
s*
w,

a={x ,x},
b={x ,y},

c={y,x},d={y,y};s l[]={&b,&d,w (w(w(w(w(w(&d)))))),w(&d),&c,&d,w(w(w(
&d))),&c,w(&b),&d,&a,z(&d),z(w (w(w(w(w(&d)))))),&b,&b,w(&d),&a,&b,w(&
d), z(w
(w(w(w

(&d))))),w(w(w(&d))), &b,&c,&d, &d,&a,&c ,w(w(&d)), &c,z(&b) ,w(&d),w(&a)
};s* C(s* a, s* b) {s* _=malloc(s(s));_(_)=a;_((t)_)=b;return _;}e k2=s(l
);p f(p
a,p b)

{ e k;s d;p v,r, q,i,C,c,u,g,m=t()
_ (_(_(w)));C=t() _(_(&l[fread(&k,s(e)
,s (e),stdin)]));v =C(_,__);d=l[k=(e)
C (k2,k)];c=(u=a(b,_),i=(t()_((t)
_ (_(w))))(_,_(_(o))),(a(_(_((t)o)),(t()
_ (_((t)o)))(_,__)))(b(_((t)_((t)o))
, (t()_((t)_((t)o))) (_,__)),_));{p a=t()
_ ((t)_(o));{p b= C(_,i(u(_,__),_))
; { p u=C(_,(t()_(_(o)))(_,__));_(_(_(w)))
= (s*)i(__,_(_(_(w))));r=b(m(c,_)
,C (m(_,(t()_((t)_(_(w))))(_,__))
, (f)));v=b(_,v);i =b(a(_,__),_);g=(b)

(a(m(c(_,__),__),_),_);q=u(_((t)
_ (o)),_)((t()_((t)_(_(w))))((t()
_ (_((t)o)))(_(_((t)_(w))),(t()_(_((t)
_ (w))))(_,__))(_,__),_)(_,__),_)
;_ (_((t)_(w))) = (s*)u(_((t)_(o)),_)

((t()_((t)_(_(w)))) (_,__),_)(_(_((t)o))
,_ (_((t)_(w))));} }_((t)_(_(w)))=(s*)
q (a=(t()_((t)_(_(w))))(_,__),_((t)_(_(w))))

; fwrite((k=k,&k2) ,s(e),u(_,g)(s(e)
, (e)s(s[s(s[s(s[s (s)])])])),stdout)

; fwrite((k2=k,&k) ,s(e),u(__,g)(s(e)
, (e)s(s[s(s[s(s[s (s)])])])),stdout)
;_ (_(_((t)w)))=(s*) u((t()_(_(_((t)w))))

(_,__),_(_(_((t)w))));_(_((t)_(w)))
= (s*)q(a(_(_((t) o)),_(_((t)_(w))))
,_ (_((t)_(w))));} _((t)_(_((t)w)))=(s*)

(t()_(_(_((t)w))))(_((t)_(_((t)w)))
,u ((t()_((t)_(_((t)w))))(_,__),_((t)
_ (_((t)w)))));g =u((q=u(C(__,(t()
_ (_(_((t)w))))(_((t)_(_((t)w))),_)),_))

(_,__),g);v=g(__,i(u(_,i(f,_))
(_(_((t)o)),_((t)_((t)o))),v))

,r= q(_
,g(f,i
(v(f,(_(_(_(w)))=(s*)m,_)),r)));return q(_,v)(r(g(__,a),g(__,b)),r);}

int main
(){w=C(C(h,h),C(h,h));return printf((e*)f(_,_)("OK\n","\n ^ Error\n"

""))
;}

1

Investigating the Perception
and Effects of Misunder-
standings in Java Code
Chris E.I. Langhout

Te
ch

ni
sc

he
U
ni
ve

rs
ite

it
D
el
ft

Investigating the Perception and
Effects of Misunderstandings in

Java Code

by

Chris E.I. Langhout

to obtain the degree of Master of Science
at the Delft University of Technology,

to be defended publicly on Wednesday May 27th, 2020 at 2:00 PM.

Student number: 4281705
Thesis committee: Prof. Dr. A. van Deursen, Faculty EEMCS TU Delft, chair

Dr. M.F. Aniche, Faculty EEMCS TU Delft, supervisor
Dr.ir. F.F.J. Hermans, LIACS Leiden University

An electronic version of this thesis is available at http://repository.tudelft.nl/.

http://repository.tudelft.nl/

ii

© 2020 Chris E.I. Langhout

Cover image courtesy of: Adar Zeitak, retrieved from: IOCCC contest Balanced use of obfuscation
Gold award © Copyright 19842015, Leo Broukhis, Simon Cooper, Landon Curt Noll Licenced under:
CC BYSA 3.0

Investigating the Perception and
Effects of Misunderstandings in

Java Code

by

Chris E.I. Langhout
4281705

Abstract

Although writing code seems trivial at times, problems arise when humans misinterpret what source
code actually does. One of the potential causes are “atoms of confusion”; the smallest possible patterns
of misinterpretable source code. The misunderstandings and errors have been studied in past for the C
programming language. They are found to occur in many large projects and style guides. In this work,
the existing tested set of atoms of confusion has been translated to Java. With this new set, our aim
was to find out what atoms of confusion hinder the comprehensibility of Java programs. Additionally,
we wanted to find out how these confusion patterns are perceived. To this end, the new code snippets
are used in a twofold experiment. The first part of the experiment asked the participant to write down
the output of a code snippet. The results of this showed us that 7 out of the 14 translatable atoms are
the cause of misunderstandings for students. We measured a significant increase in mistakes caused
by the atoms of confusion. In the second part of the experiment we asked the participants to compare
two code snippets on how confusing they are. One code snippet included the confusing pattern, while
in the other, the pattern is avoided. Results showed us that these students also perceive the atoms
of confusion as being more difficult to understand. The combined results show us the significance of
these atoms of confusion, and show us examples of situations where we cannot assume programmers
to simply grasp the meaning of what we write down as code. The code snippets for the experiment,
scripts, and data used for this experiment are provided in an online appendix [29].

Thesis committee: Prof. Dr. A. van Deursen, Faculty EEMCS TU Delft, chair
Dr. M.F. Aniche, Faculty EEMCS TU Delft, supervisor
Dr.ir. F.F.J. Hermans, LIACS Leiden University

An electronic version of this thesis is available at http://repository.tudelft.nl/.

http://repository.tudelft.nl/

Preface

Thank you for taking your time to read through my thesis report. The makingof took me more time
than I like to admit. Back in July 2018 I had my first meetings with my supervisor, Maurício. He had
quite some nice ideas that seemed more than interesting to explore during my master thesis project.
We decided to go into the direction of a static analysis tool for Javascript, inspired by the abilities of
the PVSStudio Analyzer by Viva64 1.

After some time, however, we decided to change directions. To be able to tell the usefulness of
a tool like this, we would like to research what rules are needed. From javascript, we moved to a
combination of C, Java and Python, and took many inspiration from the awesome research done by
Gopstein et al. [21]. Thanks a lot to the amazing availability of the resources those researches used
and provided 2.

Another moment of realization came, we deemed focussing on 3 languages at the same time un
feasible. We would get better results, and save additional effort in the experiment setup if we only
focus on Java. This also means that all TU Delft computer science students are feasible candidates, as
they all have a baseline knowledge of Java. Many thanks to all the students that took the time to fill in
the experiment!

The journey of my master thesis is now finally coming to an end. Many thanks to Maurício for
sticking with me, all the discussions and meetings we had in the beginning, the support and motivation
throughout the project, and the reviews and feedback on the process and the result. I am really happy
with the result and really happy with the role you played.

Another person to whom I own many thanks, is Martijn. You have supported my work al lot, and
encouraged my creativity. You prereading my work always resulted in helpful points of feedback, you
are always willing to listen, discuss and think along.

Many thanks to Dereck as well, working through the summer of 2019 was way better doable to
gether. Full working days at the 4th floor were much better to sustain together. Thanks as well to the
rest of the 4th floor gang. The code snippets I used in my experiment improved in quality during the
discussions about them, and mostly, I explored the workings of the most specific details of them with
you.

Lastly, I would like to thank all others that have read my thesis, have proposed to preread, or will
read my work. Your support was very helpful.

Chris Langhout
Delft, the Netherlands

May 13, 2020

1https://www.viva64.com/en/pvsstudio/
2https://atomsofconfusion.com

iii

https://www.viva64.com/en/pvs-studio/
https://atomsofconfusion.com

Contents

List of Figures vii

1 Introduction 1

2 Related Work 3
2.1 Program Comprehension . 3
2.2 Misconceptions . 6

3 Methodology 9
3.1 Measuring Atoms of Confusion. 9
3.2 Design of the Study . 11

3.2.1 Part 1: Effect . 11
3.2.2 Part 2: Perception . 13
3.2.3 End of the Survey . 14

3.3 Participants . 14
3.4 Data analysis . 14
3.5 Threats to Validity . 15

3.5.1 Threats to Internal Validity . 16
3.5.2 Threats to External Validity . 16

4 Results and Discussion 17
4.1 RQ1: Which atoms of confusion hinder the comprehensibility of Java programs,

and to what extent? . 18
4.2 RQ2: How do students perceive confusion in Java programs that include atoms

of confusion, as opposed to the translated, confusionfree, Java programs? 19
4.3 Discussion. 20
4.4 Recommendations to Educators . 28
4.5 Avoiding atoms of confusion . 28

5 Conclusions and Future Work 31
5.1 Future Work. 31

Bibliography 33

A Code Examples 37

B Ethics Committee Approval 47

C Screenshots of the Online Survey 49

v

List of Figures

1.1 Examples from StackOverflow answers on how to convert boolean b to int in Java . . . 1

3.1 Design of the study. 9
3.2 Amount of participants per year of study. 15

4.1 Error rate per task vs the average time spend on page for that task. 17
4.2 Distribution of duration of the experiment. Outliers above 100 minutes left out (9x) . . 17
4.3 Survey answers on what atom variant is perceived more confusing per atom category. . 19

C.1 Survey introduction . 50
C.2 The example question of part 1 . 51
C.3 The page design of part 1, the participant is shown one of the 80 available code questions. 52
C.4 The example question of part 2 . 53
C.5 A page of part 2, asking the participant to compare a randomly selected pair of code

examples. 54
C.6 End of Survey questions . 55
C.7 Thank you page . 55

vii

1
Introduction

When creating, adapting, maintaining and reviewing source code, it is necessary to understand what
the code does [21, 38, 40]. In contrast to natural languages, programming languages have an unam
biguous meaning for a syntactical valid piece of code [4]. However, developers do not necessarily draw
the correct conclusions on the behavior of a piece of code [21]. They often mistake the meaning of
code and misjudge the program’s behavior, which can lead to errors. This shows a need for improving
code understandability [30].

int i;

1. i = b ? 1 : 0;

2. i = (Boolean b).compareTo(false);

3. i = Boolean.compare(b, false);

4. i = (”false”.indexOf(””+b));

5. i = 5 b.toString().length;

6. import org.apache.commons.lang3.
BooleanUtils;

i = BooleanUtils.toInteger(b);

7. if(b){
i = 1;

} else{
i = 0;

}

8. i = 1 & Boolean.hashCode(b) >> 1;

Figure 1.1: Examples from StackOverflow answers on how to
convert boolean b to an int in Java 1

We can find numerous examples of misunder
standing causing code. We can observe that peo
ple tend to disagree about what code is under
standable and what code is not.

Different programming languages give the soft
ware developer many ways of writing a solution to
a problem. For example, the simple task of con
verting a boolean true or false value into a nu
meric int value can be coded in a vast amount of
ways. One example of this can be found in the
difference in answers given to the question How
to convert boolean to int in Java? 1. Eight differ
ent answers are displayed in Figure 1.1, ordered
by amount of votes. The solutions show a great
amount of variation in logic, readability and un
derstandability. Using the ternary if operator
(option 1.) is by comments considered ‘most read
able’, and received the most votes, making it the
most accepted solution according to the rules of
the community the question was posted in. This is
in contrast with the findings of Gopstein et al. [21],
which show that the use of the conditional operator
atom is found to be significantly confusing. (The
ternary if operator is the only conditional operator used in the code examples for the conditional opera
tor atom.) Furthermore, the author of the 8th answer starts his answer with “If you want to obfuscate,
use this:” showing that the intention of this answer is not readability, but rather showing of a less
known alternative to solve the question.

Discussions about misconceptions happen regularly. On the 14th of June 2019, user Jonathan
Wakely starts a discussion on the bugtracker of GCC about introducing warnings when people use the
boolean operator ∧ with integer literals.2 The ∧ operator represents a bitwise XOR operation in most
programming languages. Instead, people confuse the symbol with the mathematical representation of
a power. The author states:
1https://stackoverflow.com/questions/3793650/convertbooleantointinjava[Accessed July 25, 2019]
2https://gcc.gnu.org/bugzilla/show_bug.cgi?id=90885

1

https://stackoverflow.com/questions/3793650/convert-boolean-to-int-in-java
https://gcc.gnu.org/bugzilla/show_bug.cgi?id=90885

2 1. Introduction

“There’s nothing wrong about implicit fallthrough, misleading indentation, ambiguous
else, or missing parentheses in nested logic expressions either. But people get it wrong all
the time.

I can’t see a good reason to write 2∧16 when you mean 18, or 10∧9 when you mean
3, so it’s probably a bug. And there’s an easy workaround to avoid the warning: just write
the exact constant as a literal, not an XOR expression.”3

Other people jump in to show examples of occurrences of this particular pattern on GitHub and other
source code hosting sites. Several responses provide suggestions to specific cases when a warning
should, or should not be raised, depending on the use of literals or not. These examples show that
readable code is a relevant topic, and that the details up to the smallest code snippets can make a
difference in understandability.

The motivation for this study comes from the work of Gopstein et al. [21]. They observe a trend in
notable software bug examples, where the failure is caused by “a single, wellcontained, programming
error at the syntactic or semantic level, rather than the algorithmic or systemlevels of the project”.
Seeking validation for reoccurring misunderstandings caused by these small code patterns, an experi
ment is set up. Atoms of confusion, ‘atoms’ for short, are defined by Gopstein et al. [21] as minimal
portions of code that cause a person and a machine to come to different conclusions on the output.
Castor [12] expands this definition by formalizing atoms as: precisely identifiable, likely to cause con
fusion, replaceable by a functionally equivalent code pattern that is less likely to cause confusion, and
indivisible. Atoms of confusion do specifically not include nondeterministic, undefined/nonportable,
computational, and API related code, since the target of the atoms is programmer mistakes caused by
misunderstanding [21].

With 73 participating students, Gopstein et al. [21] show a significant increase in misunderstanding
caused by the patterns, opposed to code without the atoms of confusion. To show the impact of
these confusion patterns, another experiment with 43 participants and larger confusing programs was
performed and described within the same work [21]. The results of this second experiment show
statistical significant higher error rates in the evaluation of obfuscated variants of programs.

The goals of this work are to generalize the knowledge on atoms of confusion to the Java program
ming language, show the perception of developers towards the atoms of confusion and gain insights
in what makes the atoms confusing. The study is geared towards TU Delft students, to show where
confusion is likely to occur and to raise the discussion on areas of interest for education. A twofold
experiment is used to collect the necessary data and to extend the findings of previous work with data
on an additional programming language. First, the effects of the atoms of confusion will be evalu
ated by an experiment similar to the original research. Second, participants will be asked about their
perception of the included atoms fo confusion by showing both the code example with the candidate
confusion patterns, as well as the variant where this potential confusion pattern is left out.

The complete design of the experiment, along with the rest of the scientific methodology can be
found in Chapter 3. Chapter 4 will display the results of the experiment, will go into detail on the
outcomes and raise a discussion for each individual atom. Finally, in Chapter 5, a conclusion is drawn
and future work is discussed.

3https://gcc.gnu.org/bugzilla/show_bug.cgi?id=90885#c6

https://gcc.gnu.org/bugzilla/show_bug.cgi?id=90885#c6

2
Related Work

This chapter discusses topics related to program comprehension and code readability, specifically atoms
of confusion and misunderstandings in source code, and how this impacts programming education.

2.1. Program Comprehension
Program comprehension is a widely explored domain in computer science. For this study, we are mainly
interested in the skill level in program comprehension of novice programmers. We are interested in
research that finds factors of influence on program comprehension, and explanations of code readability
for novice programmers.

In 1985, Bonar and Soloway [9] stated that ‘many programming bugs can be explained by novices
inappropriately using their knowledge of stepbystep procedural specifications in natural language’.
We can take away that certain bugs can be caused by lack of expertise. Finding out what programming
code does, or what code is needed, our intuition sometimes tries to connect our present knowledge
from other fields to find a solution. In this case, knowledge of natural language tricked participants
into making mistakes when writing code [9].

We want to find out how well students understand code that is shown to them. A study by Brooks
[10] provides a theory that predicts three sources of comprehension ability differences in programmers:
programming knowledge, domain knowledge and comprehension strategies. The provided theory aims
to explain four sources of variation in behavior: the kind of computation, the intrinsic properties of
the written code and documentation, the reason why the documentation is provided, and differences
between the individual participants. The provided theory explains comprehending of a program as
the ability to reconstruct mappings from a problem domain, through intermediate domains, into the
programming domain. We are interested in the comprehension of very small snippets of code, that
lack the initial problem mapping. Although few code is to be processed, it provides an interesting
perspective on the research of comprehension on (small) snippets of code.

We are interested in research methodologies to measure how well programmers understand various
snippets of code. Ajami et al. [1] use an experimental platform fashioned as an online gamelike envi
ronment to measure how quickly and accurately 220 professional programmers interpret code snippets
with similar functionality but different structures. The findings include that there is no relation between
errors made and time taken to understand the snippets, but snippets that take longer to understand
are considered harder [1]. When a snippet contains a for loop, the code is considered much harder
to understand compared to snippets containing ifs. Snippets with predicates become harder to un
derstand when negations are present, and for loops counting down are harder to understand than
loops that count up. This shows that the slight differences in the way of expressing predicates can
be measured when compared against the use of known idioms. The syntactic structures of code are
shown to not necessarily take up the biggest part in the measurement of complexity of code. They also
found that the metrics of time to understanding and the amount of errors made are not necessarily
related. This means that the amount of errors made is not related to how long a participant takes to
solve a problem.

3

4 2. Related Work

Atom Name Obfuscated Transformed

Infix Operator Precedence 2 4 / 2 2 (4 / 2)

PostIncrement/Decrement V1 = V2++; V1 = V2; V2 += 1;

PreIncrement/Decrement V1 = ++V2; V2 += 1; V1 = V2;

Constant Variables* V1 = V2; V1 = 5;

Conditional Operator V2 = V1 == 3 ? 2 : 1; if (V1 == 3) { V2 = 2; }
else { V2 = 1; }

Arithmetic as Logic* (V1 3) * (V2 4) V1 != 3 && V2 != 4

Logic as Control Flow V1 == ++V1 || ++V2 if (!(V1 + 1))
{ V2 += 1;}

V1 += 1

Repurposed Variables int main(int argc,
char **argv) {

argc = 7;
...

int main(int argc,
char **argv) {

int V1 = 7;
...

Dead, Unreachable, Re
peated*

V1 = 1; V1 = 2; V1 = 2;

Change of Literal Encoding V1 = 013 char V1 = 23;

Omitted Curly Braces if (V1) F1(); F2(); if (V1) { F1(); } F2();

Type Conversion 3/2; trunc(3.0/2.0);

Preprocessor in Statement int V1 = 1
#define M1 1
+1;

#define M1 1
int V1 = 1 + 1;

Macro Operator Precedence #define M1 64 12 * M1 2 * 64 1

Assignment as Value V1 = V2 = 3; V2 = 3; V1 = V2;

Reversed Subscripts 1[”abc”]; ”abc”[1]

Comma Operator V3 = (V1++, V1); V1++; V3 = V1;

Implicit Predicate if (4 % 2) if (4 % 2 != 0)

Pointer Arithmetic* ”abcdef”+3 ”abcdef”[3]

Table 2.1: Atoms of confusion from Gopstein et al. [21]. Atoms marked with a * failed to meet statistical significance.

2.1. Program Comprehension 5

Going into more depth on program understanding, the difference in program comprehension be
tween different representations of programs is researched by Bednarik and Tukiainen [6]. In their work,
eyetracking is used to help find program comprehension strategies. Their experiment makes use of a
tool that represents a program in the program code, and an animated visualization of the code. In the
experiment with 18 novice programmers, two different comprehension strategies were observed. In
general, participants with less previous programming experience used the provided animation to gain
insights in the program’s behavior. However, the more experienced participants looked at the provided
source code first, and used this to form a hypothesis of the program. The animation is then used only
to verify and improve their formed beliefs.

Now that we found out what makes programs harder or easier to understand, we can find ways to
improve readability of source code. To increase understandability of programs, Jbara and Feitelson [26]
researched and measured the impact of code regularity. Repeating similar structures may significantly
reduce complexity, since readers notice repetition. Therefore, future occurrences become easier to
understand [26]. Controlled experiments are used to show this reduction in complexity. Participants
are shown three different implementations of a program with varying percentages of repetition within
the code. Significant regularity is shown to improve comprehension, demonstrating impact of repeated
structures when investigating code comprehension. Furthermore, Jbara and Feitelson [26] state that
“the fact that regularity may compensate for LOC and MCC demonstrates that complexity cannot be
decomposed into independently addable contributions by individual attributes”.

Research on program comprehension can also be used in a total opposite way. Intentionally de
creasing the readability of source code is used as a security measure to prevent attackers from un
derstanding the specific implementation of a program. Code obfuscation techniques are used to hide
the meaning of source code implementations by transforming the program into an obfuscated program
while keeping the same observable behavior [4, 14]. Code obfuscation makes understanding the mean
ing and conceptual purpose of code harder for humans. Collberg et al. [14] stated in their research
from 1997 that “automatic code obfuscation is currently the most viable method for preventing reverse
engineering.” In their work, they analyse the working of different code obfuscation transformations,
and measure the effect they have on human understandability, how well attacks are prevented, and
what the costs of these methods are. For our own research, the most interesting part is the measuring
of the confusing effect the obfuscations have on humans. Their method, however, is based on Software
Complexity Metrics. The field of research around software complexity metrics is definitely interesting
regarding code understandability. Various different metrics exist that provide a score based on code
maintainability, understandability, or quality [31, 36]. While the potential of metrics to determine the
quality of software is great for production code, the code snippets we use for this experiment are so
limited in size, the metrics are not well applicable.
Turning our focus back on research on code obfuscation, techniques that are used for the obfuscation
of code can be used for finding areas of interest in code comprehension [4]. By understanding what
makes code less readable, we can draw conclusions about what code constructs are understandable
and which to avoid. This is shown by the research of Gopstein et al. [21]. The main source of the
code patterns used for the atoms of confusion comes from a contest on writing obfuscated code called
IOCCC (the International Obfuscated C Code Contest). The original 19 atoms of confusion, on which
this research is based on, are described in Table 2.1. The obfuscated column shows example code
that includes the pattern causing the atom of confusion, and the transformed column shows example
code where this pattern is avoided, while the code behavior remains equivalent. To show the real world
relevance of these selected atoms of confusion, follow up research from Gopstein et al. [23] shows that
the 15 atoms that were proven to be confusing, occur in practice once per 23 lines. Their research is
based on the analysis of 14 of the most popular and influential C and C++ software projects. Medeiros
et al. [30] also researched the rate of occurrences of most of the atoms and show that all but one
occur in the analyzed projects. They based their numbers on a set of 50 opensource C projects using
a mixed method approach including repository mining and developer surveys. Four of the 12 atoms
researched by Medeiros et al. [30] are shown to be commonly used.

A similar approach to researching patterns of code that cause misinterpretation can be found in
the work of Dolado et al. [16]. This work provides insights in misinterpretations caused by code that
has sideeffects. The researched code fragments are comparable to code examples used in this study.
The atoms pre increment decrement, post increment decrement and logic as control flow have most
similarities, as they also make use of expressions with sideeffects.

6 2. Related Work

2.2. Misconceptions
Other misconceptions that happen in reading and writing source code can be found that are similar to
atoms of confusion, but not really fit the definition. Beller et al. [7] found that ‘microclones’ are much
more likely to have an error in the last line or statement than the previous lines [7, 8]. Micro clones
are explained as tiny, duplicated pieces of code, for example:

x += other.x;
y += other.y;
z += other.y;

By analyzing open source projects and detecting these situations, they show that the last occurrence
is more likely to contain the mistake, whenever a mistake is present. In follow up research, the cause
of these kinds of errors is investigated, and “action slips” (mistakes made during routine tasks [3]) are
shown to have influence. The PVSStudio tool, used to find the researched occurrences, can help in
detecting these errorprone situations.

When comparing natural language to programming languages, programming languages have more
repetition and higher predictability. The reason behind this, as found out by Casalnuovo et al. [11] is
not due to grammatical constraints in programming languages and has to be resulting from developers’
choice. ARCC: Assistant for Repetitive Code Comprehension is a tool made by Nunez et al. [33] to use
repeating structures in helping understand programs. The effect of repeating structures might be of
influence to results for the Dead, Unreachable, Repeated atom.

The perception on readability of 11 different coding style practices is tested by dos Santos and
Gerosa [17]. Using a custom tool, participants were shown a pair of code examples, one violating the
coding practice while the other complied with it. They find that 7 out of the 11 tested practices increase
readability, 1 decreased readability, and the remaining 3 did not present statistically significant effects.

Misconceptions in the object oriented programming approach, that are related to education of the
subject, are researched by Holland et al. [24]. Six misconceptions are identified and characterized
within a teaching environment. The main focus lies on the educational part of these misconceptions
and how to educate new students to avoid these misconceptions.

In the study by Bonar and Soloway [9] bugs produced by novice programmers were studied. They
discovered the influence of natural language preprogramming knowledge on the created code quality.
The experiment participants encounter an obstacle when solving a programming problem, and use their
knowledge of natural language and keywords of the programming language to try and work around [9,
35]. Pane et al. [35] study natural tendencies nonprogrammers have when solving programming
problems in order to guide the design of future programming languages, that will be easier to learn
and use for beginners, since they more closely resemble the way they tackle problem solving.

A lot has changed since the first programs were written. Some of the atoms of confusion were orig
inally encouraged for performance gains or even necessary due to limitations in length of variables or
functions due to memory size. Nowadays, maintainability is much more valuable than the performance
gained by using these obfuscated patterns [23]. Maintenance of code bases takes approximately 40%
to 80% of software costs [20]. In order to keep maintainability of code bases high and assure quality of
the source code, code reviews are often used. Code reviews are not easy to perform: reviewers often
have misunderstandings or confusions about the code being reviewed [5, 13, 18]. The main motivation
for reviewing code is to find defects. Reviews also have a positive effect on transfer of knowledge,
awareness of the team, and exploration of different solutions for problems [5]. Ebert et al. [18] took
a look at confusion in code reviews by examining the comments left by reviewers. What they show
is that reviewers often do not understand the context of the code change well, which has an impact
on the understanding of the code. However, reviewers are decently well in detecting and pointing out
sources of confusion.

Tools meant to increase readability and reduce confusion of program code already exist. In partic
ular, static analysis tools are used to check program code by using a set of rules to find defects and
styling issues, without running the code [41]. Depending on what programming language, what tool
is used, and what rules are enabled, atoms of confusion can be avoided or introduced. For the C pro
gramming language, compiler warnings can be enabled to warn for potentially confusing or erroneous
code. For example, since GCC version 6, a warning for misleading indentation exists, namely, the by

2.2. Misconceptions 7

using the flag Wmisleadingindentation1. Using GCC (version 7.4.0) to compile an example of
the Remove Indentation atom from the dataset of Gopstein et al. [22], namely:

#include <stdio.h>

void main() {
int V1 = 5, V2 = 5;
while (V2 > 0)

V2;
V1++;

printf(”%d\n”,V1);
}
The result of compiling this with GCC without any additional flags succeeds without any output. If we
pass the Wall flag (to list all warnings) however, a very detailed output is presented on the mislead
ing indentation.

The first line warns about the missing {}brackets, and the note after that notifies us about the mis
leading indentation.

For Java, due to the design of the language, some of the atoms of confusion that do exist in C are
impossible to recreate. For example, the implicit predicate atom is nearly nonexistent in Java since the
condition of an ifstatement requires a value with the boolean type. The atoms that have no translation
to Java are discussed in more detail in Chapter 3.1. Additionally, tools specifically targeting the quality
of Java source code exist. Well known tools, such as FindBugs 2, PMD 3 and Checkstyle 4 provide
numerous rules that help maintain a coherent code style. Research by Flanagan et al. [19] provide an
extended static checker that can help in finding common programming errors.

Johnson et al. [27] researches why software developers do not use static analysis tools, despite
their proven benefit. The main reason they found is related to the configuration of these tools. Often,
default configurations provided by the tools result in false positives. Other reasons include poorly
presented output and not being integrated in the existing workflow [27].

1https://gcc.gnu.org/onlinedocs/gcc/WarningOptions.html
2http://findbugs.sourceforge.net/
3https://pmd.github.io/
4https://checkstyle.sourceforge.io/

https://gcc.gnu.org/onlinedocs/gcc/Warning-Options.html
http://findbugs.sourceforge.net/
https://pmd.github.io/
https://checkstyle.sourceforge.io/

3
Methodology

The goal of this study is to measure the impact of atoms of confusion in Java code among first year
students. To that aim, we propose the following research questions:

RQ1 Which atoms of confusion hinder the comprehensibility of Java programs, and to what extent?
RQ2 How do students perceive confusion in Java programs that include atoms of confusion, as opposed

to the translated, confusionfree, Java programs?

Figure 3.1 illustrates our methodology. To answer these research questions, we first determine what
code constructs we want to test. We take the questions from the experiment of Gopstein et al. [22]
and manually translate them from C to Java program code. This process is described in Section 3.1.
Section 3.2 describes the online experiment for the collection of data. The experiment consists of two
parts. The first part focusses on the effects of atoms of confusion, asking the participant what they
believe the code will print out. The answers are checked against the actual program output. The second
part shows the two variants of one selected atom of confusion instance, and we ask the participant to
compare the two on level of confusion. Furthermore, we ask the participant to indicate what makes the
one more confusing than the other. We recruit TU Delft Computer Science and Engineering students
to fill in our survey. How participants are solicited is described in Section 3.3, and the analysis of the
resulting data is described in Section 3.4 of this chapter.

3.1. Measuring Atoms of Confusion
In this section, we describe what we want to measure in this experiment. We take the atoms of
confusion from the experiment of Gopstein et al. [21] as a basis.

We devised a list of atoms of confusion in Java, based on Gopstein et al. [21]1 work on atoms
of confusion in C. The list of Gopstein et al. [21] contains 19 atoms, of which 15 were shown to be
1https://atomsofconfusion.com/

Survey

Perception Experiment

translation

Atoms of confusion

C

C

Obfuscated code

Translated code

x 19 atomsC

C

Translate

Obfuscated code

Translated code

Java Atoms

Java

Translate

Obfuscated code

Translated code

x 14 atoms

Effect Experiment

participate

TU Delft CS students

What will this
code print?

How certain
are you?

Which example is
more confusing?

7x 5x

Education
progress?

Years of
programming
experience?

Thank you
for

participating!

ob

tf

ra
nd

om
or

de
r

Figure 3.1: Design of the study.

9

https://atomsofconfusion.com/

10 3. Methodology

Atom name C obfuscated example Reason why translation is not
possible

Implicit Predicate if (4 % 2) Java requires that the condition of the
if statement is a boolean value. Non
boolean values will be rejected.

Macro Operator Precedence #define M1 64 12 * M1 Java does not have support for macro
support.

Pointer Arithmetic ”abcdef”+3 Pointer arithmetic is not possible.
Comma Operator V3 = (V1++, V1); The comma symbol is not an operator.

Preprocessor in Statement
int V1 = 1
#define M1 1
+1;

Preprocessing is not part of the stan
dard language specification of Java.

Assignment as Value V1 = V2 = 3; Java does not allow this behavior, the
type system disallows this atom.

Reversed Subscripts 1[”abc”]; This syntax is invalid in Java.

Table 3.1: Descriptions where translations of atoms are not possible

significantly confusing. The existing set of atoms from Gopstein et al. [22], listed in Table 2.1, resulted
in a set of different code snippets described in the C programming language. The code snippets are, in
essence, short programs with simple logic, and are affected by their respective atom of confusion. For
each of the 19 atom of confusion, 3 different pairs of snippets are included. Each pair consists of one
code example that includes the pattern that is described by the atom of confusion, and one snippet
that is free of the confusion pattern. Both versions (affected and not affected by the atom of confu
sion) represent the same program and have the exact same behavior. The resulting set contains of
19 atoms of confusion, each with 3 pairs of code examples, adding up to 19∗3∗2 = 114 code examples.

For this study, we explored which atoms have a Java equivalent. To attempt to create a complete
set of confusing atoms, specialist knowledge of the selected programming language is needed [12].
We created a set of 80 code examples, based on the dataset described above. The translation of the
atoms of confusion from C to Java consists of multiple steps. In order to stay in line with the original
study, the programming language related translations will be as similar as possible to the behavior of
the original sources [22]. In C, a program has to start with void main (){. This part is replaced by
class Snippet { public static void main (String[] args) {, since for a Java program
to work we need a class, and a more specific main method. The print statements are replaced by
the language specific counterpart. All C code atoms are converted to Java atoms, changing as little
code as possible. While some of these changes are translations between the languages, others require
alternative solutions beyond trivial translations.

We revisited the atoms with experienced MSc students in order to refine them. Each resulting atom
is inspected on actual behavior. Possible pitfalls are analyzed and if unrelated to the targeted confusion
in this atom, the code is adapted to avoid this as much as possible. Aside from this, additional pitfalls
were taken out by carefully studying the errata2 Gopstein et al. [21] provided after completing their
study. The final result of this process can be found in Appendix A.

The cases in which the original atoms could not be translated are described in Table 3.1. It was
not possible to mimic the Implicit Predicate atom, since the type system requires boolean values for
predicates. The type system also prevents the Pointer Arithmetic and Assignment as Value atoms from
having a suitable Java translation. In the case of Pointer Arithmetic a number cannot be added to a
String type, and in the Assignment as Value case, the inner assignment does not have a valid return
type for the outer assignment. The Macro Operator Precedence and Preprocessor in Statement atoms
are not translated since preprocessing and macros are not part of the language specification. Finally,
the Comma Operator and Reversed Subscripts atoms cannot be translated as the syntax is not present,
and no similar behavior could be found.

2https://atomsofconfusion.com/2016snippetstudy/errata.html

https://atomsofconfusion.com/2016-snippet-study/errata.html

3.2. Design of the Study 11

The following section will describe the mentionable differences between the code examples provided
by Gopstein et al. [22] and the created Java equivalents. Code examples 26 and 54 were simplified, to
prevent interference with their purposed confusion. Two code examples were removed: code example
52 from the dataset of Gopstein et al. [22] related to Change of Literal Encoding is removed since it
requires knowledge of the ASCII character table to give an answer. A wrong answer will therefore be
much less likely related to the targeted confusion. Example 59 from the original dataset, related to
Type Conversion is removed because no trivial and small translation to an unsigned cast was found.
All atoms are manually checked against the original source and it was ensured that the behavior of
the transformed code examples is equivalent to their obfuscated counterparts. The translated part of
snippet 53 was adapted to match the behavior in the obfuscated part. Table 3.2 shows these differences
in more detail.

To illustrate the results of the translation process, Table 3.3 shows the translation per atom of
confusion. The full translated dataset can be found in Appendix A.

3.2. Design of the Study
The study consists of two parts, which will answer the first and second research question respectively.
In the first part of the study, the participant is shown one of the code examples, and is asked to evaluate
this code and predict an output, based solely on their own thinking process. In the second part, the
participant should form an opinion on the obfuscated and transformed code examples, and is asked
to explain the differences. The experiment in this study is executed online, using the SurveyGizmo3

platform.
The survey starts off with an introduction on the study and an approximation of time needed. The

structure of the survey is briefly touched upon, and some guidelines are given. The participant is
asked to fill in the answer solely based on own knowledge, so without help of others and tools. The
Furthermore, the guide specifies several points of information that can be summarized as:

• There is no time pressure, but the participant is encouraged to not stick to one question for too
long.

• No syntax errors are present in the given code. If the participant does think errors are present,
he/she is asked to explain in the comments where this error would take place.

• Encouragement not to use a calculator, the computer or a search engine for finding answers
during the experiment.

• It is not possible to go back to previous questions.
• Discouragement of taking a break while filling in the survey.
• Not using the back or refresh button of the browser, as this prevents finishing the survey.

These guidelines are based on the guidelines used and provided by Gopstein et al. [21] in their original
study. The last text before the Next button read that: for the integrity of the study, the answers of
the participant should not be influenced by external factors. The exact wording in the introduction of
the survey can be found in Appendix C, Figure C.1. The estimated total time required for filling in the
survey is 15 minutes, and consists of 12 tasks, 7 for the first part and 5 for the second.

3.2.1. Part 1: Effect
The first part of the survey is based on the study of Gopstein et al. [21]. We want to understand
whether the atoms of confusion hinder the understanding of the students. We showed 7 tasks to
each participant. Each task shows a code example and asks the participant to write down what this
program will print when executed. From our database of snippets, the program showed is picked by
randomly selecting an atom of confusion and whether or not this is affected by the confusion. For each
atom of confusion, two to three different pairs of code example snippets are possible, with one variant
containing confusion and one without.

In addition to the question on what the code will print, the participants are asked how certain they
are of their answer. This question can indicate when the participant answers a question correctly while
also being confused by the code, or even worse, when the participant answers a question wrong,
believing he understood the code. This checks if the participant understands the code, rather than

3https://app.surveygizmo.com

https://app.surveygizmo.com

12 3. Methodology

Old C Code Example New Java Code Example
code
example 26

simplified

void main() {
int V1 = 2;
int V2 = 3;
int V3 = 1;

int V4 = (V1 == 2 ?
(V3 == 2 ? 1 : 2) :
(V2 == 2 ? 3 : 4));

printf(”%d\n”, V4);
}

class Snippet {
public static void main(String[] args) {

int V1 = 3;
int V2 = 5;
int V3 = 2;

int V4 = V1 == 3 ? V2 : V3;

System.out.println(V4);
}

}

code
example 54

simplified

void main() {
int V1 = 208 & 13;

printf(”%d\n”, V1);
}

class Snippet {
public static void main(String[] args) {

int V1 = 11 & 32;

System.out.println(V1);
}

}

code
example 52

removed

void main() {
char V1 = 104;
printf(”%c\n”, V1);

}

code
example 59

removed

void main() {
int V1 = 1;

unsigned int V2 = V1;

int V3;
if (V2 > 0) {

V3 = 4;
} else {

V3 = 5;
}

printf(”%d\n”, V3);
}

code
example 53

adapted

void main() {
char V1 = 23;

printf(”%d\n”, V1);
}

class Snippet {
public static void main(String[] args) {

int V1 = Integer.parseInt(”13”, 8);

System.out.println(V1);
}

}

Table 3.2: Code examples where the translation is notably changing the code

3.2. Design of the Study 13

Atom Name Java Code Snippet with Atom of
Confusion

Java Code Snippet Free of the Con
fusion

Infix Operator Precedence 2 4 / 2 2 (4 / 2)

PostIncrement/Decrement V1 = V2++; V1 = V2; V2 += 1;

PreIncrement/Decrement V1 = ++V2; V2 += 1; V1 = V2;

Constant Variables* V1 = V2; V1 = 5;

Remove Indentation atom while (V2 > 0)
V2;
V1++

while (V2 > 0)
V2;

V1++

Conditional Operator V2 = V1 == 3 ? 2 : 1; if (V1 == 3) { V2 = 2; }
else { V2 = 1; }

Arithmetic as Logic* (V1 3) * (V2 4) != 0 V1 != 3 && V2 != 4

Logic as Control Flow V1 == ++V1> 0 || ++V2 > 0; if (!(V1 + 1 > 0))
{ V2 += 1;}

V1 += 1

Repurposed Variables for(int V1 = 0;...; V1++) {
for(int V2 = 0;...; V1++) {

for (int V1 = 0;...; V1++) {
for (int V2 = 0;...; V2++) {

Dead, Unreachable, Re
peated*

V1 = 1; V1 = 2; V1 = 2;

Change of Literal Encoding V1 = 013 V1 = Integer.parseInt(”13”, 8)

Omitted Curly Braces if (V1) F1(); F2(); if (V1) { F1(); } F2();

Type Conversion V1 = (int) 1.99f; V1 = (int) Math.floor(1.99f);

Indentation if (V1 > 0) { }
V2 = 4

if (V1 > 0) { }
V2 = 4

Table 3.3: Atoms of confusion; Summarized Java variants. Atom names marked with a * failed to meet statistical significance in
the work of Gopstein et al. [21].

just guessing where mistakes are made. We decided on asking this question in the form of a Likert
scale [25]; the participant is asked to which degree they agree/disagree with the statement “I am
certain of the correctness of my answer above.” The choice of Likert scale was made due to the
possibilities of analysis. The ranked order of the options is useful to categorize opinions, and are
familiar and quick to fill in for participants. Other considered options include: a yesno question to
specify if the previous provided answer was a guess and a slider to indicate confidence.

Before the participant will be directed to the real questions, we first show one example exercise. A
predefined code example is given, with example answers already filled in for the questions. The goal
of the examples is to show the participant what is expected and to give an example of how the open
questions can be answered.

Similar to the study by Gopstein et al. [21], we incorporate strategies to cope with the possibility of
a learning effect [32]. Since there are less questions in the survey than code examples, a randomized
subset of the available snippets is constructed. The available code example pairs are shuffled and
the new ordering is used to construct the participant specific question set. The randomized order
distributes bias of question order over the participants. No specific actions are taken to prevent a
single participant from seeing multiple variants of the same atom category, but it is guaranteed that
every obfuscatedtranslated pair is only used for one question.

3.2.2. Part 2: Perception
The second part of the survey attempts to answer RQ2: How do students perceive confusion in Java
programs that include atoms of confusion, as opposed to the translated, confusionfree, Java programs?
Participants will be presented with both the variant that includes that atom of confusion, and the variant
that is transformed to not include this confusion for 5 different pairs. Participants do not know what
atom of confusion is presented to them, as well as which variant contains the atom of confusion and
which does not. The first question asks which of the two variants the participant perceives as more
confusing. The four options are:

• 1 is more confusing

14 3. Methodology

• 2 is more confusing
• Both are equally confusing
• Neither are confusing

These four options provide the participant to add some granularity to their answer while still being easily
categorizable. While the the third and fourth option do not distinguish the two variants, a difference
in meaning is present in the options. Answering ‘Both are equally confusing’ would mean that both
variants of this atom are not very readable code and can confuse people, while answering ‘Neither are
confusing’ hints that both variants are not confusing or sufficient readable.

Next, the participant is asked to explain their answer. This will allow us to more precisely identify
what is the reason of the confusion. The confusion might be unrelated to the purpose of the atom,
and would indicate that (the representation of) this atom is not suitable.

3.2.3. End of the Survey
After the main parts are finished, some demographics are collected. The first question asks what
year of study the participant is in. Additionally, the programming experience is asked. Since students
generally add any programming experience to such a question, the answer on this has a lower level of
importance than the year of study.

Lastly, the participant can optionally leave an email address to enroll for a possibility of winning a
gift card. The email answer will never be used in analysis and only the winner will be contacted. The
design of the survey was approved by the Human Research Ethics Committee of the TU Delft. The
approval of the submission can be found in Appendix B.

The resulting design of the survey can be found in Appendix C, where screenshots of the pages are
shown.

3.3. Participants
To emphasize measuring the impact on programming education, the target group of the study is se
lected to be beginner level programmers. Computer Science students from Delft University of Technol
ogy are targeted as participants. For first year students, the majority of the participants, course lab
hours were used to reach out. During shared lab hours (where student assistants for multiple courses
are available to help students) we reached out to each student present, briefly introduced them to the
topic of the study and asked them to fill in the survey. The link to the survey was presented on big
screens in lab rooms, so students were reminded to fill in the survey after finishing course work.

For second year students, we got permission to post one message, without channel notifications,
on their group communication platform.

From the data collected in the survey, the distribution shown in Figure 3.2 shows the distribution
over the study progress of 96 students that completed the survey. The majority of the participants is
currently in the first year of the Bachelor’s degree. The ‘other’ category consists of two teachers and
two students in the bridging program to the Computer Science Master’s programme, the last participant
in this group did not provide a valid answer. Additionally, 36 participants filled in at least one question
but did not complete the experiment. Their results are used where possible, but since the question
about the year of study is asked at the end of the survey, no data is available to display in Figure 3.2.

3.4. Data analysis
Since the order and selection of code examples is random, and different for every participant, the
results needs to be processed first before the data can be analyzed. Answers need to be grouped by
code example instead of survey question.

For RQ1, the answers participants gave on the question ‘What do you think this code will print?’ is
compared to the correct answer for that code example. The correct code examples are generated by
a script that compiles the final version of the Java code, runs the generated class file, and saves the
console output to csv. Some answers by participants provide the correct answer, but due to differences
in formatting, or typos does not match the correct answer. To ensure that these answers are still
counted as correct, correction rules are applied to the given answer, before comparing it again to
the correct answer. The first correction is to ignore differences in upper and lowercase characters.
Then, any additional spacing is removed, creative answers including in plain text \n, + or *enter*

3.5. Threats to Validity 15

58

14

5

9

5

5

BSc 1st year

BSc 2nd year

BSc 3rd year

MSc 2nd year

MSc >2nd

Other

0 20 40 60

Figure 3.2: Amount of participants per year of study.

are cleaned from additional information. Additional correction rules include converting the answer
to lowercase, and adding or removing .0 in answers on atoms where the type is not part of the
targeted confusion. The detailed implementation of these corrections can be observed in our online
appendix [29].

The results will be used to compute the odds ratio of wrong answers being caused by the atoms
of confusion. The corresponding confidence interval will show if the confusion caused by the atom is
significant. The odds ratio, its standard error and 95% confidence interval are calculated according to
Altman [2]. Where zeros cause problems with computation of the odds ratio or its standard error, 0.5
is added to all input values [15, 34].

The question regarding the certainty of the answer the participants gave is used to find out wether
participants feel less certain in more confusing situations. Additionally, the situation when the par
ticipant indicates high certainty of their answer while they answered incorrectly can be used as an
indicator that this atom is important to be avoided in real life. This case is especially relevant in the
context of code reviews, as this implies that people will not question the behavior when seeing this
type of code, while they should be alarmed.

For the second research question, the perception part of the survey is used. Answers are again
collected per atom and are corrected for the order in which the two variants of the atom are presented
to the participant. Furthermore, the answers per atom are grouped by the answer what atom the par
ticipant found more confusing. The results indicate to what extend the obfuscated atoms are perceived
as being more confusing than their transformed counterpart. Now, the results can be categorized; the
main interest is checking if the participant is confused by the atom or other reasons. Additionally, the
answers from participants can give new insights on what makes the atom confusing. Lastly, results
from the perception part can be compared to the comments left by confused participants on the effect
part of the experiment. This will show if seeing both the obfuscated and transformed version of an
atom changes the view on the code example.

When participants do not finish the survey, the answers they filled in so far are still stored. These
responses will be marked as ‘incomplete’ but the given answers might still be useful. Most registered
incomplete responses result from people opening the instruction page and leaving. The incomplete
responses with some answers filled in are extracted and used in the described analysis.

3.5. Threats to Validity
Despite efforts to maximize validity, no research comes without potential threats to validity. In this
section the potential issues in the design and execution of the experiment that could possibly have an
effect on the results or conclusions are listed.

16 3. Methodology

3.5.1. Threats to Internal Validity
The selected tasks were inspired by the question set used by Gopstein et al. [21]. In their work, the
subjectiveness of making this set is mentioned as a threat to validity. This work takes a subset of the
original. We chose not to add additional atoms, to allow comparison to the original work, and take
away nonobjective contents of the set.

The only data collected related to programming experience is years of study. While this is not a
precise measure, it does give guarantees on the minimal knowledge of our subjects. The curriculum of
Computer Science and Engineering starts with a course on object oriented programming (OOP), where
the used language is Java. After that, the students took part in the OOP project course, requiring the
students to build an application in Java. While it is unsure if all participants passed the course, they
have been in contact with the Java programming language for a minimum of half a year. This gives us
a strong indication of the minimal amount of experience for every participant. The two main groups
in the set of participants consists of 1st year bachelor students and 2nd year master students. This is
quite a big gap in years of study, and also in experience. Mixing these groups can have an influence on
the data. In the first experiment, we expect an influence on the data towards less significant results on
the confusing effect. More experienced students might spot pitfalls and tricks better. For the second
experiment, the textual explanations of more experienced students could be selected as highlights, but
no significance is measured here. This will increase the generalizability of the results, as a set of mixed
experienced participants is used.

Participation in the experiment is completely voluntary, potentially introducing a bias due to volun
teers generally having more motivation. To counter this threat, no selection was made in the recruit
ment process of participants, as described in Section 3.3.

One instance of the atom type conversion contained a translation that is not equivalent in function
ality to the obfuscated atom. In task 60, as seen in Appendix A, the integer 288 is casted to Java’s
byte type. The translation shows a cast to byte of 288%256, removing the loss of data, but not
representing the functionality of a cast to byte, since a byte will take values between 128 and 127.
The incorrect translation could be introducing more confusion in the perception part of the study, since
both variants are displayed next to each other, but none of the participants mentioned this mistake.
Furthermore, inspection of results shows no indication that this error made an impact on the results.

3.5.2. Threats to External Validity
Gopstein et al. [21] mentions that the source of the atoms comes from the IOCCC (the International
Obfuscated C Code Contest), and that these code examples are not representative for normal code
bases. However, follow up research from Gopstein et al. [23] and Medeiros et al. [30] show that the
selected atoms of confusion do occur in open source projects.

All code examples used in the experiment use short, nondescriptive identifier names like V1, V2.
Nondescriptive identifier names reduce comprehension of source code [37]. Due to the limited size
of the code examples, it is almost impossible to use more descriptive variable names. Since the code
examples are isolated, it is hard to describe a meaning of the individual variable names, and finding
names that will not introduce additional bias between the different code examples will be even harder.
However, this does not rule out the effect the identifier names have on the comprehensibility of the
source code atoms.

The experiment is executed within an online survey tool. This is far from the normal development
environment for the participants. No tools are allowed to be used to help understand or to try the code
out, so usage of an IDE would already have an influence on the results.

Working with participants naturally brings some uncertainties. It is never guaranteed that partic
ipants take part in the experiment seriously, and follow all the set rules. To minimize possibility that
participants make use of external tools to help find results for the code execution tasks, all code snip
pets are presented in the form of images. This makes it extremely hard to directly copy and paste the
code into a tool. This is not a foolproof solution, since most examples are tiny by definition, lowering
the effort of copying the task contents by hand, but lowers the possibility.

4
Results and Discussion

This chapter will report the statistical results of the process described in the previous chapter. The
performed experiment resulted in 96 survey responses, of which 58 are first year students (60%),
shown in Figure 3.2. The time these participants took to complete the experiment ranges from
4 to 372 minutes. With the median at 17.78 minutes, the majority of participants finished within
20 minutes. Figure 4.2 shows the distribution of the total time taken per participant. Notably,
the total time taken for 9 of the participants is not shown in the figure to improve clarity of the
plot. These 9 participants took longer than 100 minutes to finish due to interruption of the process.Sheet3

Page 1

10 20 30 40 50 60 70 80
0

0.2

0.4

0.6

0.8

1

1.2

obfuscated

linear trend ob

transformed

linear trend tf

Average time on page in seconds

E
rr

o
r

ra
te

Figure 4.1: Error rate per task vs the average time spend on page for that task.
Figure 4.2: Distribution of duration of
the experiment. Outliers above 100
minutes left out (9x)

The effect of the time spend per task on the rate of errors for that specific task can be seen in
Figure 4.1. Every dot represents one task (see the list in Appendix A for all tasks). The colors divide
the tasks in the obfuscated variant, that incudes the atom of confusion, and the transformed variant.
The linear trend lines show that the error rate is increasing as participants spend a longer time on
the page. This can be explained by that if the code example is clear an answer is quickly given, and,
when the answer is not clear, a longer thought process is necessary to form an answer. The difference
between the two trend lines, obfuscated above transformed, indicates that more errors are made in
the tasks including an atom of confusion. A notable outlier is the blue square in the top left corner. This
square represents the obfuscated variant of task 53 (Appendix A) and is part of the change of literal
encoding atom. The yposition in the graph shows that this is a task with the second highest error

17

18 4. Results and Discussion

Obfuscated Transformed Odds
ratio

Confidence
Interval

Atom Correct Wrong Correct Wrong From To

infix operator precedence 14 4 31 1 8.86 0.91 86.63
post increment decrement 14 17 32 3 12.95* 3.26 51.42
pre increment decrement 17 17 27 10 2.70* 1.00 7.26
constant variables 30 0 27 0 0.90 0.02 47.00
remove indentation atom 16 17 26 0 56.21* 3.16 998.97
conditional operator 23 6 27 0 15.21 0.81 284.53
arithmetic as logic 24 4 41 0 15.24 0.79 295.42
logic as control flow 5 22 20 8 11.00* 3.09 39.21
repurposed variables 13 12 14 18 0.72 0.25 2.05
dead unreachable repeated 25 2 29 0 5.78 0.27 126.15
change of literal encoding 4 16 12 10 4.80* 1.21 19.08
omitted curly braces 19 13 27 4 4.62* 1.30 16.36
type conversion 10 13 18 1 23.40* 2.66 206.16
indentation 31 2 24 0 3.89 0.18 84.78

Totals: 245 145 355 55 3.82* 2.69 5.42

Table 4.1: Collected results of the first part of the survey. The number of correct and incorrect answers are combined for every
atom of confusion, and based on this, the odds ratio is calculated. The 95% Confidence interval is presented in the last two
columns. For the numbers marked as bold and with a * symbol, the confusion is statistically significant.

rates. The xposition shows a short average time spent on this task. The combination of these two
factors may indicate that participants are very quick to draw an incorrect conclusion for this specific
task. The other specifically interesting outlier is the blue square at the 𝑦 = 1 line, indicating that all
participants that have seen this task gave the wrong answer. This data point represents the obfuscated
variant of task 41 (on the logic as control flow atom). We dive deeper into these observations in the
next section.

4.1. RQ1: Which atoms of confusion hinder the comprehensibil
ity of Java programs, and to what extent?

To answer this question, the first part of the described survey is used. Participants are given seven
questions randomly selected from the code examples (in Appendix A). In Table 4.1 the collected number
of correct and wrong answers are shown. For 7 out of the 14 tested atoms of confusion the confidence
interval lies above 1, allowing us to draw the conclusion that the calculated odds ratio for this 7 atoms
is statistically significant. For the other atoms, even though the odds ratio for every atom is greater
than 1, the amount of responses is not large enough to draw significant conclusions.

The last row of Table 4.1 shows the collected amount of answers per column. In total, 315 questions
with an atom of confusion in the question code were answered, of which 115 received a wrong answer,
opposed to 46 wrong answers on 337 questions with the atom translated out. We will discuss the
results of every individual atom of confusion in section 4.3.

Conclusion: The totals row(Table 4.1) shows an odds ratio of 3.82within a 95% confidence interval
of 2.69 to 5.42, showing a clear result that in general, code with atoms of confusion is causing more
understanding errors for Computer Science students from TU Delft.

4.2. RQ2: How do students perceive confusion in Java programs that include atoms of
confusion, as opposed to the translated, confusionfree, Java programs? 19

0%

25%

50%

75%

100%

in
fix

 o
pe

ra
to

r p
re

ce
de

nc
e

po
st

 in
cr

em
en

t d
ec

re
m

en
t

pr
e

in
cr

em
en

t d
ec

re
m

en
t

co
ns

ta
nt

 v
ar

ia
bl

es

re
m

ov
e

in
de

nt
at

io
n

at
om

co
nd

iti
on

al
 o

pe
ra

to
r

ar
ith

m
et

ic
 a

s
lo

gi
c

lo
gi

c
as

 c
on

tr
ol

 fl
ow

re
pu

rp
os

ed
 v

ar
ia

bl
es

de
ad

 u
nr

ea
ch

ab
le

 re
pe

at
ed

ch
an

ge
 o

f l
ite

ra
l e

nc
od

in
g

om
itt

ed
 c

ur
ly

 b
ra

ce
s

ty
pe

 c
on

ve
rs

io
n

in
de

nt
at

io
n

Neither Both Transformed Obfuscated

Figure 4.3: Survey answers on what atom variant is perceived more confusing per atom category.

4.2. RQ2: How do students perceive confusion in Java programs
that include atoms of confusion, as opposed to the trans
lated, confusionfree, Java programs?

To find out how developers think about the confusion atoms used in this experiment, we show the
participant a pair of both the obfuscated and the transformed variant of a question, as explained in
Chapter 3.2.2. The results of this part of the experiment are shown in Table 4.2. For every atom, we
see the total answers per available option. The three rightmost columns show percentages of answers
for obfuscated, transformed and the combination of the neither and both options. For 8 out of the 14
atoms, the majority of participants agreed that the obfuscated variant is more confusing. 10 of the 14
atoms have the obfuscated category as the highest percentage, but not necessarily above 50%. The
remaining 4 atoms have a majority in the combination of Neither and Both except for the change of
literal encoding atom, where the biggest group voted for the transformed variant.

In general, we can conclude that including atoms of confusion in code is perceived as confusing.
The results show what the majority of developers see as readable, or understandable code. In the
following section, we will discuss the results of every atom of confusion in detail. We will dive into the
explanations and reasoning our participants indicated while making a decision between the two code
example variants and draw conclusions per atom of confusion.

Conclusion: In 54 percent of the cases, participants indicated the atoms of confusion to be more
confusing. However, differences between individual atoms of confusion are present.

20 4. Results and Discussion

Aggregated results Percentages per answer

Atom Ob Tf Both Neither Ob Tf NB

infix operator precedence 18 5 4 13 45.0 12.5 42.5
post increment decrement 23 2 4 6 65.7 5.7 28.6
pre increment decrement 14 5 7 8 41.2 14.7 44.1
constant variables 10 1 0 25 27.8 2.8 69.4
remove indentation atom 20 5 8 2 57.1 14.3 28.6
conditional operator 20 5 0 8 60.6 15.2 24.2
arithmetic as logic 30 2 3 7 71.4 4.8 23.8
logic as control flow 20 10 2 4 55.6 27.8 16.7
repurposed variables 20 6 13 3 47.6 14.3 38.1
dead unreachable repeated 23 0 3 17 53.5 0.0 46.5
change of literal encoding 5 8 3 2 27.8 44.4 27.8
omitted curly braces 28 0 1 1 93.3 0.0 6.7
type conversion 8 5 4 11 28.6 17.9 53.6
indentation 24 1 2 6 72.7 3.0 24.2

Total 263 55 54 113 54.2 11.3 34.4

Table 4.2: The amount of participants that indicated what variant of the question is perceived as more confusing. Ob =
Obfuscated, Tf = Transformed, NB = Neither and Both combined

4.3. Discussion
In this section, the results and data of every atom will be discussed individually. The results from
Tables 4.1 and 4.2 are used to draw conclusions along with individual responses of participants.The
atoms of confusion will be inspected from different point of views with the help from the opinions of
participants and the work from other research and researchers.

Infix Operator precedence
obfuscated transformed

2 4 / 2 2 (4 / 2)

The infix operator precedence atom is all about order of operations in single line statements. The
results in Table 4.1 show that this atom is not significantly confusing. The targeted confusion is caused
by assuming an incorrect order of execution when more than one operator is used in the same line
of code. The transformed variant of the atom includes parenthesis around the operators to make
the order of operations more clear. For RQ2, 45% of participants indicate the obfuscated variant to
be more confusing. The explanations from this group describe that the additional parenthesis improve
readability by making the order of operations more clear. One of the participants in the work of Medeiros
et al. [30] (in the research on atoms of confusion in opensource projects) states: “[he] prefers to have
parenthesis always, to [him] it makes it simpler to read”. Another 42.5% (combining the ‘Neither’ and
‘Both’ answers) states there is no difference between the two. Arguments here state that the order of
operations is clear, but knowledge of the precedence rules is needed. 12.5% of answers given indicate
the code without the confusing pattern to be actually more confusing. All these answers came from
one specific used code example where the precedence of the ! operator was made more explicit by
adding parenthesis. The translation changes the order the operations are listed and adds optional
parenthesis to indicate the order of operations. In this example, opposed to the other two examples,
the parenthesis are considered unnecessary and ‘making it look cluttered’ or harder to follow/read by
the participants. Other similar research also show participants agreeing with this statement: “Brackets
are there to alter the normal operator precedence, and when seeing a bracket you should be able to
assume that the operator precedence has been altered. Extra brackets make the code less readable
and less understandable” [30].

4.3. Discussion 21

Post Increment Decrement
obfuscated transformed

V1 = V2++; V1 = V2;
V2 += 1;

The post increment operator increments the variable and returns the original value of this variable.
Results for the first research question show that this atom is significantly confusing. The confusion can
be caused by different misconceptions. First, the operator might not be recognized. Only two of the
participants that had any question regarding the post increment atom indicated that they are not sure
if the value of the variable will be changed or if the value of the original variable will be returned. This
shows that this operator is familiar to the participants.

A second possible misunderstanding is confusing the postfix increment/ decrement operator with
the prefix increment/ decrement operator. Instead of returning the original value, the pre increment or
decrement operator returns the result of the expression. In the obfuscated variant of questions 8 and
9, the majority of explanations provided for wrong answers given by participants indicate that this is
the cause of the answer being incorrect. Another reason for confusion is forgetting that the operator
actually changes the variable. One given answer indicates: “… Not sure if it will change the value …”.

Given these causes of confusion, and a significant result in Table 4.1, with a lower bound of the
confidence interval of 3.26, we can say that this atom is significant confusing.

Moreover, 65.7% of participants answer that the code examples with the atom of confusion are
perceived as more confusing. In the explanations, most participants indicate they know they are
unsure about this atom. A participant indicates “I always forget were V1++ evaluates to (old or new
value).” clearly describing what makes this participant confused. Another participant answers “Pretty
sure that having the ”++” after the variable makes sure it is evaluated before it is incremented, but I
am still not sure and would probably have to just run the code to find out” making it even more clear
that he/she knows where the confusion is and knows how to find the behavior in the current situation.

With this result, and the ways that this operator can be misinterpreted, it is best to avoid this
pattern. Even though many people recognize the situation, it would save a lot of thinking time writing
a few extra characters to avoid this pattern.

A potential exception to this might be the use of this operator within the setup of an iterative for
loop. The standard way of defining a forloop in Java is for(int i = 0; i < X; i++). Since this
line is so often used, it is likely that people know what the resulting behavior will be, without thinking
about the steps that happen in between. To confirm this potential exception, future research is needed.

Pre Increment Decrement
obfuscated transformed

V1 = ++V2; V2++;
V1 = V2;

This atom is very similar to the post increment decrement atom. The difference, as explained before,
is that instead of the original value of the variable, the result of the expression is returned.

This is caused by the larger amount of wrong answers on the transformed variants of this atom.
In contrast to the previous atom, participants indicate they do not know what − − V1 would do. Five
participants state they are unsure about or are unfamiliar with the syntax. The transformed variant of
this atom does not remove the operator, but instead isolates it. This removes the confusion with the
behavior of prefix operator, but does not resolve confusion caused by syntax. One notable observation
by participants is that the transformed variant of question 10 initializes two variables in the same line:
int V1 = 5, V2;. This causes unnecessary confusion since some participants indicated this as the
reason of confusion.

The first experiment shows that this atom is confusing. The confidence interval starts ever so
slightly above 1. The incorrect answers include “Idk if ++V1 is a thing. I always use V1++” and “I
have no clue what ”–v1” means”. This shows that these people are confused by the atom.

The second experiment confirms this finding. The participant answering “I can never remember
what –V1 really does so to me this is confusing” clearly indicates that this atom is causing confusion.

22 4. Results and Discussion

41.2% of the participants agree with the person above that the code variants with the atom of confusion
included are more difficult to understand.

For future work, the double variable initialization in one line should be removed, and, the transfor
mation of both this atom and the post increment atom should avoid the pre and postfix operator and
should instead write out what behavior this operator represents.

Constant Variables
obfuscated transformed

V1 = V2; V1 = 5;

The constant variable atom was not shown to be statistically significant in the research by Gopstein
et al. [21]. This research confirms this result. None of the participants answered a question wrong
that contained this atom. The only slight confusion indicated is related to question 15 where it is
unclear if the printed text will include the .0 caused by the double type of the variable. Answers
not including the .0 in their answer but giving the correct numerical answer are considered correct
since this is not part of the confusion under study. 69.4% of the answers in the second part of the
survey indicate no difference in confusion between the variants of the questions for this atom. The
majority of explanations state that the code is very simple to understand. The main reason why the
obfuscated atom would be considered more confusing is caused by the unnecessary extra code. The
added verbosity contributes to complexity in the used code examples. This particular pattern does
not fit the atoms of confusion since, when isolated does not cause confusion. It will be interesting to
research this pattern when present in larger code examples.

Remove Indentation Atom
obfuscated transformed

while(V2 > 0)
V2;
V1++;

while(V2 > 0)
V2;

V1++;

Along with the atom indentation, these two atoms are included in this research despite being removed
in the original experiment by Gopstein et al. [21]. In their errata, they state that: “To remove the
bias introduced by code formatting, we chose not to study the effect of whitespace in this study”. This
study did include these two atoms to explore the impact of misformatted code. The results show that
this atom, remove indentation, is significant confusing. The lack of indentation makes it difficult to
see where scopes are ending, resulting in a majority of wrong answers for the obfuscated variants. All
participants that encountered a transformed variant of this atom in the first part of the survey gave
the correct answer.

The perception of both variants of the questions is that the missing a are a big contribution to the
confusion. The main argument of the participants that find both variants equally confusing is related
to missing brackets. In the indentation atom, the brackets are included, and only the indentation
itself is wrong or missing, that atom is not significant confusing, with only two wrong answers for the
obfuscated variants.

One thing to note, question 16 is an example of the ‘dangling else’ pattern as researched by Medeiros
et al. [30]. They state that many coding standards enforce the use of brackets to avoid this pattern.
Other authors also show the confusion of nested if/else statements with misleading indentation [30,
39]. Our results cohere with this conclusion, showing major confusion with missing indentation when
brackets are left out and no confusion when the brackets are included.

A way to avoid misleading indentation is by the use of code formatting tools. “Most formatting ob
fuscation transformations can be trivially undone by a source code beautifier” [4]. Regular or enforced
use of this kind of tools keeps the formatting of source code consistent.

4.3. Discussion 23

Conditional (Ternary) Operator

obfuscated transformed

V2 = V1 == 3 ? 2 : 1; if (V1 == 3) {
V2 = 2;

} else {
V2 = 1;

}

The conditional operator atom is all about the ternary operator. In Java, the only available ternary
operator is the ? : operator, which provides a shorthand way of writing an ifthenelse state
ment.1 Although 20% of the answers for the obfuscated variants of this atom were wrong while only
correct answers were given to the transformed variants, not enough data is present to draw significant
conclusions (Confidence Interval 95% between 0.81 and 284.53, Table 4.1). The participants that were
incorrect and/or were less sure on their answers state that they are unsure about the syntax. The notes
left by participants that answered correct show they are unsure about the functioning of the operator
but have a correct intuition. Explanations regarding the second research question indicate that a major
part of confusion for the obfuscated variants comes from the lack of brackets around the condition. In
order to take away this particular confusion, the provided example above would change to V2 = (V1
== 3) ? 2 : 1;.

A big amount of participants indicate that the ternary operator is unclear. Others state that it can be
confusing to people unfamiliar with the operator. The main reason participants picked an option other
than ‘obfuscated’ in the second part is due to the added verbosity of the regular ifelse statements.
Having to read or write 4 or more lines of code instead of 1 makes the understanding take longer when
familiar with both syntax variants. This conclusion falls in line with what Kernighan and Pike [28] write,
stating that using the ternary operator to replace four lines of ifelse code is fine. In a similar studies
to this, the decision was made not to include this atom in the experiment, due to the large amount of
usage of this atom in practice [30].

Arithmetic as Logic

obfuscated transformed

(V1 3) * (V2 4) > 0 V1 != 3 && V2 != 4

This atom is one of the four atoms in the work of Gopstein et al. [21] that did not show to be confusing.
The results of this research shows the same conclusion for the Java programming language. The main
assumption from Gopstein et al. [21] is that using arithmetic operators instead of logical operations,
will imply a nonboolean range, which might be confusing. Due to the translation to Java, the resulting
number has to be explicitly compared to 0 to create a boolean value, taking away this implication of a
nonboolean range. The results of part 2 do show that the obfuscated variant is much less preferred
to read. The additional calculations that are unusual lead to a much longer time to see the intention of
the code, according to the participants. Some complaints do come in about the order of comparison in
the translated variants of this atom. Reversing the order of variable <comparison operator>
value is disliked by one of the participants. To isolate the atom more, this order can be kept constant
by translating these conditions to a consistent order. The effect of the order reversal is interesting for
future research.

1https://docs.oracle.com/javase/tutorial/java/nutsandbolts/op2.html

https://docs.oracle.com/javase/tutorial/java/nutsandbolts/op2.html

24 4. Results and Discussion

Logic as Control Flow

obfuscated transformed

int V1 = 1;
int V2 = 5;

if (++V1 > 0 || ++V2 > 0) {
V1 = V1 * 2;
V2 = V2 * 2;

}

int V1 = 2;
int V2 = 4;

if (++V1 > 0) {
V1 = V1 * 2;
V2 = V2 * 2;

} else if (++V2 > 0) {
V1 = V1 * 2;
V2 = V2 * 2;

}

Due to lazy evaluation of the || and && logical operators, they can also be used as conditional
operators. This means that, depending on the value of the left side, the right sight may or may note be
executed. To measure the possible confusion of the control flow, the tasks for this atom make use of
the pre or post increment operators. Similar to the previous atom (Arithmetic as Logic) the translation
to Java added > 0 in order to use numbers for boolean values. The most notable single result for
this atom in part 1 of the survey is that the obfuscated variant of task 41, that is used as the above
example, was answered incorrect by every participant. In total, the obfuscated variants for this atom
have an error rate of 81%. This plays a role in this atom having a 3.09 lower bound of the confidence
interval, showing that this atom has significant confusing effect.

A slight majority of the participants agreed that the code examples for this atom were more con
fusing when the confusing atom was present. Differences between the code examples are however
present, therefore, we will dive deeper into the individual code examples.

For the example shown above, the participants did not agree on one answer. Participants are spread
across all the answers. The arguments against the atom say the extended ifelse flow is easier to
follow. The participants that prefer obfuscated code example indicate that a single condition is easier
to check and therefore faster to process, and the same code in both the if, and the else body is bad
practice. Both are perceived confusing due to the use of ++V.

obfuscated transformed

int V1 = 1;
int V2 = 5;

boolean _test = V1 == V2 &&
++V1 > 0 || ++V2 > 0;

if (V1 == V2) {
++V1;

} else {
++V2;

}

For this example, all participants agreed the obfuscated variant, with the atom of confusion, is more
confusing. Some explanations are: “Using logic expressions to perform effectfull computation is cool
[..], but more confusing because it breaks the vertical flow of effectfull expressions/statements.” and
“++variables should be replaced with something more clear”.

4.3. Discussion 25

obfuscated transformed

int V1 = 3;
int V2 = 5;
int V3 = 0;

while (V3 < V2 && ++V1 > 0) {
V3++;

}

int V1 = 1;
int V2 = 11;
int V3 = 0;

while (V1 != V2) {
++V1;
if (!(V1 > 0))

break;

V3++;
}

For the last example, the participants are more spread out again. 10 participants indicate the obfuscated
variant to be more confusing, 7 selected the transformed variant, 1 participant found both confusing
and 3 selected the ‘neither’ option. Some takes from participants are:

• “The logic is easier to follow when its spread out”

• “The inline condition looks better than a if condition within a while loop”

• “I really dislike nesting whiles and ifs as done in [transformed variant]. You cannot easily trace it
back yourself. [Obfuscated variant] is not perfectly readable, but it only has one check which is
easier to do by hand.”

Using either pre or postincrement within this atom is hard to avoid, but since the presence of
these atoms within these code snippets effects the confusion, the logic as control flow pattern is not
suitable for the set of atoms of confusion. While this pattern is clearly confusing, as shown by the
existence experiment, it violates the indivisible part of the definition by Castor [12].

Repurposed Variables
obfuscated transformed

for(int V1 = 0; ...; V1++) {
for(int V2 = 0; ...; V1++) {

for(int V1 = 0; ...; V1++) {
for(int V2 = 0; ...; V2++) {

The repurposed variables atom ‘misuses’ an already existing variable for another purpose. In the above
example, both forloops make use of the V1 variable to keep track of their state. This is different from
what can be expected of the usage of a forloop, and can potentially throw the reader off guard.

An exceptional result for this atom is that the variants where code examples did not include the
atom of confusion are answered incorrectly more than the variants with the atom of confusion. For
the variants with the atom of confusion, 13 participants answered correctly and 12 gave an incorrect
answer. The variants without atom of confusion resulted in 14 correct and 18 incorrect answers.

The results of the perception part for this atom fall more in line with the expected results. 47.6%
of participants agreed that the obfuscated variant is the more confusing one. A substantial amount of
participants indicated that they found both variants to be confusing (38.1%). This is more in line with
the findings in the first part of the experiment.

One thing that was overlooked in the translation of these snippets from C to Java is the instantiation
of arrays. In C, this is often done as int V1[] = … while in Java, the square brackets are often at the
type level, like int[] V1 = …. While in Java both variants provide the same result, the variant with
the array indication on the type is taught and used much more frequently. This might have caused
additional confusion for participants, but exists in both variants for this atom, so not influences the
difference between the two.

26 4. Results and Discussion

Dead, Unreachable, Repeated
obfuscated transformed

V1 = 1;
V1 = 2;

V1 = 2;

Dead, Unreachable, Repeated is again one of the atoms that will not cause significant confusion
according to Gopstein et al. [21]. The shared factor in the 3 terms of this atom name is that the
removal of the corresponding line(s) of code will not change the behavior of the program. Only 2
wrong answers were given out of 56 times this atom was present in a part 1 question. This atom is
difficult to test since the isolation makes it easy to spot what is happening. In the study on finding
atoms of confusion in real world code bases, Gopstein et al. [23] did not search for this atom. Future
work could look for instances of this pattern in exiting code and check if occurrences are related to
bugs. In the case of dead code, most (if not all) well known IDEs and static analyzers for Java will
warn the user if dead code is detected.

Change of Literal Encoding
obfuscated transformed

V1 = 013; V1 = Integer.parseInt(”13”,8);

This atom focuses on the general case when the encoding of the characters written down will change in
the meaning of the program. In the example above, prepending a number with a 0 tells the computer
to parse this number in the octal numbering system, meaning 013 will result in the decimal value of 11.
The specific task corresponding to this example is the most notable outlier in Figure 4.1. This indicates
that this task is very often made wrong, and participants quickly jump to a wrong conclusion.

The other questions from Gopstein et al. [21] include assigning a numeric value to a variable with
the char type and using a bitwise AND operator on decimal numbers. The question converting a
number to a character is not included in this research since, in the situation when a participant is not
confused about the atom, it is still really hard to give the correct answer because it would require exact
knowledge of the corresponding character to that number. This atom is significant confusing, resulting
from the amount of wrong answers in the first part of the research in Table 4.1. The obfuscated variant
is answered four times more wrong than right. In the second part of the experiment is this the only
atom where the transformed variant is most frequently marked as most confusing.

Omitted Curly Braces
obfuscated transformed

if(V1) F1(); F2(); if(V1) {
F1();

}
F2();

This atom is similar to the Remove Indentation Atom and the Indentation atom in the sense that the
targeted confusion is related to unclear separation between code blocks. This atom removes the curly
braces that normally follow an if statement, while loop, etc. to determine the start and end of the scope.
One participant identifies the confusion as: “Putting several statements on one line is unnecessarily
confusing.” This atom is significant confusing with a lower bound of the confidence interval of 1.30.
41% of participants that were asked to evaluate a task with this atom of confusion in the code answered
incorrectly. The confusion for these tasks is indicated by one of our participants as: “I thought Java
only executes the next statement after a forloop without brackets but it also could be that the whole
next line is executed.” For this atom of confusion, a stunning 93% of participants agree that it is more
confusing to omit the curly braces from these code blocks.

4.3. Discussion 27

Type Conversion
obfuscated transformed

V1 = (int) 1.99f; V1 = (int) Math.floor(1.99f);

The Type Conversion atom is all about converting one type into another. Next to the example above,
the other included code variant is casting the integer 288 to byte. In both cases, the cast executes an
irreversible action since we remove details and lose precision. This atom showed the most uncertainty
as indicated by our participants. The task regarding casting to the byte primitive type is especially
often answered wrong.

One of the examples of Gopstein et al. [21] included transforming a negative number to an unsigned
integer. This example was not easily transformed into Java. Casting from int to char will provide similar
behavior, but removing this atom is not possible in a simple enough manner, since the confusing
behavior happens at large values (above 216, since Java uses UTF16 character encoding). char is
the only primitive type in java that is encoded unsigned, and would also have introduced even more
confusion since casting characters to numbers is nonintuitive.

The results for this atom show that this pattern causes confusion. The results show that the
transformed variants cause more correct answers. While the confusion is significant, participants are
spread over which variant is more confusing. The biggest group answered that neither of the code
variants is confusing. An argument for this is: “I believe that casting to an integer automatically floors
the value, while it might be easier to understand by flooring as well, I don’t think adding redundant
code makes it less confusing. While the second simply casts to an integer, flooring it as well.” A possible
influence on the spread of answers could be that the transformed code variants explain the confusing
code, making it easier to comprehend. More research is needed to draw any specific conclusions on
this.

28.6% did indicate that the code examples including an atom of confusion are indeed harder to
understand. The argument given here is that the transformed code is much more explicit in what is hap
pening. “You would have to know what happens if a float is casted to an int” one participant mentions.
Explaining with the code what you want to do is for these participants helpful for understanding.

Indentation
obfuscated transformed

if (V1 > 0) { }
V2 = 4;

if (V1 > 0) { }
V2 = 4;

As mentioned in the discussion of the Remove Indentation Atom, this is one of the atoms that is not
tested in the experiment of Gopstein et al. [21]. Participants that were shown code examples related
to this atom of confusion only answered incorrectly 2 times. Both incorrect answers were given to
code examples with the confusing pattern present, but since a total of 57 code examples related to
this atom were shown, this atom does not meet significance.

As for the perception of the participants towards this atom, the majority agrees that the variants
with the atom present are more confusing. Furthermore, the explanations heavily gear to the intended
explanation of this atom. The comments often mention indentation or formatting, and how this affects
the clearness of the distinction between different branches.

These results indicate that this atom of confusion is easily recognized, and therefore will not often
cause actual misunderstanding. The perception however, shows a strong preference to avoid this
atom. It is not recommended to write code this way, since it unnecessarily complicates the code. One
participant provides a nice reason for this that “if you’re skimming the code you could misread and
think the [line of code] was in the if statement”. Code formatting tools are a very easy way to avoid
the confusion targeted in this pattern, and make the code nicer to read, by fixing the indentation to
clearly represent the code block depth.

28 4. Results and Discussion

4.4. Recommendations to Educators
Educators can play a big role in helping students detect confusing situations. When programmers
encounter confusing patterns like the atoms of confusion, they should be made aware that this is a
potentially problematic pattern. Whenever you spot such a pattern, you can take actions to refactor the
code and clean up the pattern. This clears up possible misunderstandings and makes the code easier
to read, understand, and maintain. To make this possible, a setup similar to the second experiment
from this study can be used. Making the comparison between two snippets, with and without the atom
of confusion, and explaining where the confusion originates from will help students understand where
the misunderstandings originate from. The transformed variants provide a great example of how the
code can be less confusing and easier to read and understand.

4.5. Avoiding atoms of confusion
For avoiding some of the patterns, IDEs are very suitable. Most code editors have an option to auto
format code. This will, for one, clear up all atoms of confusion related to indentation. The Remove
Indentation Atom, and Indentation are avoided by using this. For the following section, the warnings
that the IntelliJ idea will give are inspected. Code following the Dead, Unreachable, Repeated pattern
is very likely to be flagged as a warning. When the body of an ifstatement is unreachable, IntelliJ will
warn that Condition ’0 > 2’ is always ’false’. When assigning a variable to itself, warnings
Variable is already assigned to this value and Variable ’V1’ is assigned to
itself are shown. Writing repeated assignment to the same value will result you the error The
value assigned to ’V1’ is never used. The IDE will also not like some of the Change of
Literal Encoding atoms. When you assign an int with a prepending 0, you will see a Octal integer
’013’ warning.

The Omitted Curly Braces atom takes somewhat more effort to be caught. By default, the auto
formatter (in IntelliJ) will not fully clear this up for you. Settings exist to let the editor enforce using
{}brackets. Whenever they are not yet used, the tool will insert them for you.

An .editorconfig file for IntelliJ containing the following lines will always insert braces around
the body of for, if, while, and dowhile blocks:

[*.java]
ij_java_for_brace_force = always
ij_java_if_brace_force = always
ij_java_do_while_brace_force = always
ij_java_while_brace_force = always

4.5. Avoiding atoms of confusion 29

Discussion Summary

Atom Significant Confusing Effect Perceived Confusing

infix operator precedence
post increment decrement
pre increment decrement ~
constant variables ~
remove indentation atom
conditional operator
arithmetic as logic
logic as control flow
repurposed variables
dead unreachable repeated
change of literal encoding
omitted curly braces
type conversion ~
indentation

Table 4.3: Summarizing per atom of confusion. The confusing effect column shows whether or not the presence of the atom
causes significantly more errors. The perceived confusing column shows a thumbs up when the obfuscated variant was perceived
more confusing, a tilde when there is no difference in confusion between the variants, and a thumbs down when the transformed
variant is more confusing than the obfuscated variant.

Now that we discussed the results for the individual atoms of confusion, we take a look at the
takeaways. Table 4.3 shows a summary of the discussion above. For most of the atoms, a majority
of participants indicate that they perceive the code examples with the atoms of confusion in them
as more confusing. They compared them to equivalent code, but without those patterns. For the
atoms of confusion where this is the case, this shows that the variants without the atoms of confusion
are perceived less confusing. In these cases, avoiding the atom of confusing and using the provided
workaround will help the understanding of the code.

5
Conclusions and Future Work

This thesis researched the effects of atoms of confusion by measuring the reactions and impact of
these confusing patterns in Java code among first year students. We did this with the use This is done
by first creating a suitable translation in Java for the code examples of the 19 atoms of confusion found
by Gopstein et al. [21]. With these translated code examples, a twofold experiment is conducted to
find (1:) the effect of these atoms of confusion and (2:) the perception of the participants towards
these atoms of confusion.

The results of the experiment are analyzed and discussed in order to answer the following research
questions.

1. Which atoms of confusion hinder the comprehensibility of Java programs, and to what extent?

2. How do students perceive confusion in Java programs that include atoms of confusion, as opposed
to the translated, confusionfree, Java programs?

To answer these questions, we first compute the odds ratio and associated confidence interval for every
atom of confusion. Resulting values provide us with the information that 7 out of the 14 researched
atoms of confusion have a confusing effect. To provide more detail, for each of the atoms, we dove
into the results and discussed the specifics for the individual atom of confusion.

To answer the second research question, the results of the second part of the experiment are used
mainly. For most of the atoms of confusion, more than half of participants agree that including the
atom of confusion in a code example makes it more confusing. Three of the atoms of confusion have
no consensus between participants’ answers, and the change of literal encoding is the only atom of
confusion where the atom makes the code example less confusing. Table 4.3 shows a summary of the
results per researched atom of confusion.

5.1. Future Work
Initially, the plan was to run the experiment online, and to include the C, Java and Python programming
languages in the experiment. Due to concerns on the amount of respondents per language, the choice
was made to focus solely on Java, and use first year computer science students of TU Delft as the target
group. The same experiment can be redone, asking participants for their programming experience in
the 3 presented languages. This will provide additional relations to be explored between atoms of
confusion and programmer experience.

In the process of this research, whenever anything related to atoms of confusion came by, an option
to extend the set of atoms of confusion showed up. Due to the scope of this research, and the added
value of being able to compare results to the work of Gopstein et al. [21], the set of atoms of confusion
was not increased. However, an expansion of the set of atoms of confusion provides a nice topic for
future research. Some potential atoms of confusion are:

• Usage of break; in nested loops makes it confusing what code will be executed after the break;
command.

31

32 5. Conclusions and Future Work

• The ^ sign can be easily mistaken to be a mathematical power, like 2^8 = 28 = 256. In a lot of
programming languages, however, the ^ represents the logical XOR operator. 2^8 will then result
in 10 instead of 256. This particular pattern raised a discussion on the gcc forums whether this
should raise a warning: https://gcc.gnu.org/bugzilla/show_bug.cgi?id=90885

https://gcc.gnu.org/bugzilla/show_bug.cgi?id=90885

Bibliography

[1] Shulamyt Ajami, Yonatan Woodbridge, and Dror G. Feitelson. Syntax, Predicates, Idioms What
Really Affects Code Complexity? In 2017 IEEE/ACM 25th International Conference on Program
Comprehension (ICPC), volume 24, pages 66–76. IEEE, may 2017. ISBN 9781538605356. doi:
10.1109/ICPC.2017.39. URL https://doi.org/10.1007/s1066401896283.

[2] Douglas G Altman. Practical Statistics for Medical Research. CRC press, 1991. ISBN 978
0412276309.

[3] John R Anderson. Cognitive psychology and its implications. Macmillan, 2005.

[4] Eran Avidan and Dror G. Feitelson. Effects of Variable Names on Comprehension: An Empirical
Study. In 2017 IEEE/ACM 25th International Conference on Program Comprehension (ICPC),
pages 55–65. IEEE, may 2017. ISBN 9781538605356. doi: 10.1109/ICPC.2017.27. URL
https://doi.org/10.1109/ICPC.2017.27.

[5] Alberto Bacchelli and Christian Bird. Expectations, outcomes, and challenges of modern code
review. In 2013 35th International Conference on Software Engineering (ICSE), pages 712–
721. IEEE, may 2013. ISBN 9781467330763. doi: 10.1109/ICSE.2013.6606617. URL
https://doi.org/10.1109/ICSE.2013.6606617.

[6] Roman Bednarik and Markku Tukiainen. An eyetracking methodology for characterizing program
comprehension processes. In Proceedings of the 2006 symposium on Eye tracking research &
applications ETRA ’06, page 125, New York, New York, USA, 2006. ACM Press. ISBN 1595933050.
doi: 10.1145/1117309.1117356. URL http://portal.acm.org/citation.cfm?doid
=1117309.1117356https://doi.org/10.1145/1117309.1117356.

[7] Moritz Beller, Andy Zaidman, and Andrey Karpov. The Last Line Effect. In Proceedings of the
2015 IEEE 23rd International Conference on Program Comprehension, ICPC ’15, pages 240–
243, Piscataway, NJ, USA, 2015. IEEE Press. URL http://dl.acm.org/citation.cfm?id
=2820282.2820317.

[8] Moritz Beller, Andy Zaidman, Andrey Karpov, and Rolf A. Zwaan. The Last Line Effect Explained.
Empirical Software Engineering, 22(3):1508–1536, dec 2016. ISSN 15737616. doi: 10.1007/
s1066401694896. URL https://doi.org/10.1007/s1066401694896.

[9] Jeffrey Bonar and Elliot Soloway. Preprogramming Knowledge: A Major Source of Misconceptions
in Novice Programmers. Human/Computer Interaction, 1(2):133–161, jun 1985. doi: 10.1207/
s15327051hci0102_3. URL https://doi.org/10.1207/s15327051hci0102{_}3.

[10] Ruven Brooks. Towards a theory of the comprehension of computer programs. International
Journal of ManMachine Studies, 18(6):543–554, jun 1983. ISSN 00207373. doi: 10.1016/
S00207373(83)800315. URL https://doi.org/10.1016/S00207373(83)800315.

[11] Casey Casalnuovo, Kenji Sagae, and Prem Devanbu. Studying the Difference Between Natural
and Programming Language Corpora. Empirical Software Engineering, 2019. ISBN 1066401896.
doi: 10.1007/s1066401896697.

[12] Fernando Castor. Identifying Confusing Code in Swift Programs. In VI CBSoft Work
shop on Visualization, Evolution, and Maintenance, São Carlos, Brazil, sep 2018. URL
https://docs.google.com/a/cin.ufpe.br/viewer?a=v{&}pid=sites{&}srcid=Y
2luLnVmcGUuYnJ8Y2FzdG9yfGd4OjY2YTBhNWFjZWYxNmRiMTA.

[13] Jason Cohen. Best Kept Secrets of Peer Code Review: Modern Approach. Practical Advice. 2006.
ISBN 9781599160672.

33

https://doi.org/10.1007/s10664-018-9628-3
https://doi.org/10.1109/ICPC.2017.27
https://doi.org/10.1109/ICSE.2013.6606617
http://portal.acm.org/citation.cfm?doid=1117309.1117356 https://doi.org/10.1145/1117309.1117356
http://portal.acm.org/citation.cfm?doid=1117309.1117356 https://doi.org/10.1145/1117309.1117356
http://dl.acm.org/citation.cfm?id=2820282.2820317
http://dl.acm.org/citation.cfm?id=2820282.2820317
https://doi.org/10.1007/s10664-016-9489-6
https://doi.org/10.1207/s15327051hci0102{_}3
https://doi.org/10.1016/S0020-7373(83)80031-5
https://docs.google.com/a/cin.ufpe.br/viewer?a=v{&}pid=sites{&}srcid=Y2luLnVmcGUuYnJ8Y2FzdG9yfGd4OjY2YTBhNWFjZWYxNmRiMTA
https://docs.google.com/a/cin.ufpe.br/viewer?a=v{&}pid=sites{&}srcid=Y2luLnVmcGUuYnJ8Y2FzdG9yfGd4OjY2YTBhNWFjZWYxNmRiMTA

34 Bibliography

[14] Christian Collberg, Clark Thomborson, and Douglas Low. A Taxonomy of Obfuscating Transfor
mations. 1997.

[15] Jonathan J Deeks and Julian PT Higgins. Statistical algorithms in Review Manager 5. Statistical
Methods Group of The Cochrane Collaboration, 1(August):1–11, 2010. doi: 10.1371/journal.
pone.0069930. URL https://doi.org/10.1371/journal.pone.0069930.

[16] J.J. Dolado, M. Harman, M.C. Otero, and L. Hu. An empirical investigation of the influence of
a type of side effects on program comprehension. IEEE Transactions on Software Engineering,
29(7):665–670, jul 2003. ISSN 00985589. doi: 10.1109/TSE.2003.1214329. URL https:
//doi.org/10.1109/TSE.2003.1214329.

[17] Rodrigo Magalhães dos Santos and Marco Aurélio Gerosa. Impacts of Coding Practices
on Readability. Proceedings of the 26th Conference on Program Comprehension {ICPC}
{\textquotesingle}18, pages 277–285, 2018. doi: 10.1145/3196321.3196342. URL https:
//doi.org/10.1145/3196321.3196342.

[18] Felipe Ebert, Fernando Castor, Nicole Novielli, and Alexander Serebrenik. Confusion Detection in
Code Reviews. In 2017 IEEE International Conference on Software Maintenance and Evolution
(ICSME). IEEE, sep 2017. doi: 10.1109/icsme.2017.40. URL https://doi.org/10.1109/
icsme.2017.40.

[19] Cormac Flanagan, K. Rustan M. Leino, Mark Lillibridge, Greg Nelson, James B. Saxe, and Raymie
Stata. Extended static checking for java. ACM SIGPLAN Notices, 48(4 SUPPL.):22–33, 2013. ISSN
15232867. doi: 10.1145/2502508.2502520.

[20] R. L. Glass. Frequently Forgotten Fundamental Facts about Software Engineering. IEEE Software,
18(3):0–2, 2001. ISSN 07407459. doi: 10.1109/MS.2001.922739. URL https://doi.or
g/10.1109/MS.2001.922739.

[21] Dan Gopstein, Jake Iannacone, Yu Yan, Lois DeLong, Yanyan Zhuang, Martin K.C. Yeh, and
Justin Cappos. Understanding Misunderstandings in Source Code. In Proceedings of the 2017
11th Joint Meeting on Foundations of Software Engineering ESEC/FSE 2017. ACM Press, 2017.
doi: 10.1145/3106237.3106264. URL https://doi.org/10.1145/3106237.3106264.

[22] Dan Gopstein, Jake Iannacone, Yu Yan, Lois Anne Delong, Yanyan Zhuang, Martin K.C. Yeh, and
Justin Cappos. Existence Experiment Questions Dataset, 2017. URL https://atomsofconfu
sion.com/2016snippetstudy/questions.

[23] Dan Gopstein, Hongwei Henry Zhou, Phyllis Frankl, and Justin Cappos. Prevalence of Confus
ing Code in Software Projects. In Proceedings of the 15th International Conference on Min
ing Software Repositories MSR ’18, pages 281–291, New York, New York, USA, 2018. ACM
Press. ISBN 9781450357166. doi: 10.1145/3196398.3196432. URL https://doi.org/
10.1145/3196398.3196432.

[24] Simon Holland, Robert Griffiths, and Mark Woodman. Avoiding Object Misconceptions. {ACM}
{SIGCSE} Bulletin, 29(1):131–134, 1997. doi: 10.1145/268085.268132. URL https://do
i.org/10.1145/268085.268132.

[25] Susan Jamieson. Likert Scales: how to (ab)use Them. Medical Education, 38(12):1217–1218,
dec 2004. ISSN 03080110. doi: 10.1111/j.13652929.2004.02012.x. URL https://doi.
org/10.1111/j.13652929.2004.02012.x.

[26] Ahmad Jbara and Dror G. Feitelson. On the Effect of Code Regularity on Comprehension. Proceed
ings of the 22nd International Conference on Program Comprehension ICPC 2014, pages 189–
200, 2014. doi: 10.1145/2597008.2597140. URL https://doi.org/10.1145/2597008.
2597140.

[27] Brittany Johnson, Yoonki Song, Emerson MurphyHill, and Robert Bowdidge. Why don’t Software
Developers use Static Analysis Tools to Find Bugs? In 2013 35th International Conference on
Software Engineering (ICSE), pages 672–681. IEEE, may 2013. ISBN 9781467330763. doi:
10.1109/ICSE.2013.6606613. URL https://doi.org/10.1109/ICSE.2013.6606613.

https://doi.org/10.1371/journal.pone.0069930
https://doi.org/10.1109/TSE.2003.1214329
https://doi.org/10.1109/TSE.2003.1214329
https://doi.org/10.1145/3196321.3196342
https://doi.org/10.1145/3196321.3196342
https://doi.org/10.1109/icsme.2017.40
https://doi.org/10.1109/icsme.2017.40
https://doi.org/10.1109/MS.2001.922739
https://doi.org/10.1109/MS.2001.922739
https://doi.org/10.1145/3106237.3106264
https://atomsofconfusion.com/2016-snippet-study/questions
https://atomsofconfusion.com/2016-snippet-study/questions
https://doi.org/10.1145/3196398.3196432
https://doi.org/10.1145/3196398.3196432
https://doi.org/10.1145/268085.268132
https://doi.org/10.1145/268085.268132
https://doi.org/10.1111/j.1365-2929.2004.02012.x
https://doi.org/10.1111/j.1365-2929.2004.02012.x
https://doi.org/10.1145/2597008.2597140
https://doi.org/10.1145/2597008.2597140
https://doi.org/10.1109/ICSE.2013.6606613

Bibliography 35

[28] Brian W Kernighan and Rob Pike. The practice of programming. AddisonWesley Professional,
1999.

[29] Chris Langhout. Dataset for: Investigating the Perception and Effects of Misunderstandings in
Java Code, 2020. URL http://doi.org/10.5281/zenodo.3822523.

[30] Flávio Medeiros, Gabriel Lima, Guilherme Amaral, Sven Apel, Christian Kästner, Márcio Ribeiro,
and Rohit Gheyi. An Investigation of Misunderstanding Code Patterns in {C} OpenSource Soft
ware Projects. Empirical Software Engineering, nov 2018. ISSN 15737616. doi: 10.1007/
s106640189666x. URL https://doi.org/10.1007/s106640189666x.

[31] Sanjay Misra, Adewole Adewumi, Luis FernandezSanz, and Robertas Damasevicius. A Suite of
Object Oriented Cognitive Complexity Metrics. IEEE Access, 6:8782–8796, 2018. ISSN 2169
3536. doi: 10.1109/ACCESS.2018.2791344. URL https://doi.org/10.1109/ACCESS
.2018.2791344.

[32] James H Neely. Semantic Priming Effects in Visual Word Recognition: A Selective Review of
Current Findings and Theories. In Basic Processes in Reading, pages 264–336. 1991. ISBN
9780203052242. URL https://www.taylorfrancis.com/books/e/9780203052242/ch
apters/10.4324/978020305224212.

[33] Wilberto Z. Nunez, Victor J. Marin, and Carlos R. Rivero. ARCC: Assistant for Repetitive Code
Comprehension. In Proceedings of the 2017 11th Joint Meeting on Foundations of Software En
gineering ESEC/FSE 2017, pages 999–1003, New York, New York, USA, 2017. ACM Press. ISBN
9781450351058. doi: 10.1145/3106237.3122824. URL https://doi.org/10.1145/
3106237.3122824.

[34] Marcello Pagano and Kimberlee Gauvreau. Principles of biostatistics. CA: Brooks/Cole, 2nd ed.
be edition, 2000. ISBN 9781138593145.

[35] John F. Pane, Chotirat Ann Ratanamahatana, and Brad A. Myers. Studying the language and struc
ture in nonprogrammers’ solutions to programming problems. International Journal of Human
Computer Studies, 54(2):237–264, feb 2001. ISSN 10715819. doi: 10.1006/ijhc.2000.0410.
URL https://linkinghub.elsevier.com/retrieve/pii/S1071581900904105.

[36] Shari Pfleeger. Software engineering : theory and practice. Prentice Hall, Upper Saddle River N.J,
2010. ISBN 0136061699.

[37] Andrea Schankin, Annika Berger, Daniel V Holt, Johannes C Hofmeister, Till Riedel, and Michael
Beigl. Descriptive compound identifier names improve source code comprehension. In Proceed
ings of the 26th Conference on Program Comprehension ICPC ’18. ACM Press, 2018. doi:
10.1145/3196321.3196332. URL https://doi.org/10.1145/3196321.3196332.

[38] Ivonne Schroter, Jacob Kruger, Janet Siegmund, and Thomas Leich. Comprehending Stud
ies on Program Comprehension. In 2017 IEEE/ACM 25th International Conference on Pro
gram Comprehension (ICPC), pages 308–311. IEEE, may 2017. ISBN 9781538605356. doi:
10.1109/ICPC.2017.9. URL http://ieeexplore.ieee.org/document/7961527/.

[39] Michael Lee Scott. Programming language pragmatics. Morgan Kaufmann, 2000.

[40] Janet Siegmund. Program Comprehension: Past, Present, and Future. In 2016 IEEE 23rd
International Conference on Software Analysis, Evolution, and Reengineering (SANER), pages
13–20. IEEE, mar 2016. ISBN 9781509018550. doi: 10.1109/SANER.2016.35. URL
http://ieeexplore.ieee.org/document/7476769/.

[41] Kristin Fjola Tomasdottir, Mauricio Aniche, and Arie Van Deursen. The Adoption of JavaScript
Linters in Practice: A Case Study on ESLint. IEEE Transactions on Software Engineering, 2018.
ISSN 19393520. doi: 10.1109/TSE.2018.2871058.

http://doi.org/10.5281/zenodo.3822523
https://doi.org/10.1007/s10664-018-9666-x
https://doi.org/10.1109/ACCESS.2018.2791344
https://doi.org/10.1109/ACCESS.2018.2791344
https://www.taylorfrancis.com/books/e/9780203052242/chapters/10.4324/9780203052242-12
https://www.taylorfrancis.com/books/e/9780203052242/chapters/10.4324/9780203052242-12
https://doi.org/10.1145/3106237.3122824
https://doi.org/10.1145/3106237.3122824
https://linkinghub.elsevier.com/retrieve/pii/S1071581900904105
https://doi.org/10.1145/3196321.3196332
http://ieeexplore.ieee.org/document/7961527/
http://ieeexplore.ieee.org/document/7476769/

A
Code Examples

Details Obfuscated Transformed

example implicit
predicate
Obf answer:
true
TF answer:
true

class Snippet {
public static void main(String[] args) {

int V1 = 10, V2 = 3;
if (!(V1 V2 == 0)) {

System.out.println(”true”);
} else {

System.out.println(”false”);
}

}
}

class Snippet {
public static void main(String[] args) {

int V1 = 10, V2 = 3;
if (V1 V2 > 5) {

System.out.println(”true”);
} else {

System.out.println(”false”);
}

}
}

4 infix operator
precedence
Obf answer:
0
TF answer:
6

class Snippet {
public static void main(String[] args) {

int V1;
V1 = 2 4 / 2;
System.out.println(V1);

}
}

class Snippet {
public static void main(String[] args) {

int V1;
V1 = 3 + (9 / 3);
System.out.println(V1);

}
}

5 infix operator
precedence
Obf answer:
true
TF answer:
true

class Snippet {
public static void main(String[] args) {

if (!greaterThanZero(2)
&& greaterThanZero(51)) {

System.out.println(”true”);
} else {

System.out.println(”false”);
}

}

static boolean greaterThanZero(int v) {
return v > 0;

}
}

class Snippet {
public static void main(String[] args) {

if (greaterThanZero(1)
&& (!greaterThanZero(0))) {

System.out.println(”true”);
} else {

System.out.println(”false”);
}

}

static boolean greaterThanZero(int v) {
return v > 0;

}
}

37

38 A. Code Examples

6 infix operator
precedence
Obf answer:
true
TF answer:
true

class Snippet {
public static void main(String[] args) {

String line = ”The cat is black”;

boolean V1 = line.contains(”dog”);
boolean V2 = line.contains(”cat”);
boolean V3 = line.contains(”black”);

if (V1 && V2 || V3) {
System.out.println(”true”);

} else {
System.out.println(”false”);

}
}

}

class Snippet {
public static void main(String[] args) {

String line = ”The cat is black”;

boolean V1 = line.contains(”dog”);
boolean V2 = line.contains(”cat”);
boolean V3 = line.contains(”black”);

if ((V1 && V2) || V3) {
System.out.println(”true”);

} else {
System.out.println(”false”);

}
}

}

7 post increment
decrement
Obf answer:
3 5
TF answer:
3 5

class Snippet {
public static void main(String[] args) {

int V1 = 2;
int V2 = 3 + V1++;
System.out.println(V1 + ” ” + V2);

}
}

class Snippet {
public static void main(String[] args) {

int V1 = 2, V2;
V2 = V1 + 3;
V1++;
System.out.println(V1 + ” ” + V2);

}
}

8 post increment
decrement
Obf answer:
true 1
TF answer:
true 1

class Snippet {
public static void main(String[] args) {

int V1 = 0;
if (V1++ == 0) {

System.out.print(”true ”);
} else {

System.out.print(”false ”);
}
System.out.println(V1);

}
}

class Snippet {
public static void main(String[] args) {

int V1 = 0;
if (V1 == 0) {

System.out.print(”true ”);
} else {

System.out.print(”false ”);
}
V1++;
System.out.println(V1);

}
}

9 post increment
decrement
Obf answer:
false 1
TF answer:
false 1

class Snippet {
public static void main(String[] args) {

int V1 = 2;
if (V1 == 1) {

System.out.print(”true ”);
} else {

System.out.print(”false ”);
}
System.out.println(V1);

}
}

class Snippet {
public static void main(String[] args) {

int V1 = 2;
if (V1 == 1) {

System.out.print(”true ”);
} else {

System.out.print(”false ”);
}
V1;
System.out.println(V1);

}
}

10 pre increment
decrement
Obf answer:
3 1
TF answer:
6 1

class Snippet {
public static void main(String[] args) {

int V1 = 2;
int V2 = ++V1 2;
System.out.println(V1 + ” ” + V2);

}
}

class Snippet {
public static void main(String[] args) {

int V1 = 5, V2;
++V1;
V2 = 5 V1;
System.out.println(V1 + ” ” + V2);

}
}

39

11 pre increment
decrement
Obf answer:
true 1
TF answer:
true 1

class Snippet {
public static void main(String[] args) {

int V1 = 2;
if (V1 == 1) {

System.out.print(”true ”);
} else {

System.out.print(”false ”);
}
System.out.println(V1);

}
}

class Snippet {
public static void main(String[] args) {

int V1 = 2;
V1;
if (V1 == 1) {

System.out.print(”true ”);
} else {

System.out.print(”false ”);
}
System.out.println(V1);

}
}

12 pre increment
decrement
Obf answer:
1 4
TF answer:
5 3

class Snippet {
public static void main(String[] args) {

int V1 = 2;
int V2 = V1 + 3;
System.out.println(V1 + ” ” + V2);

}
}

class Snippet {
public static void main(String[] args) {

int V1 = 6, V2;
V2 = 9 V1;
V1;
System.out.println(V1 + ” ” + V2);

}
}

13 constant vari
ables
Obf answer:
5
TF answer:
5

class Snippet {
public static void main(String[] args) {

int V1 = 3;
int V2 = V1 + 2;
System.out.println(V2);

}
}

class Snippet {
public static void main(String[] args) {

int V1 = 2 + 3;
System.out.println(V1);

}
}

14 constant vari
ables
Obf answer:
4
TF answer:
6

class Snippet {
public static void main(String[] args) {

int V1 = 2;
int V2 = 2 * V1;
System.out.println(V2);

}
}

class Snippet {
public static void main(String[] args) {

int V1 = 3 * 2;
System.out.println(V1);

}
}

15 constant vari
ables
Obf answer:
5.0
TF answer:
9.0

class Snippet {
public static void main(String[] args) {

int V1 = 2;
System.out.println(2.5 * V1);

}
}

class Snippet {
public static void main(String[] args) {

System.out.println(2 * 4.5);
}

}

40 A. Code Examples

16 remove in
dentation atom
Obf answer:
7
TF answer:
9

class Snippet {
public static void main(String[] args) {

boolean V1 = (2 != 3);
boolean V2 = false;
int V3 = 3;

if (V1)
if (V2)

V3 = V3 + 2;
else

V3 = V3 + 4;

System.out.println(V3);
}

}

class Snippet {
public static void main(String[] args) {

boolean V1 = (2 != 3);
boolean V2 = false;
int V3 = 5;

if (V1)
if (V2)

V3 = V3 + 2;
else

V3 = V3 + 4;

System.out.println(V3);
}

}

17 remove in
dentation atom
Obf answer:
6
TF answer:
6

class Snippet {
public static void main(String[] args) {

int V1 = 5, V2 = 5;
while (V2 > 0)

V2;
V1++;

System.out.println(V1);
}

}

class Snippet {
public static void main(String[] args) {

int V1 = 5, V2 = 5;
while (V2 > 0)

V2;
V1++;
System.out.println(V1);

}
}

18 remove in
dentation atom
Obf answer:
2 2
TF answer:
5 5

class Snippet {
public static void main(String[] args) {

int V1 = 1, V2 = 2;
if (V1 > V2)
V2 = 1;
V1 = 2;
System.out.println(V1 + ” ” + V2);

}
}

class Snippet {
public static void main(String[] args) {

int V1 = 5, V2 = 2;
if (V1 < V2)

V1 = 2;
V2 = 5;
System.out.println(V1 + ” ” + V2);

}
}

25 conditional
operator
Obf answer:
1
TF answer:
1

class Snippet {
public static void main(String[] args) {

int V1 = 4;

int V2 = V1 == 3 ? 2 : 1;

System.out.println(V2);
}

}

class Snippet {
public static void main(String[] args) {

int V1 = 4;
int V2 = 3;
int V3;

if (V1 == 3) {
V3 = 2;

} else {
V3 = 1;

}

System.out.println(V3);
}

}

41

26 conditional
operator
Obf answer:
5
TF answer:
2

class Snippet {
public static void main(String[] args) {

int V1 = 3;
int V2 = 5;
int V3 = 2;

int V4 = V1 == 3 ? V2 : V3;

System.out.println(V4);
}

}

class Snippet {
public static void main(String[] args) {

int V1 = 3;
int V2 = 5;
int V3 = 2;

int V4;
if (V1 == 2){

V4 = V2;
} else{

V4 = V3;
}

System.out.println(V4);
}

}

27 conditional
operator
Obf answer:
1
TF answer:
1

class Snippet {
public static void main(String[] args) {

int V1 = 2;
int V2 = 3;
int V3 = 1;

int V4 = V1 == 3 ? V2 : V3;

System.out.println(V4);
}

}

class Snippet {
public static void main(String[] args) {

int V1 = 2;
int V2 = 3;
int V3 = 1;

int V4;
if (V1 == 3) {

V4 = V2;
} else {

V4 = V3;
}

System.out.println(V4);
}

}

28 arithmetic as
logic
Obf answer:
true
TF answer:
true

class Snippet {
public static void main(String[] args) {

int V1 = 8;

if ((V1 3) * (7 V1) <= 0) {
System.out.println(”true”);

} else {
System.out.println(”false”);

}
}

}

class Snippet {
public static void main(String[] args) {

int V1 = 8;

if (3 <= V1 || V1 >= 7) {
System.out.println(”true”);

} else {
System.out.println(”false”);

}
}

}

29 arithmetic as
logic
Obf answer:
false
TF answer:
false

class Snippet {
public static void main(String[] args) {

int V1 = 2;

if ((V1 2) * (6 V1) > 0) {
System.out.println(”true”);

} else {
System.out.println(”false”);

}
}

}

class Snippet {
public static void main(String[] args) {

int V1 = 2;

if (V1 < 2 || 6 < V1) {
System.out.println(”true”);

} else {
System.out.println(”false”);

}
}

}

42 A. Code Examples

30 arithmetic as
logic
Obf answer:
true
TF answer:
true

class Snippet {
public static void main(String[] args) {

int V1 = 5;

if (V1 + 5 != 0) {
System.out.println(”true”);

} else {
System.out.println(”false”);

}
}

}

class Snippet {
public static void main(String[] args) {

int V1 = 5;

if (V1 != 5) {
System.out.println(”true”);

} else {
System.out.println(”false”);

}
}

}

40 logic as con
trol flow
Obf answer:
4 10
TF answer:
6 8

class Snippet {
public static void main(String[] args) {

int V1 = 1;
int V2 = 5;

if (++V1 > 0 || ++V2 > 0) {
V1 = V1 * 2;
V2 = V2 * 2;

}

System.out.println(V1 + ” ” + V2);
}

}

class Snippet {
public static void main(String[] args) {

int V1 = 2;
int V2 = 4;

if (++V1 > 0) {
V1 = V1 * 2;
V2 = V2 * 2;

} else if (++V2 > 0) {
V1 = V1 * 2;
V2 = V2 * 2;

}

System.out.println(V1 + ” ” + V2);
}

}

41 logic as con
trol flow
Obf answer:
1 6
TF answer:
2 7

class Snippet {
public static void main(String[] args) {

int V1 = 1;
int V2 = 5;

boolean _test =
V1 == V2 && ++V1 > 0 || ++V2 > 0;

System.out.println(V1 + ” ” + V2);
}

}

class Snippet {
public static void main(String[] args) {

int V1 = 2;
int V2 = 6;

if (V1 == V2) {
++V1;

} else {
++V2;

}

System.out.println(V1 + ” ” + V2);
}

}

43

42 logic as con
trol flow
Obf answer:
8 5 5
TF answer:
11 11 10

class Snippet {
public static void main(String[] args) {

int V1 = 3;
int V2 = 5;
int V3 = 0;

while (V3 < V2 && ++V1 > 0) {
V3++;

}

System.out.println(V1 + ” ” +
V2 + ” ” + V3);

}
}

class Snippet {
public static void main(String[] args) {

int V1 = 1;
int V2 = 11;
int V3 = 0;

while (V1 != V2) {
++V1;
if (!(V1 > 0))

break;

V3++;
}

System.out.println(V1 + ” ” +
V2 + ” ” + V3);

}
}

43 repurposed
variables
Obf answer:
2 0
TF answer:
4 0

class Snippet {
public static void main(String[] args) {

int V1[] = new int[5];
V1[4] = 3;

while (V1[4] > 0) {
V1[3 V1[4]] = V1[4];
V1[4] = V1[4] 1;

}

System.out.println(V1[1] + ” ”
+ V1[4]);

}
}

class Snippet {
public static void main(String[] args) {

int V1[] = new int[6];
int V2 = 5;

while (V2 > 0) {
V1[5 V2] = V2;
V2 = V2 1;

}

System.out.println(V1[1] + ” ” + V2);
}

}

44 repurposed
variables
Obf answer:
4
TF answer:
1

class Snippet {
public static void main(String[] args) {

int V3 = 0;

for (int V1 = 0; V1 < 2; V1++) {
for (int V2 = 0; V1 < 2; V1++) {

V3 = 4 * V1 + V2;
}

}

System.out.println(V3);
}

}

class Snippet {
public static void main(String[] args) {

int V3 = 0;

for (int V1 = 0; V1 < 2; V1++) {
for (int V2 = 0; V2 < 2; V2++) {

V3 = 4 * V1 + V2;
V1 = V2;

}
}

System.out.println(V3);
}

}

44 A. Code Examples

45 repurposed
variables
Obf answer:
2
TF answer:
4

class Snippet {
public static void main(String[] args) {

int V1 = 0;
for (int V2 = 0; V2 < 2; V2++) {

V1 = (V2 < 1) ? 1 : 0;
if (V1 > 0) {

V1 = V2 + 5;
} else {

V1 = V1 + 2;
}

}
System.out.println(V1);

}
}

class Snippet {
public static void main(String[] args) {

int V1 = 0;
for (int V2 = 0; V2 < 2; V2++) {

int V3 = (V2 < 1) ? 1 : 0;
if (V3 > 0) {

V1 = V2 + 4;
} else {

V1 = V3 + 4;
}

}
System.out.println(V1);

}
}

49 dead un
reachable re
peated
Obf answer:
2
TF answer:
2

class Snippet {
public static void main(String[] args) {

int V1 = 1;

V1 = 3;
V1 = 2;

System.out.println(V1);
}

}

class Snippet {
public static void main(String[] args) {
int V1 = 1;

V1 = 2;

System.out.println(V1);
}

}

50 dead un
reachable re
peated
Obf answer:
1
TF answer:
1

class Snippet {
public static void main(String[] args) {

int V1 = 1;

if (0 > 2) {
V1 = 3;

}

System.out.println(V1);
}

}

class Snippet {
public static void main(String[] args) {

int V1 = 1;

System.out.println(V1);
}

}

51 dead un
reachable re
peated
Obf answer:
0
TF answer:
0

class Snippet {
public static void main(String[] args) {

int V1 = 0;

V1 = V1;

System.out.println(V1);
}

}

class Snippet {
public static void main(String[] args) {

int V1 = 0;

System.out.println(V1);
}

}

53 change of lit
eral encoding
Obf answer:
11
TF answer:
11

class Snippet {
public static void main(String[] args) {

int V1 = 013;

System.out.println(V1);
}

}

class Snippet {
public static void main(String[] args) {

int V1 = Integer.parseInt(”13”, 8);

System.out.println(V1);
}

}

45

54 change of lit
eral encoding
Obf answer:
0
TF answer:
0

class Snippet {
public static void main(String[] args) {

int V1 = 11 & 32;

System.out.println(V1);
}

}

class Snippet {
public static void main(String[] args) {

int V1 = 0b1100 & 0b0011;

System.out.println(V1);
}

}

55 omitted curly
braces
Obf answer:
3
TF answer:
3

class Snippet {
public static void main(String[] args) {

int V1 = 2;

if (V1 <= 0) V1++; V1++;

System.out.println(V1);
}

}

class Snippet {
public static void main(String[] args) {

int V1 = 2;

if (V1 <= 0) {
V1++;

}
V1++;

System.out.println(V1);
}

}

56 omitted curly
braces
Obf answer:
5 3
TF answer:
8 3

class Snippet {
public static void main(String[] args) {

int V1 = 4;

int V2 = 0;
while (V2 < 3) V2++; V1++;

System.out.println(V1 + ” ” + V2);
}

}

class Snippet {
public static void main(String[] args) {

int V1 = 7;

int V2 = 1;
while (V2 < 3) {

V2++;
}
V1++;

System.out.println(V1 + ” ” + V2);
}

}

57 omitted curly
braces
Obf answer:
7
TF answer:
8

class Snippet {
public static void main(String[] args) {

int V1 = 3;

for (int V2 = 0;
V2 < 3; V2++) V1++; V1++;

System.out.println(V1);
}

}

class Snippet {
public static void main(String[] args) {

int V1 = 4;

for (int V2 = 0;
V2 < 3; V2++) { V1++; } V1++;

System.out.println(V1);
}

}

58 type conver
sion
Obf answer:
1
TF answer:
2

class Snippet {
public static void main(String[] args) {

float V1 = 1.99f;

int V2 = (int) V1;

System.out.println(V2);
}

}

class Snippet {
public static void main(String[] args) {

float V1 = 2.87f;

int V2 = (int)Math.floor(V1);

System.out.println(V2);
}

}

46 A. Code Examples

60 type conver
sion
Obf answer:
32
TF answer:
32

class Snippet {
public static void main(String[] args) {

int V1 = 288;
byte V2 = (byte)V1;

System.out.println(V2);
}

}

class Snippet {
public static void main(String[] args) {

int V1 = 288;

byte V2 = (byte) (V1 % 256);

System.out.println(V2);
}

}

61 indentation
Obf answer:
4
TF answer:
4

class Snippet {
public static void main(String[] args) {

int V1 = 0;
int V2 = 2;

if (V1 > 0) {}
V2 = 4;

System.out.println(V2);
}

}

class Snippet {
public static void main(String[] args) {

int V1 = 0;
int V2 = 2;

if (V1 > 0) {}
V2 = 4;

System.out.println(V2);
}

}

62 indentation
Obf answer:
3
TF answer:
10

class Snippet {
public static void main(String[] args) {

int V1 = 0;
int V2 = 1;

if (V1 > 0) {
V2 = 2;

}
V2 = V2 * 3;

System.out.println(V2);
}

}

class Snippet {
public static void main(String[] args) {

int V1 = 0;
int V2 = 5;

if (V1 > 0) {
V2 = 2;

}
V2 = V2 * 2;

System.out.println(V2);
}

}

63 indentation
Obf answer:
7
TF answer:
9

class Snippet {
public static void main(String[] args) {

int V1 = 2;
int V2 = 0;
int V3 = 3;

if (V1 > 0) {
if (V2 > 0) {

V3 = V3 + 2;
} else {

V3 = V3 + 4;
}
}

System.out.println(V3);
}

}

class Snippet {
public static void main(String[] args) {

int V1 = 2;
int V2 = 0;
int V3 = 5;

if (V1 > 0) {
if (V2 > 0) {

V3 = V3 + 2;
} else {

V3 = V3 + 4;
}

}

System.out.println(V3);
}

}

Table A.1: Java Code Examples.

B
Ethics Committee Approval

Human Research Ethics Committee

TU Delft

(http://hrec.tudelft.nl/)

Visiting address

Jaffalaan 5 (building 31)

2628 BX Delft

Postal address

P.O. Box 5015

2600 GA Delft

The Netherlands

Re:

Dear Chris Langhout,

Thank you very much for informing us about the human research by students as part of your course and for referring

them to the current human research ethics and GDPR guidelines.

We have no further questions at this this time.

Your application will be stored in accordance with the existing regulations.

In case of any problems, please contact us.

With kind regards,

Joost Groot Kormelink - TPM

Secretary Chair Human Research Ethics Committee TU Delft

Date 25-06-2019

Contact person Ir. J.B.J. Groot Kormelink, secretary HREC

Telephone +31 152783260

E-mail j.b.j.grootkormelink@tudelft.nl

47

C
Screenshots of the Online Survey

49

50 C. Screenshots of the Online Survey

Figure C.1: Survey introduction

51

Figure C.2: The example question of part 1

52 C. Screenshots of the Online Survey

Figure C.3: The page design of part 1, the participant is shown one of the 80 available code questions.

53

Figure C.4: The example question of part 2

54 C. Screenshots of the Online Survey

Figure C.5: A page of part 2, asking the participant to compare a randomly selected pair of code examples.

55

Figure C.6: End of Survey questions

Figure C.7: Thank you page

	List of Figures
	Introduction
	Related Work
	Program Comprehension
	Misconceptions

	Methodology
	Measuring Atoms of Confusion
	Design of the Study
	Part 1: Effect
	Part 2: Perception
	End of the Survey

	Participants
	Data analysis
	Threats to Validity
	Threats to Internal Validity
	Threats to External Validity

	Results and Discussion
	RQ1: Which atoms of confusion hinder the comprehensibility of Java programs, and to what extent?
	RQ2: How do students perceive confusion in Java programs that include atoms of confusion, as opposed to the translated, confusion-free, Java programs?
	Discussion
	Recommendations to Educators
	Avoiding atoms of confusion

	Conclusions and Future Work
	Future Work

	Bibliography
	Code Examples
	Ethics Committee Approval
	Screenshots of the Online Survey

