
Improvements in Monte Carlo Tree Search for Inductive Program Synthesis

Nathalie van de Werken
Supervisor: Sebastijan Dumančić

EEMCS, Delft University of Technology, The Netherlands
22-6-2022

A Dissertation Submitted to EEMCS faculty Delft University of Technology,
In Partial Fulfilment of the Requirements

For the Bachelor of Computer Science and Engineering

1



Abstract
A recent development in program synthesis is us-
ing Monte Carlo Tree Search to traverse the search
tree of possible programs in order to efficiently
find a program that will successfully transform the
given input to the desired output. Previous research
has shown promising results as Monte Carlo Tree
Search is able to escape local optima that occur
during the search. I have continued this previous
research by changing some components of Monte
Carlo Tree Search and testing them on three differ-
ent domains; robot planning, string transformations
and ASCII art.
Most notable, I have found that by changing the
exploration constant Cp to slowly decrease during
the running of the algorithm, you can improve the
algorithm’s accuracy. This makes it easier for the
algorithm to escape local optima, however here it
is crucial the parameters are tuned well. Further-
more, I have also found that improvements can still
be made in the expansion step of MCTS. How-
ever, changes to which values are backpropagated
have not shown an improvement in the accuracy of
MCTS in program synthesis.

1 Introduction
Program synthesis is a process in which code is being auto-
matically generated for the user given some high-level speci-
fication [Gulwani et al., 2017]. This process makes it possible
for people without programming knowledge to create com-
puter programs and can also speed up the job of developers.
It is currently already used in software engineering, biologi-
cal discovery and data cleaning [David and Kroening, 2017].
Although many improvements have been made over the past
years, there is still a lot of progress that needs to be made in
order for program synthesis to be feasible for most programs,
especially more complicated ones [Cropper and Dumančić,
2020].

Many different versions of program synthesis exist, but
what is at the core of each of them is the way it searches.
Here program synthesis looks through all the different pro-
grams possible given the syntax and executes it on the given
input to check if it indeed gives the expected output. All these
different programs can be represented in a tree data struc-
ture, of which at the root an empty program and following are
the children with similar programs, just one operation added.
Usually, this tree is very big or even infinite, even when we
define a very limited language. This means we cannot easily
just search through the entire tree using a simple tree traversal
algorithm such as Breadth-First Search or Depth-First search.
Because of this, it is very important a good algorithm is used
for this search, as a bad decision early on can lead you to com-
pletely go down the wrong branch and therefore it taking very
long for you to find a program that can indeed solve this task.
Here is where more complicated searching algorithms come
in such as Monte Carlo Tree Search. This algorithm traverses
through this tree in such a way that it balances exploration

and exploitation such that we can quickly find a program that
solves all the input cases.

There has already been done some research in the field
of program synthesis in combination with Monte Carlo Tree
Search. Most notable is the research by Matulewicz, where
Monte Carlo Tree Search was implemented to work on pro-
gram synthesis, called MUTE, and tested on three domains
[Matulewicz, 2022]. This will be the basis of this research
paper and in this research paper I will change several com-
ponents in this algorithm to answer the question: ”How can
we improve the different components of Monte Carlo Tree
Search to make it perform better on program synthesis?”
In order to answer this main research question, I will answer
the following sub-questions:

Q1 What does it mean to perform better on program synthe-
sis?

Q2 For each component that has been researched, what can
we change to it to make it run better?

Q3 What is the optimal combination of the different compo-
nents?

To answer these questions, the paper will be structured in
the following way. In section 2, I will explain the most rel-
evant background and related work on which I will be con-
tinuing my research. Following this, in section 3, I will go
through the methodology and explain all the different com-
ponents I have changed. In section 4, I will explain how I ran
the experiments, of which I will describe the results in section
5. In section 6, I will give the conclusions and also do some
recommendations for future work. Finally, in chapter 7, I will
give some final remarks on how I have taken responsible re-
search principles into account for this paper.

2 Background and Related Work
In this section, I will explain the most important terms you
need to know to fully understand this paper. Furthermore,
I will also explain the most important past work that has
been done in program synthesis, Monte Carlo Tree Search
and combining the two.

2.1 Program synthesis
In the simplest of words, in program synthesis we want to
automatically generate a program that can translate the given
input into the desired output. This means that someone then
does not need to write code or anything but from a higher
level define the input and output and get a final program
[Solar-Lezama, 2008]. A concrete example in the domain
of string transformations is for instance if for the input you
give Harry Styles and your desired outcome is H. Styles, you
want to generate a program that does this automatically and
can also generalise to a case such as Taylor Swift becoming
T. Swift.

Now that we have an understanding of the main goal, many
different algorithms can solve the problem of program syn-
thesis. The field is still rapidly expanding with improvements
to older algorithms, as well as completely new topics and al-
gorithms [Polozov, 2018]. Some notable algorithms that have
been experimented with are genetic programming [Helmuth

2



Figure 1: The four components of Monte Carlo Tree Search [James
et al., 2017]

et al., 2018] and functional approaches [Kitzelmann, 2009].
In this paper, I will focus on Monte Carlo Tree Search, a
searching algorithm that balances exploration and exploita-
tion.

BRUTE
I would like to especially highlight the work of Cropper and
Dumančić, who used a best-first search algorithm, called
Brute, for program synthesis [Cropper and Dumančić, 2020].
This algorithm works in two phases, an invention phase and a
search stage. In the first stage, all sequences of tokens up until
a certain length are constructed. Then in the second phase of
the algorithm, we start by making a priority queue and adding
the empty program to it. Then every iteration, we pop the first
element in the priority queue with the best score until now, al-
tering the program by adding one of the tokens found in stage
1 and adding it again to the queue.

This method has proved quite effective in the three do-
mains of ASCII art, string transformations and robot plan-
ning. However, the main struggle of Brute is local optima,
due to the fact that using best-first search is very prone to
local optima.

2.2 Terminology used

Since doing program synthesis on a programming language
such as Python or Java would lead to a very big search space,
of which the majority will not lead to a correct result, we
run program synthesis on a limited language. In this limited
language, what will be referred to as program is known as a
sequence of transitional tokens.

There exist two different kinds of tokens, a transitional to-
ken and a boolean token. A transitional token takes as input
the state and returns the state after the specified operation is
executed. A boolean token also takes as input the state but in-
stead returns a boolean which describes whether the specified
predicate is true for that current state. All of these tokens are
defined specifically for each domain and will be explained in
section 4.3. There also exist two general transitional tokens,
and If and While token, which uses the boolean tokens and
transitional tokens to synthesize more complicated programs.
These two tokens are available for all the domains.

A big challenge in programming synthesis is that of local
optima. This occurs when the algorithm is stuck searching
in an area which performs very well on the heuristic, but it is
very difficult or even impossible to turn that program into a
program that actually solves the task.

2.3 Monte Carlo Tree Search
Monte Carlo Tree Search is an algorithm that in the past has
mainly been used in games, where the search space expands
with a large factor on each level of the tree [Chaslot et al.,
2008]. Here its main strength is how it is possible to balance
exploration and exploitation.

MCTS is an algorithm that works in iterations, where each
iteration has four stages. For an overall overview of how a
single iteration works, see figure 1. In the first stage selec-
tion, we select which node we will want to explore in the
next iteration. There are many algorithms that can be used to
select it, but the one most commonly used is known as UTC
[Kocsis and Szepesvári, 2006]. This means the following for-
mula is used for selecting the node:

UTCi =

(
X̄i + 2Cp

√
2 lnn

ni

)
(1)

Here X̄i is the average reward received in node i, Cp the ex-
ploration constant, n the number of visits to the parent of
node i and ni is the number of visits to i.

This value is calculated for each node and the node with
the maximum value is chosen to explore next. Then in the
next stage, expansion, we take the current node and explore
it by taking another move. In the third stage, simulation,
the node is expanded until a terminal state is reached, such
that we can calculate the performance of the done expansion.
Finally, in the last stage of backpropagation, the information
is reflected back up in the tree all the way to the root.

2.4 Monte Carlo Tree Search in Program
Synthesis

The combination of Monte Carlo Tree Search and Program
Synthesis has been a recent development and therefore not a
lot of research has been done. I have been able to find two
previous times that Monte Carlo Tree Search has been used
in combination with Program Synthesis, which I will describe
in the following section.

First of all, a field report has been implemented as to see if
it is possible to use Monte Carlo Tree Search in the domain of
Program Synthesis [Lim and Yoo, 2016]. Here they have im-
plemented MCTS using UTC for Java Bytecode and have also
implemented a genetic programming algorithm to compare
the performance. They found Monte Carlo Tree Search to
be effective in the smaller domains, however, it does struggle
with more difficult domains and longer problems. They also
found that ”It appears that MCTS commits to an instruction
that yields moderate rewards and keeps exploiting it, when in
fact its rewards are suboptimal.” [Lim and Yoo, 2016]

Furthermore, there has also been done a study by Mat-
ulewicz, where MCTS is implemented for program synthesis
in Python. UTC is used for selecting the next node, and in
the expansion step a complete token is added to the program,
which can consist of multiple tokens if for instance when an
If or a While is added. Then in the simulation step, the loss
of the current program is computed on the example program,
and finally, this loss is then propagated back into the tree.
Two big improvements were made that significantly reduced
the branching factor and therefore enhanced the performance,

3



namely the removal of tokens that did not show any poten-
tial as well as the removal of similar programs. Analysis has
shown that this version of program synthesis can indeed es-
cape local optima and it has shown promising results for using
Monte Carlo Tree Search in the future of program synthesis.

3 Methodology
In this chapter, I will explain for each component which al-
terations have been done and why these alterations show the
potential to perform better in the domain of program synthe-
sis.

3.1 Balancing exploration and exploitation
The previous version of Monte Carlo Tree Search had a single
constant that was used to balance exploration versus exploita-
tion. This constant, Cp, is known as the exploration constant
and is hypertuned for each domain to lead to optimal results.
This comes with quite some downsides, as first of all, you
need to tune this parameter with a big number of example
programs before you can actually use program synthesis in
the real life. Furthermore, at the beginning of the search, you
want more exploration, so you do not get stuck in some local
optima early on and struggle to escape it. This means having
more exploration in the first couple of iterations and after a
while focus more on getting a final program and therefore ex-
ploit the best nodes. Therefore I have implemented multiple
ways in which the Cp is changed throughout the process as to
see if it will lead to more optimal results.

Linear change
First of all, I tried out a way of slowly decrementing Cp using
a linear term throughout the process. This means that after
every iteration, I decrement it with a set amount. The way this
is implemented is that we define a beginning value, known as
Cp,maximum and ending value Cp,minimum. Initially, Cp is
set to Cp,maximum and then slowly it will per iteration change
by a set amount. It has been implemented in such a way that
Cp cannot go under Cp,minimum.

I have first of all chosen this implementation since it is very
simple and you can easily see the effects of these measure-
ments. Despite the simplicity, it does give you a lot of free-
dom as you can manually decide the beginning and end value.
This allows for us to easily change this implementation and
also make its influence on the overall performance larger or
smaller. This should mean we can modify the algorithm so
it works well for each domain. It does come with the down-
side of there being more hyperparameters to tune, however, I
have tried to minimize this impact by using the values from
Matulewicz as the basis of my search.

Less frequent linear change
Such little changes from constant linear change might have
little impact when the algorithm is running, so to combat this
I have also implemented a way in which Cp is not changed
after each iteration but instead after each X iterations by a
bigger amount. I have chosen that we will change Cp a 100
times, so we will bridge the gap between Cp,minimum and
Cp,maximum in a 100 steps, as this will still allow enough
changes and flexibility, but has much contrast with the first
alternative of constant linear change.

Exponential change
As linear change might have the problem that we are stuck
with too high of a Cp for too long and therefore do not reach a
lot of progress early on, we can also try an exponential change
over time. This means that first of all the constant starts high
but it lowers very quickly and stays low for the rest of the
iterations. This can in theory perform better, but also makes
the tuning of the parameters more tricky as you also have
to tune how fast the exponential should lower. In order to
implement this, I have used the following formulas:

Ccurrent = log((Cp,maximum − Cp,maximum)current level)
(2)

with current level defined as

current level = 1−min(
i

itot
, 1) (3)

where i is defined by at which iteration we currently are and
itot is the amount of total expected iterations. There is a min-
imum function in there in case we go over this number such
that we do not reach a negative value of current level.

Getting out of local optima
A big issue in program synthesis is that of plateaus in which
we get stuck in local optima. In order to combat this, we
would like to first of all notice that we are in a plateau and
then try to explore more as to come out of it. The way I have
tried to find a way to easily escape these plateaus without hav-
ing to completely reset the entire search is by increasing Cp

a lot when we have been stuck in a plateau for a long time
and bringing it back down again when we are out of it. You
can notice that you are in a plateau when for X iterations,
you have had the same accuracy without any improvements,
where this X has to be set for each domain since for some
domains plateaus are more frequent and we do not want to
change Cp too soon as we would want sufficient time to ex-
plore all the good nodes first.

I have decided that instead of increasing Cp by a set value,
it will increase it by 1/100 of the exploration constant each
iteration more than 5000 that we have not had a small im-
provement. This way it is more domain-specific but it does
not require another hyperparameter to be tuned, as in a do-
main where Cp is set to a lower amount, it will then also grow
slower. Also this way it is gradually increased and does not
spike all of a sudden too much, which could cause all the pre-
vious progress to be lost. Once we are out of the local optima,
Cp will be reset back to the original value.

3.2 Expansion and Simulation
In the unaltered state of Monte Carlo Tree Search after se-
lecting which node to expand on, all possible tokens that can
still be added are enumerated and the one that is first in the
list is chosen. Then the loss of this current program is com-
puted and we will continue the final stage of the Monte Carlo
Tree Search, backpropagation. For this stage, there are many
different ways to alter how to expand the tree. However, it is
also necessary to not overfit on the domain and choose two
specific ways to compute the way for the expansion, as this
can allow the probability of getting into local optima to grow.

4



Randomly choosing which operation
In the unaltered implementation, always the first element in
the list of possible tokens is chosen. Due to how the list is
composed, which is always in the same order, it might be
possible that a necessary token for that program to succeed
is only at the end of the list. Because of this, it is possible
that this token is not explored until very late in the process.
In order to combat this, I have implemented a variation of
the expansion algorithm that first shuffles the list of possible
extensions and then removes the first one.

Using token’s past success
It is a reasonable assumption that the tokens that are used in
the up until now best current program are often useful, and
therefore tokens we want to use to expand on. Something
that one should be careful of however in this case is that this
means that local optima can be more likely to occur. How-
ever, I still deemed this an interesting alteration to look into.

In order to implement this, I take into account the token’s
past scores which are stored in a map and choose the tokens
based on such a that the token with the highest score is chosen
to expand with. Although this can lead to local optima, as
it might overfit on some tokens that seem to generate good
results according to the heuristic, it will also speed up some
obvious steps where one token is the right choice so can still
improve performance.

3.3 Backpropagation
As explained in section 2.3, backpropagation is a set algo-
rithm in which we need to reflect the result of the final rollout
in the rest of the tree, so in the next iteration, the new best
leaf is chosen. This algorithm is constant in all different ver-
sions of Monte Carlo Tree Search since it is crucial for the
algorithm to succeed that the value is backpropagated in the
entire tree. The only degree of freedom you have is which
value you backpropagate, so I have come up with two differ-
ent alternatives.

Loss
Instead of just backpropagating the reward, defined by the
current loss divided by the maximum loss, you can also sim-
ply backpropagate the current loss itself. This has as benefit
that it is easier to compute, so therefore should give a small
speedup in theory as well as there being a bigger range in
which the values can be. Therefore, there might be bigger
differences which will lead for the algorithm to sometimes
choose to visit different nodes, which can be beneficial for
the search.

Normalised between -1 and 1
Monte Carlo Tree Search has been developed originally for
games, as can be seen in some of the original papers [Coulom,
2006] [Gelly et al., 2006]. Here it is customary that it is
implemented using a zero-sum game, which means that one
play’s win is the other player’s loss[Blakely, 2021]. This
means that either the value +1, 0 or -1 is backpropagated in
the tree.

Since this is how Monte Carlo Tree Search is often used
like this, it is interesting to see how it will perform in Pro-
gram Synthesis if it has similar constraints. It might perform

then better because a lot of the research and optimisation done
in Monte Carlo Tree Search is based on this. The way I have
implemented this is by comparing the new loss score with
the current best from the parent, if it has improved, you back-
propagate +1, if the loss is the same, you propagate 0 and else
you propagate -1.

3.4 Combination of factors
After I have run my experiments to find the optimal perfor-
mance of each of the components, I will do a final round of
experiments where I combine each of these optimal compo-
nents to see the final potential of Monte Carlo Tree Search
in Program Synthesis. Although I do expect to see some im-
provements when I am running all these optimal factors com-
bined, this may be less than expected since these factors will
not be tuned to each other.

4 Experimental Setup
In order to answer the research questions, I have run many
experiments using the different components explained in the
previous section. In this section, I will further explain how
these experiments are set up, on which domains these were
run and also on which metrics I have compared the different
alternatives.

4.1 Set up experiments
As a basis for this research, the code from Matulewicz was
used [Matulewicz, 2022]. Here Monte Carlo Tree Search for
Program Synthesis has been implemented in Python. I have
altered parts of this code to try out the different variations
described in section 3. To debug the code, I ran it locally on
my computer on the robot domain. For the final tests, a case
is considered solved if both the train and test cost are 0.

DelftBlue
In order to run the final experiments, I have been granted ac-
cess to the DelftBlue, a high-performance computer [Delft
High Performance Computing Centre (DHPC), 2022]. On
this computer, there are 218 nodes available with 48 cores.
The CPU available is 2 times the Intel XEON E5-6248R 24C
3.0GHz, with 192 GB memory and 480 GB SSD.

To run the experiments, you need to have a job script that
contains how to set up the environment, the parameters of
what you’re going to run, such as how many CPUs you need
and the maximum time allowed, as well as which script you
want to run. The main script I used to run the experiments
can be found together with the code, and here you see that I
allowed the job to take a maximum of 5 hours, a maximum
of 4 GB memory per CPU, and used 46 CPUs as to make
the computation go as quickly as possible. A single program
synthesis task is allowed to take a maximum of 60 seconds
after which it will time out.

4.2 Metrics
As to answer Q1 (”What does it mean to perform better
on program synthesis?”) I have spent a significant amount
of time looking at other research on program synthesis and
which metrics they used there to compare the outcome of dif-
ferent parameters or algorithms. Here I found that the most

5



important metric to compare on is the accuracy, meaning how
many of the tasks have been solved successfully. You can also
compare the average loss of the examples that could not have
been solved. However, I do not think this is a very useful met-
ric, because first of all, it is possible for this loss to be a low
number but still has completely the wrong result, as well as
even if the result is off by a little bit, it is still off and therefore
you still cannot use this program that has been synthesised.

Some other studies have looked a lot into the different
plateaus that can occur during program synthesis [Koenig et
al., 2021]. Although this is very interesting to look at and
can give you some insights into the process of program syn-
thesis, it is outside of the scope of this current research, as I
prioritized getting data on a lot of different examples in the
three different domains compared to looking more into depth
in how specific examples are synthesised.

Lastly, it is very important we also look at the speed of how
fast the program is found that solves that task. If this takes a
very long time, even though the accuracy of the algorithm
is higher, it might never be used in practice because the re-
sources to run that algorithm are simply not there. I only look
at the average time of the cases it actually managed to solve,
as otherwise most of the cases that were never solved timed
out and this will mean that the average time is dependent on
the accuracy, which is not what we want to analyse.

For the final experiments of running the optimal combina-
tion of parameters, I chose to also look at how the accuracy
fluctuates over the difficulty of the domain. For the robot
planning domain, this difficulty is denoted by the grid size,
for string transformations this is the number of training ex-
amples and for the ASCII art domain, it is the number of
symbols.

4.3 Different domains
I have run these experiments on three different domains. This
has many advantages, as it gives us a more accurate picture
of the performance of the component since simply there was
more data to test on. Since there is randomness involved
in some of the components, running more experiments will
reduce the standard deviation. It also shows us how Monte
Carlo Tree Search will perform on both less and more com-
plex domains. Furthermore, it also allows us to not com-
pletely overfit on a single domain and it will give us more
of an idea of how these techniques will generalise to program
synthesis as a whole.

Robot planning
In this domain, for an example program, you have been given
a grid, where the goal is to move the robot around in such
a way that it picks up and drops the ball in the desired place.
The loss function used in this domain is the minimum number
of moves needed for the robot to navigate to the ball, pick it
up and drop it off. This is a very informative heuristic, which
makes the chance of local optima very unlikely to happen
since it is impossible to score well on this heuristic and not
be close to the final solution.

The boolean tokens for this domain are [AtRight, NotA-
tRight, AtLeft, NotAtLeft, AtTop, NotAtTop, AtBottom, NotAt-
Bottom] and transitional tokens are [Grab, Drop, MoveRight,

MoveLeft, MoveUp, MoveDown].

String transformations
For string transformations, the goal is to take the input string
and transform it into the correct output string. For a single
program, between one and nine example strings have been
given as input. The heuristic that is used in this domain is
Levenshtein’s distance. In this metric, we define the dif-
ference between two strings to be the minimum amount of
single-character edits needed to transform one string into the
other [Yujian and Bo, 2007]. Although this is already a very
informative heuristic, it does allow for strings that cannot eas-
ily be transformed from one to the other to score well, for ex-
ample turning the string ABCDEFG into A, a program that
transforms it into the empty string, such as While(NotAtEnd,
drop) will still perform very well according to this metric.
This can allow for local optima to occur.

For this domain, the transitional tokens are [Drop, Make-
Uppercase, MakeLowercase, MoveRight, MoveLeft] and
the boolean tokens are [AtStart, NotAtStart, AtEnd, No-
tAtEnd, IsLetter, IsNotLetter, IsUppercase, IsNotUpper-
case,IsLowercase, IsNotLowercase, IsNumber, IsNotNumber,
IsSpace, IsNotSpace].

ASCII art
In the ASCII art domain, the goal is to turn an empty grid
into a filled grid which will have one or several ASCII char-
acters encoded in it. The heuristic that is used in this domain
is the binary distance between the current output and the de-
sired output. The main challenges of this domain are the size
of the grid, as well as the heuristic not always being very in-
formative, as it is possible the heuristic gives a high score to
a program but expending on this program will never lead to
a correct program since that one is impossible to reach from
this node.

The transitional tokens for this domain are [Draw,
MoveRight, MoveLeft, MoveUp, MoveDown] and the boolean
tokens are [AtRight, AtLeft, NotAtRight, NotAtLeft, AtTop, At-
Bottom, NotAtTop, NotAtBottom].

5 Results and Discussion
This section contains the results from the experiments de-
scribed in section 4. Per changed component, I will anal-
yse its performance and offer possible explanations as to why
these results were reached. In figures 2, 3 and 4 you can see
the performance of each of the components in each of the
domains respectively. Note that some of the different compo-
nents in the graphs fall together, and in tables 1, 2 and 3 you
can see the final scores for each of the domains.

In general, I noticed that some solutions have a low accu-
racy as well as a low average time. This is because only the
easier tasks in the domain have been solved, which takes less
time to solve as the length of the programs is lower. This
means that you should also take into account when you are
comparing times which of the tasks have been solved.

5.1 Balancing exploration and exploitation
As can be seen from the graphs, many different setups have
been run for each component to test its performance. Notable

6



Figure 2: Accuracy versus time in the robot planning domain for all
tried out components

Figure 3: Accuracy versus time in the ASCII art domain for all tried
out components

Figure 4: Accuracy versus time in the string transformations domain
for all tried out components

is how much the different parameters influence the overall
accuracy, as when you have well-tuned parameters this can
really elevate the performance of the algorithm. This really
highlights the importance of tuning your parameters well.

You can see that in all three domains, the best performing
result is the linear function. I believe the constant updating
indeed gives it the edge over the step function, as this addi-
tional freedom allows for even more exploration.

The exponential formula had the opposite of the desired
result and instead really hindered the performance. I believe
this is due to the fact that the parameters were set too high
and therefore too long was spent with too little exploration.
Furthermore, the decay is very fast, while having some ex-
ploration, later on, is still useful since this is when you run
into local optima. Therefore I believe it is useful for in the
future to look into other exponential formulas, where decay
is slower.

Something that had a lesser effect than expected is check-
ing for plateaus and then increasing Cp in order to get out
of local optima. I believe this could be a case of starting the
incrementing too early or too late, such that it has too lim-
ited influence. Furthermore, if you are really stuck in a local
optimum, increasing this constant might be too late and you
will remain stuck in the local optima. Instead, there might be
more useful techniques at that point to get out of this local
optima, for instance pruning that part from the search space
or completely resetting the search.

5.2 Expansion and Simulation
First of all, I saw that randomly choosing which token to
choose instead of orderly going through the list did not im-
prove performance, but it also did not hinder it. Therefore I
believe this is not an issue that Monte Carlo Tree Search is
running into. In the ASCII art domain it even decreased the
accuracy by a little bit, which I believe is due to the fact that
there in the way the tokens are sorted, the simpler tokens are
first, which you want to use more often in the final solution
since they are more general, and therefore using a regular or-
dering will improve the accuracy of the algorithm.

Finally, using the token with the best score has not in-
creased the accuracy. This is mainly due to the fact that this
way it is easier to get stuck in local optima as well as overfit-
ting on past data, which might not be accurate for this current
example and therefore might decrease performance.

5.3 Backpropagation
Using a different value to propagate has significantly de-
creased the performance of Monte Carlo Tree Search. This
is due to when you do not normalise the rewards, the values
get too big very quickly and therefore you will not visit any
node if it was not visited in the first few iterations, as after
that the difference in score between an already visited node
and an unvisited node is too big and this gap will never be
bridged.

By just returning -1, or +1, we did not run into this same
problem, but as a result, way fewer data is backpropagated
through the tree and there no longer is a distinction between
a marginally better expansion and a way better, so therefore

7



Figure 5: Accuracy versus grid in the robot planning domain for
optimal combination

Figure 6: Accuracy versus grid in the string transformations domain
for optimal combination

the algorithm has to make way more uninformed decisions.
Herefore, the accuracy of the algorithm suffers.

5.4 Optimal combination

Finally, for the optimal combination, you can see that the ac-
curacy has improved. For our first domain, robot planning,
as the original version of MCTS could already solve all the
examples, therefore no big improvements have been made.
Something that has improved however is the time it takes to
solve the cases, as allowing for more exploration early on,
allows for a speed up in the computation.

For our second domain, string transformations, we have
improved the performance of MCTS marginally. Something
notable is that as the number of examples increases, we can
also see the accuracy go up. This means that Monte Carlo
Tree Search does not struggle with having more examples and
overfitting on just one and then not being able to generalise
to the other cases.

In the final domain, ASCII art, we have made bigger im-
provements to the final accuracy. I believe this is because
we have shown in this domain that by using a different Cp

throughout the exploration, you have a lot more freedom and
it really is able to get out of local optima and solve way more
cases. Due to this, now it is also possible to solve problems
that have more than 2 symbols in there, which was not possi-
ble in the past.

Figure 7: Accuracy versus grid in the ASCII art domain for optimal
combination

6 Conclusions and Future Work
In this paper, we aimed to answer the question ”How can we
improve the different components of Monte Carlo Tree
Search as to make it perform better on program synthe-
sis?”. In order to answer this question, I, first of all, answered
”What does it mean to perform better on program synthesis?”
I have found that the most crucial aspect to compare the dif-
ferent components on is the accuracy of the program synthe-
sis, as this gives you an overall understanding of how well the
program synthesis performs, in combination with time as this
way you know how fast it will have found the solution.

For our second research question, where I tested ”For each
component that has been researched, what can we change to
it to make it run better?”, I have made several changes to the
selection component by trying out different ways to balance
exploration and exploitation. Here I found that big improve-
ments can be made to the overall accuracy, especially when
you are using an algorithm that allows Cp to decrease linearly,
where the parameters of Cp,mimumum and Cp,maximum are
hypertuned to the domain. Furthermore, many improvements
can still be made to the way we select how to expand the prob-
lem, but my alterations did not make a significant difference
in the accuracy of the program synthesis, as they often lead to
local optima. Lastly, by changing which value we backprop-
agate no improvements were made, as this only decreased the
amount of data we allow the algorithm to learn from, which
did not improve the accuracy.

When I combined all of these optimal parameters, I found
that the accuracy has improved compared to no alterations.
This means that I believe Monte Carlo Tree Search can be a
feasible technique to use for program synthesis in the future,
and it is definitely worth it to investigate it more since many
more alterations can be made.

6.1 Future work
As there are many different variations in Monte Carlo Tree
Search, there are still many things that can be experimented
with in combination with program synthesis to see if it can
improve the accuracy and speed of the creation of programs.

Most notably, I believe that we can make a big improve-
ment in both accuracy and most importantly time to get there
if more research is done in parallelizing the search such that
multiple simulations can be run at the same time. Previous

8



research has shown that multiple versions of parallelization
can be beneficial in the domain of GO [Chaslot et al., 2008].
I believe this to be a similar case for program synthesis, since
different kinds of parallelization will make it less likely for
the algorithm to get stuck in local optima and explore more
nodes at the same time.

Furthermore, for the selecting step, I think there are still
big improvements that can be made to more effectively se-
lect a good node. I believe that maybe we can add some data
structure that keeps track of how many times certain tokens
have been used in the most successful programs and use this
data in deciding how we will modify the program, by choos-
ing to use those tokens with a higher probability than the rest
or the opposite.

Especially since the field of Monte Carlo Tree Search in
program syntesis is so new, not a lot of research has been
done until now. There are still many other alternatives of
Monte Carlo Tree Search [Świechowski et al., 2021] which
have not yet been tested out in Program Synthesis. For fu-
ture research, we can try to more vastly alter the algorithm of
Monte Carlo Tree Search and then see how this will impact
the performance of the algorithm.

Lastly, although I believe that Monte Carlo Tree Search has
shown very promising results for program synthesis, it will
not always be the solution to each domain and give optimal
results. There are still many different algorithms that have
shown promising results when it comes to program synthesis.
I believe it would be very useful if more research is put into
combining different methods for finding the optimal program
synthesis algorithm. This could include using Monte Carlo
Tree Search for some promising programs and then using ge-
netic algorithms to combine these and find an optimal result.
This would make a more robust algorithm that can solve many
different kinds of problems in many different domains, but it
does require more tuning.

7 Responsible Research
In research, it is very important that we take into account dif-
ferent ways to do the experiments and the reporting of it as
ethically as possible. Because of this, I have attended some
lectures about responsible research as part of the research
project. In this section, I will be highlighting the different
ways I have taken responsible research into account while
conducting my research.

7.1 Transparency
In research, it is very important that you are transparent in
your research and the way you have conducted it. Therefore,
in this article, I have included all the different experiments
I ran, as well as tried to write this paper in such a way that
people can easily understand why certain decisions have been
made and also recreate some of the experiments if they see fit.

7.2 Reproducibility
One of the most troubling aspects in my research is the ability
to reproduce these results. This is mainly due to the fact that
these experiments are run on the supercomputer of TU Delft,
which other people might not have access to. Because of this,

it is difficult to recreate these experiments in order to verify
these results. It is very difficult to change this, but by being
open about the specifications used to run these experiments,
I hope that people might find a way to run these experiments
on similar hardware or otherwise be able to account for this
change in some way in their own experiments.

Furthermore, the code is available publicly on GitHub, to-
gether with the data and script I wrote to execute the code
such that people can rerun these experiments.

7.3 Bias for positive results
The third aspect I have taken into account is that I want to
only show the positive results of the research. To combat
this, I have also included the components I altered that have
instead decreased the performance or did not change the per-
formance, since this data is equally as useful for people that
want to work further on this topic such that they do not have
to do the same research twice.

References
[Blakely, 2021] Sarah Blakely. Zero-sum game meaning:

Examples of zero-sum games - 2022, Aug 2021.
[Chaslot et al., 2008] Guillaume MJ-B Chaslot, Mark HM

Winands, and HJVD Herik. Parallel monte-carlo tree
search. In International Conference on Computers and
Games, pages 60–71. Springer, 2008.

[Coulom, 2006] Rémi Coulom. Efficient selectivity and
backup operators in monte-carlo tree search. In Interna-
tional conference on computers and games, pages 72–83.
Springer, 2006.

[Cropper and Dumančić, 2020] Andrew Cropper and Se-
bastijan Dumančić. Learning large logic programs by go-
ing beyond entailment. arXiv preprint arXiv:2004.09855,
2020.

[David and Kroening, 2017] Cristina David and Daniel
Kroening. Program synthesis: challenges and opportu-
nities. Philosophical Transactions of the Royal Society
A: Mathematical, Physical and Engineering Sciences,
375(2104):20150403, 2017.

[Delft High Performance Computing Centre (DHPC), 2022]
Delft High Performance Computing Centre
(DHPC). DelftBlue Supercomputer (Phase 1).
https://www.tudelft.nl/dhpc/ark:/44463/DelftBluePhase1,
2022.

[Gelly et al., 2006] Sylvain Gelly, Yizao Wang, Rémi
Munos, and Olivier Teytaud. Modification of UCT with
patterns in Monte-Carlo Go. PhD thesis, INRIA, 2006.

[Gulwani et al., 2017] Sumit Gulwani, Oleksandr Polozov,
Rishabh Singh, et al. Program synthesis. Foundations and
Trends® in Programming Languages, 4(1-2):1–119, 2017.

[Helmuth et al., 2018] Thomas Helmuth, Nicholas Freitag
McPhee, and Lee Spector. Program synthesis using uni-
form mutation by addition and deletion. In Proceedings
of the Genetic and Evolutionary Computation Conference,
pages 1127–1134, 2018.

9



[James et al., 2017] Steven James, George Konidaris, and
Benjamin Rosman. An analysis of monte carlo tree search.
In Thirty-First AAAI Conference on Artificial Intelligence,
2017.

[Kitzelmann, 2009] Emanuel Kitzelmann. Inductive pro-
gramming: A survey of program synthesis techniques. In
International workshop on approaches and applications of
inductive programming, pages 50–73. Springer, 2009.

[Kocsis and Szepesvári, 2006] Levente Kocsis and Csaba
Szepesvári. Bandit based monte-carlo planning. In Eu-
ropean conference on machine learning, pages 282–293.
Springer, 2006.

[Koenig et al., 2021] Jason R Koenig, Oded Padon, and Alex
Aiken. Adaptive restarts for stochastic synthesis. In Pro-
ceedings of the 42nd ACM SIGPLAN International Con-
ference on Programming Language Design and Implemen-
tation, pages 696–709, 2021.

[Lim and Yoo, 2016] Jinsuk Lim and Shin Yoo. Field report:
Applying monte carlo tree search for program synthesis. In
International Symposium on Search Based Software Engi-
neering, pages 304–310. Springer, 2016.

[Matulewicz, 2022] Nadia Matulewicz. Inductive program
synthesis through using monte carlo tree search guided by
a heuristic-based loss function, 2022.

[Polozov, 2018] Alex Polozov. Program synthesis in 2017-
18, Jul 2018.

[Solar-Lezama, 2008] Armando Solar-Lezama. Program
synthesis by sketching. University of California, Berkeley,
2008.

[Świechowski et al., 2021] Maciej Świechowski, Konrad
Godlewski, Bartosz Sawicki, and Jacek Mańdziuk. Monte
carlo tree search: A review of recent modifications and ap-
plications. arXiv preprint arXiv:2103.04931, 2021.

[Yujian and Bo, 2007] Li Yujian and Liu Bo. A normalized
levenshtein distance metric. IEEE transactions on pat-
tern analysis and machine intelligence, 29(6):1091–1095,
2007.

Which alteration Average exe-
cution
time of solved
tasks (s)

Tasks
solved
(%)

No Alterations 1.840901868 100%
Linear, min: 0, max:1 /

√
2 1.91674279 99.8%

Linear, min: 0.25/
√
2, max:

0.75/
√
2

2.108145797 100%

Linear, min: 0, max: 0.1 /√
2

0.477891603 100%

Step, min: 0, max:1 /
√
2 0.440659823 100%

Step, min: 0.25/
√
2, max:

0.75/
√
2

1.785644034 100%

Step, min: 0, max: 0.1 /
√
2 0.302154068 100%

Exponential, min: 0, max:1
/
√
2

0.218142068 100%

Exponential, min: 0.25/
√
2,

max: 0.75/
√
2

0.217072345 100%

Exponential, min: 0, max:
0.1 /

√
2

0.216285541 100%

Updating Cp when stuck in
local optima

0.199532467 100%

Randomly choosing which
extension

0.553799426 100%

Using the token with the
best score

7.327209766 100%

Backpropagating total loss 16.14946309 60.2%
Backpropagating nor-
malised value

1.20469277 100%

Table 1: Results of running the experiments on robot planning

10



Which alteration Average exe-
cution
time of solved
tasks (s)

Tasks
solved
(%)

No alterations 10.4785756 30.6%
Linear, min: 0, max:
0.25/

√
2

7.45168004 51.8%

Linear, min: 0.25/
√
2, max:

1 /
√
2

10.3391489 31.8%

Linear, min: 0.1/
√
2, max:

0.35/
√
2

12.2702627 40.6%

Step, min: 0, max: 0.25/
√
2 2.70556951 26.8%

Step, min: 0.25/
√
2, max: 1

/
√
2

8.670615 29.4%

Step, min: 0.1/
√
2, max:

0.35/
√
2

12.08174 31.0%

Exponential, min: 0, max:
0.25/

√
2

0.5098 5.8%

Exponential, min: 0.25/
√
2,

max: 1 /
√
2

0.481673 7.4%

Exponential, min: 0.1/
√
2,

max: 0.35/
√
2

0.493446 6.0%

Updating Cp when stuck in
local optima

2.5209962 19.80%

Randomly choosing which
extension

12.6235951 23.80%

Using the token with the
best score

13.5992838 24.60%

Backpropagating total loss 0 0.0%
Backpropagating nor-
malised value

0.86927706 1.2%

Table 2: Results of running the experiments on ASCII art

Which alteration Average exe-
cution
time of solved
tasks (s)

Tasks
solved
(%)

No alterations 10.4785756 30.6%
Linear, min: 0, max:
0.25/

√
2

7.45168004 51.8%

Linear, min: 0.25/
√
2, max:

1 /
√
2

10.3391489 31.8%

Linear, min: 0.1/
√
2, max:

0.35/
√
2

12.2702627 40.6%

Step, min: 0, max: 0.25/
√
2 2.70556951 26.8%

Step, min: 0.25/
√
2, max: 1

/
√
2

8.670615 29.4%

Step, min: 0.1/
√
2, max:

0.35/
√
2

12.08174 31.0%

Exponential, min: 0, max:
0.25/

√
2

0.5098 5.8%

Exponential, min: 0.25/
√
2,

max: 1 /
√
2

0.481673 7.4%

Exponential, min: 0.1/
√
2,

max: 0.35/
√
2

0.493446 6.0%

Updating Cp when stuck in
local optima

2.5209962 19.80%

Randomly choosing which
extension

12.6235951 23.80%

Using the token with the
best score

13.5992838 24.60%

Backpropagating total loss 0% 0.0%
Backpropagating nor-
malised value

0.86927706 1.2%

Table 3: Results of running the experiments on string transforma-
tions

11


