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Abstract  
A model-based approach to measuring residential segregation is further developed by explicitly 
including spatial effects at multiple scales. This model distinguishes segregation as unevenness and 
as spatial clustering in the presence of stochastic variation.  An accompanying badness-of fit 
measure allows the identification of the scale and zonation where the spatial patterns come into 
focus thereby potentially transcending the modifiable areal unit problem. The model is applied to 
Indian ethnicity in Leicester UK finding segregation as unevenness and as spatial clustering at 
multiple scales. 
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Introduction 
The measurement and understanding of segregation in cities is a major topic in urban geography, for 
policy makers and for governments alike. Segregation is routinely cast as a major obstacle to a well-
functioning society and has been placed centre of the explanation for many social problems 
including recent UK race riots. However, the measurement of segregation often relies on individual 
data aggregated into pre-given areal units of varying size and extent. Unfortunately, the spatial mesh 
that is deployed in this aggregation can define the results we find - the modifiable areal unit problem 
(MAUP; Openshaw, 1984). Much of the literature has described these changing results as 
unpredictable, pervasive and unsolvable. However, a smaller body of work views the outcome of the 
MAUP as a function of genuine spatial structures within the georeferenced data that are aggregated 
(Manley et al., 2006). Consequently, the MAUP ceases to be intractable but becomes an opportunity 
to identify the structures of cities; it becomes an analytical tool that can inform.  

This paper is not concerned with showing yet again that different zonations at different scales 
produce different results. Instead, we recast the MAUP as model misspecification in which the 
spatial structure of the data (at potentially multiple scales) needs to be incorporated into the model. 
An explicit framework is developed to distinguish patterns from stochastic noise and to compare the 
badness-of-fit of alternative specifications of spatial structure. This allows the identification of the 
spatial configurations that bring the patterns into sharpest focus. Moreover, this model distinguishes 
and assesses segregation as both unevenness and as spatial clustering (Massey and Denton (1988). 

We begin by setting out a methodological agenda through the review of previous work; we then 
consider the data to be analysed as an exemplar- that for self-declared Indians in Leicester in 2011. 
The existing hierarchical multilevel approach to segregation is considered and extended to the 
spatial case for multiscalar analysis. Results and discussions follow and we conclude with an agenda 
for investigations of segregation and the MAUP in general. 

 

Setting the methodological agenda 
The methodological agenda is informed by the substantive processes that are operating in the city, 
combined with the nature of the data to be analysed, and the current tools for analysis. Socio-spatial 
data analysis requires a recognition that observed outcomes are likely to be the result of multiple 
processes, which can be divided into two broad groups: stochastic and structured. Stochastic 
processes refer to those unexplainable elements that drive random differences in population 
residential location whereas the structural refer to processes behind segregated outcomes such as 
discrimination and exclusion from certain housing markets, and attraction to like-minded neighbours. 
Even in situations where there is no structural segregation, the population is unlikely to be evenly 
dispersed across residential space because of stochastic processes. Methodologically, the finer the 
spatial scale and the fewer the number of people living in an area, the greater the probability for 
chance to affect results. Many traditional segregation indices assume that there are no stochastic 
variations and provide upwardly-biased estimates with apparent segregation when there is none 
(Carrington and Troske,1997). It is thus necessary to adopt inferential modelling to assess 
segregation net of stochastic variation as pioneered by Leckie et al. (2012). Segregation is 
characterised as an estimated variance around a mean. If all places have the same share of a 
subgroup the variance estimate will be zero, and any apparent differences are merely due to chance. 
However, an estimated variance whose uncertainty intervals do not include zero indicates genuine 
segregation in the form of unevenness. Importantly they show that several well-known indices are 
an increasing monotonic function of the variance. Consequently, the same conclusions will result 
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whichever are used to compare different groups or groups over time. They also provide a method of 
transforming the variance and accompanying uncertainty into these indices if that helps comparison.  

Mobility research finds that movers choose (or are forced to choose) a broad zone of a city and then 
decide at a micro scale where to locate within that zone (Johnston, Forrest et al. 2016). There can be 
multiple processes operating at multiple scales and a group can be concentrated in zones and within 
certain subareas within zones. Methodologically, the scale at which segregation analysis is 
conducted is critical and can determine the outcomes found. Previous research has resulted in the 
stylised fact that the most marked segregation is at the finest scale and declines at higher spatial 
scales. However, there has been much misunderstanding about analysis at multiple scales. Typically 
(e.g. Lee et al. 2008) the analysis moves through a sequence of ever-growing scales finding the 
maximum segregation at the finest scale.  These analyses are problematic as the finest scale 
implicitly includes segregation at any relevant higher scale (Duncan et al., 1961) and the apparent 
decline is likely to be an artefact of the aggregation process whereby data are smoothed as they are 
combined into larger units. Fortunately, the modelling approach can be extended to analyse multiple 
scales simultaneously where unevenness is characterised by the variance at one scale net of the 
variation at other scales (and net of stochastic variation). Several studies using this approach have 
found that segregation is greater at the macro scale, as for example for London (Johnston, Jones et 
al., 2016; Jones et al. 2015).  

Processes of structured segregation are likely to produce not just unevenness of distribution but 
clustering whereby similar groups are spatial concentrated in certain parts of the city and separated 
from dissimilar groups. Methodologically, however, most segregation analyses are inherently 
aspatial merely analysing the frequency distribution of minority rates and ignoring location. What is 
needed is an assessment of the degree of spatial dependence of the rates – the degree to which 
similar rates are adjacent to each other. The developing modelling approach in partitioning the 
variance at different levels implicitly models the dependency at each scale below the topmost one 
(Jones et al. 2015); larger variances indicate both greater differences between and equivalently 
greater similarity within areas (Bullen et al., 1997). But this crude approach has no explicit 
parameter for the degree of spatial dependence; the variance measures only unevenness and there 
is a need for a modelling approach that additionally assesses spatial clustering as well as aspatial 
unevenness. 

Initially, the modelling approach was applied to educational segregation which analyses data for pre-
existing higher-level level entities (children in classes in schools). For residential segregation, this is 
not the case and the areas of interest must be defined, thereby confronting the MAUP There are two 
aspects to this: the scale problem is that results may depend on the number of units studied; while 
the zonation problem is that different results can be found for a constant number of geographical 
units but with differing spatial arrangements. To date the model-based approach has taken a strictly 
hierarchical approach where the scales and zoning are taken as given and fixed. Thus, a model-based 
study of segregation in London (Johnston, Jones et al 2016) used census Output Areas at the finest 
scale which are exactly nested in Middle Layer Super Output Areas which are in turn nested in 
Boroughs. It may be that this specific mesh is determining the results so we need to research the 
MAUP to gauge potential sensitivity of results to different spatial architectures. This problem is 
closely bound up with spatial dependence for if the rates are truly without map pattern then 
differential aggregations and zonings are unlikely to determine the results (Wong 2009, 114). 

Views on MAUP range from an ‘essentially unpredictable’ intractable problem (Fotheringham and 
Wong, 1991,1025) to a ‘very powerful analytical device’ (Openshaw, 1984,7). Another striking 
feature is that much research simply concludes that results differ and gives little insight as to why. 
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There are several reasons for this. Some studies use real data and then create zones from these – 
the million correlation coefficients of Openshaw and Taylor (1979) are based on re-grouping areal 
voting data for Iowa. It is then difficult to know what the ‘true’ relationship is and to isolate what is 
producing the results. Other studies use simulated data of known properties but are unrealistic in 
not considering different forms of spatial configuration in determining the results (Amrhein, 1995). A 
more pervasive problem is that studies have not been set in a general modelling framework (Wrigley, 
1995) resulting in no goodness-of-fit measure for determining what is the ‘best’ zonal arrangement. 
Here we see the MAUP as an opportunity to vary scale and zonation to bring the patterns into focus 
and thereby gain insight to the underlying processes producing segregation. However, we lack a 
statistic to provide guidance when this focus has been achieved. This is especially difficult in real 
data as there may be multiple and unknown configurations where spatial processes are operating; 
working at a single scale may miss what is going on. 

Three other issues are methodologically important for us. Firstly, in assessing change there is a need 
to incorporate statistical uncertainty. A decreasing population per unit area will result in smaller 
numbers which will emphasize stochastic variation upwardly biasing segregation estimates. Such 
analysis of change must be multiscalar as countervailing tendencies (polarization at one scale 
alongside dispersal at another) may cloud the picture of what is happening (Haggett, 1965). Secondly, 
ethnicity in the 21st city is not a binary variable, with multiple ethnicities characterising 
contemporary society. This diversity requires the simultaneous modelling of multiple groups which 
results in  smaller numbers as ethnicity is disaggregated. Thus, the composition of the urban 
environment makes a modelling approach particularly valuable. The third aspect is that there may 
be multiple influences on location decision-making so that residential segregation may be differently 
driven by ethnicity and class. It is vital to have a methodology for assessing which are the key 
influences on segregation and to do so for multiple groups at multiple scales. We have addressed all 
three in previous work (Johnston, Jones et al., 2016; Jones et al. 2017) and here we concentrate on 
spatializing the modelling approach to measure clustering while examining sensitivity to the MAUP 
for a single time cross-section for just two ethnic groups. 

Our agenda should now be clear. A modelling approach is required that can handle and separate 
stochastic variation from ‘true’ pattern. It must work at multiple scales simultaneously distinguishing 
unevenness and spatial clustering.  It should allow sensitivity analysis to assess which alternative 
spatial arrangements bring the patterns into focus at one scale net of others. This needs to be set in 
an inferential framework where the uncertainty of parameters is evaluated and where appropriate 
measures of goodness of fit allow the preferment of some spatial arrangement over others. The 
method of model comparison must consider model complexity in coming to a parsimonious 
judgement on models with many potential parameters. The method must also be computationally 
feasible on realistically-sized data sets. 

Setting and data 
As an exemplar for this work we have chosen one UK city – Leicester – as our setting and one 
population group – those self-identified as Indian at the 2011 Census – as our one ethnic group (the 
largest non-White group in the city at 28.3%) compared to all other ethnic groups including the 
White majority. The city is a medium-sized one with a population of some 330,000 located in the 
English East Midlands.1 Those of Indian ethnicity are clustered in the eastern parts of the city (Byrne, 

                                                             
1 Hennerdal and Nielsen (2017) contend that there is an element of the MAUP due to the choice of area of 
reference; we can overcome this in the modelling approach by constraining the overall mean of evenness to 
say the all England value instead of the overall value for Leicester. 
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1998). Ethnic counts are available for census Output Areas which are created post enumeration to 
be meaningful units based on homogeneity of housing characterises using the AZTool (Martin,2002). 
These OAs are very fine-grained with a median of 330 individuals. We have further created a higher 
geography of Zones using the same AZTool based on a target population of 8500. The zones are 
composed of contiguous OAs but the proportion of Indians has not been used in their definition and 
represent one possible macro geography of the city. Their median population size is 8450 and they 
contain on average 25 OAs. At the outset, we have a three-level strict hierarchy with individuals at 
level one nested in 969 OAs nested in turn within 39 Zones at level 3.  

Classification diagrams of the structures to be analysed  
To implement the modelling approach, we use multilevel modelling (Duncan and Jones, 2000) and 
the levels involved are most easily conveyed in a classification diagram (Browne et al. 2001). Figure 1 
gives three types of structure: (a) is a strict hierarchy with three levels: individuals are nested in OAs 
which are nested in Zones. Alternatively, Zones classify OAs and OAs classify individuals. An 
enclosing box signifies a classification and a single arrow indicates a strict hierarchy where a lower 
level OA unit belongs to one only higher-level unit. This strict hierarchy has been a basis of modelling 
segregation since Leckie et al. (2012). Figure (b) represents a non-strict hierarchy. Individuals are 
nested in two separate classifications. In one individuals are strictly nested in one classification of 
their OA of residence while the second is a neighbouring ‘patch’ of surrounding OAs say the nearest 
three (not including the focal OA).  The cross-classification is indicated by a lack of linkage between 
boxes and the double arrows indicate multiple membership. The patch is akin to a ‘moving window’ 
that hovers over each lower level unit to form a bespoke neighbourhood. defined by the analyst. 
Figure 1c represents multiple processes operating at different scales. Individuals belong to three 
separate classifications. A strict hierarchical relationship exists as individuals are nested in their own 
OA and two multiple membership relations; the local patch based on the nearest three OAs; and the 
more zone-like arrangement where individuals belong to a seven OA grouping. Figure 1a is space 
invariant while b and c are explicit spatial structures if the patches are defined on contiguity.  

 

Model specification  
The specification of the strictly hierarchical model 
We begin with an aspatial model of the form that has been used in recent work. It has three 
classifications – individuals signified by the subscript 𝑖𝑖 which are classified by the OA in which they 
are resident (𝑂𝑂𝑂𝑂(𝑖𝑖 )) and by the larger zonal area (𝑍𝑍𝑍𝑍𝑍𝑍𝑍𝑍(𝑖𝑖)). The dependent variable (𝑌𝑌𝑖𝑖) is the 
observed binary individual outcome of Indian origin or not. This is treated as an underlying Binomial 
distribution with the underlying proportion of occurrence of 𝜋𝜋𝑖𝑖.  It is not this value but it is the 
expectation of logit of this value 𝐸𝐸�𝑙𝑙𝑍𝑍𝑙𝑙𝑒𝑒(𝜋𝜋𝑖𝑖/(1− 𝜋𝜋𝑖𝑖   )� that is modelled. The logit is logarithm of the 
ratio of the probability of self-declaring as an Indian to the probability of being a non-Indian. This 
prevents impossible predicted proportions outside 0 to 1 and makes the Normality assumption for 
Zone and OA differences more likely to be fulfilled although results are typically robust (McCulloch 
and Neuhaus, 2011). 
 

𝑌𝑌𝑖𝑖~𝐵𝐵𝑖𝑖𝑍𝑍𝑍𝑍𝐵𝐵𝑖𝑖𝐵𝐵𝑙𝑙(𝑍𝑍𝑖𝑖 ,𝜋𝜋𝑖𝑖) 
 

𝐸𝐸 �𝑙𝑙𝑍𝑍𝑙𝑙𝑒𝑒 �
𝜋𝜋𝑖𝑖

1 − 𝜋𝜋𝑖𝑖
�� = 𝛽𝛽0 + 𝜇𝜇𝑍𝑍𝑍𝑍𝑍𝑍𝑒𝑒(𝑖𝑖)

(3) + 𝜇𝜇𝑂𝑂𝑂𝑂(𝑖𝑖)
(2)  

𝜇𝜇𝑍𝑍𝑍𝑍𝑍𝑍𝑒𝑒(𝑖𝑖)
(3) ~𝑁𝑁(0,𝜎𝜎𝜇𝜇3

2 ) 

𝜇𝜇𝑂𝑂𝑂𝑂(𝑖𝑖)
(2) ~𝑁𝑁(0,𝜎𝜎𝜇𝜇2

2 ) 
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𝑉𝑉𝐵𝐵𝑉𝑉(𝑌𝑌𝑖𝑖|𝜋𝜋𝑖𝑖) =  
𝜋𝜋𝑖𝑖(1 − 𝜋𝜋𝑖𝑖)

𝑍𝑍𝑖𝑖
 

 
𝑃𝑃𝑉𝑉𝑖𝑖𝑍𝑍𝑉𝑉 𝑠𝑠𝑠𝑠𝑍𝑍𝑠𝑠𝑖𝑖𝑠𝑠𝑖𝑖𝑠𝑠𝐵𝐵𝑠𝑠𝑖𝑖𝑍𝑍𝑍𝑍𝑠𝑠 

𝑠𝑠( 𝛽𝛽0) 𝛼𝛼1 
𝑠𝑠 �1/𝜎𝜎𝜇𝜇3

2 �~Γ(0.001,0.001) 

𝑠𝑠 �1/𝜎𝜎𝜇𝜇2
2 �~Γ(0.001,0.001) 

 

These log-odds have an overall mean (𝛽𝛽0) plus a differential for Zones (𝜇𝜇𝑍𝑍𝑍𝑍𝑍𝑍𝑒𝑒(𝑖𝑖)
(3) ) and for OAs within 

Zones (𝜇𝜇𝑂𝑂𝑂𝑂(𝑖𝑖)
(2) ). Importantly the OA differential is thus net of the Zone differential. A positive value 

for both represents an OA with a high log-odds of Indians compared to its Zone that is also high 
compared to the city; two negatives indicate a low OA Indian ethnicity in a Zone of low ethnicity. A 
zero indicates the Zone is the same as the city average; a zero for an OA indicates a typical OA within 
a Zone. Assuming these differentials are Normally distributed they are completely summarised by 
variances so that 𝜎𝜎𝜇𝜇3

2  represents the between-Zone while 𝜎𝜎𝜇𝜇2
2  represents the within-Zone between-

OA differences. These are our primary measure of segregation; if there is no segregation the 
variance for a classification will be zero. At the lowest classification, there is a Binomial distribution 
with the variance dependent on the modelled rate (𝜋𝜋𝑖𝑖) and its denominator 𝑍𝑍𝑖𝑖  which is the OA 
Indian plus non-Indian total. In practice, there is the same set of units – the OAs – at level 1 and 2 
(each level 2 unit is composed of exactly one level 1 unit). This views the aggregate proportions at 
level 2 as consisting of replicated binary responses for individuals at level 1 (Browne et al., 2005). 
This allows the separation of variation into exact Binomial at level 1 and over-dispersion at higher 
levels so that the higher-level variances summarize ‘true’ differences between areas in excess of that 
from chance. The model is completed by the specification of the prior distributions (see later).  
 
These variances in ratio form give the degree of similarity of outcome within an area.  The intra–
Zonal correlation is the degree of dependence between individuals within the same Zone: 
  

𝜎𝜎𝜇𝜇3
2

𝜎𝜎𝜇𝜇3
2 + 𝜎𝜎𝜇𝜇2

2 + 𝜎𝜎𝑒𝑒2  
 

 
where 𝜎𝜎𝑒𝑒2 is the Binomial variance of 3.29, the variance of a logistic distribution (Jones and 
Subramanian,2013). A high value for this ratio implies that if you picked pairs of people at random 
from the same Zone (a clustered sample therefore) if one of the pair was Indian the other of the pair 
would also likely to be Indian. The intra-OA correlation, the similarity in outcome between 
individuals within the same Zone and OA, is  
 

𝜎𝜎𝜇𝜇3
2 + 𝜎𝜎𝜇𝜇2

2

𝜎𝜎𝜇𝜇3
2 + 𝜎𝜎𝜇𝜇2

2 + 𝜎𝜎𝑒𝑒2  
 

Finally 
𝜎𝜎𝜇𝜇3
2

𝜎𝜎𝜇𝜇3
2 + 𝜎𝜎𝜇𝜇2

2   
 

 
gives the similarity of OAs within the same Zone. A high value indicating that knowing the 
proportions of Indian ethnicity in one OA in a Zone is informative of the proportion in another OA in 
the same Zone. This hierarchical specification models the degree of dependence (autocorrelation) 
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but rather rudimentarily. The OAs are clustered within their Zone but the Zonal analysis is aspatial 
for there is nothing that accounts for which Zones are contiguous. Moreover, while OAs are defined 
in terms of the Zone to which they belong there is no further taking account of their spatial 
arrangement – adjacent OAs could be in different Zones thereby imposing an unrealistic rigid 
boundary. These models assume that the results are invariant to location (Elffers, 2003). We can re-
arrange Zones and OAs within Zones without affecting the variances which measure the degree of 
segregation. These models therefore essentially assess segregation as departures from evenness 
albeit decomposed into various (spatial) scales. 
 
The specification of the multiple membership cross-classified multilevel 
Spatial segregation models can be specified as multiple membership cross-classified models (Fielding 
and Goldstein, 2006) where rigid zones are replaced by flexibly-defined patches. In this example 
individuals are nested in an OA, in a small-scale patch of three OAs and a larger neighbourhood of 
seven OAs.  

𝑌𝑌𝑖𝑖~𝐵𝐵𝑖𝑖𝑍𝑍𝑍𝑍𝐵𝐵𝑖𝑖𝐵𝐵𝑙𝑙(𝑍𝑍,𝜋𝜋𝑖𝑖) 
 

𝐸𝐸 �𝑙𝑙𝑍𝑍𝑙𝑙𝑒𝑒 �
𝜋𝜋𝑖𝑖

1 − 𝜋𝜋𝑖𝑖
�� = 𝛽𝛽0 + � 𝑤𝑤𝑖𝑖,𝑗𝑗

(4)𝜇𝜇𝑗𝑗
(4)

𝑗𝑗∈7𝑁𝑁𝑁𝑁𝑍𝑍𝑍𝑍𝑁𝑁(𝑖𝑖)

+ � 𝑤𝑤𝑖𝑖,𝑗𝑗
(3)𝜇𝜇𝑗𝑗

(3)

𝑗𝑗∈3𝑁𝑁𝑁𝑁𝑍𝑍𝑍𝑍𝑁𝑁(𝑖𝑖)

+ 𝜇𝜇𝑂𝑂𝑂𝑂(𝑖𝑖)
(2)  

 
𝜇𝜇7𝑁𝑁𝑁𝑁𝑍𝑍𝑍𝑍𝑁𝑁(𝑖𝑖)

(4) ~𝑁𝑁(0,𝜎𝜎𝜇𝜇4
2 ) 

𝜇𝜇3𝑁𝑁𝑁𝑁𝑍𝑍𝑍𝑍𝑁𝑁(𝑖𝑖)
(3) ~𝑁𝑁(0,𝜎𝜎𝜇𝜇3

2 ) 

𝜇𝜇𝑂𝑂𝑂𝑂(𝑖𝑖)
(2) ~𝑁𝑁(0,𝜎𝜎𝜇𝜇2

2 ) 
 

𝑉𝑉𝐵𝐵𝑉𝑉(𝑌𝑌𝑖𝑖|𝜋𝜋𝑖𝑖) =
𝜋𝜋𝑖𝑖(1 − 𝜋𝜋𝑖𝑖)

𝑍𝑍𝑖𝑖
 

 
𝑃𝑃𝑉𝑉𝑖𝑖𝑍𝑍𝑉𝑉 𝑠𝑠𝑠𝑠𝑍𝑍𝑠𝑠𝑖𝑖𝑠𝑠𝑖𝑖𝑠𝑠𝐵𝐵𝑠𝑠𝑖𝑖𝑍𝑍𝑍𝑍𝑠𝑠 

𝑠𝑠(𝛽𝛽0)𝛼𝛼1 
𝑠𝑠 �1/𝜎𝜎𝜇𝜇4

2 �~Γ(0.001,0.001) 

𝑠𝑠 �1/𝜎𝜎𝜇𝜇3
2 �~Γ(0.001,0.001) 

𝑠𝑠 �1/𝜎𝜎𝜇𝜇2
2 �~Γ(0.001,0.001) 

 

The response remains a binary outcome (Indian or not) modelled as the underlying log-odds with 
Binomial level-one variance depending on the total and the modelled proportion in an OA. There are 
three sets of higher-level departures from the overall mean (𝛽𝛽0) so that 𝜇𝜇𝑗𝑗

(4) are the differentials for 

the 7-member patch for a particular𝑂𝑂𝑂𝑂(𝑖𝑖); 𝜇𝜇𝑗𝑗
(3) are the differentials for a 3-member patch, while 𝜇𝜇𝑂𝑂𝑂𝑂

(2) 
is the (aspatial) differential for each OA. There are three sets of effects for each OA arising from 
three distinct classification sources. Moreover, all three are estimated simultaneously so all are net 
of each other and Binomial variation. 

The use of ∈ set notation signifies that an OA is an element of the wider patch with the notation 
conveying that each differential is a weighted sum of a set of random effects. The weights are 
defined exogenously, typically constrained to sum to one (∑𝑤𝑤𝑖𝑖,𝑗𝑗 = 1) and represent the presumed 
degree of connectivity between OAs in the patch. This could be the inverse squared distance 
between the focal OA and its neighbours (emphasizing a rapid decline of influence) or simply equal 

Opmerking [RJ1]: Aren’t they really 
four and eight, including the OA at the 
focus of each neighbourhood? 
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weights based on the number of members (1/m).2 To illustrate the latter when m is 7 and 3, the 
weights will be 0.14 and 0.33 respectively, and the equation for OA1 with its surrounding OAs (with 
identifiers 2 to 8) is:  

 
𝐸𝐸(𝐿𝐿𝑍𝑍𝑙𝑙𝑖𝑖𝑠𝑠(𝑌𝑌1))=𝛽𝛽0+0.14*𝜇𝜇1

(4)+0.14*𝜇𝜇2
(4)+…. +0.14*𝜇𝜇7

(4)+0.33*𝜇𝜇1
(3)+0.33*𝜇𝜇2

(3)+0.33*𝜇𝜇3
(3) + 𝜇𝜇𝑂𝑂𝑂𝑂(1)

(2)  

revealing the computational complexity involved as this is replicated for all 969 OAs. 

 

The differentials are summarised by variances with 𝜎𝜎𝜇𝜇2
2  being the unstructured aspatial segregation 

due to unevenness around the mean, while  𝜎𝜎𝜇𝜇4
2  and 𝜎𝜎𝜇𝜇3

2  summarise the spatially-based differences 

of an OA belonging to differently-sized patches. If there is unevenness but no local clustering 𝜎𝜎𝜇𝜇2
2  will 

be nonzero but the two other variances will not. Moreover, because we can specify the number and 
size of the patches we can change the focus to see at what scale there is noticeable spatial 
patterning and identify multiscalar segregation. The total variance is decomposed into a set of 
additive components which allows the calculation ratios summarising dependence as for the 
hierarchical model. However, the nature of the weights must be considered (Fielding and Goldstein, 
2006). Taking the 3-unit patch with equal weights the spatial variance is ∑𝑤𝑤𝑖𝑖,𝑗𝑗2 𝜎𝜎𝜇𝜇3

2  so the sum of the 
squared weights is involved. Variances as estimated will be too large and cannot be directly 
compared. However, with an equal number of members (m) that form the patch and equal weights, 

this can be overcome by dividing by variance by the number of members
𝜎𝜎𝜇𝜇3
2

𝑚𝑚
.  

Estimation and model comparison 
Likelihood methods could be used (Jones et al., 1998) but this is cumbersome compared to Fully 
Bayesian MCMC estimation (Browne, 2017). MCMC uses a building-block approach so that an 
additional set of additive terms (e.g. another patch) can be accommodated without extensive re-
writing of the algorithm; a cross-classified model is no more complex than a hierarchical one. 
Moreover, the inclusion of weights associated with the additive terms does not involve the inversion 
of the full (969*969) matrix but just those defining each patch. The estimates can be expected to be 
good ones (Browne and Draper, 2006) as uncertainty in one parameter is considered in estimating all 
others thereby reducing bias. The distribution of the key variance terms is not assumed to be Normal 
(unlikely as variances cannot go below zero) with MCMC providing Bayesian credible intervals which 
give say the 95% probability that the parameter falls between the lower and upper bounds which 
may be asymmetric as the distribution of estimates may be positively skewed.  
 
An important MCMC by-product is the Deviance Information Criterion (Spiegelhalter et al. 2002). 
Brunsdon (2016) argues that this is a different approach to inference, being about model selection 
not hypothesis testing; there may be no winner but a shortlist of plausible models. Brunsdon is 
writing about the likelihood-based AIC which defines model complexity as a function of the number 
of parameters.3  Our situation is more complex for while the mean and variance parameters as usual 
are equivalent to consuming one degree of freedom, the differentials also need to be counted but 
may not each contribute a whole value as they come from a common distribution. With MCMC the 
effective degrees of freedom is calculated as part of the model fitting process. Thus, it is possible to 
estimate a non-nested set of models including hierarchical and cross-classified models for the same 

                                                             
2 Distance decay weights may be more useful to achieve spatial smoothing (Lawson et al., 2003). 
3 The AIC is used by Hirschfield et al. (2014) and Nakaya (2000) in spatial modelling. 



9 

outcomes and derive a badness-of-fit measure penalized for model complexity. According to 
developing practice (Jones and Subramanian, 2017), any model with a lower DIC is an improvement 
but a model with a difference of 2 still has substantial support and should be kept under 
consideration. A reduction of 4 suggest that the worse-fitting model has considerably less support, 
while a difference of over 10 suggest that the model with a higher DIC can be ignored.  
 
In Bayesian modelling the posterior distribution characterises the degree of support for different 
estimate values. It is obtained by starting with a prior initial guess of the distribution of the 
estimates and combining this with the likelihood information from the data. The posterior is highly 
complex as it is the joint distribution of all parameters (means, variances, differentials). Estimation 
works by making a simulated draw from the marginal distribution of one parameter and feeding this 
through into simulated draws for other parameters thereby taking account of the full uncertainty of 
all parameters. The earlier model specifications use weak priors to maximize the influence of the 
data. The overall mean (𝛽𝛽0) is specified as a uniform distribution so that any value is equally likely. 
The reciprocal of the variances is assumed to follow a positively skewed Gamma distribution with 
both the scale and shape parameters set to relatively uninformative values.   
 
In practice, all the models were estimated in MLwiN (Charlton et al. 2017) which is considerably 
faster than alternatives (Li et al. 2011).4 To initiate simulation quasi-likelihood estimates were used 
as starting values. This was followed by a discarded burn-in of 5000 draws (to escape potentially 
biased likelihood estimates) followed by a further 250,000 draws for each parameter to characterise 
the posterior. The trajectories of these draws were inspected to see that there was no trending (that 
is failure to converge to the equilibrium posterior distribution) and that the effective sample size of 
each set of posterior estimates was at least equivalent to 750 independent draws. The 2.5 and 97.5 
percentiles of the posterior distributions were used as 95% credible intervals while the mean was 
used for the point estimates.  
 

Results 
This study adopts an exploratory approach because of little guidance on the ‘right’ scale and 
zonation. Ultimately, we are motivated by earlier research findings that show macro segregation is 
the norm when using strict hierarchies; a finding that goes against much previous understanding. We 
begin by applying hierarchical models to real and simulated data then use spatial cross-classified 
models to examine different scales and zonations as well as multiscalar patterning. 

Results of the hierarchical models 
Table 1 provides the set of results for the strictly hierarchical models. The first major column 
represents three models for the observed data: null model (no parameter for higher-level 
differences); a two–level model (individuals within OAs); a three-level one (OAs additionally nested 
within Zones). The changes in the DIC show that going from a model without unevenness to one 
with OA differences and then to additional Zonal differences represents a very substantial reduction 
in the badness-of-fit. The mean estimate for the null model is -0.93 on the logit scale and when 
converted into percentages indicates that across Leicester some 28% are Indian. In the 3-level model 
the mean estimate is -1.54 and when converted into percentages, 18% of the adult population is 
Indian in the median OA in the median Zone while the value is 27% in the mean area.  These two 
different values (the cluster-specific and population-average estimate; Jones and Subramanian,2013) 
reflect the positively skewed nature of the underlying uneven modelled rates; areas with 
distinctively high rates pulling the mean upwards from the median. 

                                                             
4 Estimation took some 20 minutes for 250,000 simulations for a spatial cross- classification with 50 members 
on a Windows based PC (Intel i7 at 3.10Ghz, 16GB RAM, 64 bit). 
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In the two-level model the between OA variance is large (3.44) on the logit scale (equivalent to a D 
index of 55% meaning that 55% of Indians would have to move OAs to achieve city wide evenness).5 
This also implicitly includes the between-Zone variance. Indeed, when the Zones are included the 
majority, 77%, of the variances lies between Zones and only 23% lies between OAs within Zones. 
These equate to a D index of 51% and 33% respectively. If an incorrect two-level model is fitted, the 
differences as predicted by Tranmer and Steel (2001) accrue to the lowest included level, the OAs, 
incorrectly inflating micro-scale segregation. It is the property that has misled analysts about the 
true scale of macro segregation. These variances allow calculation of intra-unit correlations: the 
degree of dependence between individuals in terms of Indian ethnicity within the same Zone is 0.40; 
the similarity between individuals in the same Zone and OA is 0.51; while the typical similarity of OAs 
within the same Zone is 0.77. There is substantial segregation at both scales but it is the macro 
geography that is particularly important  

The second major column of Table 1 is for simulated data with the same overall Indian ethnicity rate 
of 28% as the observed data but no genuine differences between OAs and Zones. That does not 
mean however that there are no differences between the observed OA rates (they range from 20 to 
40%) as the data have been created to have Binomial stochastic variation driven by the true varying 
denominator of the OA. The two and three-level model estimate this correctly with a variance at 
each level of close to zero. Moreover, the extra complexity of both results in a substantially worse 
DIC (+34 and +7); OA and Zonal differences are not needed. The logit estimate is the same for all 
models and this converts to a mean and median of 28% showing no effective segregation. These 
hierarchical models correctly identify when there is no genuine segregation as unevenness even in 
the presence of apparent differences based on chance. 

The results from the multiple membership cross-classified models  
To explore the spatial nature of the structures within the data we have used an approach defining 
moving windows of 3, 5, 7, 10, 15, 20, 30, 40 and 50 OAs for each of the 969 Leicester OAs. 
Specifying a cross-classified model, it is necessary to use weights for each OA and given the lack of 
strong prior information we have used equal weights, which depend on the numbers of members 
defining the patch (1/m). For each of these scales we have used three zonations to define 
membership: straight-line distance to form compact patches; fully random without contiguity so that 
OAs forming the neighbourhood could be anywhere in the city; and ‘random distance’. In the latter, 
for each focal OA a candidate list based on contiguity is produced and one of these is chosen 
randomly, continuing this process until a zonation based on 50 OAs is achieved. This means that 
there could be tightly focussed neighbourhoods or more elongated ones. 

Given the volume of estimates we have focused on the DIC and the variances choosing to display 
these graphically so that we can more readily compare. Figure 2a shows the change in the DIC from 
a model with only unstructured effects (two-level hierarchical) when spatial models with larger and 
larger patches are included one at a time. None of the random zonation models show any reduction 
in the badness-of-fit and all the spatial variances have a modal value of zero. The results are 
effectively the same as a model without any potential spatial effects. In contrast both sets of models 
where patches are distance-based show a better fit and this is especially the case for macro patches 
based purely on distance. These results are important in confirming that neighbourhood definition – 

                                                             
5 D was calculated using the methods of Leckie et al (2012). Another way assessing the logit variance is to 
transform it into a Median Odd Ratios (Jones et al 2015). The MOR can be conceptualised as the increased 
odds of being and Indian (on average, hence the median) that would result from moving from a lower to a 
higher area if two areas were chosen at random from the distribution with the estimated variance. A MOR of 1 
is no segregation; here the value is 5.87 which is very large. 

Opmerking [RJ2]: We never define 
D!? Not at all clear how you get from a 
77:23 split in the variance to a 51:33 
ratio in D values?! 
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scale and zonation - is crucial to evaluating spatial segregation and that the DIC can distinguish 
between alternatives. The underlying similarity of the results suggests the resilience of the findings 
under different non-random re-arrangements and the importance of explicitly modelling spatial 
segregation. 

The variances and credible intervals for the different size of patches for the best-fitting distance-
based model are given in Figure 2b. The initial model without any spatial patches misattributes the 
variance, substantially overestimating the unstructured OA variance representing unevenness. When 
varying sized patches are included, the unstructured variance reduces substantially and does not 
change a great deal whatever size of patch is included. The credible intervals of this variance remain 
very tight so there is strong evidence of unevenness. When patches are included the spatial variance 
is large and the credible intervals do not approach the zero value of no clustering; there is strong 
evidence of spatial dependence in the rates.  

As these are one-scale-at-a-time analyses the smaller scale patches may reflect misattributed higher-
level variance (Tranmer and Steel, 2001).  To address this Figure 3 focuses on the potential 
multiscalar nature of the segregation retaining the unstructured OA variance and the 40 or 50 zone 
distance-based patches (with similar DICs) in two sets of models which now additionally include 
smaller patches composed of the 3,5,7 and 10 nearest OAs in terms of distance. In general, and 
despite its complexity the 50-member model provides the best DIC, additionally including a 5-
member patch results in a substantially worse fit, while the best-fitting model of all is one with the 
additional 7 membership patch. Examining the variances in Figures 3b and 3c for the 40 and 50 
neighbourhood models there remains unstructured variance at the OA level beyond Binomial 
variation; the uncertainty intervals do not approach zero. However, in a model without a small patch 
the unstructured variance is overestimated and declines when local spatial clustering is included. 
Most noticeably the largest effect is the spatial segregation at the macro scale and while this 
attenuates somewhat as a small neighbourhood differentials are introduced, it remains substantially 
the largest source of segregation. The small neighbourhood patch is also important and we can see 
that in a model with 7 members this spatial segregation is greater than the unstructured variance 
but not as important as the macro segregation. These results confirm multiscalar segregation: 
Indians are spatially segregated into large scale areas of Leicester and within these macro areas they 
are spatially segregated again.  

Conclusions 
In methodological terms we have demonstrated a robust approach to identify multiscalar spatial and 
aspatial segregation. The approach is similar to Lee et al. (2008) in empirically defining 
neighbourhoods at different scales but distinguishes segregation as unevenness and as spatial 
clustering net of each other giving estimates at multiple scales simultaneously. The multilevel 
approach with the innovation of multiple neighbours at more than one scale explicitly models spatial 
heterogeneity. As the MAUP is produced by changing spatial dependence as areas are combined 
under different scale and zonations (Wong, 1996), this approach explicitly models that change and 
so is intrinsically resistant to it.6 A complexity-penalized goodness-of-fit measure is used to assess 
alternative spatial arrangements. This allows refocussing the spatial lens to identify maximal 
differences between and greatest similarity within and we follow Moellering and Tobler (1972,36) in 
arguing that this is the geographical arrangement where spatial processes are in ‘action’. However, 
in comparison to their pioneering work we go beyond hierarchical models in allowing each areal unit 

                                                             
6 Similarly, Fotheringham et al. (2002,144–158) argue that Geographically Weighted Regression is 
resistant to MAUP as it models spatial heterogeneity. 
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component of the MAUP. But it says 
nothing about the zonation 
component: is the conclusion that 
different zonations have little or no 
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forward empirically – and of course 
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case only. 
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cutting the results in that dimension 
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Once a scale of process has been 
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remains. Here, the multiple methods 
through which the zonations tested 
were constructed highlighted the 
importance of linking the boundary 
divisions to the process as well. Where 
space was taken into account the 
results differed demonstrating that 
zonation within space relies on the 
spatial structure as heavily as the scale 
question …. 
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to have its own (and differentiated) zonation that explicitly takes spatial dependence into account 
while also dealing with the discrete outcome of the response variable and the need to take account 
of varying reliability across the map due to varying denominators. Consequently, the unstructured 
and spatially-structured variances are net of inherent stochastic variation.  

In substantive terms, we have confirmed previous findings on multiscalar segregation at micro, meso 
and macro scales obtained with strictly-hierarchical models with rigid boundaries. Moreover, and 
unlike much previous methodologically-compromised results, we have found that the greatest 
segregation is at the highest and not the lowest scale. The spatial variance terms are important and 
even higher than the aspatial effects which also remain important. Local neighbourhoods based on 
straight-line distance are particularly effective in capturing the spatial character of the segregation.  
There is strong evidence that Indians in Leicester are unevenly distributed and spatially concentrated 
in certain parts of the city. Indians are clustered macro parts of the city and within those large areas 
they are clustered again. There is clear scope here to further explore the linkages between 
residential and neighbourhood choice with the literature on segregation.  

This approach sets a large methodological and substantive agenda. A key question is whether the 
approach can distinguish between different forms of spatial segregation (e.g. ethnoburbs versus 
classical definitions such as Hoyt and Burgess) under realistic conditions of stochastic ‘noise’ and 
confounded variation at multiple scales. The implementation has used specialist software and so an 
important next step to make these models more generally available and we plan to use the universal 
statistical software gateway of Stat-JR (http://www.bristol.ac.uk/cmm/software/statjr/). The DIC has 
been undeniably helpful in narrowing the choice of appropriate models but it would be even more 
useful if it could be more diagnostic between related models. The problem is that the DIC is a single 
overall goodness-of-fit and it would be benefit from having a separate ‘focus’ (Spiegelhalter et al. 
2014) on both spatial heterogeneity and unevenness. 

The model is capable of extension in several ways including the analysis of multiple groups, changes 
over time and simultaneously analysing multiple sources of segregation (such as class and ethnicity). 
Moreover random-coefficient models (Jones, 1991) allow the variance to be a function of observed 
variables and this permits the assessment of the degree to which both the unstructured and spatial 
variance are influenced by characteristics of people and places moving towards a more ‘explanatory’ 
account. It is also possible to include further classifications so that, for example, an analysis of 
residential and school segregation of children may include a strict hierarchy (children nested in a 
school), crossed (children belong to neighbourhoods and schools but not everyone from the same 
neighbourhood goes to the same school) and multiple membership relations (over time children 
may attend multiple schools and may have lived in multiple neighbourhoods). The random 
coefficients model could then include differential segregation by child, school and residential 
characteristics in a model that would examine the changing multi-layered dynamics of segregation in 
our society. Simpler models may misattribute variance and wrongly characterise what is going on. 

Finally, an important limitation is that the OAs as are taken as given and individuals at the lowest 
level are nested in these pre-existing modifiable units.7 Although computationally challenging a 
possible extension using egohoods (Omer and Benenson,2016) to assess household- level 
segregation at the finest possible scale. This would open the possibility of  census agencies 

                                                             
7 In our defence OAs are meaningful entities designed to maximize within-area similarity, but not 
specifically for ethnicity (Cockings et al., 2009). In the fitted models having individual data would be 
no more informative than the proportions (Subramanian et al., 2001). 

Opmerking [RJ5]: Again, it would 
be good to have an empirical 
conclusion regarding zonation!¬ 
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developing bespoke zonations for specific variables to maximize geographical differences between 
areas. This would identify appropriate scales to assess and display incidence rates and risks (Nakaya, 
2000) for if the analysis is too fine the rates will be unstable due to inherent stochastic variation but 
if the areas are too coarse the results may be over-smoothed and important patterning is lost. It 
would also allow the development of models with multiple evaluated contexts to tackle the 
uncertain geographic context problem (Kwan, 2012) of identifying the ‘true causally relevant’ 
geographical setting for individual outcomes. Thus ‘bespoke’ neighbourhoods (Propper et al.,2005) 
would not to be imposed exogenously but defined adaptively as part of the model building process.   
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Figures 
Figure 1 Schematic classifications of the structures used in the analysis 

a) Three level strict hierarchy b) multiple membership with two cross classifications c) multiple 
membership with three cross classification. 
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Figure 2 Results for different zonations when there are 3 classifications: individuals, OAs and 
Neighbourhoods  

a) Change in DIC from model without 
spatial effects for three different 
neighbourhood zonations 

b) Variance for different size small 
Neighbourhoods when zonation by straight 
line distance 
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Figure 3 Results for when there are 4 classifications: individuals, OAs and small and large neighbourhoods 
a) DIC for different size small and large 

Neighbourhoods 
b) Variance for different size small 
Neighbourhoods when large Neighbourhood 
is 40 OAs 

c)  Variance for different size small 
Neighbourhoods when large Neighbourhood 
is 50 OAs 
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Tables 
Table 1: The results of a set of hierarchical model fitted to actual and simulated data 

 

Data Actual No 
Segregation 

 
 

Model Null 2 Level 3 Level 
 

Null 2 Level 3 Leve 

 
 
 
Mean 

Estimate Estimate % 
 

Estimate  % 
 

Estimate Estimate  % 
 

Estimate  % 
 

-0.93 -1.68  -1.54  -0.93 -0.93  -0.93  

Between Zone variance    2.68 76.79    0.00 0.00 
Between OA variance  3.44 100 0.81 23.21  0.00 0 0.00 0.00 
Total 
 Variance 

 3.44 100 3.49 100  0.00 0 0.00 0.00 

           
DIC 128568 6888  6859  6816 6850  6857  
Change in DIC: Null to 2 level   -121680     +34    
Change in DIC: 2 to 3 level    -29     +7  

 

Note: Estimate is the estimated parameter mean obtained by MCMC simulation; % represents % higher level variance not including Binomial variance. 
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