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Abstract
The small satellite market is rapidly growing and becomes more competitive by the day. In order to
reduce launch costs, the concept of reusable launch vehicles wins popularity. Only few companies
have managed to successfully recover and re-use their launch vehicle, of which SpaceX is the only
one using a powered descent technique. This study focuses on applying that same technique on a
small satellite launcher: Rocket Labs Electron. A 3-DOF trajectory optimization is performed to
�nd the fuel optimal ascent and descent trajectories of the Electron. The original design of the
Electron is adhered to as much as possible. The optimization is performed for a variety of Single-
and Multi objective optimizers and di�erent settings. Although this is only a feasibility study in
which many assumptions are made, the results look promising for further research to be done.
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1 | Introduction

The current global SmallSat market has an estimated value of 2.8 billion USD, according to a
research conducted by MarketsAndMarkets [16]. The same research estimates an average CAGR
of 20.5% for the coming 5 years, forecasting a global market value of 7.1 billion USD by 2025.
Furthermore, in 2020 more than twice the number of SmallSats have been sent into space with
respect to 2019 [17], despite the setbacks of the pandemic. NASA classi�es satellites with a mass
below 500kg as ’small’. SmallSats are relatively cheap and are widely adapted for commercial,
communication and research purposes. Currently, the gross amount of SmallSats is delivered to
space as piggyback payload (rideshare on a launch with bigger payload and higher priority). If
a company wants to sent a SmallSat to space it is thus fully dependent on the launch schedule
of the larger prioritized payload. With the increasing popularity of the market more and more
launch companies o�er launches for SmallSats only. An example of such company is Rocket
Lab, which has successfully delivered its �rst payload to space in 2018. One way of reducing the
cost of such launches is to re-use the launch vehicles. Rocket Lab currently focuses on Mid Air
Retrieval (MAR) to retrieve the �rst stage of their launch vehicle, Electron. This study focuses on
the retrieval of Electrons �rst stage by means of a powered descent, which �nds its relevance in
the rapidly growing market. This study focuses on the technical feasibility of Return To Launch
Site (RTLS) mission for a SmallSat launcher, Rocket Labs Electron in speci�c. The con�guration
of the Electron is kept as close to the original as possible. Most of Rocket Labs missions have a
500x500km SSO orbit as their destination. This orbit will serve as the nominal target orbit that
has to be reached by the ascent trajectory. The following research question and sub-questions
were established of which the answers will be discussed in Chapter 10:

Research question: Can an implementation of vertical powered descent techniques safely bring
the Electron back to Earth - while �ying a fuel optimal trajectory?

Sub-questions:

• To what extent should the Electron be modi�ed in order to return back to Earth?

• What guidance algorithm suits the application best and how does the model perform without
(or heavily simpli�ed) guidance in place?

• What is the optimal amount of used fuel for the return of Electrons’ �rst stage w.r.t the
landing accuracy, and what are the trade-o�s?

• How does the choice of integrator and optimizer algorithm a�ect the accuracy of the model?

In Chapter 2 the concept of di�erent recovery methods is brie�y discussed, followed by a
breakdown of the Electron vehicle and its launch sites in Chapter 3. In Chapter 4 the Equation of
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Motions and aerodynamics of the model are discussed. In addition an appropriate integrator and
propagator are selected. In Chapter 5 several atmosphere and gravity models are discussed. In
Chapter 6 the ascent and descent trajectory models are presented and validated. In Chapter 7 the
optimization of the trajectory model is explained, followed by the optimization results presented in
Chapter 8. This report concludes with a sensitivity analysis and conclusion and recommendation
in Chapter 9 and Chapter 10, respectively.
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2 | Recovery

The recovery of a �rst stage, or any other part of the vehicle, can be accomplished in several ways.
Roughly spoken the recovery can be divided into two phases. One phase comprising the return
trajectory, the retrieval phase. The second phase comprises the refurbishment of the retrieved
parts, the refurbishment phase. In this study, and many others, the recovery is referred to the
retrieval phase. Although refurbishment is a not to be underestimated �eld of study that plays a
large role in calculating the cost e�ciency of re-usable rocket(s) parts, it is not included in the
scope of this project. Examples of vehicle recoveries are the Apollo capsules, Space shuttle and
Falcon 9’s �rst stage/booster, each making use of di�erent landing techniques.

2.1 Feasibility

No matter the technological possibilities, most problems diverge to the question whether solving
the problem at hand is pro�table. Especially for commercial applications. The Space shuttle e.g.
was praised for its ability to return to Earth such that it could be used again for future missions.
However, the main reason why the Space Shuttle program was eventually shut down, was because
of the expensive refurbishment costs. SpaceX claims to reduce the overall launch costs of the
Falcon 9 by 30% [18], which gives them a strong competitive advantage in the launcher market.

2.2 First Stage Recovery

2.2.1 Retrieval con�gurations

Mid-air retrieval

Mid-air recovery aims to intercept a descending object using a helicopter. In the beginning of the
re-entry phase the object typically uses a heat shield to decelerate and dissipate heat from the
vulnerable components. After a while the vehicle deploys a parachute. A helicopter approaches
the vehicle and captures the parachute, with a cable attached underneath the helicopter and
returns it to land or a nearby drone ship. In the work of Grevlee it is concluded that MAR is an
especially good way to retrieve the most costly components of a launch vehicle and not so much
the entire �rst stage [19]. Bachelor students of the TU Delft aerospace faculty conducted a study
aimed to recover the key components of a heavy launch vehicle, reducing the cost per launch
by an estimated 15% for the Ariane 6 launch vehicle [20]. In the work of Merle Snijders a cost
e�ectiveness analysis of the �rst stage recovery of the European SMILE project is conducted by
optimizing the 3-DOF descent trajectory using MAR techniques [21]. In Snijders study a MAR
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approach was favoured over a vertical descent recovery because of the aerospike engine featured
in the SMILE.

Rocket Lab is currently investigating the possibilities to recover the Electron’s �rst stage using a
MAR method. This study has the same objective but uses an alternative method.

Powered descent

SpaceX has gained worldwide recognition for the successful powered descent of their Falcon 9.
Powered descent trajectories are typically divided in two groups, Return to Launch Site (RTLS)
and Down Range Landing (DRL) trajectories. The RTLS and DRL shematic �ight pro�les are
illustrated in Figure 6.2 and Figure 2.2 respectively. Contrary to DRL, RTLS requires an extra
boost-back burn to change its direction back to the launch site (see Figure 2.1). Contant estimated
an extra 17% and 12% of the �rst stage fuel mass for a RTLS and DRL trajectory respectively [1].

Figure 2.1: Return To Launch Site �ight pro�le [1]

Figure 2.2: Down Range Landing �ight pro�le [1]
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2.3 second stage recovery

On the day of writing SpaceX is the only company that has successfully performed a complete �rst
stage recovery. Hitherto it seems far grasped to consider a second stage recovery as a noteworthy
solution to reduce overall launch costs. Nevertheless, Pepermans conducted a thorough research
on the cost feasibility of a second stage recovery[22]. The main �ndings conclude a 6.3% overall
cost reduction for LEO missions and infeasible �ndings for MEO and GSO. As Pepermans mentions,
a second stage recovery should only be considered once the �rst stage recovery methods are fully
successful.
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3 | Vehicle: Electron

All vehicle characteristics, including geometry, propulsion systems, vehicle constraints etc. is
limited to the amount of information Rocket Lab has made publicly. Electrons Payload User’s Guide
2020 [2] provides a clear picture of the Electron. The Electron is a two-stage orbital class rocket
specially designed by Rocket Lab to meet the increasing demand of launching small satellites into
space. An optional kick-stage can be added to the vehicle and allows for unique orbit payload
injections. The Electron can carry a nominal payload of 200kg to a nominal sun-synchronous (SSO)
orbit. Table 3.1 gives an overview of the Electrons mass and geometry characteristics. Electrons
�rst stage typically separates from the second stage at an altitude of 78km [2].

Table 3.1: Electron speci�cations [2][12]

Overall �rst stage second stage Kickstage/
payload

Length [m] 18 12.1 2.4 ∼3.5
Diameter [m] 1.2 1.2 1.2 ∼1.2
Mass at lifto� [kg] 13,000 10,200 2,300 500

Dry mas [kg] 1,200 950 250 -
Fuel mass [kg] 11,300 9,250 2,050 -

Engine - 9x Rutherford 1x Rutherford
vacuum 1x Curie

Thrust [kN]
(single engine) - 24 22 -

Speci�c
Impulse [s] - 311 341 -

Fuel/Oxidizer - RP-1/LOx RP-1/LOx -

3.1 Geometry and mass

Rocket Lab is currently trying to recover the Electrons �rst stage by means of a mid-air recovery.
My study however, focuses on the �rst stage recovery using powered descent techniques. In the
thesis work of Contant an estimated 10% and 17% of fuel should be kept reserved for a DRL and
RTLS trajectory respectively[1]. Contrary to a mid-air capture, a vehicle performing a powered
descent trajectory requires landing gear. The Falcon 9 landing gear is estimated by Contant to
be 10% of the dry mass of the �rst stage whereas the extra mass of the grid �ns is considered
negligible[1]. This is similar to the estimated landing gear mass of a Mars Rover (9.41%) in the
work of Price [23]. The mass of the MAR system (parachute etc.) is estimated to be around 12.5% of
the vehicles �rst stage[24]. The mass initially needed for the MAR system can for this application
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be redistributed to the landing legs and grid �ns.

The landing gear is assumed to have little e�ect on the aerodynamic properties of the vehicle as
they are only unfolded at the last phase of the descent trajectory. Figure 3.1 schematically depicts
how the landing gear is folded against the rocket. A similar system is assumed for the Electron.

Figure 3.1: Schematic representation of the Falcon 9’s landing gear folding capabilities [1]

3.2 Engine and Propulsion

Accurate trajectory simulation requires for an accurate and complete thrust model. The thrust
model is highly dependent on the engine and its design parameters. Electrons �rst stage makes
use of 9 identical Rutherford sea level engines (Figure 3.2) whilst the second stage makes use of a
single Rutherford vacuum engine.

Figure 3.2: Electrons �rst stage engine con�guration featuring 9 Rutherford engines [2]

The Rutherford engine is speci�cally designed for the Electron rocket and can deliver a thrust of
24kN. The engine features a fully electric propulsion cycle, making use of brushless DC electric
motors. The Electron is the �rst orbital class rocket using an electric pumped (RP-1/LOx) engine.
The propellant pumps are powered by a set of high-performance lithium polymer batteries.
Contrary to traditional gas cycle engines, electric engines are relatively easy to build. The
Rutherford engines reach an e�ciency of 90%. Furthermore, Rutherford is the �rst RP-1/oxygen
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engine that uses 3D-printed parts for all of its primary components. The Rutherford engine is fully
designed and manufactured by Rocket Lab itself, at Long Beach headquarters in California, USA.

3.3 Launch sites

Rocket Lab currently operates two launch facilities, located in New Zealand and the USA. Both
sites together o�er more than 130 launch opportunities per year. The results obtained in chapter 8
would be applicable to any launch site with only minor modi�cations. This research only focuses
on launches from Launch Compex 1, Rocket Labs main launch site.

Launch Complex 1, Mahia, New Zealand

Launch Complex 1 is the world’s only private orbital launch range [2]. The base is licensed
by the FFA and supports up to 120 launches per year. The base is located in the Hawke’s Bay at
(39.262°S, 177.865°E). Complex 1 supports trajectories with inclinations ranging from 39° to 120°.
Other inclinations are available upon request.

(a) Launch Complex 1, Maghia, New Zealand [2]
(b) Launch Complex 2, Virginia, USA [2]

Figure 3.3: Rocket Labs launch complexes

Launch Complex 2, Virginia, USA

Launch Complex 2 ’only’ supports up to 12 missions annually. Complex 2 is located Wallops Island
at (37. 834°N, 75.488°W) allows inclinations between 30° and 60° [2].
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4 | Flight Mechanics

4.1 reference frames

Reference frames are essential in studying the motion of an object in space. Without any, its
impossible to de�ne the state of an object. To put it technically, a reference frame is speci�ed by a
set of three mutually orthogonal direction vectors. The origin of the frame is located at the point
where the three vectors coincide, point (0,0,0). In celestial mechanics the c.o.m. of the central body
often serves as the origin of a frame. A coordinate system speci�es how the state variables are
de�ned within a reference frame, Cartesian or spherical elements for example. Reference frames
exist in all sorts of forms with endless variations and can be chosen arbitrarily. Although there
exist no ’wrong’ reference frames, the formulation of a bodies motion can become unnecessarily
complex if a reference frame in combination with a coordinate system is not selected cautiously.

Two types of reference frames can be distinguished; inertial and non-inertial reference frames.
According to Newton’s Law of Motions, an inertial frame is per de�nition at rest or moves in
a linear fashion with constant velocity. For some (Earthly) applications it has practical value
to express the motion of an object in a rotating reference frame. For re-entry applications for
example. As the Earth rotates around its own axis, the designated landing spot of a re-entry
vehicle on Earth’s surface moves w.r.t the inertial frame, at the same angular velocity as the Earth
(ωE ). Introducing a non-inertial rotating frame with a angular velocity identical to the central
body eliminates this problem.

Translational motion
Many variations of (inertial) reference frames can be distinguished. In re-entry studies two
reference frames are commonly used to describe the translational motion of a vehicle, the inertial
planetocentric and rotating planetocentric frame[3]. Both illustrated in Figure 4.1 and discussed
below.
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Figure 4.1: A vehicle w.r.t. two similar reference frames, I and R represent the inertial planetocentric and rotating
planetocentric frame respectively.

Inertial planetocentric reference frame, Index I

One of the characteristics of a planetocentric frame is that the OXIYI plane coincides with the
equatorial plane of the central body. The ZI-axis points north and is thus coincident with the
rotational axis of the central body. The direction of the XI-axis is de�ned by by prime meridian at
zero time. The YI-axis ful�lls the right-handed system [3].

For Earthly applications the above mentioned de�nitions are generally not used. In a Earth
Centered Inertial frame (ECI) the XI is pointed towards a �xed point in inertial space. In the
commonly used J2000 frame this corresponds to the Vernal Equinox[3].

Equation 4.1 describes the translational motion of an arbitrary vehicle with variable mass in the
inertial frame. In this study we will restrict ourselves to rigid body dynamics, meaning that the
mass distribution of the vehicle is constant over time. Consequently the last two terms on the
right hand side of Equation 4.1 become zero, simplifying the equation to Equation 4.2.

FI = m
d2rcm

dt2 +2ωωω×
∫

m

δ r̃
δ t

dm+
∫

m

δ 2r̃
δ t2 dm (4.1)

FI = m
d2rcm

dt2 (4.2)
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The above described frame is considered inertial. However, technically such frame is pseudo-inertial
because of the motion of the central body itself. For an Earth orbiting object the most convenient
reference frame is the ECI frame. However, the Earth itself rotates around the sun. The e�ects of
this rotation are marginal and negligible in most cases. Such frames can thus considered to be
inertial [3].

Rotating planetocentric reference frame, Index R

This frame is very similar to the inertial planetocentric frame. In this case the frame is �xed to the
(rotating) central body. It coincides with the inertial planetocentric frame at zero time and after
every full rotation of the central body.

Rotational motion
To de�ne the rotational motion of a vehicle, reference frames are used that have their origin at
the c.o.m. of the vehicle. Again, many di�erent combinations of reference frames and coordinate
systems are available. The most commonly used frames in re-entry studies are discussed below. It
is assumed that the vehicle has at least one plane of symmetry. Right handed coordinate systems
are commonly used in this �eld. For a more complete overview of the available reference frames
the reader is referred to [3]

Body reference frame, index B

This body frame is �xed to the vehicle. The XB- and ZB-axis both lie in the plane of symmetry and
are de�ned positive in forward and downward direction respectively. The YB-axis conforms to the
right-handed system. This is the general de�nition used for aircraft. The signs of the direction
vectors can be chosen di�erently if it suits the application better. This could be desirable for a
re-entry vehicle that enters the Earth’s atmosphere backwards, like the Apollo capsule[3].

Aerodynamic reference frame (airspeed based), index AA

The XAA-axis is de�ned along the velocity vector of the vehicle relative to the atmosphere.
The ZAA-axis is collinear with the aerodynamic lift force (based on airspeed), but opposite in
direction. The YAA-axis again completes the right-handed system. A similar de�nition exists for a
ground-speed based reference frame. In this case the XAA-axis would be de�ned relative to the
ground-speed (the rotating planetocentric frame).

4.2 state variables

The state of a vehicle is de�ned by its state variables. The state describes the vehicles position
and velocity and the vehicles attitude and angular rates in translational and rotational dynamics,
respectively. The state variables can be expressed in di�erent ways, dependent on the coordinate
system that suits the application best. It has to be emphasized that any arbitrary set of state
variables can be converted to any other set. As aforementioned with the reference frames, carefully
picking the state variables is key in reducing the complexity of the problem. Another important
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reason to carefully chose the state variables is the occurrence of possible singularities. A good
example is the Gimbal-lock phenomena, further elaborated on in Section 4.2.2.2. Other singularities
regarding the Kepler elements are well explained in the Propagation and Optimization lecture
notes [25]. One has to be aware of the possible singularities and chose the state variables such
that they are avoided.

4.2.1 Position and velocity

The position and velocity can be described in several state representations. TUDAT (see Section
5.4 for more information) supports the following 5 representations[26] of which the �rst 3 will be
discussed below.

• Keplerian elements

• Cartesian elements

• Spherical elements

• Modi�ed Equinoctial elements

• Uni�ed State Model elements.

4.2.1.1 Keplerian elements

In many applications related to astrodynamics, such as vehicles orbiting celestial bodies or
interplanetary trajectories. In case of orbital elements, the position and velocity of an object in an
elliptical orbit can be de�ned by six parameters, w.r.t. to an inertial frame. The state vector then
equals x = [e,a, i,ω,Ω,M]. The orbital elements are visualized in Figure 4.2 and Figure 4.3.

Orbital element description
e eccentricity (0≤ e < 1)
a semi-major axis (a > Re)
i inclination (0°≤ i≤ 180°)
ω argument of pericentre (0°≤ ω ≤ 360°)
Ω longitude of the ascending node (0°≤Ω≤ 360°)
M true anomaly (0°≤Ω≤ 360°)

Table 4.1: Orbital elements for an elliptical orbit [3]

The shape of the ellipse is de�ned by the eccentricity. The eccentricity of the ellipse is de�ned
as 1−a/b, where a and b represent the height and width of the ellipse respectively. When the
eccentricity is 0, this means that the orbit is a perfect circle. For e = 1, the orbit becomes parabolic
and for e > 1 the orbit becomes hyperbolic. This means that the orbit is no longer closed and the
object escapes the gravitational pull from the central body. To determine the position of an object
on the orbit at a given time, an extra parameter is required, the time of pericentre passage. It is
deemed irrelevant to dive deeper into the orbital elements and the math behind it. If interested,
the reader is referred to [6], covering all the ins and outs of celestial- and astrodynamics.
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Figure 4.2: De�nition of semi-major axis a and the eccentricity e. The spacecraft is moving at a distance r; the true
anomaly is indicated by θ

Figure 4.3: De�nition of the three orbital parameters Ω,ω and i. The spacecraft is moving at a distance r with a
velocity VI w.r.t. to the inertial planetocentric frame (index I). The true anomaly is indicated by θ [3]

4.2.1.2 Cartesian elements

Cartesian coordinate systems are very straightforward and without doubt the most widely used.
Cartesian elements have revolutionized the �eld of mathematics by providing the �rst methodical
link between algebra and Euclidean geometry. Position and velocity can either be described
w.r.t the I- or R-frame. The same variables are used but with a di�erent subscript (I or R). The
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position and velocity are de�ned as (x,y,z) and (ẋ, ẏ, ż) respectively. In the R-frame, the velocity
components are often expressed as (u,v,w) instead of (ẋR, ẏR, żR), illustrated in Figure 4.4.

Figure 4.4: Cartesian components illustrated w.r.t the R-frame [3]

4.2.1.3 Spherical elements

Spherical coordinates are very popular. In the �eld of avionics and re-entry studies, spherical
coordinates are more intuitive than for example Cartesian coordinates. The position and velocity
components are expressed as follows and illustrated in Figure 4.5:

Position: distance R, longitude τ , latitude δ

Velocity: groundspeed Vg, �ight-path angle γg, heading angle χg

The longitude is measured positively to the east (0° ≤τ < 360°). The latitude is measured from the
Equator, positive in northern direction and negative toward the south. R represents the distance
of the origin of the reference (c.o.m of central body) toward the c.o.m of the vehicle. This distance
is the equivalent of the modulus of the Cartesian position coordinates (x,y,z). Vg resembles the
relative velocity of the vehicle w.r.t the rotating planetocentric frame. In contrast to the Cartesian
elements, where the velocity is made up of three velocity vectors, the velocity is de�ned by a
magnitude, (Vg), and two direction angles, γg and χg. γg de�nes the angle between the velocity
vector and the local horizontal plane (−90°≤ γg ≤ 90°), positive for a velocity vector below the
local horizon. χg de�nes the direction of the velocity vector in the local horizontal plane w.r.t the
local northern direction (−180°≤ χg ≤ 180°). χg = 0° the vehicle moves in northern direction.
For χg = 90° and χg =−90° the vehicle moves parallel to the central bodies equator in Eastern
and Western direction respectively.

14



Figure 4.5: Spherical components illustrated w.r.t the R-frame [3]

4.2.2 Attitude and angular rates

Whereas the position and velocity describe the translational motion of a vehicle, the attitude and
angular rates describe the rotational motion of the vehicle. The attitude of a vehicle is de�ned as
the orientation of a body-�xed reference frame to another one and can be expressed in several
ways. Three commonly used de�nitions in re-entry studies are discussed here.

4.2.2.1 Euler angles

Euler angles de�ne a body-�xed frame w.r.t an inertial frame. The classical attitude angles are the
roll angle Φ, pitch angle θ and yaw angle ψ . Usually these angles are de�ned w.r.t inertial space
(inertial planetocentric frame e.g.) but they can also be de�ned w.r.t the local horizontal plane.
The latter de�nition is used in the attitude indicator instruments of aircraft for example. The order
in which a transformation (or rotation) is performed is important. In aerospace applications the
3-2-1 sequence is most commonly used[3]. That means three consecutive rotations around the Z-
(yaw rotation), Y- (pith rotation) and X-axis (roll rotation) respectively.

Aerodynamic angles also form a set of Euler angles, de�ned as a sequence with order 2-3-1. Instead
of roll, pitch and yaw the angle of attack α , bank angle σ and angle of sideslip β are used. The
aerodynamic angles describe the orientation of the aerodynamic frame w.r.t the body reference
frame (α and β ) and w.r.t the trajectory frame (σ ). Recall the earlier mentioned reference frames.
The angles are illustrated in Figure 4.6.
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Figure 4.6: Aerodynamic angles α,β and σ . The depicted reference frames are the body frame (B), trajectory frame
(T) and aerodynamic frame (A). α,β and σ are de�ned positive here.

4.2.2.2 quaternions

Quaternions are a very elegant way to describe the attitude of a vehicle. A quaternion is a
4-dimensional hyper-complex number consisting of 3 imaginary and 1 real number. The imaginary
numbers satisfy the following constraint:

i2 = j2 = k2 = i jk =−1

A rotation is speci�ed by 4 quaternions, a vector and scalar part, given below. a and Φ denote the
Euler axis and Euler angle respectively.

q = (q1,q2,q3)
T = asinΦ/2 and q4 = cosΦ/2

The rotation can be expressed as (q,q4). The 4 quaternions satisfy the following constraints and
are therefore not mutually independent.

qT q+q2
4 = q2

1 +q2
2 +q2

3 +q2
4 = 1

Its di�cult to interpret the physical meaning of a set of quaternions, other than for example a
pitch angle. The math behind the quaternions is not discussed here. It is a rather complicated
topic with its own algebra rules and speci�c properties. Quaternions have proven themselves
to be very e�cient, computationally wise. Another advantage of a quaternion representation is
that its made up of 4 parameters, eliminating all possible singularities, such as a gimbal lock. In
TUDAT all attitude calculations and transformations happen through quaternions[26]. To output
a desired attitude representation, the quaternions are simply multiplied by the corresponding
transformation matrix.

4.2.2.3 angular rates

The angular rate of a vehicle is de�ned as the rotational velocity of the body-�xed frame w.r.t the
inertial frame. This leads to a rotation vector ω = (p,q,r), where p,q and r de�ne the roll, pitch
and yaw rate respectively, illustrated in Figure 4.7
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Figure 4.7: De�nition of ω = (p,q,r)T

4.3 Frame transformations

A frame transformation is nothing less than going from one frame to another. A complete
transformation consists of a translation and a rotation. A translational transformation is easily
achieved by adding a translational vector to the center of origin of the current frame. A rotation
between two arbitrary frames can always be decomposed into a sequence of unit axis rotations.
The transformation matrices to rotate over the X-, Y - and Z-axis respectively are as follows, for
any arbitrary angle α :

C1(α) =

 1 0 0
0 cosα sinα

0 −sinα cosα


C2(α) =

 cosα 0 −sinα

0 1 0
sinα 0 cosα


C3(α) =

 cosα sinα 0
−sinα cosα 0

0 0 1



The re-entry systems lecture notes [3] provide a neat overview of several standard transformation
matrices. Many of these are incorporated and tested in TUDAT and ready to use.
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4.4 Equations of Motion

4.4.1 Mass depletion

In most aerospace applications that have to do with a thrust force, the mass of the vehicle can not
considered to be constant. The used fuel reduces the current mass of a the vehicle signi�cantly
over time. The thrust force of a rocket engine is generally computed using the Rocket Thrust
Equation (Equation 4.3).

T = ṁIspg0 (4.3)
With ṁ the mass �ow and Isp the speci�c impulse of the engine. The thrust forces that Electrons
engines are able to deliver are publicly known, as is the speci�c impulse. Rewriting Equation 4.3
leads to an expression for the mass �ow (Equation 4.4). The mass equation is added to the set of
state di�erential equations. TUDAT provides build-in models that account for the mass depletion,
only having to specify the thrust force, speci�c impulse, initial time and the number of engines.

ṁ =
T

Ispg0
(4.4)

4.4.2 Translational dynamics

Translational dynamics describe the translational motion of an object subjected to a force. The
dynamics can be expressed in many di�erent ways and reference frames where each discipline
favours its own representation. The general expression for the translational motion of a vehicle in
a rotating planetocentric frame is given by Equation 4.5. The equation holds for any arbitrary rigid
body with variable mass. It is assumed that the angular rate (ωR) of the central body is constant.

FR = m
d2rcm

dt2 +2mωR×
drcm

dt
+mωR× (ωR× rcm) (4.5)

FR = sum of all external forces in the rotating frame
d2rcm

dt2 = apparent acceleration of the vehicle in the rotating frame
2ωR× drcm

dt = Coriolis acceleration due to the motion of the vehicle in the rotating frame
ωR× (ωR) = Centrifugal acceleration due to the rotational velocity of the Earth.

In re-entry studies the EOM’s are commonly expressed in the previously discussed spherical �ight
parameters and can be written as follows. For the derivation of the equations the reader is referred
to [3] as they become rather long and tedious.

V̇ =−D
m
+gsinγ +ω

2
cbRcosδ (sinγ cosδ − cosγ sinδ cos χ) (4.6)

V γ̇ =
Lcosσ

m
−gcosγ +2ωcbV cosδ sin χ +

V 2

R
cosγ+

+ω
2
cbRcosδ (cosδ cosγ + sinγ sinδ cos χ)

(4.7)
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V cosγ χ̇ =
Lsinσ

m
+2ωcbV (sinδ cosγ− cosδ sinγ cos χ)+

+
V 2

R
cos2

γ tanδ sin χ +ω
2
cbRcosδ sinδ sin χ

(4.8)

Whereas from the dynamic EOM’s the velocity components of the vehicle are obtained, the position
parameters are obtained from the kinematic equations, listed below, in the �ight-path reference
frame.

Ṙ = ḣ =V sinγ (4.9)

τ̇ =
V sin χ cosγ

Rcosδ
(4.10)

δ̇ =
V cos χ cosγ

R
(4.11)

This representation will be used throughout my model.

4.5 Choice of integrator and propagator

To calculate the actual �ight path of the trajectories the equations of motion established in Chapter 4
are numerically integrated. Many di�erent numerical integration techniques are available where
each method has its own pro’s and cons. The propagator of a system de�nes the type of state
variables in which the system is propagated. In the �eld of astrodynamics propagating the system
in Cartesian coordinates can becomes cumbersome and counter intuitive. Instead the system could
be propagated in using Uni�ed State Model (USM) parameters or Gauss Orbital elements. The
available propagators and integrators available within the TUDAT environment are listed Table 4.2
and Table 4.3 respectively. Due to the 3-DOF nature of the problem at hand, the propagation of
the rotational, and therefore rotational propagators, are not considered.

Propagators

Table 4.2: List of available propagators in the TUDAT environment1

Propagator State Variables
Cowell Cartesian
Encke Cartesian
Gauss Keplerian[27] Keplerian elements
Gauss Modi�ed Equinoctial[28] Modi�ed equinoctial elements
USM quaternions[29] quaternions
USM Rodrigues[29] modi�ed Rodrigues parameters
USM exponential[29] exponential map

The Cowell propagator has proven itself very well for ascent and descent trajectories with relatively
short �ight times and is used amongst others in the work of van Kesteren[30] and Rozemeijer[31].
An in-depth propagator analysis is therefore not conducted and the propagator choice for this
study will be Cowell.

1https://py.api.tudat.space/en/latest/propagator.html
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Integrators

Two important types of integrators can be distinguished: �xed step-size and variable step-size
integrators. Fixed step-size integrators make use of the same step-size for each integration step
while variable step-size integrators can vary the step-size during the propagation dependent on
the forces acting on the system. Variable step-size integrators are especially useful interplanetary
space�ight and propagation of orbital trajectories. In case the propagated object reaches the
pericentre of an orbit or performs a �y-by around a celestial body, a small step-size is desired
because of the higher gravitational accelerations around that point. For other parts of the trajectory
such small step-sizes might not be required and unnecessarily increases the number of function
evaluations (and therefore computational e�ort). The Runge-Kutta Fehlberg (RKF) variable
step-size method was �rst published in the work of Fehlberg[32], to which the reader is referred
for a thorough explanation of how the method works exactly. The �rst number after RKF denotes
the order of the integrator and the second number denotes the order of the error estimator that is
used to control the step-size. A higher order generally means higher accuracy’s at the cost more
integration steps. In order to pick an integrator a trade-o� has to be made between the accuracy
of the integrator and the number of required function evaluations.

Table 4.3: Integrator settings available within the TUDAT environment2

Integrator Step Step size type
Euler Single Fixed
RK4 Single Fixed
RKF4(5) Single Variable
RKF5(6) Single Variable
RKF7(8) Single Variable
RKF7(8)DP Single Variable
Adam Bashfourt Moulton Multi Fixed
Bulirsch Stoer Extrapolation Variable

In order to identify the best integrator an integrator analysis is conducted for both the ascent and
descent trajectory. In Figure 4.9 the performance of several integrators with di�erent settings
is plotted. All integrators with corresponding settings below the dashed line meet the accuracy
requirements. From that selection the integrator with the lowest number of function evaluation is
selected: RKF7(8) with tolerances of 10E−9.

A similar analysis is conducted for the ascent trajectory of the second stage to orbit. It has to be
noted the propagation of the second stage already starts with an initial error (�nal error of the
Launch Vehicle propagation). The results are plotted in Figure 4.10. Following the same reasoning
as aforementioned the RKF5(6) integrator with tolerances 10E−9 is selected.

At last an integrator analysis for the descent trajectory is conducted. For the descent trajectory
both the position error and the velocity error are examined, plotted in Figure 4.11 and Figure 4.12
respectively. It immediately stands out that none of the integrators, not even the higher order
ones, are capable of achieving high accuracy’s. At �rst the position accuracy requirement for the
descent trajectory was set at 100m instead of 1000m. However, due to the integrator performance
the requirement was raised to 1000m. Although the Bulirsh Stoer integrator with tolerances of

2https://py.api.tudat.space/en/latest/integrator.html
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10E−13 lies just below the 100m mark, the amount of function evaluations is not practical for
the optimization process and therefore not considered as a potential integrator. The maximum
velocity accuracy error is set to 1 m/s. It can be noticed that there is no integrator that satis�es
both the position and the velocity requirement. The integrator of choice for the descent trajectory
is RKF5(6) with tolerances of 10E−9, achieving an accuracy of 686 m and 0.1 m/s for the position
an velocity respectively.

The ’poor’ performance of the descent trajectory integrator is best explained with the help of
Figure 4.8, where the accumulated position error is plotted over time. The system is propagated
for a number of (very small) step-sizes, using an RKF7(8)DP integrator. It can be noticed that
the position error skyrockets for all step-sizes at t = 150s−160s and can be linked to the start of
the boostback burn. The sudden acceleration change in opposite direction of the velocity vector
apparently causes a large o�set in the accuracy of the integrator.
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Figure 4.9: Integrator analysis for multiple variable and �xed step-size integrators, using the Cowell propagator.
Variable step-size tolerances: 10E-13, 10E-11, 10E-9, 10E-7, 10E-5, 10E-3; Fixed step-size stepsizes: 0.01s,
0.1s, 0.5s, 1s, 2s, 4s

Figure 4.10: Integrator analysis for multiple variable and �xed step-size integrators, using the Cowell propagator.
Variable step-size tolerances: 10E-13, 10E-11, 10E-9, 10E-7, 10E-5, 10E-3; Fixed step-size stepsizes: 0.01s,
0.1s, 0.5s, 1s, 2s, 4s
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Figure 4.11: Integrator analysis for multiple variable and �xed step-size integrators, using the Cowell propagator.
Variable step-size tolerances: 10E-13, 10E-11, 10E-9, 10E-7, 10E-5, 10E-3; Fixed step-size stepsizes: 0.01s,
0.1s, 0.5s, 1s, 2s, 4s

Figure 4.12: Integrator analysis for multiple variable and �xed step-size integrators, using the Cowell propagator.
Variable step-size tolerances: 10E-13, 10E-11, 10E-9, 10E-7, 10E-5, 10E-3; Fixed step-size stepsizes: 0.01s,
0.1s, 0.5s, 1s, 2s, 4s
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4.6 Aerodynamics

For many space applications the translational and rotational dynamics of a body are studied
separately as they (barely) in�uence each other. For atmospheric �ights however, the translational
and rotational dynamics are coupled with one another through the aerodynamic forces acting on
the vehicle, clearly seen in Equations 4.6, 4.7 and 4.8.

The aerodynamic lift- (L) and drag-force (D) can be computed using Equation 4.12 and 4.13. The
tricky part is �nding the right values for the aerodynamic coe�cients (CD,CS,CL or CX ,CY ,CZ , in
aerodynamic and Cartesian components respectively). CS represents the aerodynamic side-force,
primarily caused by wind. For the sake of simplicity the side-slip angle is set to 0 deg throughout
this study. CS and the resulting side force are therefore also 0. The coe�cients are comprised of
the complex dependencies of several factors (Mach number, angle of attack, vehicle shape, �ow
conditions, etc.) and no analytical solution exists to compute these coe�cients. As a result the
coe�cients are estimated making use of Missile DATCOM software.

L = 0.5∗CL ∗ρair ∗V 2
∞ ∗Sre f (4.12)

D = 0.5∗CD ∗ρair ∗V 2
∞ ∗Sre f (4.13)

4.6.1 Missile DATCOM

Missile DATCOM[33] is a powerful tool used in many preliminary rocket/missile design problems
to estimate the required aerodynamic coe�cients. Within the TUDAT environment this works
as follows. First the user has to de�ne the �ight conditions and the vehicle shape. The �ight
conditions consist of the range of Mach numbers and angle of attack for which the coe�cients
are created, Table 4.4. Missile DATCOM supports angle of attacks up to around 20-30 degrees due
to the the non-linear behaviour in computing the coe�cients above that range.

Table 4.4: Missile DATCOM �ight conditions

M [-] 0.3, 0.6, 0.8, 0.9, 0.95, 1.0, 1.05, 1.1, 1.2, 1.3, 1.4, 1.6, 1.8, 2.0, 2.5, 3.0, 3.5, 4.0
α [deg] -20, -15, -10, -7, -4, -2, -1, 0, 1, 2, 4, 7, 10, 15, 20

For a large range of conventional rocket shapes there is a coe�cient database available, only having
to specify the length and diameter of the rocket. The database consists of rockets with uniform
diameter and a (blunted) nose. Contant used this database to e�ciently simulate many di�erent
vehicle con�gurations[1]. Knowing the length and diameter of the Electron, the coe�cients that
correspond best to the shape of Electron can be retrieved from the database. However, the exact
shape of the Electron is made public by Rocket Lab - including the shape of the fairing - and
depicted in Figure 4.14. Its well worth to de�ne Electron’s exact vehicle characteristics in Missile
DATCOM and compare the estimated coe�cients to the coe�cients available in the database. In
Figure 4.13 a signi�cant di�erence in CD between both methods is observed. The di�erence is
signi�cant enough to use the coe�cients speci�cally generated for the Electron throughout this
study.
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Once the look-up tables of coe�cients is created it can be imported to the TUDAT environment.
CD and CL can now be used for each integration step as a function of M and α , using bi-linear
interpolation.
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Figure 4.13: Aerodynamic drag force coe�cient (CD) as a function of Mach number (M) for angle of attack (α = 0).
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Figure 4.14: Shape characteristics for Electrons fairing[2]

Grid �ns

Grid �ns are a rather unconventional type of control surfaces used for aerodynamic guidance. A
grid �n is characterised as an outer frame attached to the rocket having an internal grid framework.
Grid �ns are most famous for their application in Space X’ Falcon 9 where the �ns are used to
both decelerate the vehicle and control its attitude [34]. The main advantage of a grid �n is its
low hinge moment due to a low chord length, allowing the actuator to be small. Other advantages
are e�cient packaging, good lift capabilities in the subsonic velocity regime and high strength to
weight ratio [35]. Due to its advantages, grid �ns have been applied to a wide variety of missiles.
Examples include; the OTR-21 Tochka tactical ballistic missile of the Former Soviet Union, R-77
air-to-air missile of Russia, GBU-43/B Massive Ordnance Air Blast (MOAB) of the USA, Falcon 9
rocket, Falcon heavy rocket, etc. [36]

Grid �ns rotate about their axes of rotation (Figure 4.15), referred to as hinge lines. The rotational
motion of the respective grid �ns, determined by a guidance command, are capable of controlling
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the vehicles attitude. De�ning the orientation of each individual �n relative to the vehicles body
requires two angles; the azimuthal and de�ection angle. The azimuthal position is de�ned in the
Y-Z plane and positive counterclockwise from the Y axis. The �n de�ection angle is de�ned such
that a positive de�ection results in a counterclockwise roll of the vehicle, referenced about the
respective hinge line. The azimuthal and de�ection angle and their sign convention are illustrated
in Figure 4.16 on the left and right respectively. Any other sign convention or coordinate system
can be used to de�ne the angles as long as the same convention is used consistently throughout
the process.

Figure 4.15: Schematic bottom and side view of 4 grid �ns attached to a rocket

Figure 4.16: Grid �n sign convention [4]

Due to the complexity of the grid �n geometry, numerous geometric parameters have to be de�ned
to characterise the grid �n accurately. Figure 4.17 provides an illustration of a grid �n attached to
its vehicle, including its geometric parameters. The geometry of the grid structure is left out of
the illustration, but has an in�uence on how the air will �ow through the grid �n. Optimizing
the grid structure and its e�ect on a vehicles state is a �eld of research on its own, leaning more
towards aerodynamic and CFD analysis.
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Figure 4.17: Grid �n geometry parameters [4]

To use the grid �ns as control surfaces, the forces and moments acting on the grid �ns have to be
calculated. Doing so is non-trivial. The �ow going through the grid �n will behave di�erently
for the di�erent velocity regimes, see Table 4.5. Consequently, di�erent models have to be used
to describe the �ow throughout the trajectory. In the subsonic �ow a vortex lattice proves itself
well[37][35], whilst in the supersonic regime a modi�ed version of the Evvards theory is used in
[4][38][39]. Grid �n control has proven itself to be most e�cient in the sub- and supersonic �ow
regimes. In the transonic regime the grid �n primarily su�ers from a high drag force. In transonic
�ight the �ow through the �n will choke, causing a detached bow shock (Figure 4.18 in front of
the grid �n which makes it harder to control[34]. For a grid �n with a non-zero angle of attack
the upwash e�ect is de�ned by [4][39]. Due to the lack of available data on aerodynamic grid �n
behaviour and the complex modeling of such aerodynamic forces, grid �ns are not included in
this study and requires a 6-DOF approach.

Mach number Velocity regime Assumed Flow Structure

M <0.8 Subsonic Local Flow structure completely subsonic.
Compressible subsonic formulation is required.

0.8 <M <1.0 Transonic Flow through Grid Structure is Typically Choked Requiring
Application of Coe�cient Correction Factors

1.0 <M <1.4 Transonic Bow shock in front of grid �n. Flow is subsonic behind the
bow shock and a compressible subsonic solution is required.

1.4 <M <1.9 Supersonic Grid �n swallows shock. Each element acts as a thin wing
with an attached leading shock, producing a re�ected shcok dominated �ow region.

1.9 <M 3.5 Supersonic Leading edge shock on each �n element does not impinge on adjacent elements and
internal �ow is primarily supersonic with minimal re�ected shock e�ects.

M >3.5 Supersonic Strong leading edge shock transitioning to hypersonic �ow.
Table 4.5: Velocity regimes and their assumed �ow structure [4]
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Figure 4.18: Tran- and supersonic �ow through a grid �n[5]
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5 | Environment

An environment model de�nes a set of physical properties aiming to simulate the real environment
a vehicle is subjected to. The atmospheric and gravity model are of particular importance for
this study. A full list of supported physical properties that can be modeled is provided on Tudats
website [40]. Finding a balance between simulating the environment as accurate as possible on the
one side and reducing its complexity on the other side, is a delicate process. Its common practice
to run a simulation multiple times featuring di�erent environment models, ranging in complexity.
If a ’simple’ model su�ces the requirements (in terms of a prede�ned error margin), there is no
reason to use a more accurate method as it will only complexify the model.

5.1 Atmospheric Model

Accurately modeling atmospheric models has proven to be a di�cult task. Partly because
atmospheres can not considered to be static mediums, meaning the atmospheric conditions di�er
over time and per location, primarily caused by solar radiation [3]. To compute the aerodynamic
loads on a vehicle, the atmospheric density, temperature and pressure have to be, among others,
computed as a function of altitude. Doing so is non-trivial as no analytical expression exists
between these variables, not without making (simplifying) assumptions. This section provides a
selection of commonly used atmospheric models. A distinction is made between standard and
reference models. Disregarding and respecting the aforementioned dynamical (time-dependent)
e�ects on the atmosphere respectively. For performance comparison of di�erent simulation
set-ups, standard models are often used as its characteristics do not di�er over time and every
simulation is subjected to the same atmospheric conditions.

5.1.1 Exponential Model

The exponential model is a simpli�ed atmosphere model used for analytical problem approaches.
The simpli�cations include the assumption of the ideal gas law (Equation 5.1), constant temperature
and molecular mass and hydrostatic equilibrium in the atmosphere (Equation 5.2). A derivation
of the equations, presented in Mooij[3], leads to Equation 5.3. This set of equations is used to
compute the air- density, pressure and temperature (constant),

p = ρRT = ρ
R∗

M
T (5.1)

dp =−ρgdh (5.2)
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ρ

ρ0
= e−βh = e−

h
Hs (5.3)

with R∗/M the gas constant of air, h the altitude and Hs the scale height. Commonly used values
for Earthly applications are ρ0 = 1225kg/m3 and Hs = 7050− 7200m, resulting in a constant
temperature of Tc = 240K[3].

5.1.2 The United States Standard Atmosphere 1976

The US standard Atmosphere 1976 (US76) is a tabulated atmosphere model, independent of time,
build from experimental data. It is a revised version of the earlier developed US67 model. Below
32km the model is identical to the International Civil Aviation Organization [3]. US76 provides
data for altitudes up to 1000km at a latitude of 45° North [41]. The main di�erence between US67
and US76 is that the latter uses geopotential instead of geometric altitude. The relation between
the two is presented as Equation 5.4, with h the geometric altitude, z the geopotential altitude,
g0 and g the gravity constant at sea level and h respectively and R0 = 6356.766 km the (Polar)
radius of the Earth [13].

g0dz = gdh⇒ z =
∫ h

0

g
g0

dh≈ R0h
R0 +h

(5.4)

The US76 model separates the atmosphere in several layers where each layer is subjected to
a speci�c set of equations. For heights up to 85km the temperature can be computed using
Equation 5.5 and Equation 5.6.

TM = TMi +Lzi (z− zi) (5.5)

T = TM
M
M0

(5.6)

TM is the molecular scale temperature and can computed with the data provided in Table 5.1,
depending on the current layer. TM0 equals T0 and has a value of 288.15K [13]. Up to altitudes of
86km the molecular mass is assumed to be constant, M0 = M = 28.964kg/kmol and thus T = TM .
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subscript i Geopotential heigth
zi [km]

Molecular scale
temperature

gradient
Lzi [K/km]

Form of
function

relating T to z

0 0 -6.5 Linear
1 11 0 Linear
2 20 +1 Linear
3 32 +2.8 Linear
4 47 0 Linear
5 51 -2.8 Linear
6 71 -2.0 Linear
7 84.852 -6.5 Linear

Table 5.1: De�ned reference levels and gradients [13]

For altitudes between 86km ≤ z < 120km, the temperature pro�le can be expressed in terms
of 3 successive functions, presented by Mooij[3]. For 86km ≤ z < 91km an isothermal layer is
de�ned with T = 186.8673K = constant . For 91km ≤ z < 110km the temperature is computed
using Equation 5.7.

T = Tc +A

√
1−
(

z− z8

b

)2

(5.7)

with constants Tc = 263.1905K, A =−76.3232km and b = 19.9429km. z8 = 91km.
Equation 5.8 represents the temperature at altitudes 110km≤ z≤ 120km, with T9 = 240K, L9 =
12K/km and L9 = 110km.

T = T9 +L9(z− z9) (5.8)
Below altitudes of 86km two expressions exist to compute the respective pressure. Equation 5.9 for
Lzi = 0 and Equation 5.10 for Lzi 6= 0 Density ρ is computed using the ideal gas law (Equation 5.1).

p = pi exp
[
−g0M0 (z− zi)

R∗TMi

]
(5.9)

p = pi

[
TMi

TMi +Lz1 (z− zi)

]Ki

(5.10)

With Ki =
g0M0
R∗Lzi

and R∗ the universal gas constant. At sea-level, index i = 0, the pressure is de�ned
as p0 = 101325N/m2. Figure 5.1 depicts the typical temperature pro�le as a function of altitude
for the exponential and US76 atmosphere.
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Figure 5.1: Temperature as a function of altitude for the exponential (Hs = 7050m,ρ0 = 1.225kg/m3) and US76
atmosphere model[3]

The �rst stage of the Elektron separates itself from the second stage at an altitude of approximately
78km[2]. For a deeper and more thorough understanding of the US76 atmosphere model the reader
is referred to the US76 documentation[13]. Previous studies in the �eld of launcher optimization,
including the work of Vandamme[41], Contant[1], van Kesteren[30] and Castellini[42] have
implemented the US76 atmosphere model. For this study it is convenient to continue on a similar
note and implement the US76 model. For the second stage however, reaching altitudes up to
500km, the US76 atmosphere model does not su�ce.

5.1.3 NRLMSISE-00

For simulations at higher altitudes the US76 model becomes less accurate as it only provides
average data. For applications that require high precision at high altitudes (decay of satellites, or
space-debris predictions e.g.) the NRLMSISE-00 model presents itself as a good candidate. Contrary
to the exponential and US76 model, NRLMSISE-00 is a reference atmosphere model which allows
for the input of time-dependent parameters such as solar radiation, longitude, latitude etc. A full
list of inputs and outputs of the NRLMISE-00 model is thoroughly discussed in the work of Picone
et. al. [43]. For the simulation of the second stage the NRLMISE-00 model is implemented, which
is readily available in TUDAT. It is expected that the choice of an atmosphere model for the second
stage is of little in�uence because of the high altitudes.

5.2 Gravity Model

The four primarily forces acting on a re-entry vehicle are aerodynamic forces (lift, drag), thrust
force and the gravitational force. For Earthly re-entry studies the only gravitational force to
be considered is the one from Earth. Two ways of modeling the Earths gravitational force are
discussed in this section: Central gravity model and Spherical Harmonics.
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5.2.1 Central gravity

Computing the central gravity force on a vehicle is very straightforward and follows Equation 5.11,
Newtons gravitational law. With µE = 3.986004418x10−14 m3s−2 the standard gravitational
parameter of the Earth and~r the position vector of the vehicle w.r.t the center of the Earth. This
method assumes the Earth to be a point mass.

FG =
µE

r3 r (5.11)

5.2.2 Spherical Harmonics

In reality Earth can not considered to be a perfect homogeneous sphere. Consequently, the
gravitational �eld of the Earth is not uniform. To approximate the deviations from the homogeneous
sphere, a gravity potential is introduced in Equation 5.12. U may be expressed as a summation
of the central gravity �eld (point mass) and a set of spherical harmonics terms representing the
non-symmetric mass distribution of the Earth[3]. U can be approximated by Equation 5.13.

FG =−m∇U (5.12)

U(R,δ ,τ) =
µ

r
+

µ

r

∞

∑
l=0

l

∑
m=0

(
Re

r

)l

Plm(cosδ )(Clm cos(mτ)+Slm sin(mτ)) (5.13)

with δ and τ the respective latitude and longitude, Plm the Legendre polynomials and Clm and
Slm spherical harmonic coe�cients. If the density function of a body is known, Clm and Slm can
be found by integrating the mass integrals over the bodies volume. However, Clm and Slm are
usually determined empirically (because the body’s density function is usually not known) using
data provided by orbiting satellites. Coe�cients that are independent of longitude (m = 0) are
called zonal coe�cients. Note that for m = 0, all Sl0 terms become 0. The remaining zonal terms
are commonly denoted as Jl =−Cl0 [44]. J2 = 1082.645x10−6 is by far the most dominant term,
almost a tenfold of J4 [45]. For ascent and descent trajectories the zonal terms are most important
as the vehicle tends to move over, or parallel to the equator.

Both in case of a descent and ascent trajectory, the covered surface over the Earth will be relatively
small, contrary to an orbiter for example. For ascent and descent trajectories it would make
sense to only model the Spherical Harmonics that are relevant for the vehicles trajectory, saving
computation time. However, in Tudat its currently only possible to create a Spherical Harmonics
gravity model for the whole body.

The di�erence between a central gravity model and a model that includes the J2 term is estimated
around 5µg [46]. Both van Kesteren and Contant adopted (and validated) a central gravity model
following this reasoning [30][1]. Throughout the course of this study the central gravity model
will be used.
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5.3 Simulation Software

In this section the available simulation/optimization software is brie�y discussed.

5.4 Software packages

Trajectory simulation/optimization software is widely available on the internet. Choosing software
that suits the application and the user best is bene�cial for the simulation set-up. ASTOS, widely
used by ESA, is a very advanced software package with extensive toolboxes and many possible
applications [47]. GPOPS-II is another software package that serves a similar purpose [48]. The
problem with most (advanced) software is the underlying commercial interests. Neither of the
above mentioned software packages is licensed by the TU Delft. This makes it less attractive to
use commercial software. The TU Delft Aerospace Engineering Faculty has however developed
its own trajectory simulation/optimization software (TUDAT), only to be used for educational
purposes. Being already familiar with this software it adds up to analyse the problem in TUDAT.

5.4.1 TUDAT

"The TU Delft Astrodynamics Toolbox (TUDAT) is a powerful set of C++ libraries that support
astrodynamics and space research. These libraries are publicly available on Github1 for anyone to use
and contribute to.

TUDAT includes a wide variety of libraries, all the way from gravity models to numerical integrators
and other mathematical tools. One of the key strengths within TUDAT is its ability to combine such
libraries in a powerful simulator framework. Such framework can be used for a wide variety of
purposes, ranging from the study of reentry dynamics, interplanetary missions, etc." [49]

TUDAT is under active development and widely used in the TU Delft Aerospace Engineering
faculty by researchers, master students and is taught in some courses. This means knowledge
about the software is easy accessible through students/researches who use or develop TUDAT.

5.4.2 PaGMO

Parallel Global Multiobjective framework for Optimzation, abbreviated PaGMO is an extensive
C++ scienti�c library used to solve optimization problems. It allows a broad range of problems to
be optimized, including single- and multi-objective problems. One of the main advantages of the
PaGMO toolbox is the wide variety and easy interchangeable optimization algorithms it o�ers.
Optimization algorithms can therefore be easily compared. PaGMO is developed within ESA by
Biscani and Izzo [11] and is very well supported by the TUDAT environment. As a result the
implementation of PaGMO in TUDAT is relatively easy.

1https://github.com/Tudat
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6 | Trajectory Model

The trajectory model is divided into two phases, the ascent- and descent phase. The goal of
simulating the ascent trajectory is to reach a desired target orbit without violating the mission
constraints. In this study the semi-major axis, eccentricity and inclination are used to de�ne the
target orbit, as mentioned in section 4.2. At what point in time and where exactly on the orbit the
payload is delivered is deemed irrelevant for this study. The argument of perigee and longitude
of the ascending node are therefore left unconstrained. In this chapter the ascent- and descent
trajectory models are explained in further detail as well as validated using �ight data from the
Falcon 9.

6.1 Design parameters

In this study two types of design parameters are distinguished, trajectory- and vehicle con�guration
parameters. The parameters form the user de�ned input of the model. In the process of choosing
the design parameters a trade-o� has to be made between the number of parameters and the
freedom the user is given to de�ne the model. More parameters generally means more design
freedom at the cost of increased computational e�ort and vice versa.

The chosen design parameters for both the ascent and descent trajectory are given in Table 6.1.
The equispaced altitude is de�ned as the altitude range between two consecutive pitch nodes,
further elaborated on in subsection 6.4.1. There is no need to de�ne heqs for the launch vehicle as
its directly dependent on the MECO altitude through hLV,eqs = hMECO/nr. of nodes.

Table 6.1: Design parameters for ascent and descent trajectory

design parameters
Ascent Descent

MECO Altitude (hMECO) [m] Boostback time (tboostback)
Equispaced altitude Second Stage (hSS,eqs) [m] Re-entry burn start altitude (hreentrystart ) [m]
Pitch angle at node i (θi) [deg] Re-entry burn end altitude (hreentryend ) [m]

Re-entry burn start altitude (hlandingstart [m]
Angle of side-slip (β ) [deg]
Pitch-over angle (θc) [deg]
Thrust throttle factor landing (ε1) [-]
Thrust throttle factor landing (ε2) [-]
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6.2 Ascent trajectory model

In Figure 6.1 two types of basic launch vehicle ascent trajectories are distinguished: Direct Ascent
(DA) and Hohmann Transfer Ascent (HTA). Hohmann ascent trajectories are generally more fuel
e�cient than Direct Ascent trajectories. This is primarily caused by the steeper ascent of the DA,
resulting in higher gravity losses. In case of �ying a HTA, the launch vehicle is �rst launched
to a circular parking orbit, typically with altitudes ranging from 180km to 220km, just outside
the densest part of the atmosphere. The �nal target orbit is reached by means of two orbital
manoeuvres. First changing from the parking orbit to an elliptical transfer orbit and then changing
from the elliptical transfer orbit to the �nal target orbit.

Figure 6.1: Typical Direct Ascent and Hohmann Transfer Ascent trajectory[6]

Hohmann transfers are usually used to reach higher orbits while for LEO orbits a DA trajectory
is often favored. Several factors can play a role in deciding whether to use DA or HTA, other
than fuel consumption. In terms of recovery of the �rst stage or a booster, the steeper ascent
trajectory for DA results in a shorter horizontal distance traveled at MECO than HTA. This is
the main reason a DA trajectory is used in this study, alongside the fact that the inherited pitch
control law discussed in Section 6.4.1, is designed for the simulation of DA trajectories.

6.3 Descent trajectory model

When it comes to powered descent trajectories typically two methods can be distinguished: Return
To Launch Site (RTLS) and Down Range Landing (DRL), displayed in Figure 6.2 and Figure 6.3
respectively. The refurbishment costs of DRL trajectories are higher than RTLS trajectories mainly
because of a drone ship that has to be operated in order for the booster to land on. Contant has
shown that for small satellite launchers the refurbishment costs of a DRL trajectory do not weigh
up to the �nancial bene�ts of retrieving the booster[1]. For that reason only an RTLS method is
investigated and analysed in this study.
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Figure 6.2: Return To Launch Site �ight pro�le [1]

Figure 6.3: Down Range Landing �ight pro�le [1]

RTLS trajectories can be divided in three phases: boost-back burn, Re-entry burn and a landing
burn. In case of the boost-back burn a pitch-over manoeuvre is executed by gimbaling the thrust
vector, such that the booster is directed back to the launch site. The re-entry burn is primarily
performed in order to slow down the vehicle and mitigate for large dynamic pressure loads.

6.4 Guidance

The basic guidance problem can be de�ned as �nding the trajectory that transfers a vehicle from
its initial to its �nal state without violating any constraints. For atmospheric ascent or descent
trajectories, aerodynamic and thrust guidance are often regarded.

In practical �ight, guidance works as follows. The attitude (angles and angular velocities) of a
vehicle can be controlled by applying a moment u = [Mx,My,Mz] around the c.o.m of the vehicle.
This can be done using thrust vector control (TVC) or de�ecting apparent control surfaces. Due
to the 3-DOF nature of the problem at hand, attitude control (6-DOF) is left outside the scope of
this study. However, a guidance algorithm to control the aerodynamic angles is still required as
they largely in�uence the translational state of the vehicle through the lift and drag forces, as
explained in Chapter 4.
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Instead of computing the aerodynamic angles through the control vector u, the aerodynamic
angles are simply imposed on the vehicle. Using this method it has to be assumed that the imposed
aerodynamic angles can be achieved by the actuators of the vehicle. This assumption is backed by
setting a maximum pitch rate θ̇ of 8 deg/s, derived from the maximum engine gimbal ranges found
in literature[50][9][51][52]. As mentioned in Section 4.6, the angle of side-slip β is set to zero.
The angle of attack α is computed using a (simple) pitch guidance law, illustrated in Figure 6.4
and Equation 6.1.

α = θ − γ (6.1)

Figure 6.4: Thrust and velocity vectors of a rocket in the vertical plane[7]

6.4.1 Ascent

In order to guide the launch vehicle and the corresponding second stage to orbit, a uniform
independent node control law is used to control the pitch angle throughout the trajectory. The
pitch control law has been widely used in previous studies and is validated in the work of Van
Kesteren[30]. The nodes were initially spaced linearly in time. However, for re-entry and ascent
trajectories, when the �ight time is left unconstrained, time is often not the best choice as an
independent variable. Due to the unconstrained �ight-time, spacing the nodes in time could lead
to large parts of the trajectory being left virtually uncontrollable. In order to mitigate this problem,
the nodes are spaced in altitude. The MECO altitude and the altitude of the target orbit are user
de�ned, leading to a more accurate pitch controlled �ight pro�le. The altitude with which the
nodes are spaced di�er for the launch vehicle and second stage. Both trajectories are assigned
their own pitch pro�les, leaving the second stage with less frequent spacing.

θ(h) =

{
θLV (h), 0≤ h < hMECO

θSS(h), hMECO ≤ h < h f inal
(6.2)

Within the Tudat environment several interpolation techniques are available, from which linear
interpolation is the most straightforward. However, to ensure a continuous and more realistic
pitch pro�le, Hermite Spline interpolation is implemented. Figure 6.5 shows two interpolated pitch
pro�les for a Falcon 9 launch trajectory. For a more detailed explanation of several interpolation
techniques, including Hermite Spline interpolation, the reader is referred to the work of Moler[53].
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Figure 6.5: Linear and Hermite Spline interpolation for a simulated Falcon 9 ascent trajectory.

6.4.2 Descent

The aerodynamic and thrust guidance are characterised by Equation 6.3 and Equation 6.4 respectively.
For the boost-back burn and the re-entry burn the Falcon 9 �res 3 of its 9 Merlin 1D engines,
contrary to the landing burn where one engine su�ces. The thrust throttle factor ε is added to
the design parameters for more design freedom and to dose the thrust force better. It is unknown
whether the Rutherford engines from Rocket Lab have throttling capabilities. However, based on
the similarities the Rutherford engine shows with the Merlin 1D engine, it is assumed that they
can.

θ(t),θ(h) =



θLV (h), 0≤ h < hMECO

θMECO+coast + θ̇ · t, tMECO+coast ≤ t & θ(t)< θc

θc, t ≤ tboostback

θc− θ̇ · t, 1
2π ≤ θ(t)< θc

1
2π, h≥ 0

(6.3)

T (t),T (h) =


3 ·T1,eng, tMECO+coast ≤ t < tboostback

3 ·T1,eng · ε1, hreentryend ≤ h < hreentrystart

0, hlandingstart ≤ h < hreentryend

T1,eng · ε2, 0≤ h < hlandingstart

(6.4)

In-Plane Pitch Over manoeuvre
In this study an In-Plane Pitch Over manoeuvre is performed by commanding a pitch-over angle
(θc) on the vehicle just after stage separation. Figure 6.4 displays the �rst stage right before the
pitch-over manoeuvre. Initiating the manoeuvre, the pitch angle (θ ) is quickly increased to reach
θc, typically ranged between 160 - 190 deg. The manoeuvre is performed primarily by the Cold
Gas Nitrogen thruster mounted on top of the �rst stage. This is an e�cient way to ’�ip’ the �rst
stage because of the high leverage w.r.t the c.o.m. Figure 6.6 shows the in�uence of θc on the
downrange distance.
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Figure 6.6: Downrange distance for several values of θc [1]

It is not possible for the pitch angle θ to reach θc instantaneously. It is found that for assuming an
instant pitch-over manoeuvre the burn-back time is decreased by around 5 seconds. Multiplying
by the the mass-�ow (ṁ) of three Electrons Rutherford engine, an estimated 100kg of fewer fuel
is needed for the RTLS trajectory. That is 10% of the initial fuel mass of the �rst stage at MECO.
To ensure a more realistic �ight path, in this study a constant pitch rate (θ̇ ) is used to gradually
reach the value of θc.

Higher pitch rates are generally desirable. However, the pitch rate is restricted by the the maximum
gimbal angle of the engine and the actuator responsiveness. Additionally, propellant sloshing
and potential engine starvation issues can also play a role but falls outside the scope of this study.
Typical values used for θ̇ in similar studies range from 5-20 deg/s[54][55].

After the boost-back burn the booster has to reorient itself for the re-entry phase (going from
θc to θ = 90 deg). Based on the aforementioned studies a constant pitch rate of 10 deg/s is used
for Electrons in-plane pitch manoeuvre. Higher pitch rates for reorientation of the booster are
not necessarily desired as lower pitch rates allow the booster to glide back longer. The constant
pitch rate for reorienting the booster is set to 10 deg/s, a similar approach is used in the work of
Simplico[56]. In Figure 6.7 θ , γ and α are plotted as a function of time according to the pitch law
described in Equation 6.3
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Figure 6.7: θ , α , γ guidance pro�le for the Launch Vehicle and RTLS trajectory.

Re-entry phase
After the �rst stage has reached a certain altitude a re-entry burn is initiated to slow the vehicle
down and mitigate for high dynamic pressures. The re-entry burn is assisted by a set of grid-�ns,
set in place to slow the vehicle down and to e�ectively control the vehicles attitude. Modeling
of the naturally complex grid-�n aerodynamics is outside the scope of this study. Implementing
such model however, is expected to positively contribute to the model output as it helps slowing
the vehicle down.

Landing phase
The landing burn is typically initiated at an altitude of 10-20 km and lasts until touch-down. At this
stage the attitude of the vehicle is primarily controlled by the use of cold gas thrusters mounted
on top of the rocket. Due to the relative low velocities during the landing phase, the use of grid
�ns is not as e�cient anymore.

6.5 Validation

Most Flight data from previous SpaceX missions is classi�ed and laying hands on such manufacturer
veri�ed data is almost impossible. For the validation of both the ascent and descent trajectory
the available �ight data from the CRS-10 Dragon Resupply Mission (2017) is used. This mission
launched a payload from Kennedy Space Center to ISS, and successfully recovered the �rst stage
�ying a RTLS trajectory. The CRS-10 ’real data’ as displayed in Table 6.3 is retrieved from a mission
overview published by SpaceX[15] and a live webcast of the launch[14], also made available by
SpaceX.

The initial launch conditions for launches from Cape Canaveral and Launch Complex 1 are
displayed in Table 6.2. The initial altitude is set to 100m instead of 0m to mitigate for potential
singularities that might occur within the Tudat environment as a result of REarth being equal to
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h0. The initial heading angle χ0 of the launch vehicle is simply computed using Equation 6.5, with
i the inclination of the target orbit and δ0 the initial latitude.

cos i = cosδ0 sin χ0 ; 0≤ i < π (6.5)

Table 6.2: Initial launch conditions in spherical coordinates for Cape Canaveral (Falcon 9) and Launch Complex 1
(Electron)

Cape Canaveral Launch Complex 1
Latitude δ [deg] 28.608389 -39.261967
Longitude τ [deg] -80.60433 177.86500
Altitude h [m] 100.0 100
Velocity V [m/s] 0.1 0.1
Flight path angle γ [deg] 89 89
Heading angle χ [deg] 50 -7

6.5.1 Ascent

It has to be stretched that the exact pitch pro�le of the CRS-10 mission is unknown. The model
input parameters found in Table 6.3 have been manually tuned to validate the trajectory. The
maximum dynamic pressure (Qmax) that the Falcon 9 endures is also unknown. However, Qmax
generally lies between 30-40 kPa for launch trajectories. The output value for the eccentricity
suggests that the �nal orbit is not as circular as the target orbit. This being the case its well worth
to evaluate the pericentre- and apocentre altitude (hp and ha) of the �nal orbit. With the values
for hp and ha as presented in Table 6.3, a minor circularization manoeuvre would su�ce to enter
the �nal 400 km circular orbit. Figure 6.8 shows the altitude and velocity pro�le of the validated
ascent and descent trajectory of the CRS-10 mission. It is noted that V0 and Vf inal of the �rst stage
are not equal to zero, contrary to the data displayed in Table 6.3. This is due to the velocity being
measured as the relative airspeed velocity instead of ground speed velocity. V0 and Vf inal are
therefore equal to the rotational velocity of the Earth, 406 m/s measured at Cape Canaveral.
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Figure 6.8: Altitude and Velocity pro�le for the ascent and RTLS trajectory of the Falcon 9 CRS-10 mission

43



Table 6.3: Ascent trajectory validation using �ight data from the CRS-10 ISS resupply mission in 2017[14][15]

Variables model output real data Model input parameters
Launch Vehicle Ascent Descent

MECO time [s] 132.7 141.0 hMECO [m] 64000 tboostback 41.9
MECO velocity [m/s] 1876 1667 hSS,eqs [m] 89000 hreentrystart [m] 58000
MECO altitude [m] 64097 65100 89 hreentryend [m] 36000
MECO Downrange distance [km] 32.46 - 63.03 hlandingstart [m] 15100
Qmax [kPa] 32.25 - 57.30 β [deg] 0

Second stage 57.30 θc [deg] 180
�nal altitude [km] 400.1 - 51.56 ε1 [-] 0.755
Apocentre altitude [km] 677.1 409.9 51.56 ε2 [-] 1
pericentre altitude [km] 397.5 400.1 5.73
velocity [m/s] 7748 7520

θ1,...9 [deg]

-11.46
semi-major axis [km] 6908 6783
eccentricity [-] 0.02024 0.000715
inclination [deg] 50.81 51.64

RTLS trajectory
Landing altitude [m] 100 0
landing velocity [m/s] 2.81 0
Down range distance [m] 184 0
Boostback burn time [s] 41.9 39.0
Re-eentry burn time [s] 20.6 17.0
Landing burn time [s] 38.2 29.0

6.5.2 Descent

Data on the RTLS trajectory of the Falcon 9 is even more di�cult to �nd than the ascent data.
Luckily the �nal state of the vehicle is known as it is supposed to land back at the launch site
with a velocity equal to zero. From the live webcast the burn times of the di�erent phases can
be roughly extracted and are displayed in Table 6.3. The di�erences between the burn times can
be explained by the fact that the exact altitudes at which the burns are initiated, alongside the
throttle pro�les of the burns, are unknown. As previously mentioned the simulation is terminated
at an altitude of 100 to avoid singularities. The downrange distance of 184m is deemed accurate
enough to validate the RTLS trajectory, taking into account that attitude control and precision
landing techniques such as on-board guidance and navigation systems are left outside the scope
of this study.

Figure 6.9) shows the downrange distance as a function of altitude. The shape of the �ight pro�le
closely resembles to �ight pro�les for RTLS trajectories found in literature[7][56]. Based on
Figure 6.9 and the data displayed in Table 6.3 the RTLS model is su�ciently validated. The model
can now also be used to model and optimize the Electron ascent and descent trajectory.
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Figure 6.9: Downrange distance - altitude pro�le for the RTLS trajectory of the CRS-10 mission

6.6 constraints

Several types of trajectory constraints can be identi�ed. Path constraints, which have to be satis�ed
at every time-point during the propagation. Boundary conditions de�ne the constraints at t0 and
tend . Control constraints de�ne the limitations of the control variables. State-triggered constraints
can be ’toggled on and o�’ if speci�c (state) conditions are met. The di�erent types of constrained
are explained in the following sections. The chosen values and implementation of the constraints
are elaborated on in Chapter 7

6.6.1 Path constraints

Heat �ux

Heat �ux is usually composed of two components, radiative and convective heat �ux. For Earthly
re-entry trajectories the radiative heat �ux is very small compared to the convective heat �ux[41].
Therefore, the convective heat �ux is usually used to determine the maximum heat �ux. The
maximum heat �ux occurs at the vehicles’ stagnation point. An approximation for the heat �ux in
this point is given by the Chapman Equation (Equation 6.6[3]):

qc = c∗
1

Rn
N

(
ρ

ρ0

)1−n(V
Vc

)m

(6.6)

with c∗(
√

m) a constant, ρ0 = 1.225 kg/m3 and ρ the air density at sea level and time t respectively,
V and Vc the free stream and circular velocity respectively and RN the nose radios of the vehicle.
m = 3 and n = 0.5 are commonly used constants[3]. Equation 6.6 is is especially suited for vehicles

45



with a blunt nose, the Space Shuttle or Apollo re-entry capsule e.g. The base-plate geometry (see
Figure 6.10) of a descending rocket is more complex than a blunt nose and can therefore be less
accurately described by Equation 6.6.

Figure 6.10: Schematic base-plate geometry of a rockets �rst stage [8]

In case of a retro-burn during re-entry, a bow-shock will form around the exhaust plume of the
engine, gaining similar characteristics as a blunt nose[8][57]. [8] evidently states that a supersonic
retro-propulsion maneuver redistributes the heat loads from the base-plate to the entire vehicle
surface (sidewall, Figure 6.10), therefore reducing local thermal loads. Nevertheless, accurately
computing the thermal loads for a powered descent trajectory can become very complex. The
’nose radius’ generated by the plume e.g. will not be constant along the trajectory because of
a change in density, thrust magnitude/direction etc. The heat �ux constraint for the the RTLS
trajectory is left unconstrained throughout this study because of the added complexity to the model.

Dynamic pressure

The dynamic pressure experienced by a vehicle is related to the velocity of the �ow around
the vehicle, V , and the density of the �uid the vehicle is moving through (ρ). The dynamic
pressure, q, is simply computed by Equation 6.7.

q =
1
2

ρV 2 (6.7)

The maximum dynamic pressure, qmax, varies over a wide range, dependent on the vehicle at
hand and di�ers for ascent and descent trajectories. For descent trajectories few data dynamic
pressure pro�les is available. However, with the data that is available from previous SpaceX
descent trajectories, the work of Sippel and Wilken surmise a qmax of 200 kPa[58][59]. This value
is also used throughout this study. The Falcon 9 stays well below this boundary with values
around 120 kPa. Electrons �rst stage however, encounters higher dynamic pressures, around the
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200 kPa.

Acceleration (g-force)

The maximum allowable g-force for ascent trajectories is often determined by the fragility of the
payload rather than the rocket itself. The axial and lateral acceleration for a payload during ascent
typically lies between -2 and 8 and -2 and 2 respectively [60][2]. For a descent trajectory (without
payload) however, there is no payload that constrains the maximum allowable acceleration. In
the work of Snijders a maximum axial acceleration of 20g is assumed for the recovery of a small
satellite launcher [21]. This value will also be used in this this study. It is found that the value of
20g is never reached during the simulations.

6.6.2 Boundary conditions

Boundary conditions are comprised of all the constraints that have to be satis�ed only in the
beginning or end of a trajectory. For precision landing this could be a set of coordinates that have
to be reached. For vertical powered descents, the boundary conditions are comprised of the �nal
position, velocity and attitude of the vehicle. The �nal position should be within range of the
landing site, the �nal velocity should be 0m/s and the vehicle has to land vertically.

6.6.3 State triggered constraints

In optimal control the most commonly used constraints are temporally-scheduled constraints,
meaning they are valid for a certain time-interval of the trajectory. state-triggered constraints are
similar to the aforementioned, however, in this case the constraints are activated by an if-statement
conditioned on the vehicles state (or other variable). State triggered constraints can for example be
used to impose a Line-of-Sight constraint when the vehicle reaches a certain distance from the
landing site, illustrated in Figure 6.11. Application of this constraint could be the autonomous
landing of a powered descent vehicle as its sensors have to remain a clear overview of the landing
site.

Figure 6.11: Line of Sight constraint limiting the LoS angle λ when vehicles closes in on the landing site [9]
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For a sophisticated mathematical formulation of the state triggered constraints the reader is referred
to the work of Szmuk and Reynolds [9][51].
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7 | Trajectory Optimization

In this chapter an overview of the general optimization problem is given and is applied to the
trajectory optimization problem at hand. Objective formulation, di�erent optimization techniques
and constraint handling will be discussed.

7.1 General optimization problem

The general optimization problem can be de�ned as �nding a set of parameters x that maximizes
or minimizes an arbitrary objective function dependent on those parameters, f (x). The objective
function is often subjected to a set of constraints, limiting the space in which the optimal solution
can be found. The general optimization problem can be stated as follows:

min f (x) (7.1)
subjected to a set of constraints divided in equality (Equation 7.2) and inequality constraints
(Equation 7.3) :

gi(x) = 0 for i = 1,2, . . . , j (7.2)

gi(x)≥ 0 for i = j+1, . . . ,m (7.3)
where j and n are the number of equality and inequality constraints respectively. On a fundamental
level maximization and minimization problems are the same. One can easily be written and
converted to the other using Equation 7.4.

max f (x) =−min[− f (x)] (7.4)

7.2 Optimal control theory

Optimal control theory describes the process of �nding the optimal control variables needed
to minimize the objective function(s) in a system of ordinary di�erential equations. The state
equation of such problem can be described as:

x = f[x(t),u(t), t] (7.5)
where x(t) and u(t) are de�ned as the state- and control variables respectively. Both x(t) and u(t)
might both be subjected to a set of path constraints along the trajectory (see Section 6.6.1). The
initial and �nal conditions of the system are de�ned as a set of boundary conditions (see Section
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6.6.2).

The optimal control problem can be mathematically expressed by Equation 7.6, where the cost
function J is to be minimized by �nding the optimal control u(t) and state variables x(t). Φ and
L are both scalar functions.

J = Φ
[
x(t0) , t0,x

(
t f
)
, t f
]
+
∫ t f

t0
L [x(t),u(t), t]dt (7.6)

7.3 Multi-Objective design optimization

A di�erence can be made between single-objective (SO) and multi-objective (MO) optimization
problems. In the latter case, multiple (coupled) objective functions are optimized simultaneously.
A typical MO problem can be described as given in Equation 7.7, with N the number of objectives
that are to be minimized.

min f(x) = [ f1(x), f2(x), . . . , fN(x)] (7.7)
Within the �eld of trajectory optimization, optimizing for multiple objective functions is a popular
approach. Think of a problem where both the payload mass and the travel time of the object have
to be optimized for (manned mission to Mars e.g.).

The �nal solution of a multi-objective optimization problem will yield a Pareto front consisting
of solutions that are all Pareto-optimal. That means that no objective function can be improved
without having a negative impact on the other objective function(s). Dependent on how the
objectives are weighed, a single solution can be drawn from the results. The work of Pagano and
Pepermans are one of the many applications using this MO approach [61][22].

7.4 Objectives and constraint handling

Ascent

In Chapter 6 it is mentioned that the accuracy of the �nal orbit is measured by the semi-major axis,
eccentricity and inclination of the �nal orbit. For the evaluation of the ascent trajectory �tness of
the Electron a slightly di�erent approach is used. The majority of missions launched from Launch
Complex 1 are headed to a circular 500x500km (near) polar orbit Sun Synchronous Orbit (SSO). In
Chapter 6 it was mentioned that for altitudes higher than 200-300km a direct ascent becomes less
fuel e�cient than a Hohmann transfer.

A more e�cient way to reach the �nal orbit is to make use of an orbital coast period, schematically
depicted in Figure 7.1. In this case the second stage is launched to the pericentre of a an elliptical
transfer orbit. The pericentre altitude of the transfer orbit should be high enough for aerodynamic
forces to be negligible and the apocentre altitude should be equal to the radius of the �nal target
orbit. When the pericentre altitude of the transfer orbit is reached the engines of the second
stage are cut o�. Then follows the orbital coast period which lasts until the vehicle arrives at the
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apocentre of the transfer orbit (true anomaly +180 deg). At the apocentre the engine of the second
stage is re-ignited to deliver the required ∆V for the circularization manoeuvre.

Figure 7.1: Ascent trajectory to SSO orbit using an orbital coast period[10]

The required ∆Vc for a circularization manoeuvre as depicted in Figure 7.1 is given by Equation 7.8[6].
With Vcp and e the circular velocity at the pericentre of the transfer orbit. In addition to circularizing
the �nal orbit, an extra ∆V manoeuvre might be needed to change orbital planes and reach the
inclination of the target orbit. ∆Vi can be computed using Equation 7.9[6], where Va and ∆i
represent the �nal velocity of the vehicle at the apocentre of the transfer orbit and the inclination
di�erence between the orbital planes of the target orbit and �nal orbit respectively. ∆Vc and ∆Vi
are lumped together into one objective function (Equation 7.10); minimizing the total ∆V .

∆Vc =Vcp−Vcp

√
1− e ; e =

ra− rp

ra + rp
(7.8)

∆Vi =Va2sin
1
2

∆i (7.9)

∆Vtot = ∆Vc +∆Vi (7.10)
Based on the Falcon 9 RTLS trajectory, a minimal of 10% of the launch vehicles initial fuel mass
is required in order for the �rst stage to return to the launch site. Throughout this study the
geometry, engine performance and mass distributions are tried to keep as close to the original
vehicle as possible. Without altering any of the vehicles characteristics it makes sense to optimize
for the launch vehicles leftover propellant at MECO. At the same time the second stage still has
to be able to reach its target orbit. Hence the objective function can be written as Equation 7.11,
with m f ,usedLV the used fuel by the launch vehicle. For the second stage ∆Vmax is computed at
the pericentre of the transfer orbit (SECO). To account for the ∆Vtot manoeuvre and potential
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unforeseen other manoeuvres, 25kg (1.17% of total second stage fuel mass) of propellant is saved
such that m0/mdry > 0 always holds and sub-consequently ∆Vmax > 0.

min f(x) = [∆Vtot(x),m f ,usedLV (x)] (7.11)
For the sake of clarity and a more intuitive understanding of the outcome of the optimization
process, the objective functions are normalized according to the equations given below. The
theoretical maximum ∆V that a vehicle is able to deliver can be computed using the Tsiolkovsky
rocket equation, Equation 7.12. m0 and mdry represent the wet mass and dry mass of the vehicle
respectively.

∆Vmax = Ispg0 ln
(

m0

mdry

)
(7.12)

∆V̄ = ∆V/∆Vmax (7.13)

m̄ f , used = m f , used /m f ,max (7.14)
The following constraints, previously discussed in Chapter 6, will be implemented in the ascent
trajectory optimization model. The violation of the constraints is measured in a penalty function.
The penalty function is then added to the objective function to worsen its result.

• Pitch angle rate: θ̇ ≤ 10deg/s ∀ θ̇

• The maximum acceleration acting on the vehicle: amax ≤ 20g ∀ amax

• Final altitude h f inal and pericentre altitude hp at SECO: h f inal,hp ≥ 150km

• Apocentre altitude ha of the �nal orbit: 480km≤ ha ≤ 600km

• Maximum dynamic pressure: Qmax ≤ 200kpa

The penalized objective function can be written as Equation 7.15, with L the penalized objective
function, f the non-penalized objective function, λ j the penalty value on the objective and gi the
respective constraint.

The total (accumulated) violation over the whole trajectory is calculated and added to the ∆V
objective function. The process of �nding a �tness function, or deciding what penalty functions to
use is non-trivial. The best method does not exist and de�ning such functions often requires trial
and error work. One could for example decide to square the penalty function in order to penalize
higher violations more quickly. However, in this study the penalty is linearly computed according
to Equation 7.15.

L = f +Σλ jg j (7.15)
The violation of the pitch angle rate constraint is integrated over time, capturing both the severity
and the duration of the violation. In this way a small but continuous violation could yield the
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same integrated violation value as a one-o� large violation. The �nal apocentre altitude should
ideally be exactly 500km. However, this condition is impossible for the optimizer to reach exactly.
ha is therefore allowed to a maximum upper and lower bound, Equation 7.16. The closer it lies to
the target apocentre, the smaller the penalty.

Penalty =

{ |ha−ha,target |
ha,target

· f , 480km≤ ha ≤ 600km

1010, 480km > ha > 600km
(7.16)

Some constraints are not allowed to be violated under any circumstances, so called ’hard constraints’.
In the case that such constraint is violated a death penalty is assigned to the objective function
(Equation 7.17), instantly marking the solution as very bad. The remaining constraints (h f inal,hp
and Qmax) are all assigned a death penalty when violated.

Penalty = 1010 (7.17)

Descent

The objective functions and constraint handling for the descent optimization problem are of a
similar nature. Since the goal of this research is to �nd the fuel optimal RTLS trajectory, the main
objective function is comprised of minimizing the used fuel. The accuracy of the RTLS trajectory
is measured w.r.t the �nal boundary conditions, Equation 7.18. xi and xTARGET,i denote the �nal
value and target value of the respective variables. toli equals the allowed tolerance between xi and
xTARGET,i. Hence, Ei ≤ 1 ∀ Ei is within the user de�ned set of tolerances. An extra variable
(tolpen,i) is introduced to de�ne the cases where Ei > 1, described in Equation 7.18. In this way,
the solution is not immediately discarded when the tolerance value is violated. This gives the user
more freedom of interpretation, as a slightly violated solution might still be of use. Furthermore,
in case the tolerance is set too tight, this can lead to too many individuals of a population being
penalized and therefore not being able to generate a good enough o�-spring. As a result, the
solution might not converge.

Ei =

{
|xi−xtarget,i|

toli , (xi− xtarget,i)≤ tolpen,i

1010, (xi− xtarget,i)> tolpen,i
(7.18)

The path constraints of the trajectory are handled in accordance to Equation 7.19, with y j the
respective path constraint and Cpen, j its boundary value. The �tness of a solution is computed
by taking the Root Sum Square (RSS) for all values of Ei, Equation 7.20. n denotes the number
of boundary constraints taken into account. In case of the RTLS trajectory n = 3, representing
the downrange distance (D f inal), �nal velocity (v f inal) and the �nal altitude (h f inal). The path
constraints are simply included by adding them to the RSS.

Penaltypath, j =

{
0, y j <Cpen, j

1010, yi >Cpen, j
(7.19)
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RSS =

√
n

∑
i=1

E2
i +

m

∑
j=1

Penaltypath, j (7.20)

Dependent on the value of n, something can be said about the RSS values. At �rst sight, one
could argue that for all RSS≤

√
n all boundary conditions are met since E = 1 lies exactly on the

tolerance boundary. However, ∑Ei = n does not necessarily mean that the individual values of Ei
are all equal to 1, which is only the case when all Ei preform equally well. The following can be
stated and should be taken into account interpreting the results:

• For RSS >
√

n, at least one of the boundary conditions is not met.

• For 1 < RSS≤
√

n, at least one boundary condition is met, and potentially all.

• For RSS≤ 1, all boundary boundary conditions are met for sure.

The RTLS trajectory constraints are given below. As aforementioned, the �nal velocity, downrange
distance and altitude constraints are lumped together into an objective function that is to be
minimized alongside the used fuel of the �rst stage. 5m/s is thought of as a reasonable limit for
the �nal velocity. During a real �ight the velocity can be more accurately controlled by an onboard
control system and brought to zero. The same holds for the downrange landing distance of the �rst
stage. It is assumed that distances of≈ 2kmandlowercaneasilybead justed f orbyanonboardnavigationsystem.Toaddtothat, previouslydiscussedinSectino4.5, themaximumachievableaccuracyo f theintegratoris≈
2000.

• The maximum acceleration acting on the vehicle: amax ≤ 20g ∀ amax

• Maximum dynamic pressure: Qmax ≤ 200kpa

• Final groundspeed velocity: Vg, f inal ≤ 5m/s; tolpen,vel = 15m/s

• Final altitude: h f inal ≤ 100m; tolpen,h = 200m

• Final distance to the landing site: D f inal ≤ 1km; tolpen,D = 5km

• Final pitch angle: 85deg≤ θ f inal ≤ 95deg

7.5 Design Space Exploration

The solution obtained from an optimization process is highly dependent on the search space
the optimizer is initiated with. At the one hand the search space has to be large enough for the
optimizer to �nd the global optimum instead of a local optimum. On the other hand a search
space that is too large can lead to longer computation times and non-convergence of the solution.
The search space can be narrowed by conducting a Design Space Exploration (DSE) prior to the
optimization process.
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Figure 7.2: Pseudorandom Monte Carlo (left) and Quasirandom sobol (right) simulation for 1024 points in a 2D plane.

First the initial search space has to de�ned. Then a random number generator is used to compute
a large set of pseudorandom or quasirandom numbers representing the design variables used in the
simulation. The di�erence between a set of quasirandom and pseudorandom is best explained by
�gure Figure 7.2. Quasirandom numbers are more uniformly distributed as the algorithm generates
each successive number as far away as possible from previously generated numbers in the set.
These kind of test are often too uniform to pass randomness tests. However, in case of the DSE,
the degree of randomness is irrelevant and a more uniformly distributed set of design variables is
desired to give a better coverage of the search space.

In this study a quasirandom sobol sequence is used for the DSE of both the ascent and descent
optimization problem. For the generation of the numbers the settings in Table 7.1 are used. The
reader is referred to the Mathworks website1 for more information on the sobol method and how
it is implemented.

Table 7.1: Sobol sequence settings for reproducibility

Samples Dimensions skip leap Scramble method Type
Ascent 10000 nr. of design variables 800 0 0x0 structure sobol
Descent 300000 nr. of design variables 800 0 0x0 structure sobol

In Table 7.2 the lower and upper values of the design variables used for the DSE are displayed. In
Figure 7.3 only the feasible solutions are plotted, in accordance to the constraints and objectives
formulated in section 7.4. For the ascent problem 10 000 sample points resulted in a good coverage
(Figure 7.3a)of the design space while for the descent problem only minor coverage is achieved for
300 000 sample points (Figure 7.3b). Two possible reasons can be given to explain this behaviour.
The initial search space of the descent problem could be too large and therefore not enough feasible
design variables are generated. However, for 300 000 sample points this is deemed unlikely. The

1https://www.mathworks.com/help/stats/sobolset.html
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second, and more likely reason, is the high sensitivity of one or more design variables on the
output. A sensitivity analysis on the design variables will be further discussed in Chapter 9

Table 7.2: Initial search space used for the sobol Design Space Exploration

Ascent Descent
Lower bound Upper bound Lower bound Upper bound

MECO alt. [m] 60000 85000 tboostback [s] 45 51
Equispaced
altitude [m] 20000 50000 hreentrystart [m] 50000 65000

θ1 [rad] 1
2 π

1
2 π hreentryend [m] 30000 48000

θ2 [rad] 0.8 1.3 hlandingstart [m] 10000 20000
θ3 [rad] 0.5 1.2 yaw angle [rad] -0.1 0.1
θ4 [rad] 0.2 0.8 θc [deg] 160 190
θ5 [rad] 0 0.3 ε1 [-] 0 1
θ6 [rad] -0.2 0.1 ε2 [-] 0 1

0 0.5 1 1.5
0.8

0.85

0.9

0.95

1

(a) Ascent DSE for 10 000 sample points

0 2 4 6
0.8

0.85

0.9

0.95

1

(b) Descent DSE for 300 000 sample points

Figure 7.3: Design Space Exploration for ascent and descent problems

A logical next step is to plot the DSE results as a function of the design variables to evaluate their
contribution to the objective functions. From Figure 7.3 it can be observed that for higher MECO
altitudes a larger amount of fuel is used and vice versa. This is simply because the launch vehicle
has to thrust for a longer period of time for higher MECO altitudes. It can also be noticed that
lower values for θ2 are favored. θ2 represents the second pitch node and consequently the range
of altitude where the highest aerodynamic and gravity losses occur. The lower bound of θ2 is
restricted to ensure a vertical lift-o�. At last, for the �nal pitch node (θ6) negative pitch angles
are not desired. The pitch angle is de�ned as the angle between the longitudinal axis of the body
and the local horizon. A pitch angle equal to 0 would therefore correspond to a circular orbit
(assuming that the �ight path angle is also 0). However, because a coast-arc is used to transfer the
second stage to its �nal circular orbit, the �nal pitch node should be higher than 0 as the transfer
orbit is elliptical of shape (0 < e < 1).
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Figure 7.4: DSE for the ascent optimization problem as a function of the design variables.

A similar analysis for the descent DSE is performed. In Figure 7.5 the DSE of the descent
optimization problem is plotted as a function of the design variables. It can be observed that all
feasible solutions feature a boostback time of around 43s. The range for tboostback can therefore be
narrowed down drastically. The same reasoning can be followed for the throttling factors. The
insights obtained from Figure 7.4 and Figure 7.5 will be used as a starting point for the actual
optimizations discussed in Chapter 8.
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Figure 7.5: DSE for the descent optimization problem as a function of the design variables.

7.6 Global Optimization Methods

Genetic Algorithm

Genetic Algorithm (GA) is a global optimization method based on biological inspired processes, part
of the larger Evolutionary Algorithm class. Examples include Particle Swarm Optimization (PSO)
and Di�erential Evolution (DE) techniques. PaGMO (Parallel Global Multi-objective framework
for Optimization, see Section 5.4 for more information) is a software package developed by ESA
and features a wide range of optimization algorithms. A full list of PaGMO supported algorithms
is provided on the PaGMO website2

Similar to other global optimization techniques, the main advantage of Genetic Algorithms is the
large search space. This makes the algorithm insensitive to the initial guess of the solution and
therefore very well suited for complex global optimization purposes. The Genetic Algorithm can
be divided in 5 sequential phases;

2https://esa.github.io/pagmo2/docs/cpp/cpp_docs.html#implemented-algorithms
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• initial population: The initial population exists of set of individuals, each representing a
di�erent solution to the optimization problem.

• �tness function: Next a �tness function is de�ned, this function determines how ’good’ a
solution is.

• selection: The best individuals are selected based on the �tness evaluation.

• crossover : Individuals randomly exchange parts of their solution creating a set of ’o�spring’
solutions.

• mutation: Within the new o�spring, parts of the solution change order. Mutation often
happens with a low probability and is applied to prevent premature convergence of the
solution.

The algorithm �nishes when a termination condition set by the user is met. This is ideally when
a set of solutions meets the de�ned requirements, but could also be a limit on the maximum
number of generations or a when the solution stops converging. The disadvantages of this method
include relatively large computation times and more importantly, the GA can only approach the
optimum but is incapable of �nding the exact optimum. To �nd the exact optimum, or check the
convergence of the solution, a local (gradient based) optimizer could be used to �nd the exact
optimum. The di�erence between global and local optimization is best explained by Figure 7.6.
For convex functions it can be said that the local optimum is equal tot the global optimum. For
non-convex functions this is not the case. For the non-convex function on the right in Figure 7.6 a
local optimizer might �nd the local minimum on the right while the global optimum lies further
left. Local optimizers are very sensitive to the initial guess (search space) of the solution. The �nal
solution of the global optimization problem can serve as the initial guess for the local optimizer.
As such, both techniques are often used together. Many di�erent local optimization methods exist,
direct shooting, gradient based, collocation etc. In this study a local optimization will be performed
using a simple Monte Carlo simulation.

(a) (b)

Figure 7.6: Example of a convex and non-convex function

7.7 Choice of optimizer

The majority of literature focused on the ascent trajectory optimization problem makes use of one
of the following optimizers[62][63][64]. Particle Swarm Optimizer (PSO), non-linear programming

59



(NLP) solvers and Genetic Algorithms (GA). For the sake of convenience the optimizer choice
is restricted to the optimizers available in PaGMO. NLP solvers are therefore not taken into account.

For descent and reentry optimization problems a similar set of often used optimizers is found. The
work of Rahimi successfully uses PSO to optimize a spacecraft re-entry trajectory [65] and a study
conducted by De Ridder uses a GA to optimize the �ight range of a re-entry vehicle[66]. In the
work of Ghosh, PSO is used to compute near-optimal solutions to multiple nontrivial trajectory
optimization problems. These include, amongst others, minimum fuel use trajectories [67].

To back the choice of optimizer, the performance of four multi-objective optimizers (Table 7.3)
is examined for the ascent and RTLS trajectories. The Non-dominated Sorting Particle Swarm
Optimization (NSPSO) and Improved Harmony Search (IHS) were quickly discarded because of
their poor performance. The results for MOEAD and NSGA-II are discussed later in this chapter.

NSPSO MOEA/D IHS NSGA-II
parameter value parameter value parameter value cr 0.95
wmin 0.95 weight generation grid phmcr 0.85 etac 10
wmax 10 decomposition "tchebyche�" pparmin 0.35 mr 0.01
c1 0.01 neighbours 20u pparmax 0.99 etam 50
c2 0.5 CR 1.0 bwmin 1E-5 seed 123
χ 0.5 F 0.5 bwmax 1
vcoe f f 0.5 etam 20 seed 123
diversity
mechanism "crowding distance" realb 0.9

leader
selection range 2u limit 2u

seed 123 preserve diversity true
seed 123

Table 7.3: Default settings of multi-objective optimizers. Detailed explanation of the parameters can be found on the
ESA website3

Throughout this study the default optimization parameters as given in Table 7.3 are used. For
a more in depth optimizer analysis the parameters can be varied to customize and improve the
optimizer performance. In this section only the population size is varied and carried out for 300
generations. Tuning the optimizer parameters, and in this case the population size, is non-trivial
and highly dependent on the problem at hand. Although larger population sizes can generate
more o�-spring, this does not necessarily lead to a better optimizer performance. In addition,
unnecessarily large population sizes can lead to increased computational e�ort. To put this in
perspective, for the ascent optimization problem initiated with a population size of 100 and being
evolved for 200 generations, the optimization process may take over 24h to �nish, on a single CPU
thread.

3https://esa.github.io/pagmo2/docs/cpp/cpp_docs.html#implemented-algorithms
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Ascent

In Figure 7.7 and Figure 7.8 optimization runs for both NSGA-II and MOEAD are executed for
300 generations and di�erent population sizes. For MOEAD (Figure 7.8) it can be concluded that
for population sizes larger than 64 the Pareto front already converges after 100 generations and
even more so for 200 generations. The same can not be said for the NSGA-II optimizer, where a
population size of 200 outperforms the other populations for all generations. Furthermore, for for
a population size of 32 individuals, both NSGA-II and MOEAD are unable to converge to a single
solution.
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Figure 7.7: Ascent optimization for NSGA-II di�erent generations and populations. seed = 123
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0.4 0.6 0.8 1
0.85

0.86

0.87

0.88

0.89

0.9

0.91
generation: 200

pop: 32
pop: 64
pop: 100
pop: 128
pop: 200
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(c) Multiple populations for generations: 200; seed: 123
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(d) Di�erent seeds for population: 100 and generations: 200

Figure 7.8: Ascent optimization for MOEAD for di�erent populations, generations and seeds

From Figure 7.9 it becomes clear that MOEAD outperforms the NSGA2 algorithm for all population
sizes. Although NSGA-II with a population size of 200 performs equally well for some parts of the
Pareto front, this comes at the cost of an increased computational e�ort (200 versus 100 population
size). Based on the aforementioned, MOEAD serves as the choice of optimizer for the ascent
optimization process.

For each individual in a population a new set of design variables is generated by a random number
generator. The initialization of the random number generator is dependent on the seed value. The
comparison of optimization results can become di�cult when di�erent seeds are used because
the di�erence in performance could both be attributed to the change of a system parameter or a
�uctuation that stems form the internal sampling randomness. The seed value is best described as
a key to generate the same sequence of random numbers over and over again. For the comparison
of di�erent optimizer settings (such as population size and evolved generation), the seed is kept
constant to rule out the contribution of the aforementioned �uctuations. The robustness of the
optimization results (e.g. error margins) can be found by running the same setting for multiple
seeds. In Figure 7.8d the ascent optimization results are displayed using the settings from Table 7.4,
for 5 di�erent seeds. Based on the observed results it can be said with a certain certainty that the
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Figure 7.9: NSGA-II and MOEAD for same settings. gen = 200; seed = 123

optimizer performance is only little in�uenced by the sampling randomness and therefore deemed
robust.

Note: the horizontal behaviour of some of the Pareto fronts is caused by the fact that some
individuals of the population are heavily penalized but still treated as part of the Pareto front.

Descent

The same method as described in the previous section is followed for the descent optimizer analysis,
using the settings from Table 7.3. From Figure 7.10 it becomes clear that for population sizes of 32
and 64 individuals no feasible solutions exist, irregardless of the evolved generations. After 150
generations the population size of 200 has converged and after 250 generations the populations
of 100 and 200 individuals perform equally well. Either a population size of 200 evolved for 150
generations or a population size of 100 evolved for 250 generations can be chosen from.

The MOEAD results shown in Figure 7.11 show less promising results and erratic behaviour. None
of the populations have converged after 350 generations. The population size of 200 evolved
for either 250 or 350 generations show the best best results, but nowhere close to the NSGA-II
performance of Figure 7.10. The performance of the NSGA-II and MOEAD optimizer are plotted
on the DSE for several population sizes and generations in Figure 7.12. It becomes clear that
NSGA-II outperforms MOEAD in every aspect for the descent optimization problem.

It is hard to say why MOEAD behaves the way it does for the descent problem. Analyzing
Figure 7.11 it seems that most solutions tend to cluster around one solution, giving more priority
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to the RSS objective than the mass objective. This might be a result of the decomposition technique
MOEAD uses, but remains speculation. Based on the conducted optimizer analysis, NSGA-II is
the chosen optimizer, with 100 individuals and evolved for 250 generations. In Figure 7.10e the
descent optimization is plotted for 5 di�erent seeds. All 5 runs show similar behaviour and little
variance w.r.t each other.

Table 7.4: Optimizer settings ascent and descent

optimizer population #generations
ascent MOEAD 100 200
descent NSGA-II 100 250
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(d) Multiple populations for generations: 250; seed: 123

(e) Di�erent seeds for population: 100; generations: 250

Figure 7.10: Optimizer performance NSGA-II for di�erent generations and population sizes for the RTLS trajectory
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Figure 7.11: Optimizer performance MOEAD for di�erent generations and population sizes for the RTLS trajectory
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Figure 7.12: NSGA-II and MOEAD performance for several settings seed = 123

NSGA-II and MOEA/D

The main objective of NSGA-II is to �nd multiple Pareto-optimal solutions in one single simulation
run. This algorithm has been demonstrated as one of the most e�cient algorithms for multi-objective
optimization on a number of benchmark problems [68]. It uses non-dominated sorting, crowding
distance and elitism techniques to �nd a solution as close to the Pareto-optimal solution as possible,
provide diversity and preserve the best solution of a current population in the next generation
respectively [69]. Just like NSGA-II, MOEA/D is a multi-objective optimization optimizer that uses
the same techniques as the NSGA-II method. The most important di�erence is that MOEA/D uses a
decomposition technique (hence the D) that decomposes the multi-objective problem into multiple
single-objective sub-problems and solves these simultaneously [70]. This makes MOEA/D very
well suited for highly complex multi-objective optimization problems and it tends to outperform
NSGA-II for more than 2-3 objectives [71]. The optimization problem addresed in this study is
rather simple and only consists of two objectives. For a similar two objective optimization problem
NSGA-II and MOEA/D perform in a similar fashion [72].

PSO and de-1220

In addition to the Multi-Objective NSGA-II and MOEAD algorithms, the performance of two
single-objective optimizers is examined, a Di�erential Evolution and (de-1220) and a Particle
Swarm Optimization (PSO) algorithm. The obtained results for both algorithms is discussed in
Chapter 8.

Di�erential Evolution
The idea behind the di�erential evolution is best described by Figure 7.13. A population is evolved
for an arbitrary number of generations. For each generation the population generates an o�-spring.
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In case the o�-spring performs better w.r.t the objective function it replaces the parent, otherwise
the parent remains in the population. The DE was �rst introduced in the work of Storn and
Price[73]. The reader is referred to this work for more technical explanation of the DE algorithm.
The de1220 algorithm is variation of the conventional de developed by ESA and has proven itself
well in the �eld of trajectory optimization.

Figure 7.13: Schematic representation of the DE algorithm[11]

Particle Swarm Optimization
The PSO algorithm is best described by Figure 7.14. In PSO a number of individuals from a
population size is placed within the search space of an optimization problem. For every generation
each individual evaluates the �tness of the objective function at its current location. For the next
generation the individuals move to a new position and once again evaluate their �tness. The
direction and distance traveled for this move is determined using the individuals �tness history of
previous locations, a random perturbation, but also the �tness history information of all other
individuals located in the search space. The individuals thus communicate with each other on
where the best solution is located. Similar to a �ock of birds foraging for food, the individuals
tend to cluster around the optimal solution. A mathematical representation of the PSO algorithm,
alongside many of its applications, can be found in the work of Poli and Kennedy[74].

68



Figure 7.14: Schematic representation of the PSO algorithm[11]

Local optimization

Heuristic global optimization methods, like MOEAD and NSGA-II, are only able to approach the
optimal solution of a problem and never �nd the exact optimum. In this section a Monte Carlos
analysis is performed on the results obtained with the settings from Table 7.4. For every set of
design variables that corresponds to a Pareto optimal solution, 500 new sets of design variables
are created around that point using a Monte Carlo analysis, uniformly distributed with a variance
of 10% for the ascent trajectory and 5% for the RTLS trajectory. This method requires a very
accurate initial guess of the solution and can therefore not be e�ciently used without the global
optimization results. The results of the Monte Carlo analysis are displayed in Figure 7.15 and
Figure 7.16 for the ascent and RTLS trajectory respectively. For both cases it can be concluded
that no improvements on the existing Pareto front were found. For a more in depth analysis other
local optimization techniques could be used. However, these techniques surpass a Monte Carlo
analysis in complexity and are therefore not touched upon in this study.

69



Figure 7.15: Local re�nement for the ascent optimization around the Pareto front for 500 Monte Carlo samples,
uniformly distributed with a variance of 10%. seed=123

0 2 4 6
0.885

0.89

0.895

0.9

0.905

0.91

0.915

Figure 7.16: Local re�nement for the descent optimization around the Pareto front for 500 Monte Carlo samples,
uniformly distributed with a variance of 5%. seed=123
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8 | Results

To reduce the complexity of the optimisation model, the ascent and descent optimization processes
are separated. First the ascent optimization model is executed. After interpreting the results the
user can manually pick a Pareto optimal solution from the solution set. The model output of the
ascent simulation corresponding to that particular solution will serve as input for the descent
optimization model.

Ascent

In this section the ascent optimization results are discussed. Ultimately a Pareto optimal solution
is picked from the ascent results and used as a starting point for the descent optimization process.
Following up on the DSE analysis from Section 7.5, the new search space for both the ascent and
descent problem is given in Table 8.1.

Table 8.1: Initiated search space for the optimization runs, based on the DSE analysis.

Ascent Descent
Lower bound Upper bound Lower bound Upper bound

MECO alt. [m] 60000 75000 tboostback [s] 46.5 49.5
Equispaced
altitude [m] 20000 50000 hreentrystart [m] 50000 65000

θ1 [rad] 1
2 π

1
2 π hreentryend [m] 30000 48000

θ2 [rad] 0.78 1.05 hlandingstart [m] 10000 20000
θ3 [rad] 0.52 0.88 yaw angle [rad] -0.01 0.01
θ4 [rad] 0.2 0.8 θc [deg] 160 190
θ5 [rad] 0.0 0.3 ε1 [-] 0.2 0.8
θ6 [rad] 0.0 0.1 ε2 [-] 0.4 1.0

The nominal payload that the Electron can bring to a SSO is 175kg[2]. Although it would be
interesting to add the payload mass to the objective function, in this study the payload mass is
varied but kept constant throughout the optimization process. The optimization is executed for
the following payloads: [150kg 175kg 200kg 225kg 250kg] and plotted in Figure 8.1. It becomes
clear that for payloads larger than 200kg the optimizer is unable to �nd a feasible trajectory.

For the Falcon 9 a minimum of 14% of the initial �rst stage fuel mass is required to perform a
successful RTLS trajectory. The same value is used to limit the range of feasible ascent trajectories
of the Electron. Following this reasoning, ascent trajectories with a 200kg payload are not suited
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for RTLS trajectories. For Electrons RTLS mission any trajectory below the dotted line can be
used as a starting point. The most fuel e�cient trajectory from the 175kg payload con�guration is
used as the starting point for the RTLS trajectory (green dot in Figure 8.1).

Figure 8.1: Ascent optimization performance for di�erent payloads. optimizer: MOEAD; seed=123; population=100;
generations=200

In Section 7.4 it was mentioned that the �nal orbit is reached by means of an orbital coast period
and a corrective circularization manoeuvre at the apocentre of the transfer orbit. It was also
mentioned that the second stage was launched to the pericentre and start the coast period from
there. However, in Figure 8.2a it can be observed that the second stage arrives at the transfer orbit
prior to the pericentre and is therefore not as e�cient.

(a) case #1 (b) case #2

Figure 8.2: Ascent trajectory �ight pro�le for the selected solution from Figure 8.1

The exact location of where a vehicle arrives or intersects with a speci�ed orbit is directly related
to the Argument of periapsis and therefore the time of launch. The argument of periapsis could
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be added to the model as a design variable to further minimize the fuel consumption or ∆V . As
aforementioned in Chapter 6, this is deemed outside the scope of this study and will be left as
a recommendation. From Figure 8.2 and Table 8.2 it becomes clear that for case #2 a higher
pericentre and a closer distance to the pericentre at SECO is obtained and. As a result the required
∆V is also lower. However, the amount of fuel saved due to the more e�cient ∆V manoeuvre
is only little in comparison to the extra used fuel of the launch vehicle. It is up to the end-user
make a balanced decision based on the mission requirements. The �nal trajectory parameters
corresponding to the two optimal trajectories are displayed in Table 8.3.

Table 8.2: Trajectory parameters of 2 di�erent Electron mission to SSO. Parameter values at MECO are used as the
initial conditions of the RTLS trajectory.

parameter case #1 case #2
MECO

time [s] 114.2 120.2
altitude [m] 60055 74927
velocity [m/s] 1821 1967
longitude [deg] -38.9057 -38.952
latitude [deg] 177.789 177.791
�ight path angle [deg] 39.88 48.54
heading angle -9.66 -10.8
Downrange distance [km] 40.1 44.2
Qmax [kPa] 38.9 38.8
fuel mass left [kg] 1246 925.2
fuel mass left [%] 14.1 10

Second stage
�nal altitude [km] 182.4 252.6
Apocentre altitude [km] 508.7 480.7
pericentre altitude [km] 155 251.7
semi-major axis [km] 6703 6737
eccentricity [-] 0.0264 0.0170
inclination [deg] 97.53 98.12
�nal fuel mass [kg] 25 25
∆Vtotal [m/s] 202.5 88.34
∆Vtotal required fuel [kg] 21.84 9.72

Descent

The descent optimization results obtained with the settings from Table 7.4 are plotted in Figure 8.3.
Looking at the y-axis, it becomes clear that the margin of m̄used between the two extreme Pareto
optimal solutions is very small, around 1 to 2% of the initial fuel mass of the �rst stage prior to the
RTLS trajectory (1246kg, see Table 8.2). In Section 7.4 it was mentioned that for all RSS < 1 the
�nal distance to the landing site, velocity and altitude are all within the set tolerances. For all RSS
> 1 there exists a possibility that one or more tolerances are not met.
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Figure 8.3: Descent optimization performance for di�erent payloads. optimizer: MOEAD; seed=123; population=100;
generations=200

The results show that the optimizer is capable of �nding feasible RTLS trajectories, but no real
correlation between the RSS and m̄used values is found. Contrary to the optimal design variables
found for the ascent trajectory, the RTLS trajectory parameters are almost the same for each
Pareto optimal solution (e.g. comparing case #1 to case #2).

Table 8.3: Trajectory design variables corresponding to two of the Pareto optimal solutions for the ascent and RTLS
trajectory and design variables obtained with the Single-Objective optimization.

Ascent Descent
MOEAD NSGA-II de1220 PSO

case #1 case #2 case #1 case #2
MECO alt. [m] 60028 74997 tboostback 48.8 48.5 48.7 48.7
Equispaced
altitude [m] 60028 74997 hreentrybegin 50016 50017 50764 50000

θ1 [rad] 1
2 π

1
2 π hreentryend 47988 47999 43717 40479

θ2 [rad] 0.822 0.974 hlandingbegin 10645 10748 10513 10000
θ3 [rad] 0.582 0.579 yaw angle 0.0090 0.0089 0.0091 0.0041
θ4 [rad] 0.579 0.474 θc 167.8 167.8 170.4 171.7
θ5 [rad] 0.196 0.267 ε1 0.202 0.202 0.218 0.2
θ6 [rad] 0.0369 0.0675 ε2 0.594 0.6 0.568 0.561

The small margins of the mass objective make the Pareto front less interesting because the trade-o�
between the Pareto optimal solutions is barely noticeable. The added value of a Multi-Objective
optimization process w.r.t a Single-Objective optimization can therefore be questioned. In addition
a Single-Objective optimization is conducted for two di�erent optimizers, de1220 and PSO. For the
objective function the m̄used and RSS objective of the Multi-Objective optimization are lumped
together into one objective function (Equation 8.1). In Figure 8.4 the results of both optimizers
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are plotted for multiple seeds. It stands out that de1220 outperforms PSO in terms of better
performance and quicker convergence.

ob jective = m̄used +RSS (8.1)
Although the results of case #1 of the Multi-Objective optimizer show a slightly better performance
than de1220, Table 8.4, the di�erences are small. In Table 8.3 it can also be noticed that the design
variables for the SO tend to converge to the same values as for case #1 and case #2 of the MO
optimization. The sensitivity of the design parameters on the outcome of the optimization process
will be discussed in chapter 9.

Figure 8.4: Single Objective optimzation for PSO and de1220 algorithms for multiple seeds and population: 64

Table 8.4: Optimization results for all optimizers

NSGA-II de1220 PSO
case #1 case #2

Initial fuel mass (m f uel,BB) 1345 1345 1345 1345
�nal fuel mass [kg] 128.9 148.3 111 106
D f inal [m] 6.9 4735 9.34 201
Vf inal [m/s] 0.54 14.7 1.0 0.2
h f inal [m] 101 100 100 104
Qmax [kPa] 162 164 143 136
(m f uel,BB/m f uel,LV )available % 14.4 14.4 14.4 14.4
(m f uel,BB/m f uel,LV )used % 13.01 12.8 13.2 13.3

In Figure 8.5 the �ight pro�le of the optimal descent trajectory is illustrated. A similar trajectory
is obtained as the validated Falcon 9 trajectory from chapter 6, which is to be expected. Many
potential solutions have been discarded during the optimization process because the maximum
dynamic pressure was exceeded. However, the obtained optimal solution stays well below the
constraint of 200kPa. A noticable di�erence between the Falcon 9 and Electron descent trajectory
is the reentry burn time, which is longer for the Falcon 9. In practical �ight the reentry burn
time might have to be increased to slow the vehicle down at an earlier stage and allow for better
attitude control. Since attitude control lies outside the scope of this study the (reentry) burn times
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are left unconstrained.
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Figure 8.5: Altitude, velocity and dynamic pressure pro�le for optimal ascent and descent trajectory

In Figure 8.6 the descent trajectory of Electrons �rst stage is illustrated. Because only little is
known about the actual Electron and its engines, some assumptions were made to arrive at the
results. In order to �y a RTLS trajectory it has to be assumed that the engines are re-ignitable and
throttable. These are potential alterations that need be made on the existing Electron con�guration.
No alterations were made on the initial fuel mass of the Electron as the lower MECO altitude
proved to be e�cient in saving fuel for the descent trajectory. The nominal payload of 200kg
however, had to be reduced to 175kg to �nd feasible initial conditions for the descent trajectory.
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9 | Sensitivity Analysis

The results of an arbitrary simulation/optimization problem heavily rely on the set of (design)
variables that is used to describe the problem. In reality, variables are always subjected to
uncertainties. For example, the Isp of an engine might deviate from the nominal value (maximum
deviation in this case is usually provided by the manufacturer). A sensitivity analysis is nothing
more than subjecting an arbitrary variable to a plausible (random) deviation and then investigate
the e�ect on the output. One way to execute a sensitivity analysis is by deviating one parameter
at a time (one-at-a-time approach). However, any correlation between the individual parameters
is then neglected. To bypass this issue, all parameters can be subjected to an uncertainty at the
same time. However, doing so it becomes di�cult to analyze how much the variance of a speci�c
variable contributes to the variance of the outcome. To solve this problem a factorial design method
can be used. The full factorial design method examines all possible combinations of levels for
all factors (design variables). The number of experiments that have to be conducted for a full
factorial design increases with the power of the number of design variables and can be become
cumbersome very soon[75].

In this study an extended Fourier amplitude test (EFAST) is used to perform a sensitivity analysis
on the results. The method was �rst published in the work of Saltelli[76] and amongst others used
in the work of Van Damme[41]. With this method the e�ect of each input variable on the variance
of the output is computed and measured. A Latin Hypercube Sampling (LHS) method is used to
vary the input parameters around their optimal value. A Latin Hypercube is represented by a
n-by-m matrix where n equals the number of samples taken and m the number of input parameters.
For each column of the Latin Hypercube matrix the n values are randomly distributed with one
from each interval, and randomly permuted:

(0,1/n),(1/n,2/n), ...,(1−1/n,1)

Due to the more evenly distributed sample space of the LHS method it requires much smaller
sample sizes than e.g. Monte Carlo sampling and still achieves a reasonably accurate random
distribution. The method works especially well for larger number of design variables. In the work
of Seaholm, a factorial design required 14 times the sample size of a LHS method for the sensitivity
analysis on an epidemic model, obtaining the same results[77]. The total e�ect of each individual
input parameter on the output variance is computed using so called Sobol sensitivity indices [75]:

Si =
Vi

V (ϒ)
STi = 1− V−i

V (ϒ)
(9.1)
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V (ϒ) is the total output variance of the model and Vi is the fraction of the output variance that
is caused by varying only input parameter xi. Si is sometimes called the �rst order sensitivity
indices. V−i on the other hand represents the variance of the output caused by all input parameters
except xi. STi is therefore also called the total-e�ect sensitivity indices. For the computation of the
sensitivity indices, m+1 hypercubes have to be generated, one for each input parameter and one
extra to compute V (ϒ), were all input parameters are varied at the same time.

This study leans more towards �nding the optimal descent trajectory rather than the optimal
ascent trajectory. It is therefore decided only to perform a sensitivity analysis on the descent
optimization results. The sensitivity analysis can be performed for every Pareto optimal solution.
However, due to the large computational e�ort that would require, an arbitrary optimal solution
is selected for the sensitivity analysis. Besides, it is reasonable to assume that all optimal solutions
show the same behaviour in the sensitivity analysis (because the solutions are very similar to
each other). The Latin Hypercubes are generated with Matlab and then imported to the Tudat
environment. A uniformly distributed sample-size of N = 1000 and 10% variance on the input
parameters is used. Two sensitivity analyses are conducted, one for varying the design variables
and another for varying the initial state parameters of the RTLS trajectory. In this study only the
total-e�ect indices will be discussed.

The output variance is measured by the previously mentioned RSS value and the components it
consists of. From Figure 9.1 it can be concluded that the boostback time has the biggest e�ect on
the model output. This also strokes with the results from the DSE obtained in section 7.5, where
only a very small range of the boostback time resulted in feasible solutions. The boostback time
and the pitch-over are the only two parameters that can e�ectively change the direction of the
�ight path and therefore the �nal distance to the landing site (DRL). This is also concluded from
Figure 9.1. The �nal velocity of the vehicle is mainly dependent on the throttle factors and the
altitudes at which the burns start. In case the throttle factor is too low, or the burn altitude too low,
the vehicle is not able to slow down quick enough before impact. On the other hand, if the throttle
factor is too high, this can result in reaching 0m/s at higher altitudes or fuel burning up too quick,
terminating the simulation at a high altitude. This explains the relatively high contribution of the
�nal altitude w.r.t the RSS value. In the previous chapter it was found that the optimal solutions
for the RTLS trajectory all feature short burn-times for the reentry burn phase and therefore
does not contribute as much to the �nal solution as e.g. the landing burn phase. This can also
be concluded from Figure 9.1 where the reentry burn altitudes and reentry throttle factor barely
contribute to the total variance of the output.
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Figure 9.1: Mean of the total e�ect sensitivity indices on the output variance for given input parameters.

A similar analysis can be conducted for varying the initial state parameters of the RTLS trajectory,
displayed in Figure 9.2. In practical �ight the uncertainties in the initial state parameters could
e.g. be caused by inaccuracies in the (GPS) measurement equipment on board of the vehicle. In
it stands out that an o�set of the radius (or altitude) has a high impact on the �nal velocity and
altitude of the vehicle. This can be explained by the fact that the radius is de�ned as the distance
from the center of the Earth to the vehicle (Rearth +h). A variance of 10% on the radius leads to an
absolute o�set in the order of 102km. These numbers are not realistic and the results therefore not
reliable. To mitigate for this to happen a variance on altitude could have been used instead. The
longitude and latitude represent the position of the vehicle projected on the service of the Earth.
An o�set on the initial longitude and latitude is therefore expected to in�uence the downrange
landing distance to a high level. Although this is the case for the latitude, the same does not hold
for the longitude. This is remarkable taking into account that both parameters play an equal role
in computing the downrange distance.
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Figure 9.2: Mean of the total e�ect sensitivity indices on the output variance for given input parameters.

Last but not least, the previously mentioned speci�c impulse (Isp) is subjected to an uncertainty.
The Isp directly in�uences the thrust magnitude an engine is capable of delivering and therefore
interesting to investigate. Engine performance is always subjected to a certain degree of uncertainty.
The speci�c impulse uncertainties are sometimes provided by the manufacturer, however, such
data is not found for Electrons Rutherford engine. In a paper written by Davidian and Dieck the
Isp of rocket engines is studied. The study concludes with an 1.3% uncertainty on the Isp. The
largest contributions to the uncertainty were caused by calibration errors from the measurement
devices[78]. For this analysis the Isp will also be varied with a uncertainty of 1.3%. From Figure 9.3
it can be concluded that the Isp uncertainty seriously e�ects the �nal position error of the vehicle,
more than the 1km tolerance that was introduced in section 7.4. Due to the predictive behaviour
of the uncertainty the o�set in the �nal position vector can be compensated for. This could e.g. be
done with a guidance system that monitors o�set in position and acts accordingly by decreasing
or increasing the thrust magnitude or direction.
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10 | Conclusion and Recommendations

In this chapter the �ndings of the study are concluded and the previously established research
questions are tried to be answered. Furthermore a list of of recommendations is presented to point
out and discuss the shortcomings of this study and potential improvements on the model.

The focus of this study was to investigate the feasibility of an RTLS mission using vertical powered
descent techniques for an already existing small satellite launcher: Electron. The lesser changes
made on the vehicle con�guration the more interesting the results become for e.g. Rocket Lab.
Any positive �ndings that would involve large changes of the vehicle are not desired because the
Electron already exists in its current form and Rocket Lab is not expected to drastically change the
design of the rocket anytime soon. In terms of mass distribution no big changes had to be made
because the estimated 12.5%[24] of the vehicles dry mass originally used for the MAR system can
now be used for the landing gear and grid �ns.

It was also found that by assuming an instantaneous pitch-over manoeuvre for the RTLS trajectory
(e.g. used in the work of Contant[1]), signi�cantly less fuel is required than for a more realistic
�ight pro�le that embeds a gradual pitch-over manoeuvre. The di�erence between the two
methods was estimated to be around 10%.

For the computation of the aerodynamic forces a Missile DATCOM database was provided.
The database contains the aerodynamic force coe�cients for a broad range of simple vehicle
con�gurations, taking the length and diameter as input. The database then �nds the set of
coe�cients that comes closest to the actual vehicle. For the Electron, with a length of 18.0m and a
diameter of 1.2m, the database provides the coe�cients corresponding to a vehicle with length
20m and diameter 1.6m. The database might serve well for the preliminary design of launch
vehicles, it is deemed too inaccurate for this study. For that reason the Missile DATCOM software
was used to generate the aerodynamic coe�cients corresponding to the exact con�guration of the
Electron, leading to a more accurate aerodynamic �ight pro�le.

Previous real life missions of the Electron to SSO orbit involved MECO altitudes of around 75km.
It is not known what type of ascent trajectories Rocket Lab currently uses for its missions, but
using an orbital coast period presented in this study, the MECO altitude was reduced to 60km
(similar to Falcon 9’s MECO altitude) while still reaching SSO orbit. Reducing the MECO altitude
directly a�ects the fuel use of the Launch Vehicle. This is an important aspect of this study because
the extra saved fuel during ascent can now be used for the RTLS trajectory.

An optimization framework for the ascent and descent trajectory was presented in this study. For
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the ascent trajectory it can be concluded that the MOEAD optimizer outperforms the NSGA-II
optimizer. After optimization the reader is left with a Pareto front of optimal solutions of which
the ’best’ solution can be picked manually. For the optimization of the descent trajectory the
Multi-Objective optimizers were not able to give a better insight in the problem than the proposed
Single-Objective optimizers. This is mainly caused by the fact that the Multi-Objective descent
optimization converges for one solution only, with a useless Pareto front as a result. It can therefore
be concluded that the required fuel mass is not strongly correlated to the �nal accuracy of the
landing site. For the SO objective optimization the de1220 algorithm outperformed the PSO
algorithm both in terms of convergence and performance.

As presented in Table 8.4, 128kg of fuel is still left after the �rst stage has successfully reached the
landing site. Because this amount of fuel is not used, it could e.g. be used to increase the payload
mass if the optimization process were to be iterated. From the same table it is observed that the
�rst stage approach the landing site with a accuracy of the order 10m. This is an extremely good
result were it not that the maximum achievable accuracy of the integrator is 686m.

From the sensitivity analysis it was concluded that the boostback time and pitch-over angle are the
most determining factors in computing the model output. In practical �ight those variables are not
necessarily �xed and could be adjusted during �ight as required by the on-board guidance system.
High variance of the output caused by those variables can than be compensated for during �ight
and as such will not accumulate to a high variance of the output. Another interesting outcome is
the maximum achievable accuracy by the integrator. Ideally the choice of integrator should not be
leading in determining the accuracy requirements of the model. A more in-depth analysis on the
integrator performance is therefore strongly recommended.

To conclude, no major modi�cations to the existing Electron rocket had to be made to safely return
it to the launch site. The payload was reduced from the nominal 200kg to 175kg to make sure the
orbit was still reached. The most optimal descent run was able to land with a remaining 148kg
of fuel. As mentioned before, the choice of integrator seriously e�ects the �nal accuracy of the
model. In the end a simple aerodynamic and thrust guidance algorithm were implemented.

10.1 Recommendations

Simulations or models of real time events are always subjected to simpli�cations and assumptions.
Which assumptions and until what degree can be made is highly dependent on the goal of the
study. A few recommendations are discussed, which if implemented, are believed to improve the
overall performance of the designed (optimisation) software tool.

• The addition of an extra objective function in the form of the payload mass for the
ascent trajectory. Adding such objective gives more design freedom to the user
because the desired payload mass can is not �xed but computed as a function of
the other objective function.

• To further improve the performance of the ascent trajectory the Argument of
periapsis could be added as a design variable. This allows the optimizer to �nd the
optimum launch window the rocket should be launched in.
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• In this study a simple guidance law is used to impose an attitude on the vehicle
during �ight. The slenderness of the rocket results in a naturally unstable behaviour.
If no control would be added (or attitude be imposed), the attitude of the vehicle
would show very erratic behaviour. Keeping the rocket up right requires active
attitude control by means of grid-�ns, engine gimballing and cold gas nitrogen
thrusters. It would be interesting to analyze whether the attitude of the vehicle can
remain stable during one of the optimal trajectories and if yes, how much extra
fuel this would require.

• The addition of grid-�ns. Grid �ns are used to both decelerate the vehicle and to
control its attitude.

• It may well be worth to further investigate the performance of the integrator and
see if any improvements on the achievable accuracy can be made.

• This study shows that its technically possible for the �rst stage of the Electron
to �y back to the landing site. It would be interesting to compare the results of
this study with the results obtained for a MAR method. Rocket Lab has recently
executed a successful MAR recovery and in addition a student at the TU Delft is
currently working on this topic.
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