XXIII-ET2014, 11-13 Sept. 2014, Sozopol High Efficiency UV Photodiodes on p-type Substrate ¹Delft Univ. of Technology,²Phys.-Tech. Bundesanstalt

P. R. Rao¹, S. Milosavljevic¹, U. Kroth², C. Laubis², S.Nihtianov¹ September 11, 2014

This work is part of the E450EDL - ENIAC, funded under grant no: 325613

P. R. Rao (TU Delft)

Outline

1 Introduction

UV Domains and Challenges Prior Art: pure-B on n-type Si Why p-type UV Photodiodes?

2 p-type UV Photodiode

Process Development Layout

3 Results

Dark Leakage Current Sensitivity Stability

1 Introduction

UV Domains and Challenges

Prior Art: pure-B on n-type Si Why p-type UV Photodiodes?

2 p-type UV Photodiode

Process Development Layout

3 Results

Dark Leakage Current Sensitivity Stability

4 Summary & Conclusion

tuDelft

P. R. Rao (TU Delft)

- Application spans a wide range of domains (EUV to NUV)
- A broad-band detector simplifies system design & economical

rúDelft

PRRAD	
1. IX. IXaU (

< 🗆 🕨 < 🗇 🕨

Introduction - UV Domains & Challenges (2/3)

. .

< 🗆 🕨 < 🗇

- Silicon based detector preferred due to CMOS compatibility
- Very shallow absorption depth (a few nm) in DUV/VUV

″uDelft

D D D D D D D D D D D D D D D D D D D	
F. I. I.au	

Introduction - UV Domains & Challenges (3/3)

- UV radiation charges oxide with positive charge, and introduces additional interface traps
- This phenomenon affects spectral stability and can increase dark leakage current via surface electric field modification

T UDelft			
		<ロ> <日> <日> <日> <日> <日> <日> <日> <日> <日> <日	Q (?~
P. R. Rao (TU Delft)	UV Photodiodes on p-substrate	September 11, 2014 6	/ 34

1 Introduction

UV Domains and Challenges Prior Art: pure-B on n-type Si Why p-type UV Photodiodes?

2 p-type UV Photodiode Process Development

Layout

3 Results

Dark Leakage Current Sensitivity Stability

4 Summary & Conclusion

tuDelft

P. R. Rao (TU Delft)

Introduction - Prior Art: pure-B on n-type Si(1/2)

- Oxide free n-type silicon surface exposed to B_2H_6 , using commercial Si/SiGe epitaxial AP/LPCVD reactor at DIMES (TUDelft), at 500 $^\circ\text{C}$ 700 $^\circ\text{C}$
- Creates a thin (few nm) of pure-B on Si surface, and a few nm of in-diffusion into Si:
 - acts as a passivation layer for surface interface traps
 - creates a electric field for enhanced photo-charge collection
 - acts as a capping (semi-metal) layer and improves stability
- Excellent results obtained:
 - excellent responsivity in DUV (> 0.1 A/W)
 - excellent responsivity close to theoretical maximum in EUV
 - excellent stability

Introduction - Prior Art: pure-B on n-type Si(2/2)

 HRTEM image of the cross-section of a pure-B diode showing the different regions (α-Si layer deposited for contrast)

Ť UDelft							
		< □ ▶	< 🗗 🕨	-∢ ≣ ▶	∢ ≣ ⊁	E	৩৫৫
P. R. Rao (TU Delft)	UV Photodiodes on p-substrate			Septem	ber 11, 2	2014	9 / 34

Introduction

UV Domains and Challenges Prior Art: pure-B on n-type Si Why p-type UV Photodiodes?

2 p-type UV Photodiode

Process Development Layout

3 Results

Dark Leakage Current Sensitivity Stability

4 Summary & Conclusion

tuDelft

P. R. Rao (TU Delft)

Introduction - Why p-type UV Photodiodes? (1/1)

- Standard CMOS foundry compatibility \Rightarrow mass production
- Representative of CMOS Image Sensor (CIS) Pixels
 - in particular backside-illumination (BSI)
 - large area diode can be implemented as a test-device to characterize performance
 - lends itself as photo diodes in CMOS pixels

A I > A A P >

Introduction

UV Domains and Challenges Prior Art: pure-B on n-type Si Why p-type UV Photodiodes?

2 p-type UV Photodiode Process Development Layout

3 Results

Dark Leakage Current Sensitivity Stability

4 Summary & Conclusion

TUDelft

P. R. Rao (TU Delft)

p-type - Process Development (1/11)

p-substrate

- Highly doped p-substrate starting material (\approx 800 $\mu \rm{m},~1{\times}10^{19}$ $\rm{at/cm^3})$

p-type - Process Development (2/11)

• p-epitaxy(2.5 μ m, 1×10¹⁷ at/cm³) is grown on the substrate to create a high-quality material for further processing

p-type - Process Development (3/11)

• Buried n-cathode(1 $\mu{\rm m},~1{\times}10^{16}~{\rm at/cm^3})$ is grown on the p-epi. The depletion should not interact with the low-quality substrate

p-type - Process Development (4/11)

• p-type boron sidewall cutting implants ensure no p-n junctions are formed at the edges. The deep p-implant mask is reused

p-type - Process Development (5/11)

• High resisitivity p-epitaxy (1.5 μ m, $\approx 1 \times 10^{14}$ at/cm³) is grown on the n-cathode. This is fully-depleted at operational voltage

p-type - Process Development (6/11)

 Deep p-and n-well (implant energy = 500 keV) are used to connect to the p-type layer and the n-buried cathode respectively

p-type - Process Development (7/11)

- p^+ anode contact implant is made. At this stage, 30 min anneal at 950 °C is done to activate the implants

p-type - Process Development (8/11)

• 375 nm oxide (TEOS) is formed by LPCVD, and patterned to define pure-boron region

p-type - Process Development (9/11)

• 3 nm pure-B is formed by CVD. The oxide serves as a mask for the pure-B deposition as boron does not form on oxide

p-type - Process Development (10/11)

• Finally, contact regions are defined, and metal contacts made on the implants to form cathode and anode/ground contacts

p-type - Process Development (11/11)

 Parasitic diode leakage currents (n-well – p-epi, n-well – p-well, n-well – p-anode) & surface leakage ⇒ perimeter component

Introduction

UV Domains and Challenges Prior Art: pure-B on n-type Si Why p-type UV Photodiodes?

2 p-type UV Photodiode

Process Development Layout

3 Results

Dark Leakage Current Sensitivity Stability

4 Summary & Conclusion

TUDelft

P. R. Rao (TU Delft)

p-type - Layout(1/2)

 Top-cell layout view. The large area diode (10 mm × 10 mm), small area diodes (half and quarter size), periphery diode, process monitoring, and some additional test-diodes can be seen

Ť UDelft			
		 ····································	୬ବ୍ଦ
P. R. Rao (TU Delft)	UV Photodiodes on p-substrate	September 11, 2014	25 / 34

p-type - Layout (2/2)

- Left: the highly doped regions are separated by 6 μ m
- Right: the n-cathode ring is cut to allow the p-anode implant to physically connect with the p-well

Introduction

UV Domains and Challenges Prior Art: pure-B on n-type Si Why p-type UV Photodiodes?

2 p-type UV Photodiode Process Development

3 Results

Dark Leakage Current

Sensitivity Stability

4 Summary & Conclusion

TUDelft

P. R. Rao (TU Delft)

Results - Dark Leakage Current (1/1)

- Dark current is 260 pA at 0.5 V reverse bias (RT)
- Contribution from periphery < 5 % \Rightarrow 25 μ m² diode: 70 aA

TUDelft

Introduction

UV Domains and Challenges Prior Art: pure-B on n-type Si Why p-type UV Photodiodes?

2 p-type UV Photodiode Process Development

Layout

3 Results

Dark Leakage Current Sensitivity Stability

4 Summary & Conclusion

TUDelft

P. R. Rao (TU Delft)

Results - Sensitivity (1/2)

- Good responsivity in entire DUV; minimum at 280 nm: 0.07 A/W
- Quantum efficiency (280 nm) = 26 %

ゲUDelft イロト イ団ト イヨト モラ シスペ P. R. Rao (TU Delft) UV Photodiodes on p-substrate September 11, 2014 30 / 34

Results - Sensitivity (2/2)

 Good responsivity in entire EUV; close to theoretical maximum at 13.5 nm

ťu Delft			
	< □ >	∢∄≻ ∢≣≻ ∢≣≻ ≣	୬୯୯
P. R. Rao (TU Delft)	UV Photodiodes on p-substrate	September 11, 2014	31 / 34

Introduction

UV Domains and Challenges Prior Art: pure-B on n-type Si Why p-type UV Photodiodes?

2 p-type UV Photodiode Process Development

Layout

3 Results

Dark Leakage Current Sensitivity Stability

TUDelft

P. R. Rao (TU Delft)

Results - Stability (1/1)

• Responsivity degradation due to irradiation at 121 nm (179 nW, 40 min), and subsequent recovery. Inset: logarithmic behaviour of the signal as a function of irradiation time (t= 0 to 2400 s)

TUDelft

Summary & Conclusion

- Pure-B technology has been successfully ported into p-type substrate:
 - the pure-B diodes show extremely good broadband sensitivity in the EUV and DUV wavelengths
 - the pure-B diodes exhibit very good stability under harsh conditions
- Conclusion: The technology that has been developed can be used as a post-processing step for the passivation of photo-detectors, including BSI image sensors (both CMOS and CCD) in the whole UV range

