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DeltaDtM: a global coastal digital 
terrain model
Maarten Pronk  1,2 ✉, Aljosja Hooijer1, Dirk Eilander  1, Arjen Haag  1, Tjalling de Jong1, 
Michalis Vousdoukas  3, Ronald Vernimmen  4, Hugo Ledoux  2 & Marieke Eleveld  1,2

Coastal elevation data are essential for a wide variety of applications, such as coastal management, 
flood modelling, and adaptation planning. Low-lying coastal areas (found below 10 m +Mean Sea Level 
(MSL)) are at risk of future extreme water levels, subsidence and changing extreme weather patterns. 
However, current freely available elevation datasets are not sufficiently accurate to model these risks. 
We present DeltaDTM, a global coastal Digital Terrain Model (DTM) available in the public domain, 
with a horizontal spatial resolution of 1 arcsecond (∼30 m) and a vertical mean absolute error (MAE) of 
0.45 m overall. DeltaDTM corrects CopernicusDEM with spaceborne lidar from the ICESat-2 and GEDI 
missions. Specifically, we correct the elevation bias in CopernicusDEM, apply filters to remove non-
terrain cells, and fill the gaps using interpolation. Notably, our classification approach produces more 
accurate results than regression methods recently used by others to correct DEMs, that achieve an 
overall MAE of 0.72 m at best. We conclude that DeltaDTM will be a valuable resource for coastal flood 
impact modelling and other applications.

Background & Summary
With the Space Radar Topography Mission (SRTM) and the introduction of its synonymous named dataset–the 
first global digital elevation model (DEM) with a resolution of 3 arcseconds–by NASA in 20041, new global 
applications of elevation data became possible. These include, among others, watershed modelling, slope impact, 
and surface water modelling2.

Subsequent missions and their datasets, such as ALOS, ASTER and TanDEM-X have improved on vertical 
accuracy and horizontal spatial resolution, reaching 1 arcsecond (roughly 30 m at the equator). While higher res-
olution datasets are commercially available, the most vertically accurate3 freely available global high-resolution 
DEM is CopernicusDEM4 with a resolution of 1 arcsecond, based on the TanDEM-X mission data.

However, these missions, using X-band radar (SRTM, TanDEM-X) and optical sensors in the visible spec-
trum (ALOS, ASTER), measure the upper part of canopy and buildings. That makes their datasets Digital 
Surface Models (DSM) rather than Digital Terrain Models (DTM), as they do not represent the bare-earth 
everywhere. The differences between the surface and terrain can be tens of meters for vegetated areas. While 
some applications can use these DSMs, accurate flood (impact) modelling requires DTM data5. Indeed, issues 
such as future extreme water levels due to Sea Level Rise (SLR)6,7, subsidence and the worsening of storm surges, 
require terrain elevation data having higher accuracy (within 1 m), and for all the coastal areas of the world. For 
this purpose, local airborne lidar data is sometimes used, but this is expensive and not available globally, only in 
more affluent parts of the world. This discrepancy has been noted by several authors5,8,9, but many flood studies 
nonetheless use DSMs as input.

Attempts have been made to correct biases for areas covered by vegetation or buildings in global DEMs–
thus approximating a DTM–by relying on auxiliary datasets such as tree-cover or urban agglomeration maps. 
Examples are MERIT10, based on SRTM, and CoastalDEM11, based on NASADEM12, itself the latest iteration of 
SRTM. More recently FABDEM13 and DiluviumDEM14–both based on CopernicusDEM–have been released. 
We denote these global DTMs as corrected-DSMs, and an overview is given in Table 1.

ICESat (2003–2010) was the first spaceborne lidar mission which enabled bare-earth elevation measure-
ments globally, even in forests, but was very limited in the amount of data it could collect. However, since 2018, 
the spaceborne lidar missions ICESat-2 and GEDI enable global terrain measurements on a much larger scale. 
The properties of these missions are given in Table 2. ICESat-2 has been used on its own to create a global coastal 
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digital terrain model (GLL_DTM v215), which results in high accuracy (MAE of 0.34 m) but low horizontal 
spatial resolution of ~1 km.

For achieving higher resolution DEMs with spaceborne lidar, such data must be combined with global 
DEMs. As Magruder et al.16 suggests, both CoastalDEM11 and more recently FABDEM13 and DiluviumDEM14, 
use ICESat-2 data to correct the surface data present in global DEMs. However these corrected-DSMs, with the 
exception of DiluviumDEM, are not in the public domain–they are only free for research purposes–nor are the 
machine learning models used to generate them (see Table 1).

We introduce DeltaDTM17, a fully open and reproducible global coastal DTM with 1 arcsecond resolution, 
based on CopernicusDEM (and thus also a corrected-DSM), ICESat-2 and GEDI data. Here, coastal is defined as 
the Low Elevation Coastal Zone (LECZ) below 10 m + MSL18, which is the area most affected by future extreme 
water levels8 and storm surges19. When DeltaDTM is compared with airborne lidar validation data across the 
world, the mean absolute error (MAE) across all land cover classes is 0.45 m with 91% of cells accurate within 
1 m, compared to 0.72 m and 79% for the most accurate other high resolution product (the recently released 
DiluviumDEM). We conclude that DeltaDTM will be a valuable resource for coastal flood impact modelling 
and other applications.

Methods
DeltaDTM is a global coastal DTM based on a fusion of CopernicusDEM, ICESat-2, and GEDI elevation data. 
We remove the vertical biases of surface data (e.g., canopy, buildings) present in CopernicusDEM by using 
ICESat-2 and GEDI terrain elevation measurements. Our method can be broken down into four categories, as 
discerned by Okolie et al.20 in their review of DEM fusion methods.

•	 Spatial filtering, such as removing pits present in CopernicusDEM (similar to FABDEM13) and other outliers.
•	 Co-registration, to vertically align CopernicusDEM and ICESat-2, thereby removing the vertical bias in 

CopernicusDEM (similar to NASADEM12 using ICESat)
•	 Filtering of non-ground points, by classifying CopernicusDEM into terrain and non-terrain using morpholog-

ical filters21 and removing the non-terrain elevation pixels.
•	 Void filling, by spatially interpolating the values removed in the previous step, using the AIDW method22.

A visual explanation of the last two steps–filtering and interpolation–is given in Fig. 1. A complete overview 
of the approach is given in Fig. 2, where each box is a dataset or processing step. Each of these steps is explained 
in detail below.

Name Year Based on Auxiliary input Resolution Correction Licence

MERIT10 2017 SRTM ICESat-1, Tree density, 
Tree height 3” Regression techniques

CC-BY-NC 4.0/
Open Database 
licence

CoastalDEM11 2020 NASADEM ICESat-2 1” Neural network Commercial/free 
for research only

FABDEM13 2022 CopernicusDEM
Canopy height, WorldPop, 
World Settlement 
Footprint among others

1” Two decision tree models Commercial/free 
for research only

DiluviumDEM14 2023 CopernicusDEM
Canopy height, Landsat 
Cloud Cover, Dynamic 
World among others

1” Gradient boosted decision tree CC-BY 4.0

DeltaDTM (this study)17 2023 CopernicusDEM ICESat-225, GEDI26, ESA 
WorldCover27 1” Morphological filters, spatial 

interpolation CC-BY 4.0

Table 1. Overview of corrected-DSMs.

Mission ICESat-2 GEDI

Type Discrete photon Full waveform

Main objective Cryosphere monitoring Global ecosystems

Duration 2018–2024 (ongoing) 2019–2023

Orbit Inclination 92 51.6

Beam footprint 11 m 23 m

# tracks 6 (in 3 strong/weak pairs) 8 (four strong, four weak)

Along track spacing 0.7 m (20 m for ATL08) 70 m

Across track spacing 3 km/90 m between pair 0.6 km

Swath width 6.6 km 4.2 km

Beam frequency 532 nm (green) 1064 nm (near-infrared)

Vertical accuracy 0.91 cm MAE32 1.80 cm MAE32

Table 2. Characteristics of the ICESat-2 and GEDI space borne lidar missions.
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We differ from other corrected-DSMs (e.g., FABDEM) in the use of classification–instead of regression–in 
order to find the terrain height. While this leads to a theoretical loss of resolution (when data is filtered and after-
wards interpolated), we find this drawback is negated by the improved accuracy, especially in data-scarce areas.

Datasets used. The datasets used to create DeltaDTM are listed in Table 3. All datasets are publicly available 
and only require citing for use.

The base elevation model we use as starting point is the CopernicusDEM GLO-30 dataset, provided under 
COPERNICUS by the European Union and ESA4. The dataset is distributed in tiles of 1 degree by 1 degree, with 
a spatial resolution of one arcsecond (~30 m at the equator). It is based on TanDEM-X interferometric synthetic 
aperture radar (SAR) data23 and is freely available for the entire globe, except Armenia and Azerbaijan, due to 
current export restrictions. Each elevation tile is accompanied by both a water mask and height error tiles, which 
we also use in our analysis.

For vertically more accurate–but sparsely distributed–terrain elevation measurements, we use the ICESat-2 
Level 3 Land and Vegetation height (ATL08) product24,25, at version 6, with dates ranging from 2018-10-14 to 
2023-06-22. We downloaded 262807 granules (totalling ~22 TB) from the NSIDC DAAC. For elevation, we use 
the h_te_best_fit_20 m (best fit of all terrain photons in a 20m segment) field, containing the elevation above the 
WGS84 ellipsoid and related latitude latitude_20m and longitude longitude_20m fields for each track group in 
the HDF5 file.

Similarly, we downloaded 74815 granules (totalling ~107 TB) of the Global Ecosystem Dynamics 
Investigation (GEDI) Level 2 A product26, currently at version 2, with dates ranging from 2019-04-18 to 2023-
03-16. We use the elev_lowestmode field, containing the terrain elevation above the WGS84 ellipsoid and related 
latitude lat_lowestmode and longitude lon_lowestmode fields for each track group in the HDF5 file.

We also sample the land cover class from the ESA WorldCover 2021 dataset27 for further use in both the 
bias correction and classification algorithms. This land cover class dataset is chosen because it is recent and 
has a resolution of ~10 m, which exceeds CopernicusDEM. The data is freely distributed in tiles of 3 degree by  
3 degree, which we resample (by majority) to the tile specification of CopernicusDEM. WorldCover recognizes 
several land cover classes, such as “Grassland”, “Cropland”, “Tree cover” and “Built-up”. Specifically for our bias 
correction and filtering, we denote the classes “Shrubland”, “Grassland”, “Cropland”, “Bare”, “Moss” and “Snow” 
as open land cover (i.e. terrain that is not covered by woody vegetation or buildings), and the remaining classes 
“Tree cover”, “Mangroves”, and “Built-up” as closed land cover. We assume elevation values in CopernicusDEM 
for open land cover to approximate terrain measurements, whereas elevation values in closed land cover do not.

Fig. 1 Explanation of the classification process of DeltaDTM in (a) Kalimantan and (b) the Netherlands. The 
top row shows CopernicusDEM–the input DSM for DeltaDTM–and the Reference airborne lidar DTM for this 
area. The middle row shows the classification of the Terrain pixels, with the ESA WorldCover map as reference. 
The bottom row shows DeltaDTM, the result of the interpolation of Terrain, with the Normalised DSM as 
reference. The normalised DSM is created by subtracting DeltaDTM from CopernicusDEM, resulting in a map 
of surface heights above the terrain.
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Preprocessing. We find all CopernicusDEM tiles that contain values below 10 m + MSL by intersection with 
the GLL_DTM15 and a manual inspection of elevation along floodplains. This results in a subset of 7146 tiles, 
out of a total of 26448.

We tile all datasets to the tile specification of the CopernicusDEM tiles in this subset. This streamlines pro-
cessing and enables parallel processing of tiles. To prevent edge artefacts on tile borders, each tile is processed 
with 5% overlap of the neighbouring tiles. This overlap percentage is a safety margin as subsequent filters and 
void filling could require a 12 km buffer.

Spatial filtering. CopernicusDEM, ICESat-2, and GEDI datasets all contain outliers. Whereas outliers with 
elevations greater than the actual terrain will be automatically removed in the subsequent classification step (as if 
they are buildings or canopy), outliers with elevations lower than the actual terrain are problematic as they will be 
classified as terrain as well and negatively influence the classification of surrounding cells. Here we describe the 
outlier filters for each dataset, with the focus on removing low outliers.

CopernicusDEM. CopernicusDEM contains many small low outliers, often the result of multi-bounce 
backscattering errors in urban areas, such as around electricity poles. We apply a 25 by 25 pixel window 
(~750 × 750 m) function, and remove all values below 2 standard deviations of all elevation values in the 
window. The window size is sufficient to filter larger patches (3 by 3 pixels) of low outliers, as observed in 
CopernicusDEM. Furthermore, for each 1 by 1 tile we determine an elevation cut-off value, below which all data 
is removed. By default it is set to −2 m, with manual corrections for lowest-lying areas, such as polders in the 
Netherlands, which has been set to −7 m. This value is provided as the low_cutoff field in the tiles.gpkg geospatial 
database supplied with the DEM. Resulting gaps are filled by void filling as described in subsequent steps, using 
overlapping tiles to prevent any edge artefacts.

Likewise, based on the height error data provided with CopernicusDEM4,28, we remove all elevation val-
ues for which the height errors exceed 0.75 m or the DEM was infilled with another DEM. These values are 

Void fillingFiltering of non-ground points� � � � � �Co-registrationSpatial filtering

Height error

CopernicusDEM
GLO-30

ESA WorldCover
2021

ICESat-2
ATL08

Sample
DEM - ICESat-2 for

open landcover
classes

Burn
Replace DEM values

with those of
spaceborne lidar

Bias correction
�Correct vertical bias,

using a smooth
interpolation for all

tiles

Filter
when less than 250

points or with
absolute bias > 2.5m

Classification
Based on landcover
and spaceborne lidar
derived parameters

Interpolation
Using AIDW method
and add TPI pattern

GEDI
L2A

Filter
when height error is >
0.75 m or DEM was

infilled or below
threshold, a.o.

DeltaDTM

DTM
at low resolution

Filter
Based on quality flags

or when below set
threshold

Filter
Based on quality flags

or when below set
threshold

Fig. 2 Overview of the DeltaDTM workflow. Each box is a dataset or processing step, with the dotted line 
grouping all the preprocessing steps.

Dataset Measures Type Years collected Based on Resolution Size

CopernicusDEM4 Elevation raster 2012–2015 TanDEM-X 1” or 30 m 500 GB

ICESat-2 ATL0824,25 Elevation lidar points 2018–2023 ICESat-2 ATL03 20 m along-track 22200 GB

GEDI L2A26 Elevation lidar points 2018–2023 — 70 m along-track 107200 GB

ESA-WorldCover27 Land cover raster 2021 Sentinel-1, Sentinel-2 10 m 117 GB

Table 3. Input datasets used. The spaceborne lidar datasets contain much more (meta)data than latitude, 
longitude, and height, which makes them much larger than their raster counterparts. These sizes represent 
the full global coverage of these datasets, as there is no possibility to only download a subset for the global low 
elevation coastal zone (LECZ).

https://doi.org/10.1038/s41597-024-03091-9
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empirically chosen based on the outliers observed in validation areas. Around 1% of values in CopernicusDEM 
are removed this way. We note that FABDEM13 similarly attempts to remove low outliers in CopernicusDEM, 
but does so by repeatedly smoothing the elevation values.

Spaceborne lidar. We apply quality filters on both the ICESat-2 and GEDI data. For ICESat-2 we only keep data 
with the flag subset_te_flag set to 1. For GEDI, we apply the filtering as used for the derived GEDI L3A product29 
and keep only data with the sensitivity flag above 0.95. Like the filter used for CopernicusDEM, we also remove 
all values below 2 standard deviations of all elevation values in a ~750 × 750 m window. We also use the same 
elevation cut-off value, by default set to −2 m, below which all data is removed. These filters remove around 1% 
of measurements.

Both ICESat-2 and GEDI elevation values were vertically transformed using PROJ30 from the ellipsoid to the 
Earth Gravitational Model (EGM2008) geoid31 (assumed to approximate global MSL in this study), the same 
vertical reference as used by CopernicusDEM.

Co-registration. Any elevation dataset will have biases due to instrument and processing errors, and 
these biases can be determined and corrected by using a second–more accurate–elevation dataset. Indeed, the 
first ICESat mission has been used to validate the CopernicusDEM dataset28, and Guth et al.3 used ICESat-2 
to validate several global DEMs. We use the ICESat-2 ATL08 data to correct the terrain elevation bias in the 
CopernicusDEM dataset. GEDI is not used for the bias correction, as it is less accurate for terrain elevation assess-
ment than ICESat-232 and does not cover latitudes above 56. The bias correction is the first step in the workflow, 
so the terrain elevation values of ICESat-2 and CopernicusDEM are aligned in subsequent steps.

For each quarter of a CopernicusDEM tile (0.5 by 0.5), we compare (subtract) the elevation of the ICESat-2 
points to the elevation of the CopernicusDEM data for all open land covers from WorldCover. This is the small-
est subdivision of a tile which consistently yields hundreds of ICESat-2 measurements, so the bias can be esti-
mated with certainty. In this way, the distribution of CopernicusDEM minus ICESat-2 could be calculated and 
the peak of this distribution was denoted as the bias for each tile. An example for a single CopernicusDEM tile is 
given in Fig. 3, where a bias of −0.16 m was found. The values of the biases for all tiles are given in Fig. 4.

We excluded tiles with a bias larger than 2.5 m or those with less than 250 data points from the bias correc-
tion. These parameters were found empirically to remove gross outliers, mostly present at the poles and tiles con-
taining small rocky islands. Large biases indicate a non-random error in CopernicusDEM (such as interaction 
with snow and ice), while a small number of points cannot be representative for a larger area, given that we can 
expect thousands of ICESat-2 points in a quarter of a tile. Overall these filters removed less than 1% of the tiles 
and kept the major coastlines intact (Fig. 4).

The resulting point dataset, containing the bias at the centre coordinates of each quarter of a CopernicusDEM 
tile, was used to create a bias correction raster for the whole tile by interpolating using a nearest neighbour algo-
rithm. Afterwards, this bias correction raster was applied to the original CopernicusDEM tile. Overall we found 
an average bias of −0.03 m for the coastal tiles.

Fig. 3 A (stacked) distribution of the difference between CopernicusDEM and ICESat-2 ATL08 elevation 
values for all open WorldCover land cover classes for 1/4 th of the S04-E114 CopernicusDEM tile. Here, based 
on the most measured (peak) differences (vertical correction line in black), we determine this part of the 
CopernicusDEM tile to be 16 cm lower than ICESat-2. The different individual open land cover classifications–
colour coded like WorldCover–are given as a reference, but are not used in the calculation.
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Filtering of non-ground points. CopernicusDEM–like any current global radar or optical based DEM–
measures the surface of the earth and thus includes vegetation, building heights, and other civil constructions. 
To remove these biases and determine the true “bare earth” surface, we apply morphological surface filters which 
are supported by terrain measurements from the ICESat-2 ATL08 and GEDI L2A data. Morphological filters 
relate to the morphology (shape) of features and work on subsections (windows) of raster (image) data, to which 
non-linear (such as minimum) filters are applied33. These filters are often used for terrain classification of airborne 
lidar datasets, like the Progressive Morphological Filter (PMF) by Zhang et al.21 or the Simple Morphological 
Filter (SMF) by Pingel34, but require at least some terrain measurements in a given area to work. On its own, 
CopernicusDEM is not suitable for such filtering, as it does not contain any terrain measurements in large parts 
of the world, such as tropical forests. Moreover, these filters normally operate on the scales of individual trees and 
houses, using raster resolutions of a metre, not ~30 m in the case of CopernicusDEM.

We replace CopernicusDEM data with ICESat-2 ATL08 and GEDI L2A terrain data when available, “burn-
ing” the lidar derived elevations into the bias-corrected CopernicusDEM raster. On average, this replaces 4% 
of the values in a tile. This enables the use of morphological filters, albeit with much larger windows sizes than 
usual morphological filters operations.

We modify the PMF filter of Zhang et al.21 (explained in Fig. 5), by allowing for filter settings per raster 
cell instead of single static parameter and by allowing only erosion instead of the default opening operation. 
Thus, specific algorithm settings–such as slopes and the initial height threshold–are dynamically derived from 
ICESat-2 ATL08 and GEDI L2A data (Table 4).

In particular, we create a low-resolution (~450 m) DTM from ICESat-2 and GEDI data during processing, 
and derive the slopes and the initial height settings for the morphological filter from it. This is the highest resolu-
tion DTM currently attainable without needing to interpolate more than 20 of the grid cells between the sparse 
ICESat-2 and GEDI points. The low-resolution DTM is similar to GLL_DTM v215, but it includes GEDI data and 
includes elevations above the 10 m threshold to accurately represents slopes at the edge of the LECZ. This DTM–
after bilinear resampling to ~30 m–is also used to detrend (by subtracting it from) the burned CopernicusDEM 
data, after which the PMF filter is run on it.

The slope derived from a low-resolution DTM can underestimate the slope of the terrain when applied at 
30 m, as features smaller than the resolution of the DTM are not captured. For closed WorldCover land cover 
classes–such as “Tree cover” where the CopernicusDEM surface does not describe the terrain and requires fil-
tering–we calculate the slope from the ~450 m lidar DTM as is. For open land cover classes–where little to no 
data is expected to be removed–we are less strict and use a slope value as if it were retrieved from a 30 m resolu-
tion DTM by dividing the grid size for which the slope is calculated by fifteen (450m

30m
). We thus allow for steeper 

terrain features in open land cover classes than in closed land cover classes. The remainder of the settings are 
chosen based on experiments with validation data and are provided in Table 4.

Void filling. The resulting non-terrain cells–on average 50% of a tile–are filled by interpolation using the 
Adjusted Inverse Distance Weighing (AIDW) method by Li22 using the remaining terrain points. This method 
is a standard IDW method, but with lower weights for points that are “behind” closerby points, in respect to the 
interpolated point. In effect, this ensures that the values used are from all around a point, instead of just close-by 
points in one direction. This property prevents the use of elevation values from only a single ICESat-2 or GEDI 
track. An example highlighting the differences between IDW and AIDW is given in Fig. 6.

The resulting interpolated surface is unrealistically smooth for a terrain. To create a more realistic visual 
landscape representation, we add the roughness of the surface–derived from the original CopernicusDEM–
to the interpolated terrain values only. The roughness or Topographic Position Index (TPI)35 is the difference 
between the elevation of a pixel and the mean elevation of its eight neighbours. As these values can sometimes be 
several metres, we limit (clamp) them to range of the initial threshold (used in the PMF filter) derived from the 
low-resolution DTM. So, in case the initial threshold is 1.2 m, there is a range of −0.60.6 m, and all TPI values 
above 0.6 m will be set to 0.6 m, and all values below −0.6 m to −0.6 m. In the worst case, this adds random noise 
to the DEM, like the noise present in non-interpolated CopernicusDEM elevation values. However, in the best 

Fig. 4 Global mean error (bias) of CopernicusDEM for each 1/4 th tile when compared with ICESat-2 
elevations for open land covers.
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7Scientific Data |          (2024) 11:273  | https://doi.org/10.1038/s41597-024-03091-9

www.nature.com/scientificdatawww.nature.com/scientificdata/

case, it represents actual topography patterns, such as ditches or small canals underneath the canopy. Overall, 
the additions are small and balanced (roughly have a zero mean) and do not affect the accuracy.

Fig. 5 A diagram explaining the progressive morphological filter for classifying terrain and non-terrain 
values. The top panels are elevation rasters, with the bottom panels cross-sections (indicated by the grey dotted 
horizontal lines) of the top panel. A morphological opening operation (erosion in (b) followed by dilation in 
(c)) using a three by three window is applied on (a). A red dot is given for the location of the minimum and 
maximum value in each window. The resulting surface, plus an offset determined by the window size is the 
threshold surface for the binary terrain/non-terrain classification: All values in (a) below or equal to (c + offset) 
are classified as terrain. The offset is determined by the slope times the window size and an initial offset, where 
both the slope as the initial offset depend on the landscape and are set by the user. The filter is progressive by 
repeating the operation for increasingly larger window sizes, taking the minimum of all surfaces for use in the 
final classification.

Algorithm PMF (erosion) PMF (erosion)

Applied to Open land cover Closed land cover

Radius 1000 m 2000m

Slope dynamic with a minimum of 1 0 m
km. dynamic with a minimum 1 0 m

km.

Initial threshold dynamic with a minimum of 1.0 m dynamic with a minimum of 1.0 m

Table 4. Settings of the classification algorithms in use.

Fig. 6 A diagram comparing (a) the IDW interpolation and (b) the interpolation with the AIDW method. A 
complete surface is interpolated from the six points in white, where the inner three points share a value, which 
differs from the value shared by the outer three points. This pattern will lead to the bulls eye artefact (concentric 
areas) in the IDW in (a), whereas the AIDW method in (b) adjusts the weighing of the outer points in the centre 
area to prevent this.
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Data Records
DeltaDTM17 is available as a zipped (.zip) archive per continent (for a total of 20 GB) at https://doi.org/ 
10.4121/21997565. It contains 7073 tiles of 1 by 1 degree with a spatial resolution of one arcsecond (~30 m) in the 
Cloud Optimized Geotiff (COG) format (.tif), using ZSTD compression. The names of the tiles are constructed 
by using the name DeltaDTM, a version v1_0 specifier, and the tile location NYYEXXX, split by underscores _. 
The tile location represents the coordinate of the top left corner of the tile, with N/S (North or South) and E/W 
(East or West) indicating the hemispheres, and the YY and XXX representing the latitude and longitude of the 
tile in that hemisphere, respectively. This location naming scheme is identical to the CopernicusDEM dataset. 
An example filename DeltaDTM_v1_0_S01W161.tif thus represents a DeltaDTM version 1.0 tile with the 
top left corner at 1 South (−1 latitude) and 161 West (−161 longitude).

The coordinate reference system (CRS) of the geotiffs is set to EPSG:9518, a compound CRS combining the 
horizontal geographic CRS WGS84 (EPSG:4326) reference and the vertical CRS EGM2008 (EPSG:3855). All 
geotiffs also contain metadata describing the dataset, usage notes and a reference to the doi of the dataset.

For each elevation tile, a mask tile is also provided in the mask_tiles.zip. These are the original 
CopernicusDEM water body mask tiles, with the addition of value 255 to indicate where DeltaDTM is clipped 
at 10 m + MSL.

A Virtual Raster Table (DeltaDTM_v1_0.vrt) file linking all tiles is also provided and is advised to be 
used for overviews or visualisation. Note that the Virtual Raster Table file cannot represent all the different sizes–
becoming smaller at higher latitudes–of the individual tiles (also see the usage notes).

Finally, a geopackage (deltadtm_tiles.gpkg) is provided with the bounding boxes of each tile, includ-
ing an attribute detailing in which zipfile (continent) it can be found. w The DeltaDTM dataset is publicy hosted 
as a Google Earth Engine collection under the collection ID users/maartenpronk/deltadtm/v1. An example on 
how to access the dataset is provided at https://code.earthengine.google.com/?scriptPath=users/maartenpronk/
deltadtm:v1.

technical Validation
We validate DeltaDTM, global high-resolution DSMs (NASADEM, CopernicusDEM) and corrected-DSMs 
(MERIT, CoastalDEM, FABDEM, and DiluviumDEM) against local DTMs based on airborne lidar, and also 
inspect the differences visually. Furthermore, we globally cross-validate DeltaDTM against ICESat-2, demon-
strating that DeltaDTM is currently the most accurate global coastal DTM.

Validation against reference datasets. We validate the DeltaDTM dataset against public local airborne 
lidar reference datasets in the Australia, Florida, Indonesia, Latvia, the Marshall Islands, Mexico, the Netherlands, 
Poland, and the United Kingdom. These datasets–with a combined area of 78106 km2–cover coastal areas across 
the world near or below MSL. An overview of the areas and the source data is given in Table 5 and Fig. 7. All 
datasets were vertically reprojected to MSL (using the EGM2008 geoid) from their local vertical references using 
GDAL36. We use the following metrics to evaluate the quality of the DeltaDTM dataset:

n
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i i
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Where zi is the elevation of one cell in DeltaDTM and ci the elevation in the airborne lidar reference dataset.
The mean error (or bias) and RMSE metrics are commonly used, but are sensitive to outliers. We thus also 

provide the MAE and MAD metrics, which are more robust to outliers and are–in our opinion–the metrics that 
matter most. Furthermore, we also provide the number of sampled cells, and the percentage of values within 1, 
2, and 5 m from the airborne lidar reference surface.

We calculate these metrics per land cover class as sourced from ESA WorldCover and provide an overall (all 
land cover classes combined) height error statistic (Table 6). Land cover classes that occur in less than 1% of all 
samples (“Snow and Ice”, “Herbaceous Wetland”, and “Moss and lichen”) or are not applicable (“Water”) are left 
out.

DeltaDTM performs best for all land cover classes combined, with a bias of 0.01 m, a MAE of 0.45 m, and a 
RMSE of 0.74 m. 91% of DeltaDTM is within 1 m of the reference surface, 98% within 2 m and 100% within 5 m. 
The next best DEM is DiluviumDEM, followed by FABDEM–although closely matched by CoastalDEM, but 
not for the percentage within 1 m. DiluviumDEM has a bias of 0.02 m, a MAE of 0.72 m and a RMSE of 1.22 m, 
with 79% of values within 1 m. FABDEM has a bias of 0.65 m, a MAE of 1.05 m and a RMSE of 1.96 m, with 71% 
of values within 1 m. CoastalDEM, NASADEM, CopernicusDEM, and the MERIT DEM (described in Table 1) 
have lower accuracies (Table 6).
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Comparison of validation scores over individual reference areas (Table 7) confirms the global validity of 
DeltaDTM across regions and climate zones. The overall MAE values of 9 of the 10 areas range from 0.350.59 m 
with only one apparent outlier (Marshall Islands) at 0.98 m. In all areas, the MAE of either the “Urban”, “Trees”, 
or “Mangroves” land cover is highest, and in nearly all the MAE of “Cropland” is the lowest.

Each DEM has its own strengths and performs differently per land cover class. For example, FABDEM has 
been optimized for urban areas and has a similar performance for “Built-up” as DeltaDTM, with a MAE of 
0.69 m and 0.61 m respectively.

In areas with no vegetation or buildings, like “Wetland” or “Cropland”, an uncorrected DSM such as 
CopernicusDEM performs similar to corrected-DSMs. CopernicusDEM has a MAE of 0.43 m for “Cropland”, 
whereas FABDEM and DeltaDTM have a MAE of 0.38 m and 0.32 m, respectively.

As expected, the errors for “Tree cover” are greatest, with 87% of DeltaDTM elevations within 1 m, one of 
its lowest values overall. DiluviumDEM is next, with 60% within 1 m, followed by CoastalDEM at 49%, and 
FABDEM at 42%. Notably, FABDEM has a lower accuracy in “Tree cover” at 2.14 m MAE than MERIT at 1.92 m 
MAE and CoastalDEM at 1.33 m MAE. DeltaDTM has a 0.56 m MAE in “Tree cover” (Table 6).

To understand the impact of our methodological choices, we have provided the impact on the accuracy 
(MAE) and the percentage of cells affected by each processing step in Table 8. Overall, the classification step in 
filtering non-ground cells is the most important, improving the MAE by 1.58 m. This is followed by the burn step 
in the same filtering non-ground cells category when measured individually, as not using ICESat-2 and GEDI 
values (only accounting for 4% of cells) for the subsequent classification would worsen the MAE by 0.62 m. The 
preprocessing steps to remove outliers are of little quantitive impact overall (not improving the MAE, affecting 
1% of cells) and mainly serve to prevent visual artefacts.

Qualitative visual validation. Apart from the quantitative validation, we also perform a qualitative visual 
validation of the DeltaDTM dataset. Such a validation is important to ensure that the dataset is free from artefacts 
and is realistic, since relying on a limited set of metrics can be misleading37,38.

Figures 8, 9 show the reference dataset, a land cover map from ESA Worldcover, and the corrected-DSMs 
MERIT, CoastalDEM, FABDEM, DiluviumDEM and DeltaDTM and their differences with the reference for ref-
erence areas. These figures also include a hillshade visualisation of the DEM to efficiently assess the ability of the 
DEMs to represent the landscape37. We use Perceptually Shaded Slope Maps (PSSM)39, which gives much more 
contrast in slopes than default hillshade visualisations, which is essential in areas with little to no relief as present 
in the LECZ. The remainder of the figures for all validation areas can be found as Supplementary Figures 1–17. 
The legend for the ESA Worldcover map is given in Supplementary Figure 18.

In Florida, the United States (Fig. 9a), the area with the most built-up land cover, DeltaDTM performs best 
of the corrected-DSMs. MERIT is too high overall, but mostly so in the Built-up area. CoastalDEM tends to be 

Country Dataset Resolution Year Area [km2] Most Common Land covers [%]

Australia National DTM, near Darwin43 5 m 2001–2015 4137 Tree [41], Grassland [30]

Florida NOAA Sea Level Rise44 2 m 2012 20754 Tree [28], Built-up [19]

Indonesia East Sumatra strip DTM45 25 m 2014–2017 1499 Tree [49], Grassland [18]

Indonesia Central Kalimantan45 25 m 2011 6529 Tree [60], Grassland [21]

Latvia National DTM, near Riga46 20 m 2013–2019 2385 Tree [57], Grassland [22]

Marshall Islands Majuro47 1 m 2017 581 Tree [37], Grassland [34]

Mexico National DTM, Tabasco48 5 m 2011 13942 Wetland [37], Grassland [36]

the Netherlands AHN449 5 m 2020–2022 22685 Grassland [47], Cropland [25]

Poland National DTM, near Gdańsk50 5 m 2021 1873 Cropland [70], Grassland [15]

United Kingdom National DTM, Fenlands51 10 m 2019 3721 Cropland [69], Grassland [20]

Table 5. Reference lidar datasets used. Trees is “Tree cover”, while Wetland is “Herbaceous wetland”. Area is the 
area below 10 m + MSL.

Fig. 7 The validation areas from Table 5 projected on the globe.
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more balanced, lower in the south, slightly higher along the coastline. FABDEM performs well in the urban area, 
but is higher than the reference for the vegetated parts of the coast. DiluviumDEM is on par with DeltaDTM, but 
slightly higher, and has a higher average slope.

Land cover n bias [m] MAE [m] MAD [m] RMSE [m] <1 m [%] <2 m [%] <5 m [%] DEM

Herbaceous wetland (11 %)

8549286 −0.03 1.35 1.02 1.87 49 79 98 NASADEM

8264359 0.25 0.60 0.37 0.93 83 97 100 CopernicusDEM

8545311 1.35 1.56 0.55 1.84 27 77 99 MERIT

8547405 0.74 1.15 0.74 1.44 52 84 100 CoastalDEM

8264359 0.26 0.56 0.34 0.82 84 98 100 FABDEM

8263261 0.00 0.43 0.30 0.60 90 99 100 DiluviumDEM

8264359 0.03 0.36 0.28 0.49 95 100 100 DeltaDTM

Grassland (32 %)

23372058 0.27 1.42 0.99 2.20 51 79 97 NASADEM

23433669 0.34 0.77 0.39 1.60 78 93 99 CopernicusDEM

23360478 1.11 1.40 0.65 1.76 40 79 99 MERIT

23347032 −0.27 0.94 0.62 1.29 65 89 100 CoastalDEM

23433669 0.19 0.64 0.36 1.14 80 96 99 FABDEM

23431085 −0.07 0.58 0.33 0.97 83 96 100 DiluviumDEM

23433669 0.07 0.42 0.27 0.69 92 98 100 DeltaDTM

Cropland (16 %)

11876998 −0.32 0.99 0.74 1.34 62 89 100 NASADEM

11883267 −0.19 0.43 0.27 0.73 92 99 100 CopernicusDEM

11876125 0.78 1.02 0.51 1.21 52 93 100 MERIT

11875517 −0.47 0.75 0.47 1.00 73 95 100 CoastalDEM

11883267 −0.18 0.38 0.24 0.63 95 100 100 FABDEM

11883190 −0.25 0.55 0.28 1.02 87 95 99 DiluviumDEM

11883267 −0.07 0.32 0.23 0.44 97 100 100 DeltaDTM

Built-up (8 %)

5909752 1.36 2.02 1.29 2.72 33 60 94 NASADEM

5900020 1.59 1.73 0.87 2.41 39 69 96 CopernicusDEM

5906062 2.56 2.68 1.13 3.21 16 40 90 MERIT

5901961 −0.23 0.95 0.70 1.32 64 89 99 CoastalDEM

5900020 0.22 0.69 0.47 1.04 79 95 100 FABDEM

5899807 −0.02 0.80 0.51 1.26 75 92 99 DiluviumDEM

5900020 −0.24 0.57 0.37 0.91 86 96 100 DeltaDTM

Tree cover (25 %)

18649418 3.83 4.26 2.44 5.94 21 39 69 NASADEM

18617509 5.16 5.25 2.56 7.30 18 33 62 CopernicusDEM

18634482 1.35 1.92 1.13 2.47 31 62 95 MERIT

18620149 0.33 1.33 1.02 1.79 49 77 99 CoastalDEM

18617509 1.81 2.14 1.16 3.29 42 65 90 FABDEM

18616621 0.06 1.22 0.77 1.88 60 83 97 DiluviumDEM

18617509 0.04 0.56 0.36 0.95 87 96 100 DeltaDTM

Mangroves (5 %)

4074981 3.37 3.79 2.22 5.21 22 40 72 NASADEM

4019752 4.02 4.07 2.33 5.81 28 41 68 CopernicusDEM

4054032 2.43 2.52 0.83 3.20 15 52 90 MERIT

4038701 1.02 1.15 0.51 1.45 48 90 99 CoastalDEM

4019752 1.84 1.89 0.96 2.60 42 63 94 FABDEM

4019752 0.44 0.84 0.43 1.47 75 90 98 DiluviumDEM

4019752 0.17 0.48 0.31 0.73 89 97 100 DeltaDTM

Overall

74875606 1.33 2.28 1.35 3.82 41 66 89 NASADEM

73684832 1.78 2.10 0.74 4.11 59 74 87 CopernicusDEM

74852660 1.34 1.68 0.78 2.18 35 71 97 MERIT

74846548 0.05 1.06 0.79 1.44 59 86 99 CoastalDEM

73148539 0.65 1.05 0.51 1.96 71 87 97 FABDEM

73143642 0.02 0.72 0.40 1.22 79 93 99 DiluviumDEM

73148539 0.01 0.45 0.30 0.74 91 98 100 DeltaDTM

Table 6. Height error statistics per land cover class and all land covers combined for all corrected-DSMs and 
their sources as compared to local airborne lidar DTMs. Bold is best value(s) in each metric and class. Land 
cover is based on ESA WorldCover 2021 and classes with less than 1% of sampled data (“Water”, “Snow and Ice”, 
“Bare/sparse vegetation”, “Shrubland”, and “Moss and lichen”) are ignored. < m is within m of reference. n is the 
number of comparisons (pixels) and can differ per dataset due to the different watermasks in use.
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In Kalimantan, Indonesia (Fig. 9b), the reference area with most “Tree cover”, all datasets have lower accu-
racies. Clearly, extensive and dense forest in the tropics is hard to correct for. MERIT tends to overcorrect the 
forest on the peat dome, making it too low, while missing the vegetation along the canals. CoastalDEM shows a 
similar range of errors, without a clear pattern. FABDEM has the largest positive errors, not always correcting 
larger patches of forests or the vegetation along the canals. DiluviumDEM removes the larger patches of forest, 
but overcorrects, becoming too low overall. DeltaDTM is closest to the reference, having the smallest errors 

Dataset Land cover n bias [m] MAE [m] MAD [m] RMSE [m] <1 m [%] <2 m [%] <5 m [%]

Australia

Wetland 525357 −0.12 0.25 0.19 0.33 100 100 100

Grassland 1195841 −0.20 0.36 0.23 0.49 97 100 100

Cropland 21424 −0.15 0.30 0.23 0.39 99 100 100

Urban 8141 0.01 0.94 0.72 1.25 62 90 100

Trees 1628773 −0.08 0.78 0.41 1.27 76 90 99

Mangroves 483255 0.74 0.96 0.66 1.35 64 85 100

Overall 3952547 −0.02 0.59 0.31 0.99 85 94 100

Florida

Wetland 2213104 0.01 0.33 0.24 0.48 96 99 100

Grassland 1933126 0.25 0.51 0.34 0.72 88 98 100

Cropland 228976 0.15 0.28 0.17 0.46 95 99 100

Urban 2556095 −0.07 0.49 0.34 0.73 89 98 100

Trees 3750084 0.18 0.40 0.27 0.58 94 99 100

Mangroves 2472533 0.19 0.35 0.25 0.49 95 100 100

Overall 13208385 0.12 0.41 0.28 0.61 93 99 100

Indonesia

Wetland 199555 0.04 0.40 0.31 0.50 95 100 100

Grassland 1679234 0.21 0.59 0.48 0.79 84 99 100

Cropland 566366 −0.11 0.49 0.37 0.63 91 99 100

Urban 28691 −0.01 0.44 0.36 0.60 92 100 100

Trees 4684674 0.03 0.48 0.39 0.64 90 99 100

Mangroves 223136 −0.07 0.51 0.37 0.67 89 99 100

Overall 8198017 0.04 0.50 0.42 0.67 89 99 100

Marshall islands

Wetland 6 0.69 0.79 0.53 0.90 67 100 100

Grassland 2842 0.47 0.89 0.59 1.11 64 93 100

Urban 2460 0.28 0.99 0.48 1.22 59 89 100

Trees 3481 0.95 1.06 0.52 1.26 51 92 100

Overall 8939 0.61 0.98 0.52 1.20 57 91 100

Mexico

Wetland 4760852 0.07 0.39 0.31 0.50 95 100 100

Grassland 4995129 0.42 0.57 0.34 0.80 85 98 100

Cropland 175399 0.51 0.59 0.36 0.75 82 99 100

Urban 193057 −0.09 0.67 0.48 0.95 80 95 100

Trees 2425547 0.38 0.68 0.41 1.01 81 95 100

Mangroves 839893 −0.17 0.56 0.40 0.82 85 97 100

Overall 13415760 0.25 0.53 0.36 0.76 88 98 100

Netherlands

Wetland 385798 −0.11 0.29 0.20 0.44 97 99 100

Grassland 11913519 −0.06 0.31 0.19 0.60 96 98 100

Cropland 6399660 0.06 0.22 0.15 0.33 99 100 100

Urban 2763729 −0.39 0.62 0.36 1.03 84 95 99

Trees 3983525 −0.14 0.52 0.31 0.88 88 96 100

Overall 25476046 −0.08 0.35 0.21 0.66 94 98 100

United Kingdom

Wetland 36780 −0.92 0.94 0.26 1.04 60 98 100

Grassland 784332 −0.52 0.61 0.24 0.82 89 97 100

Cropland 2777995 −0.52 0.53 0.17 0.60 97 100 100

Urban 145781 −0.70 0.80 0.35 1.17 76 94 99

Trees 261257 −0.40 0.75 0.37 1.14 79 94 99

Overall 4009925 −0.52 0.58 0.19 0.72 93 99 100

Table 7. Height error statistics per land cover class and all land covers combined as per Table 6 split out for 
each validation area from Table 5. Land cover is based on ESA WorldCover 2021 and classes with less than 
1% of sampled data (“Water”, “Snow and Ice”, “Bare/sparse vegetation”, “Shrubland”, and “Moss and lichen”) 
are ignored. < m is within m of reference. n is the number of comparisons (pixels). Trees is “Tree cover”, while 
Wetland is “Herbaceous wetland”. The full table–including datasets from Poland and Latvia–is included as 
Supplementary Table 1.
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overall but still misses smaller patches of forest. We attribute these errors in small patches to a misclassification 
of the (“open” versus “closed”) land cover class–like cropland instead of tree cover–resulting in different (less 
strict) filter settings.

In other validation areas (Fig. 8), we find two patterns of interest. First, in the Netherlands (Fig. 8a), the 
embankments of major highways tend to be removed in all corrected-DSMs. This effect is especially pro-
nounced in DeltaDTM, as it is the only major source of errors. Notably, as demonstrated in the hillshades, 
DiluviumDEM creates very rough terrain where corrections are applied. Second, in Australia (Fig. 8b), we find 
that CopernicusDEM–used as input for both FABDEM, DiluviumDEM, and DeltaDTM–is two metres lower 
than the reference. FABDEM and DiluviumDEM are not able to correct this bias and are also two metres too low, 
whereas the bias correction step in DeltaDTM can negate this error in the source dataset.

When comparing hillshades across the validation areas, all corrected-DSMs smooth landscape details–
such as infrastructure and canals–present in the reference DTM. Moreover, the hillshades indicate steep slopes 
caused by pits and patches of forest in the corrected-DSMs. In the validation area of Kalimantan, Indonesia 
(Fig. 9b)–the smoothest terrain overall–the hillshades show artefacts in the processing of CoastalDEM and 
DiluviumDEM. CoastalDEM and DiluviumDEM have square patches of pixels that differ from one another, 
whereas DiluviumDEM also has large differences between corrected-pixels, resulting in a high overall slope.

When we compare all elevation values as a cumulative distribution (a hypsography) as in Fig. 10, we 
see that all corrected-DSMs follow the trend of the reference, but are generally higher, especially for values 
above 10 m + MSL. MERIT is consistently higher than the reference, whereas FABDEM is mostly higher for 
values above 4 m + MSL. Both CoastalDEM, DiluviumDEM and DeltaDTM follow the reference closely, 
but CoastalDEM and DiluviumDEM oscillate more, and are the only corrected-DSMs that are visibly lower  
(containing fewer values) than the reference.

Cross-validation against ICESat-2. The airborne lidar reference datasets used to validate DeltaDTM 
(Table 5 and Fig. 7) are geographically limited. Indeed, we found only two datasets for the whole Global South, 
while most of the tree land cover–and thus the largest biases in DSMs–occur there. We thus choose to validate 
against ICESat-2 as it has global coverage.

However, because DeltaDTM directly incorporates ICESat-2 measurements, we cannot directly use ICESat-2 
for validation. Instead, we cross-validate by using a modified version of DeltaDTM, generated with only 66 of 
ICESat-2 data and use the remainder 33 for validation. Specifically, we leave out track two (gt2l, gt2r) of all 
ICESat-2 data, which is the beam pair (one strong, one weak beam) in the middle. Leaving out whole granules 
will cause an imbalance in the global coverage, while leaving out other beam(pair)s causes imbalances in the 
beam power distribution and could allow for validation only 90 m away from training data. Note that these 
results are thus for a modified version of DeltaDTM, the actual version has better performance.

The datasets involved are not independent, and this cross-validation could in theory overestimate the accu-
racy of DeltaDTM by ignoring any biases in ICESat-2. However, there is no other global validation dataset, and 
we are confident in the vertical accuracy of ICESat-2. For example, we find a MAE of 0.44 m when we compare 
ICESat-2 measurements to the airborne lidar dataset of the Netherlands and Liu et al.32 found a MAE of 0.91 m 
when they compared ICESat-2 to airborne lidar datasets across the USA. GEDI is not used for cross-validation, 
as it is less accurate (MAE of 1.80 m32) and does not cover the higher latitudes.

We reuse the metrics from the previous validation, also separated per land cover class, for DeltaDTM 
(Table 9). In comparison with global ICESat-2 measurements, DeltaDTM has a mean error of 0.13 m, a MAE 
of 0.75 m, a MAD of 0.32 m and a RMSE of 3.27 m. 83% of all samples are within 1 m of ICESat-2, and 94% and 
99% within 2 m and 5 m respectively. These measurements–apart from the RMSE–are similar to the validation 
statistics in Table 6.

Measured Step Clarification of disabled step
MAE 
[m]

Δ MAE 
[m]

cells 
[%]

Individually

None No steps disabled (equals DeltaDTM) 0.45

Low filter Removing low outliers that could impact further processing 0.45 0.00 1

Bias correction Correction of vertical bias present in CopernicusDEM 0.51 −0.06 100

Burn Use ICESat-2 and GEDI elevations where available 1.07 −0.62 4

Classify + interpolation Remove non-terrain cells and fill the resulting voids 1.72 −1.27 50

Cumulatively

None None (equals CopernicusDEM) 2.10

Low filter Low Filter 2.10 0.00 1

Bias correction Low Filter + Bias correction 2.04 −0.06 100

Burn Low Filter + Bias correction + Burn 2.03 −0.01 100

Classify + interpolation Low Filter + Bias correction + Burn + Classify + interpolation (equals DeltaDTM) 0.45 −1.58 100

Table 8. The impact of each processing step of DeltaDTM on the overall MAE and the number of cells affected 
when compared to reference areas. Measured both individually by disabling each processing step separately 
in DeltaDTM, and cumulatively by applying processing steps sequentially on CopernicusDEM. Δ MAE is the 
difference in MAE compared to DeltaDTM for the steps measured individually, and the difference with the 
previous step for cumulatively measured steps. The classification and interpolation step has by far the most 
impact on the MAE.
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Fig. 8 A comparison of corrected-DSMs in validation areas with (a) embankments in North-Holland, 
the Netherlands and (b) large vertical bias differences in the original DSMs used as input in the Northern 
Territories, Australia. The top row shows DEMs, while the center row shows the difference with the reference 
elevation in the top left. The ESA WorldCover map is given for context in the center left. The bottom row 
shows the hillshades for all DEMs. (a) Note how the embankments (highways, such as the peripheral road) 
around Amsterdam are removed in all corrected-DSMs and DeltaDTM, and show up as negative (green) in the 
difference with the reference map. (b) FABDEM and DiluviumDEM (both based on CopernicusDEM) are two 
meters lower than the reference, while the bias correction in DeltaDTM (also using CopernicusDEM) mostly 
negates this bias.
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Fig. 9 A comparison of corrected-DSMs in the validation areas with (a) most Built-up land cover in Florida, 
USA and (b) the one with most “Tree cover” in Kalimantan, Indonesia. The top row shows DEMs, while the 
center row shows the difference with the reference elevation in the top left. The ESA WorldCover map is given 
for context in the center left. The bottom row shows the hillshades for all DEMs. (a) Urban coastline of Miami, 
on average 2 m + MSL. (b) All corrected-DSMs have difficulty with the dense vegetation. The hatched patterns 
in the DTM and to some extent in the corrected-DSMs are drainage canals in the peat domes.
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Fig. 10 Hypsography (cumulative distribution function of height) for all validation areas combined. For the 
reference line, 60% (20%–80%) of all values are between 05 m. All corrected-DSMs follow the trend of the 
reference, but are generally higher, especially for values above 10 m. MERIT is consistently higher than the 
reference, whereas FABDEM is mostly higher for values above 4 m. Both CoastalDEM and DeltaDTM follow 
the reference closely, but CoastalDEM oscillates more, and is the only corrected-DSM that is visibly lower than 
the reference on occasion.

Fig. 11 Global mean error of DeltaDTM per tile when cross-validated against ICESat-2 as points. Each tile is 
logarithmically sized to the number of samples, so steeper coasts (fewer samples below 10 m) and islands are 
represented by smaller points. Note how the overall error is close to zero, whereas larger errors occur especially 
in the higher latitudes with ice cover, such as Greenland, Canada, and Argentina and steep mountainous coasts. 
The white boundaries between tiles are for visualisation only, in reality tiles are connected.

Land cover n bias [m] MAE [m] MAD [m] RMSE [m] <1 m [%] <2 m [%] <5 m [%]

Bare/sparse vegetation (14%) 25507870 0.18 0.65 0.23 3.70 90 96 99

Herbaceous Wetland (27%) 51086453 −0.26 0.49 0.29 0.79 87 97 100

Grassland (25%) 47376473 0.08 0.46 0.26 1.21 90 97 100

Cropland (14%) 25930835 0.09 0.37 0.23 0.67 93 99 100

Tree cover (13%) 24556841 0.62 1.21 0.53 3.16 69 85 96

Shrubland (2%) 3549083 −0.07 0.54 0.32 1.01 86 96 100

Snow and ice (1%) 943697 12.16 12.90 3.28 25.98 28 41 60

Mangroves (3%) 5533679 0.40 0.72 0.36 1.52 81 93 98

Moss and lichen (1%) 2361855 0.08 0.67 0.34 2.32 85 94 99

Overall 186846786 0.13 0.75 0.32 3.27 83 94 99

Table 9. Height error statistics for cross-validation with ICESat-2 per land cover class and all land covers 
combined. <m means within m to reference. Note how the “Snow and ice” land cover class has the worst 
performance. Overall, the performance is similar to the validation with local DTMs, indicating that DeltaDTM 
does perform well globally.
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The high overall RMSE of 3.27 m (within 1 m for the validation with local DTMs) is explained by a high num-
ber of outliers, that are less prominent in other statistical measures. These outliers occur either in DeltaDTM or 
in ICESat-2 data used for validation, and especially at steeper coasts, as seen in Fig. 11. Note also that the error 
of “Snow and ice” (MAE of 12.90 m) is substantially worse than that of any other land cover class (MAE typically 
within 1 m). We attribute this to the dynamic nature of the cryosphere–given that CopernicusDEM base dataset 
for DeltaDTM is roughly ten years old–and the interaction of the X-band radar of CopernicusDEM with ice. The 
“Tree cover” class has the second-largest errors (MAE of 1.21 m), which is the most difficult land cover class to 
correct for in all corrected-DSMs, as shown in the validation against reference datasets. We note that ICESat-2, 
used here as reference, also has decreased accuracy in closed land cover classes32, which further contributes to 
the error.

Usage Notes
Like any global product, the DeltaDTM dataset contains outliers and artefacts. Because of the high accuracy 
of DeltaDTM, errors in resolving smaller features stand out for the first time. This is clearest in Fig. 8a, where 
DeltaDTM has removed the embankments of major highways. Indeed, whereas previous corrected-DSMs tend 
to overestimate the elevation due to the presence of forests and urban areas (errors of omission), DeltaDTM will 
tend to underestimate the elevation because it mistakenly removes these embankments (errors of commission). 
Furthermore–while better than other DEMs in correcting the bias due to vegetation–we still see the largest 
errors in the “Tree Cover” land cover class. We intend to improve these aspects of DeltaDTM in subsequent 
versions.

It should be realized that given the overall RMSE of 0.74 m, DeltaDTM can be used to model SLR in incre-
ments of 1.48 m or higher at 68% confidence level5. For 1 m SLR increments, confidence level will be 50% 
(Fig. 12). DeltaDTM should not be used for areas in the arctics, given the large errors of CopernicusDEM there. 
Because of the cut-off above 10 m + MSL–we consider DeltaDTM potentially unfit for certain terrain analyses 
such as extracting drainage networks. Otherwise, the processing (Fig. 1) leaves no voids left other than nodata 
values for oceans, lakes, and rivers. These masked water bodies can be identified in the mask tiles provided with 
the dataset (with 0 being land, 1 ocean, 2 lakes, and 3 rivers), so that users can make the dataset continuous if 
needed.

DeltaDTM is licensed under CC BY 4.0 licence, which means that you are free to share and adapt the 
dataset, as long as you give appropriate credit (i.e. cite this paper). DeltaDTM is produced using Copernicus 
WorldDEM-30 © DLR e.V. 2010–2014 and © Airbus Defence and Space GmbH 2014–2018 provided under 
COPERNICUS by the European Union and ESA; all rights reserved.

Fig. 12 The confidence level associated with modelling SLR in increments of 0.52 m given the vertical 
uncertainty (RMSE) of a DEM5. The overall RMSE for all corrected-DEMs (Table 6) is given. DeltaDTM can be 
used to model SLR in increments of 1 m at 50% confidence.

Latitude Tile width (columns) Tile height (rows)

0° to 50° 3600 3600

50° to 60° 2400 3600

60° to 70° 1800 3600

70° to 80° 1200 3600

80° to 85° 720 3600

85° to 90°* 360 3600

Table 10. Tile sizes for each DeltaDTM tile per latitude range. Tiles narrow with increasing latitude, to keep 
the longitudinal resolution around 30 m. We follow the CopernicusDEM convention here, itself based on the 
DGED specification40. *No DeltaDTM tiles exist for this latitude range.
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While a virtual raster (DeltaDTM.vrt) with a single resolution linking all individual tiles is provided, note 
that individual DeltaDTM tiles have different sizes (and thus slightly different longitudinal resolutions) depend-
ing on the latitude, following the original CopernicusDEM (DGED40) tiling scheme. That is, to account for the 
curvature of the earth, the tiles are smaller in width at higher latitudes. From 0–50 degrees latitude, tiles have 
3600 × 3600 pixels, while from 50–60 degrees latitude, tiles have 3600 × 2400 pixels, and become smaller from 
there on. All sizes are given in Table 10. The virtual raster cells can thus appear stretched when opened in a GIS 
environment. It is advised to use individual tiles when possible.

Code availability
All code developed for this study is openly available as DeltaDTM.jl41 at https://zenodo.org/doi/10.5281/
zenodo.10051451 under the GNU General Public License v3.0. The code is written in the Julia programming 
language42.
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