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Abstract 

 

 The hinterland transportation of incoming containers at container terminals is a complex 

problem, due to the various actors involved and their often conflicting interests. A promising 

solution towards the problem for hinterland network operators is that of synchromodality, a 

concept that refers to on-line network planning for hinterland transportation. However, a 

hindrance to the efficient planning and execution of hinterland transportation is that there is 

currently no accurate way of predicting the  estimated time of arrivals (ETA) for 

containerships that are reaching container terminals. This results in huge uncertainty over the 

types and amounts of cargo that reach the terminals, which in turn hinders the fast and cost 

efficient distribution of the products to inland destinations through trucks, trains or barges.  

The current paper will propose a machine learning approach for predicting the ETA of 

containerships heading towards the Port of Rotterdam, by combining position data from GPS 

signals with weather predictions. It was found that significant improvement for the ETA 

predictions, compared to the current situation could be achieved, especially for the cases of 

the vessels that are more than 60 hours away from the port. Furthermore, the weather 

interpretation was not of significant importance for estimating the time of vessel arrivals at 

the port. The value of such an information tool for the various stakeholders involved was also 

investigated. The interested parties, for which the importance of ETA predictions of sea 

vessels was assessed are : terminal operators (European Container Terminals in the case at 

hand), hinterland transportation companies (e.g. European Gateway Services ), the Port of 

Rotterdam, carriers and importers. 
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Summary 

Uncertainty over vessel arrival times is a major hindrance towards the planning activities of 

the stakeholders involved in container transport. The current expectations regarding vessel 

arrivals are based on the estimated time of arrival (ETA) of the ship’s agent, which is a 

representative of the carrier company at the port. However, this ETA is not frequently 

updated and contains large deviations from reality, especially for long time-horizons. These 

deviations from the expected time of arrival result in difficulties for the planning activities of 

the stakeholders involved in container transport, such as hinterland transportation parties, 

since vessel arrival is the starting point of the inland transportation of goods.  

The present thesis investigates the possibility of developing an ETA information tool, that 

will reduce the prediction errors of vessel arrivals compared to the current situation. The 

route that was taken under consideration was the Asia-Rotterdam route, which is a very 

frequent one for container transport. The time horizon was accounting for the last 5 days 

before arrival to the port, excluding the Port operations time. The value of such an 

information tool is also investigated from the perspective of carriers, container terminals,  

hinterland transportation parties, the Port of Rotterdam and importers, in terms of its 

significance for improving their planning activities. Towards that goal, a literature review on 

what has been attempted so far for estimating a vessel’s ETA, was carried out. Through the 

literature review, two appropriate machine learning methods for tackling the problem were 

selected, the neural networks and support vector machines.  

The variables that were identified as relevant for addressing the problem of ETA predictions 

were selected from the big data available from marine traffic providers. Those were position 

and speed data from past voyages, as given in the AIS data, alongside with some technical 

characteristics of the vessel such as ship length and breadth. These data were combined with 

weather data from those voyages, with the aim of forecasting the time of vessel arrivals at the 

Port of Rotterdam. The historical data were used for training the neural networks and support 

vector machines and the accuracy of the prediction methods was evaluated based on error 

metrics. It was found that significant improvement compared to the current ETA estimation 

based on the ship’s agent was achieved through both methods, especially for the medium to 

long time horizons (more than 50-60 hours away from the port). Moreover, the support vector 

machines were found to outperform the neural networks in all cases.  

The dependence of prediction to input variables was also investigated, the main findings 

being that the ETA of the ship agent was an important variable for improving the accuracy of 

the models, when provided as an input, and that the weather variables were not assisting the 

ETA estimation to a sufficient extent. This can be explained by the fact that the ETA of the 

ship agent is giving an indication of the captain’s behavior for the voyage, while on the other 

hand, the weather conditions are already partially interpreted in the speed that was used as 

input for the models, which was the speed over ground. Also, the captains have the ability of 

adjusting the engine power to counter adverse weather conditions, which would be extremely 

difficult to realize only from the weather conditions along the route of the vessel. 
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The value that this ETA information tool would have for the various stakeholders involved in 

container transport was also investigated, through a literature review and interviews 

conducted with representatives from the ECT container terminal at the Port of Rotterdam and 

consultants  specialized in the operational activities of the Port of Rotterdam and hinterland 

transportation parties. The main findings were: 

 Hinterland transportation parties can be greatly benefited due to the cost reduction 

associated with assigning more containers to barges or trains. A better estimation of 

vessel arrival for the long-time horizon that was achieved in this case enables better 

estimation of the needs in capacity for barges and rails for the week ahead. 

 Container terminals can plan their schedule better for berth allocation and allocation 

of manpower and equipment to the unloading of the vessels. 

 Carriers get a better indication of whether they will be arriving on time for delivering 

the containers or if there is a need to speed up. The biggest gain though can be 

achieved by using the ETA information as a competition monitoring tool, for 

determining the vessel availability in the area for transporting cargo, something which 

will give them higher bargaining power when making agreements for freight 

transport. 

 The Port of Rotterdam is the main benefactor of the predictions. It can realize both 

direct and indirect benefits through its usage, the direct being scheduling better the 

allocation of pilots and its resources due to the reduced uncertainty over vessel 

arrivals. The indirect benefits is the enhanced competitive advantage that it can 

achieve by providing more reliable services to the carriers and having a more cost-

efficient connection to the hinterland. 

Due to its leading position in the transportation chain, the Port of Rotterdam should be the 

main benefactor of this ETA information tool, sharing the information with the other 

stakeholders, such as terminals and hinterland transportation parties, through a common 

platform. This can be achieved through the information provided by Intertransis, an 

information broker company in the field of logistics. One of the most important findings of 

this study was that the AIS data alone, are enough for making ETA predictions for the route 

and time-horizon examined. Therefore, there is currently no additional cost involved for 

Intertransis to acquire the necessary data. What is needed is for the real-time AIS data 

received, to be fed forward to the data pre-processing algorithm in order to select the 

variables that were used for making ETA predictions in this thesis. Then, the input variables 

can be provided to the already trained SVM algorithm, which will produce the ETA 

prediction. This procedure requires no additional manpower or cost, other than connecting the 

data pre-processing algorithm to the AIS real-time data receiver. 
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Chapter 1 - Introduction 

This chapter introduces the problem of uncertainty of vessel arrivals at the Port of Rotterdam 

and the research aim of the project. First, a general introduction to the challenges posed to 

the Port of Rotterdam for its efficient planning of its operating activities is provided in 

section 1.1. Then, section 1.2 describes the practical problem of estimating ship arrivals at 

the port, whereas section 1.3 presents the scientific aspects of the problem. The research 

objective is stated in section 1.4, which provides the motivation for the research questions 

posed in section 1.5. The research approach to answer these questions is introduced in 

Section 1.6 and finally, section 1.7 describes the structure of the remainder of the report. 

 

1.1 General Introduction 

Maritime container shipping has a central role in today’s global economy, since it accounts 

for a significant part of the world trade. The port of Rotterdam serves as a destination for 

numerous containerships each year, a fact that places it among the most important terminals 

in continental Europe. The majority of container terminals within the port are operated by the 

European Container Terminals (ECT) company. ECT is participating in a number of inland 

terminals, and through its subsidiary company, European Gateway Services (EGS) provides 

inland transportation services that connect Port of Rotterdam (PoR) hinterland with ECT 

maritime terminals. As part of its value-adding strategy, EGS has developed new 

transportation products based on the concept of synchromodality that will offer differentiated 

service levels for the intermodal market in the region (van Riesen, 2013). The concept of 

synchromodality refers to an intermodal transportation network with online planning, able to 

adapt in real-time to meet delivery requirements (Bakas & Crainic, 2007).With online 

planning, it is meant that the planned transportation schedule can be adapted during the 

process, in order to account for the case of unexpected changes. 

 

However, one of the main problems that ECT is facing, is that it currently has no sufficient 

way of accurately predicting the estimated time of arrival of the containerships at the port of 

Rotterdam, for instance due to weather conditions. This results in huge uncertainty over the 

types and amounts of cargo that reach the terminals, which in turn hinders the fast and cost 

efficient distribution of the products to inland destinations by EGS, through trucks, trains or 

barges. Therefore, being able to accurately estimate the time of arrival of the different 

containerships at the port of Rotterdam would have a positive impact on the supply chain 

operations of EGS. 

Despite contractual obligations to notify the Estimated Time of Arrival (ETA) 24 hours 

before arrival, ship operators often have to revise it due to unexpected events like weather 

conditions, delay in a previous port and so on (Fancello, Pani, Pisano, Serra, Zuddas, & 

Fadda, 2011). A container vessel’s delay, entails delayed containers unloaded in the terminal, 

and thus leads to delayed transshipment of containers to the hinterland side. For planners the 

decision-making processes related to this topic can sometimes be very complex without the 

support of suitable methodological tools. 
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The aim of this project is to propose a method for accurately predicting the estimated time of 

arrival of containerships, given weather predictions, as well as assessing the value that such a 

decision support system can have for the port operators and the other stakeholders involved in 

container transport. The research was undertaken as an internship at TNO. 

 

1.2  Practical Problem 

More than 80 %  of the volume of global merchandize is transported by sea and handled by 

ports worldwide (UNCTAD, 2013). Containers are responsible for the transportation of  more 

than 70 % of the value of this seaborne trade, facilitated by a seamless transfer of goods 

within multiple modes of transportation (UNCTAD, 2007). These containers are handled at 

seaport terminals, something which distinguishes the latter as crucial interfaces between 

landside and seaside transportation, and between various modes of transport. Therefore, 

seaports have been identified as critical infrastructures, which are essential elements that 

affect the economic and social well-being of a country (Mokhtari, Ren, Roberts, & Wang, 

2012). This in turn means that ensuring the smooth and efficient operation of deep sea ports 

is of vital importance for the fast and cost-efficient distribution of goods to their final inland 

destinations. 

 

However, there are certain disturbances that hinder the planning activities of the sea ports, 

which also affect the transportation process for all the stakeholders involved in the supply 

chain of container transport. One major source for these disturbances is stemming from the 

uncertainty over ship arrivals at the port. A late arrival of a sea vessel at the terminal, results 

in delays in unloading the ship and assigning it to the modes of hinterland transportation, 

namely truck, barge or train. This may result in delayed delivery to the final inland 

destination, thus causing the dissatisfaction of shippers.  

 

Furthermore, uncertainty over the time of ship arrivals results in huge uncertainty over the 

demand profile, the types and amounts of cargo that reach the port over a specified time 

period.  For the Port of Rotterdam, where numerous ships have to be loaded and unloaded 

every day, this has important implications. Firstly, allocating berth places for the arriving 

vessels becomes extremely difficult to plan, as well as the number of working shifts that need 

to be assigned to serve the incoming vessels on a given day (Fancello, Pani, Pisano, Serra, 

Zuddas, & Fadda, 2011). Moreover, booking enough capacity for the hinterland 

transportation side, through EGS, is subject to uncertainty. Since the arrival of vessels deviate 

significantly from what is expected, EGS cannot optimally decide in advance, the required 

capacity for barge and rail. Booking more than necessary results in extra costs, while booking 

less capacity results in increased usage of trucks, which also drives the costs up.  

 

Taking the above into consideration, it becomes evident that the matter of accurately 

forecasting the estimated time of arrival for sea vessels at a port, is of vital importance for the 

cost-efficient execution of port operations and the hinterland transportation of goods. Reliable 

estimation of ship arrival can facilitate more efficient allocation of resources (human, spatial 
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and mechanical)  for the port. Also, through the information that can be obtained about the 

estimated time of arrivals of containerships, the hinterland transportation process can be 

updated on-line, achieving faster delivery times and at a lower cost. 

 

The current research aims at incorporating big data, such as GPS signals, current speed, 

vessel heading and weather predictions from marine traffic providers, in order to accurately 

forecast the time of arrival of containerships at a port. The value proposition of such an 

information tool will also be assessed, in terms of the positive impact that it can have for the 

port operators and the other stakeholders involved in container transport.  

 

Figure 1: Main Planning and scheduling problems at container terminals  

source: (Fancello, Pani, Pisano, Serra, Zuddas, & Fadda, 2011) 

1.3  Scientific Problem 

The problem of predicting the estimated time of arrivals for containerships at a port is related 

to operations research and is making use of forecasting techniques as its tool for achieving 

more effective process management for the container terminal operators. Through the 

information that can be obtained about the estimated time of arrivals of containerships, the 

hinterland transportation process can be updated on-line, achieving faster delivery times and 

at a lower cost. From a scientific point of view, the research aims at incorporating big data, 

such as GPS signals and weather predictions, in order to accurately forecast the time of 

arrival of containerships at a port, using machine learning techniques, such as neural 

networks and support vector machines. The value proposition of such a decision support 

system will also be assessed, in terms of the positive impact that can have for the port 

operators and the stakeholders involved in container transport.  
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The current methods developed on the subject are based on the work of Fancello et al (2011). 

There, a decision support system was proposed using a neural network that could decrease 

the uncertainty regarding time arrivals to 6 hours for the day ahead. However, the model was 

accounting for a short time horizon, since it was aiming at reducing the workload at the 

container terminal for the day ahead, and was not making use of weather data. The current 

research will aim at developing a model for predicting time of arrivals of ships over a longer 

time interval, up to 5 days from Port by incorporating weather predictions, in order to enable 

scheduling of the hinterland transportation activities. 

The scope of the research will be to predict the estimated time of arrival of containerships at 

the port of Rotterdam, excluding the waiting time due to port operations. The relevant time 

window for the research will be a period of up to 5 days. The containership voyages that will 

be examined are those following the route from Asia to Port of Rotterdam. Therefore, 

predictions about the arrival time will be made after the ships pass Tunisia on a rolling time 

horizon, updated every few hours. To exclude waiting time due to port operations, 

Noordhinder (in Belgium) will be selected as a point of reference, which is positioned 

approximately 8 hours south of Rotterdam by ship. Therefore, limitations of the research is 

that it will not account for tankers or ships that are positioned more than 5 days away from 

the Port of Rotterdam, since the uncertainty over such a time interval is greater and difficult 

to estimate. Also, voyages that had a stop in other European ports before the Port of 

Rotterdam, such as Felixstowe and Antwerp are out of the scope of the current research, since 

they are also subject to their respective port operations time. 

1.4  Research Objective 

The research objective of the project is to make use of the data provided by marine traffic 

providers in order to accurately predict the estimated time of arrivals (ETA) of containerships 

at the Port of Rotterdam, in order to assist in the planning activities of the stakeholders 

involved in container transport in terms of improving cost and efficiency. For that reason, the 

value of such an information tool will be assessed for the stakeholders involved in container 

shipping. The research can serve as a starting point in demand profiling of the arriving cargo. 

If the problem of estimating ship arrivals at the Port of Rotterdam is resolved, information 

about the type of cargo can be incorporated in the future, in order to enable terminal operators 

to know in advance the expected arrival of the different types of cargo and their quantity. In 

that way, the latter will be able to schedule the inland distribution activities more efficiently, 

thus saving costs and time. The model that will be developed will span over a medium time 

horizon (up to 5 days from the port), accounting for the containerships known to have a 

matched fixture with the destination being the Port of Rotterdam.  

The final deliverable will be a model that integrates the speed and position data of the 

vessels, as provided by marine traffic providers, with weather predictions, and accurately 

predicts the estimated time of arrival of containerships at the Port of Rotterdam. As part of 

the research, the value of such a decision support system for the port operators will be 

evaluated, in terms of improvement regarding their supply chain operations. 
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1.5  Research question and Sub-questions 

Considering the problem presented above, the following main research question has been 

formulated: 

How can the big data, provided by marine traffic providers, be used in order for the 

stakeholders involved in container transport to improve their business processes, by 

addressing the uncertainty regarding expected vessel arrival times at the Port of Rotterdam? 

In order to answer the main research question, the following sub-questions need to be 

addressed: 

1. What is the added value that a more accurate prediction of the estimated time of 

arrivals for containerships at container terminals would have for the planning 

activities of the stakeholders involved in container transport? 

2. Which are the main factors and to what extent are they affecting the average speed of 

the loaded containerships sailing towards container terminals? 

3. How can a model be developed in order to accurately predict the estimated times of 

arrival for the containerships that have the port of Rotterdam as their destination, 

accounting for a medium-range time horizon? 

Through combining the answers of the sub-questions, the main question can sufficiently be 

addressed. The first sub-question has the purpose of determining the added value that the 

decision support system developed for estimating the time of arrivals for containerships, has 

for the terminal operators and the other stakeholders involved in container transport. In other 

words, it will be investigated how such a decision support system can generate value for the 

port operators (e.g. ECT) and what would be the business model for the port to make returns 

on the value it creates for others. 

 The second sub-question aims at realizing the main factors that have an impact on the speed 

with which containerships sail towards the Port of Rotterdam. The analysis undertaken here 

will serve as input for the model development in the next sub-question. Relevant factors that 

affect the speed of containerships are technical ship characteristics, weather conditions, such 

as waves, wind speed and direction, as well as market related factors. For instance, when 

demand is not high ships can choose to travel at the lowest attainable speed (slow steaming) 

to reserve on fuel. 

The last sub-question aims at developing a model that uses as input the data identified to be 

relevant towards determining the ship’s speed from the previous sub-question, and predicts 

the time of arrival for the containerships sailing towards the port of Rotterdam. The final 

deliverable will be a model predicting the ETA of containerships arriving at the Port of 

Rotterdam as a function of time, accounting for a medium-range time horizon. The machine 

learning techniques that will be used are neural networks and support vector machines, as it 

will be explained in chapter 3. 
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Then, having developed the model and assessed its value for the port operators, the main 

research question can sufficiently be addressed by proposing the way that the data available 

can be used for the development of the model. 

1.6  Research Methodology 

The research undertaken, consists of three different parts, as indicated by the sub-questions 

stated in section 1.5 . For each of the sub-questions the methodology used will be described 

below. 

 

1.6.1 Investigating the value case of an ETA information tool 

 

The first sub-question, regarding the value that such a decision support system has for the 

stakeholders involved in container transport, will be addressed through a qualitative 

approach. For this part,  findings concerning the hindrances towards efficient planning from 

the side of terminal operators that occur due to uncertainties over the types and amounts of 

cargo reaching the Port of Rotterdam, can serve as a starting point for formulating a business 

model that can help ECT achieve more efficient planning for the terminal operations and its 

hinterland transportation activities. Further insights into the value proposition of the decision 

support system was gained through three scheduled interviews with representatives from the 

relevant stakeholders that have an interest in the project. 

 

1.6.2 Literature review for factors affecting vessel speed 

 

The main factors that affect the speed with which the containerships sail towards the Port of 

Rotterdam can be obtained through a literature review, based on the models that have been 

developed so far that have attempted to model ship velocity. The findings of this sub-question 

will serve as input for the model development at the next stage. The purpose of this step is 

twofold: on one hand to ensure that the most important parameters affecting the speed with 

which the containerships move towards the port of Rotterdam are taken into account, and on 

the other hand to understand exactly which information from the big data is relevant for the 

model development stage. 

 

1.6.3    Machine Learning techniques towards ETA model development 

Developing a data analytics approach for accurately predicting the ETA of containerships at 

the Port of Rotterdam is the backbone of the proposed research. The first step is to collect the 

relevant data regarding the past voyages of containerships. This information can be obtained 

from the AIS (Automatic Identification System) data. The AIS data contain information 

regarding the past voyages of the different types of ships (De Boer, 2010). At frequent time 

observations the GPS signal of the ships, latitude and longitude, are recorded, as well as the 

speed, draught and direction towards where the vessel is sailing (Loptien & Axell, 2014). The 

information obtained through the AIS data can be combined with data regarding weather 

predictions for the relevant time period. These data will be obtained from the company 

Hermess, which provides metocean data. It should be mentioned here that Hermess is a 

partner of TNO towards the realization of the project and therefore, its data are accessible. 
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After the data mining process, data cleansing and pre-processing is needed to formulate the 

input vector, which will be used as a predictor for estimating the time of arrival of 

containerships. The input vector will be using the following elements: 

 

From the AIS data: 

1) Average speed per voyage – obtained from the average speed in the voyage 

2) previous, current speed in voyage 

3) Distance to be covered 

4) Direction of Vessel 

5)Captain’s  ETA to port  

6) Draught of the ship 

7) Technical characteristics (length, breadth) 

 

From Hermess data: 

8) Sea-state, waves at the surface, wave direction 

9) Wind, direction of wind 

10) Currents’ magnitude and direction 

 

Based on the above inputs, the estimated time of arrival will be predicted. The methods that 

will be used are neural networks and support vector machines, as they will described in the 

literature review (chapter 3). Both of these methods are based on learning from previous 

examples on historical data and then generalizing to predict future events. The historical data 

available contain the voyages of 2015 and the first two months for 2016. Out of those 

historical data, 60% were used for training the neural network and the support vector 

machine, another 20% were used for validating the models and the last 20% for testing them. 

During the training phase examples from past voyages are used for “teaching” the 

aforementioned algorithms how to recognize patterns in the data and make predictions. Then, 

the validation set is used for selecting the optimal set of parameters for the neural network or 

the support vector machine, by selecting the parameters that minimize the error on the 

validation set. The real error that the algorithms would give in practice is determined in the 

testing phase, where the algorithms are fed with the inputs regarding position and weather 

data, and make predictions about the estimated time of arrival. These are examples that the 

algorithms have not “seen” before during the training or validation phase. This way, the 

aforementioned algorithms will be able to operate and process the data presented by the input 

vector to recognize patterns and predict the time that the ships will reach the port. The 

different methods will be evaluated based on error analysis, according to the predictions they 

produce and the actual estimated times of arrival of the ships, as given in the historical data. 

The software package that will be used for the analysis of the data is Matlab. Matlab was 

used for data mining and data cleansing, due to its efficiency in manipulating big data in 

structured arrays. It also contains important built-in functions for the purposes of data 

analysis.  
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1.7   Structure of the Report 

The report is structured as follows: chapter 1 introduced the problem of uncertainty of vessel 

arrivals at the Port of Rotterdam and the research objective of the project. Chapter 2 follows 

with an extensive analysis of the usefulness of such an information tool for the stakeholders 

involved in the container transport process. Then, Chapter 3 will provide an overview of the 

literature on the topic to understand current forecasting techniques, as well as to assess the 

impact that better ETA predictions can have for the Port operators. Chapter 4 continues by 

describing the methodology followed for predicting the Estimated time of arrival for sea 

vessels, followed by chapter 5 which presents the results obtained using the proposed neural 

network and support vector machine. The practical implications of the results, from the 

viewpoint of the different stakeholders are analyzed in chapter 6. The results are further 

analyzed and interpreted in the discussion section of chapter 7. Finally, the report is 

concluded by summarizing the main findings of the thesis and proposing areas for further 

research. 
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Chapter 2 – Added value of ETA information tool 

In this chapter, the value of the ETA prediction tool will be investigated, from the perspective of the 

different stakeholders involved in the supply chain activities of container transport. For that purpose, 

a stakeholder analysis is introduced in the beginning of the chapter, followed by ways that the ETA 

information tool could be of benefit for their activities. 

2.1 Stakeholders involved in container transport 

There are several stakeholders involved in the process of container transport, from the 

moment a company needs to transport a container of goods from a starting location until its 

final delivery at the required destination. The relevant stakeholders that would have an 

interest in the proposed ETA information tool, addressing vessel arrivals at the Port of 

Rotterdam are the following: 

 Carriers that carry out the sea-going part of container transport 

 Terminal operators (e.g. ECT) 

 Hinterland transportation parties (e.g. EGS), including barge, rail and truck operators 

 The Port of Rotterdam 

 Importers that are the receivers of transported goods 

For the purpose of understanding the role of the aforementioned parties in the supply chain of 

container transport, as well as their interests, a stakeholder analysis is undertaken in the 

following section. This analysis will assist in providing insight on how the proposed ETA 

information tool can be of value for the relevant stakeholders as it will be discussed in section 

2.3. 

2.2 Stakeholder Analysis 

2.2.1 Carriers 

The carriers are chartered by shippers for the transportation of goods between an origin and a 

destination deep-sea terminal. For carrying out this task, they operate a fleet of sea-going 

vessels that are suited for transporting specific types of cargo (e.g. containers, tankers, 

chemicals).  For the execution of the sea transport, carriers receive a fare from the shippers. 

The fare is calculated based on the following formula: 

𝐹𝑎𝑟𝑒 =  𝐹𝑙𝑎𝑡 𝑅𝑎𝑡𝑒 ∗ 𝐶𝑎𝑟𝑔𝑜 ∗  𝑊𝑜𝑟𝑙𝑑𝑠𝑐𝑎𝑙𝑒 (1) 

,where: Flat Rate is a constant that is reflecting the transportation price based on the distance 

between the two ports. 

Cargo is the amount of cargo transported in tons 

Worldscale is a negotiated percentage that is agreed between the shipper and the carrier for 

the transportation of the goods. If it is above 100% the carrier receives more revenue than the 

basic index indicated by the flat rate. If it is less than 100%, the carrier has agreed to transport 

the goods on a discount compared to the basic index (Stopford, 2009).  
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The shipping industry is very competitive, with many participating companies and none of 

them having significant concentration of the market. Therefore, the sea shipping industry 

almost follows the rules of perfect competition, where prices (as reflected in the negotiated 

worldscale with the shippers) depend heavily on supply and demand (Stopford, 2009). When 

the ships are relatively few for the transportation of cargo, carriers can charge high prices and 

keep a high profit margin. However, as more ships are built to capitalize on the opportunity 

for high fares, the market becomes saturated, with an oversupply of ships but not enough 

goods to transport. Then the bargaining power of carriers becomes significantly reduced and 

are forced to negotiate on much lower fares. During this downturn of the shipping industry, 

many ships are scraped until an equilibrium between supply and demand is reached again and 

the cycle repeats itself. 

 During the period of the downturn of the shipping cycle, reducing costs is becoming of 

significant importance for the carriers in order to keep operating profitably and avoid 

bankruptcy. In such cases, operating the vessels at the lowest attainable speeds to save on fuel 

consumption is often attempted, since fuel consumption accounts for the majority of a ship’s 

expenses (around 60%) (Stopford, 2009).  At the time this thesis is being written, container 

shipping is experiencing a significant downturn, since supply of ships is much higher than the 

demand, thus resulting in low transportation fares and slow vessel speeds in an attempt to 

save on fuel costs (Wright, 2016). 

Based on the above, it can be deduced that the interest of carriers lies in transporting the 

agreed amount of goods reliably and at the agreed time-frame to the destination, while 

keeping operational costs (fuel) at the minimum. 

 

2.2.2  Container Terminals 

For the purpose of the thesis, the ETA information tool was applied for the case of 

containerships. Therefore, due to their importance for the current research, the container 

terminals will be analyzed separately from the Port of Rotterdam. 

Container terminals can be decomposed in three parts in accordance to their layout, namely 

seaside operations, storage and landside operations. On the seaside or quayside of the 

terminal, containers are either loaded onto or unloaded from sea vessels. Then, the containers 

are stored in stacks in the storage area, which is called the yard. The storage area is therefore 

facilitating the decoupling of seaside and landside operations (Voss, Stahlbock, & Steenken, 

2004). On the landside, containers are loaded onto or unloaded from barges, trains and trucks. 

Containers can belong to three distinct categories, namely import, export or transshipment 

containers. Import containers are brought in by deep-sea vessels, stored in the terminal 

briefly, and need to be transported to the hinterland via barge, rail or truck. Export containers 

follow the opposite path. The research undertaken is mainly aimed at examining the imported 

containers and how this process can be benefited from an ETA information tool. 
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Once a vessel arrives at the container terminal, it is assigned to a berthing place, according to 

the berth planning of the terminal. There, the unloading of the ship takes place via a number 

of quay cranes.  There are special transport vehicles that move containers from the quayside 

to the yard and vice versa. These can be trucks, straddle carriers or automated guided vehicles 

(AGVs) in (semi) automated ports. After storage, containers are moved to hinterland 

transportation modes (barge, rail or truck) for final delivery to the inland destination.  

 

The movement of large volumes of goods requires for complex planning processes from the 

terminal operators. For that reason, it becomes evident that operations’ planning is a key 

component of container terminal management. Four major divisions can be distinguished in 

the container terminal planning operations: 

 

1. Berth planning calls for deciding the mooring slot and time slot for the ships at the quay 

(sea side) where they can be served with a planned number of quay cranes. 

2. yard planning allocates the storage spots in the yard for import, export and transshipment 

containers. 

3. Vessel planning refers to planning the order of unloading and loading containers from and 

onto the ship, while ensuring the stability and safety of the vessel. 

4. Resource allocation reserves the required manpower and equipment for carrying out the 

aforementioned planning operations. 

 

The following figure depicts the various planning and operational aspects of a container 

terminal.  

 

Figure 2: Top-view of container terminal, source: (Kemme, 2013) 
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2.2.3  Hinterland Transportation Parties (e.g. EGS) 

The hinterland transportation parties are responsible for connecting the deep sea terminals of 

the Port to inland terminals. They receive the containers and allocate them to trucks, barges 

or trains for carrying out the hinterland transportation leg. Due to the increased competition 

between ports, providing cost-efficient and reliable services that connect the terminals of the 

port to the hinterland is becoming increasingly important. Their interests lie in ensuring cost-

efficient , safe and reliable services for the inland supply chain activities. The role of 

hinterland transportation will further be elaborated in the following section (2.3) 

2.2.4  Port of Rotterdam 

Before analyzing the Port of Rotterdam, the following terms should be defined: ‘port’, ‘port 

authority’ and ‘terminal’. A port is a geographical area where ships are brought alongside 

land to load and discharge cargo – usually a sheltered deep-water area such as a bay or river 

mouth (Stopford, 2009).  The port authority is the organization responsible for providing the 

various maritime services required to bring ships alongside land. Ports may be public bodies, 

government organizations or private companies. One port authority may control several ports 

(e.g. Saudi Ports Authority). Finally, a terminal is a section of the port consisting of one or 

more berths devoted to a particular type of cargo handling (Stopford, 2009). Thus there are 

coal terminals, container terminals, etc. Terminals may be owned and operated by the port 

authority, or by a carrier that operates the terminal for its exclusive use.  

 

Ports have several important functions which are crucial to the efficiency of the ships which 

trade between them. Their main purpose is to provide a secure location where ships can berth. 

However, this is just the starting point. Improved cargo handling requires investment in 

shore-based facilities. If bigger ships are to be used, ports must be built with deep water in 

the approach channels and at the berths. Of equal importance is cargo handling, one of the 

key elements in system design. A versatile port must be able to handle different cargoes – 

bulk, containers, wheeled vehicles, general cargo and passengers all require different 

facilities. There is also the matter of providing storage facilities for inbound and outbound 

cargoes. Finally, land transport systems must be efficiently integrated into the port 

operations. Railways, roads and inland waterways converge on ports, and these transport 

links must be managed efficiently. 

 

The Port of Rotterdam has established itself as the leading port in Europe, in terms of the 

amount of cargo handling.  However, ports are also involved in a high competitive industry 

for attracting an increasing number of vessels. Furthermore, new concepts such as the 

physical internet (Hakimi, Montreuil, Sarraj, Ballot, & Pan, 2012) may change the landscape 

of power between ports, and significant ports may be out of the picture in the near future, 

without adjustments. Therefore, it lies within the interests of the Port of Rotterdam to provide 

high-level services to the vessels, such as low waiting and handling time, and value adding 

hinterland transportation services connecting its terminals to inland destinations. 

 



22 
 

2.2.5 Importers 

The importer is the buyer and receiver of the cargo inside the container, after the execution of 

the hinterland transportation leg. Importers are interested in the on-time and cost-efficient 

delivery of the goods at the specified location, convenient for their purposes. The focus of the 

present thesis is on the import transport chain, since the volume of incoming containers is 

significantly bigger than that of the export transport chain. The role of the importers and the 

value of an ETA information tool for their purposes will further be elaborated in the 

following section (2.3). 

2.3 Value proposition of ETA information tool 

In this section the value that an ETA information tool can have for the different stakeholders 

will be assessed, taking into account their specific needs. The ways that they can change their 

business operating activities are also investigated.  

2.3.1 Methodology followed for assessing the value of ETA predictions 

To determine the value of improved ETA predictions for the stakeholders involved in 

container transport, their business operations and interests were identified and analyzed 

through a literature review. The stakeholder analysis was mainly based on the work of 

Stopford (2009), for the ocean carriers and the port of Rotterdam, and to Voss et. al (2004) 

for the container terminals. Then, having formed an initial insight, the added value of the 

ETA predictions for the different stakeholders, as well as how this would affect their 

operating activities,  were further investigated through interviews that were conducted with 

relevant stakeholders from the container terminal side, hinterland transportation parties and 

the Port of Rotterdam (Appendix D). 

The interviews were conducted in a semi-structured manner, starting from the initial question 

regarding the current situation about expected vessel arrivals and how their inaccuracy affects 

the business process of the stakeholder under examination. Depending on the answer, other 

questions were asked, with the aim of identifying how improved ETA predictions would 

assist in improving the existing situation in terms of planning and cost reduction. Through 

this approach, the conversation was conducted in a more interactive way, without limiting the 

interviewee to giving only specific answers, but letting them express their thoughts on  the 

topic more broadly. For instance, this approach led to the valuable finding that the bulk of the 

problem when it comes to the planning activities of terminal operators, is stemming from the 

uncertainty regarding the expected vessel arrival times when there is a previous stop in a 

European port, prior to reaching the Port of Rotterdam. At the end-stage of the interviews, a 

question was posed regarding other parties that would be interested in such an ETA 

information tool, in order to ensure that all the necessary stakeholders are taken into 

consideration, without omitting an important actor from the analysis. 

Having conducted the interviews and the literature review, a synthesis of the findings was 

performed, which was later verified through a meeting with representatives from TNO, 

Intertransis and Hermess, the partners involved into developing this ETA information tool. 
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The results of this synthesis are presented in the following sections. At the end of the chapter, 

the role of TNO, Hermess and Intertransis, alongside with the usage of the proposed ETA 

tool will be presented. 

 

2.3.2  Carriers 

As it was mentioned in the previous section, carriers place particular importance in delivering 

the requested cargo on time to its destination. Therefore, they have a deadline for their 

arrival, after which the company would have to pay a penalty to the shipper for late delivery. 

On the other hand, carriers try to sail at low speeds when possible, to reduce fuel 

consumption which comprises a significant part of the vessel’s voyage cost. These 

contradictory interests, result in a common pattern of speeding up in the initial part of the 

voyage, and once delivery at the port before the deadline seems guaranteed, the vessels 

significantly slow down to save on fuel, something which will more closely be examined in 

the data analytics part (chapter 5). Based on the above observation, three areas of how the 

ETA information tool could prove of value for the carriers have been identified: 

1. Firstly, an ETA information tool can give the carriers a better indication of whether 

their vessel is on track to achieving on-time delivery. This can serve as an indication 

of whether the vessel needs to speed up to meet the deadline, or if there is room for 

slowing down, thus saving on fuel. 

 

2.  A useful application that could add value to the carriers’ activities would be a speed 

planning decision support tool. This decision support tool would receive as an input 

the engine power used currently in rounds per minute and, based on weather 

predictions for the weather conditions ahead, calculate the positive or negative impact 

that they have on the ship as a percentage. For instance adverse weather conditions 

could apply a -5% to the speed of the vessel for the route. This could mean that the 

captain will sail at a speed 5% lower than the one he has currently attained. Such a 

support tool for speed planning could help reducing the variances in speed, thus 

saving on fuel. The captain would have the ability to keep a more steady speed instead 

of speeding up and slowing down later on. This results in reductions of fuel 

consumption, since fuel consumption is approximately a function of the 3
rd

 power of 

speed as indicated in the following formula (Stopford, 2009): 

 

𝐹𝑢𝑒𝑙 𝐶𝑜𝑛𝑠𝑢𝑚𝑝𝑡𝑖𝑜𝑛 = 𝐴 + 𝐵 ∗ 𝑠𝑝𝑒𝑒𝑑3       (2) 

, where A, B are constants depending on the vessel. 

Therefore in a hypothetical case where a ship sails for the first half of a voyage with 

15 knots and for the second half with 10 knots, keeping an average speed of 12.5 

knots along the whole route would result in reducing fuel consumption by  6,7% (see 

Appendix E for the calculation).  

This was a major finding during the interviews with Ed van Dort, managing partner of 

Intertransis, where he mentioned that carriers that cooperate with Intertransis 
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mentioned that “if there is a guarantee that keeping a steady speed could ensure on 

time arrival at the port, it would be of great benefit for them in reducing costs”. 

However, the realization of such a decision support tool would need as input the 

rounds per minute used by the ship’s engine, something which was not available for 

the current research. The information obtained from AIS data that were used, provide 

the speed over ground, which is already determined from the power of the engine and 

the currents flowing in the region. Therefore, this speed planning decision support 

tool is recommended as an area for further research at the end of this paper, building 

on the ETA information tool.  

 

3. A final application of the ETA information tool for carriers would be as a competition 

monitoring tool. As it has been presented above, carriers are involved in a very 

competitive industry, where the rules of perfect competition apply. Therefore, 

knowing how many of the ships are in the region around the Port of Rotterdam and 

heading towards it, combined with information regarding their arrival time can give a 

good indication of the competition for the cargo that is available for transport at the 

port. For instance if a company knows that its vessel is the first to arrive on a given 

day and moreover there are few vessels available in the region, it can negotiate a high 

price with the shipper for the transportation of goods. On the contrary, if there are 

many vessels arriving before the company’s containership, the carrier will know that 

they would have to negotiate for a low price, since in that case the shippers have 

higher bargaining power. Such a tool can assist in negotiating for the best attainable 

price for transporting cargo (as reflected in the negotiated worldscale index). 

2.3.3  Container Terminals 

Container terminals are among the main benefactors of an ETA information tool. As it was 

highlighted in (Menger, 2016),  having access to accurate ETA information is perceived of 

vital importance for container terminals in order to plan their operating activities. 

Firstly, alleviating the problem of vessel arrival uncertainty can lead to significant 

improvements in the berthing allocation problem.  As it was mentioned in an interview with 

an ECT logistics manager (Appendix D), the terminal is planning on a berthing schedule 

depending on expected vessel arrivals. If however, a ship arrives later than expected, there 

may be shortage of space to allocate it at the quay, thus adding significant waiting time to the 

process. This causes disruptions to the vessels that arrive in the next hours also, since the 

whole quay planning has to be adjusted. Also, early arrival of a vessel is to be avoided, since 

the containers that will have to be loaded on the vessel may not be ready for transport at the 

yard. This happens because whenever a vessel is expected to arrive, the containers that are to 

be loaded onto it, are stacked in an accessible place in the yard to ensure quick transport to 

the vessel. If the vessel arrives earlier though, the containers may not be already at the right 

place in the yard. 

Furthermore, changes in the berthing allocation schedule, due to uncertainty of vessel 

arrivals, have a negative impact on the yard planning schedule. If a vessel diverges from the 
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original schedule, it is assigned to another berthing place. The cargo in the stock goods has to 

be removed first from the initial loading position and then, has to be moved to the new 

berthing place. This results in increased workload, unnecessary moves and longer waiting 

time for the vessel. 

To combat the uncertainty caused by unforeseen vessel arrivals, the terminal usually assigns 

more resources than necessary to each working shift, in terms of human resources and 

equipment (number of cranes). This results in increased costs, since manpower costs are the 

biggest expense of container terminals (Fancello, Pani, Pisano, Serra, Zuddas, & Fadda, 

2011). Therefore, an ETA information tool could resolve the problem of resources allocation 

at the container terminal, thus effectively reducing operational costs. It is characteristic that in 

the case of Fancello et al. (2011), the neural network that was developed for predicting late 

vessel arrivals with an horizon of 24 hours, enabled a decrease in the number of working 

shifts from 4 to 2 for the port of Cagliari. 

During the interview that was conducted with the ECT logistics manager, it was mentioned 

that currently the terminal is using the information provided by the ship agents regarding the 

ETA of the vessels. The ship agents are representatives of the carrier at the port and they use 

information given by the captains to provide an ETA of arrival to the terminal. This is the 

ETA that the terminal is currently communicating with the hinterland transportation parties, 

barge, trains and trucks that will be responsible for transporting the containers to inland 

destinations. 

For the purposes of the terminal planning activities, accurate knowledge of the ETA 2-3 days 

in advance is important. As it was highlighted in the interview, the ETA provided by ship 

agents in the case when Port of Rotterdam is the first port of call in Europe can be off by 

some hours, but this is not a major hindrance for the terminal operations. The bulk of the 

problem was identified to be in the cases that vessels stop in another port in Europe for 

unloading, such as Antwerp or Felixstowe, before going to the Port of Rotterdam. In these 

cases, vessel arrivals are subject to huge deviations, since the waiting time in the previous 

port cannot effectively be estimated. Estimating waiting time due to port operations is out of 

the scope of the current research, therefore, the cases where there was a preceding port of call 

in Europe, before arrival to the port of Rotterdam, were not examined and are proposed for 

further research.  

Nevertheless, in this master thesis the case of ships stopping for bunkering at Gibraltar 

(Spain), where usually they can acquire fuel relatively cheap, was taken into account. More 

specifically, the neural network and support vector machine that were used, were recognizing 

from the latitude and longitude of the ship that it had entered the bunkering area at the port of 

Gibraltar, and adding a waiting time. This can serve as a starting point towards tackling the 

Port Operations waiting time problem. 

As far as the voyages that follow the Asia-Rotterdam route directly are concerned, one of the 

findings of the interview was that a horizon of prediction for up to one week in advance 

would be useful. The hinterland transportation parties would be more interested in such 
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information, since they have to coordinate many activities for their schedule and have to plan 

even further in advance. 

 

2.3.4   Hinterland Transportation Parties (EGS) 

Accurate information regarding the ETA of sea vessels is of vital importance for the planning 

activities of hinterland transportation parties such as EGS. This is due to the fact that vessel 

arrival is the starting point for all the supply chain activities of hinterland container transport. 

As it was highlighted in Menger (2016), delays and estimated time of arrival of deep sea 

vessels scored very high in the information that barge and truck operators would like to have. 

Accurate information regarding vessel arrivals would enable hinterland transportation parties, 

such as EGS, to book the necessary capacity for rail and barges, avoiding over or 

underestimating the demand. Their current business model is based on two types of decisions: 

 The first is booking a fixed capacity of rail and barges for a week ahead. If the 

arriving containers cannot be assigned to a train or barge, they are transported by 

truck. In the case of overcapacity, where many containers cannot be assigned to 

multimodal modes of transport (barge/train), the costs for hinterland transportation 

increase sharply due to the increase in usage of trucks. On the other hand, in cases of 

under-capacity, where too much capacity has been booked on train and barges that 

remains unutilized, costs increase due to the low utilization rate of the transport 

modes. 

 The second type of decision concerns the allocation of an incoming container to a 

mode of transport for the hinterland transportation leg. For this case, apart from the 

schedule of barges and rail, information regarding the cargo within the container is 

important, since shippers have different preferences for the transportation mode 

according to the cargo (Wanders, 2014). 

It therefore becomes evident, that an improved accuracy regarding the ETA of containerships, 

spanning over a horizon of 7 days, could lead to tackling the problem of how much capacity 

to pre-allocate for barge and rail. If this information is coupled with information regarding 

the types and amount of cargo that a ship is carrying in the future, this would also resolve the 

uncertainty for the second type of decision that hinterland transportation parties are faced 

with. Therefore, it becomes evident that an ETA information tool could reduce the 

transportation costs for the leg of inland transport. 

Currently, the ETA of sea-vessels as communicated by the terminal to hinterland 

transportation parties is not good enough for the purpose of their planning and operating 

activities. This is because the hinterland transportation parties plan on a greater time horizon 

than the container terminal and the ship’s agent ETA becomes relatively updated during the 

last 40 hours of the voyage, when information becomes crucial for the terminal. Therefore, 

there is room for significant improvement in ETA prediction over a longer time horizon in 

order to create value for the hinterland transportation parties. In an attempt to quantify the 

requirements of such an ETA information tool, it was communicated during the interviews 
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conducted, that an error of 5 hours on average when the vessel is approximately 4 days away 

from the Port of Rotterdam, would have a significant impact on improving hinterland 

transportation activities. 

Finally, it should also be mentioned that more accurate information regarding vessel arrival 

would result in an increase in the utilization rate of intermodal transport, thus saving costs 

and reducing the environmental impact of inland transport. The split between truck, barge 

and rail is currently standing at 55-35-10 respectively (Port of Rotterdam, 2014). More 

accurate ETA predictions could enable the increase of multimodal transport, thus benefiting 

barge and rail operators significantly on the expense of trucks. 

 

2.3.5  Port of Rotterdam 

As it was mentioned in the previous section, Port of Rotterdam has established itself as the 

leading port in continental Europe, despite the high competition that is taking place among 

the different ports. In order however to consolidate its position and increase its lead within a 

highly competitive environment, continuous innovation is needed. Therefore, a differentiation 

strategy towards its customers (carriers) can prove beneficial in sustaining a competitive 

advantage. In that respect, the ETA information tool can play a crucial role for the Port. This 

is in alignment with the Port of Rotterdam strategy statement that explicitly highlights its 

willingness to invest in further improving the efficiency of maritime, inter-terminal and 

hinterland transport , as well as play an active role in the development of data and data 

applications in the logistics chain (Port of Rotterdam, 2014). 

The proposed ETA information tool can have significant benefits in reducing the hinterland 

transportation costs. It will also have a moderate effect in reducing handling time at container 

terminals, as described above. A low handling time for sea vessels is crucial, since during this 

idle time no additional revenues are produced. Therefore, a reliable service that could ensure 

faster handling speeds would be valued by carriers, thus choosing more often the Port of 

Rotterdam for unloading their containers. Furthermore, the fact that hinterland transportation 

costs can be reduced through such an application will be perceived as beneficial for the 

shippers. Real-time on line planning of inland transportation can ensure on-time delivery 

while lowering the costs. This means that in cases of cut-throat competition in pricing with 

other Ports, hinterland transportation parties could reduce the fee charged for inland transport, 

while keeping profitable margins. 

It therefore becomes evident that the ETA information tool would provide significant 

advantages for the Port of Rotterdam in terms of achieving a competitive advantage. Carriers 

and importers will be more eager to do business with the Port of Rotterdam, due to its 

differentiated services in efficient container handling at the terminals and the cost-efficient 

execution of the hinterland transportation activities based on synchromodal planning. 
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Apart from those indirect benefits, there are also direct benefits associated with the usage of 

such an information tool from Port Operators. On the direct benefits is the ability to plan 

better for pilot availability to guide the vessels to the terminals, as well as reduction of traffic 

congestion around the areas of the Port. The latter is because of the fact, that better estimation 

of arrivals can result in better planning from the truck operators who would therefore arrive 

closer to the actual arrival time, instead of waiting around the Port. 

2.3.6  Importers 

The importer is the buyer and receiver of the cargo inside the container. By taking into 

account the benefits that the ETA information tool has for the hinterland transportation 

parties, it becomes evident that it could assist in synchromodal planning, due to the 

information provided about vessel arrival uncertainty. A synchromodal network provides 

additional value for the importer in various ways. Firstly, synchromodal networks offer a 

higher diversity of possible services that allow customization of transport to importer needs 

in terms of the speed/tariff trade off. Secondly, the network will increase its flexibility to 

respond to changes in volume and demand by easy exchange between alternative solutions, 

something which results in savings of rescheduling costs. Thirdly, the robustness of the 

network will be higher, to maintain service quality under changing circumstances, thus 

providing lower vulnerability of supply chains. Eventually, these networks may allow 

importers to save costs, while benefiting from high quality services by different routes 

(Tavasszy & de Jong, 2013).  

 

2.4 Real time ETA Predictor and beneficiaries  

In this section it will be described how an ETA predictor based on the models developed can 

work in a real-time environment and who will be getting the predictions and communicating 

them to the other interested parties. For that reason firstly, the role of TNO, Intertransis and 

Hermess in developing the tool will be highlighted. These parties have agreed on a 

partnership for developing an ETA information tool. 

Intertransis is a company that acts as an information broker, providing advice and intelligence 

to its customers in the logistics sector, with the aim of improving their business processes 

(Intertransis, 2013). Their interest in developing an ETA information tool lies in the fact that 

they can expand their portfolio, providing services to their customers involved in container 

transport. Their asset is that they have access to the AIS data, that enclose information about 

the position, speed and heading of the vessel, as well as some technical characteristics. These 

AIS data are crucial for making predictions regarding the ETA of the vessels. 

Hermess is a company that provides expertise and data-related services to the marine and 

coastal environment to support operations, engineering, and management of natural resources 

(Hermess, 2013). The ETA information tool would thus be a welcome addition to their 

portfolio. Towards the realization of the project, they provide weather data, information about 

the currents and waves. 
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TNO is a research organization which aims at creating innovations that boost the competitive 

strength of the industry in a sustainable way (TNO, 2015). The role of TNO within this 

project is to develop the algorithm, that given the AIS and weather data, can predict the ETA 

of the sea-vessels until the Port of Rotterdam. The present thesis was undertaken within TNO. 

Having explained the role for the three partners involved in developing the ETA tool for the 

containerships heading towards the Port of Rotterdam, the business interrelationships can 

now be analyzed. The following figure shows the flow of data from the source, until delivery 

to the customers, namely the stakeholders in container transport. 

 

Figure 3: Diagram presenting the flow of information for the ETA information tool 

The AIS data that are provided from marine traffic providers and the weather data, as 

collected from the models ECMWF and NOAA (see chapter 4.1 for details), are collected and 

aggregated from Intertransis and Hermess respectively. Then, these data can be fed forward 

to the models developed in the current thesis and produce ETA forecasts. The models 

developed can function by obtaining real time position and speed data, from AIS signals, and 

produce ETA forecasts based on their training parameters. When the models are on-line for 

making predictions on actual data, the training phase that is the most computationally 

expensive will have already taken place. Then, producing forecasts based on real-time new 

inputs is executed immediately. The weather data have not been found to be of crucial 

importance for estimating the ETA in the route examined, as explained in chapter 5. 

Therefore, acquiring these kind of data and the costs involved into doing that, is a step that 

can be omitted for the purpose of ETA prediction. However, weather data can be important 
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when estimating a vessel’s ship fuel consumption, as suggested in the areas for further 

research (chapter 7.3). 

The implication of this is that by acquiring real-time AIS data from marine traffic providers 

and feeding them forward to the trained model proposed in this study (SVM), sufficient 

predictions regarding the ETA of sea-vessels can be made. Then, through a common 

platform, this information can be communicated to the interested parties, such as the Port of 

Rotterdam, container terminals and hinterland transportation companies. The role of 

acquiring the data and using the predictive algorithms lies with Intertransis, since they are the 

information broker and they have access to the necessary AIS data. The role of TNO is to 

develop the algorithm for predicting the ETA of sea-vessels for a fee, and also to bring the 

relevant stakeholders together, making them realize the importance of ETA predictions for 

the fast and cost-efficient execution of container transport. Its purpose is also to ensure that 

during the process of the ETA model development, the product is designed according to the 

needs of the stakeholders. 

 

Overview of Chapter 2 

Along this chapter, the value of the ETA prediction tool was investigated, from the perspective of the 

different stakeholders involved in container transport. In section 2.1 the benefited stakeholders were 

briefly introduced, while section 2.2 explained their interests. Section 2.3 investigated the value that 

an ETA information tool would have for each one of them, based on the literature and the interviews 

conducted. That way, section 2.3 served at answering the first sub-question posed for the research, 

regarding the added value that an ETA information tool can have for the stakeholders involved in 

container transport. The benefits were analyzed from the view of the ocean carriers, terminals, the 

Port of Rotterdam hinterland transportation parties and importers. The chapter ended by explaining 

how this tool can be realized and which requirements have to be fulfilled. 
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Chapter 3 – Literature Review 

In order to develop the required methods to answer the research question posed in section 

1.5, a literature review is carried out. Section 3.1 provides a literature review on current 

methods used to forecast vessel arrivals at a port. The main variables affecting vessel 

arrivals will also be presented. Section 3.2 provides a brief overview of the different machine 

learning techniques and a comparison between them in order to select the ones most 

promising for the current research. The chapter ends with the literature gap identification 

that the research aims to bridge, by creating value for the stakeholders in container 

transport. 

3.1 Consequences of ship delayed arrivals at port 

By analyzing the scientific literature on the topic, it was identified that numerous problems of 

complicated nature co-exist at container terminals most of which need to be addressed by 

integrated solutions. Therefore, a solution to a problem at a container terminal often becomes 

of significant value for solving other related problems (Murty, Wan, & Linn, 2005).  

An overview of the classification of decision problems at container terminals is provided by 

Vis and De Koster (2003), where five logistic processes are identified as areas of decision 

problems. Those logistic processes are: the arrival of the vessel, loading/unloading 

operations, moving the containers from quayside to yard and vice versa, stacking containers 

in the yard and transport of containers outside the terminal with other vehicles. As it can be 

deduced from the above, the arrival of the vessel is of vital importance, since the whole 

process starts from that point. Therefore, providing an analytical solution to the problem of 

the uncertainty of ship arrivals is essential for improving the availability and functionality of 

the handling system as a whole. It is characteristic that in his master thesis, Menger (2016) 

highlights, through a survey-based approach, that information regarding the ETA of 

containerships is perceived of high importance for the terminal and port operators, as well as 

hinterland transportation parties. The latter need this information in order to plan adequately 

for barge or rail capacity and schedules. 

 

Furthermore, van Riesen (2013), states that early identification of disturbances in vessel 

arrivals is key to the synchromodal planning activities of hinterland transportation parties, 

such as EGS. This is because the whole process has to be updated depending on early/late 

arrival of containers, and vessel arrival is the first step for inland transportation. A late arrival 

of a vessel may result in unavailability of barges or trains to carry out the inland 

transportation, thus assigning more containers to trucks. However, this is increasing 

substantially the hinterland transportation costs. 

 

Moreover, a major implication of late vessel arrivals at the port is that the process of 

assigning manpower and equipment becomes significantly more complicated. Arriving at a 

later time than the one expected increases the workload at the new arrival time, since extra 

human resources have to be allocated and equipment for the unloading of more vessels. This 

creates workload peaks, which result in peaks in energy consumption for the terminal, 
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something which has a large impact on the annual costs of the terminal (Heij, 2015). The 

reason for this happening, is that more cranes are put to use at the same time and also, extra 

movements for transporting the containers in the yard take place, in order to get them to the 

new berthing place of the delayed ship. If arrival of the vessel is predicted more accurately, 

then there will be less needs for changing the planning schedule from the side of the terminal 

operators, thus distributing more evenly the workload during the working shifts. That way, 

costs in manpower and electricity consumption can be reduced significantly. It is 

characteristic, that in the case of Fancello et al. (2011) the neural network model that was 

proposed for reducing uncertainty over arrival times at the Port of Cagliari, achieved a 

reduction of the working shifts from 4 to 2. 

 

Also, changes in the schedule of the container terminal can result in the increase of 

demurrage costs. Demurrage costs occur when a vessel is available for discharging its cargo 

at the terminal, however its cargo takes longer to discharge than what is agreed. In container 

haulage, customers are given a fixed period in their contract to tip (unload) their container 

delivery. Acceptable times for tipping are usually between 3 and 4 days time spent on site 

and after that, it is considered "demurrage". Haulers will usually charge an hourly rate for 

each hour after the allowed time (Stopford, 2009). Due to late vessel arrivals, the planning 

activities of the terminal may be interrupted, causing shortage of equipment or manpower at 

peak hours to handle the vessels. If the terminal is unable to handle the unloading of the 

vessel over the specified tipping period, this will increase the demurrage costs that the 

terminal will have to pay to the carrier (Stopford, 2009). 

 

Having addressed some of the consequences of late arrivals for the vessels at the Port of 

Rotterdam, the need for accurate ETA predictions becomes evident. The next section will 

present the current techniques that have been used in an attempt to address the problem and 

which are the most relevant for the case at hand. 

 

3.2  Current methods on ETA prediction of sea-vessels 

The state-of-the-art study revealed that despite the rapid technological innovation taking 

place in recent years, the uncertainty and variation in daily demand forecasting still remain a 

challenge for port operators. Furthermore, the specific applications are strongly limited, since 

most research undertaken thus far, concerns container flow prediction in and out of container 

terminals over only a daily time horizon. 

 

Gambardella et al. (1996) proposed a forecasting module for estimating the daily container 

flow in and out of a terminal, combining two different estimators. The first predicts the 

number of containers to be loaded onto a ship due to arrive in port, based on past data. The 

second calculates the percentage of the total number of containers that should be transported 

by truck to the terminal, as a function of the ship’s ETA. The only model capable of 

predicting ship arrival times has been calibrated by Fancello et al. (2011). The decision 

support system presented, reduces the  uncertainty of port arrival time to approximately 6 

hours by employing a neural network model. However, it only accounts for a 24-hour time 
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horizon, without including information for weather data. Therefore, it addresses the ship 

delays due to port operations. Through that model, the terminal in question is able to plan 

resources around just two work shifts, instead of 3 or 4, thus effectively applying lean 

management practices and reducing operating costs.  

 

From the literature review conducted, it has also been identified that developing advanced 

vessel arrival time prediction tools for transshipment container terminals is closely related 

with the problem of managing and elaborating large amount of data. To enable the extraction 

of useful information therefore, it is required to refer to data mining techniques within the 

Knowledge Discovery in Databases (KDD) process, which is defined as the extraction of 

useful and not known information from data (Frawley, Piatetsky-Shapiro, & Matheus, 1992). 

Furthermore, specific attention should be given to data preparation, data cleansing and correct 

interpretation of results, in order to be able to extract information from the data, according to 

the KDD process. 

 

There have also been attempts to model the weather effect on vessel speed using 

deterministic models, based on physics (Szelangiewicz, Wiśniewski, & Żelazny, 2014). In 

particular, the variables that are used for short term speed prediction are: the nominal speed 

of the vessel (based on the power of the ship’s engine in rounds per minute), the impact of the 

wind on the sailing speed, as well as the impact from currents and waves. By taking into 

account the direction of the vessel, equations are built on which the actual speed of the vessel 

at that particular point is determined. However, their application is limited to short term speed 

prediction of the vessel, something which is not in alignment with the scope of this research. 

Furthermore, during the voyage the captain can change the speed of the vessel to arrive 

before the deadline for delivery at the port or to save on fuel, something which is not 

addressed in this research. The objective of the current thesis is, based on the speed and 

position of the vessel, and a weather pattern ahead, to determine the ETA of the vessel. This 

approach takes into account possible changes in the ship’s engine power to counter weather 

conditions ahead. Nevertheless, the work of Szelangiewicz et al. 2014, serves as the base for 

addressing the first sub-question regarding the factors that affect the speed of a vessel sailing 

towards the Port of Rotterdam. 

3.3  Machine learning techniques for prediction 

At this point, it would be useful to provide an overview of the data analytics techniques that 

will serve as the basis for addressing the problem of predicting the estimated time of arrivals 

of containerships. The description given is based on the work of Freeman (2005) and Haykin 

(2008). 

3.3.1  Multilinear regression with gradient descent 

Multiple linear regression attempts to model the relationship between two or more 

explanatory variables and a response variable by fitting a linear equation to the observed data. 

Every variable of the independent variable x is associated with a value of the dependent 
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variable y. A population model for a multiple regression model that relates a y-variable to n 

predictor variables is written as: 

 

𝑦(𝑖) =  𝜃0 + 𝜃1𝑥1
(𝑖)

+  𝜃2𝑥2
(𝑖)

+ ⋯ + 𝜃𝑛𝑥𝑛
(𝑖)

+ 휀𝑖  (3) 

The model is trying to fit the best possible line given the training examples x
i 
to predict the 

target value of y
i
, with the difference being attributed to the residual 휀𝑖 , which is the random 

error.  The superscript (i) refers to the ith  training example from the training set. The way to 

identify the best possible line fitting the observed data is by choosing the values of the θ 

coefficients, so as to minimize the sum of the squared errors for the sample (Freeman, 2005).  

 

Two possible methods have been identified for this optimization problem, one is by using the 

normal equation method and the other is by using gradient descent. Due to the large amount 

of data that will be used for the case at hand, gradient descent has been chosen for the 

purpose of analysis. This is because the gradient descent converges faster to the optimal 

solution when there is large amount of data to be processed, while the normal equation 

method is computationally expensive.   

 

Let us define the following hypothesis function: 

 

ℎ𝜃(𝑥) = ∑ 𝜃𝑗𝑥𝑗
𝑛
𝑗=0  (4) 

 

For the parameter vector θ (of type R
n+1

) the cost function to be minimized is: 

 

𝐽(𝜃) =
1

2𝑚
∑ (ℎ𝜃(𝑥(𝑖)) −𝑚

𝑖=1 𝑦(𝑖))2  (5) 

  

Gradient descent minimizes the objective function (4) by updating the elements of vector θ, 

until convergence, as follows: 

𝜃𝑗 ≔ 𝜃𝑗 − 𝛼
1

𝑚
∑ (ℎ𝜃(𝑥(𝑖)) −𝑚

𝑖=1 𝑦(𝑖))𝑥𝑗
(𝑖)

       ,for j=0,1,...,n           (6) 

,where 𝛼 is the learning rate parameter.  

3.3.2 Logistic regression with gradient descent 

Logistic regression is an approach for solving classification problems, namely from a set of 

explanatory variables x1,…,xn to classify the dependent variable y in one of the various 

distinct classes (for the simple case there are two distinct classes y=0 and y=1). This 

approach is not suitable for estimating a continuous function, such as the ETA predictions 

and is only used as an introduction to understand the function of the neurons that are 

presented in the neural network approach. In this section, an overview of the logistic 

regression model will be presented. 
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Instead of a linear function, logistic regression is making use of the “sigmoid” function (also 

called logistic): 

𝑔(𝑧) =
1

1+𝑒−𝑧  (7) 

The probability that a training example with independent variables x belongs to the class y=1 

is given by the following probability estimation function: 

𝛧𝜃(𝑥)  =  
1

1+𝑒− ∑ 𝜃𝑖𝑥𝑖
𝑛
𝑖=0

  (8) 

Therefore, the probability that for a given input vector x, the training example belongs to 

class y=1 is denoted as: 

𝛧𝜃(𝑥) = 𝑃(𝑦 = 1|𝑥; 𝜃) = 1 − 𝑃(𝑦 = 0|𝑥; 𝜃)   (9) 

In order to get a discrete classification in one of the two classes y=0 or y=1, the output of the 

hypothesis function for the logistic regression can be determined as follows: 

𝛧𝜃(𝑥) ≥ 0,5 → 𝑦 = 1 (10) 

𝛧𝜃(𝑥) < 0,5 → 𝑦 = 0 (11) 

The way the logistic function g behaves is that when its input is greater than or equal to zero, 

its output is greater than or equal to 0.5: 

𝑔(𝑧) ≥ 0,5 𝑤ℎ𝑒𝑛 𝑧 ≥ 0 

Substituting z with ∑ 𝜃𝑖𝑥𝑖
𝑛
𝑖=0  to obtain the function 𝛧𝜃(𝑥) the solution to (8) yields: 

∑ 𝜃𝑖𝑥𝑖
𝑛
𝑖=0 ≥ 0 →  𝑦 = 1  (12) 

In order to choose the optimal parameters θ for logistic regression, the cost function that has 

to be minimized is the following: 

𝐽(𝜃) = −
1

𝑚
∑ [𝑦(𝑖)𝑙𝑜𝑔(𝑍𝜃(𝑥(𝑖))) + (1 − 𝑦(𝑖))𝑙𝑜𝑔(1 − ℎ𝜃(𝑥(𝑖)))]𝑚

𝑖=1  (13) 

Gradient descent can be used again for finding the optimal parameters θ for the case of 

logistic regression by updating the values of vector θ, until convergence, as follows: 

𝜃𝑗  : = 𝜃𝑗 − 𝛼
𝜕

𝜕𝜃𝑗
𝐽(𝜃) ∶= 𝜃𝑗  –

𝑎

𝑚
∑ (𝑍𝜃(x(i)) − 𝑦(𝑖))m

i=1 xj
(i)

     (14) 

, with α being the learning parameter specifying the rate at which the vector θ is updated 

when new training examples are presented to the system. 
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3.3.3 Neural Networks 

Neural networks are limited imitations of how human brains work (Haykin, 2008). In an 

artificial neural network, a neuron is a logistic unit that receives inputs through its input 

wires, uses the logistic unit computation function (such as 𝛧𝜃(𝑥) described above), and 

depending on the outcome of the computation sends an output (signal) to the output wires. 

The following scheme presents a single neuron: 

 

Figure 2: Inputs and output of a single Neuron. Source: (Haykin, 2008) 

 

A neural network consists of multiple neurons, organized in layers and interconnected with 

each other via input wires characterized by their respective weights. Those weights are 

represented by the ‘theta’ (θ) parameters in the neural network model. Virtually, a simplistic 

representation looks like[𝑥𝑜 , 𝑥1, … , 𝑥𝑛]𝑇 → [ ] → 𝛧𝜃(𝑥) . The following figure shows such a 

neural network: 

  

Figure 4: Representation of a Neural network with 3 layers. Source: (Haykin, 2008) 
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The above neural network consists of three distinct layers, namely the input layer, one hidden 

layer and an output layer consisting of one node. The network architecture is 4X5X1, 

meaning that the input layer receives 4 inputs which are then forwarded to the hidden layer. 

After being processed at the hidden layer nodes, their outputs are forwarded to the output 

layer which then makes a prediction, according to its activation function. This feedforward 

process is characteristic of the neural network and is used for making predictions, given an 

input vector. The training phase of a neural network comprises of selecting the optimal 

weights for each of the connections between the neurons. More specifically, given the input 

vector at the input layer, and the known output that actually occurred, the problem is defined 

as choosing the weights for the connections between neurons so as to minimize the error 

between the prediction and actual observation. An algorithm used for training the network 

until the optimal weights are selected, is the backpropagation algorithm (Haykin, 2008). 

Let us label the intermediate or “hidden” layer nodes of the networks  𝑎20 … 𝑎2𝑛 and label 

them as “activation units.” The following notation will be applied: 

 

𝑎𝑖
(𝑗)

 : “activation” of unit I in layer j 

Θ
(j)

 : matrix of weights controlling function mapping from layer j to layer j+1 

 

The formula that computes 𝑎𝑖
(𝑗)

 is the following: 

𝑎𝑖
(𝑗)

= 𝑔(𝑧𝑖
(𝑗)

) , 

where 𝑧𝑘
(𝑗)

= 𝛩𝑘,0
(𝑗−1)

 x0 + 𝛩𝑘,1
(𝑗−1)

 x1 + ⋯ + 𝛩𝑘,𝑛
(𝑗−1)

 xn ,  for j=2,…,n (15) 

What the set of equations (15) describe is that the inputs in the first layer of the network are 

forwarded to the second layer, after being multiplied with the weights “theta”, and then each 

neuron calculates its activation function.  

The prediction error of the neural network can be minimized with the backpropagation 

training algorithm, as it was mentioned before. For the training set 

{(𝑥(1), 𝑦(1)), … , (𝑥(𝑚), 𝑦(𝑚))} , forward propagation can be implemented to compute 𝛼(𝑙), for 

l=2,3,…,L , with L representing the total number of network layers. 

Then, using the actual output for period t, the prediction error can be computed as: 

𝛿(𝐿) = 𝛿(𝐿) − 𝑦(𝑡),   for t=1,…,m  (16) 

 So the “error values” for the last layer are the differences of the actual results in the last layer 

and the correct outputs in y. 

To get the error values of the layers before the last layer, we can use an equation that steps us 

back from right to left: 

𝛿(𝑙) = ((𝛩(𝑙))𝑇𝛿(𝑙+1)) ∗  𝑔′(𝑧(𝑙)) = ((𝛩(𝑙))𝑇𝛿(𝑙+1)) ∗ (𝑎(𝐿)) ∗ (1 − 𝑎(𝐿)) (17) 
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The aim then is to minimize the error function δ
(l)

, by choosing the optimal parameters Θ. It 

is worth noting that due to their ability to compute complex functions, by organizing the 

neurons in multiple layers, neural networks have proven to be powerful predicting tools. 

However, one of their drawbacks is that they have a relatively slow training algorithm. 

3.3.4 Support Vector Machines 

Support vector machines  are among the best “off-the-shelf” supervised learning algorithms. 

They are based on the concept of large margin intuition to divide the input vectors into 

classes, based on their similarity. They are characterized by usage of kernels, absence of local 

minima, sparseness of the solution and capacity control obtained by acting on the margin. 

They relied on defining the loss function that ignores errors, which are situated within the 

certain distance of the true value. This type of function is often called – epsilon intensive – 

loss function (Chapelle & Vapnik, 1999). The figure below shows an example of one-

dimensional linear regression function with – epsilon intensive – band. The variables measure 

the cost of the errors on the training points. These are zero for all points that are inside the 

band. 

 

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

 

 

Figure 5: One-dimensional linear regression with epsilon intensive band. 

 

 

In linear ε-insensitive support vector regression (SVR), training consists of solving the 

following constrained optimization problem:  

𝑚𝑖𝑛𝑤,ξ  
1

2
||𝑤||2 + 𝐶 ∑ (ξ𝑖 + ξ𝑖

∗)𝑛
𝑖=1      (18) 

subject to constraints:  
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𝑦𝑖  −  𝑤 ∗ 𝑥𝑖   − 𝑏 ≤  휀 +  𝜉𝑖  , 

𝑤 ∗ 𝑥𝑖  +  𝑏 − 𝑦𝑖 ≤  휀 +  ξ𝑖
∗ , 

    and 𝜉𝑖  , ξ𝑖
∗  ≥  0                (19) 

, where w is a weight vector, b is a bias value, (𝑥𝑖  , 𝑦𝑖) is a training sample and its target 

value, 𝜉𝑖 and ξ𝑖
∗
  are so-called “slack variables” enabling the model to allow deviations 

between the model output and the target value of training examples larger than ε, C is a 

parameter controlling the extent to which such deviations are allowed and n is the total 

number of training samples. Equation (18) is called the primal objective, and its variables 

primal variables. Introduction of Lagrange multipliers α and 𝛼∗ and solving for the 

coordinates of a saddle point allow us to reformulate the primal objective and its constraints 

in the following way :  

𝑚𝑎𝑥α∗  [ −ε ∑ ( α𝑖
∗ +  α𝑖)𝑛

𝑖=1 + ∑ ( α𝑖
∗ −  α𝑖)𝑦𝑖

𝑛
𝑖=1 −

1

2
∑  ( α𝑖

∗  − α𝑖)( α𝑗
∗  − α𝑗)(𝑥𝑖  ·  𝑥𝑗)𝑛

𝑖,𝑗=1  ]  (20) 

subject to constraints: 

0 ≤  𝛼𝑖
(∗)  ≤  𝐶 

       ∑ ( α𝑖
∗ −  α𝑖) = 0𝑛

𝑖=1     (21) 

 Here, 𝛼𝑖
(∗)  is used to denote both α𝑖 and α𝑖

∗, and α∗ to denote the vectors containing all 

α𝑖
∗values. Equation (20) is called the dual objective. The second constraint in (21) is called 

the bias constraint. Once the α and α∗ maximizing the dual objective are found, a linear 

regression SVM determines its output using:  

𝑓(𝑥)  = ∑  ( α𝑖
∗  −  α𝑖)(𝑥𝑖  ·  x)  +  b𝑛

𝑖=1    (22) 

The presented SVR model assumes that the relation between 𝑥𝑖 and 𝑦𝑖 is a linear one. It is 

also possible to make the SVR model nonlinear. This could be achieved by preprocessing the 

training patterns 𝑥𝑖 by a map Ψ : X → F into some higher-dimensional feature space F and 

then applying the standard SVR algorithm (Schölkopf & Smola, 2002). However, such an 

approach can become computationally infeasible. Since both the dual objective (20) and the 

regression estimate (22) only depend on inner products between patterns 𝑥𝑖  , it suffices to 

know 𝐾(𝑥𝑖 , 𝑥) =  𝛹(𝑥𝑖)  ∗  𝛹(𝑥), rather than Ψ explicitly. It is this kernel function K(·, ·) 

that is often used in SVR to make the algorithm nonlinear. A number of kernel functions are 

widely used, including polynomial functions, radial basis functions and sigmoidal functions 

(Wiering, et al., 2013). 

For this application, the radial basis function was used as kernel, due to its enhanced ability 

of mapping feature vectors according to their similarity, as determined by their Euclidean 

distance. Other Kernels such as the linear were producing large errors, while the polynomial 

Kernels were computationally much more expensive.  

𝐾(𝑥, 𝑥𝑖) = exp (−
||𝑥−𝑥𝑖||

2

2𝜎2
)  (23) 
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, where ||𝑥 − 𝑥𝑖||
2
 is the Euclidean distance between the two feature vectors and 𝜎 is a free 

parameter. 

 

The SVM generalization performance (estimation accuracy) depends on a good setting of 

meta-parameters parameters C, ε and the kernel parameters. The problem of optimal 

parameter selection is further complicated by the fact that SVM model complexity (and hence 

its generalization performance) depends on all three parameters. Existing software 

implementations of SVM regression usually treat SVM meta-parameters as user-defined 

inputs. Selecting a particular kernel type and kernel function parameters is usually based on 

application-domain knowledge and also should reflect distribution of input (x) values of the 

training data. 

3.3.5  Comparison between the different techniques 

In order to compare the different techniques presented, the following criteria will be taken 

into consideration: prediction accuracy, availability of data and computation time. Regarding 

the accuracy of predictions, multilinear regression can give very good results when the 

relationship between input variables and output is linear. However, with the weather 

conditions and the possible changes in speed along the route of a voyage, the relationship 

between input variables and output is not linear for the case at hand. On the other hand, 

neural networks can depict non-linear functions between input and output variables, due to 

their ability to use multiple neurons for their calculations. Their drawback, is that they require 

abundance of data availability in order to train and generalize sufficiently (Haykin, 2008). 

Also, their computational time is significantly increased compared to multilinear regression. 

For the case at hand, enough data was available for training a neural network (600 voyages 

with 4000 observations per voyage were used) and therefore this is the method that was 

implemented for the model-developing part. Support vector machines still need a lot of data 

to make generalizations, but the classification of data according to similarity enables them to 

generalize better than neural networks, given a limited training dataset (Wiering, et al., 2013). 

Also, their training time is significantly lower than neural networks. Their drawback is that 

they may not be able to perform well in really complex problems, such as image and video 

processing. There, given again abundance of data, neural networks can perform better by 

increasing the number of layers. However, for this particular case such limitation does not 

apply, as it will be shown in the results section (chapter 5). 

Area of comparison 
Multilinear 

Regression 
Neural Networks Support Vector Machines 

Data Needed Low Very high high 

Training Time Low Very high medium 

Ability to depict 

complex (non-linear) 

functions 

Low Very high high 

Table 1: Comparison between different machine learning techniques. Support vector 

machines and Neural Networks qualify for addressing the case of ETA prediction 
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3.4  Literature gap and scientific contribution 

The scientific contribution of the research undertaken here will be to address the knowledge 

gap regarding containership arrival uncertainty at the Port of Rotterdam. As it has been 

concluded in the literature review, there is a lot of room for improvement in the estimation of 

time and cargo arrivals of ships at container terminals, thus hindering planning activities for 

port operators and the stakeholders involved in the process of container transport. More 

specifically, the model that has been developed so far accounts for a 24-hour horizon for 

prediction of a ship arrival, without taking into account weather predictions (Fancello, Pani, 

Pisano, Serra, Zuddas, & Fadda, 2011). Therefore, it only accounts for the port-related 

activities regarding the delay of a ship’s arrival. The scope of the current research will be to 

expand the time horizon to middle range predictions (5 days before arrival to port), by 

manipulating big data and creating value for container terminals, in order to improve their 

planning activities. 

 

 

Overview of Chapter 3 

This chapter presented the relevant literature for the research undertaken. In chapter 3.1 the 

previous work on predicting vessel arrivals at a port was presented, alongside with practical 

implications that such predictions can have. Through this approach, the second sub-question 

that was posed in the beginning, regarding the factors affecting the sailing speed of the 

vessels was addressed. It was found that the nominal speed of the vessel (based on the power 

of the ship’s engine in rounds per minute), the impact of the wind on the sailing speed, as 

well as the impact from currents and waves are important variables affecting the speed of the 

vessel.  However, changes in the engine power during a voyage, render it rather difficult to 

assess the ETA of the vessel through a deterministic approach based on physics. Then, 

chapter 3.2 presented the available machine learning techniques, from which neural 

networks and support vector machines were chosen as capable of addressing the problem of 

ETA prediction. The chapter ends with the literature gap identification and scientific 

contribution of the research.  
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Chapter 4 – Methodology of ETA Model Development 

Having analyzed the benefits of an ETA information tool, this chapter proceeds to describe in 

detail the methodology followed for developing an ETA prediction model, based on neural 

networks and support vector machines. In the beginning the data that were selected for the 

purpose of the research will be presented, followed by the choices made in implementing the 

prediction models. 

4.1  Description of data used 

The data that were used for the purpose of the thesis were coming from two sources: the AIS 

(Automatic Identification System)  data and data regarding numerical weather predictions. 

AIS is a mandatory system for ships above 300 gross tonnage that is sent between ships and 

between a ship and a shore-based station (TNO, 2015). The information sent from the AIS 

messages is updated frequently, every few minutes, and for every ship provides voyage 

related information including the ETA of the captain and the destination, as well as dynamic 

information regarding the vessel’s speed, course and position. The dynamic information is 

obtained from the technical equipment of the ship (e.g. GPS) and is quite reliable. Voyage 

related information on the other hand, has to be input manually for every voyage, something 

that is not always done properly (TNO, 2015).  

Numerical weather predictions and currents were acquired from the ECMWF ( 

European Centre for Medium-Range Weather Forecasts) and NOAA (National Oceanic and 

Atmospheric Administration) models respectively. From the ECMWF model the weather 

magnitude and direction was used, whereas the currents and waves , both in magnitude and 

direction, were obtained from NOAA. These data were provided to TNO by the company 

Hermess, which is specialized in handling metocean and weather data. The weather and 

currents data were mapped, based on time and location, to the voyages under examination. 

The data that were acquired for the present case were accounting for the voyages following 

the Asia – Rotterdam route, without previously unloading in other western European ports, 

spanning over 2015 and the first two months of 2016. In total, 600 voyages were used, with 

each one of them sending observations every few minutes. These include the total number of 

ships that followed the Asia - Rotterdam route directly during the specified time period. The 

total number of containership port calls in Rotterdam, including empty vessels or vessels for 

maintenance in 2015, was 7398 (Port of Rotterdam, 2016). Therefore, the voyages that were 

examined are representative of the population, in order to generalize. However, although 

there were a lot of observations per voyage, the total number of voyages is relatively low for 

applying machine learning techniques, since the latter require abundance of data. In order to 

cope with this fact, the size of the neural networks and support vector machines had to be 

kept to a minimum, by including a low number of variables for the purpose of estimating the 

ETA of the vessels.  
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4.2  Data pre-processing 

From the data available that were briefly presented in the first chapter of the report, of 

significant importance was the pre-processing stage in order to construct the input variables 

that would be used for predicting the estimated time of arrival for the vessels at the Port of 

Rotterdam. Due to its significance, the data pre-processing step will be analyzed here.  

Two sources of data were used, one coming from the AIS (Automatic Identification System) 

data and the other from data about weather conditions. The AIS data contain information 

regarding the past voyages of the different types of ships (De Boer, 2010). At frequent time 

observations the GPS signal of the ships, latitude and longitude, are recorded, as well as the 

speed, draught and direction towards where the vessel is sailing (Loptien & Axell, 2014). The 

weather data on the other hand were obtained from Hermess, a company that provides 

metocean data, and contained information about the wind, current and waves in magnitude 

and direction. These two data sources were combined in order to form the input vector, a set 

of explanatory variables, based on which predictions regarding the ETA of containerships 

were performed. 

The following table presents a list of the input variables that were used for predicting the 

ETA of container vessels: 

AIS Data Weather Data 

Latitude    (degrees) Current U-Component (m/s) 

 

Longitude (degrees) Current V-Component  (m/s) 

 

Distance to be covered        (km) Wind U component (m/s) 

Current Speed of the vessel (km/h) Wind V component (m/s) 

Change in speed over the last 3 hours (km/h) Peak wave period     (s) 

Average speed based on last 12 hours (km/h) Peak wave direction (degrees). 

Time used for calculating the average speed (hours) Significant wave height (m) 

Length of the ship  (meters)  

Breadth of the ship (meters)  

ETA of the ship’s agent (number of days)  

Table 2: Data used as input variables for predicting the ETA of sea-vessels  

 

The choice of variables was based on a selection of variables identified to be relevant in 

estimating the ETA of containerships to a port. Most of these variables were identified as 

relevant in the literature review (chapter 2). Regarding the variable “Time used for 

calculating the average speed”, this served as an indication of how much the neural network 

or the support vector machine can “trust” the value of the average speed, since in some cases 

the data used for calculating this average speed were much less than 12 hours. For instance, 

for the ships giving their first signal at Gibraltar, the time used for calculating their average 
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speed was very close to zero. In these cases, the neural network or the support vector machine 

would realize that less weight should be given to the value of the average speed that was 

presented. 

It should be mentioned here that the speeds that were used, were the observed speeds over 

ground. This means that the observed speed was a function of the ship’s engine power at the 

moment and the currents/weather conditions in the area. Therefore an interpretation of the 

weather conditions is already included in the speed information. The rest of the weather 

variables for the route ahead of the vessel until the Port of Rotterdam were used to serve as an 

indication regarding the captain’s driving behavior along the route. 

4.2.1 Challenges presented and solutions 

The first challenge towards the ETA predictions of sea-vessels was the large volatility 

presented in the arrival times of the different voyages. The following figure shows the 

distribution of the arrival time of voyages in 2015, from Gibraltar to the Port of Rotterdam. 

 

Figure 6: Distribution of vessel arrival times from Gibraltar to the Port of Rotterdam for the 

historical data of 2015.  

As it can be noticed, there is significant variation in vessel arrival times for the different 

voyages, ranging from 2,5 days until 5,8 days. The majority of the voyages is positioned 

within a time-range of 3 to 4 days, however this is also a big interval in itself. Therefore, the 

ETA prediction methods that were developed had to include a set of variables that can 

capture the specific circumstances under which each voyage was taking place, in order to 

produce an accurate ETA prediction. 

During the data pre-processing stage, in order to build the input vector that would serve as the 

base for making ETA predictions, several challenges were presented. The majority of those 
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were stemming from the fact that, although there were a lot of observations per voyage (every 

few minutes per voyage), there was a limited number of voyages available. The dataset was 

spanning over 2015 and the first two months of 2016, accounting for 600 voyages in total 

following the route Asia – Rotterdam. 

Due to the aforementioned reason, the number of variables used for making ETA predictions 

had to be kept to a minimum, otherwise there was high risk of overfitting the data. Overfitting 

refers to the case when there is low error during the training phase of a neural network or a 

SVM, but high generalization error (Heaton, 2008). This can happen because during the 

training phase random patterns of the data are recognized and not the ones that actually have 

high importance for estimating the ETA. 

In order to keep the size of the neural network and support vector machine relatively small, a 

careful interpretation of the weather variables for the route ahead of the vessel had to be 

determined. The following section (4.2.2) will present the way in which the weather was 

interpreted in such a way to account for the limitation of keeping a small size for support 

vector machines and neural networks. 

 

4.2.2  Weather Interpretation – Clustering Approach 

As mentioned above, in order to overcome the limitation of data availability, the following 

weather interpretation was undertaken: 4 weather checkpoints were defined along the route, 

positioned approximately 12-16 hours apart from each other and at key positions where 

significant changes of the speed of the vessels were observed. The weather variables were 

selected for each voyage in those regions, as an indication of what weather conditions are to 

be expected, with the aim of determining the captain’s response and driving behavior. That 

way, 28 weather variables were selected (7 weather variables for each of the 4 regions). 

However, since they are still too many compared to the position data that are more important 

for estimating the ETA of the vessel, the data were clustered in 5 different weather clusters. 

Therefore, an indication of weather cluster 1 would mean favorable weather conditions for 

the journey ahead, while a weather cluster of 5 would mean adverse weather conditions. The 

following figure presents  the areas that were chosen as weather checkpoints. 
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Figure 7: Representation of a voyage in the examined route. With purple are the areas that 

were selected as weather checkpoints. (source: Hermess website) 

For clustering the weather variables into 5 distinct classes, the k-means algorithm was used. 

The k-means is an unsupervised learning algorithm for classifying data types in k different 

classes, so as similar inputs are classified in the same class. As a metric for the similarity 

between inputs, the Euclidean distance is used ||𝑋 − 𝑋𝑐𝑒𝑛𝑡𝑟𝑜𝑖𝑑||. The algorithm is initialized 

with k vectors from the dataset serving as centroids. At each iteration, every input from the 

dataset is categorized in one of the k classes, based on which centroid has the lowest 

Euclidean distance from the presented example. Then the centroids are updated to be the 

average of all the examples that belong to the specific class. The process repeats until 

convergence of all the examples in their respective classes. The following pseudocode 

presents how the algorithm works: 

Input: 

K (number of clusters in the data) 

Training set {x
1
, x

2
, x

3
 ..., x

m
}  

Randomly initialize K cluster centroids as {μ1, μ2, μ3 ... μK} 

 Repeat  { 

For i=1 to m 

 𝑐(𝑖) = 𝑚𝑖𝑛𝑘 ||𝑥(𝑖) − 𝜇𝑘||2   (24) 

For k=1 to K 

 𝜇𝑘 = 𝑎𝑣𝑒𝑟𝑎𝑔𝑒 𝑜𝑓 𝑝𝑜𝑖𝑛𝑡𝑠 𝑎𝑠𝑠𝑖𝑔𝑛𝑒𝑑 𝑡𝑜 𝑐𝑙𝑢𝑠𝑡𝑒𝑟 𝑘 

} 
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,where K is the number of weather classes chosen (5 in the case at hand) 

μ1, μ2, μ3 ... μK : the centroids of the clusters 

m: the total number of examples (number of voyages) 

𝑥(𝑖): the training example i (input vector for voyage i) 

𝑐(𝑖): the cluster in which the training example i is assigned at each iteration 

Following the approach described, the weather data selected from the 4 weather checkpoints 

along the vessel route were clustered based on similarity in 5 different weather classes. The 

number of classes (5 in this case) was chosen based on heuristics, since an automatic method 

for choosing the number of clusters does not exist and it usually depends on the data or the 

reason for carrying out the clustering (Coates & NG, 2012). A heuristic approach is based on 

computing the cost  

𝐽 =
1

𝑚
∑ ||𝑥(𝑖) − 𝜇

𝑐(𝑖)||
2𝑚

𝑖=1  (25) 

for different number of classes and observe after which number of classes its rate of decrease 

lowers significantly. The graph for this this case is presented in the appendix (Appendix A). 

4.3 Neural Network Approach 

In chapter three a brief overview of the mathematic representation of neural networks was 

presented alongside with the reasons that neural networks were chosen for the purpose of 

estimating the ETA of sea-vessels. In this section the network architecture selected for the 

case at hand will be presented,  highlighting the choices regarding the input variables and 

network parameters. Results of the neural network approach for estimating the ETA of 

containerships are presented in section 5. 

There are four key decisions that have to be made regarding the implementation of neural 

networks: 

 The first has to do with the inputs to the neural network. 

 The number of hidden layers of the neural network 

 The number of neurons in the hidden layer(s) 

 The number of outputs of the neural network 

The output of the neural network is determined by the forecasting problem, which in this case 

is predicting the ETA of containerships. Therefore, the output layer of the neural network 

consists of a single node, which gives as output the ETA of the vessel. The goal is for the 

output to be as close as possible to the Actual Time of Arrival (ATA). 

The inputs to the neural network are the AIS data for each voyage, as presented in Table 1, 

alongside with the weather variable after clustering. Therefore, there are 12 input variables 

for the neural network, based on which the predictions regarding the ETA are made. 
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Regarding the number of hidden layers, for the majority of the problems, one hidden layer is 

sufficient for achieving good results (Heaton, 2008). The situations in which performance 

improves with deeper neural networks (2
nd

, 3
rd

 layer and so on) are very small. However, 

deeper neural networks can represent functions of any kind and shape, provided there is a 

sufficiently large dataset on which they can be trained (Heaton, 2008). For the specific kind 

of problem, the most crucial variables are clearly distinguishable, the set of speeds selected 

for the vessel, its distance to the destination and the Agent’s ETA. Therefore, it can be 

classified as a problem where one hidden layer is sufficient for finding the relationship 

between the input and output variables. This, coupled with the fact that the total number of 

voyages on which the neural network can be trained are limited (total of 600 voyages), led to 

the choice of using one hidden layer for the case at hand. 

Finally, the number of neurons in the hidden layer is crucial. Using too few neurons can 

result in underfitting, a case when there are too few neurons in the hidden layer for 

recognizing the patterns hidden in the dataset. On the other hand, using too many neurons for 

the problem at hand, may result in overfitting, a case when the neural network has more 

information capacity than that contained in the training set and therefore, the neurons are not 

trained sufficiently. This results in low training errors, but high errors when trying to 

generalize in cases that the neural network has not encountered before. There are few 

heuristics available for selecting the optimal number of neurons, stating that usually that 

number should be between the input and the output size of the network (Heaton, 2008), so 

between 12 and 1 for the case at hand. Different network sizes were simulated with the aim of 

selecting the optimal number of neurons. The one that achieved the lowest error in the 

validation set contained 7 neurons in the hidden layer. The simulations for selecting the 

optimal number of neurons are included in the appendix (Appendix B).  

Based on the above set of choices, the following figure shows the neural network architecture 

that was used for tackling the problem of ETA predictions for sea vessels: 
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Figure 8:Neural Network architecture for ETA prediction (created by author) 

The data that were used for training and validating the neural network span over 2015 and the 

first two months of 2016. In total, the dataset consists of 600 voyages, with each one having 

sent approximately 4000 observations (AIS data) along its route. Thirteen positions within 

frequent time intervals of 6-8  hours were chosen along the route of each voyage. From each 

of those positions, a prediction regarding the ETA of the containership was performed. 

Therefore, predictions regarding the ETA of sea-vessels were performed on a rolling time 

horizon along the route from west of Sicily until the Port of Rotterdam. In the beginning of 

the route relatively few ships were available in the dataset and more were being added when 

moving closer to the Port of Rotterdam. The total number of examples on which the network 

was trained and validated was 5380. There are three distinct datasets that are used when using 

a neural network for making predictions: 

 The training set (65% of the total data) 

 The validation set (15% of the total data) 

 The testing set  (20% of the total data) 

The selection of how the voyages were distributed among the different sets was random, to 

avoid having a bias due to seasonality effects. For instance, during the winter, ships may 

attain in general lower speeds due to weather conditions. Assigning the voyages in random 

order to the training, validation and testing set, such biases were eliminated. 
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The Training phase 

During the training phase, examples of the input vector are presented to the neural network 

with the aim of training it in order to make predictions. The aim of this supervised learning 

phase is to present the set of inputs (position and weather data) alongside with the respective 

outputs (actual times of arrival) in order to find the optimal weights connecting the neural 

network layers (Haykin, 2008). This happens through the process of back-propagation that 

was presented in chapter 2. 

The validation phase 

The validation set is used for tuning the network parameters. It is separate from the training 

set and is making use of an error metric, usually mean absolute error in numerical 

predictions, to determine which set of parameters is optimal (Haykin, 2008). For each set of 

parameters (number of neurons in hidden layer and regularization parameter) a neural 

network is trained on the training set and then validated on the validation set. There, the 

neural network or SVM is presented with new inputs it has not encountered before and 

predictions are made. The neural network or SVM that achieves minimization of the error 

metric (mean absolute error) is the one that is selected. 

The testing phase 

During the testing phase the real error of the neural network or the SVM is determined. A 

new set of inputs is presented to the model and predictions are made. The mean absolute error 

from the actual time of arrivals is the real error that the model has. The difference between 

the testing and the validation set is that the validation error is biased, since effort has been put 

into minimizing it by tuning the model parameters (Heaton, 2008). On the other hand, no 

optimization is carried out on the test set, which is only presented once to the neural network 

or SVM to determine the real accuracy of predictions. Therefore, the testing error is usually a 

bit higher than that of the validation set. 

 

4.4 Support Vector Machines Approach 

The second approach followed for making ETA predictions was through the usage of support 

vector machines. Their mathematical representation was mainly described in chapter 2. By 

using the radial basis function kernel the equations are as follows: 

 

𝑚𝑎𝑥α∗  [ −ε ∑ ( α𝑖
∗ +  α𝑖)𝑛

𝑖=1 + ∑ ( α𝑖
∗ −  α𝑖)𝑦𝑖

𝑛
𝑖=1 −

1

2
∑  ( α𝑖

∗  − α𝑖)( α𝑗
∗  − α𝑗)𝐾(𝑥, 𝑥𝑖)𝑛

𝑖,𝑗=1  ]  (26) 

subject to constraints: 

0 ≤  𝛼𝑖
(∗)  ≤  𝐶 

       ∑ ( α𝑖
∗ −  α𝑖) = 0𝑛

𝑖=1     (27) 
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 Here, 𝛼𝑖
(∗)  is used to denote both α𝑖 and α𝑖

∗, and α∗ to denote the vectors containing all 

α𝑖
∗values. Once the α and α∗ maximizing the dual objective are found, a regression SVM 

determines its output using:  

𝑓(𝑥)  = ∑  ( α𝑖
∗  −  α𝑖)𝐾(𝑥, 𝑥𝑖)𝑛

𝑖=1  (28) 
 

Where 𝐾(𝑥, 𝑥𝑖) is the radial basis function kernel given by the formula: 

𝐾(𝑥, 𝑥𝑖) = exp (−
||𝑥−𝑥𝑖||

2

2𝜎2
)  (29) 

For the specific case at hand 𝑥𝑖 is the input vector for each voyage, containing the same 

inputs as the ones used for the neural network training. The actual time of arrival is 𝑦𝑖, and it 

is the value that the model is trying to forecast 

Of significant importance when training SVMs is the parameter selection process. 

Parameter C determines the trade-off between the model complexity (flatness) and the degree 

to which deviations larger than ε are tolerated in optimization formulation for example, if C is 

too large (infinity), then the objective is to minimize the empirical risk only, without regard 

to model complexity part in the optimization formulation (Chapelle & Vapnik, 1999). 

  

Parameter ε controls the width of the ε-insensitive zone, used to fit the training data. The 

value of ε can affect the number of support vectors used to construct the regression function. 

The bigger ε, the fewer support vectors are selected. On the other hand, bigger ε-values 

results in more ‘flat’ estimates. Hence, both C and ε-values affect model complexity, but in a 

different way (Chapelle & Vapnik, 1999). 

 

The same testing, validation and training sets were used in the case of SVMs, as described in 

the Neural Network section. The parameter selection process takes place during the 

validation phase, where the parameters that minimize the error over the validation set are 

selected as optimal (Appendix A). The real-world error of the model is determined on the 

testing set. 

4.5  Error Metrics used for evaluating ETA predictions 

In this section the two error metrics that were used for comparing the performance of neural 

networks and support vector machines , both between them and to the error of the ship’s 

agent ETA, will be presented.  

The error metrics used for evaluating the performance of the predictions were the Mean 

Absolute Error (MAE) and the Root Mean Squared Error (RMSE). The reason for choosing 

these error metrics are that they can give an indication of the average error in hours (through 

MAE) and the variance of the prediction errors (through RMSE), therefore enabling a quick 

evaluation of the prediction results. The error metrics were expressed in hours, something 

which gives a more accurate picture than when compared to percentage errors (such as 

MAPE). That is because for the long time horizon (120 hours away from the port) prediction 

errors of 5 hours correspond to a 4% deviation, whereas  for the short time horizon (20 hours 

away from the port) an error of 3 hours corresponds to a 15% percentage error. Therefore, if 
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percentage errors were chosen, they could lead to a misleading picture regarding the ETA 

predictions, due to the different time horizons examined. 

4.5.1  Mean Absolute Error (MAE) 

The mean absolute error (MAE) is an error metric, commonly used in statistics, to measure 

how close forecasts or predictions are to the eventual outcomes. As its name suggests, it is the 

average of all the average forecasting errors and is on the same scale as the data being 

measured. This implies, that for this case it indicates the number of hours that on average the 

predictions were wrong from the actual time of arrival of the vessels. 

The mean absolute error is given by the following formula: 

MAE =
1

𝑛
∑ |𝑓𝑖 − 𝑦𝑖|𝑛

𝑖=1 =
1

𝑛
∑ |𝐸𝑇𝐴𝑖 − 𝐴𝑇𝐴𝑖|𝑛

𝑖=1  (30) 

, where fi: the forecasted value (in this case the Estimated time of Arrival ETA) 

 yi : the value that we want to predict (in this case the Actual Time of Arrival ATA) 

 n: The total number of observations (in this case the number of voyages) 

4.5.2 Root Mean Squared Error (RMSE) 

The root mean squared error (RMSE) is a very common error metric in statistics when it 

comes to evaluating  numerical predictions. Compared to the similar Mean Absolute Error, 

RMSE amplifies and severely punishes large errors. It therefore serves as an indicator for the 

variance of the prediction errors. The formula used for calculating the RMSE is as follows: 

𝑅𝑀𝑆𝐸 = √
1

𝑛
∑ (𝑓𝑖 − 𝑦𝑖)2𝑛

𝑖=1 = √
1

𝑛
∑ (𝐸𝑇𝐴𝑖 − 𝐴𝑇𝐴𝑖)2𝑛

𝑖=1  (31) 

, where fi: the forecasted value (in this case the Estimated time of Arrival ETA) 

 yi : the value that we want to predict (in this case the Actual Time of Arrival ATA) 

 n: The total number of observations (in this case the number of voyages) 

The aforementioned error metrics were used as a guideline for comparing the different 

methods used for predicting vessel arrivals at the Port of Rotterdam. In general, lower errors 

signify a better performance of the technique used. 
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Overview of Chapter 4 

In this section the methodology for tackling the problem of making ETA predictions was 

presented. The following diagram summarizes the steps undertaken: 

 

Figure 9: Schematic overview of the methodology followed for predicting the ETA of 

containerships 

After collecting the positional and weather data of the voyages of the past year, a pre-

processing step took place to select the relevant information and build the input vector, a set 

of variables relevant for predicting the ETA. Then, the pre-processed data were provided as 

input for the training of two different machine learning algorithms, the support vector 

machines and the neural networks. The results that were obtained during the testing phase 

were compared to those of the current situation (based on the ship’s agent ETA) and between 

themselves, according to the error metrics defined in chapter 4.4, the mean absolute error 

and the root mean squared error. 
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Chapter 5 – Results of simulation 

The previous chapter described the methodology followed for developing neural network 

models and support vector machines in order to predict the ETA of containerships at the Port 

of Rotterdam, based on historical data. This chapter will present the results of the two 

techniques, under different scenarios. The performance of the algorithms will be assessed on 

two error metrics, the mean absolute error of predictions and the root mean squared error. 

5.1 ETA predictions using Neural Networks and SVMs 

Having presented the methodology followed for making ETA predictions on a rolling time 

horizon, the respective results are presented. The following figures show the mean absolute 

error (MAE) and the root mean squared error (RMSE) in hours for the Ship’s Agent 

predictions, the neural network and the support vector machine. The error is evaluated in 

frequent time intervals (every 6-8 hours) from Tunisia, which on average is positioned 120 

hours away from the Port of Rotterdam until approximately 20 hours from the port. Another 

point of reference is Gibraltar which is positioned on average 80 hours from the Port of 

Rotterdam. 

 

 

Figure 9:  Mean absolute error on ETA predictions for Ship Agent, SVMs and Neural 

Networks – clustered weather variable approach 
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Figure 10:  RMSE on ETA predictions for Ship Agent, SVMs and Neural Networks – 

clustered weather variable approach 

 

As it can be noticed in the previous figures, both the SVMs and the Neural Network give 

more accurate predictions compared to the current situation, that is based on the ETA of the 

ship’s agent. Furthermore, the SVM outperforms the Neural Network for every point in the 

time-horizon examined. The area where the predictions are significantly improved is between 

80 and 120 hours away from the port of Rotterdam. For instance in the region 100-120 hours 

from Rotterdam the mean absolute error is around 5 hours for the SVM, while the ship’s 

agent error is off by more than 9 hours. There is also significant improvement in the variance, 

as depicted by the rmse error metric. The regions between 80 and 40 hours away from the 

Port are characterized by medium improvement on the MAE, but still large improvements in 

the variance. The areas closest to the port of Rotterdam provide smaller improvement in the 

accuracy of predictions. That is because uncertainty in those areas is reduced and also, the 

ship agents update their ETA, since at that point information is becoming important for 

container terminals and the Port of Rotterdam. 

5.2  Sensitivity analysis on Input variables 

In order to assess the impact of the ETA of the ship’s agent variable and the weather impact 

on the models, the neural network and SVMs were also trained and validated without those 

variables. The results can be seen in the figures below, where the first one presents the results 

when the ship’s agent ETA was not given as an input to the Neural Network and SVM and 

the second one presents the effect when not using weather variables. 

 

0 20 40 60 80 100 120
4

6

8

10

12

14

16

18

20

22

24
Root Mean Squared Error - Clustered weather

Hours to Port of Rotterdam

R
M

S
E

 (
h

o
u

rs
)

 

 

Ship's Agent

SVM

Neural Network



56 
 

 

Figure 11:  Mean absolute errors on ETA predictions for Ship Agent, SVMs and Neural 

Networks – comparison between initial case and model without ETA variable 
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Figure 12:  RMSE on ETA predictions for Ship Agent, SVMs and Neural Networks – 

comparison between initial case and model without ETA variable 

 

As it can be observed in the graphs above, the Mean absolute error increases significantly 

both for the SVM and neural network when the ETA of the ship’s agent is not provided as an 

input to the models. This is to be expected, since the ETA of the ship’s agent gives an 

indication regarding the captain’s intentions of how fast he is planning to travel the remaining 

distance until the Port of Rotterdam. This indication cannot be extracted from the other 

features of the input vector. However, the error for the regions positioned above 100 hours 

from the Port of Rotterdam does not increase by the same margin. This is because the ETA of 

the ship’s agent for such distances presents significant errors and thus the models give less 

weight to it. One implication of this is that it is possible to give ETA predictions, through 

SVMs or Neural Networks, even when the ship agent has not provided an Estimated Time of 

Arrival. This can be the case of when trying to expand the time horizon beyond 5 days from 

arrival at the port. This deduction is reinforced by the fact that the root mean squared error is 

not affected significantly and remains much better than the respective error of the ship’s 

agent. 
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Figure 13:  Mean absolute errors on ETA predictions for Ship Agent, SVMs and Neural 

Networks – comparison between initial case and model without weather variables 

 

Figure 14:  RMSE on ETA predictions for Ship Agent, SVMs and Neural Networks – 

comparison between initial case and model without weather variables 
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From the figures above it can be deducted that the proposed interpretation of weather has not 

an impact on predicting the Estimated Time of Arrival of sea-vessels, since the errors do not 

change in the case of not having a weather feature, compared to the initial case. This can be 

attributed to two factors. Firstly, the speeds that have been used, as obtained from the AIS 

data, are speeds over ground. This means that they already contain an interpretation of the 

currents and weather conditions in the area. More specifically, the speed over ground is a 

function of the engine power with which the ship is currently operating (in rounds per 

minute) and the currents/weather conditions in the area. Moreover, the captains have a 

deadline for final arrival at the Port and failing to meet the deadline will result in penalty 

costs. They also know that if their time of arrival is different than the ETA they have 

provided to the port, this may result in increased waiting time, because their berthing place 

may be occupied by another vessel. Therefore, their driving behavior is influenced mainly by 

the deadline for transporting the goods and not by the weather conditions. This means that 

even if the weather conditions are unfavorable, they will increase the engine power of the 

vessel’s speed in order to arrive in time. That is why, a very common pattern that was 

observed in the data was speeding up in the initial leg, and then, if the deadline could easily 

be met, slowing down for the remainder of the route. This means that weather conditions 

definitely have a huge impact on the ship’s fuel consumption, however, their impact on the 

time of arrival is bounded due to the ability of the captains to change the engine power of the 

vessel.  

Last but not least, the interpretation of the weather conditions, as done for the neural network 

and SVM model, is applicable to the areas before Gibraltar, so more than 80 hours away from 

the Port of Rotterdam. As a ship moves ahead of a selected weather checkpoint along the 

route, moving closer to the port, the influence of the weather conditions becomes of lesser 

importance. Since the number of observations increases as the ships move closer to the port, 

this creates a lot of noise for the neural network and SVM, so they tend to disregard the 

weather variable. In order to overcome this limitation, different neural networks and SVMs 

have to be used for different areas. That way, for the areas that are more than 80 hours away 

from the Port of Rotterdam, a different model will be used than for the areas that are closer. 

This approach yields the best results and is presented at the end of the current chapter (section 

5.3). 

The next simulation was without both the ETA of the ship’s agent and the weather variables 

as input to the model. That way, it can be assessed whether the captain’s ETA takes into 

account the weather conditions ahead of the route. The results are presented below: 
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Figure 15:  Mean absolute errors on ETA predictions for Ship Agent, SVMs and Neural 

Networks – comparison between initial case and model without weather and ETA variables 

Figure 16:  RMSE on ETA predictions for Ship Agent, SVMs and Neural Networks – 

comparison between initial case and model without weather and ETA variables 
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In general, it can be noticed that the errors of the above graphs are very similar to those 

where only the ETA variable was missing. This was to be expected, since that variable is of 

significant importance for having an indication of the captain’s intentions regarding the 

voyage. What is interesting to note, is that when removing both variables, compared to only 

without ETA, the errors below the 60 hour to the port region are reduced a bit. This is 

because, as mentioned earlier the weather interpretation does not have an influence on those 

regions. On the contrary, when removing both variables the error in the regions above 100 

hours increased by half an hour (always compared to Figure 11). This means that on the 

absence of captain’s ETA the weather interpretation has some influence on those areas in 

estimating the time of ship arrival at the Port.  

The final simulation that was attempted, was to include the raw weather data obtained from 

the weather checkpoints, without any clustering preceding them. What can be deduced from 

the results presented below, is that the raw weather data did not have an influence on the 

results, since the errors with the clustered approach and with the raw weather data did not 

differ significantly. In fact, in the areas close to the Port (below 60 hours) the errors with the 

raw weather data increased compared to the initial case. 

Figure 17:  Mean absolute errors on ETA predictions for Ship Agent, SVMs and Neural 

Networks – comparison between clustered weather model (initial case) and model with raw 

weather data 
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Figure 18:  RMSE on ETA predictions for Ship Agent, SVMs and Neural Networks – 

comparison between clustered weather model (initial case) and model with raw weather data 

5.2.1 Insight into the neural network predictions 

In this section, an attempt towards understanding which variables, from those used for 

predicting the ETA, were mostly driving the predictions of the machine learning techniques. 

It has already been identified that the weather variables had minimal impact on making 

predictions regarding the estimated time of arrival for the sea-vessels at the Port of 

Rotterdam. On the other hand, it was found that the ETA of the ship’s agent was significantly 

reducing the error of the SVM and neural network, when provided as an input to the models. 

However, even on its absence as an input, acceptable predictions could still be made.  

Having these in mind, the following figure presents the weights assigned to the different 

inputs of the neural network, with the aim of getting an insight regarding which variables had 

the larger impact in shaping the predictions. It should be noted however, that this depiction of 

the weights assigned to the neural network can only serve as an indication regarding which 

variables were mainly driving the predictions. After all, there are two layers of weights 

involved in a neural network, which means that the importance of variables can change in the 

second layer. This is why neural networks are often characterized as “black boxes”. Also, a 

similar intuition regarding the predictions of the SVM is not feasible. However, due to the 

similar results of the two methods, it can be deducted that SVMs would most probably give 

approximately the same importance to the input variables as the neural networks. 
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Neuron 

Number 
Bias unit Latitude Longitude Distance 

Ship 

breadth 

Ship 

length 

Speed 

now 

change 

in speed 

average 

speed 

time used for 

calculating 

average 

speed 

weathe 

variable 

ETA of 

ship 

Agent 

Identifier 

for region 

1 -1,18 0,03 0,18 0,18 -0,07 -0,07 -0,20 -0,06 -0,11 0,07 0,04 0,21 -0,08 

2 -0,31 0,03 -0,01 0,21 -0,04 0,03 -0,03 -0,04 0,06 -0,03 0,00 0,26 -0,03 

3 -0,31 0,03 -0,01 0,21 -0,04 0,03 -0,03 -0,04 0,06 -0,03 0,00 0,26 -0,03 

4 -0,03 0,02 -0,08 0,21 0,00 0,05 -0,04 0,05 -0,07 -0,02 -0,01 0,26 -0,02 

5 0,31 -0,03 0,01 -0,21 0,04 -0,03 0,03 0,04 -0,06 0,03 0,00 -0,26 0,03 

6 -0,33 0,04 0,16 -0,22 0,01 -0,01 -0,03 -0,05 0,09 -0,03 0,01 -0,25 0,05 

7 0,14 -0,03 0,06 -0,21 0,01 -0,04 0,06 -0,04 0,04 0,03 0,01 -0,26 0,02 

Table 3: Weights assigned to the neural network, connecting the inputs and the hidden layer. The bias unit is an extra column of value one for 

each element, applied for statistical correction. 
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As it can be observed from Table 3, relatively high weights are placed on connecting the 

ETA of the ship agent (as expected) and the distance, to the neurons of the hidden layer. This 

is an indication that these variables were important in predicting the ETA of the sea-vessels 

to the Port of Rotterdam. Apart from that, some high weights can be noticed connecting the 

current and average speed of the vessel to the hidden layer, as well as the longitude of the 

vessel’s position. It can also be noticed that the weather variable has weights very close to 

zero, which means that it was considered of minor importance for making ETA predictions, 

something which is in alignment with the findings of the previous section. The bias unit is 

only used as a constant for applying a statistical correction, so no additional insight can be 

gained from that. The weights connecting the hidden layer to the output, provide no 

additional insight for understanding which variables drive the ETA predictions and is 

included in the Appendix for the purpose of completeness (Appendix A). 

 

5.3  Different Models for different geographic regions 

In order to further improve the predictions compared to the initial case and to better assess the 

weather impact interpretation for the different geographic areas on the route to Port of 

Rotterdam, different neural network and SVM models have been used for distinct geographic 

areas. To be more precise, 5 different SVM models and neural networks have been used. For 

the regions when a vessel has already passed a weather checkpoint, the variables in that 

weather checkpoint are excluded. That way in each prediction only the weather conditions 

ahead are taken into account. 

The following graphs present the results both for SVM and neural networks for the initial 

case and when multiple models have been used (with the dashed lines). 
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Figure 19: Mean absolute errors on ETA predictions for Ship Agent, SVMs and Neural 

Networks – comparison between initial case (normal lines) and case of using different 

learning algorithms for distinct regions (dashed lines) 

   
Figure 20: RMSE on ETA predictions for Ship Agent, SVMs and Neural Networks – 

comparison between initial case (normal lines) and case of using different learning 

algorithms for distinct regions (dashed lines) 
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As it can be noticed in the previous graphs, in the case when a different model is used for 

each region the mean absolute error is reduced. This can be attributed to the fact that there is 

less variance in the ETAs that each model is trying to predict, and thus, generalization 

becomes easier. It should be noted that if the dataset increases sufficiently, so if there were 

more voyages available for training the SVM and neural network, the errors of using 1 

SVM/Neural Network for the whole problem would be reduced to match the errors of when 

using multiple models for the different geographic areas. 

Furthermore, in every case the support vector machines outperform the neural networks, due 

to their ability to generalize better when there are relatively few data available for training. 

One final point to note is that for the cases where the vessels are positioned approximately 

110-120 hours from the port, the variance in the predictions with the SVM seem very high, 

compared to its performance in the other regions. This is mainly attributed to the fact that for 

those regions very few historical data on voyages were available in the dataset used. 

Therefore, some cases with big errors could be assigned to the testing set, causing a high 

variance in the prediction error for those initial points. 

Having experimented with different machine learning techniques and determined the 

influence of the input variables for making predictions the following observations can be 

made: 

 SVMs and Neural Networks achieve significantly better results in predicting the ETA 

of vessels positioned more than 60 hours away from the port of Rotterdam, compared 

to the current situation (ETA of ship’s agent) 

 SVMs outperform Neural Networks for the time horizon investigated 

 Having the ETA of the ship agent as input to the prediction algorithms, increases their 

performance substantially, since it gives an indication of the captain’s behavior 

 The weather information used for predicting the ETA of containerships was found to 

be of limited value, since the captains can change the engine power of the vessel to 

counter any adverse conditions. 

 

Overview of Chapter 5 

In this chapter the results obtained while using Neural Networks and support vector 

machines for predicting the ETA of containerships were presented. The two methods were 

compared to the ETA of the ship’s agent and found to be improving the current situation 

significantly. That way, the final sub-question, regarding the development of an ETA 

prediction model, was sufficiently addressed. Also, the value of the different input variables 

for making the predictions was investigated, with the ETA of the ship’s agent proving to 

improve the performance of the algorithms significantly. The following table presents an 

overview of the methods used and the results that they achieved. 
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 MAE (hours) RMSE (hours) 

Hours to Port of 

Rotterdam 
SVM 

Neural 

Networks 

Ship 

Agent 
SVM Neural Networks 

Ship 

Agent 

100-120 5,0 6,3 9,3 10,4 9,6 19,4 

80-100 5,2 5,5 7,4 9,2 8,2 16,0 

60-80 4,6 5,2 6,5 7,7 7,1 14,5 

40-60 4,2 4,5 5,2 6,9 6,5 9,8 

20-40 2,7 3,6 3,6 4,8 5,2 7,6 

Table 4: Overview of errors for the prediction methods used (SVMs, Neural Networks) 

compared to the current situation (Errors of ship Agent) 
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Chapter 6 - Practical implications of the results 

This chapter provides an interpretation of the results obtained in chapter 5 from the 

perspective of the different stakeholders involved in container transport. Special attention is 

given to the value of predictions depending on the time-horizon and accuracy. The benefit of 

the improved ETA predictions is quantified in section 6.2 for the container terminals. The 

next steps towards the realization of the proposed ETA information tool are described in 

section 6.3. 

6.1 Value of findings from the Stakeholder’s perspective 

From the results that have been obtained using support vector machines for estimating the 

ETA of containerships, it can be observed that the improvement is substantial in the regions 

that on average are positioned above 60 hours away from the port of Rotterdam. Moderate 

improvement is noticed in the regions from 60-40 hours to the port. For short distances from 

the Port of Rotterdam, the SVM errors are still better, but closer to the errors of the ship’s 

agent. This can signify the added value that the predictions can have for the different 

stakeholders involved in container transport.  

Due to the improvement in long time horizon predictions, the party that will mostly be 

benefited is the hinterland transportation side. The hinterland transportation parties, such as 

EGS are planning their schedule much in advance from arrival at the Port of Rotterdam. 

Every week, they have to decide on how much capacity to book for barge and rail. A 

deviation in the pre-allocated capacity from the actual cargo to be transported incurs 

additional costs. These costs can be saved through a more accurate estimation of vessel 

arrivals. They can also plan better for the schedule of barges and trains. 

The container terminals on the other hand, are currently more interested in short term horizon 

predictions, where the improvement of prediction accuracy compared to the current situation 

is moderate. Therefore, the information tool based on SVMs provides additional value for 

their planning activities (how to allocate berthing place, manpower, equipment), but of less 

impact than that compared to the hinterland transportation side. It was also identified that of 

significant value for terminal operators would be to know the waiting time of vessels, when 

they previously call in another European port, such as Antwerp or Felixstowe, before going to 

the Port of Rotterdam. Such a decision support tool is proposed as area for further research at 

the end of the report. 

For the carriers, since the weather interpretation did not add to the improvement of ETA 

predictions, the current information tool can only serve as an indication for the vessel arrival 

to the Port based on speed, position data and the technical ship characteristics. Apart from 

that, there is the indirect benefit of lower handling times for the vessel, due to the 

optimization in container terminal operations. This means less idle time for the ships and 

thus, faster delivery of the goods and an opportunity to start earlier on the next voyage. 

However, the biggest value that the proposed tool, as it currently stands, can offer to carriers, 

is as a competition monitoring tool. By aggregating the ETAs of all the vessels in the 

examined area, it is possible to know how many ships will be arriving during the next days at 
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the Port of Rotterdam and in which time slots. Knowledge of this information can give 

bargaining power to a carrier company. For instance, if it is known that very few ships are in 

the area and the company’s vessel is of the first to arrive at the port, it can negotiate on high 

prices for transporting cargo from the Port of Rotterdam to another destination. 

As far as the Port of Rotterdam is concerned, there are both direct and indirect benefits 

involved. On the direct benefits is the ability to plan better for pilot availability to guide the 

vessels to the terminals, as well as reduction of traffic congestion around the areas of the Port. 

The latter is because of the fact, that better estimation of arrivals can result in better planning 

from the truck operators who would therefore arrive closer to the actual arrival time, instead 

of waiting around the Port. On the indirect benefits, the competitive position of the port 

compared to other ports in the area will greatly be enhanced, due to the decreased handling 

time at container terminals, thus benefiting the shippers, as well as the decrease in the cost of 

hinterland transportation to inland destinations. Due to its leading position in the 

transportation chain, the Port of Rotterdam should be the main benefactor of this information 

tool, providing the information to the other stakeholders, such as terminals and hinterland 

transportation parties, through a common platform. 

The following figure summarizes the additional benefit for the stakeholders, depending on 

the time-horizon which is currently used for the purposes of their planning activities: 

 

 

Figure 21: The time-horizon of ETA predictions for which the stakeholders would mostly be 

interested, according to their planning activities 
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6.2  Estimation of monetary benefits from predictions 

There are multiple sources of expenses that can be reduced through improved ETA 

predictions. For the container terminals within the Port of Rotterdam, handling expenses can 

be reduced, while from the hinterland transportation parties, intermodal transportation will 

increase, thus reducing the transportation costs. Also, the terminals are subject to demurrage 

costs when they need more than 3 days to unload a vessel . These are costs that can be 

minimized through a more robust planning procedure, which can be achieved through early 

identification of disturbances regarding the vessel arrivals. For the purposes of this study, the 

savings for the terminals in the Port of Rotterdam will investigated, by examining the 

handling costs. 

The average handling time of container vessels at the Port of Rotterdam was 30,3 hours in 

2013 (Römers, 2013). Through the more accurate predictions obtained in this study regarding 

the expected arrivals at the Port, it is assumed that the handling time for the vessels following 

the Asia-Rotterdam route will be decreased by 2 hours. This is the benefit that improving the 

ETA predictions by 4 hours on average for the vessels positioned more than 80 hours away 

from the port, is expected to have. Furthermore, it is estimated that those voyages (Asia- 

Rotterdam directly) account for the 25% of the calls at the Port of Rotterdam (Appendix E). 

This means that the average decrease of handling time is 2*25%=0,5 hours. Therefore, the 

average handling time is expected to be 29,8 hours, improved by 1,65 % compared to the 

current handling time. 

Now the handling expenses for the container terminals should be estimated, to understand the 

impact of improving handling times by 1,65 %. From the Port of Rotterdam balance sheet, 

the amount spent on wages is 76 million Euros annually (Port of Rotterdam, 2014). It is 

assumed that 80% of those are variable costs (that can be reduced by lower handling times) 

and 40% of those expenses are related to container terminal employees, thus 76 ∗ 0,8 ∗

0,4 =  24,32 𝑚𝑖𝑙𝑙𝑖𝑜𝑛 𝐸𝑢𝑟𝑜𝑠 are the handling costs for manpower, annually. By improving 

handling times by 1,65% the savings realized are 24,32 ∗ 1,65% ≅  400.000 𝐸𝑢𝑟𝑜𝑠. 

Therefore, through the implementation of the ETA information tool, it is estimated that the 

Port of Rotterdam can reduce its handling expenses by 400 thousand Euros annually.  

One final point to note, is that if the ETA information tool is implemented for more routes 

than those following the Asia - Rotterdam route directly, the benefits will be even greater. 

Quantifying the positive impact in reducing demurrage and hinterland transportation costs is 

left out of the scope of the current thesis.   
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6.3  Next steps towards the implementation of ETA predictions 

As indicated in chapter 5, the AIS data alone, are enough for making ETA predictions for the 

route and time-horizon examined. The weather variables on the other hand, did not seem to 

improve predictions regarding the ETA of the vessels. Therefore, there is currently no 

additional cost involved for acquiring the necessary data. What is needed is for the real-time 

AIS data received by Intertransis, to be fed forward to the data pre-processing algorithm, in 

order to select the variables that were used for making ETA predictions in this thesis. Then, 

the input variables can be provided to the already trained SVM algorithm, which will produce 

the ETA prediction. This procedure requires no additional manpower or cost, other than 

connecting the data pre-processing algorithm to the AIS real-time data receiver. 

Regarding the next steps towards the implementation of the ETA information tool, a real-time 

testing case should be undertaken for a time period spanning over some months in the future. 

During this testing phase, real-time AIS data, as acquired by Intertransis, will be used as input 

to the trained SVM model and the ETA predictions will be produced on a rolling-time 

horizon. Then, when the ship reaches the Port, by calculating the difference between the 

prediction and the actual time of arrival, the accuracy of the model can be tested to see if it 

responds as it is expected. If the errors are indeed within the region specified by the report, 

the system can go online and start making ETA predictions that can assist in the planning 

activities of the interested parties. 

For the maintenance of the ETA prediction algorithm, there will be a need to update the SVM 

model, to account for the most recent voyages. The way that this task can be executed, is to 

retrain the SVM algorithm every year, each time adding to the training set the new voyages 

of the year that passed. This way, the algorithm will be trained to account for the changing 

circumstances in the shipping world. For instance, if in the future the market becomes more 

profitable for the ocean carriers, they will start travelling at higher speeds to maximize their 

revenue by increasing the number of voyages. An algorithm that is re-trained every year will 

be able to capture such changes in the market behavior, by recognizing the new patterns. This 

maintenance work can be carried out by TNO. 

 

Overview of Chapter 6 

In this chapter, the added value for the stakeholders in container transport, according to the 

improvement achieved for the different time horizons, was presented. It was deducted that the 

ETA predictions obtained were more valuable for the hinterland transportation parties, due 

to the improvement achieved in the medium-long time horizon. In section 6.2, the benefits in 

terms of reduction in handling costs were assessed for the Port of Rotterdam, where it was 

found that the manpower costs for vessel handling can be reduced by 400.000 Euros 

annually. The chapter ends with a description of the next steps towards the development of 

the ETA information tool. 
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Chapter 7- Conclusion 

The previous chapter presented the results regarding estimating the ETA of containerships, 

using neural networks and support vector machines. In this chapter, the importance of the 

results will be discussed, pointing out which of the stakeholders would be mostly benefited 

from them. A summary of the answers to the research questions posed in the beginning of the 

report will also be provided. The report concludes with proposed areas for further research. 

7.1 Discussion 

7.1.1  Main academic findings 

For the purposes of the current research, two models were used for estimating the time of 

arrival of containerships at the port of Rotterdam, accounting for a middle time horizon, 

namely the support vector machines and neural networks. The support vector machines were 

found to outperform the neural networks when comparing the mean absolute error of the 

models in all cases. This can be attributed to the fact that through the principle of similarity, 

on which SVMs function, they were better able to generalize on unseen data. The neural 

networks would need more data available for achieving the same results, since their training 

requires more examples to generalize well.  

Both of the models achieved significantly better results than the current situation, where the 

ETA is based on the ship’s agent estimations. In the optimal results obtained, when using 

different SVMs for each region, the mean absolute error reduced from 9 hours to less than 5 

for areas positioned above 100 hours from the Port of Rotterdam ( Western Mediterranean) 

and for Gibraltar (80 hours from the Port of Rotterdam) the error reduced to 4 hours, while 

the ship’s agent error is 7,5 hours.  

Of equal significance is the fact that the root mean squared error (signifying the variance in 

prediction errors) reduced drastically. For instance in the case of regions that are positioned 

on average 100 hours from the Port of Rotterdam by ship, prediction errors had an rmse of 9 

hours, while for the ship agent the respective value was 20 hours. This means that in 95% of 

the cases the prediction error of the proposed SVM was less than 18 hours (2*𝜎𝑆𝑉𝑀=2*9), 

while for the ship’s agent, 95% of the cases were lying within a time interval of 40 hours 

(2*𝜎𝑎𝑔𝑒𝑛𝑡=2*20). Therefore, the uncertainty over vessel arrivals at the port is significantly 

reduced through the proposed model. 

Regarding the relevance between weather conditions and their importance for  predicting the 

ETA,  it was found that they do not play a crucial role for estimating vessel arrival for the 

route that was examined. This is attributed mainly to two reasons. The first is that the speeds 

that have been used as inputs to the model are speeds over ground, therefore information 

regarding the currents and weather conditions in the area are included in these values. The 

second reason is that the driving behavior of the captain is largely affected by their deadline 

for delivering the goods and their  desire to save on fuel consumption when possible. This 

results in a speed up for the first leg of the trip and slowing down when arrival at the Port 

before the deadline, is guaranteed. It also means that even if weather conditions are 
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unfavorable within a region, the captain can still achieve a high speed by changing the engine 

power of the vessel. Another possibility is to speed up at a later part of the route. The number 

of options available to the captain make it extremely difficult to forecast his driving behavior 

based on the weather conditions ahead.  

Nevertheless, it cannot be concluded that weather conditions and currents have no impact on 

the time of vessel arrival to the Port. What can be deducted, is that for the specific route, from 

Tunisia to the Port of Rotterdam, the attempted ways to interpret the weather yield no benefit 

for predicting the ETA of sea-vessels. Moreover, even if there is a way to add additional 

insight to ETA predictions through a different weather interpretation, there is not enough 

room for improvement in the prediction error. An error of 5 hours on average in ETA 

estimation from Tunisia to the Port of Rotterdam is already considered good enough for the 

planning activities of the stakeholders involved, as assessed through the interviews. Even if a 

weather modelling approach could yield somewhat better results in predictions, the extra 

effort of acquiring and using the data for the model development would be more time-

consuming than the additional value created. This means that for making ETA predictions for 

vessel arrivals at the Port of Rotterdam, positional and speed data, as provided in the AIS 

database, are sufficient. 

A final point to note here is that the route that was examined for the purposes of this research 

did not include extreme weather conditions, since most of the route is taking place close to 

the shore and no big ocean is crossed. The case may be very different when routes that are 

crossing over oceans are examined. In those cases, weather conditions may have significant 

impact on the ETA of the sea-vessel. 

Another finding of the research was that the variable regarding the ETA of the ship’s agent, 

when provided as an input, was giving a significant improvement to the prediction accuracy 

of both the SVMs and neural networks. This was because of the fact that it served as an 

indication regarding the captain’s intentions along the route, information that cannot be 

extracted from the other variables. However, for areas that are positioned more than 100 

hours away from the port of Rotterdam, the error of the ship’s agent is very high. Therefore, 

when it was attempted to make predictions without that variable the error of the SVM did not 

increase as much as in the areas positioned closer to the Port. This means that when trying to 

expand to longer time horizons, that the ETA of the ship agent may not have been provided, 

it is still possible to make predictions based on the positional and speed data provided in the 

AIS dataset. 

 

7.1.2 Answers to the research questions posed 

In this section, the answers to the research questions that were posed in the beginning of the 

report will be summarized. The main research question of this study was: How can the big 

data, provided by marine traffic providers, be used in order for container terminals to 

improve their business processes by addressing the uncertainty regarding the expected vessel 

arrival times at the Port of Rotterdam? 
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To answer the main research question, three sub-questions were formulated. Each one of 

them will be addressed here. Combining the answers of these sub-questions, the main 

research question can sufficiently be addressed. 

1. What is the added value that a more accurate prediction of the estimated time of 

arrivals for containerships at container terminals would have for the planning 

activities of the stakeholders involved in container transport? 

The benefits of more accurate ETA predictions, taking into account the results obtained in the 

current study, have been analyzed in chapter 6. For the purpose of completeness, they are also 

briefly summarized here. 

 Hinterland Transportation parties (e.g. EGS): Cost reduction due to the ability to 

decide in advance how much capacity to book for barge and rail. Also, better planning 

of the barge and train schedules can be achieved, since there is greater certainty over 

vessel arrivals for a time horizon spanning over 5 days. 

 

 The container terminals (e.g. ECT): They are currently more interested in short term 

horizon predictions, where the improvement of prediction accuracy compared to the 

current situation is moderate. Therefore, the information tool based on SVMs 

provides additional value for their planning activities (how to allocate berthing place, 

manpower, equipment), but of less impact than that compared to the hinterland 

transportation side.  

 

 Carriers: The ETA information tool can  serve as an indication for the vessel arrival to 

the Port based on speed, position data and the technical ship characteristics. Apart 

from that, there is the indirect benefit of lower handling times for the vessel, due to 

the optimization in container terminal operations. This means less idle time for the 

ships and thus, faster delivery of the goods and an opportunity to start earlier on the 

next voyage. However, the biggest value that the proposed tool, as it currently stands, 

can offer to carriers, is as a competition monitoring tool. By aggregating the ETAs of 

all the vessels in the examined area, it is possible to know how many ships will be 

arriving during the next days at the Port of Rotterdam and in which time slots. 

Knowledge of this information can give to a carrier company bargaining power when 

negotiating for cargo transportation.  

 

 Port of Rotterdam: there are both direct and indirect benefits involved. On the direct 

benefits is the ability to plan better for pilot availability to guide the vessels to the 

terminals, as well as reduction of traffic congestion around the areas of the Port. The 

latter is because of the fact, that better estimation of arrivals can result in better 

planning from the truck operators who would therefore arrive closer to the actual 

arrival time, instead of waiting around the Port. On the indirect benefits, the 

competitive position of the port compared to other ports in the area will greatly be 

enhanced, due to the decreased handling time at container terminals, thus benefiting 
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the shippers, as well as the decrease in the cost of hinterland transportation to inland 

destinations.  

 

2. Which are the main factors and to what extent are they affecting the average speed of 

the loaded containerships sailing towards container terminals? 

The second sub-question was initially answered through the literature review. There it was 

identified that the nominal speed of the vessel (based on the power of the ship’s engine in 

rounds per minute), the impact of the wind on the sailing speed, as well as the impact from 

currents and waves are important variables for estimating the ETA of the vessel 

(Szelangiewicz, Wiśniewski, & Żelazny, 2014). The direction of the currents, wind and 

waves, relative to the vessel’s direction were also taken into account. 

However, as it was found after the usage of SVMs and neural networks, the impact of the 

weather variables is of limited value when it comes to estimating the ETA of sea-vessels for 

the route under consideration. They definitely have an effect on the temporary speed, which 

can be seen in the AIS data since it is the speed over ground, but the captain can change the 

engine’s power along the route. This means that weather variables can have a large impact 

when it comes to estimating the fuel consumption of a voyage. 

Another factor that was identified to be of high relevance for the vessel speed was related to 

the market of containerships, suggesting that in periods where demand is relatively low, 

vessels sail at the lowest attainable speeds (slow steaming). This was also the case for the 

time period that was examined in the current research (Wright, 2016). To account for this 

market-related factor in the eta-estimation stage, from the data available, the ship length and 

breadth were used, as an indication regarding the abilities of the ship engine. Also, the current 

speed with which the vessel is sailing gives an indication for its engine abilities. These factors 

were used as a starting point for the ETA-prediction stage. 

 

3. How can a model be developed in order to accurately predict the estimated times of 

arrival for the containerships that have the port of Rotterdam as their destination, 

accounting for a medium-range time horizon? 

Based on the factors affecting the vessel speed that were identified above, two different 

machine learning techniques were used for estimating the time of vessel arrivals at the Port of 

Rotterdam. The first approach was based on neural networks and the second on support 

vector machines. Neural networks are based on the interconnections between layers of 

neurons to depict difficult relationship functions between the input and output variables. A 

cost function, based on the divergence between the outputs and actual values, is minimized in 

order to select the optimal weights connecting the different neurons. On the other hand, 

support vector machines are based on the concept of similarity, as decided by the Euclidean 

distance between inputs, to categorize similar kind of inputs. Then, similar inputs give similar 

prediction values. 
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Three distinct sets from the historical data of the voyages in 2015 and early 2016 were 

chosen, the training, validation and testing set. The training set was used for “teaching” the 

models on how to recognize patterns in the data. Then, the validation set was used for 

selecting the optimal parameters for the neural network and support vector machine 

respectively. The testing phase, depicted the real world error that the algorithms are expected 

to have. 

The two methods were evaluated based on their mean absolute error and root mean squared 

error of their forecasts. It was observed that both methods were performing much better than 

the current ETA estimations, based on the ship’s agent, especially for long time horizons 

(above 60 hours). Moreover, the support vector machines were found to outperform the 

neural networks in every case, as signified by the lower mean absolute error that they 

presented in the testing set. This was due to the fact that given a limited dataset, such as in the 

case at hand that consisted of 600 voyages in total, SVMs were more capable of generalizing 

the data patterns presented. The neural networks on the other hand require abundance of data 

in order to generalize from the patterns presented in the training set. The explanation of the 

difference between the two algorithms, lies in the fact that neural networks solve equations to 

decide on the optimal weight connecting their neurons, while SVMs are categorizing inputs 

according to their similarity in order to predict. 

With the information above, the main research question can now sufficiently be addressed 

from the perspective of the port: 

How can the big data, provided by marine traffic providers, be used in order for the 

stakeholders involved in container transport to improve their business processes, by 

addressing the uncertainty regarding expected vessel arrival times at the Port of Rotterdam? 

Due to its role as information broker, Intertransis should be responsible for communicating 

the information regarding the predicted ETA to the Port of Rotterdam and the other 

stakeholders in container transport, such as terminals and hinterland transportation parties. 

This can be realized through a common platform. Intertransis is already receiving AIS data 

from marine traffic providers.  One of the most important findings of this study was that the 

AIS data alone, are enough for making ETA predictions for the route and time-horizon 

examined. Therefore, there is currently no additional cost involved for Intertransis to acquire 

the necessary data. What is needed is for the real-time AIS data received, to be fed forward to 

the data pre-processing algorithm to select the variables that were used for making ETA 

predictions in this thesis. Then, the input variables can be provided to the already trained 

SVM algorithm, which will produce the ETA prediction. This procedure requires no 

additional manpower or cost, other than connecting the data pre-processing algorithm to the 

AIS real-time data receiver. However, for the full realization of the ETA information tool 

benefits from the perspective of the Port, a common platform should be introduced through 

which the information can be communicated to the other parties (e.g. ECT, EGS). 
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7.2 Reflection 

Due to the complexity of the problem of predicting the ETA of sea-vessels at the Port of 

Rotterdam, a lot of choices had to be made and there are many approaches that could be 

followed. In this section, some of the challenges regarding the research undertaken will be 

highlighted, alongside with other possible approaches and the next steps towards the full 

implementation of the ETA information tool. 

One of the main choices that had to be made is the way to interpret the weather conditions 

and their influence of the ETA of containerships. This was a lot of information per voyage 

since the weather conditions were available over a large number of points along the vessel’s 

route. Therefore, 4 regions where significant changes to the speed of the vessel were usually 

noticed, were chosen for the analysis. Those areas served as weather checkpoints in the hopes 

that information about the currents and weather conditions in those areas would give an 

indication regarding the driving behavior of the captain. However, due to the limited total 

number of voyages available (600 for the period examined) the number of input variables had 

to be kept to a minimum. That is why a clustering approach of the weather variables was 

implemented, to reduce the number of variables.  

Also, another aspect of it is that actual weather data were used for the purposes of the 

research. However, in a real-world setting the data available will be weather predictions for 

the route ahead. With the clustering approach this does not change anything, since as long as 

the predictions and the actual data are mapped to the same cluster everything will work the 

same way. On the other hand, if raw weather data are used, these are susceptible to errors of 

weather predictions. 

Another possible way of choosing the weather-area checkpoints would be to use multilinear 

regression for selecting the regions that have the larger impact on the ETA of the vessels. 

Then the weather inputs of the neural network or support vector machine would be provided 

to them by a multilinear regression, a structure that resembles more deep learning algorithms. 

On the other hand extra complexity is added. An approach like this would be more 

worthwhile to test in voyages that cross oceans, such as the Atlantic, where weather impact 

may have larger impact than the one identified in the present case. In such cases, gathering a 

large amount of data can enable the usage of multilayer neural networks, which can yield 

better results than SVMs due to their ability to recognize complex patterns. 

The fact that weather data proved not to improve the ETA predictions for the route and time-

horizon under consideration, while the errors can be kept at relatively low levels with the 

other parameters, means that predictions of ETA for the route examined are possible without 

acquiring those data, something which reduces costs and complexity. 

What is more, although the ETA of the ship agent improves significantly the prediction 

accuracy of the machine-learning techniques used, the algorithms still perform better than the 

current situation even on its absence as an input variable. This means that it is still possible to 

make acceptable predictions regarding the ETA of sea-vessels even when the ETA has not 
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been provided yet. This can be useful when trying to expand the time-horizon of predictions 

and the ETA of sea-vessels is not available. 

On a personal level, I enjoyed the process of doing research in the field of maritime logistics. 

Working in a challenging environment within TNO, I had the opportunity to enhance my 

skills in machine learning and programming, while developing a business insight by  

exploring the value of the research for the relevant stakeholders. I found the project very 

engaging and the results obtained were rewarding for the effort. When starting with the 

thesis, I was expecting that the problem would be structured, with straightforward steps 

towards its realization. However, I soon realized that real-world cases present a lot of 

challenges that cannot be foreseen, and a lot of creativity is required in order to deal with 

them. I believe that I successfully responded to the challenge and learnt along the way. Also, 

cooperating with colleagues in data analytics within TNO was a valuable experience that I 

can use in the future. 

 

7.3 Areas for further Research 

The current study can serve as a starting point for many possible research areas in the field. A 

few of them are presented here. 

Firstly, an interesting topic for further research would be to try and expand the time horizon 

for predictions, both for the specific route that was examined, as well as for the other routes. 

It is possible, that if other routes to port of Rotterdam are examined, such as voyages that 

travel over the Atlantic, the weather variables may have more impact on estimating the ETA 

compared to the case that was examined in this study. Also, if sufficient data are gathered, the 

predictions could expand to other vessel-types, such as tankers. The same models that were 

used in this case can be used for other vessel types with an extra identifier, specifying the 

vessel class. With enough data gathered from past voyages, it should be possible to train 

neural networks and support vector machines in predicting vessel arrival times given the 

same inputs as in the current study. Then, the accuracy of the models can be checked for 

different time horizons, to determine in which range they perform sufficiently. 

Another proposed area for further research, is related to port operations with the aim of 

forecasting the waiting time of vessels when unloading at previous ports in Europe, such as 

Antwerp and Felixstowe, before going to the Port of Rotterdam. The uncertainty over the 

time that a vessel stays in those ports causes huge deviations in their original schedule of 

arrival at the Port of Rotterdam. This in turn causes changes in the berthing planning of the 

terminals, hindering their planning activities, as it was identified during the interviews 

conducted in the present study. The variables that would be of interest for this task are the 

berth utilization rates of the terminals, as well as the number of containers that the vessel is 

expected to unload. In the present study, vessels that were stopping at the port of Gibraltar for 

bunkering were also taken into account. In these cases, the SVMs and Neural Networks, were 

recognizing that the vessels are in the bunkering area of Gibraltar, through the longitude and 
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latitude variables, and were adding a waiting time. This can serve as a starting point for the 

proposed area for further research in Antwerp and Felixstowe. 

Also, estimating the waiting time due to Port operations in the Port of Rotterdam, would be of 

value for the hinterland transportation parties. However, if the ETA information tool is 

implemented, thus reducing the uncertainty over vessel arrivals, this may have a secondary 

effect on reducing handling times at the Port. In that case, estimating port operations time in 

the Port of Rotterdam in the current context may be premature. 

Last but not least, further research is proposed for the realization of a decision support system 

for vessel-speed planning. The proposed system would be estimating the weather impact on 

the vessel’s speed along its route to the Port of Rotterdam. That way, the captains could plan 

on keeping a relatively steady engine power, that would guarantee on-time arrival at the port, 

while saving on fuel consumption. Two different approaches can be followed for the 

realization of such a decision support system. The first, based on machine learning techniques 

would be to provide as input the rounds per minute of the ship’s engine, alongside with the 

weather conditions in the area, with the aim of predicting the speed over ground with which 

the vessel will be travelling. Then, aggregating over the whole route until Port of Rotterdam, 

the weather effect on the vessel’s speed can be obtained. The other way, would be to model 

the weather impact on the ship’s nominal speed (based on the rpms of the engine) using a 

physics-based approach. Such an approach could be undertaken by the company Hermess, 

due to their expertise in oceanography. In the present study, developing this decision support 

system was not possible due to absence of information regarding the ship engines. 

 

 

Overview of Chapter 7 

In this final chapter, the academic findings of the study were summarized. The improvement 

in predictions in the long time-horizon was highlighted, alongside with the benefits that can 

be realized for the interested parties. The answers to the main research question and sub-

questions posed at the beginning of the report were also summarized in section 7.1.2. The 

added value for the terminals, hinterland transportation parties and carriers in their 

planning activities was also explained. Special attention was given to how the Port of 

Rotterdam can implement the proposed system, since adoption of the ETA information tool 

would enhance the competitive position of the port. 

Moreover, further research into three different directions was proposed. The first is that of a 

vessel speed-planning decision support system, in order to minimize fuel consumption for the 

shippers, while still delivering the goods in time. Secondly, investigating the possibility of 

predicting ship waiting times due to Port operations and last but not least, an expansion to 

the time horizon of the ETA predictions to more than 5 days away from the port. 
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Appendix A- Parameter Selection for Neural Networks and SVMs 

The following figures present the training, validation and Testing Errors for the neural 

network approach, for different choices of the number of neurons in the hidden layer. It can 

be noticed that the usage of the regularization parameter is negating the effect of choosing the 

number of neurons and the results obtained from using a slightly different number of neurons 

than the original case (7 neurons), do not deviate significantly. Nevertheless, in all of the 

cases, the validation error is not lower than in the original case of 7 neurons for the different 

values of the regularization parameter lambda. Therefore, using a neural network consisting 

of 7 neurons in its hidden layer is the optimal choice. 

Figure 22: Training, validation and Testing Errors for different values of the regularization 

parameter lambda. For lambda=2.5, the validation error becomes minimum and thus, 

lambda=2.5 is chosen for the training of the optimal neural network. 
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Figure 23: Training, validation and testing errors for a neural network with 6 neurons in its 

hidden layer. The validation error is higher than in the case of the original case of 7 neurons, 

for all the values of the regularization parameter lambda. 

 

Figure 24: Training, validation and testing errors for a neural network with 5 neurons in its 

hidden layer 
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Figure 25: Training, validation and testing errors for a neural network with 8 neurons in its 

hidden layer 

 

Figure 26: Convergence of the cost function of the Neural Network through the process of 

gradient descent. As it can be noticed, the function converges very quickly to its minimal 

value after the first iterations. 
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Selection of the optimal set of parameters C and gamma for the SVM approach. Different 

values of the regularization parameters were tried. For each one of them, the validation error 

was calculated for a number of values of the parameter gamma in the Gaussian Kernel. The 

optimal set of parameters is the point where the validation error is minimized and is obtained 

for C=100 and gamma=0.001 . 

 

Figure 27:  SVM validation error for different values of the regularization parameter C and 

the Kernel function parameter gamma. Optimal choice of parameters for C=100 and 

gamma=0.001 
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Figure 28: Distance of weather condition cluster centroids to the weather variables. The 

most steep decline is until the 5 weather classes, which was the value chosen for the number 

of clusters. 

 

 

Neuron 

Number 

Weight 

Assigned 

0* 3,07 

1 0,50 

2 0,46 

3 0,46 

4 0,47 

5 -0,46 

6 -0,49 

7 -0,46 

Table 5: Weights Assigned to the neurons connecting the hidden layer to the output of the 

neural network. *Neuron number 0 stands for the bias unit. 
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Appendix B – Selection of validation and testing set size 

Different sizes for the validation and testing sizes were tried to determine the sensitivity of 

the results on the choice of the sets. It was identified that the results are stable for changes in 

the validation set, since they do not deviate significantly from the original case (validation set 

15% - testing set 20%). For lower testing sets however, the number of testing examples were 

not enough for the areas further away from the Port of Rotterdam and very low or high 

training errors were obtained. Therefore, the testing set should be no lower than 20%. 

 

 

Figure 29: Neural Network and SVM Mean Absolute errors for 20% validation and 20% 

Testing set. The results obtained are very similar to the initial case. 
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Figure 30: Neural Network and SVM Root Mean squared errors for 20% validation and 20% 

Testing set. The results obtained are very similar to the initial case. 
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Figure 31: Neural Network and SVM Mean Absolute errors for 25% validation and 20% 

Testing set. The results obtained are very similar to the initial case. 
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Figure 32: Neural Network and SVM Root Mean Squared errors for 25% validation and 

20% Testing set. The results obtained are very similar to the initial case. 
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Appendix C - Gibraltar Pilot ETA predictions 

In this part the pilot project of estimating the ETA from Gibraltar to the port of Rotterdam is 

presented. The first graph shows the mean absolute error without adding a  weather variable 

and ETA of the ship’s agent. In the second graph, the weather variable is included and in the 

third graph, both the weather and the ETA variables as introduced as inputs to the neural 

network. 

 

Figure 33: Training and validation errors for the neural network approach without an ETA 

or a weather variable as input. Optimal value for the regularization parameter lambda is at 

lambda=2, with a validation error of 7%. 
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Figure 34: Training and validation errors for the neural network approach without an ETA, 

but with a weather variable as input. Optimal value for the regularization parameter lambda 

is at lambda=0.3, with a validation error of 6,2%. 

 

Figure 35: Training and validation errors for the neural network approach with ETA and weather as 

input. The results are significantly improved compared to the ETA of the ship’s agent. 
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The following table presents the error metrics for the different methods used for the case of 

Gibraltar: 

Error Metrics SVM Neural Network ETA of Captain 
ETA of ship’s 

agent 

MAE 

(
𝐴𝑇𝐴−𝐸𝑇𝐴

𝐴𝑇𝐴
∗ 100 %) 

4,7 % 4,5 % 8,2 % 8,5 % 

RMSE (days) 

(√
∑(𝐴𝑇𝐴−𝐸𝑇𝐴)

2

𝑛
 ) 

0,26 0,33 0,68 0,71 

Table 6: Error metrics for the SVM and Neural network approach, compared to the current 

situation based on the ETA of the ship agent. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



95 
 

Appendix D – Interviews 

Interview questions 

Ed van Dort (Managing Partner at Intertransis): 

1) How is currently the Port of Rotterdam making use of the ETA provided by the 

captain of the ship? Is this information being used to achieve more efficient planning? 

2) What are the effects that an early/late arrival of a ship has on the port operation 

activities? 

3) What would the benefit of more accurate ETA predictions be for resolving problems 

related to Port-Operating activities? 

4) What is the level of accuracy required for the ETA of sea-vessels in order to improve 

the efficiency at the Port? 

5) Can you think of other parties that might be interested in such an information system? 

 

Siem van Marriënboer (Senior consultant in Sustainable transport and Logistics at 

TNO) 

1) Is currently information regarding the ETA of sea vessels being used for the on-line 

planning of hinterland transportation? 

2) How would the information regarding the ETA of sea vessels be used in order to 

improve the hinterland transportation activities in terms of cost and time? 

3) What is the accuracy of ETA prediction and the time-window required  for the 

purposes of improving hinterland transportation activities? 

4) How would the split between truck/barge and rail as modes of transport, be affected 

through the integration of ETA prediction in the daily planning activities of hinterland 

transportation? 

5) Which other parties would be interested/affected by such an information tool?  
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Johan Hoekwater (Manager Logistics Development, Europe Container Terminals 

(ECT)) 

1) How is currently ECT  making use of the ETA provided by the captain of the ship? Is 

this information being used to achieve more efficient planning? (Do you know cargo 

or #number of containers in a ship?) 

2) What are the effects that an early/late arrival of a ship has on container terminal 

activities? 

3) What would the benefit of more accurate ETA predictions be for resolving problems 

related to Container Terminal-Operating activities? 

4) What is the level of accuracy required for the ETA of sea-vessels in order to have an 

impact on container terminal operations? 

5) Can you think of other parties that might be interested in such an information system? 

 

 So, you would be interested in a system predicting how long vessels stay at a port in 

continental Europe? (Do we know in advance if they are going to call in another port 

first?) 

 Which are these ports? (Antwerp, Hamburg or Amsterdam?) Does Port of Gibraltar 

count as such a port? 

 How many are the ships arriving directly (1
st
 port call in Rotterdam) and how many 

call first in another port? 

 What delays are we talking about and how much in advance do you adjust your quay 

planning? 

Benefits of better ETA: 

 Solving the berthing allocation problem -> Less waiting time for ships (carriers value 

this service) 

 Optimize resources allocation (personnel, equipment), also energy saving (cranes, 

quay to yard transport vehicles) -> reduction in costs 

 Maintenance schedule planning 
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Johan Hoekwater(ECT Logistics Manager) findings: 

 Static schedule for a whole year. ECT is using the information provided by the ship’s 

Agent to dynamically update the ship’s ETA and schedule its operating activities.  

 Suez canal has specific time slots, so this means that the vessels are entering and 

leaving at specific times. Then the ships sail at slow steam to save fuel, usually. The 

captains try to stick to their ETA. This results in reduced uncertainty regarding the 

arrival at the PoR. 

 Major delays are caused because of Port Operations, however at that time the 

container terminal is in communication with the vessel and thus updated. 

 Berth allocation is a significant problem with huge impact on waiting time for sea-

vessels. If a vessel diverges from original schedule, it is assigned in other berthing 

place. The cargo in the stock goods has to be removed first from the loading position. 

Then it has to be moved to the new berthing place. This results in increased workload, 

unnecessary moves and longer waiting time for the vessel. 

 Early arrivals are reduced by slowing down and saving on fuel. 

 Early arrival is difficult, a lot of waiting time for the carrier. Containers have to be 

moved from the yard to a position ready to be used. One carrier is continuously 

arriving early. 

 1 week in advance for the ETA is the scope of interest for ECT. 

 Other interested stakeholders:  Barge, rail, truck operators, freight forwarders such as 

DHL. They may need information earlier, due to their planning activities for large 

time-windows. They get ETA of Ships from ECT, so the ship’s agent ETA. 

 50% direct arrivals from Asia, 50% of ships call first to another European Port. Big 

delays in the second case. 

 Need to forecast the waiting time at previous port. Maybe Pilot at the Port of 

Antwerp. Affecting variables: DWT, ship length, ship breadth, draught, traffic at the 

Port. 

ECT is trying to take into account these delays in the previous port. The schedule of 

the ships is fixed, so they know which ships will go to Port of Antwerp in advance. 

 

When vessels stop in many ports before PoR, there is huge uncertainty regarding their 

arrival at the Port of Rotterdam. For instance when they stop in Antwerp, then in 

Felixstowe, this introduces a lot of uncertainty regarding vessel arrival at the Port of 

Rotterdam. 
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Ed van Dort (Managing Partner at Intertransis) findings: 

72 hours mandatory announcement of arrival at the Port 

Captain gives information to the ship’s agent about the ETA, then he sends it to the Port 

Authority and they give the information to ECT. Shipper has a problem with early arrival. 

The containers that he has to load may not be there. 

If berth occupation rate is high, then divergence from schedule of arrivals can prove to be a 

challenge for the planning of terminal operators. Barges also have the same berthing places as 

sea-vessels so divergence of the sea-vessel schedule causes problems in barge allocation, 

hindering the planning activities and hampering the fast delivery to inland destinations. 

Waiting time added. 

EGS is mainly interested in 5 days in advance to 8 hours before vessel arrivals, and probably 

even earlier. This would allow them to plan their hinterland transportation activities. 

Slow steam versus arriving on time by captains. Sometimes captains speed up to ensure on 

time arrival and then they have to slow down (to avoid early arrival at the port). These 

fluctuations in speed result in higher fuel consumptions, which comprise a big portion of a 

ship’s voyage expenses. An area of investigation would be, that we can guarantee by keeping 

a certain level of speed they can reach the port, due to weather conditions, so that they can 

navigate by that constant speed. 

Sometimes a captain can even skip a port to ensure on time arrival. However this has a lot of 

extra expenses, because the containers would then have to be transported by inland 

waterways or hinterland to the previous destination. 

Other interested parties in ETA information tool: Stacks, pilots, port authority interested in 

the part of 8 hours in advance, for port operations. Pilots are assisting vessels that help the 

ship enter the port and transfer people on and off board. 
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Siem van Marriënboer (Senior consultant in Sustainable transport and Logistics at 

TNO) findings: 

BCTN (like EGS): Responsible for hinterland transportation between ECT deep water 

terminals and Venlo corridor. 

First they try to assign barges to transport the incoming containers to inland destinations and 

then trucks. The barges have a fixed schedule according to the planning of BCTN. Delays of 

sea-vessels can cause barges to sail relatively empty. 

Uncertainty of ship vessels, if it can be reduced to 4 hours it would be helpful for the 

hinterland transportation activities. 

2 to 72 hours takes for a ship to be unloaded in the PoR -> 2 to 72 hours until commercial 

release of container. Commercial release is when the container will become available for 

hinterland transportation, after being unloaded from the ship. ECT holds a model developed 

by TNO that knowing the position of the container within a ship, tries to predict the time for 

its commercial release. 

BCTN would like to receive much more accurate information regarding the commercial 

release of container. Therefore, they are currently making use of ship position data to track 

the vessel and estimate when it will be arriving at the port. Prediction of barge arrival 14-18 

hours usually, with a variance of 10-52 hours depending on previous stops. 20 minutes for 

last haulage by truck. The goal is to reduce uncertainty within the whole hinterland 

transportation process. ETA prediction is the 1
st
 step in the process. 

LSP books BCTN to transport the container hinterland. They schedule for a barge at a 

specific time slot. If the vessel is not there on time, the container will not be on time in the 

barge, causing delay or less cargo consolidation on barge. The rest will be transported by 

trucks. 
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Appendix E 

In this part, a calculation of fuel savings in the case of a vessel keeping a steady speed of 12.5 

knots over the whole route, compared to the case of travelling at 15 knots for the first half the 

voyage (in time measures) and at 10 knots for the rest of the route is carried out. The purpose 

is to show the potential in fuel saving with a decision support system in speed planning of the 

vessel. 

 

𝐹𝑢𝑒𝑙 𝑐𝑜𝑛𝑠𝑢𝑚𝑝𝑡𝑖𝑜𝑛 𝑓𝑜𝑟 𝑠𝑡𝑒𝑎𝑑𝑦 𝑠𝑝𝑒𝑒𝑑 =  𝐴 + 𝐵 ∗ 12.53 

𝐹𝑢𝑒𝑙 𝑐𝑜𝑛𝑠𝑢𝑚𝑝𝑡𝑖𝑜𝑛 𝑓𝑜𝑟 𝑐ℎ𝑎𝑛𝑔𝑖𝑛𝑔 𝑠𝑝𝑒𝑒𝑑 = (𝐴 + 𝐵 ∗ 153) ∗
1

2
+ (𝐴 + 𝐵 ∗ 103) ∗

1

2

= 𝐴 + 𝐵 ∗ (153 + 103) ∗
1

2
 

 

Savings in fuel consumption (%)=
𝐹𝑢𝑒𝑙 𝑐𝑜𝑛𝑠𝑢𝑚𝑝𝑡𝑖𝑜𝑛 𝑓𝑜𝑟 𝑐ℎ𝑎𝑛𝑔𝑖𝑛𝑔 𝑠𝑝𝑒𝑒𝑑−𝐹𝑢𝑒𝑙 𝑐𝑜𝑛𝑠𝑢𝑚𝑝𝑡𝑖𝑜𝑛 𝑓𝑜𝑟 𝑠𝑡𝑒𝑎𝑑𝑦 𝑠𝑝𝑒𝑒𝑑 

𝐹𝑢𝑒𝑙 𝑐𝑜𝑛𝑠𝑢𝑚𝑝𝑡𝑖𝑜𝑛 𝑓𝑜𝑟 𝑐ℎ𝑎𝑛𝑔𝑖𝑛𝑔 𝑠𝑝𝑒𝑒𝑑

⇒ Savings in fuel consumption (%) = 
𝐵∗[(153+103)∗

1

2
−12.53]

𝐴+𝐵∗(153+103)∗
1

2

≅ 6,7% 

Note: A is a constant of relatively small magnitude (Bialystocki & Konovessis, 2016), 

negligible when compared to the speeds in the third power, therefore for the purposes of the 

analysis it can be neglected. 

 

Number of voyages following the Asia-Rotterdam route: 

In the dataset used, 600 voyages were found to follow the Asia-Rotterdam route for 

unloading containers for the year 2015, accounting only for ECT terminals. The total number 

of port calls from containerships was 7398. This however includes empty (ballast) vessels or 

vessels approaching for maintenance. Assuming that 30% of the vessels fall into these 

categories, the loaded containerships are  estimated at 5178. Therefore the ECT vessels 

examined, account for 12% of the total port calls. If the other terminals are taken into 

account, a 25% of port calls originating from the Asia-Rotterdam route seems reasonable. 


