X|νE〉〈νE |dX(νE)〉 + 〈X|νE〉 divXτ − div(〈X|νE〉Xτ) . (2.38)

Now we notice that, choosing an orthonormal basis e1, . . . , en−1, en = νE of Rn at a point p ∈ ∂E and
letting X = Xiei, we have

〈ei|∇
>Xi〉 =

〈
ei

∣∣∣∇Tn
Xi − 〈∇T

n
Xi|νE〉νE

〉
= divT

n
X − 〈νE |dX(νE)〉 ,

where the symbol ∇>f denotes the projection on the tangent space to ∂E of the gradient ∇T
n
f of a

function, called tangential gradient of f and coincident with the gradient operator of ∂E applied to
the restriction of f to the hypersurface, while 〈ei|∇

>Xi〉 is called tangential divergence of X, usually
denoted with div>X and coincident with the (Riemannian) divergence of ∂E if X is a tangent vector
field, as we will see below (see [63]). Moreover, if we choose a local parametrization of ∂E such that
∂ψ

∂xi
(p) = ei, for i ∈ {1, . . . , n − 1}, we have e j

i =
∂ψ j

∂xi
= gi j = δi j at p and

〈ei|∇
>Xi〉 = div>X = 〈ei|∇

>Xi
τ〉 + 〈ei|∇

>(〈X|νE〉ν
i
E)〉

= 〈ei|∇Xi
τ〉 + 〈X|νE〉〈ei|∇

Tn
νi

E〉

= 〈ei|∇Xi
τ〉 + 〈X|νE〉

∂ψ j

∂xi
h jlgls∂ψ

i

∂xs

=∇ei X
i
τ + 〈X|νE〉hii

= divXτ + 〈X|νE〉H ,

where we used again the Gauss–Weingarten relations (2.9) and the fact that the covariant derivative
of a tangent vector field along a hypersurface of Rn can be obtained by differentiating in Rn (a local
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extension of) the vector field and projecting the result on the tangent space to the hypersurface (see [26],
for instance). Hence, we get

〈νE |dX(νE)〉 = divT
n
X − 〈ei|∇

>Xi〉 = divT
n
X − divXτ − 〈X|νE〉H

and Eq (2.37) follows by substituting this left term in formula (2.38). �

Remark 2.15. We are not aware of the presence in literature of this “geometric” line in deriving the
(first and) second variation of J, moreover, in [9, Theorem 2.6, Step 3, Eq 2.67], this latter is obtained
only at a critical set, while in [6, Theorem 3.6] the methods are strongly “analytic” and in our opinion
less straightforward. These two papers are actually the ones on which is based the computation in [2,
Theorem 3.1] of the second variation of J at a general smooth set E ⊆ Tn. Anyway, in this last paper,
the variations of E are all special variations, that is, they are given by the flows in system (2.21), indeed,
the term with the time derivative of Xt is missing (see formulas 3.1 and 7.2 in [2]).

Notice that the second variation in general does not depend only on the normal component 〈X|νE〉

of the restriction to ∂E of the infinitesimal generator X of a variation Φ (this will anyway be true at a
critical set E, see below), due to the presence of the Z–term and of B(Xτ, Xτ) depending also on the
tangential component of X and of its behavior around ∂E. Even if we restrict ourselves to the special
variations coming from system (2.21), with a normal infinitesimal generator X, which imply that all
the vector fields Xt are the same and coinciding with X, hence Z = dX(X) and Xτ = 0, the second
variation still depends also on the behavior of X in a neighborhood of ∂E (as Z). However, there are
very particular case in which it depend only on 〈X|νE〉, for instance when the variation is special and
X is normal with zero divergence (of Tn) on ∂E (in particular, if divT

n
X = 0 in a neighborhood of ∂E

or in the whole Tn), as it can be seen easily by the second form of the remainder term R in the above
theorem.

We see now how the second variation behaves at a critical set of J.

Corollary 2.16. If E ⊆ Tn is a critical set for J, there holds

d2

dt2 J(Et)
∣∣∣∣
t=0

=

ˆ
∂E

(
|∇〈X|νE〉|

2 − 〈X|νE〉
2|B|2

)
dµ

+ 8γ
ˆ
∂E

ˆ
∂E

G(x, y)〈X|νE(x)〉〈X|νE(y)〉 dµ(x) dµ(y)

+ 4γ
ˆ
∂E
∂νE vE〈X|νE〉

2 dµ ,

for every variation Et of E, hence, the second variation of J at E depends only on the normal component
of the restriction of the infinitesimal generator X to ∂E, that is, on 〈X|νE〉.
When γ = 0 we get the well known second variation of the Area functional at a smooth set E such that
∂E is a minimal surface in Rn,

d2

dt2A(∂Et)
∣∣∣∣
t=0

=

ˆ
∂E

(
|∇〈X|νE〉|

2 − 〈X|νE〉
2|B|2

)
dµ .

Proof. The thesis follows immediately, recalling that there holds H+4γvE = 0, by Corollary 2.7, hence
the remainder term R in formula (2.36) is zero. �
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Finally, we see that the second variation has the same form (that is, R = 0) also for J under a volume
constraint, at a critical set.

Proposition 2.17. If E ⊆ Tn is a critical set for J under a volume constraint, there holds

d2

dt2 J(Et)
∣∣∣∣
t=0

=

ˆ
∂E

(
|∇〈X|νE〉|

2 − 〈X|νE〉
2|B|2

)
dµ

+ 8γ
ˆ
∂E

ˆ
∂E

G(x, y)〈X|νE(x)〉〈X|νE(y)〉 dµ(x) dµ(y)

+ 4γ
ˆ
∂E
∂νE vE〈X|νE〉

2 dµ ,

for every volume–preserving variation Et of E, hence, the second variation of J at E depends only on
the normal component of the restriction of the infinitesimal generator X to ∂E, that is, on 〈X|νE〉.
When γ = 0 we get the second variation of the Area functional under a volume constraint, at a smooth
set E such that ∂E has constant mean curvature,

d2

dt2A(∂Et)
∣∣∣∣
t=0

=

ˆ
∂E

(
|∇〈X|νE〉|

2 − 〈X|νE〉
2|B|2

)
dµ .

Proof. By Proposition 2.10, the function H + 4γvE is equal to a constant λ ∈ R on ∂E, then the
remainder term R in formula (2.36) becomes

R = λ

ˆ
∂E

(
H〈X|ν〉2 + 〈Z|ν〉 − 2〈Xτ|∇〈X|ν〉〉 + B(Xτ, Xτ)

)
dµ .

Computing, in the same hypotheses and notations of Proposition 2.13, the second derivative of the
(constant) volume of Et, by Eqs (2.22)–(2.23) we have (recalling formulas (2.15), (2.28) and using the
divergence theorem)

0 =
d2

dt2 Vol(Et)
∣∣∣∣
t=0

=
d
dt

ˆ
Et

divXt(x) dx
∣∣∣∣
t=0

=
d
dt

ˆ
∂E
〈X|νEt〉 dµt

∣∣∣∣
t=0

=

ˆ
∂E

[
divXτ〈X | νE〉 + H〈X | νE〉

2 + 〈Z|νE〉 − 〈Xτ|∇〈X|νE〉〉 + B(Xτ, Xτ)
]

dµ

=

ˆ
∂E

[
H〈X | νE〉

2 + 〈Z|νE〉 − 2〈Xτ|∇〈X|νE〉〉 + B(Xτ, Xτ)
]

dµ , (2.39)

hence R = 0 and we are done. �

Remark 2.18. Notice that by the previous computation and relation (2.37), it follows

d2

dt2 Vol(Et)
∣∣∣∣
t=0

=

ˆ
∂E

[
〈X|νE〉 divT

n
X +

〈∂Xt

∂t

∣∣∣∣
t=0

∣∣∣∣ν〉 ]
dµ = 0 , (2.40)

for every volume–preserving variation Et of E. Hence, if we restrict ourselves to the special (volume–
preserving) variations coming from system (2.21), as in [2], we have

d2

dt2 Vol(Et)
∣∣∣∣
t=0

=

ˆ
∂E
〈X|νE〉 divT

n
X dµ = 0 ,
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indeed, for such variations we have Xt = X, for every t ∈ (−ε, ε). One can clearly use equality (2.40)
to show the above proposition, as the term R reduces (using the second form in Theorem 2.14) to

R = λ

ˆ
∂E

[
〈X|νE〉 divT

n
X +

〈∂Xt

∂t

∣∣∣∣
t=0

∣∣∣∣ν〉 ]
dµ ,

by the divergence theorem.
Moreover, we see that if we have a special variation generated by a vector field X such that divT

n
X =

0 on ∂E, then d2

dt2 Vol(Et)
∣∣∣
t=0

= 0 and if E is a critical set, R = 0. This is then true for the special
volume–preserving variations coming from Lemma 2.8 and when X is a constant vector field, hence
the associated special variation Et is simply a translation of E (clearly, in this case J(Et) is constant
and the first and second variations are zero).

2.2. Stability and W2,p–local minimality

By Proposition 2.17, the second variation of the functional J under a volume constraint at a
smooth critical set E is a quadratic form in the normal component on ∂E of the infinitesimal generator
X ∈ C∞(Tn;Rn) of a volume–preserving variation, that is, on ϕ = 〈X|νE〉. This and the fact that the
infinitesimal generators of the volume–preserving variations are “characterized” by having zero
integral of such normal component on ∂E, by Lemma 2.8 and the discussion immediately before,
motivate the following definition.

Definition 2.19. Given any smooth open set E ⊆ Tn we define the space of (Sobolev) functions (see [5])

H̃1(∂E) =
{
ϕ : ∂E → R : ϕ ∈ H1(∂E) and

ˆ
∂E
ϕ dµ = 0

}
,

and the quadratic form ΠE : H̃1(∂E)→ R as

ΠE(ϕ) =

ˆ
∂E

(
|∇ϕ|2 − ϕ2|B|2

)
dµ + 8γ

ˆ
∂E

ˆ
∂E

G(x, y)ϕ(x)ϕ(y) dµ(x) dµ(y)

+ 4γ
ˆ
∂E
∂νE vEϕ

2 dµ , (2.41)

with the notations of Theorem 2.14.

Remark 2.20. Letting for ϕ ∈ H̃1(∂E),

vϕ(x) =

ˆ
∂E

G(x, y)ϕ(y) dµ(y) ,

it follows (from the properties of the Green’s function) that vϕ satisfies distributionally −∆vϕ = ϕµ in
Tn, indeed,

ˆ
Tn
〈∇vϕ(x)|∇ψ(x)〉 dx = −

ˆ
Tn

vϕ(x)∆ψ(x) dx

= −

ˆ
Tn

ˆ
∂E

G(x, y)ϕ(y)∆ψ(x) dµ(y)dx
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= −

ˆ
∂E
ϕ(y)

ˆ
Tn

G(x, y)∆ψ(x) dx dµ(y)

= −

ˆ
∂E
ϕ(y)

ˆ
Tn

∆G(x, y)ψ(x) dx dµ(y)

=

ˆ
∂E
ϕ(y)

[
ψ(y) −

ˆ
Tn
ψ(x) dx

]
dµ(y)

=

ˆ
∂E
ϕ(y)ψ(y) dµ(y) ,

for all ψ ∈ C∞(Tn), since
´
∂E ϕ(y) dµ(y) = 0. Therefore, taking ψ = vϕ, we have

ˆ
Tn
|∇vϕ(x)|2 dx =

ˆ
∂E
ϕ(y)vϕ(y) dµ(y) ,

hence, the following identity holds
ˆ
∂E

ˆ
∂E

G(x, y)ϕ(x)ϕ(y) dµ(x)dµ(y) =

ˆ
∂E
ϕ(y) vϕ(y) dµ(y) =

ˆ
Tn
|∇vϕ(x)|2 dx ,

and we can write

ΠE(ϕ) =

ˆ
∂E

(
|∇ϕ|2 − ϕ2|B|2

)
dµ + 8γ

ˆ
Tn
|∇vϕ|2 dx + 4γ

ˆ
∂E
∂νE vEϕ

2 dµ , (2.42)

for every ϕ ∈ H̃1(∂E).

Definition 2.21. Given any smooth open set E ⊆ Tn, we say that a smooth vector field X ∈ C∞(Tn;Rn)
is admissible for E if the function ϕ : ∂E → R given by ϕ = 〈X|νE〉 belongs to H̃1(∂E), that is, has zero
integral on ∂E.

Remark 2.22. Clearly, if X ∈ C∞(Tn;Rn) is the infinitesimal generator of a volume–preserving variation
for E, then X is admissible, by the discussion after Corollary 2.7.

Remark 2.23. By what we said above, if E is a smooth critical set for J under a volume constraint, we
can from now on consider only the special variations Et = Φt(E) associated to admissible vector fields
X, given by the flow Φ defined by system (2.21), hence

d
dt

J(Et)
∣∣∣∣
t=0

=

ˆ
∂E
〈X|νE〉 dµ = 0

and
d2

dt2 J(Et)
∣∣∣∣
t=0

= ΠE(〈X|νE〉)

where ΠE is the quadratic form defined by formula (2.41).

We notice that every constant vector field X = η ∈ Rn is clearly admissible, as
ˆ
∂E
〈η |νE〉 dµ =

ˆ
E

div η dx = 0
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and the associated flow is given by Φ(t, x) = x + tη, then, by the translation invariance of the functional
J, we have J(Et) = J(E) and

0 =
d2

dt2 J(Et)
∣∣∣∣
t=0

= ΠE(〈η |νE〉) ,

that is, the form ΠE is zero on the vector subspace

T (∂E) =
{
〈η |νE〉 : η ∈ Rn} ⊆ H̃1(∂E)

of dimension clearly less than or equal to n. We split

H̃1(∂E) = T (∂E) ⊕ T⊥(∂E) , (2.43)

where T⊥(∂E) ⊆ H̃1(∂E) is the vector subspace L2–orthogonal to T (∂E) (with respect to the measure
µ on ∂E), that is,

T⊥(∂E) =
{
ϕ ∈ H̃1(∂E) :

ˆ
∂E
ϕνE dµ = 0

}
=

{
ϕ ∈ H1(∂E) :

ˆ
∂E
ϕ dµ = 0 and

ˆ
∂E
ϕνE dµ = 0

}
and we give the following “stability” conditions.

Definition 2.24 (Stability). We say that a critical set E ⊆ Tn for J under a volume constraint is stable
if

ΠE(ϕ) ≥ 0 for all ϕ ∈ H̃1(∂E)

and strictly stable if moreover

ΠE(ϕ) > 0 for all ϕ ∈ T⊥(∂E) \ {0}.

Remark 2.25. Introducing the symmetric bilinear form associated (by polarization) to ΠE on H̃1(∂E),

bE(ϕ, ψ) =
ΠE(ϕ + ψ) − ΠE(ϕ − ψ)

4

at a critical set E ⊆ Tn, it can be seen that actually T (∂E) is a degenerate vector subspace of H̃1(∂E) for
bE, that is, bE(ϕ, ψ) = 0 for every ϕ ∈ H̃1(∂E) and ψ ∈ T (∂E). Indeed, we observe that by formula (2.1)
and the properties of the Green function, we get

∇vE(x) =

ˆ
Tn
∇xG(x, y)uE(x) dy

=

ˆ
E
∇xG(x, y) dy −

ˆ
Ec
∇xG(x, y) dy

= −

ˆ
E
∇yG(x, y) dy +

ˆ
Ec
∇yG(x, y) dy

= −2
ˆ
∂E

G(x, y)νE(y) dµ(y) , (2.44)
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where in the last passage we applied the divergence theorem.
By means of formula (2.11)

∆νE = ∇H − |B|2νE ,

since E (being critical) satisfies H + 4γvE = λ for some constant λ ∈ R, we have

−∆νE − |B|2νE = ∇(4γvE − λ)

= ∇T
n
(4γvE − λ) − ∂νE (4γvE − λ)

= −4γ(∂νE vE)νE − 8γ
ˆ
∂E

G(x, y)νE(y) dµ(y)

on ∂E, by formula (2.44).
This equation can be written as L(νi) = 0, for every i ∈ {1, . . . , n}, where L is the self–adjoint, linear
operator defined as

L(ϕ) = −∆ϕ − |B|2ϕ + 4γ∂νE vEϕ + 8γ
ˆ
∂E

G(x, y)ϕ(y) dµ(y) ,

which clearly satisfies

bE(ϕ, ψ) =

ˆ
∂E
〈L(ϕ)|ψ〉 dµ and ΠE(ϕ) =

ˆ
∂E
〈L(ϕ)|ϕ〉 dµ .

Then, if we “decompose” a smooth function ϕ ∈ H̃1(∂E) as ϕ = ψ + 〈η|νE〉, for some η ∈ Rn and
ψ ∈ T⊥(∂E), we have (recalling formula (2.41))

ΠE(ϕ) =

ˆ
∂E
〈L(ϕ)|ϕ〉 dµ

=

ˆ
∂E
〈L(ψ)|ψ〉 dµ + 2

ˆ
∂E
〈L(〈η|νE〉)|ψ〉 dµ +

ˆ
∂E
〈L(〈η|νE〉)|〈η|νE〉〉 dµ

= ΠE(ψ) .

By approximation with smooth functions, we conclude that this equality holds for every function in
H̃1(∂E).

The initial claim about the form bE then easily follows by its definition. Moreover, if E is a strictly
stable critical set there holds

ΠE(ϕ) > 0 for everyϕ ∈ H̃1(∂E) \ T (∂E). (2.45)

Remark 2.26. We observe that there exists an orthonormal frame {e1, . . . , en} of Rn such thatˆ
∂E
〈νE |ei〉〈νE |e j〉 dµ = 0, (2.46)

for all i , j, indeed, considering the symmetric n × n–matrix A = (ai j) with components
ai j =

´
∂E ν

i
Eν

j
E dµ, where νi

E = 〈νE |εi〉 for some basis {ε1, . . . , εn} of Rn, we have
ˆ
∂E

(OνE)i(OνE) j dµ = (OAO−1)i j,
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for every O ∈ S O(n). Choosing O such that OAO−1 is diagonal and setting ei = O−1εi, relations (2.46)
are clearly satisfied.

Hence, the functions 〈νE |ei〉 which are not identically zero are an orthogonal basis of T (∂E). We set

IE =
{
i ∈ {1, . . . , n} : 〈νE |ei〉 is not identically zero

}
and

OE = Span{ei : i ∈ IE}, (2.47)

then, given any ϕ ∈ H̃1(∂E), its projection on T⊥(∂E) is

π(ϕ) = ϕ −
∑
i∈IE

´
∂E ϕ〈νE |ei〉 dµ

‖〈νE |ei〉‖
2
L2(∂E)

〈νE |ei〉 . (2.48)

From now on we will extensively use Sobolev spaces on smooth hypersurfaces. Most of their
properties hold as in Rn, standard references are [3] in the Euclidean space and [5] when the ambient
is a manifold.

Given a smooth set E ⊆ Tn, for ε > 0 small enough, we let (d is the “Euclidean” distance on Tn)

Nε = {x ∈ Tn : d(x, ∂E) < ε} (2.49)

to be a tubular neighborhood of ∂E such that the orthogonal projection map πE : Nε → ∂E giving the
(unique) closest point on ∂E and the signed distance function dE : Nε → R from ∂E

dE(x) =

d(x, ∂E) if x < E

−d(x, ∂E) if x ∈ E
(2.50)

are well defined and smooth in Nε (for a proof of the existence of such tubular neighborhood and of
all the subsequent properties, see [43] for instance). Moreover, for every x ∈ Nε, the projection map is
given explicitly by

πE(x) = x − ∇d2
E(x)/2 = x − dE(x)∇dE(x) (2.51)

and the unit vector ∇dE(x) is orthogonal to ∂E at the point πE(x) ∈ ∂E, indeed actually

∇dE(x) = ∇dE(πE(x)) = νE(πE(x)) , (2.52)

which means that the integral curves of the vector field ∇dE are straight segments orthogonal to ∂E.
This clearly implies that the map

∂E × (−ε, ε) 3 (y, t) 7→ L(y, t) = y + t∇dE(y) = y + tνE(y) ∈ Nε (2.53)

is a smooth diffeomorphism with inverse

Nε 3 x 7→ L−1(x) = (πE(x), dE(x)) ∈ ∂E × (−ε, ε) .

Moreover, denoting with JL its Jacobian (relative to the hypersurface ∂E), there holds

0 < C1 ≤ JL(y, t) ≤ C2
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on ∂E × (−ε, ε), for a couple of constants C1,C2, depending on E and ε.
By means of such tubular neighborhood of a smooth set E ⊆ Tn and the map L, we can speak of

“Wk,p–closedness” (or “Ck,α–closedness”) to E of another smooth set F ⊆ Tn, asking that for some
δ > 0 “small enough”, we have Vol(E4F) < δ and that ∂F is contained in a tubular neighborhood Nε

of E, as above, described by
∂F = {y + ψ(y)νE(y) : y ∈ ∂E},

for a smooth function ψ : ∂E → R with ‖ψ‖Wk,p(∂E) < δ (resp. ‖ψ‖Ck,α(∂E) < δ). That is, we are asking
that the two sets E and F differ by a set of small measure and that their boundaries are “close” in Wk,p

(or Ck,α) as graphs.
Notice that

ψ(y) = π2 ◦ L−1(∂E ∩ {y + λνE(y) : λ ∈ R}
)
,

where π2 : ∂E × (−ε, ε)→ R is the projection on the second factor.
Moreover, given a sequence of smooth sets Fi ⊆ T

n, we will write Fi → E in Wk,p (resp. Ck,α) if for
every δ > 0, there hold Vol(Fi4E) < δ, the smooth boundary ∂Fi is contained in some Nε, relative to
E and it is described by

∂Fi = {y + ψi(y)νE(y) : y ∈ ∂E},

for a smooth function ψi : ∂E → R with ‖ψi‖Wk,p(∂E) < δ (resp. ‖ψi‖Ck,α(∂E) < δ), for every i ∈ N large
enough.

From now on, in all the rest of the work, we will refer to the volume–constrained nonlocal Area
functional J (and Area functional A), sometimes without underlining the presence of such constraint,
by simplicity. Moreover, with Nε we will always denote a suitable tubular neighborhood of a smooth
set, with the above properties.

Definition 2.27. We say that a smooth set E ⊆ Tn is a local minimizer for the functional J (for the
Area functionalA) if there exists δ > 0 such that

J(F) ≥ J(E) (A(F) ≥ A(E))

for all smooth sets F ⊆ Tn with Vol(F) = Vol(E) and Vol(E4F) < δ.
We say that a smooth set E ⊆ Tn is a W2,p–local minimizer if there exists δ > 0 and a tubular

neighborhood Nε of E, as above, such that

J(F) ≥ J(E) (A(F) ≥ A(E))

for all smooth sets F ⊆ Tn with Vol(F) = Vol(E), Vol(E4F) < δ and ∂F contained in Nε, described by

∂F = {y + ψ(y)νE(y) : y ∈ ∂E},

for a smooth function ψ : ∂E → R with ‖ψ‖W2,p(∂E) < δ.
Clearly, any local minimizer is a W2,p–local minimizer.

We immediately show a necessary condition for W2,p–local minimizers.

Proposition 2.28. Let the smooth set E ⊆ Tn be a W2,p–local minimizer of J, then E is a critical set
and

ΠE(ϕ) ≥ 0 for all ϕ ∈ H̃1(∂E),

in particular, E is stable.
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Proof. If E is a W2,p–local minimizer of J, given any ϕ ∈ C∞(∂E)∩H̃1(∂E), we consider the admissible
vector field X ∈ C∞(Tn;Rn) given by Lemma 2.8 and the associated flow Φ. Then, the variation
Et = Φt(E) of E is volume–preserving, that is, Vol(Et) = Vol(E) and for every δ > 0, there clearly
exists a tubular neighborhood Nε of E and ε > 0 such that for t ∈ (−ε, ε) we have

Vol(E4Et) < δ

and
∂Et = {y + ψ(y)νE(y) : y ∈ ∂E} ⊆ Nε

for a smooth function ψ : ∂E → R with ‖ψ‖W2,p(∂E) < δ. Hence, the W2,p–local minimality of E implies

J(E) ≤ J(Et),

for every t ∈ (−ε, ε). It follows

0 =
d
dt

J(Et)
∣∣∣∣
t=0

=

ˆ
∂E

(H + 4γvE)ϕ dµ,

by Theorem 2.6, which implies that E is a critical set, by the subsequent discussion and

0 ≤
d2

dt2 J(Et)
∣∣∣∣
t=0

= ΠE(ϕ),

by Proposition 2.17 and Remark 2.23.
Then, the thesis easily follows by the density of C∞(∂E)∩ H̃1(∂E) in H̃1(∂E) (see [5], for instance)

and the definition of ΠE, formula (2.41). �

The rest of this section will be devoted to show that the strict stability (see Definition 2.24) is a
sufficient condition for the W2,p–local minimality. Precisely, we will prove the following theorem.

Theorem 2.29. Let p > max{2, n − 1} and E ⊆ Tn a smooth strictly stable critical set for the nonlocal
Area functional J (under a volume constraint), with Nε a tubular neighborhood of ∂E as in
formula (2.49). Then, there exist constants δ,C > 0 such that

J(F) ≥ J(E) + C[α(E, F)]2,

for all smooth sets F ⊆ Tn such that Vol(F) = Vol(E), Vol(F4E) < δ, ∂F ⊆ Nε and

∂F = {y + ψ(y)νE(y) : y ∈ ∂E},

for a smooth function ψ with ‖ψ‖W2,p(∂E) < δ, where the “distance” α(E, F) is defined as

α(E, F) = min
η∈Rn

Vol(E4(F + η)).

As a consequence, E is a W2,p–local minimizer of J. Moreover, if F is W2,p–close enough to E and
J(F) = J(E), then F is a translate of E, that is, E is locally the unique W2,p–local minimizer, up to
translations.
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Remark 2.30. We could have introduced the definitions of strict local minimizer or strict W2,p–local
minimizer for the nonlocal Area functional, by asking that the inequalities J(F) ≤ J(E) in
Definition 2.27 are equalities if and only if F is a translate of E. With such notion, the conclusion of
this theorem is that E is actually a strict W2,p–local minimizer (with a “quantitative” estimate of its
minimality).

Remark 2.31. With some extra effort, it can be proved that in the same hypotheses of Theorem 2.29,
the set F is actually a local minimizer (see [2]). Since in the analysis of the modified Mullins–Sekerka
and surface diffusion flow in the next sections we do not need such a stronger result, we omitted to
prove it.

For the proof of this result we need some technical lemmas. We underline that most of the difficulties
are due to the presence of the degenerate subspace T (∂E) of the form ΠE (where it is zero), related to
the translation invariance of the nonlocal Area functional (recall the discussion after Definition 2.19).

In the next key lemma we are going to show how to construct volume–preserving variations (hence,
admissible smooth vector fields) “deforming” a set E to any other smooth set with the same volume,
which is W2,p–close enough. By the same technique we will also prove Lemma 2.8 immediately after,
whose proof was postponed from Subsection 2.1.

Lemma 2.32. Let E ⊆ Tn be a smooth set and Nε a tubular neighborhood of ∂E as above, in
formula (2.49). For all p > n − 1, there exist constants δ,C > 0 such that if ψ ∈ C∞(∂E) and
‖ψ‖W2,p(∂E) ≤ δ, then there exists a vector field X ∈ C∞(Tn;Rn) with divX = 0 in Nε and the associated
flow Φ, defined by system (2.21), satisfies

Φ(1, y) = y + ψ(y)νE(y) , for all y ∈ ∂E. (2.54)

Moreover, for every t ∈ [0, 1]

‖Φ(t, ·) − Id‖W2,p(∂E) ≤ C‖ψ‖W2,p(∂E) . (2.55)

Finally, if Vol(E1) = Vol(E), then the variation Et = Φt(E) is volume–preserving, that is, Vol(Et) =

Vol(E) for all t ∈ [−1, 1] and the vector field X is admissible.

Proof. We start considering the vector field X̃ ∈ C∞(Nε;Rn) defined as

X̃(x) = ξ(x)∇dE(x) (2.56)

for every x ∈ Nε, where dE : Nε → R is the signed distance function from E and ξ : Nε → R is the
function defined as follows: for all y ∈ ∂E, we let fy : (−ε, ε) → R to be the unique solution of the
ODE  f ′y (t) + fy(t)∆dE(y + tνE(y)) = 0

fy(0) = 1

and we set

ξ(x) = ξ(y + tνE(y)) = fy(t) = exp
(
−

ˆ t

0
∆dE(y + sνE(y)) ds

)
,

recalling that the map (y, t) 7→ x = y + tνE(y) is a smooth diffeomorphism between ∂E × (−ε, ε) and
Nε (with inverse x 7→ (πE(x), dE(x)), where πE is the orthogonal projection map on E, defined by
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formula (2.51)). Notice that the function f is always positive, thus the same holds for ξ and ξ = 1,
∇dE = νE, hence X̃ = νE on ∂E.

Our aim is then to prove that the smooth vector field X defined by

X(x) =

ˆ ψ(πE(x))

0

ds
ξ(πE(x) + sνE(πE(x)))

X̃(x) (2.57)

for every x ∈ Nε and extended smoothly to all Tn, satisfies all the properties of the statement of the
lemma.
Step 1. We saw that X̃|∂E = νE, now we show that divX̃ = 0 and analogously divX = 0 in Nε.
Given any x = y + tνE(y) ∈ Nε, with y ∈ ∂E, we have

divX̃(x) = div[ξ(x)∇dE(x)]
= 〈∇ξ(x)|∇dE(x)〉 + ξ(x)∆dE(x)

=
∂

∂t
[ξ(y + tνE(y))] + ξ(y + tνE(y))∆dE(y + tνE(y))

= f ′y (t) + fy(t)∆dE(y + tνE(y))

= 0,

where we used the fact that f ′y (t) = 〈∇ξ(y+tνE(y))|νE(y)〉 and ∇dE(y+tνE(y)) = νE(y), by formula (2.52).
Since the function

x 7→ θ(x) =

ˆ ψ(πE(x))

0

ds
ξ(πE(x) + sν(πE(x))

is clearly constant along the segments t 7→ x + t∇dE(x), for every x ∈ Nε, it follows that

0 =
∂

∂t
[
θ(x + t∇dE(x))

] ∣∣∣∣
t=0

= 〈∇θ(x)|∇dE(x)〉,

hence,
divX = 〈∇θ|∇dE〉ξ + θ divX̃ = 0.

Step 2. Recalling that ψ ∈ C∞(∂E) and p > n − 1, we have

‖ψ‖L∞(∂E) ≤ ‖ψ‖C1(∂E) ≤ CE‖ψ‖W2,p(∂E),

by Sobolev embeddings (see [5]). Then, we can choose δ < ε/CE such that for all x ∈ ∂E we have that
x ± ψ(x)νE(x) ∈ Nε.

To check that equation (2.54) holds, we observe that

θ(x) =

ˆ ψ(πE(x))

0

ds
ξ(πE(x) + sνE(πE(x)))

represents the time needed to go from πE(x) to πE(x) + ψ(πE(x))νE(πE(x)) along the trajectory of the
vector field X̃, which is the segment connecting πE(x) and πE(x)+ψ(πE(x))νE(πE(x)), of length ψ(πE(x)),
parametrized as

s 7→ πE(x) + sψ(πE(x))νE(πE(x)),
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for s ∈ [0, 1] and which is traveled with velocity ξ(πE(x) + sνE(πE(x))) = fπE(x)(s). Therefore, by
the above definition of X = θX̃ and the fact that the function θ is constant along such segments, we
conclude that

Φ(1, y) − Φ(0, y) = ψ(y)νE(y) ,

that is, Φ(1, y) = y + ψ(y)νE(y), for all y ∈ ∂E.
Step 3. To establish inequality (2.55), we first show that

‖X‖W2,p(Nε) ≤ C‖ψ‖W2,p(∂E) (2.58)

for a constant C > 0 depending only on E and ε. This estimate will follow from the definition of X in
Eq (2.57) and the definition of W2,p–norm, that is,

‖X‖W2,p(Nε) = ‖X‖Lp(Nε) + ‖∇X‖Lp(Nε) + ‖∇2X‖Lp(Nε) .

As |∇dE | = 1 everywhere and the positive function ξ satisfies 0 < C1 ≤ ξ ≤ C2 in Nε, for a pair of
constants C1 and C2, we have

‖X‖p
Lp(Nε)

=

ˆ
Nε

∣∣∣∣∣ˆ ψ(πE(x))

0

ds
ξ(πE(x) + sνE(πE(x)))

ξ(x)∇dE(x)
∣∣∣∣∣p dx

≤ ‖ξ‖
p
L∞(Nε)

ˆ
Nε

∣∣∣∣∣ˆ ψ(πE(x))

0

ds
ξ(πE(x) + sνE(πE(x)))

∣∣∣∣∣p dx

≤
Cp

2

Cp
1

ˆ
Nε

|ψ(πE(x))|p dx

=
Cp

2

Cp
1

ˆ
∂E

ˆ ε

−ε

|ψ(πE(y + tνE(y)))|pJL(y, t) dt dµ(y)

=
Cp

2

Cp
1

ˆ
∂E
|ψ(y)|p

ˆ ε

−ε

JL(y, t) dt dµ(y)

≤ C
ˆ
∂E
|ψ(y)|p dµ(y)

= C‖ψ‖p
Lp(∂E) ,

where L : ∂E×(−ε, ε)→ Nε the smooth diffeomorphism defined in formula (2.53) and JL its Jacobian.
Notice that the constant C depends only on E and ε.

Now we estimate the Lp–norm of ∇X. We compute

∇X =
∇ψ(πE(x))dπE(x)

ξ(πE(x) + ψ(πE(x))νE(πE(x)))
ξ(x)∇dE(x)

−

[ˆ ψ(πE(x))

0

∇ξ(πE(x) + sνE(πE(x)))
ξ2(πE(x) + sνE(πE(x)))

dπE(x) Id ds
]
ξ(x)∇dE(x)

−

[ˆ ψ(πE(x))

0

∇ξ(πE(x) + sνE(πE(x)))
ξ2(πE(x) + sνE(πE(x)))

dπE(x)s dνE(πE(x)) ds
]
ξ(x)∇dE(x)

+

ˆ ψ(πE(x))

0

ds
ξ(πE(x) + sνE(πE(x)))

(
∇ξ(x)∇dE(x) + ξ(x)∇2dE(x)

)
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and we deal with the integrals in the three terms as before, changing variable by means of the function
L. That is, since all the functions dπE, dνE, ∇2dE, ξ, 1/ξ, ∇ξ are bounded by some constants depending
only on E and ε, we easily get (the constant C could vary from line to line)

‖∇X‖p
Lp(Nε)

≤C
ˆ

Nε

|∇ψ(πE(x))|p dx + C
ˆ

Nε

|ψ(πE(x))|p dx

= C
ˆ
∂E

ˆ ε

−ε

|∇ψ(πE(y + tνE(y)))|p JL(y, t) dt dµ(y)

+ C
ˆ
∂E

ˆ ε

−ε

|ψ(πE(y + tνE(y)))|p JL(y, t) dt dµ(y)

= C
ˆ
∂E

(
|ψ(y)|p + |∇ψ(y)|p

) ˆ ε

−ε

JL(y, t) dt dµ(y)

≤ C‖ψ‖p
Lp(∂E) + C‖∇ψ‖p

Lp(∂E)

≤ C‖ψ‖p
W1,p(∂E) .

A very analogous estimate works for ‖∇2X‖p
Lp(Nε)

and we obtain also

‖∇2X‖p
Lp(Nε)

≤ C‖ψ‖p
W2,p(∂E) ,

hence, inequality (2.58) follows with C = C(E, ε).
Applying now Lagrange theorem to every component of Φ(·, y) for any y ∈ ∂E and t ∈ [0, 1], we

have
Φi(t, y) − yi = Φi(t, y) − Φi(0, y) = tXi(Φ(s, y)) ,

for every i ∈ {1, . . . , n}, where s = s(y, t) is a suitable value in (0, 1). Then, it clearly follows

‖Φ(t, ·) − Id‖L∞(∂E) ≤ C‖X‖L∞(Nε) ≤ C‖X‖W2,p(Nε) ≤ C‖ψ‖W2,p(∂E) (2.59)

by estimate (2.58), with C = C(E, ε) (notice that we used Sobolev embeddings, being p > n − 1, the
dimension of ∂E).

Differentiating the equations in system (2.21), we have (recall that we use the convention of
summing over the repeated indices) ∂

∂t∇
iΦ j(t, y) = ∇kX j(Φ(t, y))∇iΦk(t, y)

∇iΦ j(0, y) = δi j
(2.60)

for every i, j ∈ {1, . . . , n}. It follows,

∂

∂t

∣∣∣∇iΦ j(t, y) − δi j

∣∣∣2≤ 2
∣∣∣(∇iΦ j(t, y) − δi j)∇kX j(Φ(t, y))∇iΦk(t, y)

∣∣∣
≤ 2‖∇X‖L∞(Nε)

∣∣∣∇iΦ j(t, y) − δi j

∣∣∣2+2‖∇X‖L∞(Nε)

∣∣∣∇iΦ j(t, y) − δi j

∣∣∣
hence, for almost every t ∈ [0, 1], where the following derivative exists,

∂

∂t

∣∣∣∇iΦ j(t, y) − δi j

∣∣∣≤ C‖∇X‖L∞(Nε)
(∣∣∣∇iΦ j(t, y) − δi j

∣∣∣+1
)
.
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Integrating this differential inequality, we get∣∣∣∇iΦ j(t, y) − δi j

∣∣∣≤ etC‖∇X‖L∞(Nε) − 1 ≤ eC‖X‖W2,p(Nε) − 1,

as t ∈ [0, 1], where we used Sobolev embeddings again. Then, by inequality (2.58), we estimate∑
1≤i, j≤n

‖∇iΦ j(t, ·) − δi j‖L∞(∂E) ≤ C
(
eC‖ψ‖W2,p(∂E) − 1

)
≤ C‖ψ‖W2,p(∂E), (2.61)

as ‖ψ‖W2,p(∂E) ≤ δ, for any t ∈ [0, 1] and y ∈ ∂E, with C = C(E, ε, δ).
Differentiating Eq (2.60), we obtain

∂
∂t∇

`∇iΦ j(t, y) = ∇s∇kX j(Φ(t, y))∇iΦk(t, y)∇`Φs(t, y)
+ ∇kX j(Φ(t, y))∇`∇iΦk(t, y)

∇`∇iΦ(0, y) = 0

(where we sum over s and k), for every t ∈ [0, 1], y ∈ ∂E and i, j, ` ∈ {1, . . . , n}.
This is a linear non–homogeneous system of ODEs such that, if we control C‖ψ‖W2,p(∂E), the

smooth coefficients in the right side multiplying the solutions ∇`∇iΦ j(·, y) are uniformly bounded (as
in estimate (2.61), Sobolev embeddings then imply that ∇X is bounded in L∞ by C‖ψ‖W2,p(∂E)). Hence,
arguing as before, for almost every t ∈ [0, 1] where the following derivative exists, there holds

∂

∂t

∣∣∣∇2Φ(t, y)
∣∣∣≤C‖∇X‖L∞(Nε)

∣∣∣∇2Φ(t, y)
∣∣∣+C|∇2X(Φ(t, y))|

≤Cδ
∣∣∣∇2Φ(t, y)

∣∣∣+C|∇2X(Φ(t, y))| ,

by inequality (2.58) (notice that inequality (2.61) gives an L∞–bound on ∇Φ, not only in Lp, which is
crucial). Thus, by means of Gronwall’s lemma (see [52], for instance), we obtain the estimate

∣∣∣∇2Φ(t, y)
∣∣∣≤ C

ˆ t

0
|∇2X(Φ(s, y))|eCδ(t−s) ds ≤ C

ˆ t

0
|∇2X(Φ(s, y))| ds ,

hence,

‖∇2Φ(t, ·)‖p
Lp(∂E) ≤C

ˆ
∂E

(ˆ t

0
|∇2X(Φ(s, y))| ds

)p
dµ(y)

≤C
ˆ t

0

ˆ
∂E
|∇2X(Φ(s, y))|p dµ(y)ds

= C
ˆ

Nε

|∇2X(x)|pJL−1(x) dx

≤C‖∇2X‖p
Lp(Nε)

≤C‖X‖p
W2,p(Nε)

≤C‖ψ‖p
W2,p(∂E) , (2.62)

by estimate (2.58), for every t ∈ [0, 1], with C = C(E, ε, δ).

Mathematics in Engineering Volume 4, Issue 6, 1–104.



37

Clearly, putting together inequalities (2.59), (2.61) and (2.62), we get the estimate (2.55) in the
statement of the lemma.
Step 4. Finally, computing as in formula (2.39) and Remark 2.18, we have

d2

dt2 Vol(Et) =

ˆ
∂E
〈X|νEt〉 divT

n
X dµt,

for every t ∈ [−1, 1], hence, since by Step 1 we know that divT
n
X = 0 in Nε (which contains each ∂Et),

we conclude that d2

dt2 Vol(Et) = 0 for all t ∈ [−1, 1], that is, the function t 7→ Vol(Et) is linear.
If then Vol(E1) = Vol(E) = Vol(E0), it follows that Vol(Et) = Vol(E), for all t ∈ [−1, 1] which

implies that X is admissible, by Remark 2.22. �

With an argument similar to the one of this proof, we now prove Lemma 2.8.

Proof of Lemma 2.8. Let ϕ : ∂E → R a C∞ function with zero integral, then we define the following
smooth vector field in Nε,

X(x) = ϕ(πE(x))X̃(x),

where X̃ is the smooth vector field defined by formula (2.56) and we extend it to a smooth vector field
X ∈ C∞(Tn;Rn) on the whole Tn. Clearly, by the properties of X̃ seen above,

〈X(y)|νE(y)〉 = ϕ(y)〈X̃(y)|νE(y)〉 = ϕ(y)

for every y ∈ ∂E.
As the function x 7→ ϕ(πE(x)) is constant along the segments t 7→ x + t∇dE(x), for every x ∈ Nε, it

follows, as in Step 1 of the previous proof, that divX = 0 in Nε. Then, arguing as in Step 4, the flow
Φ defined by system (2.21) having X as infinitesimal generator, gives a variation Et = Φt(E) of E such
that the function t 7→ Vol(Et) is linear, for t in some interval (−δ, δ). Since, by Eq (2.24), there holds

d
dt

Vol(Et)
∣∣∣∣
t=0

=

ˆ
∂E
〈X|νE〉 dµ =

ˆ
∂E
ϕ dµ = 0,

such function t 7→ Vol(Et) must actually be constant.
Hence, Vol(Et) = Vol(E), for all t ∈ (−δ, δ) and the variation Et is volume–preserving. �

The next lemma gives a technical estimate needed in the proof of Theorem 2.29.

Lemma 2.33. Let p > max{2, n − 1} and E ⊆ Tn a strictly stable critical set for the
(volume–constrained) functional J. Then, in the hypotheses and notation of Lemma 2.32, there exist
constants δ,C > 0 such that if ‖ψ‖W2,p(∂E) ≤ δ then |X| ≤ C|〈X|νEt〉| on ∂Et and

‖∇X‖L2(∂Et) ≤ C‖〈X|νEt〉‖H1(∂Et) (2.63)

(here ∇ is the covariant derivative along Et), for all t ∈ [0, 1], where X ∈ C∞(Tn;Rn) is the smooth
vector field defined in formula (2.57).
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Proof. Fixed ε > 0, from inequality (2.55) it follows that there exist δ > 0 such that if ‖ψ‖W2,p(∂E) ≤ δ

there holds
|νEt(Φ(t, y)) − νE(y)| ≤ ε

for every y ∈ ∂E, hence, as ∇dE = νE on ∂E, we have

|∇dE(Φ−1(t, x)) − νEt(x)| = |νE(Φ−1(t, x)) − νEt(x)| ≤ ε

for every x ∈ ∂Et. Then, if ‖ψ‖W2,p(∂E) is small enough, Φ−1(t, ·) is close to the identity, thus

|∇dE(Φ−1(t, x)) − ∇dE(x)| ≤ ε

on ∂Et and we conclude
‖∇dE − νEt‖L∞(∂Et) ≤ 2ε .

Moreover, using again the inequality (2.55) and following the same argument above, we also obtain

‖∇2dE − ∇νEt‖L∞(∂Et) ≤ 2ε . (2.64)

We estimate Xτt = X − 〈X|νEt〉νEt (recall that X = 〈X|∇dE〉∇dE),

|Xτt | = |X − 〈X|νEt〉νEt |

= |〈X|∇dE〉∇dE − 〈X|νEt〉νEt |

= |〈X|∇dE〉∇dE − 〈X|νEt〉∇dE + 〈X|νEt〉∇dE − 〈X|νEt〉νEt |

≤ |〈X|(∇dE − νEt)〉∇dE | + |〈X|νEt〉(∇dE − νEt)|
≤ 2|X| |∇dE − νEt |

≤ 4ε|X| ,

then
|Xτt | ≤ 4ε|Xτt + 〈X|νEt〉νEt | ≤ 4ε|Xτt | + |〈X|νEt〉| ,

hence,
|Xτt | ≤ C|〈X|νEt〉| . (2.65)

We now estimate the covariant derivative of Xτt along ∂Et, that is,

|∇Xτt | = |∇X − ∇(〈X|νEt〉νEt)|
= |∇(〈X|∇dE〉∇dE) − ∇(〈X|νEt〉νEt)|
= |∇(〈X|∇dE〉∇dE) − ∇(〈X|νEt〉∇dE) + ∇(〈X|νEt〉∇dE) − ∇(〈X|νEt〉νEt)|
≤ |∇(〈X|(∇dE − νEt)〉∇dE)| + |∇(〈X|νEt〉(∇dE − νEt))|
≤Cε

[
|∇X| + |∇〈X|νEt〉|

]
+ C|X|

[
|∇(∇dE)| + |∇νEt |

]
≤Cε

[
|∇(〈X|νEt〉νEt + Xτt)| + |∇〈X|νEt〉|

]
+ C

(
|〈X|νEt〉| + |Xτt |

) [
|∇2dE | + |∇νEt |

]
hence, using inequality (2.65) and arguing as above, there holds

|∇Xτt | ≤ C|∇〈X|νEt〉| + C|〈X|νEt〉|
[
|∇2dE | + |∇νEt |

]
.
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Then, we get

‖∇Xτt‖
2
L2(∂Et)

≤C‖∇〈X|νEt〉‖
2
L2(∂Et)

+ C
ˆ
∂Et

|〈X|νEt〉|
2[|∇2dE | + |∇νEt |

]2 dµ

≤C‖〈X|νEt〉‖
2
H1(∂Et)

+ C‖〈X|νEt〉‖
2

L
2p
p−2 (∂Et)

∥∥∥|∇2dE | + |∇νEt |
∥∥∥2

Lp(∂Et)

≤C ‖〈X|νEt〉‖
2
H1(∂Et)

where in the last inequality we used as usual Sobolev embeddings, as p > max{2, n − 1} and the fact
that ‖∇νEt‖Lp(∂Et) is bounded by the inequality (2.64) (as ‖∇2dE‖Lp(∂Et)).

Considering the covariant derivative of X = Xτt + 〈X|νEt〉νEt , by means of this estimate, the trivial
one

‖∇〈X|νEt〉‖L2(∂Et) ≤ ‖〈X|νEt〉‖H1(∂Et)

and inequality (2.65), we obtain estimate (2.63). �

We now show that any smooth set E sufficiently W2,p–close to another smooth set F, can be
“translated” by a vector η ∈ Rn such that ∂E − η = {y + ϕ(y)νF(y) : y ∈ ∂F}, for a function
ϕ ∈ C∞(∂F) having a suitable small “projection” on T (∂F) (see the definitions and the discussion
after Remark 2.23).

Lemma 2.34. Let p > n − 1 and F ⊆ Tn a smooth set with a tubular neighborhood Nε as above, in
formula (2.49). For any τ > 0 there exist constants δ,C > 0 such that if another smooth set E ⊆ Tn

satisfies Vol(E4F) < δ and ∂E = {y + ψ(y)νF(y) : y ∈ ∂F} ⊆ Nε for a function ψ ∈ C∞(R) with
‖ψ‖W2,p(∂F) < δ, then there exist η ∈ Rn and ϕ ∈ C∞(∂F) with the following properties:

∂E − η = {y + ϕ(y)νF(y) : y ∈ ∂F} ⊆ Nε ,

|η| ≤ C‖ψ‖W2,p(∂F), ‖ϕ‖W2,p(∂F) ≤ C‖ψ‖W2,p(∂F)

and ∣∣∣∣ˆ
∂F
ϕνF dµ

∣∣∣∣ ≤ τ‖ϕ‖L2(∂F) .

Proof. We let dF to be the signed distance function from ∂F. We underline that, throughout the proof,
the various constants will be all independent of ψ : ∂F → R.

We recall that in Remark 2.26 we saw that there exists an orthonormal basis {e1, . . . , en} of Rn such
that the functions 〈νF |ei〉 are orthogonal in L2(∂F), that is,

ˆ
∂F
〈νF |ei〉〈νF |e j〉 dµ = 0, (2.66)

for all i , j and we let IF to be the set of the indices i ∈ {1, . . . , n} such that ‖〈νF |ei〉‖L2(∂F) > 0. Given a
smooth function ψ : ∂F → R, we set η =

∑n
i=1 ηiei, where

ηi =


1

‖〈νF |ei〉‖
2
L2(∂F)

´
∂F ψ(x)〈νF(x)|ei〉 dµ if i ∈ IF ,

ηi = 0 otherwise.
(2.67)
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Note that, from Hölder inequality, it follows

|η| ≤ C1‖ψ‖L2(∂F) . (2.68)

Step 1. Let Tψ : ∂F → ∂F be the map

Tψ(y) = πF(y + ψ(y)νF(y) − η) .

It is easily checked that there exists ε0 > 0 such that if

‖ψ‖W2,p(∂F) + |η| ≤ ε0 ≤ 1 , (2.69)

then Tψ is a smooth diffeomorphism, moreover,

‖JTψ − 1‖L∞(∂F) ≤ C‖ψ‖C1(∂F) (2.70)

(here JTψ is the Jacobian relative to ∂F) and

‖Tψ − Id‖W2,p(∂F) + ‖T−1
ψ − Id‖W2,p(∂F) ≤ C(‖ψ‖W2,p(∂F) + |η|) . (2.71)

Therefore, setting Ê = E − η, we have

∂Ê = {z + ϕ(z)νF(z) : z ∈ ∂F} ,

for some function ϕ which is linked to ψ by the following relation: for all y ∈ ∂F, we let z = z(y) ∈ ∂F
such that

y + ψ(y)νF(y) − η = z + ϕ(z)νF(z) ,

then,
Tψ(y) = πF(y + ψ(y)νF(y) − η) = πF(z + ϕ(z)νF(z)) = z,

that is, y = T−1
ψ (z) and

ϕ(z) =ϕ(Tψ(y))
= dF(z + ϕ(z)νF(z))
= dF(y + ψ(y)νF(y) − η)
= dF(T−1

ψ (z) + ψ(T−1
ψ (z))νF(Tψ(y)) − η).

Thus, using inequality (2.71), we have

‖ϕ‖W2,p(∂F) ≤ C2
(
‖ψ‖W2,p(∂F) + |η|

)
, (2.72)

for some constant C2 > 1. We now estimate
ˆ
∂F
ϕ(z)νF(z) dµ(z) =

ˆ
∂F
ϕ(Tψ(y))νF(Tψ(y))JTψ(y) dµ(y)

=

ˆ
∂F
ϕ(Tψ(y))νF(Tψ(y)) dµ(y) + R1 , (2.73)
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where
|R1| =

∣∣∣∣∣ˆ
∂F
ϕ(Tψ(y))νF(Tψ(y)) [JTψ(y) − 1] dµ(y)

∣∣∣∣∣ ≤ C3‖ψ‖C1(∂F)‖ϕ‖L2(∂F) , (2.74)

by inequality (2.70).
On the other hand,ˆ

∂F
ϕ(Tψ(y))νF(Tψ(y)) dµ(y)

=

ˆ
∂F

[
y + ψ(y)νF(y) − η − Tψ(y)

]
dµ(y)

=

ˆ
∂F

[
y + ψ(y)νF(y) − η − πF(y + ψ(y)νF(y) − η)

]
dµ(y)

=

ˆ
∂F

{
ψ(y)νF(y) − η +

[
πF(y) − πF(y + ψ(y)νF(y) − η)

]}
dµ(y)

=

ˆ
∂F

(ψ(y)νF(y) − η) dµ(y) + R2 , (2.75)

where

R2 =

ˆ
∂F

[
πF(y) − πF(y + ψ(y)νF(y) − η)

]
dµ(y)

= −

ˆ
∂F

dµ(y)
ˆ 1

0
∇πF(y + t(ψ(y)ν(y) − η))(ψ(y)νF(y) − η) dt

= −

ˆ
∂F
∇πF(y)(ψ(y)νF(y) − η) dµ(y) + R3 . (2.76)

In turn, recalling inequality (2.68), we get

|R3| ≤

ˆ
∂F

dµ(y)
ˆ 1

0
|∇πF(y + t(ψ(y)νF(y) − η)) − ∇πF(y)| |ψ(y)νF(y) − η| dt ≤ C4‖ψ‖

2
L2(∂F) . (2.77)

Since in Nε, by Eq (2.51), we have πF(x) = x − dF(x)∇dF(x), it follows

∂πi
F

∂x j
(x) = δi j −

∂dF

∂xi
(x)

∂dF

∂x j
(x) − dF(x)

∂2dF

∂xi∂x j
(x),

thus, for all y ∈ ∂F, there holds

∂πi
F

∂x j
(y) = δi j −

∂dF

∂xi
(y)
∂dF

∂x j
(y) .

From this identity and equalities (2.73), (2.75) and (2.76), we concludeˆ
∂F
ϕ(z)νF(z) dµ(z) =

ˆ
∂F

[
ψ(x)νF(x) − 〈η | νF(x)〉νF(x)

]
dµ(x) + R1 + R3 .

As the integral at the right–hand side vanishes by relations (2.66) and (2.67), estimates (2.74) and (2.77)
imply ∣∣∣∣ˆ

∂F
ϕ(y)νF(y) dµ(y)

∣∣∣∣ ≤ C3‖ψ‖C1(∂F)‖ϕ‖L2(∂F) + C4‖ψ‖
2
L2(∂F)

Mathematics in Engineering Volume 4, Issue 6, 1–104.



42

≤ C‖ψ‖C1(∂F)
(
‖ϕ‖L2(∂F) + ‖ψ‖L2(∂F)

)
≤ C5‖ψ‖

1−ϑ
W2,p(∂F)‖ψ‖

ϑ
L2(∂F)

(
‖ϕ‖L2(∂F) + ‖ψ‖L2(∂F)

)
, (2.78)

where in the last passage we used a well–known interpolation inequality, with ϑ ∈ (0, 1) depending
only on p > n − 1 (see [5, Theorem 3.70]).
Step 2. The previous estimate does not allow to conclude directly, but we have to rely on the following
iteration procedure. Fix any number K > 1 and assume that δ ∈ (0, 1) is such that (possibly considering
a smaller τ)

τ + δ < ε0/2, C2δ(1 + 2C1) ≤ τ, 2C5δ
ϑK ≤ τ . (2.79)

Given ψ, we set ϕ0 = ψ and we denote by η1 the vector defined as in (2.67). We set E1 = E − η1 and
denote by ϕ1 the function such that ∂E1 = {x + ϕ1(x)νF(x) : x ∈ ∂F}. As before, ϕ1 satisfies

y + ϕ0(y)νF(y) − η1 = z + ϕ1(z)νF(z) .

Since ‖ψ‖W2,p(∂F) ≤ δ and |η| ≤ C1‖ψ‖L2(∂F), by inequalities (2.68), (2.72) and (2.79) we have

‖ϕ1‖W2,p(∂F) ≤ C2δ(1 + C1) ≤ τ . (2.80)

Using again that ‖ψ‖W2,p(∂F) < δ < 1, by estimate (2.78) we obtain∣∣∣∣ˆ
∂F
ϕ1(y)νF(y) dµ(y))

∣∣∣∣ ≤ C5‖ϕ0‖
ϑ
L2(∂F)

(
‖ϕ1‖L2(∂F) + ‖ϕ0‖L2(∂F)

)
,

where we have ‖ϕ0‖L2(∂F) ≤ δ.
We now distinguish two cases.
If ‖ϕ0‖L2(∂F) ≤ K‖ϕ1‖L2(∂F), from the previous inequality and (2.79), we get∣∣∣∣ˆ

∂F
ϕ1(y)νF(y) dµ(y)

∣∣∣∣ ≤ C5δ
ϑ(‖ϕ1‖L2(∂F) + ‖ϕ0‖L2(∂F)

)
≤ 2C5δ

ϑK‖ϕ1‖L2(∂F)

≤ δ‖ϕ1‖L2(∂F) ,

thus, the conclusion follows with η = η1.
In the other case,

‖ϕ1‖L2(∂F) ≤
‖ϕ0‖L2(∂F)

K
≤
δ

K
≤ δ . (2.81)

We then repeat the whole procedure: we denote by η2 the vector defined as in formula (2.67) with ψ
replaced by ϕ1, we set E2 = E1−η

2 = E−η1−η2 and we consider the corresponding ϕ2 which satisfies

w + ϕ2(w)νF(w) = z + ϕ1(z)νF(z) − η2 = y + ϕ0(y)νF(y) − η1 − η2 .

Since

‖ϕ0‖W2,p(∂F) + |η1 + η2| ≤ δ + C1δ + C1‖ϕ1‖L2(∂F) ≤ δ + C1δ
(
1 +

1
K

)
≤ C2δ(1 + 2C1) ≤ τ ,
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the map Tϕ0(y) = πF(y + ϕ0(y)νF(y) − (η1 + η2)) is a diffeomorphism, thanks to formula (2.69) (having
chosen τ and δ small enough).

Thus, by applying inequalities (2.72) (with η = η1 + η2), (2.68), (2.79) and (2.81), we get

‖ϕ2‖W2,p(∂F) ≤ C2
(
‖ϕ0‖W2,p(∂F) + |η1 + η2|

)
≤ C2δ

(
1 + C1 +

C1

K

)
≤ τ ,

as K > 1, analogously to conclusion (2.80). On the other hand, by estimates (2.68), (2.80) and (2.81),

‖ϕ1‖W2,p(∂F) + η2 ≤ C2δ(1 + C1) + C1
δ

K
≤ C2δ(1 + 2C1) ≤ τ ,

hence, also the map Tϕ1(x) = πF(x +ϕ1(x)νF(x)− η2) is a diffeomorphism satisfying inequalities (2.69)
and (2.70). Therefore, arguing as before, we obtain∣∣∣∣ˆ

∂F
ϕ2(y)νF(y) dµ(y)

∣∣∣∣ ≤ C5‖ϕ1‖
ϑ
L2(∂F)

(
‖ϕ2‖L2(∂F) + ‖ϕ1‖L2(∂F)

)
.

Since ‖ϕ1‖L2(∂F) ≤ δ by inequality (2.81), if ‖ϕ1‖L2(∂F) ≤ K‖ϕ2‖L2(∂F) the conclusion follows with η =

η1 + η2. Otherwise, we iterate the procedure observing that

‖ϕ2‖L2(∂F) ≤
‖ϕ1‖L2(∂F)

K
≤
‖ϕ0‖L2(∂F)

K2 ≤
δ

K2 .

This construction leads to three (possibly finite) sequences ηn, En and ϕn such that
En = E − η1 − · · · − ηn, |ηn| ≤

C1δ
Kn−1

‖ϕn‖W2,p(∂F) ≤ C2
(
‖ϕ0‖W2,p(∂F) + |η1 + · · · + ηn|

)
≤ C2δ(1 + 2C1)

‖ϕn‖L2(∂F) ≤
δ

Kn

∂En = {x + ϕn(x)νF(x) : x ∈ ∂F}

If for some n ∈ N we have ‖ϕn−1‖L2(∂F) ≤ K‖ϕn‖L2(∂F), the construction stops, since, arguing as before,∣∣∣∣ˆ
∂F
ϕn(y)νF(y) dµ(y)

∣∣∣∣ ≤ δ‖ϕn‖L2(∂F)

and the conclusion follows with η = η1 + · · · + ηn and ϕ = ϕn. Otherwise, the iteration continues
indefinitely and we get the thesis with

η =

∞∑
n=1

ηn, ϕ = 0 ,

(notice that the series is converging), which actually means that E = η + F. �

We are now ready to show the main theorem of this first part of the work.

Proof of Theorem 2.29.
Step 1. We first want to see that

m0 = inf
{
ΠE(ϕ) : ϕ ∈ T⊥(∂E), ‖ϕ‖H1(∂E) = 1

}
> 0. (2.82)
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To this aim, we consider a minimizing sequence ϕi for the above infimum and we assume that ϕi ⇀ ϕ0

weakly in H1(∂E), then ϕ0 ∈ T⊥(∂E) (since it is a closed subspace of H1(∂E)) and if ϕ0 , 0, there
holds

m0 = lim
i→+∞

ΠE(ϕi) ≥ ΠE(ϕ0) > 0

due to the strict stability of E and the lower semicontinuity of ΠE (recall formula (2.41) and the fact
that the weak convergence in H1(∂E) implies strong convergence in L2(∂E) by Sobolev embeddings).
On the other hand, if instead ϕ0 = 0, again by the strong convergence of ϕi → ϕ0 in L2(∂E), by looking
at formula (2.41), we have

m0 = lim
i→∞

ΠE(ϕi) = lim
i→∞

ˆ
∂E
|∇ϕi|

2 dµ = lim
i→∞
‖ϕi‖

2
H1(∂E) = 1

since ‖ϕi‖L2(∂E) → 0.
Step 2. Now we show that there exists a constant δ1 > 0 such that if E is like in the statement and
∂F = {y + ψ(y)νE(y) : y ∈ ∂E}, with ‖ψ‖W2,p(∂E) ≤ δ1, and Vol(F) = Vol(E), then

inf
{

ΠF(ϕ) : ϕ ∈ H̃1(∂F), ‖ϕ‖H1(∂F) = 1,
∣∣∣∣ˆ
∂F
ϕνF dµ

∣∣∣∣ ≤ δ1

}
≥

m0

2
. (2.83)

We argue by contradiction assuming that there exists a sequence of sets Fi with ∂Fi = {y +ψi(y)νE(y) :
y ∈ ∂E} with ‖ψi‖W2,p(∂E) → 0 and Vol(Fi) = Vol(E), and a sequence of functions ϕi ∈ H̃1(∂Fi) with
‖ϕi‖H1(∂Fi) = 1 and

´
∂Fi
ϕiνFi dµi → 0, such that

ΠFi(ϕi) <
m0

2
.

We then define the following sequence of smooth functions

ϕ̃i(y) = ϕi(y + ψi(y)νE(y)) −
 
∂E
ϕi(y + ψi(y)νE(y)) dµ(y) (2.84)

which clearly belong to H̃1(∂E). Setting θi(y) = y + ψi(y)νE(y), as p > max{2, n − 1}, by the Sobolev
embeddings, θi → Id in C1,α and νFi ◦θi → νE in C0,α(∂E), hence, the sequence ϕ̃i is bounded in H1(∂E)
and if {ek} is the special orthonormal basis found in Remark 2.26, we have 〈νFi ◦ θi|ek〉 → 〈νE |ek〉

uniformly for all k ∈ {1, . . . , n}. Thus,
ˆ
∂E
ϕ̃i〈νE |εi〉 dµ→ 0,

as i→ ∞, indeed, ˆ
∂E
ϕ̃i〈νE |ek〉 dµ −

ˆ
∂E
ϕ̃i〈νFi ◦ θi|ek〉 dµ→ 0

and ˆ
∂E
ϕ̃i〈νFi ◦ θi|ek〉 dµ =

ˆ
∂Fi

ϕi〈νFi |ek〉 Jθ−1
i dµi → 0,

as the Jacobians (notice that Jθi are Jacobians “relative” to the hypersurface ∂E) Jθ−1
i → 1 uniformly

and we assumed
´
∂Fi
ϕiνFi dµi → 0.
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Hence, using expression (2.48), for the projection map π on T⊥(∂E), it follows

‖π(ϕ̃i) − ϕ̃i‖H1(∂E) → 0

as i→ ∞ and
lim
i→∞
‖π(ϕ̃i)‖H1(∂E) = lim

i→∞
‖ϕ̃i‖H1(∂E) = lim

i→∞
‖ϕi‖H1(∂Fi) = 1, (2.85)

since ‖ϕi‖W2,p(∂E) → 0, thus ‖ϕi‖C1,α(∂E) → 0, by looking at the definition of the functions ϕ̃i in
formula (2.84).

Note now that the W2,p– convergence of Fi to E (the second fundamental form B∂Fi of ∂Fi is
“morally” the Hessian of ϕi) implies

B∂Fi ◦ θi → B∂E in Lp(∂E) ,

as i → ∞, then, by Sobolev embeddings again (in particular H1(∂E) ↪→ Lq(∂E) for any q ∈ [1, 2∗),
with 2∗ = 2(n − 1)/(n − 3) which is larger than 2) and the W2,p–convergence of Fi to E, we get

ˆ
∂Fi

|B∂Fi |
2ϕ2

i dµi −

ˆ
∂E
|B∂E |

2ϕ̃2
i dµ→ 0 .

Standard elliptic estimates for the problem (2.3) (see [23], for instance) imply the convergence of the
potentials

vFi → vE in C1,β(Tn) for all β ∈ (0, 1),

for i→ ∞, hence arguing as before,
ˆ
∂Fi

∂νFi
vFiϕ

2
i dµi −

ˆ
∂E
∂νE vEϕ̃

2
i dµ→ 0 .

Setting, as in Remark 2.20,

vE,ϕ̃i(x) =

ˆ
∂E

G(x, y)ϕ̃i(y) dµ(y) =

ˆ
∂E

G(x, y)ϕi(θi(y)) dµ(y) − mi

ˆ
∂E

G(x, y) dµ(y) ,

where mi =
ffl
∂E ϕi(y + ψi(y)νE(y)) dµ(y)→ 0, as i→ ∞, and

vFi,ϕi(x) =

ˆ
∂Fi

G(x, z)ϕi(z) dµi(z) =

ˆ
∂E

G(x, θi(y))ϕi(θi(y))Jθi(y) dµ(y) ,

it is easy to check (see [2, pages 537–538], for details) that
ˆ
Tn
|∇vFi,ϕi |

2 dx −
ˆ
Tn
|∇vE,ϕ̃i |

2 dx→ 0 .

Finally, recalling expression (2.42), we conclude

ΠFi(ϕi) − ΠE(ϕ̃i)→ 0 ,

since we have
‖ϕi‖L2(∂Fi) − ‖ϕ̃i‖L2(∂E) → 0 ,
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which easily follows again by looking at the definition of the functions ϕ̃i in formula (2.84) and taking
into account that ‖ϕi‖C1,α(∂E) → 0, hence limits (2.85) imply

‖∇ϕi‖L2(∂Fi) − ‖∇ϕ̃i‖L2(∂E) → 0 .

By the previous conclusion ‖π(ϕ̃i)−ϕ̃i‖H1(∂E) → 0 and Sobolev embeddings, it this then straightforward,
arguing as above, to get also

ΠE(ϕ̃i) − ΠE(π(ϕ̃i))→ 0,

hence,
ΠFi(ϕi) − ΠE(π(ϕ̃i))→ 0.

Since we assumed that ΠFi(ϕi) < m0/2, we conclude that for i ∈ N, large enough there holds

ΠE(π(ϕ̃i)) ≤
m0

2
< m0,

which is a contradiction to Step 1, as π(ϕ̃i) ∈ T⊥(∂E).
Step 3. Let us now consider F such that Vol(F) = Vol(E), Vol(F4E) < δ and

∂F = {y + ψ(y)νE(y) : y ∈ ∂E} ⊆ Nε,

with ‖ψ‖W2,p(∂E) ≤ δ where δ > 0 is smaller than δ1 given by Step 2.
Taking a possibly smaller δ > 0, we consider the field X and the associated flow Φ found in

Lemma 2.32. Hence, div X = 0 in Nε and Φ(1, y) = y + ψ(y)νE(y), for all y ∈ ∂E, that is,
Φ(1, ∂E) = ∂F ⊆ Nε which implies E1 = Φ1(E) = F and Vol(E1) = Vol(F) = Vol(E). Then the special
variation Et = Φt(E) is volume–preserving, for t ∈ [−1, 1] and the vector field X is admissible, by the
last part of such lemma.

By Lemma 2.34, choosing an even smaller δ > 0 if necessary, possibly replacing F with a translate
F − σ for some η ∈ Rn if needed, we can assume that∣∣∣∣∣ˆ

∂E
ψ νE dµ

∣∣∣∣∣ ≤ δ1

2
‖ψ‖L2(∂E). (2.86)

We now claim that ∣∣∣∣∣ˆ
∂E
〈X|νEt〉νEt dµt

∣∣∣∣∣ ≤ δ1‖〈X|νEt〉‖L2(∂Et) ∀t ∈ [0, 1]. (2.87)

To this aim, we write
ˆ
∂E
〈X|νEt〉νEt dµt =

ˆ
∂E
〈X ◦ Φt|νEt ◦ Φt〉(νEt ◦ Φt) JΦt dµ

=

ˆ
∂E
〈X ◦ Φt|νE〉νE dµ + R1

=

ˆ
∂E
〈X(x)|νE〉νE dµ + R1 + R2

=

ˆ
∂E
ψνE dµ + R1 + R2 + R3
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with appropriate R1,R2 and R3 (see below).
By the definition of X in formula (2.57) (in the proof of Lemma 2.32), the bounds 0 < C1 ≤ ξ ≤ C2

and ‖J(πE ◦Φt)−1‖L∞(∂E) ≤ C3 (by inequality (2.55) and Sobolev embeddings, as p > max{2, n − 1}, we
have ‖Φ(t, ·) − Id‖C1,α(∂E) ≤ C‖ψ‖W2,p(∂E) ≤ Cδ), the following inequality holds

ˆ
∂E
|X(Φ(t, x))| dµ =

ˆ
∂E

∣∣∣∣∣ˆ ψ(πE(Φ(t,x)))

0

ξ(Φ(t, x))∇dE(Φ(t, x))
ξ(Φ(t, x) + sν(πE(Φ(t, x))))

ds
∣∣∣∣∣ dµ

≤ C
ˆ
∂E
|ψ(πE(Φ(t, x)))| dµ

=

ˆ
∂E
|ψ(z)|J(πE ◦ Φt)−1(z) dµ(z)

≤ C‖ψ‖L2(∂E). (2.88)

for every t ∈ [0, 1].
We want now to prove that for every ε > 0, choosing a suitably small δ > 0 we have the estimate

|R1| + |R2| + |R3| ≤ ε‖ψ‖L2(∂E). (2.89)

First,

R1 =

ˆ
∂E
〈X ◦ Φt|νEt ◦ Φ〉νEt ◦ Φt[JΦt − 1] dµ

+

ˆ
∂E
〈X ◦ Φt|νEt ◦ Φt〉νEt ◦ Φt dµ −

ˆ
∂E
〈X ◦ Φt, νE〉νE dµ

=

ˆ
∂E
〈X ◦ Φt|νEt ◦ Φt〉νEt ◦ Φt [JΦt − 1] dµ +

ˆ
∂E
〈X ◦ Φt|νEt ◦ Φt − νE〉νE dµ

+

ˆ
∂E
〈X ◦ Φt|νEt ◦ Φt〉(νEt ◦ Φt − νE) dµ

≤

ˆ
∂E
|X ◦ Φt| ‖JΦt − 1‖L∞(∂E) dµ +

ˆ
∂E
|X ◦ Φt| ‖νE − νEt ◦ Φt‖L∞(∂E) dµ ,

then, since by equality (2.54), it follow that for every t ∈ [0, 1] the two terms

‖νE − νEt ◦ Φ(t, x)‖L∞(∂E) and ‖JΦt − 1‖L∞(∂E)

can be made (uniformly in t ∈ [0, 1]) small as we want, if δ > 0 is small enough, by using
inequality (2.88), we obtain

|R1| ≤ ε‖ψ‖L2(∂E)/3.

Then we estimate, by means of inequality (2.54) and where s = s(t, y) ∈ [t, 1],

|R2| ≤

ˆ
∂E
|X(Φ(t, x)) − X(Φ(1, x))| + |X(Φ(1, x)) − X(x)| dµ

≤

ˆ
∂E
|X(Φ(t, x)) − X(Φ(1, x))| + ‖∇X‖L2(Nε)‖ψ‖L2(∂E)
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=

ˆ
∂E

(1 − t)|∇X(Φs(y))|
∣∣∣∣∣∂Φs

∂t
(y)

∣∣∣∣∣ dµ(y) + ‖∇X‖L2(Nε)‖ψ‖L2(∂E)

≤

ˆ
∂E
|∇X(Φ(s, x))||Φ(t, x) − Φ(1, x)| + ‖∇X‖L2(Nε)‖ψ‖L2(∂E)

≤ C‖∇X‖L∞(Nε)C‖ψ‖L2(∂E) + ‖∇X‖L2(Nε)‖ψ‖L2(∂E),

where in the last inequality we use Eq (2.88). Hence, using equality (2.58) and Sobolev embeddings,
as p > max{2, n − 1}, we get

|R2| ≤ C‖ψ‖W2,p(∂E)‖ψ‖L2(∂E),

then, since ‖ψ‖W2,p(∂E) < δ, we obtain

|R2| < ε‖ψ‖L2(∂E)/3,

if δ2 is small enough.
Arguing similarly, recalling the definition of X given by formula (2.57), we also obtain |R3| ≤

ε‖ψ‖L2(∂E), hence estimate (2.89) follows. We can then conclude that, for δ > 0 small enough, we have∣∣∣∣∣ˆ
∂E
〈X|νEt〉νEt dµt

∣∣∣∣∣ ≤ ∣∣∣∣∣ˆ
∂E
ψνE dµ

∣∣∣∣∣ + ε‖ψ‖L2(∂E) ≤
(δ1

2
+ ε

)
‖ψ‖L2(∂E)

for any t ∈ [0, 1], where in the last inequality we used the assumption (2.86), thus choosing ε = δ1/4
we get ∣∣∣∣∣ˆ

∂E
〈X|νEt〉νEt dµt

∣∣∣∣∣ ≤ 3δ1

4
‖ψ‖L2(∂E).

Along the same line, it is then easy to prove that

‖〈X|νEt〉‖L2(∂Et) ≥ (1 − ε)‖ψ‖L2(∂E), (2.90)

for any t ∈ [0, 1], hence claim (2.87) follows.
As a consequence, since 〈X|νEt〉 ∈ H̃1(∂Et), being X admissible for Et (recalling computation 2.23)

and ∂Et can be described as a graph over ∂E with a function with small norm in W2,p(∂E) (by
estimate (2.55) of Lemma 2.32), we can apply Step 2 with F = Et to the function
〈X|νEt〉/‖〈X|νEt〉‖H1(∂Et), concluding

ΠEt(〈X|νEt〉) ≥
m0

2
‖〈X|νEt〉‖H1(∂Et). (2.91)

By means of Lemma 2.33, for δ > 0 small enough, we now show the following inequality on ∂Et

(here div is the divergence operator and Xτt = X − 〈X|νEt〉νEt is a tangent vector field on ∂Et), for any
t ∈ [0, 1],

‖div(Xτt〈X|νEt〉)‖L
p

p−1 (∂Et)
= ‖div Xτt〈X|νEt〉 + 〈Xτt |∇〈X|νEt〉〉‖L

p
p−1 (∂Et)

≤C‖∇Xτt‖L2(∂Et)‖〈X|νEt〉‖
L

2p
p−2 (∂Et)

+ C‖Xτt‖
L

2p
p−2 (∂Et)

‖∇〈X|νEt〉‖L2(∂Et)
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≤C‖X‖H1(∂Et)‖X‖
L

2p
p−2 (∂Et)

≤C‖X‖2H1(∂Et)

≤C‖〈X|νEt〉‖
2
H1(∂Et)

, (2.92)

where we used the Sobolev embedding H1(∂Et) ↪→ L
2p
p−2 (∂Et), as p > max{2, n − 1}.

Then, we compute (here Xτt is the tangent component of X, Ht is the mean curvature and vEt the
potential relative to Et defined by formula (2.1))

J(F) − J(E) = J(E1) − J(E)

=

ˆ 1

0
(1 − t)

d2

dt2 J(Et) dt

=

ˆ 1

0
(1 − t)

(
ΠEt(〈X|νEt〉) + Rt

)
dt

=

ˆ 1

0
(1 − t)ΠEt(〈X|νEt〉) dt

−

ˆ 1

0
(1 − t)

ˆ
∂E

(4γvEt + Ht) div(Xτt〈X|νEt〉) dµt dt.

by Theorem 2.14 and the definition of ΠEt in formula (2.41), considering the second form of the
remainder term Rt, relative to Et and taking into account that div X = 0 in Nε and that Xt = X, as the
variation is special.

Hence, by estimate (2.91), we have (recall that 4γvE +H = 4γvE0 +H0 = λ constant, as E is a critical
set)

J(F) − J(E) ≥
m0

2

ˆ 1

0
(1 − t)‖〈X|νEt〉‖

2
H1(∂Et)

dt

−

ˆ 1

0
(1 − t)

ˆ
∂Et

(Ht + 4γvEt) div(Xτt〈X|νEt〉) dµt dt

=
m0

2

ˆ 1

0
(1 − t)‖〈X|νEt〉‖

2
H1(∂Et)

dt

−

ˆ 1

0
(1 − t)

ˆ
∂Et

(Ht + 4γvEt − λ) div(Xτt〈X|νEt〉) dµt dt

≥
m0

2

ˆ 1

0
(1 − t)‖〈X|νEt〉‖

2
H1(∂Et)

dt

−

ˆ 1

0
(1 − t)‖Ht + 4γvEt − λ‖Lp(∂Et)‖div(Xτt〈X|νEt〉)‖L

p
p−1 (∂Et)

dt

≥
m0

2

ˆ 1

0
(1 − t)‖〈X|νEt〉‖

2
H1(∂Et)

dt

−C
ˆ 1

0
(1 − t)‖Ht + 4γvEt − λ‖Lp(∂Et)‖〈X|νEt〉‖

2
H1(∂Et)

dt,
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by estimate (2.92). If δ > 0 is sufficiently small, as Et is W2,p–close to E (recall the definition of vEt in
formula (2.1)), we have

‖Ht + 4γvEt − λ‖Lp(∂Et) < m0/4C ,

hence,

J(F) − J(E) ≥
m0

4

ˆ 1

0
(1 − t)‖〈X|νEt〉‖

2
H1(∂Et)

dt.

Then, we can conclude the proof of the theorem with the following series of inequalities, holding for a
suitably small δ > 0 as in the statement,

J(F) ≥ J(E) +
m0

2

ˆ 1

0
(1 − t)‖〈X|νEt〉‖

2
H1(∂Et)

dt

≥ J(E) + C‖〈X|νE〉‖
2
L2(∂E)

≥ J(E) + C‖ψ‖2L2(∂E)

≥ J(E) + C[Vol(E4F)]2

≥ J(E) + C[α(E, F)]2,

where the first inequality is due to the W2,p–closedness of Et to E, the second one by the very
expression (2.57) of the vector field X on ∂E,

|〈X(y)|νE(y)〉| =
∣∣∣∣ˆ ψ(y)

0

ds
ξ(y + sνE(y))

∣∣∣∣ ≤ C|ψ(y)|,

the third follows by a straightforward computation (involving the map L defined by formula (2.53)
and its Jacobian), as ∂E is a “normal graph” over ∂F with ψ as “height function”, finally the last one
simply by the definition of the “distance” α, recalling that we possibly translated the “original” set F
by a vector η ∈ Rn, at the beginning of this step. �

We conclude this section by proving two propositions that will be used later. The first one says that
when a set is sufficiently W2,p–close to a strictly stable critical set of the functional J, then the
quadratic form (2.41) remains uniformly positive definite (on the orthogonal complement of its
degenerate subspace, see the discussion at the end of the previous subsection).

Proposition 2.35. Let p > max{2, n − 1} and E ⊆ Tn be a smooth strictly stable critical set with Nε a
tubular neighborhood of ∂E, as in formula (2.49). Then, for every θ ∈ (0, 1] there exist σθ, δ > 0 such
that if a smooth set F ⊆ Tn is W2,p–close to E, that is, Vol(F4E) < δ and ∂F ⊆ Nε with

∂F = {y + ψ(y)νE(y) : y ∈ ∂E}

for a smooth ψ with ‖ψ‖W2,p(∂E) < δ, there holds

ΠF(ϕ) ≥ σθ‖ϕ‖
2
H1(∂F), (2.93)

for all ϕ ∈ H̃1(∂F) satisfying
min
η∈OE
‖ϕ − 〈η|νF〉‖L2(∂F) ≥ θ‖ϕ‖L2(∂F),

where OE is defined by formula (2.47).
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Proof. Step 1. We first show that for every θ ∈ (0, 1] there holds

mθ = inf
{
ΠE(ϕ) : ϕ ∈ H̃1(∂E) , ‖ϕ‖H1(∂E) = 1 and min

η∈OE
‖ϕ − 〈η|νE〉‖L2(∂E) ≥ θ‖ϕ‖L2(∂E)

}
> 0 . (2.94)

Indeed, let ϕi be a minimizing sequence for this infimum and assume that ϕi ⇀ ϕ0 ∈ H̃1(∂E) weakly
in H1(∂E).

If ϕ0 , 0, as the weak convergence in H1(∂E) implies strong convergence in L2(∂E) by Sobolev
embeddings, for every η ∈ OE we have

‖ϕ0 − 〈η|νE〉‖L2(∂E) = lim
i→∞
‖ϕi − 〈η|νE〉‖L2(∂E) ≥ lim

i→∞
θ‖ϕi‖L2(∂E) = θ‖ϕ0‖L2(∂E),

hence,
min
η∈OE
‖ϕ0 − 〈η|νE〉‖L2(∂E) ≥ θ‖ϕ0‖L2(∂E) > 0,

thus, we conclude ϕ0 ∈ H̃1(∂E) \ T (∂E) and

mθ = lim
i→∞

ΠE(ϕi) ≥ ΠE(ϕ0) > 0 ,

where the last inequality follows from estimate (2.45) in Remark 2.25.
If ϕ0 = 0, then again by the strong convergence of ϕi → ϕ0 in L2(∂E), by looking at formula (2.41),

we have
mθ = lim

i→∞
ΠE(ϕi) = lim

i→∞

ˆ
∂E
|∇ϕi|

2 dµ = lim
i→∞
‖ϕi‖

2
H1(∂E) = 1

since ‖ϕi‖L2(∂E) → 0.
Step 2. In order to finish the proof it is enough to show the existence of some δ > 0 such that if
Vol(F4E) < δ and ∂F =

{
y + ψ(y)νE(y) : y ∈ ∂E

}
with ‖ψ‖W2,p(∂E) < δ, then

inf
{
ΠF(ϕ) : ϕ ∈ H̃1(∂F) , ‖ϕ‖H1(∂F) = 1 and min

η∈OE
‖ϕ − 〈η|νF〉‖L2(∂F) ≥ θ‖ϕ‖L2(∂F)

}
≥ σθ =

1
2

min{mθ/2, 1} , (2.95)

where mθ/2 is defined by formula (2.94), with θ/2 in place of θ. Assume by contradiction that there
exist a sequence of smooth sets Fi ⊆ T

n, with ∂Fi = {y +ψi(y)νE(y) : y ∈ ∂E} and ‖ψi‖W2,p(∂E) → 0, and
a sequence ϕi ∈ H̃1(∂Fi), with ‖ϕi‖H1(∂Fi) = 1 and minη∈OE ‖ϕi − 〈η|νFi〉‖L2(∂Fi) ≥ θ‖ϕi‖L2(∂Fi), such that

ΠFi(ϕi) < σθ ≤ mθ/2/2 . (2.96)

Let us suppose first that limi→∞ ‖ϕi‖L2(∂Fi) = 0 and observe that by Sobolev embeddings ‖ϕi‖Lq(∂Fi) → 0
for some q > 2, thus, since the functions ψi are uniformly bounded in W2,p(∂E) for p > max{2, n − 1},
recalling formula (2.41), it is easy to see that

lim
i→∞

ΠFi(ϕi) = lim
i→∞

ˆ
∂Fi

|∇ϕi|
2 dµi = lim

i→∞
‖ϕi‖

2
H1(∂Fi)

= 1 ,

which is a contradiction with assumption (2.96).
Hence, we may assume that

lim
i→∞
‖ϕi‖L2(∂Fi) > 0. (2.97)
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The idea now is to write every ϕi as a function on ∂E. We define the functions ϕ̃i(∂E)→ R, given by

ϕ̃i(y) = ϕi
(
y + ψi(y)νE(y)

)
−

 
∂E
ϕi(y + ψi(y)νE(y)) dµ(y) ,

for every y ∈ ∂E.
As ψi → 0 in W2,p(∂E), we have in particular that

ϕ̃i ∈ H̃1(∂E) , ‖ϕ̃i‖H1(∂E) → 1 and
‖ϕ̃i‖L2(∂E)

‖ϕi‖L2(∂Fi)
→ 1 ,

moreover, note also that νFi(· + ψi(·)νE(·)) → νE in W1,p(∂E) and thus in C0,α(∂E) for a suitable α ∈
(0, 1), depending on p, by Sobolev embeddings. Using this fact and taking into account the third limit
above and inequality (2.97), one can easily show that

lim inf
i→∞

minη∈OE ‖ϕ̃i − 〈η|νE〉‖L2(∂E)

‖ϕ̃i‖L2(∂E)
≥ lim inf

i→∞

minη∈OE ‖ϕi − 〈η|νFi〉‖L2(∂Fi)

‖ϕi‖L2(∂Ei)
≥ θ .

Hence, for i ∈ N large enough, we have

‖ϕ̃i‖H1(∂E) ≥ 3/4 and min
η∈OE
‖ϕ̃i − 〈η|νE〉‖L2(∂E) ≥

θ

2
‖ϕ̃i‖L2(∂E) ,

then, in turn, by Step 1, we infer

ΠE(ϕ̃i) ≥
9

16
mθ/2 . (2.98)

Arguing now exactly like in the final part of Step 2 in the proof of Theorem 2.29, we have that all the
terms of ΠFi(ϕi) are asymptotically close to the corresponding terms of ΠE(ϕ̃i), thus

ΠFi(ϕi) − ΠE(ϕ̃i)→ 0 ,

which is a contradiction, by inequalities (2.96) and (2.98). This establishes inequality (2.95) and
concludes the proof. �

The following final result of this section states the fact that close to a strictly stable critical set there
are no other smooth critical sets (up to translations).

Proposition 2.36. Let p and E ⊆ Tn be as in Proposition 2.35. Then, there exists δ > 0 such that if
E′ ⊆ Tn is a smooth critical set with Vol(E′) = Vol(E), Vol(E4E′) < δ, ∂E′ ⊆ Nε and

∂E′ = {y + ψ(y)νE(y) : y ∈ ∂E}

for a smooth ψ with ‖ψ‖W2,p(∂E) < δ, then E′ is a translate of E.

Proof. In Step 3 of the proof of Theorem 2.29, it is shown that under these hypotheses on E and E′, if
δ > 0 is small enough, we may find a small vector η ∈ Rn and a volume–preserving variation Et such
thatE0 = E, E1 = E′ − η and

d2

dt2 J(Et) ≥ C[Vol(E4(E′ − η))]2 ,
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for all t ∈ [0, 1], where C is a positive constant independent of E′.
Assume that E′ is a smooth critical set as in the statement, which is not a translate of E, then

d
dt J(Et)

∣∣∣
t=0

= 0, but from the above formula it follows d
dt J(Et)

∣∣∣
t=1
> 0, which implies that E′ − η cannot

be critical, hence neither E′, which is a contradiction. Indeed, s 7→ E1−s is a volume–preserving
variation for E′ − η and

d
ds

J(E1−s)
∣∣∣∣
s=0

= −
d
dt

J(Et)
∣∣∣∣
t=1
< 0 ,

showing that E′ − η is not critical. �

3. The modified Mullins–Sekerka and the surface diffusion flow

We start with the notion of smooth flow of sets.

Definition 3.1. Let Et ⊆ T
n for t ∈ [0,T ) be a one-parameter family of sets, then we say that it is a

smooth flow if there exists a smooth reference set F ⊆ Tn and a map Ψ ∈ C∞([0,T ) × Tn;Tn) such that
Ψt = Ψ(t, ·) is a smooth diffeomorphism from Tn to Tn and Et = Ψt(F), for all t ∈ [0,T ).

The velocity of the motion of any point x = Ψt(y) of the set Et, with y ∈ F, is then given by

Xt(x) = Xt(Ψt(y)) =
∂Ψt

∂t
(y).

(notice that, in general, the smooth vector field Xt, defined in the whole Tn by Xt(Ψt(z)) = ∂Ψt
∂t (z) for

every z ∈ Tn, is not independent of t).
When x ∈ ∂Et, we define the outer normal velocity of the flow of the boundaries ∂Et, which are

smooth hypersurfaces of Tn, as
Vt(x) = 〈Xt(x)|νEt(x)〉,

for every t ∈ [0,T ), where νEt is the outer normal vector to Et.
For more clarity and to simplify formulas and computations, from now on we will denote withˆ

∂Et

f dµt the integral
ˆ
∂F

f ◦ Φt dµt ,

for every f : ∂Et → R, where in the second integral µt is the canonical Riemannian measure induced
on the hypersurface ∂Et, parametrized by Φt|∂F , by the flat metric of Tn (coinciding with the Hausdorff
(n − 1)–dimensional measure). Moreover, in the same spirit we set νt = νEt .

Before giving the definition of the modified Mullins–Sekerka flow (first appeared in [46] – see
also [11, 33] and [22] for a very clear and nice introduction to such flow), we need some notation.
Given a smooth set E ⊆ Tn and γ ≥ 0, we denote by wE the unique solution in H1(Tn) of the following
problem ∆wE = 0 in Tn \ ∂E

wE = H + 4γvE on ∂E,
(3.1)

where vE is the potential introduced in (2.3) and H is the mean curvature of ∂E. Moreover, we denote
by w+

E and w−E the restrictions wE |Ec and wE |E, respectively. Finally, denoting as usual by νE the outer
unit normal to E, we set

[∂νE wE] = ∂νE w+
E − ∂νE w−E = −(∂νEc w+

E + ∂νE w−E) .
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that is the “jump” of the normal derivative of wE on ∂E.

Definition 3.2. Let E ⊆ Tn be a smooth set. We say that a smooth flow Et such that E0 = E, is a
modified Mullins–Sekerka flow with parameter γ ≥ 0, on the time interval [0,T ) and with initial datum
E, if the outer normal velocity Vt of the moving boundaries ∂Et is given by

Vt = [∂νtwt] on ∂Et for all t ∈ [0,T ), (3.2)

where wt = wEt (with the above definitions) and we used the simplified notation ∂νtwt in place of
∂νEt

wEt .

Remark 3.3. The adjective “modified” comes from the introduction of the parameter γ ≥ 0 in the
problem, while considering γ = 0 we have the original flow proposed by Mullins and Sekerka in [46]
(see also [11,33]), which has been also called Hele–Shaw model [7], or Hele–Shaw model with surface
tension [19–21], which arises as a singular limit of a nonlocal version of the Cahn–Hilliard equation [4,
41, 50], to describe phase separation in diblock copolymer melts (see also [49]).

Parametrizing the smooth hypersurfaces Mt = ∂Et of Tn by some smooth embeddings ψt : M → Tn

such that ψt(M) = ∂Et (here M is a fixed smooth differentiable (n − 1)–dimensional manifold and
the map (t, p) 7→ ψ(t, p) = ψt(p) is smooth), the geometric evolution law (3.2) can be expressed
equivalently as 〈∂ψt

∂t

∣∣∣∣ νt

〉
= [∂νtwt], (3.3)

where we denoted by νt the outer unit normal to Mt = ∂Et.
Moreover, as the moving hypersurfaces Mt = ∂Et are compact, it is always possible to smoothly

reparametrize them with maps (that we still call) ψt such that

∂ψt

∂t
= [∂νtwt]νt , (3.4)

in describing such flow. This follows by the invariance by tangential perturbations of the velocity,
shared by the flow due to its geometric nature and can be proved following the line in Section 1.3
of [42], where the analogous property is shown in full detail for the (more famous) mean curvature flow.
Roughly speaking, the tangential component of the velocity of the points of the moving hypersurfaces,
does not affect the global “shape” during the motion.

Like the nonlocal Area functional J (see Definition 2.2), the flow is obviously invariant by
translations, or more generally under any isometry of Tn (or Rn). Moreover, if ψ : [0,T ) × M → Tn is
a modified Mullins–Sekerka flow of hypersurfaces, in the sense of equation (3.3) and
Φ : [0,T ) × M → M is a time–dependent family of smooth diffeomorphisms of M, then it is easy to
check that the reparametrization ψ̃ : [0,T ) × M → Tn defined as ψ̃(t, p) = ψ(t,Φ(t, p)) is still a
modified Mullins–Sekerka flow (again in the sense of equation (3.3)). This property can be reread as
“the flow is invariant under reparametrization”, suggesting that the really relevant objects are actually
the subsets Mt = ψt(M) of Tn.

We show now that the volume of the sets Et is preserved during the evolution. We remark that
instead, other geometric properties shared for instance by the mean curvature flow (see [42, Chapter 2]),
like convexity are not necessarily maintained (see [16]), neither there holds the so–called “comparison
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property” asserting that if two initial sets are one contained in the other, they stay so during the two
respective flows.

This volume–preserving property can be easily proved, arguing as in the computation leading to
equation (2.23). Indeed, if Et = Ψt(F) is a modified Mullins–Sekerka flow, described by
Ψ ∈ C∞([0,T ) × Tn;Tn), with an associated smooth vector field Xt as above, we have

d
dt

Vol(Et) =

ˆ
F

∂

∂t
JΨt(y) dy =

ˆ
F

div Xt(Ψ(t, y))JΨ(t, y) dy (3.5)

=

ˆ
Et

div Xt(x) dx =

ˆ
∂Et

〈Xt|νt〉 dµt =

ˆ
∂Et

Vt dµt

=

ˆ
∂Et

[∂νtwt] dµt =

ˆ
∂Et

(
∂νtw

+
t − ∂νtw

−
t
)

dµt = 0 ,

where the last equality follows from the divergence theorem and the fact that wt is harmonic in Tn \∂Et.
Another important property of the modified Mullins–Sekerka flow is that it can be regarded as the

H−1/2–gradient flow of the functional J under the constraint that the volume is fixed, that is, the outer
normal velocity Vt is minus such H−1/2–gradient of the functional J (see [41]).

For any smooth set E ⊆ Tn, we let the space H̃−1/2(∂E) ⊆ L2(∂E) to be the dual of H̃1/2(∂E) (the
functions in H1/2(∂E) with zero integral) with the Gagliardo H1/2–seminorm (see [3, 14, 48, 61], for
instance)

‖u‖2
H̃1/2(∂E)

= [u]2
H1/2(∂E) =

ˆ
∂E

ˆ
∂E

|u(x) − u(y)|2

|x − y|n+1 dµ(x)dµ(y)

(it is a norm for H̃1/2(∂E) since the functions in it have zero integral) and the pairing between H̃1/2(∂E)
and H̃−1/2(∂E) simply being the integral of the product of the functions on ∂E.

We define the linear operator ∆∂E on the smooth functions u with zero integral on ∂E as follows:
we consider the unique smooth solution w of the problem∆w = 0 in Tn \ ∂E

w = u on ∂E

and we denote by w+ and w− the restrictions w|Ec and w|E, respectively, then we set

∆∂Eu = ∂νw+ − ∂νw− = [∂νw] ,

which is another smooth function on ∂E with zero integral. Then, we have
ˆ
Tn
|∇w|2 dx =

ˆ
E∪Ec

div(w∇w) dx = −

ˆ
∂E

u∆∂Eu dµ

and such quantity turns out to be a norm equivalent to the one given by the Gagliardo seminorm on
H̃1/2(∂E) above (this is related to the theory of trace spaces for which we refer to [3, 25]), see [41].
Hence, it induces the dual norm

‖v‖2
H̃−1/2(∂E)

=

ˆ
∂E

v(−∆∂E)−1v dµ
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for every smooth function v ∈ H̃−1/2(∂E). By polarization, we have the H̃−1/2(∂E)–scalar product
between a pair of smooth functions u, v : ∂E → R with zero integral,

〈u|v〉H̃−1/2(∂E) =

ˆ
∂E

u(−∆∂E)−1v dµ .

This scalar product, extended to the whole space H̃−1/2(∂E), makes it a Hilbert space (see [27]), hence,
by Riesz representation theorem, there exists a function ∇H̃−1/2

∂E J ∈ H̃−1/2(∂E) such that, for every smooth
function v ∈ H̃−1/2(∂E), there holds

ˆ
∂E

v(H + 4γvE) dµ = δJ∂E(v) = 〈v|∇H̃−1/2

∂E J〉H̃−1/2(∂E) =

ˆ
∂E

v(−∆∂E)−1∇H̃−1/2

∂E J dµ ,

by Theorem 2.6, where vE is the potential introduced in (2.3) and H is the mean curvature of ∂E.
Then, by the fundamental lemma of calculus of variations, we conclude

(−∆∂E)−1∇H̃−1/2

∂E J = H + 4γvE + c ,

for a constant c ∈ R, that is, recalling the definition of wE in problem (3.1) and of the operator ∆∂E

above,
∇H̃−1/2

∂E J = −∆∂E(H + 4γvE) = −[∂νE wE] .

It clearly follows that the outer normal velocity of the moving boundaries Vt = [∂νtwt] is minus the
H̃−1/2–gradient of the volume–constrained functional J.

We deal now with the surface diffusion flow.

Definition 3.4. Let E ⊆ Tn be a smooth set. We say that a smooth flow Et = Φt(F), for t ∈ [0,T ),
with E0 = E, is a surface diffusion flow starting from E if the outer normal velocity Vt of the moving
boundaries ∂Et is given by

Vt = ∆tHt for all t ∈ [0,T ) (3.6)

where ∆t is the (rough) Laplacian associated to the hypersurface ∂Et, with the Riemannian metric
induced by Tn (that is, by Rn).

Such flow was first proposed by Mullins in [45] to study thermal grooving in material sciences and
first analyzed mathematically more in detail in [17]. In particular, in the physically relevant case of
three–dimensional space, it describes the evolution of interfaces between solid phases of a system,
driven by surface diffusion of atoms under the action of a chemical potential (see for instance [34]).

With the same argument used for the modified Mullins–Sekerka flow, representing the smooth
hypersurfaces ∂Et in Tn with a family of smooth embeddings ψt : M → Tn, we can describe the flow
as 〈∂ψt

∂t

∣∣∣∣νt

〉
= ∆tHt

and also simply as
∂ψt

∂t
= (∆tHt)νt . (3.7)
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Remark 3.5. This is actually the more standard way to define the surface diffusion flow, in the more
general situation of smooth and possibly immersed–only hypersurfaces (usually in Rn), without being
the boundary of any set.

By means of Eq (2.10), the system (3.7) can be rewritten as

∂ψt

∂t
= −∆t∆tψt + lower order terms (3.8)

and it can be seen that it is a fourth order, quasilinear and degenerate, parabolic system of PDEs.
Indeed, it is quasilinear, as the coefficients (as second order partial differential operator) of the
Laplacian associated to the induced metrics gt on the evolving hypersurfaces, that is,

∆tψt(p) = ∆gt(p)ψt(p) = gi j
t (p)∇gt(p)

i ∇
gt(p)
j ψt(p)

depend on the first order derivatives of ψt, as gt (and the coefficient of ∆t∆t on the third order
derivatives). Moreover, the operator at the right hand side of system (3.7) is degenerate, as its symbol
(the symbol of the linearized operator) admits zero eigenvalues due to the invariance of the Laplacian
by diffeomorphisms.

Arguing as in computation (3.5), using the Eq (3.6) in place of (3.2), it can be seen that also the
surface diffusion flow of boundaries of sets is volume–preserving. Moreover, analogously to the
modified Mullins–Sekerka flow (see the discussion above), it does not preserve convexity (see [36]),
nor the embeddedness (in the “stand–alone” formulation of motion of hypersurfaces, as in
formula (3.7), see [28]), indeed it also does not have a “comparison principle”, while it is invariant by
isometries of Tn, reparametrizations and tangential perturbations of the velocity of the motion. In
addition, it can be regarded as the H̃−1–gradient flow of the volume–constrained Area functional, in
the following sense (see [27], for instance). For a smooth set E ⊆ Tn, we let the space
H̃−1(∂E) ⊆ L2(∂E) to be the dual of H̃1(∂E) with the norm ‖u‖H̃1(∂E) =

´
∂E |∇u|2 dµ and the pairing

between H̃1(∂E) and H̃−1(∂E) simply being the integral of the product of the functions on ∂E.
Then, it follows easily that the norm of a smooth function v ∈ H̃−1(∂E) is given by

‖v‖2
H̃−1(∂E)

=

ˆ
∂E

v(−∆)−1v dµ =

ˆ
∂E
〈∇(−∆)−1v|∇(−∆)−1v〉 dµ

and, by polarization, we have the H̃−1(∂E)–scalar product between a pair of smooth functions u, v :
∂E → R with zero integral,

〈u|v〉H̃−1(∂E) =

ˆ
∂E
〈∇(−∆)−1u|∇(−∆)−1v〉 dµ =

ˆ
∂E

u(−∆)−1v dµ ,

integrating by parts.
This scalar product, extended to the whole space H̃−1(∂E), make it a Hilbert space, hence, by Riesz

representation theorem, there exists a function ∇H̃−1

∂EA ∈ H̃−1(∂E) such that, for every smooth function
v ∈ H̃−1(∂E), there holds

ˆ
∂E

vH dµ = δA∂E(v) = 〈v|∇H̃−1

∂EA〉H̃−1(∂E) =

ˆ
∂E

v(−∆)−1∇H̃−1

∂EA dµ ,
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by Theorem 2.6 (with γ = 0).
Then, by the fundamental lemma of calculus of variations, we conclude

(−∆)−1∇H̃−1

∂EA = H + c ,

for a constant c ∈ R, that is,
∇H̃−1

∂EA = −∆H .

It clearly follows that the outer normal velocity of the moving boundaries of a surface diffusion flow
Vt = ∆tHt is minus the H̃−1–gradient of the volume–constrained functionalA.

Remark 3.6. It is interesting to notice that the (unmodified, that is, with γ = 0) Mullins–Sekerka flow
is the H−1/2–gradient flow and the surface diffusion flow the H−1–gradient flow of the Area functional
on the boundary of the sets, under a volume constraint, while considering the unconstrained Area
functional, its L2–gradient flow is the mean curvature flow.

It follows that, in a way, the unmodified Mullins–Sekerka flow, representing the moving
hypersurfaces as of smooth embeddings ψt : M → Tn, can be described as

∂ψt

∂t
= (∆1/2

t Ht)νt = −∆
3/2
t ψt + lower order terms,

showing its parabolic nature (differently by the surface diffusion flow, in this case the equation is
nonlocal, due to the fractional Laplacian involved, even if the functional is still simply the Area, hence
implying that the flow depends only on the hypersurface) – again quasilinear and degenerate – and
suggesting the problem of analyzing (and eventually generalizing the existing results) the nonlocal
evolutions of hypersurfaces given by the laws

∂ψt

∂t
= (∆s

t Ht)νt = −∆s+1
t ψt + lower order terms,

when s > 0, arising from considering, as above, the H−s–gradient of the Area functional on the
boundary of the sets (under a volume constraint).

Up to our knowledge, these flows are not present in literature and it would be also interesting to
compare them to the fractional mean curvature flows arising considering the gradient flows associated
to the fractional Area functionals on the boundary of a set (in this case such functionals are “strongly”
nonlocal), see [35, 38] and references therein, for instance.

3.1. Short time existence

To state the short time existence and uniqueness results for the two flows, we give the following
definition which is actually fundamental for the discussion of the global existence in the next section.

Definition 3.7. Given a smooth set E ⊆ Tn and a tubular neighborhood Nε of ∂E, as in formula (2.49),
for any M ∈ (0, ε/2) (recall the discussion in Subsection 2.2 about the notion of “closedness” of sets),
we denote by C1

M(E), the class of all smooth sets F ⊆ E ∪ Nε such that Vol(F4E) ≤ M and

∂F = {x + ψF(x)νE(x) : x ∈ ∂E} , (3.9)

for some ψF ∈ C∞(∂E), with ‖ψF‖C1(∂E) ≤ M (hence, ∂F ⊆ Nε). For every k ∈ N and α ∈ (0, 1), we
also denote by Ck,α

M (E) the collection of sets F ∈ C1
M(E) such that ‖ψF‖Ck,α(∂E) ≤ M.
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The following existence/uniqueness theorem of classical solutions for the modified
Mullins–Sekerka flow was proved by Escher and Simonett [19–21] and independently by Chen, Hong
and Yi [8] (see also [18]). The original version deals with the flow in domains of Rn, but it can be
easily adapted to hold also when the ambient is the flat torus Tn.

Theorem 3.8. Let E ⊆ Tn be a smooth set and Nε a tubular neighborhood of ∂E, as in formula (2.49),
Then, for every α ∈ (0, 1) and M ∈ (0, ε/2) small enough, there exists T = T (E,M, α) > 0 such that
if E0 ∈ C

2,α
M (E) there exists a unique smooth modified Mullins–Sekerka flow with parameter γ ≥ 0,

starting from E0, in the time interval [0,T ).

We now state the analogous result (and also of dependence on the initial data) for the surface
diffusion flow starting from a smooth hypersurface, proved by Escher, Mayer and Simonett in [17],
which should be expected by the explicit parabolic nature of the system (3.7), as shown by the
formula (3.8). As before, it deals with the evolution in the whole space Rn of a generic hypersurface,
even only immersed, hence possibly with self–intersections. It is then straightforward to adapt the
same arguments to our case, when the ambient is the flat torus Tn and the hypersurfaces are the
boundaries of the sets Et, as in Definition 3.4, getting a (unique) surface diffusion flow in a positive
time interval [0,T ), for every initial smooth set E0 ⊆ T

n.

Theorem 3.9. Let ψ0 : M → Rn be a smooth and compact, immersed hypersurface. Then, there exists
a unique smooth surface diffusion flow ψ : [0,T ) × M → Rn, starting from M0 = ψ0(M) and solving
system (3.7), for some maximal time of existence T > 0.

Moreover, such flow and the maximal time of existence depend continuously on the C2,α norm of the
initial hypersurface.

As an easy consequence, we have the following proposition (analogous to Theorem 3.8), better
suited for our setting.

Proposition 3.10. Let E ⊆ Tn be a smooth set and Nε a tubular neighborhood of ∂E, as in
formula (2.49), Then, for every α ∈ (0, 1) and M ∈ (0, ε/2) small enough, there exists
T = T (E,M, α) > 0 such that if E0 ∈ C

2,α
M (E) there exists a unique smooth surface diffusion flow,

starting from E0, in the time interval [0,T ).

In the same paper [17], Escher, Mayer and Simonett also showed that if the initial set E0 is in
C

2,α
M (B), where B ⊆ Rn is a ball with the same volume and M is small enough (that is, E0 is C2,α–close

to the ball B), then the smooth flow Et exists for every time and smoothly converges to a translate of
the ball B.

The analogous result for the (unmodified, that is, with γ = 0) Mullins–Sekerka flow, was proved by
Escher and Simonett in [22] (moving by their previous work [20]), generalizing to any dimension the
two dimensional case shown by Chen in [7].

The next section will be devoted to present the generalization by Acerbi, Fusco, Julin and Morini
in [1] (in dimensions two and three) of this stability result for the surface diffusion and modified
Mullins–Sekerka flow, to every strictly stable critical set (as it is every ball for the Area functional
under a volume constraint, by direct check – see the last section).

We conclude mentioning another interesting result by Elliott and Garcke [15] (which is not present
in literature for the modified Mullins–Sekerka flow, up to our knowledge) is that if the initial curve
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E0 in R2 of the surface diffusion flow is closed to a circle, then the flow Et exists for all times and
converges, up to translations, to a circle in the plane with the same volume. This is clearly related
to the fact that the unique bounded strictly stable critical sets for the Area functional under a volume
constraint in the plane R2 are the disks (see the last section).

4. Global existence and asymptotic behavior around a strictly stable critical set

In this section we show the proof by Acerbi, Fusco, Julin and Morini in [1], in dimensions two and
three of the toric ambient, that if the “initial” sets is “close enough” to a strictly stable critical set of
the respectively relative functional, then the surface diffusion and the modified Mullins–Sekerka flow
exist for all times and smoothly converge to a translate of E. Heuristically, this shows that a strictly
stable critical set is in a way like the equilibrium configuration of a system at the bottom of a potential
well “attracting” the close enough smooth sets.

We will deal here with the (more difficult) case of dimension three. When the dimension is two, the
“exponents” in the functional spaces involved in the estimates (in particular the ones in the interpolation
inequalities, which are very dimension–dependent) change but the same proof still works (roughly
speaking, we have the necessary “compactness” of the sequences of hypersurfaces – see Lemma 4.5
and 4.18), modifying suitably the statements. If the dimension of the toric ambient is larger than three,
the analogous (mostly, interpolation) estimates are too weak to conclude and this proof does not work.
It is indeed a challenging open problem to extend these results to such higher dimensions.

For both flows, we will have a subsection with the necessary technical lemmas and then one with the
proof of the main theorem. Moreover, for the modified Mullins–Sekerka flow, we also briefly discuss
the “Neumann case”, in Subsection 4.3.

4.1. The modified Mullins–Sekerka flow – Preliminary lemmas

In order to simplify the notation, for a smooth set Et ⊆ T
n we will write νt and ∂νt in place of νEt

and ∂νEt
, wt for the function wEt ∈ H1(Tn) uniquely defined by problem (3.1). Moreover, we will also

denote with vt the smooth potential function vEt associated to Et by formula (2.3).
We start with the following lemma holding in all dimensions.

Lemma 4.1 (Energy identities). Let Et ⊆ T
n be a modified Mullins–Sekerka flow as in Definition (3.2).

Then, the following identities hold:

d
dt

J(Et) = −

ˆ
Tn
|∇wt|

2 dx , (4.1)

and
d
dt

1
2

ˆ
Tn
|∇wt|

2 dx = −ΠEt

(
[∂νtwt]

)
+

1
2

ˆ
∂Et

(
∂νtw

+
t + ∂νtw

−
t
)
[∂νtwt]2 dµt , (4.2)

where ΠEt is the quadratic form defined in formula (2.41).

Proof. Let ψt the smooth family of maps describing the flow as in formula (3.4). By formula (2.15),
where X is the smooth (velocity) vector field Xt =

∂ψt
∂t = [∂νtwt]νt along ∂Et, hence

Xτ = Xt − 〈Xt|νt〉νt = 0 (as usual νt is the outer normal unit vector of ∂Et), following the computation
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in the proof of Theorem (2.6), we have

d
dt

J(Et) =

ˆ
∂Et

(Ht + 4γvt)〈Xt|νt〉 dµt =

ˆ
∂Et

wt[∂νtwt] dµt = −

ˆ
Tn
|∇wt|

2 dx ,

where the last equality follows integrating by parts, as wt is harmonic in Tn \ ∂Et. This establishes
relation (4.1).

In order to get identity (4.2), we compute

d
dt

1
2

ˆ
Et

|∇w−t |
2 dx =

1
2

ˆ
∂Et

|∇T
n
w−t |

2 〈Xt|νt〉 dµt +
1
2

ˆ
Et

d
dt
|∇w−t |

2 dx

=
1
2

ˆ
∂Et

|∇T
n
w−t |

2[∂νtwt] dµ +

ˆ
Et

∇∂tw−t ∇w−t dµt

=
1
2

ˆ
∂Et

|∇T
n
w−t |

2[∂νtwt] dµ +

ˆ
∂Et

∂tw−t ∂νtw
−
t dµt, (4.3)

where we interchanged time and space derivatives and we applied the divergence theorem, taking into
account that w−t is harmonic in Et.

Then, we need to compute ∂tw−t on ∂Et. We know that

w−t = Ht + 4γvt

on ∂Et, hence, (totally) differentiating in time this equality, we get

∂tw−t +
〈
∇T

n
w−t

∣∣∣Xt
〉

= ∂tHt + 4γ∂tvt + 4γ
〈
∇T

n
vt

∣∣∣Xt
〉
,

that is,

∂tw−t + [∂νtwt]∂νtw
−
t = ∂tHt + 4γ∂tvt + 4γ[∂νtwt]∂νtvt

= − |Bt|
2[∂νtwt] − ∆t[∂νtwt] + 4γ∂tvt + 4γ[∂νtwt]∂νtvt ,

where we used computation (2.33).
Therefore from Eqs (4.3) and (2.35) we get

d
dt

1
2

ˆ
Et

|∇w−t |
2 dx = −

ˆ
∂Et

∂νtw
−
t ∆t[∂νtwt] dµt −

ˆ
∂Et

∂νtw
−
t |Bt|

2 [∂νtwt] dµt

+ 8γ
ˆ
∂Et

ˆ
∂Et

G(x, y) ∂νtw
−
t (x) [∂νtwt](y) dµt(x)dµt(y)

+ 4γ
ˆ
∂Et

∂νtvt ∂νtw
−
t [∂νtwt] dµt

+
1
2

ˆ
∂Et

|∇T
n
w−t |

2[∂νtwt] dµt −

ˆ
∂Et

(∂νtw
−
t )2[∂νtwt] dµt .

Computing analogously for w+
t in Ec and adding the two results, we get

d
dt

1
2

ˆ
Tn
|∇wt|

2 dx =

ˆ
∂Et

[∂νtwt] ∆t[∂νtwt] dµt +

ˆ
∂Et

|Bt|
2 [∂νtwt]2 dµt
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− 8γ
ˆ
∂Et

ˆ
∂Et

G(x, y) [∂νtwt](x) [∂νtwt](y) dµt(x)dµt(y)

− 4γ
ˆ
∂Et

∂νtvt [∂νtwt]2 dµt

+

ˆ
∂Et

(
(∂νtw

+
t )2 − (∂νtw

−
t )2)[∂νtwt] dµt

−
1
2

ˆ
∂Et

(
|∇T

n
w+

t |
2 − |∇T

n
w−t |

2)[∂νtwt] dµt

= − ΠEt

(
[∂νtwt]

)
+

1
2

ˆ
∂Et

(
∂νtw

+
t + ∂νtw

−
t
)
[∂νtwt]2 dµt ,

where we integrated by parts the very first term of the right hand side, recalled Definition (2.41) and in
the last step we used the identity

|∇T
n
w+

t |
2 − |∇T

n
w−t |

2 = (∂νtw
+
t )2 − (∂νtw

−
t )2 = (∂νtw

+
t + ∂νtw

−
t )[∂νtwt] .

Hence, also Eq (4.2) is proved. �

From now on, we restrict ourselves to the three–dimensional case, that is, we will consider smooth
subsets of T3 with boundaries which then are smooth embedded (2–dimensional) surfaces. As we
said at the beginning of the section, this is due to the dependence on the dimension of several of the
estimates that follow.

In the estimates in the following series of lemmas, we will be interested in having uniform
constants for the families C1,α

M (F), given a smooth set F ⊆ Tn and a tubular neighborhood Nε of ∂F as
in formula (2.49), for any M ∈ (0, ε/2) and α ∈ (0, 1). This is guaranteed if the constants in the
Sobolev, Gagliardo–Nirenberg interpolation and Calderón–Zygmund inequalities, relative to all the
smooth hypersurfaces ∂E boundaries of the sets E ∈ C1,α

M (F), are uniform, as it is proved in detail
in [13].

We remind that in all the inequalities, the constants C may vary from one line to another.
The next lemma provides some boundary estimates for harmonic functions.

Lemma 4.2 (Boundary estimates for harmonic functions). Let F ⊆ T3 be a smooth set and E ∈ C1,α
M (F).

Let f ∈ Cα(∂E) with zero integral on ∂E and let u ∈ H1(T3) be the (distributional) solution of

−∆u = fµ
∣∣∣
∂E

with zero integral on T3. Let u− = u|E and u+ = u|Ec and assume that u− and u+ are of class C1 up to
the boundary ∂E. Then, for every 1 < p < +∞ there exists a constant C = C(F,M, α, p) > 0, such
that:

(i) ‖u‖Lp(∂E) ≤ C‖ f ‖Lp(∂E)

(ii) ‖∂νE u+‖L2(∂E) + ‖∂νE u−‖L2(∂E) ≤ C‖u‖H1(∂E)

(iii) ‖∂νE u+‖Lp(∂E) + ‖∂νE u−‖Lp(∂E) ≤ C‖ f ‖Lp(∂E)
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(iv) ‖u‖C0,β(∂E) ≤ C‖ f ‖Lp(∂E)

for all β ∈
(
0, p−2

p

)
, with C depending also on β.

Moreover, if f ∈ H1(∂E), then for every 2 ≤ p < +∞ there exists a constant C = C(F,M, α, p) > 0,
such that

‖ f ‖Lp(∂E) ≤ C‖ f ‖(p−1)/p
H1(∂E) ‖u‖

1/p
L2(∂E) .

Proof. We are not going to underline it every time, but it is easy to check that all the constants that
will appear in the proof will depend with only on F, M, α and sometimes p, recalling the previous
discussion about the “uniform” inequalities holding for the families of sets C1,α

M (F).
(i) Recalling Remark 2.20, we have

u(x) =

ˆ
∂E

G(x, y) f (y) dµ(y).

It is well known that it is always possible to write G(x, y) = h(x − y) + r(x − y) where h : R → R is
smooth away from 0, one–periodic and h(t) = 1

4π|t| in a neighborhood of 0, while r : R → R is smooth
and one–periodic. The conclusion then follows since for v(x) =

´
∂E

f (y)
|x−y| dµ(y) there holds

‖v‖Lp(∂E) ≤ C‖ f ‖Lp(∂E) ,

with C = C(F,M, α, p) > 0.
(ii) We are going to adapt the proof of [37] to the periodic setting. First observe that since u is

harmonic in E ⊆ T3 we have

div
(
2〈∇u|x〉∇u − |∇u|2x + u∇u

)
= 0. (4.4)

Moreover, there exist constants r > 0, C0 and N ∈ N, depending only on F, M, α, such that we may
cover ∂E with N balls Br(xk), with every xk ∈ F and

1
C0
≤ 〈x|νE(x)〉 ≤ C0 for x ∈ ∂E ∩ B2r(xk) . (4.5)

for every that E ∈ C1,α
M (F).

If then 0 ≤ ϕk ≤ 1 is a smooth function with compact support in B2r(xk) such that ϕk ≡ 1 in Br(xk)
and |∇ϕk| ≤ C/r, by integrating the function

div
(
ϕk

(
2〈∇u|x〉∇u − |∇u|2x + u∇u

))
in E and using equality (4.4), we get

ˆ
E

〈
∇ϕk| 2 〈∇u|x〉 ∇u − |∇u|2x + u∇u

〉
dx

=

ˆ
E

div
(
ϕk(2 〈∇u|x〉 ∇u − |∇u|2x + u∇u)

)
dx

=

ˆ
∂E

(
2ϕk〈∇

T3
u|x〉∂νE u − ϕk|∇

T3
u|2〈x|νE〉 + ϕku∂νE u

)
dµ,
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hence,
ˆ

E

〈
∇ϕk|2

〈
∇T

3
u|x

〉
∇u − |∇u|2x + u∇u

〉
dx −

ˆ
∂E
ϕku∂νE u− dµ − 2

ˆ
∂E
ϕk〈∇u|x〉∂νE u− dµ

= −

ˆ
∂E
ϕk|∇

T3
u−|2〈x|νE〉 dµ + 2

ˆ
∂E
ϕk|∂νE u−|2〈x|νE〉 dµ

=

ˆ
∂E
ϕk|∂νE u−|2〈x|νE〉 dµ −

ˆ
∂E
ϕk|∇u|2〈x|νE〉 dµ .

Using the Poincaré inequality on the torus T3 (recall that u has zero integral) and estimate (4.5), this
inequality implies

ˆ
∂E∩Br(xk)

|∂νE u|2 dµ ≤ C
ˆ
∂E

(u2 + |∇u|2) dµ + C
ˆ
T3

(u2 + |∇u|2) dx

≤ C
ˆ
∂E

(u2 + |∇u|2) dµ + C
ˆ
T3
|∇u|2 dx .

Putting together all the above estimates and repeating the argument on Ec, we get
ˆ
∂E

(|∂νE u−|2 + |∂νE u+|2) dµ ≤ C
ˆ
∂E

(u2 + |∇u|2) dµ + C
ˆ
T3
|∇u|2 dx .

The thesis then follows by observing that
ˆ
T3
|∇u|2 dx =

ˆ
∂E

u(∂νE u− − ∂νE u+) dµ .

(iii) Let us define

K f (x) =

ˆ
∂E

〈
∇T

3

x G(x, y)|νE(x)
〉

f (y) dµ(y) .

We want to show that
‖K f ‖Lp(∂E) ≤ C‖ f ‖Lp(∂E). (4.6)

By the decomposition recalled at the point (i), we have ∇T
3

x G(x, y) = ∇T
3

x [h(x− y)] +∇T
3

x [r(x− y)], where
∇T

3

x [h(x − y)] = − 1
4π

x−y
|x−y|3 , for |x − y| small enough and ∇T

3

x [r(x − y)] is smooth. Thus, by a standard
partition of unity argument we may localize the estimate and reduce to show that if ϕ ∈ C1,α

c (R2) and
U ⊆ R2 is a bounded domain setting Γ = {(x′, ϕ(x′)) : x′ ∈ U} ⊆ R3 and

T f (x) =

ˆ
Γ

〈x − y|νE(x)〉
|x − y|3

f (y) dµ(y)

for every x ∈ Γ, where νE is the “upper” normal to the graph Γ, then T f (x) is well defined at every
x ∈ Γ and

‖T f ‖Lp(Γ) ≤ C‖ f ‖Lp(Γ) .

In order to show this we observe that we may write

T f (x) =

ˆ
U

ϕ(x′) − ϕ(y′) − 〈∇ϕ(x′)|x′ − y′〉
(|x′ − y′|2 + [ϕ(x′) − ϕ(y′)]2)3/2 f (y′, ϕ(y′)) dy′.
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where we used the fact that

Γ = {(x′, y′) : y′ − ϕ(x′) = F(x′, y′) = 0}

and then that
νE =

∇F
|∇F|

=
(−∇ϕ(x′), 1)√
1 + |∇ϕ(x′)|2

.

Therefore,

|T f (x)| ≤ C
ˆ

U

|x′ − y′|1+α

(|x′ − y′|2 + [ϕ(x′) − ϕ(y′)]2)3/2 | f (y′, ϕ(y′))| dy′ ≤ C
ˆ

U

| f (y′, ϕ(y′))|
|x′ − y′|2−α

dy′.

Thus, inequality (4.6) follows from a standard convolution estimate.
For x ∈ E we have

∇u(x) =

ˆ
∂E
∇T

3

x G(x, y) f (y) dµ(y),

hence, for x ∈ ∂E there holds

〈∇u(x − tνE(x))| νE(x)〉 =

ˆ
∂E

〈
∇T

3

x G(x − tνE(x), y)| νE(x)
〉

f (y) dµ(y).

We claim that
∂νE u−(x) = lim

t→0+
〈∇u(x − tνE(x))| νE(x)〉 = K f (x) +

1
2

f (x), (4.7)

for every x ∈ ∂E, then the result follows from inequality (4.6) and this limit, together with the
analogous identity for ∂νE u+(x).
To show equality (4.7) we first observe that

ˆ
∂E

〈
∇T

3

x G(x, y)| νE(y)
〉

dµ(y) = 1 − Vol(E) if x ∈ E \ ∂E (4.8)
ˆ
∂E

〈
∇T

3

x G(x, y)| νE(y)
〉

dµ(y) = 1/2 − Vol(E) if x ∈ ∂E. (4.9)

Indeed, using Definition (2.3), we have

∆vE(x) =

ˆ
E

∆xG(x, y) dy −
ˆ

Ec
∆xG(x, y) dy

= − 2
ˆ
∂E

〈
∇T

3

x G(x, y)| νE(y)
〉

dµ(y)

= 2Vol(E) − 1 − uE(x),

then, ˆ
∂E

〈
∇T

3

x G(x, y)| νE(y)
〉

dµ(y) = 1/2 − Vol(E) + uE(x)/2,

which clearly implies Eq (4.8). Equality (4.9) instead follows by an approximation argument, after
decomposing the Green function as at the beginning of the proof of point (i), G(x, y) = h(x−y)+r(x−y),
with h(t) = 1

4π|t| in a neighborhood of 0 and r : R→ R a smooth function.
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Therefore, we may write, for x ∈ ∂E and t > 0 (remind that νE is the outer unit normal vector, hence
x − tνE(x) ∈ E),

〈∇u(x − tνE(x))|νE(x)〉 =

ˆ
∂E

〈
∇T

3

x G(x − tνE(x), y)|νE(x)
〉
( f (y) − f (x)) dµ(y)

+ f (x)
ˆ
∂E

〈
∇T

3

x G(x − tνE(x), y)|νE(x) − νE(y)
〉

dµ(y)

+ f (x)(1 − Vol(E)) , (4.10)

by equality (4.8).
Let us now prove that

lim
t→0+

ˆ
∂E

〈
∇T

3

x G(x − tνE(x), y) | νE(x)
〉
( f (y) − f (x)) dµ(y)

=

ˆ
∂E

〈
∇T

3

x G(x, y) | νE(x)
〉
( f (y) − f (x)) dµ(y),

observing that since ∂E is of class C1,α then for |t| sufficiently small we have

|x − y − tνE(x)| ≥
1
2
|x − y| for all y ∈ ∂E . (4.11)

Then, in view of the decomposition of ∇xG above, it is enough show that

lim
t→0+

ˆ
∂E

〈x − y − tνE(x) | νE(x)〉
|x − y − tνE(x)|3

( f (y) − f (x)) dµ(y) =

ˆ
∂E

〈x − y | νE(x)〉
|x − y|3

( f (y) − f (x)) dµ(y) ,

which follows from the dominated convergence theorem, after observing that due to the α–Hölder
continuity of f and to inequality (4.11), the absolute value of both integrands can be estimated from
above by C/|x − y|2−α for some constant C > 0.

Arguing analogously, we also get

lim
t→0+

ˆ
∂E

〈
∇T

3

x G(x − tνE(x), y)|νE(x) − νE(y)
〉

dµ(y) =

ˆ
∂E

〈
∇T

3

x G(x, y)|νE(x) − νE(y)
〉

dµ(y) .

Then, letting t → 0+ in equality (4.10), for every x ∈ ∂E, we obtain

lim
t→0+
〈∇u(x − tνE(x))|νE(x)〉 =

ˆ
∂E

〈
∇T

3

x G(x, y)|νE(x)
〉
( f (y) − f (x)) dµ(y)

+ f (x)
ˆ
∂E

〈
∇T

3

x G(x, y)|νE(x) − νE(y)
〉

dµ(y) + f (x)(1 − Vol(E))

=

ˆ
∂E

〈
∇T

3

x G(x, y)|νE(x)
〉

f (y) dµ(y)

− f (x)
ˆ
∂E

〈
∇T

3

x G(x, y)|νE(y)
〉

dµ(y) + f (x)(1 − Vol(E))

= K f (x) + f (x)(Vol(E) − 1/2) + f (x)(1 − Vol(E))

= K f (x) +
1
2

f (x),
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where we used equality (4.9), then limit (4.7) holds and the thesis follows.
(iv) Fixed p > 2 and β ∈ (0, p−2

p ), as before, due to the properties of the Green’s function, it is
sufficient to establish the statement for the function

v(x) =

ˆ
∂E

f (y)
|x − y|

dµ(y) .

For x1, x2 ∈ ∂E we have

|v(x1) − v(x2)| ≤
ˆ
∂E
| f (y)|

∣∣∣|x1 − y| − |x2 − y|
∣∣∣

|x1 − y| |x2 − y|
dµ(y) .

In turn, by an elementary inequality, we have∣∣∣|x1 − y| − |x2 − y|
∣∣∣

|x1 − y| |x2 − y|
≤ C(β)

∣∣∣|x1 − y|1−β + |x2 − y|1−β
∣∣∣

|x1 − y| |x2 − y|
|x1 − x2|

β ,

thus, by Hölder inequality we have

|v(x1) − v(x2)| ≤ C(β)
ˆ
∂E
| f (y)|

∣∣∣|x1 − y|1−β + |x2 − y|1−β
∣∣∣

|x1 − y| |x2 − y|
dµ(y) |x1 − x2|

β

≤ C′(β)‖ f ‖Lp |x1 − x2|
β ,

where we set

C′(β) = 2C(β)
(

sup
z1, z2∈∂E

ˆ
∂E

1
|z1 − y|βp′ |z2 − y|p′

dµ(y)
)1/p′

,

with p′ = p/(p − 1).
For the second part of the lemma, we start by observing that

‖ f ‖L2(∂E) ≤ C‖ f ‖1/2
H1(∂E)‖ f ‖

1/2
H−1(∂E).

If p > 2 we have, by Gagliardo–Nirenberg interpolation inequalities (see [5, Theorem 3.70]),

‖ f ‖Lp(∂E) ≤ C‖ f ‖
(p−2)/p

H1(∂E)‖ f ‖
2/p
L2(∂E).

Therefore, by combining the two previous inequalities we get that, for p ≥ 2, there holds

‖ f ‖Lp(∂E) ≤ C‖ f ‖
(p−1)/p

H1(∂E)‖ f ‖
1/p
H−1(∂E).

Hence, the thesis follows once we show

‖ f ‖H−1(∂E) ≤ C‖u‖L2(∂E).

To this aim, let us fix ϕ ∈ H1(∂E) and with a little abuse of notation denote its harmonic extension to
T3 still by ϕ. Then, by integrating by parts twice and by point (ii), we get

ˆ
∂E
ϕ f dµ = −

ˆ
∂E
ϕ∆u dµ

Mathematics in Engineering Volume 4, Issue 6, 1–104.



68

= −

ˆ
∂E

u[∂νEϕ] dµ

≤ ‖u‖L2(∂E)

∥∥∥[∂νEϕ]
∥∥∥

L2(∂E)

≤ ‖u‖L2(∂E)
(
‖∂νEϕ

+‖L2(∂E) + ‖∂νEϕ
−‖L2(∂E)

)
≤C‖u‖L2(∂E)‖ϕ‖H1(∂E).

Therefore,

‖ f ‖H−1(∂E) = sup
‖ϕ‖H1(∂E)≤1

ˆ
∂E
ϕ f dµ ≤ C‖u‖L2(∂E)

and we are done. �

For any smooth set E ⊆ T3, the fractional Sobolev space W s,p(∂E), usually obtained via local charts
and partitions of unity, has an equivalent definition considering directly the Gagliardo W s,p–seminorm
of a function f ∈ Lp(∂E), for s ∈ (0, 1), as follows

[ f ]p
W s,p(∂E) =

ˆ
∂E

ˆ
∂E

| f (x) − f (y)|p

|x − y|2+sp dµ(x)dµ(y)

and setting ‖ f ‖W s,p(∂E) = ‖ f ‖Lp(∂E) + [ f ]W s,p(∂E) (we refer to [3,14,48,61] for details). As it is customary,
we set [ f ]Hs(∂E) = [ f ]W s,2(∂E) and H s(∂E) = W s,2(∂E).

Then, it can be shown that for all the sets E ∈ C1,α
M (F), given a smooth set F ⊆ T3 and a tubular

neighborhood Nε of ∂F as in formula (2.49), for any M ∈ (0, ε/2) and α ∈ (0, 1), the constants giving
the equivalence between this norm above and the “standard” norm of W s,p(∂E) can be chosen to be
uniform, independent of E. Moreover, as for the “usual” (with integer order) Sobolev spaces, all the
constants in the embeddings of the fractional Sobolev spaces are also uniform for this family. This is
related to the possibility, due to the closeness in C1,α and the graph representation, of “localizing” and
using partitions of unity “in a single common way” for all the smooth hypersurfaces ∂E boundaries of
the sets E ∈ C1,α

M (F), see [13] for details.
Then, we have the following technical lemma.

Lemma 4.3. Let F ⊆ T3 be a smooth set and E ∈ C1,α
M (F). For every β ∈ [0, 1/2), there exists a

constant C = C(F,M, α, β) such that if f ∈ H1/2(∂E) and g ∈ W1,4(∂E), then

[ f g]H1/2(∂E) ≤ C[ f ]H1/2(∂E)‖g‖L∞(∂E) + C‖ f ‖
L

4
1+β (∂E)

‖g‖βL∞(∂E)‖∇g‖1−β
L4(∂E) .

Proof. We estimate with Hölder inequality, noticing that 6β/(1 + β) < 2, as β ∈ [0, 1/2), hence there
exists δ > 0 such that (6β + δ)/(1 + β) < 2,

[ f g]2
H1/2(∂E) ≤ 2[ f ]2

H1/2(∂E)‖g‖
2
L∞(∂E) + 2

ˆ
∂E

ˆ
∂E
| f (y)|2

|g(x) − g(y)|2

|x − y|3
dµ(x)dµ(y)

≤ 2[ f ]2
H1/2(∂E)‖g‖

2
L∞(∂E)

+ C
ˆ
∂E

ˆ
∂E

| f (y)|2

|x − y|3β+δ/2

|g(x) − g(y)|2(1−β)

|x − y|3(1−β)−δ/2 ‖g‖
2β
L∞(∂E) dµ(x)dµ(y)

≤ 2[ f ]2
H1/2(∂E)‖g‖

2
L∞(∂E)
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+ C
(ˆ

∂E
| f (y)|

4
1+β

ˆ
∂E

1

|x − y|
6β+δ
1+β

dµ(x)dµ(y)
)(1+β)/2

‖g‖2βL∞(∂E)

·
(ˆ

∂E

ˆ
∂E

|g(x) − g(y)|4

|x − y|6−
δ

1−β

dµ(x)dµ(y)
)(1−β)/2

≤ 2[ f ]2
H1/2(∂E)‖g‖

2
L∞(∂E)

+ C
(ˆ

∂E
| f (y)|

4
1+β dµ(y)

)(1+β)/2
‖g‖2βL∞(∂E) [g]2(1−β)

W
1− δ

4(1−β) ,4(∂E)

≤ 2[ f ]2
H1/2(∂E)‖g‖

2
L∞(∂E) + C‖ f ‖2

L
4

1+β (∂E)
‖g‖2βL∞(∂E)‖∇g‖2(1−β)

L4(∂E) .

Hence the thesis follows noticing that all the constants C above depend only on F, M, α and β, by the
previous discussion, before the lemma. �

As a corollary we have the following estimate.

Lemma 4.4. Let F ⊆ T3 be a smooth set and E ∈ C1,α
M (F). Then, for M small enough, there holds

‖ψE‖W5/2,2(∂F) ≤ C(F,M, α)
(
1 + ‖H‖2H1/2(∂E)

)
,

where H is the mean curvature of ∂E and the function ψE is defined by formula (3.9).

Proof. By a standard localization/partition of unity/straightening argument, we may reduce ourselves
to the case where the function ψE is defined in a disk D ⊆ R2 and ‖ψE‖C1,α(D) ≤ M. Fixed a smooth
cut–off function ϕ with compact support in D and equal to one on a smaller disk D′ ⊆ D, we have

∆(ϕψE) −
∇2(ϕψE)∇ψE∇ψE

1 + |∇ψE |
2 = ϕH

√
1 + |∇ψE |

2 + R(x, ψE,∇ψE) , (4.12)

where the remainder term R(x, ψE,∇ψE) is a smooth Lipschitz function. Then, using Lemma 4.3 with
β = 0 and recalling that ‖ψE‖C1,α(D) ≤ M, we estimate

[∆(ϕψE)]H1/2(D) ≤ C(F,M, α)
(

M2[∇2(ϕψE)]H1/2(D) + [H]H1/2(∂E)(1 + ‖∇ψE‖L∞(D))

+ ‖H‖L4(∂E)(1 + ‖ψE‖W2,4(D)) + 1 + ‖ψE‖W2,4(D)

)
.

We now use the fact that, by a simple integration by part argument, if u is a smooth function with
compact support in R2, there holds

[∆u]H1/2(R2) = [∇2u]H1/2(R2) ,

hence,

[∇2(ϕψE)]H1/2(D) = [∆(ϕψE)]H1/2(D)

≤ C(F,M, α)
(
M2[∇2(ϕψE)]H1/2(D) + [H]H1/2(∂E)(1 + ‖∇ψE‖L∞(D))

+ ‖H‖L4(∂E)(1 + ‖ψE‖W2,4(D)) + 1 + ‖ψE‖W2,4(D)

)
,
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then, if M is small enough, we have

[∇2(ϕψE)]H1/2(D) ≤ C(F,M, α)(1 + ‖H‖H1/2(∂E))(1 + ‖HessψE‖L4(D)), (4.13)

as
‖H‖L4(∂E) ≤ C(F,M, α)‖H‖H1/2(∂E), (4.14)

where we used the continuous embedding of H1/2(∂E) in L4(∂E) (see for instance Theorem 6.7 in [48],
with q = 4, s = 1/2 and p = 2).

By the Calderón–Zygmund estimates (holding uniformly for every hypersurface ∂E, with
E ∈ C1,α

M (F), see [13]),

‖HessψE‖L4(D) ≤ C(F,M, α)(‖ψE‖L4(D) + ‖∆ψE‖L4(D)) (4.15)

and the expression of the mean curvature

H =
∆ψE√

1 + |∇ψE |
2
−

HessψE(∇ψE∇ψE)

(
√

1 + |∇ψE |)3
,

we obtain

‖∆ψE‖L4(D) ≤ 2M‖H‖L4(∂E) + M2‖HessψE‖L4(D)

≤ 2M‖H‖L4(∂E) + C(F,M, α)M2(‖ψE‖L4(D) + ‖∆ψE‖L4(D)) . (4.16)

Hence, possibly choosing a smaller M, we conclude

‖∆ψE‖L4(D) ≤ C(F,M, α)(1 + ‖H‖L4(∂E)) ≤ C(F,M, α)(1 + ‖H‖H1/2(∂E)), (4.17)

again by inequality (4.14).
Thus, by estimate (4.15), we get

‖HessψE‖L4(D) ≤ C(F,M, α)(1 + ‖H‖
H

1
2 (∂E)

), (4.18)

and using this inequality in estimate (4.13),

[∇2(ϕψE)]H1/2(D) ≤ C(F,M, α)(1 + ‖H‖
H

1
2 (∂E)

)2,

hence,
[∇2ψE]H1/2(D′) ≤ C(F,M, α)(1 + ‖H‖

H
1
2 (∂E)

)2 ≤ C(F,M, α)(1 + ‖H‖2
H

1
2 (∂E)

).

The inequality in the statement of the lemma then easily follows by this inequality, estimate (4.18) and
‖ψE‖C1,α(D) ≤ M, with a standard covering argument. �

We are now ready to prove the last lemma of this section.

Lemma 4.5 (Compactness). Let F ⊆ T3 be a smooth set and En ⊆ C
1,α
M (F) a sequence of smooth sets

such that
sup
n∈N

ˆ
T3
|∇wEn |

2 dx < +∞ ,
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where wEn are the functions associated to En by problem (3.1).
Then, if α ∈ (0, 1/2) and M is small enough, there exists a smooth set F′ ∈ C1

M(F) such that, up to
a (non relabeled) subsequence, En → F′ in W2,p for all 1 ≤ p < 4 (recall the definition of convergence
of sets at the beginning of Subsection 2.2).

Moreover, if ˆ
T3
|∇wEn |

2 dx→ 0 ,

then F′ is critical for the volume–constrained nonlocal Area functional J and the convergence En → F′

is in W5/2,2.

Proof. Throughout all the proof we write wn, Hn, and vn instead of wEn , H∂En , and vEn , respectively.
Moreover, we denote by ŵn =

ffl
T3 wn dx and we set w̃n =

ffl
∂En

wn dµn and H̃n =
ffl
∂En

Hn dµn.
First, we recall that

wn = Hn + 4γvn on ∂En and sup
n∈N
‖vn‖C1,α(T3) < +∞ , (4.19)

by standard elliptic estimates. We want to show that

‖wn − w̃n‖
2
H1/2(∂En) ≤ ‖wn − ŵn‖

2
H1/2(∂En). (4.20)

To this aim, we recall that for every constant a

‖wn − a‖2L2(∂En) = ‖wn‖
2
L2(∂En) + a2A(∂En) − 2a

ˆ
∂En

wn dµn

then,
d

da
‖wn − a‖2L2(∂En) = 2aA(∂En) − 2

ˆ
∂En

wn dµn.

The above equality vanishes if and only if a =
ffl
∂En

wn dµn, hence,

‖wn − w̃n‖L2(∂En) = min
a∈R
‖wn − a‖L2(∂En)

and inequality (4.20) follows by the definition of ‖ · ‖H1/2(∂En) and the observation on the Gagliardo
seminorms just before Lemma 4.3.

Then, from the trace inequality (see [23]), which holds with a “uniform” constant C = C(F,M, α),
for all the sets E ∈ C1,α

M (F) (see [13]), we obtain

‖wn − w̃n‖
2
H1/2(∂En) ≤ ‖wn − ŵn‖

2
H1/2(∂En) ≤ C

ˆ
T3
|∇wn|

2 dx < C < +∞ (4.21)

with a constant C independent of n ∈ N.
We claim now that

sup
n∈N
‖Hn‖H1/2(∂En) < +∞. (4.22)

To see this note that by the uniform C1,α–bounds on ∂En, we may find a fixed solid cylinder of the form
C = D × (−L, L), with D ⊆ R2 a ball centered at the origin and functions fn, with

sup
n∈N
‖ fn‖C1,α(D) < +∞ , (4.23)
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such that ∂En ∩ C = {(x′, xn) ∈ D × (−L, L) : xn = fn(x′)} with respect to a suitable coordinate frame
(depending on n ∈ N). Then,

ˆ
D

(Hn − H̃n) dx′ + H̃n Area(D) =

ˆ
D

div
( ∇x′ fn√

1 + |∇x′ fn|
2

)
dx′ =

ˆ
∂D

∇x′ fn√
1 + |∇x′ fn|

2
·

x′

|x′|
dσ . (4.24)

where σ is the canonical (standard) measure on the circle ∂D.
Hence, recalling the uniform bound (4.23) and the fact that ‖Hn−H̃n‖H1/2(∂En) are equibounded thanks

to inequalities (4.19) and (4.21), we get that H̃n are also equibounded (by a standard “localization”
argument, “uniformly” applied to all the hypersurfaces ∂En). Therefore, the claim (4.22) follows.

By applying the Sobolev embedding theorem on each connected component of ∂F, we have that

‖Hn‖Lp(∂En) ≤ C‖Hn‖H
1
2 (∂En)

< C < +∞ for all p ∈ [1, 4].

for a constant C independent of n ∈ N.
Now, by means of Calderón–Zygmund estimates, it is possible to show (see [13]) that there exists a

constant C > 0 depending only on F, M, α and p > 1 such that for every E ∈ C1,α
M (F), there holds

‖B‖Lp(∂E) ≤ C(1 + ‖H‖Lp(∂E)) . (4.25)

Then, if we write
∂En = {y + ψn(y)νF(y) : y ∈ ∂F} ,

we have supn∈N ‖ψn‖W2,p(∂F) < +∞, for all p ∈ [1, 4]. Thus, by the Sobolev compact embedding
W2,p(∂F) ↪→ C1,α(∂F), up to a subsequence (not relabeled), there exists a set F′ ∈ C1,α

M (F) such
that

ψn → ψF′ in C1,α(∂F) and vn → vF′ in C1,β(T3)

for all α ∈ (0, 1/2) and β ∈ (0, 1).
From estimate (4.22) and Lemma 4.4 (possibly choosing a smaller M), we have then that the

functions ψn are bounded in W5/2,2(∂F). Hence, possibly passing to another subsequence (again not
relabeled), we conclude that En → F′ in W2,p for every p ∈ [1, 4), by the Sobolev compact embedding
(see for instance Theorem 6.7 in [48], with q ∈ [1, 4), s = 1/2 and p = 2, applied to Hessψn).

If moreover we have ˆ
T3
|∇wn|

2 dx→ 0 ,

then, the above arguments yield the existence of λ ∈ R and a subsequence (not relabeled) such that
wn

(
· +ψn(·)νF(·)

)
→ λ in H1/2(∂F). In turn,

Hn
(
· +ψn(·)νF(·)

)
→ λ − 4γvF′

(
· +ψF′(·)νF(·)

)
= H

(
· +ψF′(·)νF(·)

)
in H1/2(∂F), where H is the mean curvature of F′. Hence F′ is critical.

To conclude the proof we then only need to show that ψn converge to ψ = ψF′ in W5/2,2(∂F). Fixed
δ > 0, arguing as in the proof of Lemma 4.4, we reduce ourselves to the case where the functions
ψn are defined on a disk D ⊆ R2, are bounded in W5/2,2(D), converge in W2,p(D) for all p ∈ [1, 4) to
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ψ ∈ W5/2,2(D) and ‖∇ψ‖L∞(D) ≤ δ. Then, fixed a smooth cut–off function ϕ with compact support in D
and equal to one on a smaller disk D′ ⊆ D, we have

∆(ϕψn)√
1 + |∇ψn|

2
−

∆(ϕψ)√
1 + |∇ψ|2

= (∇2(ϕψn) − ∇2(ϕψ))
∇ψ∇ψ

(1 + |∇ψ|2)3/2

+ ∇2(ϕψn)
( ∇ψn∇ψn

(1 + |∇ψn|
2)3/2 −

∇ψ∇ψ

(1 + |∇ψ|2)3/2

)
+ ϕ(Hn − H) + R(x, ψn,∇ψn) − R(x, ψ,∇ψ) ,

where R is a smooth Lipschitz function. Then, using Lemma 4.3 with β ∈ (0, 1/2), an argument similar
to the one in the proof of Lemma 4.4 shows that[

∆(ϕψn)√
1 + |∇ψn|

2
−

∆(ϕψ)√
1 + |∇ψ|2

]
H1/2(D)

≤ C(M)
(
δ2[∇2(ϕψn) − ∇2(ϕψ)]H1/2(D)

+ ‖∇2(ϕψn) − ∇2(ϕψ)‖
L

4
1+β (D)

‖∇ψ‖
β
L∞(D)‖∇

2ψ‖
1−β
L4(D)+

+ [∇2(ϕψn)]H1/2(D)‖∇ψn − ∇ψ‖L∞(D)

+ ‖∇2(ϕψn)‖
L

4
1+β (D)

‖∇ψn − ∇ψ‖
β
L∞(D)(‖∇

2ψn‖L4(D) + ‖∇2ψ‖L4(D))1−β

+ ‖Hn − H‖H1/2(D) + ‖ψn − ψ‖W2,2(D)

)
.

Using Lemma 4.3 again to estimate [∆(ϕψn)−∆(ϕψ)]H1/2(D) with the seminorm on the left hand side of
the previous inequality and arguing again as in the proof of Lemma 4.4, we finally get

[∇2(ϕψn) − ∇2(ϕψ)]H1/2(D) ≤ C(M)
(
‖ψn − ψ‖

W
2, 4

1+β (D)
+ ‖∇ψn − ∇ψ‖

β
L∞(D) + ‖Hn − H‖H1/2(D)

)
,

hence,

[∇2ψn − ∇
2ψ]H1/2(D′) ≤ C(M)

(
‖ψn − ψ‖

W
2, 4

1+β (D′)
+ ‖∇ψn − ∇ψ‖

β
L∞(D′) + ‖Hn − H‖H1/2(D′)

)
,

from which the conclusion follows, by the first part of the lemma with p = 4/(1+β) < 4 and a standard
covering argument. �

4.2. The modified Mullins–Sekerka flow – The main theorem

We are ready to prove the long time existence/stability result.

Theorem 4.6. Let E ⊆ Tn be a smooth strictly stable critical set for the nonlocal Area functional under
a volume constraint and Nε (with ε < 1) a tubular neighborhood of ∂E, as in formula (2.49). For every
α ∈ (0, 1/2) there exists M > 0 such that, if E0 is a smooth set in C1,α

M (E) satisfying Vol(E0) = Vol(E)
and ˆ

T3
|∇wE0 |

2 dx ≤ M

where w0 = wE0 is the function relative to E0 as in problem (3.1), then the unique smooth solution Et of
the modified Mullins–Sekerka flow (with parameter γ ≥ 0) starting from E0, given by Theorem 3.8, is
defined for all t ≥ 0. Moreover, Et → E +η exponentially fast in W5/2,2 as t → +∞ (recall the definition

Mathematics in Engineering Volume 4, Issue 6, 1–104.



74

of convergence of sets at the beginning of Subsection 2.2), for some η ∈ R3, with the meaning that the
functions ψη,t : ∂E + η→ R representing ∂Et as “normal graphs” on ∂E + η, that is,

∂Et = {y + ψη,t(y)νE+η(y) : y ∈ ∂E + η},

satisfy
‖ψη,t‖W5/2,2(∂E+η) ≤ Ce−βt,

for every t ∈ [0,+∞), for some positive constants C and β.

Remark 4.7. With some extra effort, arguing as in the proof of Theorem 5.1 in [24] (last part – see
also Theorem 4.4 in the same paper), it can be shown that the convergence of Et → E + η is actually
smooth (see also Remark 4.20). Indeed, by means of standard parabolic estimates and interpolation
(and Sobolev embeddings) the exponential decay in W5/2,2 implies analogous estimates in Ck, for every
k ∈ N,

‖ψη,t‖Ck(∂E+η) ≤ Cke−βkt,

for every t ∈ [0,+∞), for some positive constants Ck and βk.

Remark 4.8. We already said that the property of a set E0 to belong to C1,α
M (E) is a “closedness”

condition in L1 of E0 and E and in C1,α of their boundaries. The extra condition in the theorem on
the L2–smallness of the gradient of w0 (see the second part of Lemma 4.5 and its proof) implies that
the quantity H0 + 4γv0 on ∂E0 is “close” to be constant, as it is the analogous quantity for the set E
(or actually for any critical set). Notice that this is a second order condition for the boundary of E0, in
addition to the first order one E0 ∈ C

1,α
M (E).

Proof of Theorem 4.6. Throughout the whole proof C will denote a constant depending only on E, M
and α, whose value may vary from line to line.

Assume that the modified Mullins–Sekerka flow Et is defined for t in the maximal time interval
[0,T (E0)), where T (E0) ∈ (0,+∞] and let the moving boundaries ∂Et be represented as “normal
graphs” on ∂E as

∂Et = {y + ψt(y)νE(y) : y ∈ ∂E},

for some smooth functions ψt : ∂E → R. As before we set νt = νEt , vt = vEt and wt = wEt .
We recall that, by Theorem 3.8, for every F ∈ C2,α

M (E), the flow is defined in the time interval [0,T ),
with T = T (E,M, α) > 0.

We show the theorem for the smooth sets E0 ⊆ T
3 satisfying

Vol(E04E) ≤ M1, ‖ψ0‖C1,α(∂E) ≤ M2 and
ˆ
T3
|∇w0|

2 dx ≤ M3 ,

for some positive constants M1,M2,M3, then we get the thesis by setting M = min{M1,M2,M3}.
For any set F ∈ C1,α

M (E) we introduce the following quantity

D(F) =

ˆ
F∆E

d(x, ∂E) dx =

ˆ
F

dE dx −
ˆ

E
dE dx, (4.26)

where dE is the signed distance function defined in formula (2.50). We observe that

Vol(F∆E) ≤ C‖ψF‖L1(∂E) ≤ C‖ψF‖L2(∂E)
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for a constant C depending only on E and, as F ⊆ Nε,

D(F) ≤
ˆ

F∆E
ε dx ≤ εVol(F∆E).

Moreover,

‖ψF‖
2
L2(∂E) = 2

ˆ
∂E

ˆ |ψF (y)|

0
t dt dµ(y)

= 2
ˆ
∂E

ˆ |ψF (y)|

0
d(L(y, t), ∂E) dt dµ(y)

= 2
ˆ

E∆F
d(x, ∂E) JL−1(x) dx

≤ CD(F).

where L : ∂E×(−ε, ε)→ Nε the smooth diffeomorphism defined in formula (2.53) and JL its Jacobian.
As we already said, the constant C depends only on E and ε. This clearly implies

Vol(F∆E) ≤ C‖ψF‖L1(∂E) ≤ C‖ψF‖L2(∂E) ≤ C
√

D(F) . (4.27)

Hence, by this discussion, the initial smooth set E0 ∈ C
1,α
M (E) satisfies D(E0) ≤ M ≤ M1 (having

chosen ε < 1).
By rereading the proof of Lemma 4.5, it follows that for M2,M3 small enough, if ‖ψF‖C1,α(∂E) ≤ M2

and ˆ
T3
|∇wF |

2 dx ≤ M3 ,

then,
‖ψF‖W2,3(∂E) ≤ ω(max{M2,M3}) , (4.28)

where s 7→ ω(s) is a positive nondecreasing function (defined on R) such that ω(s) → 0 as s → 0+.
Hence,

‖νF‖W1,3(∂F) ≤ ω
′(max{M2,M3}) , (4.29)

for a function ω′ with the same properties of ω. Both ω and ω′ only depend on E and α, for M small
enough.

We split the proof of the theorem into steps.
Step 1 (Stopping–time). Let T ≤ T (E0) be the maximal time such that

Vol(Et4E) ≤ 2M1, ‖ψt‖C1,α(∂E) ≤ 2M2 and
ˆ
T3
|∇wt|

2 dx ≤ 2M3 , (4.30)

for all t ∈ [0,T ). Hence,
‖ψt‖W2,3(∂E) ≤ ω(2 max{M2,M3})

for all t ∈ [0,T
′
), as in formula (4.28). Note that such a maximal time is clearly positive, by the

hypotheses on E0.
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We claim that by taking M1,M2,M3 small enough, we have T = T (E0).
Step 2 (Estimate of the translational component of the flow). We want to see that there exists a small
constant θ > 0 such that

min
η∈OE

∥∥∥ [∂νtwt] − 〈η | νt〉
∥∥∥

L2(∂Et)
≥ θ

∥∥∥[∂νtwt]
∥∥∥

L2(∂Et)
for all t ∈ [0,T ) , (4.31)

where OE is defined by formula (2.47).
If M is small enough, clearly there exists a constant C0 = C0(E,M, α) > 0 such that, for every

i ∈ IE, we have ‖〈ei|νt〉‖L2(∂Et) ≥ C0 > 0, holding ‖〈ei|νE〉‖L2(∂E) > 0. It is then easy to show that the
vector ηt ∈ OE realizing such minimum is unique and satisfies

[∂νtwt] = 〈ηt |νt〉 + g, (4.32)

where g ∈ L2(∂Et) is a function L2–orthogonal (with respect to the measure µt on ∂Et) to the vector
subspace of L2(∂Et) spanned by 〈ei|νt〉, with i ∈ IE, where {e1, . . . , e3} is the orthonormal basis of R3

given by Remark 2.26. Moreover, the inequality

|ηt| ≤ C
∥∥∥[∂νtwt]

∥∥∥
L2(∂Et)

(4.33)

holds, with a constant C depending only on E, M and α.
We now argue by contradiction, assuming ‖g‖L2(∂Et) < θ

∥∥∥[∂νtwt]
∥∥∥

L2(∂Et)
. First, by formula (2.6) and

the translation invariance of the functional J, we have

0 =
d
ds

J(Et + sηt)
∣∣∣∣∣
s=0

=

ˆ
∂Et

(Ht + 4γvt)〈ηt | νt〉 dµt =

ˆ
∂Et

wt〈ηt | νt〉 dµt .

It follows that, by multiplying equality (4.32) by wt − ŵt, with ŵt =
ffl
T3 wt dx and integrating over ∂Et,

we get
ˆ
T3
|∇wt|

2 dx = −

ˆ
∂Et

wt[∂νtwt] dµt

= −

ˆ
∂Et

(wt − ŵt)[∂νtwt] dµt

= −

ˆ
∂Et

(wt − ŵt)g dµt

≤ θ‖wt − ŵt‖L2(∂Et)

∥∥∥[∂νtwt]
∥∥∥

L2(∂Et)
.

Note that in the second and the third equality above we have used the fact that [∂νtwt] and νt have zero
integral on ∂Et.

By the trace inequality (see [23]), we have

‖wt − ŵt‖
2
L2(∂Et)

≤ ‖wt − ŵt‖
2
H1/2(∂Et)

≤ C
ˆ
T3
|∇wt|

2 dx , (4.34)

hence, by the previous estimate, we conclude
ˆ
T3
|∇wt|

2 dx ≤ Cθ2
∥∥∥[∂νtwt]

∥∥∥2

L2(∂Et)
. (4.35)
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Let us denote with f : T3 → R the harmonic extension of 〈ηt | νt〉 to T3, we then have

‖∇ f ‖L2(T3) ≤ C‖〈ηt | νt〉‖H1/2(∂Et) ≤ C|ηt|‖νt‖W1,3(∂Et) ≤ C
∥∥∥[∂νtwt]

∥∥∥
L2(∂Et)

, (4.36)

where the first inequality comes by standard elliptic estimates (holding with a constant
C = C(E,M, α) > 0, see [13] for details), the second is trivial and the last one follows by
inequalities (4.29) and (4.33).

Thus, by equality (4.32) and estimates (4.35) and (4.36), we get

‖〈ηt | νt〉‖
2
L2(∂Et)

=

ˆ
∂Et

[∂νtwt]〈ηt |νt〉 dµ

= −

ˆ
T3
〈∇wt | ∇ f 〉 dx

≤

(ˆ
T3
|∇wt|

2 dx
)1/2 (ˆ

T3
|∇ f |2 dx

)1/2

≤ Cθ
∥∥∥[∂νtwt]

∥∥∥2

L2(∂Et)
.

If then θ > 0 is chosen so small that Cθ + θ2 < 1 in the last inequality, then we have a contradiction
with equality (4.32) and the fact that ‖g‖L2(∂Et) < θ

∥∥∥[∂νtwt]
∥∥∥

L2(∂Et)
, as they imply (by L2–orthogonality)

that
‖〈ηt | νt〉‖

2
L2(∂Et)

> (1 − θ2)
∥∥∥[∂νtwt]

∥∥∥2

L2(∂Et)
.

All this argument shows that for such a choice of θ condition (4.31) holds.
By Propositions 2.35 and 2.36, there exist positive constants σθ and δ with the following properties:

for any set F ∈ C1,α
M (E) such that ‖ψF‖W2,3(∂E) < δ, there holds

ΠF(ϕ) ≥ σθ‖ϕ‖
2
H1(∂F)

for all ϕ ∈ H̃1(∂F) such that minη∈OE ‖ϕ − 〈η | νF〉‖L2(∂F) ≥ θ‖ϕ‖L2(∂F) and if E′ is critical, Vol(E′) =

Vol(E) with ‖ψE′‖W2,3(∂E) < δ, then
E′ = E + η (4.37)

for a suitable vector η ∈ R3. We then assume that M2,M3 are small enough such that

ω(2 max{M2,M3}) < δ/2 (4.38)

where ω is the function introduced in formula (4.28).
Step 3 (The stopping time T is equal to the maximal time T (E0)). We show now that, by taking
M1,M2,M3 smaller if needed, we have T = T (E0).

By the previous point and the suitable choice of M2,M3 made in its final part, formula (4.31) holds,
hence we have

ΠEt

(
[∂νtwt]

)
≥ σθ

∥∥∥[∂νtwt]
∥∥∥2

H1(∂E)
for all t ∈ [0,T ).

In turn, by Lemma 4.1 we may estimate

d
dt

(
1
2

ˆ
T3
|∇wt|

2 dx
)
≤ −σθ

∥∥∥[∂νtwt]
∥∥∥2

H1(∂Et)
+

1
2

ˆ
∂Et

(∂νtw
+
t + ∂νtw

−
t )[∂νtwt]2 dµt
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for every t ≤ T .
It is now easy to see that

∆wt = [∂νtwt]µt ,

then, by point (iii) of Lemma 4.2, we estimate the last term asˆ
∂Et

(∂νtw
+
t + ∂νtw

−
t )[∂νtwt]2 dµt ≤ C

ˆ
∂Et

(|∂νtw
+
t |

3 + |∂νtw
−
t |

3) dµt ≤ C
ˆ
∂Et

∣∣∣[∂νtwt]
∣∣∣3 dµt ,

thus, the last estimate in the statement of Lemma 4.2 implies∥∥∥[∂νtwt]
∥∥∥

L3(∂Et)
≤ C

∥∥∥[∂νtwt]
∥∥∥2/3

H1(∂Et)
‖wt − ŵt‖

1/3
L2(∂Et)

.

Therefore, combining the last three estimates, we get

d
dt

ˆ
T3
|∇wt|

2 dx ≤ − 2σθ

∥∥∥[∂νtwt]
∥∥∥2

H1(∂Et)
+ C‖wt − ŵt‖L2(∂Et)

∥∥∥[∂νtwt]
∥∥∥2

H1(∂Et)

≤ − σθ

∥∥∥[∂νtwt]
∥∥∥2

H1(∂Et)
, (4.39)

for every t ∈ [0,T ), where in the last inequality we used the trace inequality (4.34)

‖wt − ŵt‖
2
L2(∂Et)

≤ ‖wt − ŵt‖
2
H1/2(∂Et)

≤ C
ˆ
T3
|∇wt|

2 dx ≤ 2CM3,

possibly choosing a smaller M such that 2CM3 < σθ.
This argument clearly says that the quantity

´
T3 |∇wt|

2 dx is nonincreasing in time, hence, if M2,M3

are small enough, the inequality
´
T3 |∇wt|

2 dx ≤ 2M3 is preserved during the flow. If we assume by
contradiction that T < T (E0), then it must happen that Vol(ET4E) = 2M1 or ‖ψT ‖C1,α(∂E) = 2M2.
Before showing that this is not possible, we prove that actually the quantity

´
T3 |∇wt|

2 dx decreases
(non increases) exponentially.

Computing as in the previous step,ˆ
T3
|∇wt|

2 dx = −

ˆ
∂Et

wt[∂νtwt] dµt

= −

ˆ
∂Et

(wt − ŵt)[∂νtwt] dµt

≤ ‖wt − ŵt‖L2(∂Et)

∥∥∥[∂νtwt]
∥∥∥

L2(∂Et)

≤ C
(ˆ
T3
|∇wt|

2 dx
)1/2 ∥∥∥[∂νtwt]

∥∥∥
L2(∂Et)

,

where we used again the trace inequality (4.34). Then,ˆ
T3
|∇wt|

2 dx ≤ C
∥∥∥[∂νtwt]

∥∥∥2

L2(∂Et)
≤ C‖[∂νtwt]‖2H1(∂Et)

,

and combining this inequality with estimate (4.39), we obtain

d
dt

ˆ
T3
|∇wt|

2 dx ≤ −c0

ˆ
T3
|∇wt|

2 dx,
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for every t ≤ T and for a suitable constant c0 ≥ 0. Integrating this differential inequality, we get
ˆ
T3
|∇wt|

2 dx ≤ e−c0t
ˆ
T3
|∇w0|

2 dx ≤ M3e−c0t ≤ M3 , (4.40)

for every t ≤ T .
Then, we assume that Vol(ET4E) = 2M1 or ‖ψT ‖C1,α(∂ET ) = 2M2. Recalling formula (4.26) and

denoting by Xt the velocity field of the flow (see Definition 3.1 and the subsequent discussion), we
compute

d
dt

D(Et) =
d
dt

ˆ
Et

dE dx =

ˆ
Et

div(dEXt) dx =

ˆ
∂Et

dE〈Xt|νt〉 dµt

=

ˆ
∂Et

dE[∂νtwt] dµt = −

ˆ
T3
〈∇h | ∇wt〉 dx ,

where h denotes the harmonic extension of dE to T3. Note that, by standard elliptic estimates and the
properties of the signed distance function dE, we have

‖∇h‖L2(T3) ≤ C‖dE‖C1,α(∂E) ≤ C = C(E) ,

then, by the previous equality and formula (4.40), we get

d
dt

D(Et) ≤ C‖∇wt‖L2(T3) ≤ C
√

M3 e−c0t/2 ,

for every t ≤ T . By integrating this differential inequality over [0,T ) and recalling estimate (4.27), we
get

Vol(ET4E) ≤ C‖ψT ‖L2(∂ET ) ≤ C
√

D(ET ) ≤ C
√

D(E0) + C
√

M3 ≤ C 4
√

M3 , (4.41)

as D(E0) ≤ M1, provided that M1,M3 are chosen suitably small. This shows that Vol(ET4E) = 2M1

cannot happen if we chose C 4√M3 ≤ M1.
By arguing as in Lemma 4.5 (keeping into account inequality (4.30) and formula (4.28)), we can see

that the L2–estimate (4.41) implies a W2,3–bound on ψT with a constant going to zero, keeping fixed M2,
as
´
T3 |∇wT |

2 dx → 0, hence, by estimate (4.40), as M3 → 0. Then, by Sobolev embeddings, the same
holds for ‖ψT ‖C1,α(∂ET ), hence, if M3 is small enough, we have a contradiction with ‖ψT ‖C1,α(∂ET ) = 2M2.
Thus, T = T (E0) and

Vol(Et4E) ≤ C 4
√

M3 , ‖ψt‖C1,α(∂Et) ≤ 2M2 ,

ˆ
T3
|∇wt|

2 dx ≤ M3e−c0t , (4.42)

for every t ∈ [0,T (E0)), by choosing M1,M2,M3 small enough.
Step 4 (Long time existence). We now show that, by taking M1,M2,M3 smaller if needed, we have
T (E0) = +∞, that is, the flow exists for all times.

We assume by contradiction that T (E0) < +∞ and we recall that, by estimate (4.39) and the fact
that T = T (E0), we have

d
dt

ˆ
T3
|∇wt|

2 dx + σθ

∥∥∥[∂νtwt]
∥∥∥2

H1(∂Et)
≤ 0
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for all t ∈ [0,T (E0)). Integrating this differential inequality over the interval

[T (E0) − T/2,T (E0) − T/4] ,

where T is given by Theorem 3.8, as we said at the beginning of the proof, we obtain

σθ

ˆ T (E0)−T/4

T (E0)−T/2

∥∥∥[∂νtwt]
∥∥∥2

H1(∂Et)
dt ≤

ˆ
T3
|∇wT (E0)− T

2
|2 dx −

ˆ
T3
|∇wT (E0)− T

4
|2 dx ≤ M3 ,

where the last inequality follows from estimate (4.42). Thus, by the mean value theorem there exists
t ∈ (T (E0) − T/2,T (E0) − T/4) such that∥∥∥[∂νt

wt]
∥∥∥2

H1(∂Et)
≤

4M3

Tσθ

.

Note that for any smooth set F ⊆ T3, we have ‖vF‖C1(T3) ≤ L, for some “absolute” constant L and that
wF is constant, then, since H1(∂Et) embeds into Lp(∂Et̂) for all p > 1, by Lemma 4.2, we in turn infer
that

[Ht(· + ψt(·) νE(·)) − HE]2
C0,α(∂E)

≤C[wt(· + ψt(·)νE(·)) − wE]2
C0,α(∂E)

+ C[vt(· + ψt(·)νE(·)) − vt]
2
C0,α(∂E) + C[vt − vE]2

C0,α(∂E)

≤C[wt]
2
C0,α(∂Et)

‖ψt‖
2
C1,α(∂F) + CL2‖ψt‖

2
C1,α(∂F) + C‖ut − uE‖

2
L2(T3)

≤C
M3

Tσθ

+ CL2‖ψt‖
2
C1,α(∂E) + CVol(Et4E)2 ,

where [·]C0,α(∂Et) and [·]C0,α(∂E) stand for the α–Hölder seminorms on ∂Et and ∂E, respectively and
remind that vt, vE are the potentials, defined by formula (2.1), associated to ut = χ

Et
− χ

Tn\Et
and

uE = χ
E
− χ

Tn\E
.

By means of Schauder estimates (as Calderón–Zygmund inequality implied estimate (4.25)), it is
possible to show (see [13]) that there exists a constant C > 0 depending only on E, M, α and p > 1
such that for every F ∈ C1,α

M (E), choosing even smaller M1,M2,M3, there holds

‖B‖C0,α(∂F) ≤ C(1 + ‖H‖C0,α(∂F)) .

Hence, by the above discussion, we can conclude that Et ∈ C
2,α
M (E). Therefore, the maximal time of

existence of the classical solution starting from Et is at least T , which means that the flow Et can be
continued beyond T (E0), which is a contradiction.
Step 5 (Convergence, up to subsequences, to a translate of E). Let tn → +∞, then, by estimates (4.42),
the sets Etn satisfy the hypotheses of Lemma 4.5, hence, up to a (not relabeled) subsequence we have
that there exists a critical set E′ ∈ C1,α

M (E) such that Etn → E′ in W5/2,2. Due to formulas (4.28)
and (4.38) we also have ‖ψE′‖W2,3(∂E) ≤ δ and E′ = E + η for some (small) η ∈ R3 (equality (4.37)).
Step 6 (Exponential convergence of the full sequence). Consider now

Dη(F) =

ˆ
F∆(E+η)

dist (x, ∂E + η) dx .
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The very same calculations performed in Step 3 show that∣∣∣∣ d
dt

Dη(Et)
∣∣∣∣ ≤ C‖∇wt‖L2(T3) ≤ C

√
M3e−c0t/2

for all t ≥ 0, moreover, by means of the previous step, it follows limt→+∞ Dη(Et) = 0. In turn, by
integrating this differential inequality and writing

∂Et = {y + ψη,t(y)νE+η(y) : y ∈ ∂E + η} ,

we get

‖ψη,t‖
2
L2(∂E+η) ≤ CDη(Et) ≤

ˆ +∞

t
C

√
M3e−c0 s/2 ds ≤ C

√
M3e−c0t/2 . (4.43)

Since by the previous steps ‖ψη,t‖W2,3(∂E+η) is bounded, we infer from this inequality and interpolation
estimates that also ‖ψη,t‖C1,β(∂E+η) decays exponentially for all β ∈ (0, 1/3). Then, setting p = 2

1−β , we
have, by estimates (4.43) and (4.27) (and standard elliptic estimates),

‖vt − vE+η‖C1,β(T3) ≤ C‖vt − vE+η‖W2,p(T3) ≤ C‖ut − uE+η‖Lp(T3)

≤ CVol(Et4(E + η))1/p ≤ C‖ψη,t‖
1/p
L2(∂E+η)

≤ CM1/4p
3 e−c0t/4pt (4.44)

for all β ∈ (0, 1/3). Denoting the average of wt on ∂Et by wt, as by estimates (4.34) and (4.40) (recalling
the argument to show inequality (4.20)), we have that

‖wt
(
· +ψη,t(·)νE+η(·)

)
− wt‖H1/2(∂E+η) ≤ C‖wt − wt‖H1/2(∂Et)‖ψη,t‖C1(∂E+η)

≤ C‖∇wt‖L2(T3)

≤ C
√

M3e−c0t/2 .

It follows, taking into account inequality (4.44), that∥∥∥[Ht
(
· +ψη,t(·)νE+η(·)

)
− Ht] − [H∂E+η − H∂E+η]

∥∥∥
H1/2(∂E+η)

→ 0 (4.45)

exponentially fast, as t → +∞, where Ht and H∂E+η stand for the averages of Ht on ∂Et and of H∂E+η

on ∂E + η, respectively.
Since Et → E+η (up to a subsequence) in W5/2,2, it is easy to check that |Ht−H∂E+η| ≤ C‖ψη,t‖C1(∂E+η)

which decays exponentially, therefore, thanks to limit (4.45), we have∥∥∥Ht
(
· +ψη,t(·)νE+η(·)

)
− H∂E+η

∥∥∥
H1/2(∂E+η)

→ 0

exponentially fast.
The conclusion then follows arguing as at the end of Step 4.

�
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4.3. A brief overview of the Neumann case

Let Ω be a smooth bounded open subset of Rn. As before we consider the nonlocal Area functional

JN(E) = AΩ(∂E) + γ

ˆ
Ω

|∇vE |
2 dx ,

for every E ⊆ Ω with ∂E ∩ ∂Ω = Ø, where γ ≥ 0 is a real parameter and vE is the potential defined as
follows, similarly to problem (2.3), 

−∆vE = uE − m in Ω

∂vE

∂νE
= 0 on ∂Ω

ˆ
Ω

vE dx = 0

with m =
ffl

Ω
uE dx, uE = χ

E
− χ

Ω\E
and νE the outer unit normal to E.

As in formula (2.5), we haveˆ
Ω

|∇vE |
2 dx =

ˆ
Ω

ˆ
Ω

G(x, y)uE(x)uE(y) dxdy ,

where G is the (distributional) solution of
−∆xG(x, y) = δy −

1
Vol(Ω) for every x ∈ Ω

〈∇xG(x, y)|νE(x)〉 = 0 for every x ∈ ∂Ωˆ
Ω

G(x, y) dx = 0

for every y ∈ Ω.
Note that, unlike the “periodic” case (when the ambient is the torus Tn), the functional JN is not

translation invariant, therefore several arguments simplify. The calculus of the first and second
variations of JN , under a volume constraint, is exactly the same as for J, then we say that a smooth set
E ⊆ Ω, with ∂E ∩ ∂Ω = Ø, is a critical set, if it satisfies the Euler–Lagrange equation

H + 4γvE = λ on ∂E,

for a constant λ ∈ R, instead, since JN is not translation invariant, the spaces T (∂E), T⊥(∂E), and the
decomposition (2.43) are no longer needed and, defining the same quadratic form ΠE as in
formula (2.41), we say that a smooth critical set E is strictly stable if

ΠE(ϕ) > 0 for all ϕ ∈ H̃1(∂E) \ {0}.

Naturally, E ⊆ Ω is a local minimizer if there exists a δ ≥ 0 such that

JN(F) ≥ JN(E),

for all F ⊆ Ω, ∂F ∩ ∂Ω = Ø, Vol(F) = Vol(E) and Vol(E4F) ≤ δ. Then, as in the periodic case,
we have a local minimality result with respect to small W2,p–perturbations. Precisely, the following
(cleaner) counterpart to Theorem 2.29 holds (see also [39]).
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Theorem 4.9. Let p > max{2, n − 1} and E ⊆ Ω a smooth strictly stable critical set for the nonlocal
Area functional JN (under a volume constraint) with Nε a tubular neighborhood of E as in
formula (2.49). Then there exist constants δ,C > 0 such that

JN(F) ≥ JN(E) + C[Vol(E4F)]2 ,

for all smooth sets F ⊆ Tn such that Vol(F) = Vol(E), Vol(F4E) < δ, ∂F ⊆ Nε and

∂F = {y + ψ(y)νE(y) : y ∈ ∂E},

for a smooth ψ with ‖ψ‖W2,p(∂E) < δ.
As a consequence, E is a W2,p–local minimizer of JN (as defined above). Moreover, if F is W2,p–

close enough to E and JN(F) = JN(E), then F = E, that is, E is locally the unique W2,p–local minimizer.

Sketch of the proof. Following the line of proof of Theorem 2.29, since the functional is not translation
invariant we do not need Lemma 2.34 and inequality (2.83), proved in Step 2 of the proof of such
theorem, simplifies to

inf
{
ΠF(ϕ) : ϕ ∈ H̃1(∂F) , ‖ϕ‖H1(∂F) = 1

}
≥

m0

2
,

where m0 is the constant defined in formula (2.82). The proof of this inequality then goes exactly as
there.

Coming to Step 3 of the proof of Theorem 2.29, we do not need inequality (2.86), thus we do not
need to replace F by a suitable translated set F − η. Instead, we only need to observe that
inequality (2.90) is still satisfied. The rest of the proof remains unchanged. �

The short time existence and uniqueness Theorem 3.8, proved in [18] in any dimension, holds also
in the “Neumann case” for the modified Mullins–Sekerka flow with parameter γ ≥ 0, obtained (as in
Definition 3.2) by letting the outer normal velocity Vt of the moving boundaries given by

Vt = [∂νtwt] on ∂Et for all t ∈ [0,T ),

where νt = νEt and wt = wEt is the unique solution in H1(Ω) of the problem∆wEt = 0 in Ω \ ∂Et

wEt = H + 4γvEt on ∂Et,

with vEt the potential defined above and, as before, [∂νtwt] is the jump of the outer normal derivative of
wEt on ∂Et.

Then, we conclude by stating the following analogue of Theorem 4.6 (taking into
account Remark 4.7).

Theorem 4.10. Let Ω be an open smooth subset of R3 and let E ⊆ Ω be a smooth strictly stable critical
set for the nonlocal Area functional under a volume constraint, with ∂E ∩ ∂Ω = Ø and Nε (with ε < 1)
a tubular neighborhood of ∂E, as in formula (2.49). Then, for every α ∈ (0, 1/2) there exists M > 0
such that, if E0 is a smooth set in C1,α

M (E) satisfying Vol(E0) = Vol(E) and
ˆ

Ω

|∇wE0 |
2 dx ≤ M
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where w0 = wE0 is the function relative to E0 as in problem (3.1) (with Ω in place of T3 \ ∂E), then, the
unique smooth solution Et to the Mullins–Sekerka flow (with parameter γ ≥ 0) starting from E0, given
by Theorem 3.8, is defined for all t ≥ 0. Moreover, Et → E exponentially fast in Ck,as t → +∞, for
every k ∈ N, with the meaning that the functions ψη,t : ∂E → R representing ∂Et as “normal graphs”
on ∂E, that is,

∂Et = {y + ψη,t(y)νE+η(y) : y ∈ ∂E},

satisfy, for every k ∈ N,
‖ψη,t‖Ck(∂E+η) ≤ Cke−βkt,

for every t ∈ [0,+∞), for some positive constants Ck and βk.

The proof of this result is similar to the one of Theorem 4.6 and actually it is simpler since we do
not need the argument used in Step 2 of such proof, where we controlled the translational component
of the flow. Note also that in the statement of Proposition 2.35, in this case, inequality (2.93) holds
for all ϕ ∈ H̃1(∂F). Finally, observe that under the hypotheses of Proposition 2.36 we may actually
conclude that E′ = E, that is, there are no other critical sets close to E.

4.4. The surface diffusion flow – Preliminary lemmas

As for the modified Mullins–Sekerka flow, we start with the technical lemmas for the global
existence result.

Lemma 4.11 (Energy identities). Let Et ⊆ T
n be a surface diffusion flow. Then, the following identities

hold:
d
dt
A(∂Et) = −

ˆ
∂Et

|∇Ht|
2 dµt , (4.46)

and

d
dt

1
2

ˆ
∂Et

|∇Ht|
2 dµt = − ΠEt(∆tHt) −

ˆ
∂Et

Bt(∇Ht,∇Ht)∆tHt dµt

+
1
2

ˆ
∂Et

Ht|∇Ht|
2∆tHt dµt , (4.47)

where ΠEt is the quadratic form defined in formula (2.41) (with γ = 0).

Proof. Let ψt the smooth family of maps describing the flow as in formula (3.7). By formula (2.15),
where X is the smooth (velocity) vector field Xt =

∂ψt
∂t = (∆tHt)νEt along ∂Et, hence Xτ = Xt −

〈Xt|νEt〉νEt = 0 (as usual νEt is the outer normal unit vector of ∂Et), following computation (2.16), we
have

d
dt
A(∂Et) =

d
dt

ˆ
∂Et

dµt

=

ˆ
∂Et

(div Xτ + Ht〈X|νEt〉) dµt

=

ˆ
∂Et

Ht∆tHt dµt
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= −

ˆ
∂Et

|∇Ht|
2 dµt ,

where the last equality follows integrating by parts. This establishes relation (4.46).
In order to get relation (4.47) we also need the time derivatives of the evolving metric and of the

mean curvature of ∂Et, that we already computed in formulas (2.13), (2.32) and (2.33) (where the
function ϕ in this case is equal to ∆tHt and Xτ = 0), that is,

∂gi j

∂t
= 2hi j∆tHt and

∂gi j

∂t
= −2hi j∆tHt ,

∂Ht

∂t
= −|Bt|

2∆tHt − ∆t∆tHt

Then, we compute

d
dt

1
2

ˆ
∂Et

|∇Ht|
2 dµt =

1
2

ˆ
∂Et

Ht|∇Ht|
2 ∆tHt dµt −

ˆ
∂Et

hi j∇iHt∇ jHt ∆tHt dµt

−

ˆ
∂Et

gi j∇iHt∇ j
(
|B|2∆tHt + ∆t∆tHt

)
dµt

=
1
2

ˆ
∂Et

Ht|∇Ht|
2 ∆tHt dµt −

ˆ
∂Et

B(∇Ht,∇Ht) ∆tHt dµt

+

ˆ
∂Et

|Bt|
2(∆tHt)2 dµt +

ˆ
∂Et

∆tHt ∆t∆tHt dµt

=
1
2

ˆ
∂Et

Ht|∇Ht|
2 ∆tHt dµt −

ˆ
∂Et

Bt(∇Ht,∇Ht) ∆tHt dµt

+

ˆ
∂Et

|Bt|
2(∆tHt)2 dµt −

ˆ
∂Et

|∇∆tHt|
2 dµt ,

which is formula (4.47), recalling the definition of ΠEt in formula (2.41). �

From now on, as before due to the dimension–dependence of the estimates that follow, we restrict
ourselves to the three–dimensional case.

The following lemma is an easy consequence of Theorem 3.70 in [5], with j = 0, m = 1, n = 2 and
r = q = 2, taking into account the previous discussion.

Lemma 4.12 (Interpolation on boundaries). Let F ⊆ T3 be a smooth set. In the previous notations, for
every p ∈ [2,+∞) there exists a constant C = C(F,M, α, p) > 0 such that for every set E ∈ C1,α

M (F) and
g ∈ H1(∂E), we have

‖g‖Lp(∂E) ≤ C(‖∇g‖θL2(∂E)‖g‖
1−θ
L2(∂E) + ‖g‖L2(∂E)) ,

with θ = 1 − 2/p.
Moreover, the following Poincaré inequality holds

‖g − g‖Lp(∂E) ≤ C‖∇g‖L2(∂E) ,

where g(x) =
ffl

Γ
g dµ, if x belongs to a connected component Γ of ∂E.
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Then, we have the following mixed “analytic–geometric” estimate.

Lemma 4.13 (H2–estimates on boundaries). Let F ⊆ T3 be a smooth set. Then there exists a constant
C = C(F,M, α, p) > 0 such that if E ∈ C1,α

M (F) and f ∈ H1(∂E) with ∆ f ∈ L2(∂E), then f ∈ H2(∂E)
and

‖∇2 f ‖L2(∂E) ≤ C‖∆ f ‖L2(∂E)(1 + ‖H‖2L4(∂E)) .

Proof. We first claim that the following inequality holds,
ˆ
∂E
|∇2 f |2 dµ ≤

ˆ
∂E
|∆ f |2 dµ + C

ˆ
∂E
|B|2|∇ f |2 dµ . (4.48)

Indeed, if we integrate by parts the left–hand side, we obtain (the Hessian of a function is symmetric)
ˆ
∂E

gikg jl∇2
i j f∇2

kl f dµ = −

ˆ
∂E

gikg jl∇k∇ j∇i f∇l f dµ .

Hence, interchanging the covariant derivatives and integrating by parts, we get

−

ˆ
∂E

gikg jl∇k∇ j∇i f∇l f dµ = −

ˆ
∂E

gikg jl∇ j∇k∇i f∇l f dµ

−

ˆ
∂E

gikg jlRk jipgps∇s f∇l f dµ

= −

ˆ
∂E

g jl∇ j∆ f∇l f dµ −
ˆ
∂E

Ric(∇ f ,∇ f ) dµ

=

ˆ
∂E
|∆ f |2 dµ +

ˆ
∂E

[
|B|2|∇ f |2 − HB(∇ f ,∇ f )

]
dµ

≤

ˆ
∂E
|∆ f |2 dµ + C

ˆ
∂E
|B|2|∇ f |2 dµ ,

thus, inequality (4.48) holds (in the last passage we applied Cauchy–Schwarz inequality and the well
known relation |H| ≤

√
2|B|, then C = 1 +

√
2).

We now estimate the last term in formula (4.48) by means of Lemma 4.12 (which is easily extended
to vector valued functions g : ∂E → Rm) with g = ∇ f and p = 4:

ˆ
∂E
|B|2|∇ f |2 dµ ≤ ‖B‖2L4(∂E)‖∇ f ‖2L4(∂E)

≤ C‖B‖2L4(∂E)

(
‖∇2 f ‖1/2

L2(∂E)‖∇ f ‖1/2
L2(∂E) + ‖∇ f ‖L2(∂E)

)2

≤ C‖B‖2L4(∂E)

(
‖∇2 f ‖L2(∂E)‖∇ f ‖L2(∂E) + ‖∇ f ‖2L2(∂E)

)
.

Hence, expanding the product on the last line, using Peter–Paul (Young) inequality on the first term of
such expansion and “adsorbing” in the left hand side of inequality (4.48) the small fraction of the term
‖∇2 f ‖2L2(∂E) that then appears, we obtain

‖∇2 f ‖2L2(∂E) ≤ C(‖∆ f ‖2L2(∂E) + ‖∇ f ‖2L2(∂E)(‖B‖
2
L4(∂E) + ‖B‖4L4(∂E)))

≤ C(‖∆ f ‖2L2(∂E) + ‖∇ f ‖2L2(∂E)(1 + ‖B‖4L4(∂E)) . (4.49)
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By the fact that ∆ f has zero average on each connected component of ∂E, there holds

‖∇ f ‖2L2(∂E) = −

ˆ
∂E

f ∆ f dµ

= −

ˆ
∂E

( f − f )∆ f dµ

≤ ‖ f − f ‖L2(∂E)‖∆ f ‖L2(∂E)

≤ C‖∇ f ‖L2(∂E)‖∆ f ‖L2(∂E) ,

where we used Lemma 4.12 again, hence,

‖∇ f ‖L2(∂E) ≤ C‖∆ f ‖L2(∂E) . (4.50)

Thus, from inequality (4.49), we deduce

‖∇2 f ‖2L2(∂E) ≤ C‖∆ f ‖2L2(∂E)(1 + ‖B‖4L4(∂E)) . (4.51)

Now, by means of Calderón–Zygmund estimates, it is possible to show (see [13]) that there exists a
constant C > 0 depending only on F, M, α and q > 1 such that for every E ∈ C1,α

M (F), there holds

‖B‖Lq(∂E) ≤ C(1 + ‖H‖Lq(∂E)) . (4.52)

Then, since it is easy to check that also all the other constant in the previous inequalities (and the
ones coming from Lemma 4.12 also) depend only on F, M, α and p, if E ∈ C1,α

M (F), substituting this
estimate, with q = 4, in formula (4.51), the thesis of the lemma follows. �

The following lemma provides a crucial “geometric interpolation” that will be needed in the proof
of the main theorem.

Lemma 4.14 (Geometric interpolation). Let F ⊆ T3 be a smooth set. Then there exists a constant
C = C(F,M, α) > 0 such that the following estimates holdsˆ

∂E
|B||∇H|2|∆H| dµ ≤ C‖∇∆H‖2L2(∂E) ‖∇H‖L2(∂E) (1 + ‖H‖3L6(∂E)) ,

for every E ∈ C1,α
M (F).

Proof. First, by a standard application of Hölder inequality, we haveˆ
∂E
|B||∇H|2|∆H| dµ ≤ ‖∆H‖L3(∂E)

(ˆ
∂E
|B|

3
2 |∇H|3 dµ

)2/3
.

Then, using the Poincaré inequality stated in Lemma 4.12 and the fact that ∆H has zero average on
each connected component of ∂E, we get

‖∆H‖L3(∂E) ≤ C‖∇∆H‖L2(∂E).

Now, we use Hölder inequality again(ˆ
∂E
|B|

3
2 |∇H|3 dµ

)2/3
≤

(ˆ
∂E
|∇H|4 dµ

)1/2(ˆ
∂E
|B|6 dµ

)1/6
,
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and we apply Lemma 4.12 with p = 4,(ˆ
∂E
|∇H|4 dµ

)1/2
≤ C(‖∇2H‖L2(∂E)‖∇H‖L2(∂E) + ‖∇H‖2L2(∂E)) .

Combining all these inequalities, we conclude
ˆ
∂E
|B||∇H|2|∆H| dµ ≤ C‖∇∆H‖L2(∂E) ‖B‖L6(∂E) ‖∇H‖L2(∂E)(‖∇2H‖L2(∂E) + ‖∇H‖L2(∂E)) .

By Lemma 4.13 and estimate (4.50), with H in place of f , the right–hand side of the previous inequality
can be bounded from above by

C‖∇∆H‖L2(∂E) ‖B‖L6(∂E) ‖∆H‖L2(∂E) ‖∇H‖L2(∂E) (1 + ‖H‖2L4(∂E)).

Hence, using again Poincaré inequality and estimate (4.52) with q = 6, we have

‖∆H‖L2(∂E) ≤ C‖∇∆H‖L2(∂E)

and
‖B‖L6(∂E) ≤ C(1 + ‖H‖L6(∂E)) .

Finally, using this relations and Hölder inequality, we obtain the thesis
ˆ
∂E
|B||∇H|2|∆H| dµ ≤ C‖∇∆H‖2L2(∂E) ‖∇H‖L2(∂E) (1 + ‖H‖3L6(∂E)) .

�

We now remind that since ∂E can be disconnected (as in the case of lamellae), the Poincaré
inequality could fail for ∂E. However, if E is sufficiently close to a stable critical set then it is true for
the mean curvature of ∂E.

Lemma 4.15 (Geometric Poincaré inequality). Fixed p > 2 and a smooth strictly stable critical set
F ⊆ T3, let δ > 0 be the constant provided by Proposition 2.35, with θ = 1. Then, for M small enough,
there exists a constant C = C(F,M, α, p) > 0 such that

ˆ
∂E
|H − H|2 dµ ≤ C

ˆ
∂E
|∇H|2 dµ , (4.53)

for every set E ∈ C1,α
M (F) such that ∂E ⊆ Nε with

∂E = {y + ψ(y)νF(y) : y ∈ ∂F} ,

for a smooth function ψ with ‖ψ‖W2,p(∂F) < δ.

Proof. Since ˆ
∂E

(H − H)νE dµ = 0 ,
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there holds
ˆ
∂E
|H − H − 〈η|νE〉|

2 dµ = ‖H − H‖2L2(∂E) +

ˆ
∂E
〈η|νE〉

2 dµ ≥ ‖H − H‖2L2(∂E)

for all η ∈ R3. Choosing M < δ, we may then apply Proposition 2.35 with θ = 1 and ϕ = H − H,
obtaining

σ1

ˆ
∂E
|H − H|2 dµ ≤

ˆ
∂E
|∇H|2 dµ −

ˆ
∂E
|B|2|H − H|2 dµ ≤

ˆ
∂E
|∇H|2 dµ .

�

The following lemma is straightforward.

Lemma 4.16. Let E ⊆ T3 be a smooth set. If f ∈ H1(∂E) and g ∈ W1,4(∂E), then

‖∇( f g)‖L2(∂E) ≤ C‖∇ f ‖L2(∂E)‖g‖L∞(∂E) + C‖ f ‖L4(∂E)‖∇g‖L4(∂E) ,

for a constant C independent of E.

Proof. We estimate with Cauchy–Schwarz inequality,

‖∇( f g)‖2L2(∂E) ≤ 2‖∇ f ‖2L2(∂E)‖g‖
2
L∞(∂E) + 2

ˆ
∂E
| f |2|∇g|2 dµ

≤ 2‖∇ f ‖2L2(∂E)‖g‖
2
L∞(∂E) + 2‖ f ‖2L4(∂E)‖∇g‖2L4(∂E) ,

hence the thesis follows. �

As a consequence, we prove the following result.

Lemma 4.17. Let F ⊆ T3 be a smooth set and E ∈ C1,α
M (F). Then, for M small enough, there holds

‖ψE‖W3,2(∂F) ≤ C(F,M, α)(1 + ‖H‖2H1(∂E)) ,

where H is the mean curvature of ∂E (the function ψE is defined by formula (3.9)).

Proof. As we do in Lemma 4.4, by a standard localization/partition of unity/straightening argument, we
may reduce ourselves to the case where the function ψE is defined in a disk D ⊆ R2 and ‖ψE‖C1,α(D) ≤ M.
Fixed a smooth cut–off function ϕwith compact support in D and equal to one on a smaller disk D′ ⊆ D,
we have again relation (4.12) (see also [42]).

Then, using Lemma 4.16 and recalling that ‖ψE‖C1,α(D) ≤ M, we estimate

‖∇∆(ϕψE)‖L2(D) ≤ C(F,M, α)
(

M2‖∇3(ϕψE)‖L2(D) + ‖∇H‖L2(∂E)(1 + ‖∇ψE‖L∞(D))
+ ‖H‖L4(∂E)(1 + ‖ψE‖W2,4(D)) + 1 + ‖ψE‖W2,4(D)

)
.

We now use the fact that, by a simple integration by part argument, if u is a smooth function with
compact support in R2, there holds

‖∇∆u‖L2(R2) = ‖∇3u‖L2(R2) ,
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hence,

‖∇3(ϕψE)‖L2(D) = ‖∇∆(ϕψE)‖L2(D)

≤ C(F,M, α)
(
M2‖∇3(ϕψE)‖L2(D) + ‖∇H‖L2(∂E)(1 + ‖∇ψE‖L∞(D))
+ ‖H‖L4(∂E)(1 + ‖ψE‖W2,4(D)) + 1 + ‖ψE‖W2,4(D)

)
,

then, if M is small enough, we have

‖∇3(ϕψE)‖L2(D) ≤ C(F,M, α)(1 + ‖H‖H1(∂E))(1 + ‖HessψE‖L4(D)) , (4.54)

as
‖H‖L4(∂E) ≤ C(F,M, α)‖H‖H1(∂E) , (4.55)

by Theorem 3.70 in [5].
By the Calderón–Zygmund estimates (holding uniformly for every hypersurface ∂E, with

E ∈ C1,α
M (F), see [13]), we have again the inequality (4.15) and the most useful estimation (4.16).

Hence, possibly choosing a smaller M, we conclude (as in inequality (4.17))

‖∆ψE‖L4(D) ≤ C(F,M, α)(1 + ‖H‖L4(∂E)) ≤ C(F,M, α)(1 + ‖H‖H1(∂E)) ,

again by inequality (4.55).
Thus, by estimate (4.15), we get

‖HessψE‖L4(D) ≤ C(F,M, α)(1 + ‖H‖H1(∂E)) , (4.56)

and using this inequality in estimate (4.54),

‖∇3(ϕψE)‖L2(D) ≤ C(F,M, α)(1 + ‖H‖H1(∂E))2 ,

hence,
‖∇3ψE‖L2(D′) ≤ C(F,M, α)(1 + ‖H‖H1(∂E))2 ≤ C(F,M, α)(1 + ‖H‖2H1(∂E)) .

The inequality in the statement of the lemma then easily follows by this inequality, estimate (4.56) and
‖ψE‖C1,α(D) ≤ M, with a standard covering argument. �

Now, we state a compactness result whose proof is very close in spirit to the proof of Lemma 4.5,
however we present it explicitly in order to show how the lemmas above come differently into play.

Lemma 4.18 (Compactness). Let F ⊆ T3 be a smooth set and En ⊆ C
1,α
M (F) a sequence of smooth sets

such that
sup
n∈N

ˆ
∂En

|∇Hn|
2 dµn < +∞ .

Then, if α ∈ (0, 1/2) and M is small enough, there exists a smooth set F′ ∈ C1
M(F) such that, up to a

(non relabeled) subsequence, En → F′ in W2,p for all 1 ≤ p < +∞.
Moreover, if inequality (4.53) holds for every set En with a constant C independent of n andˆ

∂En

|∇Hn|
2 dµn → 0 ,

then F′ is critical for the volume–constrained Area functional A and the convergence En → F′ is in
W3,2.
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Proof. We first claim that
sup
n∈N
‖Hn‖H1(∂En) < +∞. (4.57)

We set H̃n =
ffl
∂En

Hn dµn, then, by the “geometric” Poincaré inequality of Lemma 4.15, which holds
with a “uniform” constant C = C(F,M, α), for all the sets E ∈ C1,α

M (F) (see [13]), if M is small enough,
we have

‖Hn − H̃n‖
2
H1(∂En) ≤ sup

n∈N

ˆ
∂En

|∇Hn|
2 dµn < C < +∞

with a constant C independent of n ∈ N.
Then, we note that, as in Lemma 4.5, by the uniform C1,α–bounds on ∂En, we may find a solid

cylinder of the form C = D × (−L, L), with D ⊆ R2 a ball centered at the origin and functions fn, with

sup
n∈N
‖ fn‖C1,α(D) < +∞ , (4.58)

such that ∂En ∩ C = {(x′, xn) ∈ D × (−L, L) : xn = fn(x′)} with respect to a suitable coordinate frame
(depending on n ∈ N). Hence, recalling the formula (4.24), the uniform bound (4.58) and the fact that
‖Hn − H̃n‖H1(∂En) are equibounded, we get that H̃n are also equibounded (by a standard “localization”
argument, “uniformly” applied to all the hypersurfaces ∂En). Therefore, the claim (4.57) follows.

By applying the Sobolev embedding theorem on each connected component of ∂F, we have that

‖Hn‖Lp(∂En) ≤ C‖Hn‖H1(∂En) < C < +∞ for all p ∈ [1,+∞).

for a constant C independent of n ∈ N.
Now, as before, we obtain

‖B‖Lp(∂E) ≤ C(1 + ‖H‖Lp(∂E)) .

for every E ∈ C1,α
M (F) with a uniform constant C. Then, if we write

∂En = {y + ψn(y)νF(y) : y ∈ ∂F} ,

we have supn∈N ‖ψn‖W2,p(∂F) < +∞, for all p ∈ [1,+∞).
Thus, by the Sobolev compact embedding W2,p(∂F) ↪→ C1,α(∂F), up to a subsequence (not

relabeled), there exists a set F′ ∈ C1,α
M (F) such that

ψn → ψF′ in C1,α(∂F),

for all α ∈ (0, 1/2) and β ∈ (0, 1).
From estimate (4.57) and Lemma 4.17 (possibly choosing a smaller M), we have then that the

functions ψn are bounded in W3,2(∂F). Hence, possibly passing to another subsequence (again not
relabeled), we conclude that En → F′ in W2,p for every p ∈ [1,+∞), by the Sobolev compact
embeddings.

For the second part of the lemma, we first observe that if
ˆ
∂En

|∇Hn|
2 dµn → 0 ,
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then there exists λ ∈ R and a subsequence En (not relabeled) such that

Hn
(
· +ψn(·)νF(·)

)
→ λ = H

(
· +ψF′(·)νF(·)

)
in H1(∂F), where H is the mean curvature of F′. Hence F′ is critical.

To conclude the proof we only need to show that ψn converge to ψ = ψF′ in W3,2(∂F).
Fixed δ > 0, arguing as in the proof of Lemma 4.17, we reduce ourselves to the case where the

functions ψn are defined on a disk D ⊆ R2, are bounded in W3,2(D), converge in W2,p(D) for all
p ∈ [1,+∞) to ψ ∈ W3,2(D) and ‖∇ψ‖L∞(D) ≤ δ. Then, fixed a smooth cut–off function ϕ with compact
support in D and equal to one on a smaller disk D′ ⊆ D, we have

∆(ϕψn)√
1 + |∇ψn|

2
−

∆(ϕψ)√
1 + |∇ψ|2

= (∇2(ϕψn) − ∇2(ϕψ))
∇ψ∇ψ

(1 + |∇ψ|2)3/2

+ ∇2(ϕψn)
( ∇ψn∇ψn

(1 + |∇ψn|
2)3/2 −

∇ψ∇ψ

(1 + |∇ψ|2)3/2

)
+ ϕ(Hn − H) + R(x, ψn,∇ψn) − R(x, ψ,∇ψ) ,

where R is a smooth Lipschitz function.
Then, using Lemma 4.16, an argument similar to the one of the proof of Lemma 4.17 shows that∥∥∥∥∥∇( ∆(ϕψn)√

1 + |∇ψn|
2
−

∆(ϕψ)√
1 + |∇ψ|2

)∥∥∥∥∥
L2(D)

≤ C(M)
(
δ2‖∇3(ϕψn) − ∇3(ϕψ)‖L2(D)

+ ‖∇2(ϕψn) − ∇2(ϕψ)‖L4(D)‖∇
2ψ‖L4(D)

+ ‖∇3(ϕψn)‖L2(D)‖∇ψn − ∇ψ‖L∞(D)

+ ‖∇2(ϕψn)‖L4(D)(‖∇2ψn‖L4 + ‖∇2ψ‖L4(D))
+ ‖∇Hn − ∇H‖L2(D) + ‖ψn − ψ‖W2,4(D)

)
.

Being H constant, that is ∇H = 0, by using Lemma 4.16 again and arguing as in the proof of
Lemma 4.17, we finally get

‖∇3(ϕψn) − ∇3(ϕψ)‖L2(D) ≤ C(M)
(
‖ψn − ψ‖W2,4(D) + ‖∇ψn − ∇ψ‖L∞(D) + ‖∇Hn‖L2(D)

)
,

hence,
‖∇3ψn − ∇

3ψ‖L2(D′) ≤ C(M)
(
‖ψn − ψ‖W2,4(D) + ‖∇ψn − ∇ψ‖L∞(D) + ‖∇Hn‖L2(D)

)
,

from which the conclusion follows, by the first part of the lemma and a standard covering argument.
�

4.5. The surface diffusion flow – The main theorem

We now show the global existence result for the surface diffusion flow, whose proof is very similar
to the one of Theorem 4.6. However, in order to make it clear, we present it in a detailed way.

Theorem 4.19. Let E ⊆ T3 be a strictly stable critical set for the Area functional under a volume
constraint and let Nε be a tubular neighborhood of ∂E, as in formula (2.49). For every α ∈ (0, 1/2)
there exists M > 0 such that, if E0 is a smooth set in C1,α

M (E) satisfying Vol(E0) = Vol(E) andˆ
∂E0

|∇H0|
2 dµ0 ≤ M,
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then the unique smooth solution Et of the surface diffusion flow starting from E0, given by
Proposition 3.10, is defined for all t ≥ 0. Moreover, Et → E + η exponentially fast in W3,2 as t → +∞

(recall the definition of convergence of sets in Subsection 2.2), for some η ∈ R3, with the meaning that
the functions ψη,t : ∂E + η→ R representing ∂Et as “normal graphs” on ∂E + η, that is,

∂Et = {y + ψη,t(y)νE+η(y) : y ∈ ∂E + η},

satisfy
‖ψη,t‖W3,2(∂E+η) ≤ Ce−βt ,

for every t ∈ [0,+∞), for some positive constants C and β.

Remark 4.20. The convergence of Et → E + η is actually smooth, that is, for every k ∈ N, there holds

‖ψη,t‖Ck(∂E+η) ≤ Cke−βkt,

for every t ∈ [0,+∞), for some positive constants Ck and βk. This is a particular case of Theorem 5.1
in [24], proved by means of standard parabolic estimates and interpolation (and Sobolev embeddings),
using the exponential decay in W3/2,2, analogously to the modified Mullins–Sekerka flow (Remark 4.7).

Remark 4.21. The extra condition in the theorem on the L2–smallness of the gradient of H0 (see the
second part of Lemma 4.18 and its proof) implies that the mean curvature of ∂E0 is “close” to be
constant, as it is for the set E or actually for any critical set (recall Remark 4.8).

Proof of Theorem 4.19. As in proof of Theorem 4.6, C will denote a constant depending only on E, M
and α, whose value may vary from line to line.

Assume that the surface diffusion flow Et is defined for t in the maximal time interval [0,T (E0)),
where T (E0) ∈ (0,+∞] and let the moving boundaries ∂Et be represented as “normal graphs” on ∂E as

∂Et = {y + ψt(y)νE(y) : y ∈ ∂E} ,

for some smooth functions ψt : ∂E → R.
We recall that, by Proposition 3.10, for every F ∈ C2,α

M (E), the flow is defined in the time interval
[0,T ), with T = T (E,M, α) > 0.

As before, we show the theorem for the smooth sets E0 ⊆ T
3 satisfying

Vol(E0∆E) ≤ M1, ‖ψ0‖C1,α(∂E) ≤ M2 and
ˆ
∂E0

|∇H0|
2 dµ0 ≤ M3 , (4.59)

for some positive constants M1,M2,M3, then we get the thesis by setting M = min{M1,M2,M3}. For
any set F ∈ C

1,α
M (E), we define quantity in (4.26) and by the same arguments we obtain

estimation (4.27).
Hence, by this discussion, the initial smooth set E0 ∈ C

1,α
M (E) satisfies D(E0) ≤ M ≤ M1 (having

chosen ε < 1).
By rereading the proof of Lemma 4.18, it follows that for M2,M3 small enough, if

‖ψF‖C1,α(∂E) ≤ M2
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and ˆ
∂F
|∇H|2 dµ ≤ M3 ,

then
‖ψF‖W2,6(∂E) ≤ ω(max{M2,M3}) , (4.60)

where s 7→ ω(s) is a positive nondecreasing function (defined on R) such that ω(s) → 0 as s → 0+.
This clearly implies

‖νF‖W1,6(∂F) ≤ ω
′(max{M2,M3}) ,

for a function ω′ with the same properties of ω (also in this case, ω and ω′ only depend on E and α,
for M small enough). Moreover, thanks to Lemma 4.15, there exists C > 0 such that, choosing M2,M3

small enough, in order that ω(max{M2,M3}) is small enough, we have
ˆ
∂F
|H − H|2 dµ ≤ C

ˆ
∂F
|∇H|2 dµ , (4.61)

where, as usual, H is the average of H over ∂F.
We again split the proof of the theorem into steps.

Step 1 (Stopping–time). Let T ≤ T (E0) be the maximal time such that

Vol(Et∆E) ≤ 2M1, ‖ψt‖C1,α(∂E) ≤ 2M2 and
ˆ
∂Et

|∇Ht|
2 dµt ≤ 2M3 , (4.62)

for all t ∈ [0,T ). Hence,
‖ψt‖W2,6(∂F) ≤ ω(2 max{M2,M3}) (4.63)

for all t ∈ [0,T
′
), as in formula (4.60).

As before, we claim that by taking M1,M2,M3 small enough, we have T = T (E0).
Step 2 (Estimate of the translational component of the flow). We want to show that there exists a small
constant θ > 0 such that

min
η∈OE
‖∆Ht − 〈η, νt〉‖L2(∂Et) ≥ θ‖∆Ht‖L2(∂Et) for all t ∈ [0,T ) , (4.64)

where OF is defined by formula (2.47).
If M is small enough, clearly there exists a constant C0 = C0(E,M, α) > 0 such that, for every

i ∈ IE, we have ‖〈ei, νt〉‖L2(∂Et) ≥ C0 > 0, holding ‖〈ei, νE〉‖L2(∂E) > 0. It is then easy to show that the
vector ηt ∈ OE realizing such minimum is unique and satisfies

∆Ht = 〈ηt, νt〉 + g, (4.65)

where g ∈ L2(∂Et) is chosen as in relation (4.32). Moreover, the inequality

|ηt| ≤ C‖∆Ht‖L2(∂Et) (4.66)

holds, with a constant C depending only on E, M and α.
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We now argue by contradiction, assuming ‖g‖L2(∂Et) < θ‖∆Ht‖L2(∂Et).
First we recall that ∆Ht has zero average. Then, setting H =

ffl
∂Et

H dµt, and recalling relation (4.61),
we get

‖Ht − Ht‖
2
L2(∂Et)

≤ C
ˆ
∂Et

|∇Ht|
2 dµt

= −C
ˆ
∂Et

Ht∆Ht dµt

= −C
ˆ
∂Et

∆Ht(Ht − Ht) dµt

≤ C‖Ht − Ht‖L2(∂Et)‖∆Ht‖L2(∂Et) . (4.67)

Hence, we conclude
‖Ht − Ht‖L2(∂Et) ≤ C‖∆Ht‖L2(∂Et) . (4.68)

Since, there holds ˆ
∂Et

Ht νt dµt =

ˆ
∂Et

νt dµt = 0 ,

by multiplying relation (4.65) by Ht − Ht, integrating over ∂Et, and using inequality (4.68), we get∣∣∣∣ˆ
∂Et

(Ht − Ht)∆Ht dµt

∣∣∣∣ =
∣∣∣∣ˆ
∂Et

(Ht − Ht)g dµt

∣∣∣∣
< θ‖Ht − Ht‖L2(∂Et)‖∆Ht‖L2(∂Et)

≤ Cθ‖∆Ht‖
2
L2(∂Et)

.

Recalling now estimate (4.66), as g is orthogonal to 〈ηt, νt〉, computing as in the first three lines of
formula (4.67), we have

‖〈ηt, νt〉‖
2
L2(∂Et)

=

ˆ
∂Et

∆Ht〈ηt, νt〉 dµt

= −

ˆ
∂Et

〈∇Ht,∇〈ηt, νt〉〉 dµt

≤ |ηt|‖∇νt‖L2(∂Et)‖∇Ht‖L2(∂Et)

≤ C‖∇νt‖L2(∂Et)‖∆Ht‖L2(∂Et)

∣∣∣∣ˆ
∂Et

(Ht − Ht)∆Ht dµt

∣∣∣∣1/2
≤ C
√
θ‖∇νt‖L2(∂Et)‖∆Ht‖

2
L2(∂Et)

≤ C
√
θ‖∆Ht‖

2
L2(∂Et)

,

where in the last inequality we estimated ‖∇νt‖L2(∂Et) with C‖ψt‖W2,6(∂Et) and we used inequality (4.63).
If then θ > 0 is chosen so small that C

√
θ + θ2 < 1 in the last inequality, then we have a contradiction

with equality (4.65) and the fact that ‖g‖L2(∂Et) < θ‖∆Ht‖L2(∂Et), as they imply (by L2–orthogonality) that

‖〈ηt, νt〉‖
2
L2(∂Et)

> (1 − θ2)‖∆Ht‖
2
L2(∂Et)

.
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All this argument shows that for such a choice of θ condition (4.64) holds.
Then, we can conclude as in Step 2 of Theorem 4.6, by replacing the W2,3–norm on ∂E with the

W2,6–norm on the same boundary.

Step 3 (The stopping time T is equal to the maximal time T (E0)). We show now that, by taking
M1,M2,M3 smaller if needed, we have T = T (E0).

By the previous point and the suitable choice of M2,M3 made in its final part, formula (4.64) holds,
hence we have

ΠEt(∆Ht) ≥ σθ‖∆Ht‖
2
H1(∂E) for all t ∈ [0,T ).

In turn, by Lemma 4.11 and 4.14 we may estimate

d
dt

1
2

ˆ
∂Et

|∇Ht|
2 dµt ≤ − σθ‖∆Ht‖

2
H1(∂Et)

+

ˆ
∂Et

|B||∇Ht|
2|∆Ht| dµt

≤ − σθ‖∆Ht‖
2
H1(∂Et)

+ C‖∇(∆Ht)‖2L2(∂Et)
‖∇Ht‖L2(∂Et)(1 + ‖Ht‖

3
L6(∂Et)

)

≤ − σθ‖∆Ht‖
2
H1(∂Et)

+ C
√

M3‖∇(∆Ht)‖2L2(∂Et)
(1 + ‖Ht‖

3
L6(∂Et)

)

≤ − σθ‖∆Ht‖
2
H1(∂Et)

+ C
√

M3‖∆Ht‖
2
H1(∂Et)

(1 + Cω(max{M2,M3})) (4.69)

for every t ≤ T , where in the last step we used relations (4.62) and (4.63).
Noticing that from formulas (4.67) and (4.68) it follows

‖∇Ht‖L2(∂Et) ≤ C‖∆Ht‖L2(∂Et) ≤ C‖∆Ht‖H1(∂Et) ,

keeping fixed M2 and choosing a suitably small M3, we conclude

d
dt

ˆ
∂Et

|∇Ht|
2 dµt ≤ −

σθ

2
‖∆Ht‖

2
H1(∂Et)

≤ −c0‖∇Ht‖
2
L2(∂Et)

.

This argument clearly says that the quantity
´
∂Et
|∇Ht|

2 dµt is nonincreasing in time, hence, if M2,M3

are small enough, the inequality
´
∂Et
|∇Ht|

2 dµt ≤ M3 is preserved during the flow. As before, if we
assume by contradiction that T < T (E0), then it must happen that Vol(ET ∆E) = 2M1 or ‖ψT ‖C1,α(∂F) =

2M2.
Before showing that this is not possible, we prove that actually the quantity

´
∂Et
|∇Ht|

2 dµt

decreases (non increases) exponentially. Indeed, integrating the differential inequality above and
recalling proprieties (4.59), we obtain

ˆ
∂Et

|∇Ht|
2 dµt ≤ e−c0t

ˆ
∂E0

|∇H∂E0 |
2 dµ0 ≤ M3e−c0t ≤ M3 (4.70)

for every t ≤ T . Then, we assume that Vol(ET ∆E) = 2M1 or ‖ψT ‖C1,α(∂ET ) = 2M2. Recalling
formula (4.26) and denoting by Xt the velocity field of the flow (see Definition 3.1 and the subsequent
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discussion), we compute

d
dt

D(Et) =
d
dt

ˆ
Et

dE dx =

ˆ
Et

div(dEXt) dx =

ˆ
∂Et

dE〈Xt, νt〉 dµt

=

ˆ
∂Et

dE ∆Ht dµt −

ˆ
∂Et

〈∇dE,∇Ht〉 dµt

≤ C‖∇Ht‖L2(∂Et) ≤ C
√

M3e−c0t/2 ,

for all t ≤ T , where the last inequality clearly follows from inequality (4.70).
By integrating this differential inequality over [0,T ) and recalling estimate (4.27), we get

Vol(ET ∆E) ≤ C‖ψT ‖L2(∂ET ) ≤ C
√

D(ET )

≤ C
√

D(E0) + C
√

M3 ≤ C 4
√

M3 , (4.71)

as D(E0) ≤ M1, provided that M1,M3 are chosen suitably small. This shows that Vol(ET ∆E) = 2M1

cannot happen if we chose C 4√M3 ≤ M1.
By arguing as in Lemma 4.18 (keeping into account inequality (4.62) and formula (4.60)), we can

see that the L2–estimate (4.71) implies a W2,6–bound on ψT with a constant going to zero, keeping fixed
M2, as

´
∂Et
|∇HT |

2 dµt → 0, hence, by estimate (4.70), as M3 → 0. Then, by Sobolev embeddings, the
same holds for ‖ψT ‖C1,α(∂ET ), hence, if M3 is small enough, we have a contradiction with ‖ψT ‖C1,α(∂ET ) =

2M2.
Thus, T = T (E0) and

Vol(Et∆E) ≤ C 4
√

M3 , ‖ψt‖C1,α(∂Et) ≤ 2M2 ,

ˆ
∂Et

|∇Ht|
2 dµt ≤ M3e−c0t , (4.72)

for every t ∈ [0,T (E0)), by choosing M1,M2,M3 small enough.
Step 4 (Long time existence). We now show that, by taking M1,M2,M3 smaller if needed, we have
T (E0) = +∞, that is, the flow exists for all times.

We assume by contradiction that T (E0) < +∞ and we notice that, by computation (4.69) and the
fact that T = T (E0), we have

d
dt

ˆ
∂Et

|∇Ht|
2 dµt + σθ‖∆Ht‖

2
H1(∂Et)

≤ 0

for all t ∈ [0,T (E0)). Integrating this differential inequality over the interval
[T (E0) − T/2,T (E0) − T/4], where T is given by Proposition 3.10, as we said at the beginning of the
proof, we obtain

σθ

ˆ T (E0)−T/4

T (E0)−T/2
‖∆Ht‖

2
H1(∂Et)

dt ≤
ˆ
∂ET (E0)− T

2

|∇H|2 dµT (E0)− T
2

−

ˆ
∂ET (E0)− T

4

|∇H|2 dµT (E0)− T
4

≤ M3 ,
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where the last inequality follows from estimate (4.72). Thus, by the mean value theorem there exists
t ∈ (T (E0) − T/2,T (E0) − T/4) such that

‖∆Ht‖
2
H1(∂Et)

≤
4M3

Tσθ

.

Then, by Lemma 4.13

‖∇2Ht‖
2
L2(∂Et)

≤C‖∆Ht‖
2
L2(∂Et)

(1 + ‖Ht‖
4
L4(∂Et)

)

≤CM3(1 + ω4(2 max{M2,M3}))

where in the last inequality we also used the curvature bounds provided by formula (4.63). In turn, for
p ∈ R large enough, we get

[Ht]
2
C0,α(∂Et)

≤ C‖∇Ht‖
2
Lp(∂Et)

≤ C‖∇Ht‖
2
H1(∂Et)

≤ CM3(M2,M3) ,

where [·]C0,α(∂Et) stands for the α–Hölder seminorm on ∂Et and in the last inequality we used the
previous estimate.

Then, arguing as in Step 4 of Theorem 4.6, it is possible to show that flow Et exists beyond T (E0),
which is a contradiction.
Step 5 (Convergence, up to subsequences, to a translate of F). Let tn → +∞, then, by estimates (4.72),
the sets Etn satisfy the hypotheses of Lemma 4.18, hence, up to a (not relabeled) subsequence we have
that there exists a critical set E′ ∈ C1,α

M (E) such that Etn → E′ in W3,2. Due to formulas (4.60) (and
estimation (4.38), that also holds in this case) we have ‖ψE′‖W2,6(∂E) ≤ δ and E′ = E +η for some (small)
η ∈ R3.
Step 6 (Exponential convergence of the full sequence). Consider now

Dη(F) =

ˆ
F∆(E+η)

dist (x, ∂E + η) dx .

The very same calculations performed in Step 3 show that∣∣∣∣ d
dt

Dη(Et)
∣∣∣∣ ≤ C‖∇Ht‖L2(∂Et) ≤ C

√
M3e−c0t/2

for all t ≥ 0, moreover, by means of the previous step, it follows limt→+∞ Dη(Et) = 0. In turn, by
integrating this differential inequality and writing

∂Et = {y + ψη,t(y)νE+η(y) : y ∈ ∂E + η} ,

we get

‖ψη,t‖
2
L2(∂E+η) ≤ CDη(Et) ≤

ˆ +∞

t
C

√
M3e−c0 s/2 ds ≤ C

√
M3e−c0t/2 .

Since by the previous steps ‖ψη,t‖W2,6(∂E+η) is bounded, we infer from this inequality, Sobolev
embeddings and standard interpolation estimates that also ‖ψη,t‖C1,β(∂E+η) decays exponentially for
β ∈ (0, 2/3).
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Denoting the average of Ht on ∂Et by Ht, as by estimates (4.67) and (4.70), we have that

‖Ht(· + ψη,t(·)νE+η(·)) − Ht‖H1(∂E+η)

≤ C‖Ht − Ht‖H1(∂Et)‖ψη,t‖C1(∂E+η)

≤ C‖∇Ht‖L2(∂Et)

≤ C
√

M3e−c0t/2 .

It follows that
‖[Ht(· + ψη,t(·)νE+η(·)) − Ht] − [H∂E+η − H∂E+η]‖H1(∂E+η) → 0 (4.73)

exponentially fast, as t → +∞, where H∂E+η stands for the average of H∂E+η on ∂E + η.
Since Et → E +η (up to a subsequence) in W3,2, it is easy to check that |Ht−H∂E+η| ≤ C‖ψη,t‖C1(∂E+η)

which decays exponentially, therefore, thanks to limit (4.73), we have

‖Ht(· + ψη,t(·)νE+η(·)) − H∂E+η‖H1(∂E+η) → 0

exponentially fast.
The conclusion then follows arguing as at the end of Step 4 of Theorem 4.6. �

5. The classification of the stable critical sets

In this final section, we are going to discuss the classes of smooth sets to which Theorems 4.6
and 4.19 can be applied, hence, “dynamically exponentially stable” for the modified Mullins–Sekerka
and surface diffusion flow. Much is known for the stable and strictly stable critical sets E ⊆ Tn (or of
Rn) of the Area functional (hence, for the unmodified Mullins–Sekerka and surface diffusion flows),
characterized by having constant mean curvature H and satisfying respectively

ΠE(ϕ) =

ˆ
∂E

(
|∇ϕ|2 − ϕ2|B|2

)
dµ ≥ 0

for every ϕ ∈ H̃1(∂E) =
{
ϕ ∈ H1(∂E) :

´
∂E ϕ dµ = 0

}
and

ΠE(ϕ) =

ˆ
∂E

(
|∇ϕ|2 − ϕ2|B|2

)
dµ > 0

for every ϕ ∈ T⊥(∂E) =
{
ϕ ∈ H1(∂E) :

´
∂E ϕ dµ = 0 and

´
∂E ϕνE dµ = 0

}
, according to

Definition 2.24. Instead, considerably less can be said for the “nonlocal case”, relative to the modified
(with γ > 0) Mullins–Sekerka flow, for which in the above formulas we need to consider analogously
the positivity properties of form

ΠE(ϕ) =

ˆ
∂E

(
|∇ϕ|2 − ϕ2|B|2

)
dµ + 8γ

ˆ
∂E

ˆ
∂E

G(x, y)ϕ(x)ϕ(y) dµ(x) dµ(y)

+ 4γ
ˆ
∂E
∂νE vEϕ

2 dµ ,

on the critical sets E (in Tn or in domains of Rn, with “Neumann conditions” at the boundary) satisfying
H + 4γvE = 0 on ∂E.
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Concentrating for a while on the Area functional, we observe that it is easy to see that (by a
dilation/contraction argument) any strictly stable smooth critical set must be connected, but actually,
being the normal velocity of the surface diffusion flow at every point defined by the local quantity
∆H, it follows that Theorem 4.19 can be applied also to finite unions of boundaries of strictly stable
critical sets (see [24] and the Figure 1 below). Moreover, by the very definition above, if ∂E in Tn is
composed by flat pieces, hence its second fundamental form B is identically zero, the set E is critical
and stable and with a little effort, actually strictly stable. It is a little more difficult to show that any
ball in any dimension n ∈ N is strictly stable (it is obviously a critical set), which is connected to the
study of the eigenvalues of the Laplacian on the sphere Sn−1, see [30, Theorem 5.4.1], for instance.
The same then holds for all the “cylinders” Rk × Sn−k−1 ⊆ Rn, bounding E ⊆ Tn after taking their
quotient by the same equivalence relation defining Tn, determined by the standard integer lattice of
Rn.

Notice that if n = 2, it follows that the only bounded strictly stable critical sets of the (in this case)
Length functional in the plane are the disks and in T2 they are the disks and the “strips” with straight
borders. This is clearly in agreement with the two–dimensional convergence/stability result of Elliott
and Garcke [15], mentioned at the end of Section 3.

In the three–dimensional case, a first classification of the smooth stable “periodic” critical sets for
the volume–constrained Area functional, was given by Ros in [59], where it is shown that in the flat
torus T3, they are balls, 2–tori, gyroids or lamellae.

Figure 1. From left to right: balls, 2–tori, gyroids and lamellae.

Notice that, despite their name, the lamellae are (after taking the quotient) parallel planar 2–tori
and the 2–tori are quotients of circular cylinders in R3. As we said, with the balls, these surfaces are
actually strictly stable, while in [31, 32, 60] the authors established the strict stability of gyroids only
in some cases. To give an example, we refer to [32] where Grosse–Brauckmann and Wohlgemuth
showed the strictly stability of the gyroids that are fixed with respect to translations. We remind that
the gyroids, that were discovered by the crystallographer Schoen in the 1970 (see [62]), are the unique
non–trivial embedded members of the family of the Schwarz P surfaces and then conjugate to the D
surfaces, that are the simplest and most well–known triply–periodic minimal surfaces (see [60]).

For the case γ > 0, that is, for the nonlocal Area functional, a complete classification of the stable
periodic structures is instead, up to now, still missing.

It is worth to mention what is shown in [2] about the minimizers of J. The authors proved that if a
horizontal strip L is the unique global minimizer of the Area functional in Tn, then it is also the unique
global minimizer of the nonlocal Area functional under a volume constraint, provided that γ > 0 is
sufficiently small. Precisely, the following result holds.

Theorem 5.1. Assume that L ⊆ Tn is the unique, up to rigid motions, global minimizer of the Area
functional, under a volume constraint. Then the same set is also the unique global minimizer of the
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nonlocal Area functional (2.4), provided that γ > 0 is sufficiently small.

This theorem then allows to conclude that the global minimizers are lamellae in several cases in
low dimensions (two and three), for suitable parameters γ and volume constraint. Moreover, in [2], it
is also shown that lamellae with multiple strips are local minimizers of the functional J, if the number
of strips is large enough.

Finally, we conclude by citing the papers [9,10,12,44,53–58] with related and partial results on the
classification problem which is at the moment fully open.
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