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Some Mathematical Properties
of Morphoelasticity

Ginger Egberts, Daan Smits, Fred Vermolen, and Paul van Zuijlen

Abstract We consider a morphoelastic framework that models permanent defor-
mations. The text treats a stability assessment in one dimension and a preservation
of symmetry in multiple dimensions. Next, we treat the influence of uncertainty in
some of the field variables onto the predicted behaviour of tissue.

1 Introduction

Growth phenomena are well-studied topic in (medical) biology. Examples are tumor
growth, organ development, embryonic growth or the evolution of skin. Organ
development is a very interesting research or futuristic scientific development in
which one tries to cultivate human and mammalian organs as an alternative to
the need of donors for organ transplantation. In many cases, organs from donors
will undergo repellence as a result of the immune system of the host. Therefore
development of organs on the basis of the DNA from the host is of scientific
interest. Further interest comes from modern meat industry in which meat is to
be development outside the animal, such that slaughtering animals is no longer
necessary. Of course, these topics are still visionary, however, in the future, these
topics are expected to gain further research interest, including breakthroughs, and
even will be implemented at a certain stage.
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Mathematical models for growth exist in different levels of complexity, such as
growth models that are based on curvature or on surface processes on the boundary
of the growing object. Examples are particle growth and phase transitions in grains
or the closure of a shallow scrub wound, in which the epidermis (upper skin)
grows over the wounded area as a result of localised migration and proliferation
of keratinocytes (cells in the epidermis). Other growth processes take place as a
result of processes that are happening all over the body of the growing object. In
biological applications, one may think of embryonic growth or tumor growth. In
all these cases, in-body growth induces mechanical stresses and strains in the body.
In large skin wounds, such as serious burn injuries, where skin contraction takes
place, the skin may undergo changes such that permanent deformations remain.
To deal with these mechanical processes, one composes a balance of momentum
and one uses a constitutive law that couples the stresses and strains in the body. If
one uses classical elasticity with Hooks’s Law, then the deformations will always
vanish as the forces are released. Hence growth and/or permanent deformations
cannot be predicted with classical mechanical balances only. For this reason, one
incorporates growth through morphoelasticity, which was described very clearly by
Hall [1] and introduced earlier by Rodriguez et al. [2]. Here, one uses the following
principle: the total deformation is decomposed into a deformation as a result of
growth and a deformation as a result of mechanical forces. In a mathematical
context, one considers the following three coordinate systems: X, Xe(t), and x(t),
which, respectively, represent the initial coordinate system, the equilibrium at time
t that results due to growth or shrinkage, and the current coordinate system that
results due to growth or shrinkage and mechanical deformation. The deformation
gradient tensor is factorised into F = A Z: Z a deformation gradient tensor due
to (permanent) growth or shrinkage; and A a deformation gradient tensor due to
(current) mechanical forces.

Another complication that is often encountered in biological systems is the fact
that many of the biological variables change from individual to individual. Even
changes within the same individual over time and location are not uncommon.
These variations, both microscopic (local) and from individual to individual make
the biological system suffer from a large degree of uncertainty and therefore many
of the biological simulation frameworks should be designed such that they allow the
estimation of likelihood that certain scenarios (such as metastasis of tumors or skin
contraction after wounding) take place.

As far as we know, the morphoelastic system has not yet been analysed
mathematically, and therefore we give some preliminary results for stability and
symmetry of the strain tensor. Furthermore,we will show how to quantify the impact
of uncertainty in the input parameters on the dynamics of tissue.
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2 The Model for Morphoelasticity

Hall [1] derived a set of PDEs that integrate growth/shrinkage with mechanical
forces in a two-field formalism for the displacement velocity and the effective Eule-
rian strain between the current equilibrium configuration and current configuration,
based on the deformation gradient tensor A. Let D(.)

Dt
denote the material time

derivative of a quantify, then we consider the following differential equations for
the displacement velocity v and the effective Eulerian strain ε in an open Lipschitz
domain �(t):

ρ

(
Dv
Dt

+ v(∇ · v)
)

− ∇ · σ = f,

Dε

Dt
+ ε skw(L) − skw(L) ε + (tr(ε) − 1)sym(L) = −G.

(1)

Here σ , L,G, f, respectively, denote the stress tensor, deformation gradient velocity
tensor, growth tensor and body force that are given by

L = ∇v, G = αε, α ∈ R,

σ = μ1sym(L) + μ2tr(sym(L))I + E

1 + ν

(
ε + ν

1 − 2ν
tr(ε)I

)
.

(2)

HereE, μ1, μ2, ν, respectively, represent the Youngs modulus (stiffness), kinematic
and dynamic viscosity and Poisson ratio. Further, sym(L) and skw(L), respectively,
denote the symmetric and skew-symmetric part of the tensor L. Equations (1) are
solved for v and ε, and need boundary conditions for v and initial conditions for
both v and ε. The displacement is postprocessed by integration of v over t .

3 Symmetry and Stability

3.1 Symmetry of the Strain Tensor

First, we demonstrate that if the strain tensor ε is initially symmetric then it remains
symmetric at all later times.

Theorem 1 Let the second equation in Eq. (1) hold on open Lipschitz domain �

for t > 0, suppose that ε is symmetric on t = 0, then ε remains symmetric for t > 0.
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Proof Taking the transpose of the second equation in Eq. (1), gives

Dε

Dt
+ ε skw(L) − skw(L) ε + (tr(ε) − 1)sym(L) = −αε,

DεT

Dt
+ εT skw(L) − skw(L) εT + (tr(ε) − 1)sym(L) = −αεT .

(3)

Note that we used sym(L)T = sym(L) and skw(L)T = −skw(L), subtraction gives

D

Dt
(ε − εT ) + (ε − εT ) skw(L) − skw(L) (ε − εT ) = −α(ε − εT ). (4)

From the above equation, it is clear that (ε−εT ) = 0 represents an equilibrium, and
hence symmetry of ε represents an equilibrium, by which we conclude that initial
symmetry implies no changes of symmetry for later times. ��
The actual stability of this symmetry is another question worth investigating. We
postpone this matter to future studies. Symmetry of the strain tensor warrants
symmetry of the stress tensor, see Eq. (2), which implies zero torque and hence
there is no spin.

3.2 Linear Stability of 1D Morphoelasticity

Next we consider the one-dimensional counterpart of Eqs. (1), which after process-
ing the material time derivative, is given by

ρ

(
∂v

∂t
+ 2v

∂v

∂x

)
− μ

∂2v

∂x2 − E
∂ε

∂x
= f,

∂ε

∂t
+ v

∂ε

∂x
+ (ε − 1)

∂v

∂x
= −G.

(5)

The domain is given by �(t) = (0, 1) where we use v(t, 0) = v(t, 1) = 0 as
boundary conditions, which implies that the domain is fixed and that deformations
can only form locally. We analyse stability of constant states in the above one-
dimensional problem. To this extent, we analyse perturbations around the equilibria
v = 0 and ε = ε0 ∈ R for the case that f = 0 and G = 0. Linearisation of the
above equations around these equilibria, gives

ρ
∂ṽ

∂t
− μ

∂2ṽ

∂x2
− E

∂ε̃

∂x
= 0,

∂ε̃

∂t
+ (ε0 − 1)

∂ṽ

∂x
= 0, (6)
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where ṽ and ε̃ are perturbations around v = 0 and ε = ε0. We write the perturbations
in terms of a complex Fourier series, that is, we set

ṽ(t, x) =
∞∑

j=−∞
cv
j (t)e

2iπjx, ε̃(t, x) = ε0 +
∞∑

j=−∞
cε
j (t)e

2iπjx, (7)

where we are to find coefficients cv
j and cε

j , and where i represents the imaginary
unit number. The use of Fourier Series for stability assessment was also described
in, among others, [3]. Substitution into Eqs. (6), gives

ρ

∞∑
j=−∞

ċv
j (t)e

2iπjx + μ

∞∑
j=∞

(2πj)2cv
j (t)e2iπjx − iE

∞∑
j=−∞

(2πj)cε
j (t)e

2iπjx = 0,

∞∑
j=−∞

ċε
j (t)e

2iπjx + i(ε0 − 1)
∞∑

j=∞
(2πj)cv

j (t)e2iπjx = 0.

(8)

Orthonormality over � = (0, 1), implies after multiplication by e−2iπkx and
integration over � that

ċv
k (t) + (2πk)2μ

ρ
cv
k (t) − i

2πkE

ρ
cε
k(t) = 0,

ċε
k(t) + i 2πk(ε0 − 1)cv

k(t) = 0.

(9)

The above equations are in the form y ′+Ay=0, thenA=
(

(2πk)2μ
ρ

−i 2πkE
ρ

i(ε0 − 1)2πk 0

)
.

This matrix has the following eigenvalues

λ± = (2πk)2μ

2ρ
± 1

2

√
(
(2πk)2μ

ρ
)2 + 4

(2πk)2E

ρ
(ε0 − 1).

This implies that linear stability is obtained for ε0 ≤ 1, else a saddle point problem

is obtained if λ± ∈ R. The eigenvalues are real-valued as long as μ ≥
√

ρE(1−ε0)
π

(k = 1). The constant case k = 0 implies λ± = 0, which reflects the trivial case
in which there is no dynamics. This also implies that ε0 = 0 is a stable equilibrium
state. Next to this, integration of Eqs. (6) over �, gives

ρ
d

dt

∫ 1

0
ṽdx =

[
μ

∂ṽ

∂x
+ Eε̃

]1
0
,

d

dt

∫ 1

0
ε̃dx + (ε0 − 1)

[
ṽ
]1
0 = 0 �⇒ d

dt

∫ 1

0
ε̃dx = 0 �⇒

∫ 1

0
ε̃dx = ε0.

(10)
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Note that the boundary conditions v(0, t) = v(1, t) = 0 have been used in the
second relation of the above equations. The solution ε̃ to Eq. (6) converges towards
ε0 under conservation of ε̃ such that ε0 = ∫ 1

0 ε̃(0, x)dx. We summarise these results
in Theorem 2, where we remark that one easily generalises the observations to a
generic fixed domain � ⊂ R:

Theorem 2 Let (v, ε) satisfy Eqs. (5), under the boundary conditions that v = 0
on the boundaries of open, connected domain � ⊂ R, then

1. The equilibria (v, ε) = (0, ε0), ε0 ∈ R, are linearly stable if and only if ε0 < 1;
2. Given ε0 < 1, then the eigenvalues are real-valued if and only if μ ≥√

ρE(1−ε0)
π

|�| (k = 1), where |�| denotes the size (measure) of �;
3. Convergence takes place through ε0|�| = ∫

� ε̃(0, x)dx;

If ε0 < 1 and if μ <
√

ρE(1−ε0)
π

|�| then convergence from perturbations around
ε0 will occur in a nonmonotonic way over time due to the fact that the eigenvalues
of the linearised dynamical system are not real-valued. Furthermore, if G = αε for
α > 0, then the only stable equilibrium is (v, ε) = (0, 0).

4 Computer Simulations

First the numerical method and typical results are briefly explained. This is followed
by results from a stochastic stiffness.

4.1 The Numerical Method and Typical Results

The solution to the model equations (1) and (2) is approximated by the finite-
element method using linear triangles. Time integration is done by backward Euler
in which a monolithic approach is used with Picard inner iterations. In cases that the
triangles become ill-shaped, remeshing is applied. In three dimensions, the same
is done for linear tetrahedra and bricks. A more detailed treatment is beyond the
scope of the current paper, and can be found in [4]. We consider the example of
a contracting wound. The results have been shown in Fig. 1, in which the left
plot displays the area of a wound that first contracts due to cellular (fibroblast)
forces, and subsequently retracts due to the release of cellular forces. In the case
of viscoelasticity, it can be seen that the retraction proceeds until the boundaries
coincide with the initial boundaries. It can also be seen that morphoelasticity
predicts a permanent deformation in the sense that the area of the inflicted region
does not converge to the initial configuration. The plot on the right shows how the
maximum displacement and the dynamic equilibrium (due to deformation gradient
tensor Z) evolves.
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Fig. 1 Left: the relative wound area over time using the viscoelastic approach and morphoelastic
approach; Right: the morphoelastic approach with the wound area, equilibrium and maximum
displacement as a function of time

4.2 Quantification of Uncertainty

Since tissues contain unpredictable spatial microscopic variations, we assume that
E, ρ, forcing f and α are random field variables over X consisting of lognormally
distributed perturbations around their means. The fields of the aforementioned
parameters are obtained through the following truncatedKarhunen-Loèveexpansion
over the spatial variable X

û(X) =
n∑

j=1

Ẑj

√
2

n
sin((2j − 1)

π

2L
X), where Ẑj ∼ N(0, 1).

Here Ẑj defines a set of iid stochastic variables that follow the standard normal
distribution. The stochastic field variable û(X) is used to evaluate the field variables
E, ρ, f and α. We explain the regeneration procedure for Ê(X):

log(Ê(X)) = μE + σEû(X) �⇒ Ê(X) = exp(μ + σ û(X)),

where μE and σ 2
E are the mean (expected value) and variance of Ê. The mean

and variance are related to the arithmetic sample mean M and arithmetic sample
standard deviation S by

μE = ln(
M2√
1 + S2

M2

), and σE =
√
ln(1 + S2

M2 ). (11)

Figure 2 shows histograms and an estimated cumulative probability distribution for
the minimal reduction of area and the final reduction of area after having computed
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Fig. 2 Results from 1000 samples withME = 31 N/(g cm)1/2,SE = 11,Mμ = 102 (N day)/cm,
Sμ = 1, Mρ = 1.02 g/cm, Sρ = 0.2, Mf = 4 N/cm, Sf = 2, Mα = 0.05 (−), Sα = 0.02, (a)
histogram of the maximum wound contraction, that is the minimal wound area; (b) histogram of
the final contraction, that is the final wound area; (c) cumulated probability density for the minimal
wound area; (d) cumulated probability density for the final wound area

1000 samples. From Fig. 2 the likelihood that the contraction is worse than a certain
threshold can be estimated. For instance, from Fig. 2d, the likelihood that the final
wound area is smaller than 80% of its original value is about 0.28 (28%).

5 Conclusions

We have shown that morphoelasticity in combination with linear Hooke’s Law
implies that if the Eulerian effective strain tensor is initially symmetric, then it
remains symmetric at all later times. Further, a stability analysis for the one-
dimensional case revealed that all Eulerian effective strains smaller than one
in combination with zero displacement velocity, represent linearly stable states.
Further a condition for monotonicity of convergence over time has been derived.
Next to these issues, a Karhunen-Loève expansion has been used for several
variables involved to estimate the likelihood that contraction exceed a certain
threshold. The model is subject to further uncertainty quantification.
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