
The Effect of “Good First Issue”
Indicators upon Newcomer Developers

Identifying Improvements for Newcomer Task Recommendation

Jan Willem David Alderliesten

The Effect of “Good First Issue”
Indicators upon Newcomer Developers

THESIS

submitted in partial fulfillment of the
requirements for the degree of

MASTER OF SCIENCE

in

COMPUTER SCIENCE

by

Jan Willem David Alderliesten
born in Washington, District of Columbia, United States of America

Software Engineering Research Group
Department of Software Technology

Faculty EEMCS, Delft University of Technology
Delft, the Netherlands
www.ewi.tudelft.nl

www.ewi.tudelft.nl

c©2020 Jan Willem David Alderliesten. All rights reserved.

The Effect of “Good First Issue”
Indicators upon Newcomer Developers

Author: Jan Willem David Alderliesten
Student id: 4368703
Email: j.w.d.alderliesten@student.tudelft.nl

Abstract

The recommendation of tasks for newcomers within a software project through
good first issues is being done within the domain of software development, such as on
Github platform. These issues aim to help newcomers identify tasks that are suitable
for them and their level of expertise within the project. This thesis report investigates
the effectiveness regarding developer onboarding and task completion of good first
issues by data mining a set of 105 repositories and manually analyzing at most 30
good first issues and 30 initial commits per sampled project. It was found that, although
good first issues are effective at developer onboarding, and developers perceive good
first issues as being useful, changes can be made to the types of tasks suggested as
good first issues to match the types of initial contributions made by newcomers. It was
also found that developers with less than a year of experience favored documentation-
related contributions for their first commit to a project.

Thesis Committee:

Chair: Prof. Dr. A. E. Zaidman, Software Engineering Research Group, TU Delft
University supervisor: Prof. Dr. A. E. Zaidman, Software Engineering Research Group, TU Delft
Committee Member: Dr. R. Bidarra, Computer Graphics & Visualization Group, TU Delft

Dr. G. Gousios, Software Engineering Research Group, TU Delft

j.w.d.alderliesten@student.tudelft.nl

Preface

It feels somewhat strange writing the preface. For you, as reader, it should be known that this
is the final component for this thesis that was written before it was sent off to be inspected
and critiqued by the committee. I had not expected that my thesis would be investigating
good first issues, nor did I expect that I’d enjoy this work as much as I did. What started
out as a thesis born out of an interest in repository mining ended-up being, what I hope, a
contribution for projects and repositories to help with developer onboarding. An attempt at
finding a method of numerically evaluating a process that has already existed for quite some
time. It feels doubly strange that I will not have a formal defense but an online defense, due
to the ongoing situation surrounding the Wuhan strain of the Corona virus, and only physi-
cally saw my supervisor twice during the entire thesis process, but an uncountable amount
of times online. Interesting stories to tell when I’m older to an interested ear, perhaps.

I mostly hope that you, the reader, enjoy reading the thesis report and are able to extract
information that may help in organizing your projects or determining your next contribu-
tions to projects. If you have any remarks or questions, you are welcome to send me an
e-mail at david.j.w@hotmail.com to discuss, even if it were to be years later. Perhaps a bit
unorthodox to share my private e-mail in the preface, but then again, this entire procedure
was less than normal and electronic communication has become the standard during this
time. There are numerous people I’d like to thank in this preface.

I’d like to begin by thanking my parents, Liza and Jan, for their continued support
and advice. Many evenings were spent with me discussing my progress, ranting about
problems I encountered, and going through concept versions of my thesis that came back
with feedback and advice. I am very grateful for all your support, the thesis is much stronger
due to your advice and support and I would not have been able to complete my master’s
program without the many, many conversations we’ve had.

I would also like to thank the many friends that kept me sane during the largest parts of
this thesis. Although I am not able to name everyone, I would especially like to thank (in
no particular order) Alex Molenberg, Cas Buijs, Kasper Kop, Hugo Meeldijk, Jesse Tilro,
Niels Warnars, Floris Doolaard, and many others who are not named for countless nights of
gaming, walks, and phone talks during these times. It was a much needed break from the
usual, and I cannot thank you enough for this. Once this whole situation is over, we need to
come together and celebrate! I would also like to thank the many students who I taught in

iii

mailto:david.j.w@hotmail.com

PREFACE

the capacity of teaching assistant during this time. Many of you remained interested in my
progress after I was done, and these chats were a very friendly interaction that has led, in
many groups, to sustaining social groups. Thank you all.

Thirdly, I wish to thank my thesis evaluation committee, consisting of professor Geor-
gios Gousios and professor Rafael (“Rafa”) Bidarra for their willingness to evaluate my
thesis work and to provide their critiques despite these unconventional and busy times. I
also wish to thank the developers who responded to the survey I sent out, your kind re-
sponses helped motivate me to finish this research.

Finally, I wish to thank my supervisor, Professor Andy Zaidman. I was always dreading
my thesis work, and had heard from many people that the thesis was perhaps the most
painful and difficult part of a master’s degree program. Thanks to your guidance, I found
it to be one of the smoothest and most enjoyable components of my master program. You
were always readily available to provide commentary, help me out with an issue I was
facing, and provided a lot of advice that improved the quality of this thesis and guided me
to better research practices. When I began this thesis report, I could not have imagined that
I would learn so much related to both the domain of software engineering and to research
procedures and practices. I am very grateful for all of this, and I hope to shake your hand
once this entire situation is over to thank you for all you’ve done.

I hope you enjoy reading this thesis as much as I enjoyed writing it, and hope this thesis
report finds you in good health.

Jan Willem David Alderliesten
Delft, the Netherlands

June 18, 2020

iv

Contents

Preface iii

Contents v

List of Figures vii

List of Tables ix

1 Introduction 1
1.1 Motivation for Research . 2
1.2 Background . 2
1.3 Research Questions . 9
1.4 Contributions . 11
1.5 Structure . 12

2 Related Work 13
2.1 Developer Onboarding . 13
2.2 Task Recommendation . 19
2.3 Broader Software Engineering Topics . 22

3 Methodology 29
3.1 Data Collection . 29
3.2 Analysis of Data . 34
3.3 Questioning of Individuals . 37
3.4 Overview of Procedures . 41

4 Results and Analysis 43
4.1 Numerical Results of Data Mining & Sampling 43
4.2 Numerical Results of Analysis . 43
4.3 Comparing Issue and Commit Classifications 45
4.4 Comparing Classification Combinations 51

v

CONTENTS

4.5 Developer Experience . 56
4.6 Surveying Developer Perception of Good First Issues 62
4.7 Effectiveness Assessment of Good First Issues 69

5 Discussion 71
5.1 Limitations Related to Dataset . 71
5.2 Limitations Related to Numerical Data . 74
5.3 Limitations Related to Analysis . 77
5.4 Limitations Related to the Survey . 80
5.5 Threats to Validity . 81

6 Conclusions and Future Work 85
6.1 Findings . 85
6.2 Suggestions for Good First Issue Improvements 88
6.3 Future work . 89

Bibliography 91

A Glossary 99

B Dataset 103

vi

List of Figures

1.1 An example of a commit log for a software repository. 5
1.2 An example of a branch network within a software repository. The black line

represents the master branch. Arrows represent merges of one branch into another. 5
1.3 An example of a pull request within a repository on Github. The names and

identifiable material have been removed to protect the contributor’s privacy. . . 7
1.4 An issue on Github describing a bug that has been fixed and, as a result, closed

the issue. The names and identifiable material related to one contributor have
been removed to protect their privacy. 8

3.1 An example of the trending repositories page on Github. 31
3.2 The central entry point, showing the API key, repository location, and desired

label to filter upon. 33
3.3 The CSV file containing numerical data, sample status, and the number of is-

sues, number of good first issues, number of sampled issues, and number of
sampled commits. 34

3.4 A visual flowchart overview of the procedure as outlined in the methodology.. . 42

4.1 Visual overview of the percentiles assigned to each taxonomy label for both
issues and commits sampled, in which the blue components represent the issue
percentiles and the grey bars represent the first commit percentiles. 47

4.2 Visual overview of the percentiles assigned to each taxonomy label for all devel-
oper experience categories, in which the blue components represent the novice
developer experience category, orange represents the intermediate category, and
the experienced category is represented by the grey color. 59

5.1 Overview of the sampled commit distribution and the sample’s commit popula-
tion per repository. 75

5.2 Overview of the sampled issue distribution and the sample’s provided issue
population per repository. 76

vii

List of Tables

1.1 An overview of some existing version control systems. 4

2.1 An overview of related works to onboarding along with their aspect studied and
the effect of that aspect upon newcomer onboarding. 14

2.2 An overview of related works to task recommendation along with their aspects
studied and their indicated usefulness based upon the research provided. 20

2.3 An overview of related works to broader software engineering topics, the year
in which they were published, and additional information per paper. 28

3.1 An overview of the aspects analyzed for each issue as presented in the CSV
template for issue analysis. 35

3.2 An overview of the aspects analyzed for each commit as presented in the CSV
template for commit analysis. 38

3.3 An overview of the labels utilized to label developer experience and the require-
ments for each category. 38

4.1 Numerical results of the data mining and sampling procedure. 44
4.2 Numerical results of the sampled issues and their completion status. 44
4.3 Overview of the taxonomy classification for issues that were sampled. 45
4.4 Overview of the taxonomy classification for commits that were sampled. 46
4.5 Tabular representation of the percentile difference between labelling in sampled

issues and sampled commits with respect to the good first issue labels. 47
4.6 Results of the two-tailed Mann-Whitney significance tests with a significance

level α = 0,01 between the differences in taxonomy labels, including their as-
sociated effect sizes. 49

4.7 Tabular representation of the number of commits per label in the row that have
a combination with the label in the column. 52

4.8 Tabular representation of the number of issues per label in the row that have a
combination with another issues labelled in the column. 53

ix

LIST OF TABLES

4.9 Tabular representation of the results of the association rule mining, displayed
as tuples consisting of (support, confidence, lift), for the combinations found in
the sampled commit population. 54

4.10 Tabular representation of the results of the association rule mining, displayed
as tuples consisting of (support, confidence, lift), for the combinations found in
the sampled issue population. 55

4.11 Tabular overview of the developer experience distribution of sampled commits. 57
4.12 Tabular overview of the sampled commits distribution for the novice category

of developer experience. 57
4.13 Tabular overview of the sampled commits distribution for the intermediate cat-

egory of developer experience. 58
4.14 Tabular overview of the sampled commits distribution for the experienced cat-

egory of developer experience. 58
4.15 Tabular overview of the Mann-Whitney significance results and effect size for

each category label and associated pair of developer experience levels, pre-
sented as a tuple consisting of (p-value, z-value, effect size, significance indi-
cator) for each pair with a significance level α = 0,01. 60

4.16 Numerical results for the first question of the positive survey variant filtered by
response type and keywords in the responses. 63

4.17 Numerical results for the first question of the negative survey variant filtered by
response type and keywords in the responses. 64

4.18 Numerical weighting results for developer indicated usefulness of good first
issues in the survey. 65

4.19 Numerical preference results for developer preferred tasks for good first issues
or first contributions, with one respondent being able to give multiple responses. 66

4.20 Results of the newcomer task direction preferences for developers as indicated
by the survey results. 67

4.21 Numerical results of the sampled issues and their completion status weighted
to remove deprecated or incomplete good first issues. 69

5.1 Numerical results of the sampled issues and their completion status weighted
to remove deprecated or incomplete good first issues. 73

5.2 Aspects of the research and their p-values that would have varied if a signifi-
cance level of α = 0,05 or α = 0,01 was chosen. 79

x

Chapter 1

Introduction

The development of open-source software (OSS) relies largely on contributions made by
developers and contributors who work without compensation and on their own accord [38].
The cumulative effort of these distributed developers results in software that is utilized by a
significant number of individuals and organizations [53] and within closed-source packages
(such as the utilization of the C++ “Boost” library1 in video games and optimization-based
software). Due to the distributed and asynchronous nature of open source software devel-
opment, regulations and procedures are required to ensure that development occurs in a
steady and predictable manner such that all contributors are working with an identical set of
expectations. Developers are also expected to acquaint themselves with these regulations,
procedures, and with the technical aspects related to software development. Due to differ-
ences in technical expertise and experience per developer, coupled with a high turnover rate
for developers in open source software projects [43], this can be a difficult task.

As a result of these varying factors and procedures, developers in open source soft-
ware projects are expected to take the responsibility of integrating within the project and
identifying tasks that can be done that are appropriate to their level. To assist this process,
existing developers in open source software projects recommend certain tasks by labelling
them as appropriate for beginners or newcomers. Within the Github2 ecosystem, tasks can
be stored as issues and these issues can be given a label called “good first issue.” These
tasks are aimed to be of such a level that someone unfamiliar with the processes and tech-
nical intricacies of the particular project can be introduced to the project and gain a deeper
understanding of the project. Since these labels are given to tasks and issues as indicated
by existing developers, however, the question arises whether the indicated tasks are actually
good introductory tasks for new contributors, and, if these tasks are taken and completed,
what types of tasks tend to be preferred by and for newcomers.

This thesis aims to analyze and identify trends and practices related to the indication of
so-called good first issues and their effect on the process of developer onboarding, if such an
effect exists. This thesis also aims to identify the types of tasks commonly related to good
first issues and the adoption rate of features allowing the labelling of these tasks within the

1Additional information can be found at: https://www.boost.org/
2Website can be found at https://github.com

1

https://www.boost.org/
https://github.com

1. INTRODUCTION

open source Github ecosystem. Within this introduction, the motivation for the research
and an indication of its importance is provided in Section 1.1. An overview of the domain
and background knowledge required for an understanding of the research is provided in
Section 1.2. The research questions for this thesis are stated and justified in Section 1.3, the
contributions made by this thesis work in Section 1.4, and the structure of the remainder of
the thesis report is outlined in Section 1.5.

1.1 Motivation for Research

The onboarding of developers within open (source) projects is a well-studied sub-domain
of software engineering research, with research having been done investigating the social
factors affecting developer onboarding [6], the impact of previous development experience
upon project selection and onboarding [34], and other such aspects. Additional information
regarding onboarding can be found in Chapter 2. It can be seen, however, that many papers
study the effects of direct recommendation of repositories as opposed to the recommenda-
tion of tasks within a repository.

Within open (source) projects, new developers will form the next backbone of the
project and are a project’s most important resource [22]. These developers will guide devel-
opment for the project in the coming years, and the transfer of knowledge and acquisition
of newcomers is therefore important. As a result, not only is the onboarding of developers
into a project important, but ensuring that developers are guided within the project ensures
that they remain active within the project and gain a better (technical) understanding of the
project. This will then, as a result, lead to a developer that is capable of taking increasingly
complex tasks and resulting in more contributions to the project alongside the acquisition
of deeper technical knowledge.

Thus, studying possibilities to onboard and guide developers from within a project is
warranted. When considering the possibilities, labels that directly steer newcomers to pos-
sible development tasks can be considered as a prime contributor to this process. When
considering the literature as done in Chapter 2, no papers seem to have investigated the ef-
fects of labelling possible tasks for newcomers directly. By investigating the types of tasks
that tend to be picked-up by newcomers, and by studying the effectiveness of labelling and
suggesting tasks directly to newcomers, possible adjustments can be made to improve the
onboarding of new developers within projects and their retention rate within the project.

1.2 Background

The background section aims to provide an overview of content related to the domain of this
thesis report, with the goal of providing the necessary background to the reader such that the
contributions of this work can be understood and analyzed. This includes an overview of
open source projects in Section 1.2.1, a primer on software repositories in Section 1.2.2, and
an overview of version control systems in Section 1.2.3. Additionally, background is pro-
vided on Github and its services in Section 1.2.4, the idea of labels and the Good First Issue
label is discussed in Section 1.2.5, and some information on software repository mining is

2

1.2. Background

introduced in Section 1.2.6. Additional terminology and an overview of all terminology in
this section and within the thesis report can be found in the glossary provided in Appendix
A.

1.2.1 Open Source & Openly Developed Software

The development of software can take place through upon demand, in which programmers
develop software and are compensated for their work in the form of a wage or perhaps
through equivalently-valued goods. This software is then sold at a price determined by the
developer or releasing company for end users that will use the software product. The inner
workings of the software product are not publicly available as to protect the trade secrets
of the developed product. An exemption to this practice, however, exists within the open
source software community. Open source software is software that has been developed and
is released with its codebase public, meaning end users can view, modify, or change any
aspect of the codebase if they wish3. Open source software is also usually released for free,
meaning no compensation is given to the developer of the software.

In recent years, many professional software companies have released software that was
once closed source software as open source software. Examples of this include Google’s
Kubernetes4 and Facebook’s React5. On some occasions, this open sourcing allows in-
spection and free-use of the codebase by external parties but retains the rights of software
product in hands of the company responsible for its original development. This adds the
benefit that the company itself can rely on code review and create possible enhancements to
its original product from developers that it does not have to monitor or compensate.

It is estimated that open source software development has a beneficial impact for both
end users of software products [31] and companies or individuals relying on this soft-
ware [7] due to the increased quality resulting from public code analysis and due to the
increased rate at which development occurs resulting from the larger developer base behind
open source software projects.

1.2.2 Software Repositories

The development of software through means of multiple developers commonly relies on
the utilization of repositories for code storage and development. This is required due to
the fact that exchanging codebases (a current version of code) between developers through
means of electronic mail or a physical storage medium transfer requires analysis of the entire
codebase for each iteration given to a developer. This would mean that each change made
by another developer would require one to iterate over all the code, in the hopes of finding
the areas that were changed and integrating one’s own work into this changed codebase.
Repositories aim to alleviate and avoid such practices by providing a centralized location
for all code to be stored, and through means of a version control system (such as Git) that

3As defined by https://opensource.com/resources/what-open-source
4Website can be found at https://kubernetes.io/
5Website can be found at https://reactjs.org/

3

https://opensource.com/resources/what-open-source
https://kubernetes.io/
https://reactjs.org/

1. INTRODUCTION

Name Type
Bazaar Open-Source, Distributed
Concurrent Versions System Open-Source, Centralized
Git Open-Source, Distributed
Mercurial Open-Source, Distributed
Subversion Open-Source, Centralized
Visual Studio Teams Proprietary, Distributed

Table 1.1: An overview of some existing version control systems.

provides a localized copy of the repository to each developer and manages the integration of
all changes for these developers. This version control process is outlined in Section 1.2.3.

Within these repositories, a history of all contributions for each developer can be found,
alongside a history of the codebase itself. Many repositories also contain the tracking and
organization of other software product related aspect such as bug tracking [10][11][23],
issue tracking (which tasks are assigned to which developer) [11][23], and the ability to
review changes to the codebase that are submitted to the master version of the codebase,
which contains the definitive codebase given to consumers and aimed at release. Software
repositories can also contain an overview or archive of communication between developers
related to that project [10][23].

1.2.3 Version Control & Git

When utilizing a software repository as described in Section 1.2.2, a set of standards should
be introduced that allow developers to contribute their codebase changes within the repos-
itory. Version control systems feature certain standards and methodologies which allows
software to be developed simultaneously between developers. This is achieved by tracking
changes to the codebase and updating the codebase across all developers such that only the
actual changes made by a developer are propagated to all developers. In simpler terms,
this means that the codebase is only updated at the location in which the developer made
actual changes (if a developer changed line seven in a 12-line class within a repository’s
codebase, the change of line seven would be the only update propagated). Version control
systems either employ a central server which stores all changes and development, or require
each developer to store a copy of the software repository locally and then submit changes
to a centralized master copy. The former methodology is known as a centralized model,
whereas the latter is known as a distributed model.

There are many version control systems for software development, of which an overview
of a few is given in Table 1.1. One of these version control systems, named Git, has seen
widespread utilization within the software development community6. Developed by Linus
Torvalds, Git is a distributed version control system which allows developers to make com-
mits containing codebase changes upon a local copy of the repository. When looking at a

6Experimental data viewable at: www.openhub.net/repositories/compare

4

www.openhub.net/repositories/compare

1.2. Background

Figure 1.1: An example of a commit log for a software repository.

Figure 1.2: An example of a branch network within a software repository. The black line
represents the master branch. Arrows represent merges of one branch into another.

log of all commits, such as the log shown in Figure 1.1, a complete history of the develop-
ment of a software product or codebase can be obtained. Once a developer wishes to submit
their commits, they push their work to the central repository storage.

All commits are added to a branch, which is a specific version of the codebase that
contains changes related to a certain issue or task. An example of changes that warrant a
branch could be a bug fix or a the development of a new feature. All branches are eventually
merged (copied into) into a branch called master, which contains the release or user ready
version of the codebase. It is also possible to merge non-master branches into other non-
master branches, such as having one branch for a major feature development which itself
has multiple branches containing smaller iterations of relevant components for that feature.
This generates a branching network, of which an example can be seen in Figure 1.2.

Storing the centralized software repository for Git can be done by hosting a repository
on-site, or hosting providers can be utilized. Free options for Git hosting include services
such as Github and Gitlab7.

7Found at: www.about.gitlab.com

5

www.about.gitlab.com

1. INTRODUCTION

1.2.4 Github & Github Issues

Github is an online software repository hosting service relying on the Git version control
system. Users are able to host their repositories either publicly (allowing global visibility
to any visitor of the site) or privately (only approved developers gain access to the reposi-
tory). Github provides multiple auxiliary tools alongside each repository that aim to assist
in the organization of tasks and assist in code review. Such features include pull requests
(code reviews in which comments and specific lines of code can be highlighted for evalu-
ation and discussion as shown in Figure 1.3), security notifications for dependencies that
are outdated or are found to contain security vulnerabilities, textual markdown (.md) files
outlining contribution guidelines within a repository8, and issues (tasks that can be assigned
to developers and classified based on a number of factors).

Github’s issues are commonly utilized by projects to indicate tasks that developers in
the project should or could perform. Each individual issues has a title or a description, can
have additional textual information describing what must be done, can contain an assignee
who is held responsible for completion of the task, and labels indicating the type of task.
These labels can be customized per repository, resulting in label collections ranging from
no labels to 100s of labels within a repository. Issues also have a status, indicating whether
they are open (meaning the need to be done or are in-progress) or closed (indicating they
are finished and have been merged into the master branch of a repository through a pull
request). An example of a list of issues is shown in Figure 1.4.

1.2.5 The Good First Issue Label

As described in Section 1.2.4, issues can be labelled with custom labels. Upon creation of a
repository, Github provides a number of default labels (such as “bug”, “feature”, and “need
help”) which can be utilized9. One of these suggested labels is “good first issue10.” The
good first issue label indicates tasks within a repository or open source project that are good
for newcomers and first-time contributors to a repository. These issues should thus provide
developers with a task that helps introduce them to a project or provides them with a greater
understanding of the software project, as to stimulate them to take more difficult tasks down
the line.

Good first issues are also shared in other locations, sometimes off of the Github plat-
form. Websites such as “Up For Grabs11” and GoodFirstIssue.dev12 aim to provide alter-
native means of newcomer developers to identify tasks suitable for their level.

8Additional information can be found at: https://www.github.blog/2012-09-17-contributing-g
uidelines

9More information available at https://help.github.com/en/github/managing-your-work-on-g
ithub/about-labels

10Read more at: https://help.github.com/en/github/building-a-strong-community/encoura
ging-helpful-contributions-to-your-project-with-labels

11Website can be found at: https://up-for-grabs.net/#/
12Website can be found at: https://goodfirstissue.dev/

6

https://www.github.blog/2012-09-17-contributing-guidelines
https://www.github.blog/2012-09-17-contributing-guidelines
https://help.github.com/en/github/managing-your-work-on-github/about-labels
https://help.github.com/en/github/managing-your-work-on-github/about-labels
https://help.github.com/en/github/building-a-strong-community/encouraging-helpful-contributions-to-your-project-with-labels
https://help.github.com/en/github/building-a-strong-community/encouraging-helpful-contributions-to-your-project-with-labels
https://up-for-grabs.net/#/
https://goodfirstissue.dev/

1.2. Background

Figure 1.3: An example of a pull request within a repository on Github. The names and
identifiable material have been removed to protect the contributor’s privacy.

7

1. INTRODUCTION

Figure 1.4: An issue on Github describing a bug that has been fixed and, as a result, closed
the issue. The names and identifiable material related to one contributor have been removed
to protect their privacy.

1.2.6 Software Repository Mining

Software repositories contain and store a lot of data related to software development, as out-
lined in Sections 1.2.2 and 1.2.3. The field of software repository mining revolves around
the process of obtaining data from existing repositories and using this data to extract infor-
mation related to software development and engineering purposes. This allows analysis of
software development procedures and processes and can provide a basis for analysis and
improvement of these processes. Initial mining aims to extract a significant amount of data
and evidence [24], which is then commonly followed by manual analysis.

When mining software repositories, tools must be utilized to acquire the repository
data. Multiple tools have been developed for the purposes of Git software repository min-
ing and data archiving. Examples of such tools include Boa [11], GHTorrent [20], and
PyDriller [46]. Each of these tools allows a user to drill, or search through, a software
repository based on keywords or desired data. This data can consist of keywords, names,
specific files, and other such queries. More specific queries allow drilling to identify certain
patterns or trends up to the codebase level, meaning a driller could extract desired features
within code, examples of which include identifying all lambda functions or the number of
nested conditional statements within a software repository’s codebase.

8

1.3. Research Questions

The resulting data can be utilized to identify trends or manually identify software engi-
neering or development behavior that can lead to the improvement of software development
practices. Results can be also be utilized to identify codebase trends or utilization statistics
that can help identify regions of development that can be expanded upon in the future. If an
analysis finds that many developers within a certain programming languages experience dif-
ficulties onboarding developers related to type x, then it might be worth investigating how
to increase the number of new developers comfortable working on tasks of type x within
that (open source) project.

1.3 Research Questions

To guide the research and software repository mining processes, a set of guiding research
questions were devised which will be answered in this thesis report. One main research
question was defined to guide overall research as given in Section 1.3.1. Multiple secondary
research questions were then defined as given in Section 1.3.2 to more specifically tune the
direction of research and to allow for conclusions to be made in other, perhaps more minor
segments of the research.

1.3.1 Main Research Question

The main research question (MRQ) for this thesis requires the mining of software reposito-
ries with the goal of identifying the usefulness and level of utilization of the good first issue
label and process. Hence, the main research question has been devised as:

Is the good first issue label effective in indicating tasks within an open
(source) software project that are taken by newcomers?

By focusing exclusively on the idea of a good first issue label (or a label with a different
name performing the same function as the good first issue label), it is possible to analyze its
effectiveness. By looking at the type of tasks that are recommended for newcomers, but also
by comparing this to the actual contributions of newcomers, a baseline can be established
to identify possible weaknesses or to indicate effectiveness.

1.3.2 Research Questions

This section describes the secondary research questions (RQs) that have been defined as
a complement to the main research question described in Section 1.3.1. These research
questions will also guide the research in such a manner that the main research questions can
be answered and relevant aspects can be studied.

Level of Utilization The first set of secondary research questions aim to identify the level
of utilization of good first issues within Github repositories and when considering the total
number of issues within a repository. When considering the usefulness of good first issue
labels it is important to consider whether the sample size considered is representative, and

9

1. INTRODUCTION

whether the feature itself sees widespread use among active Github repositories. Hence,
the first RQ aims to identify the rate of adoption of good first issues as to allow us to draw
conclusions about their actual adoption rate within Github.

RQ1
What percentage of projects within the Github ecosystem employ good first
issue labels for their issues?

It is also important to consider the number of issues and tasks that are deemed to be
a good first issue within individual repositories. This may provide an insight into how
widespread the label is and what percentage of total issues within a repository could be
considered as good for newcomers.

RQ2
What percentage of issues within repositories are labelled as good first issues
out of the total number of issues?

Labelling of Good First Issues The second set of research questions aim to investigate
the types of tasks that are labelled as good first issues and whether these suggested tasks are
indeed taken and developed for initial contributions from new developers within a project.
By classifying the types of tasks that are commonly deemed to be good first issues and
identifying common trends, it may be possible to provide suggestions to other projects
regarding the types of issues to recommend for newcomers.

RQ3
What types of tasks and issues are generally recommended as good first issues?

Beyond investigating and classifying commonly suggested good first issue tasks and
issues, it is also important to investigate whether the labelled tasks are completed by new-
comers. If the tasks are not completed by newcomers, this may suggest that the tasks being
indicated are not suitable for newcomers. If the tasks are being completed by newcomers,
then validation can be given to the classification as described in RQ3 that these types of
tasks are indeed generally suitable for newcomers.

RQ4
Do new developers complete the tasks labelled as good first issues?

Newcomer Experience The third and final set of research questions aim to investigate
the types of tasks new developers within an open (source) software project complete for
their initial contribution and what the experience was during this initial contribution. RQ4
considered whether or not new developers were actually completing issues labelled as good
first issues, but it is useful to consider what types of tasks new developers are contributing
to as their initial commit within repositories. This may show a divide between suggested
tasks and actual implemented tasks, perhaps highlighting improvements for the types of
tasks given as suggested first contributions.

10

1.4. Contributions

RQ5
What types of contributions are made by newcomer developers within a project?

Evaluating the newcomer developer experience within open (source) projects can also
provide valuable insights as to the good first issues and whether or not they assisted the
newcomer with their goal of finding a suitable primary contribution. These insights allow
greater understanding of non-technical experiences of the newcomer developer, such as their
personal feelings and ease of use.

RQ6
How do (new) developers perceive the labelling of good first issues and their
usefulness?

1.4 Contributions

This thesis report and the research performed lead to a number of contributions within
the domain of task recommendation and developer onboarding. These contributions are
outlined in this section to provide an overview of what can be expected from this report.

Good First Issue Dataset: A dataset has been constructed, sampled, and analyzed which
focuses on good first issues and initial contributions. This dataset, spanning 105
repositories, contains 858 sampled good first issues and 1.272 sampled commits.
The dataset and its associated analysis are publicly available and presented for future
work on Github13. Additional information is provided in Appendix B.

Task Classification Taxonomy: This report introduces a taxonomy that can be utilized to
classify contributions, commits, and issues for future research. The classification
consists of six labels that are broad enough to support multiple types of research and
domains.

Good First Issue Adoption and Fulfillment: Numerical data was obtained and investigated
to determine the rate at which repositories adopt good first issues and how many of
these issues are fulfilled by new developers within a project or repository. A recom-
mendation based on this data is made for projects to adopt task recommendation in
the form of good first issues as a result of these findings.

Analysis of Issue and Commit Differences: An analysis investigating the differences be-
tween initial contributions and good first issue task recommendation was performed,
identifying that a discrepancy for multiple task types were identified. Addition-
ally, combinations of labels for tasks and contributions were identified to determine
whether associations exist between labels within the taxonomy. A recommendation
is made for project maintainers to suggest certain tasks more often as good first issues
based on these results.

13The dataset is available at: https://github.com/dalderliesten/Good-First-Issue

11

https://github.com/dalderliesten/Good-First-Issue

1. INTRODUCTION

Analysis of Developer Experience: Developer experience was investigated and consid-
ered to determine whether it made an impact on the type of contributions that would
be made. Findings indicated a significant difference between novice developers with
less than a year of demonstrated experience and other developers, the results of which
are presented.

Developer Survey on Usefulness: A survey that was approved by Delft University of Tech-
nology’s human research ethics commission was sent out to sampled developers to
obtain the developer perception of task recommendation and good first issues. The
findings and data obtained are presented in this report.

1.5 Structure

This thesis report begins by providing an overview of related work in Chapter 2. After this,
the methodology for the research is outlined in Chapter 3. The results and their associated
analysis are presented in Chapter 4, and an discussion of the research is provided in Chapter
5, after which conclusions and possibilities for future work are given in Chapter 6.

12

Chapter 2

Related Work

This section aims to provide an overview of existing literature and work related to good first
issues, developer onboarding, and other related topics within software engineering. This
is done with the goal of providing the required background such that the state of the art
and relevant knowledge can be understood and provide additional context regarding the
contributions of this thesis report. Developer onboarding is discussed due to it being the
focus of the creation of good first issues, task recommendation is discussed due to its close
relevance to the suggestion of good first issues, and broader software engineering concepts
are discussed based on their relevance to open source newcomer processes and procedures.

Due to the broad number of topics related to this thesis work and to good first issues,
each section in this chapter indicates the topic to which those related works fall under as
to act as a classification. These topics include developer onboarding in Section 2.1, task
recommendation for development practices and its effectiveness in Section 2.2, and broader
software engineering topics related to open-source software development in Section 2.3.

2.1 Developer Onboarding

Developer onboarding refers to the process of actively finding and involving new developers
within a project, with the goal of increasing the total number of developers working on an
open (source) project. Multiple aspects related to developer onboarding have been studied,
a few of which are presented in this section. Section 2.1.1 identifies social factors which
affect developer onboarding, Section 2.1.2 discusses technical factors influencing developer
onboarding. Additional alternative methods or other insights into developer onboarding are
given in Section 2.1.3. An overview of all studied papers and works related to onboarding
presented in this section are given in Table 2.1.

2.1.1 Social Factors affecting Onboarding

When considering how and whether developers join new projects, the social factors influ-
encing these decisions play an important role as it can make up almost 50% of a newcomer’s
active time [2]. If a developer feels enticed to join a project and contribute, they may expect

13

2. RELATED WORK

Paper
Y

ear
A

spectStudied
O

nboarding
E

ffect

B
egeland

Sim
on

[2]
2008

M
entoring

Positive
C

asalnuovo
etal.[5]

2015
PriorSocialC

ontacts
in

Project
Positive

D
abbish

etal.[9]
2012

R
epository

A
ctivity

&
R

ecency
Positive

D
abbish

etal.[9]
2012

Signals
ofA

ppreciation
from

D
evelopers

to
N

ew
com

er
Positive

Fagerholm
etal.[13]

2014
M

entoring
ofN

ew
com

ers
Positive

H
ahn

etal.[22]
2008

Personally
K

now
ing

M
aintainer

Positive
K

osa
and

Y
ilm

az
[29]

2016
G

am
ification

U
ncertain

L
abuschagne

and
H

olm
es

[30]
2015

O
nboarding

Program
s

forInitialC
ontribution

Positive
L

abuschagne
and

H
olm

es
[30]

2015
O

nboarding
Program

s
on

Short-Term
Positive

L
abuschagne

and
H

olm
es

[30]
2015

O
nboarding

Program
s

on
L

ong-Term
N

egative
L

iu
etal.[35]

2018
R

ecom
m

endation
ofR

epositories
Positive

Pham
etal.[41]

2016
A

utom
ated

Testing
R

equirem
ents

N
egative

Steinm
acheretal.[47]

2015
G

etting
Slow

A
nsw

ers
to

Q
uestions

N
egative

Steinm
acheretal.[47]

2015
G

etting
N

o
A

nsw
erto

Q
uestions

N
egative

Steinm
acheretal.[47]

2015
B

ad
E

nglish
B

ackground
N

egative
Steinm

acheretal.[47]
2015

Im
polite

C
om

m
unication

N
egative

Steinm
acheretal.[47]

2015
N

ew
com

erTechnicalB
ackground

E
xpected

N
egative

V
ivianiand

M
urphy

[52]
2019

C
ode

R
eview

s
Positive

V
ivianiand

M
urphy

[52]
2019

M
entoring

Positive
W

ang
[54]

2012
B

ug
Search

Tool
Positive

Table
2.1:

A
n

overview
of

related
w

orks
to

onboarding
along

w
ith

their
aspect

studied
and

the
effect

of
that

aspect
upon

new
com

er
onboarding.

14

2.1. Developer Onboarding

that certain mentoring or social contacts exist and meet their expectations. This section aims
to address social factors that may influence the onboarding process.

Casalnuovo et al. [5] studied developer onboarding on Github related to social aspects
and overall developer productivity. They found that developers tend to join projects in
which they have prior social contacts, such as developers they have collaborated with in
past projects. Developers also exhibit a greater level of productivity when there is both
technical and social familiarity with other contributors for an open-source project, yield-
ing up to 54.3% increases in developer productivity. In contrast, if a developer is referred
only on social connections and has no technical background in the project they contribute to
due to social connections, overall productivity decreases by 9.6%. The authors suggest that
engaging new developers in a meaningful manner is essential to increasing productivity,
and that social connections are not sufficient on their own to ensure developer productivity.
Their findings are complemented by a study from Hahn et al. [22], which found that devel-
oper onboarding was more likely to occur when they personally know a maintainer or the
creator of the project.

Dabbish et al. [9] studied the effects a user’s activity has on the perception from an
open source development perspective. They found that four cues were commonly utilized
to infer social information between users. When a contributor was active within an open
source repository it is commonly inferred that the contributor is interested in the project
and activity is seen by the community as a commitment. This cue is impacted by recency,
meaning active users from the past are seen as less “involved” than current active users. The
intentions of contributors were derived from their sequence of actions over time, meaning
that contributor commits could be analyzed over time to derive their intentions and desired
direction for a project. Project-wide cues were also identified. It was found that the number
of people contributing to a project signified the importance of the project, in which con-
tributors were more likely to see an open source project as “important” if a greater number
of contributors and interested developers were involved in the project, either submitting
bug and issue reports or actually contributing new code to the codebase. They utilized
this information to identify a number of considerations open source projects should make
when managing their repository. Transparency of the project in Github (such as issues and
discussions) had a positive impact on contributor project perception, and when a limit of
transparency was encountered (such as a lack of clarity in guidelines) communication arose
within the project. These communication moments usually resulted in a desire to reach a
mutual agreement or compromise regarding segments of the project that are not transparent
or clear. Dabbish et al. [9] also identified that, within large open source repositories where
transparency and interaction isn’t always possible, users started showing “signals of atten-
tion” such as notifications and small comments of appreciation to indicate their interest in
the work that a contributor was doing. This increased the sense and perception of combined
social effort within an open source repository.

Steinmacher et al. [47] studied social barriers and challenging aspects faced by new
contributors when making their first contribution(s) to open source software repositories
and proposed for the creation of a barriers model to help alleviate these issues. This model
was devised through a meta-analysis of other works. They found that new contributors faced
issues related to reception within a new open source project such as not receiving an answer

15

2. RELATED WORK

(questions on fora or question sites go unanswered) occurring and causing new contributors
to not return. They found an identical result when finding many delayed answer, in which
a slow pace of communication within an open source software project scares newcomers
away. It was also found that impolite responses to new contributor questions or suggestions
also scared away new contributors, partially attributed to new contributors being unsure how
to respond to rude or snide remarks. The proposed solution to these types of problems is
automated answer/feedback for newcomer contributions and first-time contributions. Ad-
ditionally, shyness due to cultural differences (such as the perception of being unwilling
to request assistance from those seen as higher ranked) or a lack of an English language
background also decrease contributor onboarding [47]. These barriers reduce the likelihood
that a contributor will join the open source community around a project repository.

Fagerholm et al. [13] studied the effect of mentoring within open source software projects
and the impact this has on the onboarding of new contributors. They studied an instance in
which mentors were assigned to new contributors at a hackathon that last multiple weeks
such that the mentors provided recommendations for tasks that should be done, providing
an overview of the given codebase’s architecture, and guiding the participants in a man-
ner such that they would perform the most simple tasks first. The mentors also assisted
with the creation of (automated) test cases, assisting with minor bug fixes, and providing
assistance when a participant got stuck. Relevant metrics that existed on Github were then
utilized to identify the usefulness of the mentors. It was found that the activity and level of
engagement with the codebase of the mentored developers was significantly higher than a
sub-group of users in the hackathon that did not have mentoring. The suggested increase
to onboarding is an activity level that is boosted for close to 300% when mentored ver-
sus those that are not mentored. The authors also found that although mentoring greatly
increases the onboarding of new contributors, it does cause a reduction in productivity of
mentoring developers, who need to dedicate their time to mentoring others. The usefulness
of mentoring for new developers was also studied within closed-source projects for smaller
sized companies by Viviani and Murphy [52], who found that doing pair programming with
an experience buddy mentor would help newcomers onboard at a quicker rate and led to
greater newcomer satisfaction with relation to the onboarding process. When evaluating
more experienced developer that are new to a company, mentoring also has a positive effect
on their onboarding as per research from Begel and Simon [2].

Labuschagne and Holmes [30] studied the effects of onboarding (task referral) pro-
grams within open-source software repositories to identify whether these programs resulted
in additional contributions from newcomers. This was achieved by studying Mozilla’s1

open-source onboarding programs, evaluating contribution attempts by developers within
the projects. It was found that a newcomer’s likelihood of having an initial contribution
that is accepted by the project increases by between 8−13% when an onboarding program
exists. However, when investigating the rate of attrition of developers over time and their
participation in an onboarding program, it was found that only 47,2% of coached new-
comers make a secondary contribution, as opposed to 61,2% of developers that did not
participate in such a program. The researchers also identified that dropout rates increase

1Additional information can be found at: https://www.mozilla.org/

16

https://www.mozilla.org/

2.1. Developer Onboarding

when developer participate in an onboarding program. Their conclusions identify that al-
though onboarding programs assist with short-term developer success, they often result in
less long-term contributions.

As a result of these works, it can be stated that social factors which positively effect de-
veloper onboarding consist of having prior contacts within a project [5][22], ensuring that
activity takes place within the project repository such that external perception is one of ac-
tive development [9], answering questions that new developers ask within a development’s
issue or question base [47], and assigning experienced mentors to new developers within a
project [2][13][52]. Negative social modifiers for developer onboarding include long delays
for newcomer support queries [47], and shyness as a result of cultural differences or a lack
of confidence in a developer’s ability to communicate in English [47]. Although onboard-
ing program are usful for short-term developer success, they have been found to lead to a
long-term loss of developer activity [30].

2.1.2 Technical Factors affecting Onboarding

Technical factors influence the ability of a developer to contribute to a project, and identi-
fying the impact and types of technical factors may help increase developer onboarding. A
developer that has the required technical background or knowledge for a particular project is
more likely to contribute to that project. Steinmacher et al. identified that newcomers were
expected to have sufficient technical knowledge to contribute to the project from the view-
point of the open source community [47]. This would sometimes manifest itself as unclear
or non-meaningful messages and forms of communication occurring between new contrib-
utors and the community around a repository. Steinmacher et al.’s findings do not mean that
developers are unwilling to seek out new challenges, however, with Hahn et al. [22] finding
that developers aim to seek variety in the types of projects that they join regarding program-
ming languages. The researchers state that developers are likely to join projects that rely on
a language they have no experience with, but only during the more inexperienced stages of
their developer career.

Pham et al. [41] identified that inexperienced developers view automated testing as a
waste of time and are not likely to align with requirements for open-source projects and
professional development efforts. Although not directly related to developer onboarding,
the onboarding of inexperienced developers often requires an alignment to take place be-
tween developer contributions and project standards, and many projects maintain standards
that require tests to be contributed alongside new feature or enhancements, such as in the
React2 and Node.JS3 projects. This may result in a perception of difficulty to contribute to
a project, resulting in a technical hurdle negatively affecting the chance a developer con-
tributes to the project.

Viviani and Murphy [52] found that high-quality code reviews within organizations
helped onboard developers and help disseminate technical knowledge regarding the project

2Additional information can be found at: https://reactjs.org/docs/how-to-contribute.html#d
evelopment-workflow

3Additional information can be found at: https://github.com/nodejs/node/blob/master/doc/gui
des/contributing/pull-requests.md#the-process-of-making-changes

17

https://reactjs.org/docs/how-to-contribute.html#development-workflow
https://reactjs.org/docs/how-to-contribute.html#development-workflow
https://github.com/nodejs/node/blob/master/doc/guides/contributing/pull-requests.md#the-process-of-making-changes
https://github.com/nodejs/node/blob/master/doc/guides/contributing/pull-requests.md#the-process-of-making-changes

2. RELATED WORK

at a more effective rate than providing technical documentation to newcomers. Instead of
overloading a newcomer with a lot of technical information, issues related to their contri-
butions and an understanding of the codebase was provided in smaller segments when per-
forming code reviews by making remarks about the contributed code. The authors also high-
lighted that newcomer pull requests in both open-source and private closed-source projects
are evaluated differently, often with a greater focus on technical components, positively
impacting the onboarding process.

Upon analysis of these works, it can be stated that technical factors that positively im-
pact newcomer developer onboarding include having the required technical background and
expertise needed for the project [47], a willingness to learn new technical requirements for a
project from the developer standpoint [22], and the existence and dissemination of informa-
tion through code reviews [52]. A negative factor that was identified was the requirement of
contributing automated tests [41], as newcomer developers tend to perceive this as a waste
of time and are thus unwilling to contribute.

2.1.3 Other Work Related to Onboarding

Additional work related to developer onboarding was identified during the literature review
process. Due to their widespread nature, the works are presented in this section as a con-
tained suggestion or finding.

Kosa and Yilmaz [29] studied the idea of employing gamification to onboard new de-
velopers to open source repositories. Gamification relies on the idea of utilizing game based
functionality, such as awarding points and achievements, to developers when they perform
certain actions. Kosa and Yilmaz propose the utilization of a framework that incorporates
the six relevant domains of software development gamification (identifying business objec-
tives, defining target behaviors, identifying the collaborators defined as “players,” receiving
activity identification and looping, adding a fun factor to motivate development, and hav-
ing access to appropriate deployment tools) to encourage developers to remain engaged
throughout a project during initial contribution phases. Despite providing this concept of
onboarding, the authors provide no evidence that their framework or gamification method
could yield additional engagement of initial contributions from new developers.

Wang identified that [54] a technical solution focusing on developer support tools can
help positively impact developer onboarding. Wang identified that tools which supported
the searching of bugs and issues that are similar to what a newcomer is currently experi-
encing, alongside a visual exploration of dependencies within the project’s file network.
Allowing newcomers to do bug search queries provides them with a simple point of entry
for comparative analysis, perhaps providing them with a solution to their problem without
having to directly confront members of the development or maintenance team. The pack-
age overview allows newcomers to see which dependencies may be necessary to develop
or contribute within the project. Wang implemented these features into Tessaract [54] and
found that developers that utilized bug querying were more likely to identify a related bug
at a much faster rate than those without the ability to perform this search, thereby increasing
the chance of making a contribution.

18

2.2. Task Recommendation

Liu et al. [35] developed a recommender system which employs a neural network for
list-based ranking (NNLR). This recommender system aims to identity and suggest reposito-
ries that developers can contribute to based on their preferences. This is done by identifying
nine project features, such as prior social connection based upon past contributions, com-
pany associations between new developer and company maintaining the project, and pro-
gramming language matches between project and developer knowledge, and integrating an
NNLR based upon those features. The authors found that by employing this recommender
system a total of 2.044 onboarding occurrences took place in which developers contributed
six or more commits, outperforming baseline expectations and indicating that recommender
systems can help in newcomer onboarding.

2.2 Task Recommendation

The recommendation of tasks ensures that developers within a (open-source) project can
provide contributions that a project requires, and can help prevent task duplication from
occurring. This results in a greater level of efficiency and progression among the desired
goals for a project. Alongside this, tasks can help onboard new developers by providing
a manner of task suggestion, perhaps in the form of good first issues, that can show them
tasks suitable for their level. To gain insights into the effectiveness of task recommendation,
multiple aspects and types of task recommendation must be studied and investigated. This
section provides an overview of work related to studying the effectiveness of task recom-
mendation. An overview of literature reviewed and presented regarding the topics of task
recommendation is given in Table 2.2.

Gasparic and Janes [18] performed a literature review covering 46 papers that tackled
the topic of task recommendation in 2016 to obtain an overview of suggestions and best
practices. They aimed to identify four key factors, consisting of the performance expecta-
tions and its impact on task recommendation, whether effort had an impact upon suggested
tasks, the social influences of recommendation, and other conditions that surround sugges-
tions. An array of minor factors influencing task recommendation were found, such as pub-
licly available source code examples making recommended tasks easier, a solid software
review process, and the possession of sufficient knowledge for task completion. Among
their most important findings, however, the major identified factors that impact task rec-
ommendation positively and were employed within task recommender tools were found
to be product-related information, such as necessary source code modifications to ensure
task completion and personalized source code component recommendations based upon
personal developer interest (a developer that worked on the networking components before
might enjoy additional networking tasks). The authors identified that additional research is
required before conclusive evidence can be made regarding which information leads to the
most optimal task recommendation schemes. They also mentioned that only a single tool
focused on utilizing testing tasks for recommendations of tasks, meaning tool support for
task recommendation should be created with a focus on testing. The authors also state that
no clear factors for a broader context were identified, indicating that additional research is
needed to identify what creates effective task recommendation within the software develop-

19

2. RELATED WORK

Paper
Y

ear
A

spectStudied
Indicated

U
sefulness

A
nvik

and
M

urphy
[1]

2011
R

ecom
m

enderA
spects

D
eveloperavailability

positively
influences

recom
m

endations
A

nvik
and

M
urphy

[1]
2011

R
ecom

m
enderA

spects
D

eveloperinterestpositively
influences

recom
m

endations
A

nvik
and

M
urphy

[1]
2011

R
ecom

m
enderA

spects
C

odebase
location

positively
influences

recom
m

endations
G

asparic
and

Janes
[18]

2016
B

road
R

ecom
m

enderSystem
s

A
lm

ostno
tools

rely
on

testing
G

asparic
and

Janes
[18]

2016
B

road
R

ecom
m

enderSystem
s

A
dditionalresearch

is
needed

to
identify

relevantaspects
L

ietal.[32]
2016

SocialTask
R

ecom
m

endation
C

oupling
socialactive/inactive

developers
im

proves
activity

M
ao

etal.[37]
2015

C
row

dsourcing
Tasks

Increased
E

fficiency
(50-71%

),Increased
D

iversity
(40-52%

)
Z

hou
etal.[57]

2010
Task

C
entrality

C
entralTasks

have
a

G
reaterC

om
pletion

R
ate

Z
hou

etal.[57]
2010

Task
C

om
plexity

Sim
plerTasks

lead
to

greaterFluency

Table
2.2:

A
n

overview
of

related
w

orks
to

task
recom

m
endation

along
w

ith
their

aspects
studied

and
their

indicated
usefulness

based
upon

the
research

provided.

20

2.2. Task Recommendation

ment context.
Mao et al. [37] studied the overall effectiveness of providing tasks for crowdsourcing to

developers to prevent an overload of information from occurring based upon the perspec-
tive of the developer. The authors argued that two focuses for task recommendation should
include ensuring that the correct developers are assigned to the correct tasks, and that the
developer assigned is reliable such that the project can assume the task will be completed.
The research was completed through study of the Topcoder4 platform and extraction of fea-
tures relevant for a contributor, such payment for completion of task, task description, and
date provided. By providing a recommender system that took these categories into consid-
eration, they aimed to get a greater diversity of tasks shown per developer, and to increase
the overall completion rate of tasks. By implementing such a recommender system versus
a control group which did not have such a system, it was found that that the completion rate
of tasks (stated as efficiency) was increased compared to the control baseline with values
between 50-71%, and increased the diversity of tasks suggested to developers with values of
40-52%. This indicates that task recommendation improves completion rate of tasks when
considering a possibility of paid tasks and when compared to no recommendations being
made.

Li et al. [32] performed an analysis over Chinese development platform JointForce5 with
the goal of identifying whether socially-driven recommender systems would yield good re-
sults. Their study employed a constructed graph network that would recommend software
projects based on the degrees of social contacts they have within each project, and then
recommended tasks be completed based upon projects with the greatest degree found. They
also augmented this method by recommending developers that have stopped actively con-
tributing to the project to be coupled with their social contacts that had taken up tasks, as to
entice inactive developers to participate again. Their findings indicated that these methods
led to an decrease of 16,7% of inactive developers within the projects they sampled upon.

Zhou et al. [57] studied developer fluency and qualifications in the context of tenure at
a project. Although not directly relevant to task recommendation, their findings include a
number of elements relevant to possible task recommendation. Two aspects, namely task
difficulty and task centrality, were found to be important for effective task distribution and
recommendation. Task difficulty revolves around the technology required to complete it
(such as frameworks or programming languages), the domain for which the task must be
done, the number of social connections the developer is familiar with, and the exposure
that a developer has to other stakeholders. Task centrality refers to the system-wide impact
of the contribution and the future impact, measuring how much a task’s completion will
impact the magnitude of the overall system. Their findings indicate that tasks which have a
high factor of system centrality, meaning tasks that have a high impact on the system, lead
to faster completion of tasks and greater developer fluency. They also identified that newer
developers with a smaller degree of fluency need to begin with simpler tasks, and slowly
grow into complex tasks. As a result, task recommendation should focus on providing
important tasks to a repository that are simple.

4Additional information can be found at: https://www.topcoder.com/
5Additional information can be found at: http://www.chinasofti.com/en/internet-it-service/j

ointforce.shtml

21

https://www.topcoder.com/
http://www.chinasofti.com/en/internet-it-service/jointforce.shtml
http://www.chinasofti.com/en/internet-it-service/jointforce.shtml

2. RELATED WORK

Anvik and Murphy [1] studied the usefulness of a bug report repository within a project.
By studying recommenders within Eclipse, Firefox, gcc, Mylyn, and Bugzilla they identi-
fied components related to the assistance of good recommendations, which they validated
through the use of a survey that was sent to developers. The authors identified that by uti-
lizing a developer recommender that recommends a developer that could fix a bug report,
a component recommender which suggests which codebase or product components are re-
lated to a report, and an interest recommender that identifies developers that may enjoy
fixing issues related to the report, triage times for reports are decreased, with an accuracy
of 75% tested upon a sample set. This suggests that a combination of developer interest,
availability, and component identification can help recommend tasks for developers.

Based upon these findings, it can be seen that social factors, such as the number of
known developers within a project, has a significant impact on effective task recommen-
dation [37][32][57]. However, additional research is needed before a conclusive end-all
techniques can be identified to ensure efficient task recommendation [18].

2.3 Broader Software Engineering Topics

When considering the onboarding of developer, broader topics within software engineering
can be discussed to both provide a background in efficient strategies for developer onboard-
ing and to identify best practices. This section aims to provide some literature related to
these topics and to identify whether (new) developers should be aware of these techniques.
Papers related to continuous integration are discussed in Section 2.3.1, the pull-request de-
velopment model and its related works are given in Section 2.3.2, and works related to
developer turnover within software projects is presented in Section 2.3.3. An overview of
all papers in this section is provided in Table 2.3.

2.3.1 Continuous Integration

Continuous integration (CI) refers to the practice of committing smaller pieces of code
to a repository at multiple instances by multiple developers, along with additional tools
such as automated testing and static analysis of the codebase to verify functionality and
best practices. A number of papers investigating the effects of continuous integration upon
(open-source) software development either through direct mining or through tools such as
TravisTorrentTravisTorrent6 are provided in this section.

Vasilescu et al. [50] studied the rate of passing builds within Travis7 continuous integra-
tion in open source Java, Python, and Ruby repositories that existed on the Github platform.
They found that 92,3% of the projects they sampled (n= 223) employed Travis-CI, although
only half of the sampled projects had any associated builds. They also identified that con-
tributions that are given to an open source repository through a pull request are more likely
to fail integration tests than contributions made through direct commits, suggesting that

6Website can be found at: https://travistorrent.testroots.org/
7Read more at: travis-ci.com

22

https://travistorrent.testroots.org/
travis-ci.com

2.3. Broader Software Engineering Topics

the more rigorous pull request review process is likely to result in greater discussion and
dissection of the proposed changes.

Hilton et al. [25] studied the usefulness and overall effectiveness of utilizing continuous
integration. They found, based on an analysis of 34.544 open-source repositories on Github
and a survey of 442 developers, that about 40% of the analyzed repositories utilized contin-
uous integration, with TravisCI being the largest utilized continuous integration provider.
It was also found that projects that are more popular (as gauged by Github star figures)
are more likely to use continuous integration, and that the popularity of a programming
language or language itself does not impact likelihood to utilize continuous integration.
In projects that did not use continuous integration, it was found that this was mostly due
to developer unfamiliarity with continuous integration and potential costs associated with
training developer to utilize it. Regarding the benefits of continuous integration, projects
utilize continuous integration to identify bugs early and reduce concerns about potential
build-breaking issues that could lead to deployment issues. It was also found that contin-
uous integration is not perceived as useful for debugging or identifying issues within the
codebase. Regarding the pull-based development model, it was found that using continuous
integration fastens the medium pull request acceptance rate by 1,6 hours, and helps avoid
breaking the build by not merging problematic pull requests into a project. Yu et al. [55]
found a cost for this improvements, however, and identified that continuous integration in-
creases pull request response time by 16%, since integrators are likely to wait for continuous
integration to complete before evaluating any component of a pull request.

Another paper by Vasilescu et al. [51] studied the productivity impact of continuous
integration on developer productivity and software quality. This was done through a numer-
ical analysis of numerous repositories that utilized continuous integration in at least 25% of
their pull requests. They compared these results to a quality measurement consisting of the
number of bugs per unit time. It was found that each integrator added to a project allows
for 23,6% additional pull requests to be merged per unit of time, while also increasing the
number of pull requests that are rejected. They also found that teams utilizing continuous
integration are more effective at merging pull requests submitted by core developers, and
that the availability of continuous integration is associated with external contributors hav-
ing fewer rejected pull requests. Continuous integration also positively impacts bug reports,
with repositories relying on it seeing a 48% increase in bug reports during development that
lead to eventual fixes. Overall, bug detection and reporting is also increased when utilizing
continuous integration, but it was found this came without a penalty or cost to external soft-
ware quality, since non-integrator contributors do not experience an increasing number of
defects related to compatibility or from local development.

Fitzgerald et al. [14] studied the trends within continuous integration in 2014. The
authors identified that, at a business logic level, continuous integration fulfills the role of
development and deployment, but it does not adequately do so. The authors claim that, de-
spite its usefulness, that continuous integration does not adequately cover changing factors
within the development process. For example, initial tests and development my be heav-
ily focused upon fulfilling technical requirements, but not necessarily on filling end-user
or business requirements. The authors state a better alternative must be found to continu-
ous integration and other DevOps processes that better combines the business requirements,

23

2. RELATED WORK

along with a more precise definition of what should be tested for each feature or branch.
Elazhary et al. [12] studied the effect of having continuous integration validate that

non-functional requirements related to contribution guidelines are met within a commit.
By analyzing 53 projects mined through the GHTorrent [20] tool, they aimed to identify if
projects that use continuous integration would include checks for these contribution guide-
lines, and whether these guidelines matched the rules loaded into the continuous integration.
The authors found that although 72% of projects employing continuous integration tend to
have rules and checks for aspects related to code style and technical information, many
projects do not check or validate contribution procedures, with only 31% mentioning con-
tinuous integration in their guidelines. Examples mentioned 51% of projects that would
allow the re-opening of existing issues and 68% of projects that allowed the re-opening of
pull requests, without mentioning this in their contributing guidelines. They also found that
contributing documentation often did not explain the workflow or integration of continu-
ous integration within a project’s processes. Their overall concluding remarks state that
contributing guidelines appear to be written more to suit existing project maintainers as
opposed to newcomer developers.

Beller et al. [3] studied failure causes of Travis CI build processes in 2.640.825 Java
and Ruby projects on Github and how testing-related tasks are performed within the context
of continuous integration. They achieved this by extracting Travis projects from Github
projects, and employing the SHA1 hash of a git commit to obtain relevant Travis infor-
mation. Their findings indicate that, with a utilization rate of Travis CI among Github
repositories of 31,1%, failing tests are the single dominant reason for builds failing within
continuous integration. They also found that many projects ignore an occasional failing
build, but do not tolerate successive failing builds over time.

The given literature indicates that continuous integration leads to additional pull request
discussions and dissection [50], and increases overall code quality. However, it was also
found that this comes at a cost to developer efficiency [51], slows down pull request response
times [55], may not be written sufficiently outlined in newcomer documentation [12], and
may not be sufficient to fulfill all business requirements related to testing and static analysis
within an organization [14]. It can also be stated that testing is the main cause for failure
within continuous integration [3].

2.3.2 Pull-Based Development Model

The pull-based development model requires developers within projects to make the required
changes, and then allow them to be reviewed in what is known as a pull request (PR).
Literature related to both the efficiency and some best practices are given within this section.

Gousious et al. studied the integrator perspective of the pull-based development model [21].
Integrators are responsible for managing and integrating contributions from non-integrator
participants. Their investigations aimed to identify how integrators utilize code reviews to
merge contributions, specifically aiming to identify the criteria integrators utilize to eval-
uate the quality and acceptance decision of a contribution. Multiple findings were found,
including that integrators prefer having metadata about merged pull requests, and 75% of
the surveyed integrators (n = 749) indicate they review all pull requests. They also found

24

2.3. Broader Software Engineering Topics

that integrators are most likely to merge pull request contributions if the code quality is
high and conforms to the agreed project style, include tests, and adhere to the project archi-
tecture. Contributions are prioritized by cruciality (meaning bug fixes are more important
than new features), urgency, and size. Integrators do state, however, that challenges include
maintaining the quality due to the number of contributions, and motivating contributors
to keep contributing to the project. Integrators also state issues reaching consensus about
decisions made in pull requests and communicating these decisions to contributors.

Gousious et al. also studied the contributor’s perspective of the pull-based development
model [19]. Contributors are users that contribute new code to the codebase of an open
source repository. The research aimed to study top-contributors and determine what mo-
tivated their contributions to pull-based open source repositories, how these contributors
prepared for a contribution, and what they perceived as challenges related to the pull-based
software development model. Many contributors stated that they contribute to projects
due personal interest or them utilizing said project, but also due to greater employ-ability
through the enrichment of their curriculum vitae (CV). The latter motivation has become
known as career concern [19]. Contributors stated they evaluate their contributions based
on compliance (to what degree does a contribution meet the requirements of the project
defined in, for example, a contribution guidelines document), code and commit quality, and
how well tested their contributions are. Top contributors noted that many challenges they
face from the pull-based development model include difficulty complying with the many
different requirements between projects, and not being able to keep up with the social re-
quirement for a project (such as communication form and what to communicate about).
They also state many contributors struggle to understand the code base, and that new con-
tributors are appreciative of well-defined guidelines regarding contribution and appreciate
responsive projects, ensuring that their submissions are active.

Yu et al. [55] studied the factors which affect pull request response time and latency
in the completion of the handling of pull requests in pull-based development models. This
research analyzed 103.284 pull requests for this purpose. They identified that factors caus-
ing the largest direct delay in pull request responsiveness include the amount of discussion
related to the pull request (with more discussion causing a greater delay in the handling
of the pull request), a greater number of total commits in a pull request having a negative
impact on response time, and the total lines of code impacting the time taken to evaluate a
pull request. It was also found that pull requests making changes to tests or core compo-
nents of a repository yield higher response latency. Yu et al. [55] also identified numerous
social and non-technical factors affecting pull request response time, including the social
connections that a contributor has to the open source project. If a contributor engages in
social activity with maintainers or integrators of a project, their pull request is likely to have
a smaller response time and be dealt with in a more rapid fashion. They also identified
that integrators with a larger workload (both related to the repository itself and their own
personal responsibilities as an integrator) negatively impacts pull request response time.

Saito et al. [44] tried to identify what developer experiences were with the Git-tools
related to pull-based software development. The authors found that, within a survey of
1552 developers, the majority found the pull-based development model to be functional and
felt like they had a good grasp of the Git commands, but many stated they struggle with

25

2. RELATED WORK

the act of rebasing8, possibly pointing to additional resources that could be created to allow
developers to practice rebasing and to obtain a better grasp of it.

Based upon this literature, it can be stated that the pull-based development model man-
ages to derive contributions based upon personal interest [19] and to enrich their curriculum
vitae as to appear more attractive to potential partners and employers [19], but induces chal-
lenges for contributors related the differing requirements per project for contributions [19]
and being unable to keep-up with changing social requirements [19]. Integrators indicate
that 75% of them look at all submitted pull requests to a project [21] and that high code
quality resulted in faster acceptances and merging of pull requests [21], whereas discussion
surrounding a pull request or a greater number of commits within a pull request has a nega-
tive impact on response time [55]. It was also identified that developers tend to have a good
overview of Git functionality, but struggle with the rebase command [44].

2.3.3 Developer Turnover

Developer turnover refers to the occurrence in which existing developers within a project
decide to leave the project or become inactive. The knowledge and experience they leave
behind may be of importance to the project, and methods of ensuring no single developer
takes too much knowledge with them are important. This section provides literature on
developer turnover and its consequences.

Lin et al. [33] studied the impact of developer turnover within large open source soft-
ware projects and the reason as to why this occurred. The authors made an analysis of five
large open-source software repositories and projects, analyzing over 1.5 million commits
and, after filtering, more than 8.000 contributors. They found that developers that are rela-
tively new to the projects are less likely or willing to continue contributing to the project as
opposed to earlier developers. They also found that developers who contribute to both their
own files and files created by others are more likely to stay within a project as developers
who focus exclusively on either their own contributions and files or other’s files. Other fac-
tors positively influencing developer continuation and onboarding include maintaining files
as opposed to only creating new files, and that developers who mainly contribute code (as
opposed to documentation or testing) also have higher survival rates. The authors suggest
balancing collaboration with individualism, ensuring new developers also perform mainte-
nance tasks on existing parts of the codebase, and that some coding tasks should be assigned
to contributors that focus mostly on documentation.

Foucault et al. [16] studied the turnover in open-source software and the impact of
this upon the project. By employing metrics related to developer turnover, such as exter-
nal/internal turnover & contributors that stayed between multiple measurements, the authors
constructed a dataset and identified numerous aspects of turnover at both a developer and
project level. Findings included that contributors are active and remain active within a
project are developers that are paid by a company to use the project or develop that project
in most cases or act as consultants, with some outlying developers contributing without
further financial motives or reasoning. The impact of developer turnover upon software

8Additional information can be found in the Git documentation: https://git-scm.com/docs/git-reb
ase

26

https://git-scm.com/docs/git-rebase
https://git-scm.com/docs/git-rebase

2.3. Broader Software Engineering Topics

quality was found to exist, in which developer turnover negatively impacted the density of
bug fixed. Projects in which existing contributors left the project would see slower and less
bug fixes.

Cortazar et al. [26] studied the knowledge loss related to software development that
occurs during developer turnover. When a (senior) developer leaves a software project a
possible loss of knowledge can occur that can negatively impact the project. By select-
ing four open-source software projects and their associated repositories (Evolution, GIMP,
Evince, and Nautilus), the authors studied the orphaning of lines of code within existing
repositories. The authors defined orphaning as lines of code whose original contributor or
developer had since left or stopped actively contributing to the project. It was found that,
when a lead developer leaves, significant parts of the codebase become orphaned, thus neg-
atively impacting development as the knowledge about these lines of code is gone. They
also found that in the case of Evince, an effort was undertaken to un-orphan major lines
of code, which worked, until another developer left, once again orphaning large parts of
the code. The overall conclusion states that code orphaning can lead to productivity losses
among developers, with possible solutions lying in a maintenance team which specifically
aims to address and simplify difficult or orphaned code.

Based upon these findings, it can be stated that developer turnover occurs due to new
developers being unwilling to integrate within the project [33], and due to certain developer
making mostly non-code contributions and not being as heavily invested in the project as
those that do contribute source code [33]. It was also found that paid developers from com-
panies tend to remain active in open-source repositories longer than volunteers [16]. When
considering the effects of developer turnover, it was identified in the literature given that de-
veloper turnover impacts the rate at which bugs are fixed [16], lowers software quality [16],
and slows overall development down due to a loss of knowledge [26] and code that becomes
orphaned.

27

2. RELATED WORK

Paper
Y

ear
A

spectStudied
Findings

B
elleretal.[3]

2017
C

ontinuous
Integration

Tests
are

the
m

ain
cause

forbuild
failure.

B
elleretal.[3]

2017
C

ontinuous
Integration

M
ostprojects

don’tm
ind

one-tim
e

build
failure.

E
lazhary

etal.[12]
2019

C
ontinuous

Integration
72%

ofprojects
using

C
Icheck

static
analysis

E
lazhary

etal.[12]
2019

C
ontinuous

Integration
N

otclearfrom
docum

entation
how

C
Ifits

into
projectprocesses

Fitzgerald
etal.[14]

2014
C

ontinuous
Integration

Tests
do

notm
atch

business
requirem

ents
overtim

e
G

ousious
etal.[21]

2014
Pull-B

ased
D

evelopm
ent

H
igh

code
quality

increases
PR

m
erge

likelihood
G

ousious
etal.[21]

2014
Pull-B

ased
D

evelopm
ent

75%
ofintegrators

view
allPR

s
G

ousious
etal.[21]

2014
Pull-B

ased
D

evelopm
ent

Integrators
prioritize

bug
fixes

overnew
features

forPR
s

G
ousious

etal.[19]
2016

Pull-B
ased

D
evelopm

ent
C

V
enrichm

entdriving
factorforcontributors

G
ousious

etal.[19]
2016

Pull-B
ased

D
evelopm

ent
C

ontributors
evaluate

com
pliance,code

quality,tests
H

ilton
etal.[25]

2016
C

ontinuous
Integration

40%
ofrepositories

used
continuous

integration
H

ilton
etal.[25]

2016
C

ontinuous
Integration

N
um

berofStars
increases

C
Iadoption

H
ilton

etal.[25]
2016

C
ontinuous

Integration
D

evelopertraining/costs
largestreason

to
avoid

C
I

Saito
etal.[44]

2016
Pull-B

ased
D

evelopm
ent

D
evelopers

struggle
w

ith
rebasing

V
asilescu

etal.[50]
2014

C
ontinuous

Integration
92,3%

ofprojects
use

Travis-C
I

V
asilescu

etal.[50]
2014

C
ontinuous

Integration
Pull-R

equestcom
m

its
m

ore
likely

to
failintegration

tests
V

asilescu
etal.[51]

2015
C

ontinuous
Integration

23,6%
pullrequestincrease

perintegrator
V

asilescu
etal.[51]

2015
C

ontinuous
Integration

Positive
im

pacton
num

berofbug
reports

Y
u

etal.[55]
2015

C
ontinuous

Integration
C

Iincreases
pullrequestw

aiting
tim

e
by

16%
Y

u
etal.[55]

2015
Pull-B

ased
D

evelopm
ent

M
ore

discussion
/com

m
its

/lines
ofcode

slow
response

tim
e

Table
2.3:

A
n

overview
of

related
w

orks
to

broader
softw

are
engineering

topics,the
year

in
w

hich
they

w
ere

published,and
additional

inform
ation

perpaper.

28

Chapter 3

Methodology

The methodology section aims to provide an overview of the procedures utilized to perform
the research and obtain the results as given in Chapter 4. By outlining the decision made
for the research process, and by providing an outline of the tools developed and utilized,
the data obtained can be understood and the analysis can be justified. An overview of
the procedures and methodology employed for data collection is given in Section 3.1, an
overview of the analysis’ procedures and methods is given in Section 3.2, and an explanation
of the questionnaires that were given to developers is given in Section 3.3. A graphical
representation of the procedure outlined in this chapter is given in Section 3.4.

3.1 Data Collection

The collection of data for this research depends significantly on the ability to obtain data
from Github’s V3 application programming interface (API)1. Since the focus of this re-
search lies upon identifying the usefulness of labelling good first issues upon Github, a
procedure was designed implementing components provided by the API such that data re-
garding Github issues and repositories could be obtained. Naturally, a selection of relevant
repositories had to be made due to the inability to access all existing repositories on Github.

To guide the data collection process, the selection of repositories is outlined in Sec-
tion 3.1.1, the collection of data related to the first commits of users within repositories is
outlined in Section 3.1.2, the collection of issues labelled as good first issues within a repos-
itory is outlined in Section 3.1.3, and an outline of steps taken to streamline and simplify
the data collection process is given in Section 3.1.4.

3.1.1 Selection of Repositories

Due to the limitations caused by the Github V3 API, such as a rate limit preventing a large
number of queries2 and the inability to access repositories that are not publicly listed or

1More information can be found at: https://developer.github.com/v3/
2Additional information can be found at: https://developer.github.com/v3/#rate-limiting

29

https://developer.github.com/v3/
https://developer.github.com/v3/#rate-limiting

3. METHODOLOGY

accessible by the investigating entity3, a selection of repositories for data collection and
manual analysis had to be made. The goal of the selection of these repositories was to get
a wide and diverse set of project disciplines covered to account for possible differences
within domains and to increase cross-dimensional validity. The sample size also had to be
representative and feature projects of multiple sizes (small projects with <1.000 commits
and larger projects with ≥ 1.000 commits), differing repository domains (such as graphics,
web development, or machine learning), and projects that are maintained both by a private
community (meaning the development is not steered by a large company, such as Microsoft
or Facebook) and a company-steered project.

To accommodate the large range of factors influencing the selection of repositories, it
was decided to utilize a combination of accidental sampling based on suggestions given
by Github’s trending repositories category, and critical case sampling by utilizing Stack-
Overflow’s4 developer surveys. Github’s trending repositories page, as shown in Figure 3.1,
provides an overview each day with repositories that see increased activity from the com-
munity. The method utilized is not public5, but this method provides a somewhat random
sampling of active repositories that ensures a diversification of domains covered by the re-
search due to its random nature. The data from StackOverflow provides a survey of projects
that developers actively use. Due to the high engagement rate of StackOverflow and the
broad diversity within its visitors [28], StackOverflow’s annual developer survey provides
a wide overview of projects to sample from, ensuring a greater level of representation for
different domains and project types. Additional repositories were sampled from the latest
annual survey available at the time of performing this research, which was the 2019 edi-
tion6. These projects were added as an addition to those sampled from Github’s trending
page.

As a result of the selection of repositories, a total of 105 repositories were identified for
analysis7, of which 46 repositories were found to utilize good first issues in some manner
or form, including tags that were not called “good first issue” but had a description that
matched that of a task being labelled as good for newcomers or suitable for inexperienced
developers8. These 46 repositories were then utilized for data mining as outlined in Section
3.1.2 and Section 3.1.3.

3Additional information can be found at: https://developer.github.com/v3/repos/#list-reposit
ories-for-the-authenticated-user

4Website can be found at: https://stackoverflow.com/
5Confirmation can be found at: https://github.community/t5/How-to-use-Git-and-GitHub/Ho

w-github-detect-trending-repositories/m-p/26464/highlight/true#M7517
6Survey can be found at: https://insights.stackoverflow.com/survey/2019
7A list of all sampled repositories can be found at: https://github.com/dalderliesten/Good-First

-Issue/blob/master/Sample%20Set/Sampled-Repositories.csv
8These alternative labels are listed in the analysis list, which can be found at: https:

//github.com/dalderliesten/Good-First-Issue/blob/master/Sample%20Set/Repositories-w
ith-Good-First-Issues.csv

30

https://developer.github.com/v3/repos/#list-repositories-for-the-authenticated-user
https://developer.github.com/v3/repos/#list-repositories-for-the-authenticated-user
https://stackoverflow.com/
https://github.community/t5/How-to-use-Git-and-GitHub/How-github-detect-trending-repositories/m-p/26464/highlight/true#M7517
https://github.community/t5/How-to-use-Git-and-GitHub/How-github-detect-trending-repositories/m-p/26464/highlight/true#M7517
https://insights.stackoverflow.com/survey/2019
https://github.com/dalderliesten/Good-First-Issue/blob/master/Sample%20Set/Sampled-Repositories.csv
https://github.com/dalderliesten/Good-First-Issue/blob/master/Sample%20Set/Sampled-Repositories.csv
https://github.com/dalderliesten/Good-First-Issue/blob/master/Sample%20Set/Repositories-with-Good-First-Issues.csv
https://github.com/dalderliesten/Good-First-Issue/blob/master/Sample%20Set/Repositories-with-Good-First-Issues.csv
https://github.com/dalderliesten/Good-First-Issue/blob/master/Sample%20Set/Repositories-with-Good-First-Issues.csv

3.1. Data Collection

Figure 3.1: An example of the trending repositories page on Github.

3.1.2 Collecting First Commit Data

To collect data related to the first commit of each user, an automated script was written
which employs the Github application programming interface (API) to obtain all commits
for the indicated repository. First, the given repositories’ Git location must be provided,
which can be done within a central method in the application. Once this location has been
provided, all commits from the repository are queried and obtained from the API. The
order in which the commits are obtained is chronological, meaning the first element in the
commit list is the earliest commit, and the last element in the commit list is the latest or
final commit in the repository. These commits are then stored within a list, after which an
iterator is created such that each commit can be inspected manually.

A separate list is then created for the tracking of the unique users within the repository,
which is initially empty. For each of the commits, the author name is inspected and, if the
author name does not yet exist within the aforementioned list, the name is stored within the
unique user list and the commit found is put within a separate “first commit” list structure.
Once all commits have been iterated upon, the list with first commits per user is written to

31

3. METHODOLOGY

a comma separated value (CSV) file for persistent storage, and the list of found commits is
returned to the application’s caller.

A pseudocode representation of the procedure for the collection of first commit data is
provided in Algorithm 1.

Algorithm 1 Obtaining First Commits per User given a Repository given repository
f irst commits← /0

users f ound← /0

all commits← given repository.get commits()

for all commit in all commits do
if commit.author not in users found then

users f ound← commit.author
f irst commits← commit

end if
end for

return first commits

3.1.3 Collecting Good First Issue Tasks

To obtain the tasks that had been labelled as a good first issue within a repository, another
automated script was written that very closely resembles the procedure for the first commit
data outlined in Section 3.1.2. After the repository Git location has been given, a tag may
be given for a good first issue. This is done to allow for flexibility in the type of tag which
must be obtained, since not all repositories sampled utilize good first issue labels but utilize
another label while intending to indicate the same type of task. An example of such a label
could be ASP.NET’s “good first contribution” label.

Once these parameters have been given to the script, a call is made to the Github API
to provide all issues for a repository, and then utilizes the API’s labels parameter9 to obtain
only the issues that are labelled with the user given label. Since labels within the Github
API are their own objects, a conversion takes place which validates the existence of the
label within the repository, and if so, converts it to the appropriate object. Then, using this
label object, the call is made and the list of issues is returned. This list is then stored in a
CSV file for persistent storage, and the list of found issues is returned to the caller.

A pseudocode representation of the procedure for the collection of first commit data is
provided in Algorithm 2.

9Additional information can be found at: developer.github.com/v3/issues/#list-repository-i
ssues

32

developer.github.com/v3/issues/#list-repository-issues
developer.github.com/v3/issues/#list-repository-issues

3.1. Data Collection

Algorithm 2 Obtaining Good First Issues for the Repository given repository and the de-
sired issue label given label

querying label← given label string converted to a label object

f ound issues← given repository.get issues()

for all issue in found issues do
if querying label not in issue.labels then

f ound issues← found issues - issue
end if

end for

return found issues

Figure 3.2: The central entry point, showing the API key, repository location, and desired
label to filter upon.

3.1.4 Application Entry Point

To streamline the data collection procedure, and to provide additional flexibility regarding
the labels as outlined in Section 3.1.3, a central entry point was made that brings all scripts
together as shown in Figure 3.2. This entry point allows for the definition of an API key,
the desired good first issue label, and makes all calls. This prevents multiple scripts from
having to be executed to obtain the data and for the code to have to be edited internally to
support additional labels. The lists are also returned to allow for possible extension in future
work.

33

3. METHODOLOGY

Figure 3.3: The CSV file containing numerical data, sample status, and the number of
issues, number of good first issues, number of sampled issues, and number of sampled
commits.

3.2 Analysis of Data

To analyze the obtained data, procedures and analysis templates had to be designed such
that an identical analysis process was carried out across all repositories and projects found.
The analysis component focused on identifying aspects related to issues and commits that
could help differentiate between the type of work being done and the overall usefulness
of these labels in practice. To help guide the analysis and to explain the procedure as to
allow for reproducability, the procedure for obtaining numerical data for each repository is
outlined in Section 3.2.1, the analysis for good first issues obtained through data collection
is given in Section 3.2.2, and the procedure for the analysis of the first commits of user in a
repository is provided in Section 3.2.3.

3.2.1 Obtaining Numerical Repository Data

Despite having automatically obtained the first commits per user and good first issues from
repositories as outlined in Section 3.1, numerical data related to research questions 1 and 2
had to be analyzed manually. Verification of the CSV files had to be done for both commits
and issues, since some repositories contained characters or descriptions that would add
spaces and adding blank lines, possibly bloating the values of issues and commits. Once
these files were verified, the total number of good first issues were obtained by inspecting
the associated CSV file, whereas the total number of issues were obtained by navigating to
the Github repository and inspecting the total number of issues. All this information was
stored in a separate CSV file which served as a master list for the sampled repositories,
as shown in Figure 3.3. Additionally, the number of sampled issues and sampled commits
were noted.

Since the analysis work was manual, and due to the fact that some repositories have
tens of thousands of issues and potentially more commits, the decision was made to sample
at most 30 issues and 30 commits per sampled repository. The value of 30 was chosen as
an arbitrary value, but mostly due to it being considered manageable to manually inspect
and analyze that number of issues and commits per project. If a certain project had less
than or exactly 30 issues or commits, this was noted in the file as to provide an overview
of the spread and size of a particular project. Sampling of issues and commits was done by
generating 30 random values within a random number generator, and analyzing issues or
commits on the indicated rows.

34

3.2. Analysis of Data

Column Name Description

Issue Gives the name or title of the issue.
URL Contains the hyperlink to the issue.
Associated PR Contains a hyperlink to the associated PR or com-

mit for this issue.
Taken by New De-
veloper?

Value of 1 if taken by a new developer, 0 otherwise.

Bug Fix The issue is related to a mistake or error that needs
to be fixed.

Enhancing an Ex-
isting Feature

The issue wants an existing feature to be extended
with new functionality.

New Feature The issue requires an entirely new functionality to
be created.

Documentation The issue is related to a change in the documenta-
tion.

Testing The issue is related to the creation of changing of
tests.

Refactoring This issue requires changes to be made that opti-
mize or increase readability.

Other Information Stores additional tags or relevant information if re-
quired.

Table 3.1: An overview of the aspects analyzed for each issue as presented in the CSV
template for issue analysis.

3.2.2 Analyzing Good First Issues

To analyze the good first issues that existed within a repository, a standardized analysis
template was created which tracked a number of aspects related to the issue’s task regarding
software development and utilization within the project. This template, taking the form of a
CSV formatted file, allowed for manual analysis on at most 30 good first issues per project
as outlined in Section 3.2.1. The template tracked 11 aspects of each issue which were
utilized to provide an overview of the issue and its intentions. These aspects are given and
described in Table 3.1.

Each issue was manually inspected and the issue name and hyperlink (URL) to the
Github location of that issue were stored as to provide context to the description of the
issue and to make clearer what the issue intended. The hyperlink can be utilized to verify
or validate the claims made for each issue as to increase reproducability. If the issue was
implemented with an associated pull request (PR), a link was given to the pull request to
check whether the implementation provided matched the issue’s description. Additionally,
by inspecting the pull request associated with a good first issue it could be validated whether

35

3. METHODOLOGY

the issue was implemented and taken by a new developer.
To classify each issue, a taxonomy was created which could be utilized to identify the

types of tasks that were being suggested as good first issues. This taxonomy focused on the
type of contribution that was expected of a newcomer as opposed to the domain in which the
contribution was requested. The tracked aspects within the taxonomy consisted of bug fixes,
enhancements to existing features, new features, documentation related changes, test related
contributions, and refactoring. Each classification is described in greater detail below.

Bug Fix: A bug fix was defined as being an issue which requested an error or unexpected
behavior to be solved by a newcomer. A bug fix can be identified by seeing an issue or com-
mit focusing on unintended behavior, such as results not matching the expected outcome or
a program crashing during execution.

Enhancement: Enhancements to existing features are seen as (small) extensions to exist-
ing behavior that would allow a project to perform additional tasks within existing function-
alities, such as allowing existing export functionality to support a new file type or adding
additional user interface elements to an already existing user interface.

New Feature: A new feature is defined as an issue requesting a newcomer to add new
functionality, such as adding an ability to perform exports or creating entirely new func-
tionality as opposed to merely extending it. Issues requesting and commits adding a new
features distinguish themselves by focusing on the new behavior added or by stating that
the created functionality did not exist in any form before the contribution.

Documentation: A documentation related change requires a newcomer to make adjust-
ments or enhancements to documentation, such as project documentation or comments
within the codebase. Documentation related changes can include type-error fixes, com-
ment changes for clarification or to reflect new behavior, or textual contributions without
new content in the codebase.

Testing: A test or testing related change required new tests to be created by a developer
or modifying existing tests to ensure they are testing correct behavior. Issues and commits
related to testing can usually be identified by identifying which location the modifications
have been made in the codebase. The majority of testing related contributions will be put
within a separate test directory or have the word testing within the file name.

Refactoring: A refactoring related issue or commit requires a new developer to change
an existing part of the codebase with a focus on making it simpler or easier to utilize, but
without extending its existing features or changing behavior. An example of this could be a
class which performs sorting in multiple methods. Such a class could be modified to have a
single sort method which is called in each other method in the class. The behavior or fea-
tures provided is not changed, but a modification to make it easier to maintain is contributed.

36

3.3. Questioning of Individuals

In addition to the taxonomy given above, a field for additional information was given
per issue, allowing notes to be made that might be relevant to an issue. Some issue might
not have an associated pull request due to the rejection of what is requested in an issue by
project maintainers. This type of information could then be tracked within this field. Based
on this template, each sampled issue as outlined in Section 3.2.1 was manually inspected
and the template was filled in for each issue.

3.2.3 Analyzing First Commits

To analyze the type of tasks new contributors made within their first commits for a project,
another CSV template was made which features additional relevant information related to a
commit. The decision was made to focus on the pull request associated with the first commit
as opposed to only the first commit such that additional context and relevant information of
a first contribution could be understood. If a commit had no pull request, then the commit
information was used for analysis. The template employed the taxonomy introduced in
Section 3.2.2 and contains additional fields as shown in Table 3.2.

Fields for the title of the first commit pull request and Github hyperlink such that a
human readable description and location could reveal the contribution of pull request and
first commit. Additionally, an inspection was done to validate whether or not the pull request
and associated first commit were related to a good first issue. Although good first issues
were tracked within the issue analysis stage, due to sampling it is possible that a good first
issue is not analyzed but a commit associated to that issue is. Hence, this field inspected to
account for possible sampling related mismatches.

The experience of the developer at the time of first contribution was also analyzed.
Perhaps it could be seen that a developer’s experience had an impact upon the type of first
contribution they would make. To categorize the developers analyzed, three categories were
created for which each developer was put into. These categories are presented in Table 3.3.
First, active experience was defined as a developer having made at least 10 commits within
a year. With that definitions in mind, Novice developers were developers who had less than
one year of active experience at the time of their first contribution. Developers with between
one and two years of active experience were labelled as intermediate10. Developers with
more active experience were marked as experienced developers.

Beyond these fields, the taxonomy employed matches exactly with the taxonomy intro-
duced in Section 3.2.2. Each commit and developer profile was manually inspected accord-
ingly.

3.3 Questioning of Individuals

In addition to the obtaining of repository data and its analysis, and with the goal of answer-
ing research question 6 as outlined in Section 1.3, a questionnaire was created and sent out
to developers that had been found to contribute with the aim of identifying non-functional

10During data mining and analysis, intermediate developers were classified as mediors. This was changed
later for grammar related purposes, but the data was left unedited.

37

3. METHODOLOGY

Column Name Description

First Commit Pull
Request

Name of the pull request or commit.

Related to a Good-
First-Issue?

If the commit/PR is related to a good first issue, a
value of 1 is placed here. Otherwise, 0.

Developer Experi-
ence

Contains the experience level of the commit’s de-
veloper.

Link to PR Contains a hyperlink to the associated PR or com-
mit for this issue.

Bug Fix The issue is related to a mistake or error that needs
to be fixed.

Enhancing an Ex-
isting Feature

The issue wants an existing feature to be extended
with new functionality.

New Feature The issue requires an entirely new functionality to
be created.

Documentation The issue is related to a change in the documenta-
tion.

Testing The issue is related to the creation of changing of
tests.

Refactoring This issue requires changes to be made that opti-
mize or increase readability.

Other Information Stores additional tags or relevant information if re-
quired.

Table 3.2: An overview of the aspects analyzed for each commit as presented in the CSV
template for commit analysis.

Category Level of Experience

Novice <1 year of active experience
Intermediate 1 - 2 years of active experience
Experienced >2 years of experience

Table 3.3: An overview of the labels utilized to label developer experience and the require-
ments for each category.

38

3.3. Questioning of Individuals

and non-numerical aspects related to good first issues. The method in which the sample
population was selected is outlined in Section 3.3.1, and details related to the given ques-
tionnaire is provided in Section 3.3.2. A note about the ethical validity of the questionnaire
is given in Section 3.3.3.

3.3.1 Sample Selection

To be selected as a possible participant to answer the questionnaire, a developer had to be
part of the sampling that was done as outlined in Section 3.2.1. If a developer was part
of the 30 sampled commits (since issues themselves do not always have assigned develop-
ers), their Github profile would be inspected. If the profile contained a publicly accessible
and presented e-mail address as to respect their privacy and demands, the developer was
included in the sample set and received an invitation to participate in the survey. No further
contact took place, nor was any additional information utilized to identify developers. Once
a developer was selected to partake in the survey, they were categorized into positive and
negative groups. Developers that had made a first commit in a repository that was related
to a good first issue were put into the positive group, and developers that had submitted a
contribution unrelated to a good first issue were placed within the negative group.

3.3.2 Questionnaire

The questionnaire that was sent to sampled developers aimed to identify developer thoughts
regarding good first issues and the newcomer developer experience. Since developers were
split into two groups as outlined in Section 3.3.1, two different versions of the survey
were created. The differences between the questions only existed in question 1, which
had slightly different wording and an additional sub-question within the negative variant.
The questionnaire was hosted upon the SurveyMonkey platform11.

Question 1 (Positive Variant)
You were identified to have made at least one first contribution to an (open
source) project that was related to a task/issue labelled as a good first issue.
Did you make this contribution due to this label, or in part as a reference from
this label? Can you describe how you identify your first possible contribution
when joining a project?

Question 1a (Negative Variant)
Your first contribution to the indicated (open source) project was not related to
a task/issue labelled as a good first issue. Why did you not employ a task/issue
assigned as a good first issue for your first contribution? Can you describe how
you identify your first possible contribution when joining a project?

Question 1b (Negative Variant)
Do you prefer or try to find issues/tasks labelled as good first issues when you

11Additional information can be found at: surveymonkey.com

39

surveymonkey.com

3. METHODOLOGY

want to make an initial contribution to a project/repository?
Answer Options: Yes, No

The first question in both variants aims to identify whether the developer felt that the
good first issue label assisted them in making their contribution, and whether they prefer
having such indicators when contributing to a project or repository. For the negative variant,
the focus was shifted to understanding whether a developer would have preferred to have
completed a good first issue and whether they would have taken a good first issue if it was
available.

Question 2a (Both Variants)
You were identified to have made at least one first contribution to an (open
source) project that was related to a task/issue labelled as a good first issue.
Did you make this contribution due to this label, or in part as a reference from
this label? Can you describe how you identify your first possible contribution
when joining a project?
Answer Options: Not Useful, Somewhat Useful, Very Useful

Question 2b (Both Variants)
Why do you believe that labelling tasks as suitable for newcomers is as you
indicated above?

The second question aims to identify how developers feel towards the idea of labelling
tasks as good first issues. By obtaining this information, it can be seen whether or not
investing time as a project or repository into labelling good first issues is worth it from a de-
veloper standpoint, and perhaps identify weaknesses in employing a technique of directing
newcomers to such tasks.

Question 3 (Both Variants)
What types of tasks do you prefer doing when making a first contribution to a
project or software repository? Why do you prefer these types of tasks?

Although numerical data regarding developer practices and habits are analyzed as out-
lined in Section 3.2.3, it can also be considered important to investigate the developer stand-
point. It may be that developers indicate that tasks that they find useful when making an
initial contribution to a project do not align with the suggested tasks given by repository
maintainers. This question aims to identify such possible misalignment.

Question 4 (Both Variants)
How would you inform developers about tasks/issues that are good for new-
comers if you were a maintainer of a project?

Perhaps directing newcomers to issues on Github is not a preferred method, and perhaps
this is leading to a loss in effectiveness of the labelling of good first issues. To identify if
this is the case, and to investigate what the preferred method of directed onboarding for
newcomers would be, this question aims to allow a developer to indicate what they would
do.

40

3.4. Overview of Procedures

Question 5 (Both Variants)
If you wish to be informed of the completion of the thesis report and access it,
you may leave your e-mail address here. We will send you a notification once
research is completed. Please note that this is optional and you may skip this
question.

To provide a developer with the opportunity to be informed of the outcome of the sur-
vey and research, a respondent may voluntarily leave their e-mail address. They will be
informed after termination of the thesis work and upon publication of the thesis. All data
related to this question was destroyed upon completion of the research.

3.3.3 Guaranteeing Ethical Practices

To ensure ethical procedures and standards were followed and adhered to, Delft University
of Technology’s human research committee12 was informed of the intention to perform this
survey and approved the questionnaire under request 1119. The approval was given on 1
May 2020. The committee aimed to ensure that participants in the survey would not violate
essential rights of participants as dictated by Delft University of Technology’s regulations
on human trials [39].

3.4 Overview of Procedures

To provide additional clarity, a visual representation of the procedure as outlined in Sections
3.1, 3.2, and 3.3 is provided in Figure 3.4.

12More information can be found at: tudelft.nl/en/about-tu-delft/strategy/integrity-polic
y/human-research-ethics/

41

tudelft.nl/en/about-tu-delft/strategy/integrity-policy/human-research-ethics/
tudelft.nl/en/about-tu-delft/strategy/integrity-policy/human-research-ethics/

3. METHODOLOGY

Figure 3.4: A visual flowchart overview of the procedure as outlined in the methodology..

42

Chapter 4

Results and Analysis

This chapter provides an overview of the results that were found after both numerical and
manual analysis of the data and an analysis of these findings. The results section also aims
to provide results based upon the classifications utilized and defined in Chapter 3. The nu-
merical results of the data mining process are provided in Section 4.1, numerical aspects
of the analysis are presented in Section 4.2, a comparison between the classification differ-
ences is provided in Section 4.3 and classification combinations and their associated trends
are discussed in Section 4.4. Additionally, results based on the effects of developer experi-
ence are presented in Section 4.5, and the results and analysis of the survey are presented in
Section 4.6. Finally, an analysis of the overall effectiveness of good first issue labelling is
discussed in Section 4.7.

4.1 Numerical Results of Data Mining & Sampling

Based upon the sampled repositories outlined in Section 3.1, a total of 46 repositories con-
tained issues labelled as good first issues1 out of a total of 105 repositories sampled2, there-
fore suggesting that 43% of repositories utilize good first issues in some form. From these
repositories, a total of 301.380 issues were available for sampling, of which 4.792 were
found to have the label good first issue or an equivalent label3, meaning the representation
of good first issues within the total body of issues is 1,5%. An overview of this data is
provided in Table 4.1.

4.2 Numerical Results of Analysis

This section provides an overview and insights into the findings of the analysis from a
numerical perspective. The findings of the sampled issues are given in Section 4.2.1, and

1A list of repositories with good first issues can be found at: https://github.com/dalderliesten/Goo
d-First-Issue/blob/master/Sample%20Set/Repositories-with-Good-First-Issues.csv

2A list of the sampled repositories can be found at: https://github.com/dalderliesten/Good-First
-Issue/blob/master/Sample%20Set/Sampled-Repositories.csv.

3All issues and commits that were sampled are listed at: https://github.com/dalderliesten/Good-F
irst-Issue/tree/master/Data

43

https://github.com/dalderliesten/Good-First-Issue/blob/master/Sample%20Set/Repositories-with-Good-First-Issues.csv
https://github.com/dalderliesten/Good-First-Issue/blob/master/Sample%20Set/Repositories-with-Good-First-Issues.csv
https://github.com/dalderliesten/Good-First-Issue/blob/master/Sample%20Set/Sampled-Repositories.csv
https://github.com/dalderliesten/Good-First-Issue/blob/master/Sample%20Set/Sampled-Repositories.csv
https://github.com/dalderliesten/Good-First-Issue/tree/master/Data
https://github.com/dalderliesten/Good-First-Issue/tree/master/Data

4. RESULTS AND ANALYSIS

Feature Value Percentage

Repositories Sampled 105 100%
Repositories with Good First Issues 46 43,8%

Number of Issues 301.380 100%
Number of Good First Issues 4.792 1,5%

Table 4.1: Numerical results of the data mining and sampling procedure.

Feature Value Percentage

Good First Issues taken by Newcomers 279 32,5%
Good First Issues taken by Existing De-
velopers

340 39,6%

Deprecated & Incomplete Good First
Issues

239 27,8%

Good First Issues Selected for Analy-
sis

858 100%
(14,3% of ob-
tained issues)

Table 4.2: Numerical results of the sampled issues and their completion status.

the sampled commits and their relevant aspects are given in Section 4.2.2.

4.2.1 Sampled Issues

From the 4.792 good first issues that were sampled as described in Section 4.1, 858 indi-
vidual issues were selected for manual analysis through the methods outlined in Section
3.2.24. Of these 858 issues, 279 were implemented by a new developer or contributor to the
repository, whereas 340 good first issues were implemented by developers that had already
made a contribution to that particular project. 239 good first issues were found to not have
been implemented or featured ongoing development work and therefore had no associated
pull request. These data are also given in Table 4.2.

In addition to the sampling of issues, the categories in which issues were placed based
upon the taxonomy as outlined in Section 3.2.2 are given in Table 4.3. Of the issues sampled,
251 were related to the fixing of a bug or solving of unintended behavior. A total of 159 good
first issues sampled were related to comment or documentation changes. When it comes to
features, 208 good first issues requested enhancements to existing features, whereas 109
good first issues wanted an entirely new feature to be implemented by a newcomer. 171
good first issues demanded a newcomer refactor an existing component of the codebase as
to make it easier to read or optimize its components, and 75 good first issues were related to
the creation or updating of tests within the codebase. Note that because some issues were

4A list of these issues can be found at: https://github.com/dalderliesten/Good-First-Issue/b
lob/master/Analysis/_ALL-ISSUES.csv

44

https://github.com/dalderliesten/Good-First-Issue/blob/master/Analysis/_ALL-ISSUES.csv
https://github.com/dalderliesten/Good-First-Issue/blob/master/Analysis/_ALL-ISSUES.csv

4.3. Comparing Issue and Commit Classifications

Classification Number of Issues Marked Percentage

Bug Fix 251 29,2%
Documentation 159 18,5%
Enhancing a Feature 208 24,2%
New Feature 109 12,7%
Refactoring 171 19,9%
Testing 75 8,7%

Total 973 113,2%

Table 4.3: Overview of the taxonomy classification for issues that were sampled.

tagged with multiple classifications of the taxonomy the total number of markers is greater
than the number of issues, which is intentional.

4.2.2 Sampled Commits

A total of 1.272 first commits by a developer that was new to the project were sampled for
manual analysis as outlined in Section 3.2.35. A total of 49 commits were related to a good
first issue, equating to a 3,8% newcomer commit to good first issue ratio. Of the commits
sampled, 272 were found to be a bug fixing contribution, 230 commits aimed to enhance
an existing feature as to provide additional functionality, and 138 developers contributed an
entirely new feature within the codebase. 447 first commits were focused on enhancing or
editing documentation, 68 were related to improving or fixing tests, and 310 were related
to the refactoring of existing components of the codebase to increase readability or make
it more efficient. Note that the total number of markers is larger than the total number of
sampled commits due to certain commits having multiple markers as outlined in Section
3.2.2. This information is also show in Table 4.4.

4.3 Comparing Issue and Commit Classifications

To evaluate whether correct types of tasks are being labelled as to investigate research ques-
tions 3 and 5, a comparison can be made between the labels assigned to good first issues
and the labels assigned to initial contributions from developers as sampled. This allows an
evaluation to be done regarding the effectiveness of how issues are currently being labelled
and whether any steering can improve the labelling practice. The numerical differences are
presented in Section 4.3.1, whereas an analysis of these differences and their implications
is given in Section 4.3.2. During analysis, certain trends and possible additional labels were
also identified, which are provided and discussed in Section 4.3.3.

5The list of commits can be found at: https://github.com/dalderliesten/Good-First-Issue/blo
b/master/Analysis/_ALL-COMMITS.csv

45

https://github.com/dalderliesten/Good-First-Issue/blob/master/Analysis/_ALL-COMMITS.csv
https://github.com/dalderliesten/Good-First-Issue/blob/master/Analysis/_ALL-COMMITS.csv

4. RESULTS AND ANALYSIS

Classification Number of Commits
(Marked)

Percentage

Bug Fix 272 21,3%
Documentation 447 35,1%
Enhancing a Feature 230 17,1%
New Feature 138 10,8%
Refactoring 310 24,3%
Testing 68 5,3%

Total 1.465 113,9%

Table 4.4: Overview of the taxonomy classification for commits that were sampled.

4.3.1 Numerical Comparison of Classifications

To determine whether initial contributions align with issues containing the good first is-
sue indicator, a comparison should be made between the issue types labelled by project
maintainers and the first commits made by a developer within a project and analyze any
discrepancies between the two. Based upon the results obtained as shown in Tables 4.3 and
4.4, a difference can be seen between all taxonomy categories. Measuring the ∆ difference
indicates the percentile change between recommended good first issues and actual first-time
commits.

These differences, as shown in Table 4.5, indicate that the most significant difference
exists in the number of documentation good first issues and the number of first contribu-
tions that consider documentation. This difference of 16,6% signifies a significant increase
in first-time contributors performing the action of providing documentation versus the sug-
gested issue count. Other significant differences are given by bug fixes, which have a ∆

difference of -7,9% when comparing the suggested good first issues with bug fixing re-
quirements to actual first contributions, and feature enhancements, which has a ∆ difference
of -7,1%. Refactoring labels indicate a ∆ difference of 4,4%, whereas testing has a ∆ differ-
ence of -3,4%. The smallest gap between issue and first contribution labelling exists within
the feature marker, which has a ∆ difference of -1,9%.

A visual comparison of all the ∆ differences found for all taxonomy labels between the
sampled commits and sampled issues is given in Figure 4.1.

4.3.2 Analysis of Differences

To account for limitations in sampling and differences in sample size, the ∆ difference was
calculated for each difference found between labels. An application of the Mann-Whitney
significance test was employed to identify whether the differences were statistically signifi-
cant. These test results are given in Table 4.6, indicating that a significant difference exists
for the bug fix, documentation, feature enhancement, and testing categories when consider-
ing their p-values. Additionally, the ∆ difference and effect sizes were considered, as shown

46

4.3. Comparing Issue and Commit Classifications

Taxonomy Label Issues
(%)

Commits
(%)

∆ Difference
(%)

Bug Fix 29,2% 21,3% -7,9%
Documentation 18,5% 35,1% 16,6%
Enhancing a Fea-
ture

24,2% 17,1% -7,1%

New Feature 12,7% 10,8% -1,9%
Refactoring 19,9% 24,3% 4,4%
Testing 8,7% 5,3% -3,4%

Table 4.5: Tabular representation of the percentile difference between labelling in sampled
issues and sampled commits with respect to the good first issue labels.

Figure 4.1: Visual overview of the percentiles assigned to each taxonomy label for both
issues and commits sampled, in which the blue components represent the issue percentiles
and the grey bars represent the first commit percentiles.

47

4. RESULTS AND ANALYSIS

in Table 4.5. An effect size indicates the level of magnitude for findings, and can be utilized
to identify how significant a correlation is. An effect size greater than 0,5 indicates a large
effect, between 0,3 and 0,5 indicates a medium effect, and a value between 0,1 and 0,3 in-
dicates a small effect. Note that despite multiple labels possessing a significant difference,
the effect size is limited to small for documentation and bug fix labels, and none for all other
labels. The results should, as a result, be interpreted within that context. A ∆ difference of
5% was considered a significant difference, which existed for three classifications, namely
the bug fixing classification with a |∆| difference of 7,9%, the documentation classification
with a |∆| difference of 16,6%, and the feature enhancement classification with a |∆| differ-
ence of 7,1%. The ∆ differences for both bug fixing and feature enhancement categories are
negative, whereas the documentation ∆ difference is positive. When considering the values,
the -15% offset for the aforementioned negative categories appears to be accounted for by
the 16,6% positive differences for the documentation category.

Bug Fix When considering the bug fixing classification, the ∆ difference is negative with
a small effect size, meaning good first issues recommend newcomer developers to perform
bug fixes 7,9% more often than first contributors actually do. When considering the data
presented, it appears that many projects and repositories suggest performing minor bug fixes
for first time contributors, perhaps considering that newcomers will then be exposed to the
codebase and look around some components to gain a better understanding of the project.
However, developers require some understanding of the codebase before they can fix issues,
and an understanding of the codebase and decisions made has been found to be attained by
reading through documentation [15]. It appears that bug fix tasks are suggested at a higher
rate than their likelihood of being implemented to newcomer developers and tend to be
diverted by newcomer developers in favor of a documentation related contribution.

Enhancing a Feature When considering the feature enhancement classification label, the
∆ difference is also negative but there is no magnitude given by effect size, for which 7,1%
more good first issues with the feature enhancement label are given compared to commits in
which a newcomer developer enhances an existing feature. The enhancing of a feature re-
quires that a developer either possesses knowledge of the codebase (as they must understand
where components are found) and possibly even knowledge of the programming language
and development tools that are utilized within the project. In order to gain this understand-
ing, developers may have to consult documentation related to the project before they begin.
When consulting this documentation, a newcomer developer may identify lacking compo-
nents of the documentation or segments that can be clarified, leading to a first contribution
consisting of a documentation change as opposed to an enhancement of a new feature.

Documentation The documentation label shows a positive ∆ difference of 16,6% and a
small effect size, indicating that less documentation-based good first issues are suggested
when compared to the number of first commits made in which a documentation change or
addition is the contribution. The analysis results indicated in Table 4.6 also indicate that a
significant z-value of -8,331334 was found, indicating that the documentation-related labels

48

4.3. Comparing Issue and Commit Classifications

Ta
xo

no
m

y
L

ab
el

p-
V

al
ue

z-
V

al
ue

E
ff

ec
tS

iz
e

Si
gn

ifi
ca

nt
D

iff
er

en
ce

B
ug

Fi
x

0,
00

00
35

00
67

4,
13

81
83

0,
10

8
(S

m
al

l)
Y

es
D

oc
um

en
ta

tio
n

1,
11

02
2
·e
−

16
-8

,3
31

33
4

0,
21

8
(S

m
al

l)
Y

es
E

nh
an

ci
ng

a
Fe

at
ur

e
0,

00
05

61
58

2
3,

44
95

21
0,

09
0

(N
on

e)
Y

es
N

ew
Fe

at
ur

e
0,

18
65

86
1,

32
07

45
0,

03
5

(N
on

e)
N

o
R

ef
ac

to
ri

ng
0,

01
62

34
1

-2
,4

03
60

9
0,

06
3

(N
on

e)
N

o
Te

st
in

g
0,

00
21

38
45

3,
07

02
98

0,
08

0
(N

on
e)

Y
es

Ta
bl

e
4.

6:
R

es
ul

ts
of

th
e

tw
o-

ta
ile

d
M

an
n-

W
hi

tn
ey

si
gn

ifi
ca

nc
e

te
st

s
w

ith
a

si
gn

ifi
ca

nc
e

le
ve

l
α
=

0,
01

be
tw

ee
n

th
e

di
ff

er
en

ce
s

in
ta

xo
no

m
y

la
be

ls
,i

nc
lu

di
ng

th
ei

ra
ss

oc
ia

te
d

ef
fe

ct
si

ze
s.

49

4. RESULTS AND ANALYSIS

feature a significant discrepancy. It is known that documentation serves as a primary source
to obtain information related to development [17], and that more in-depth documentation
leads to better development turnaround and fewer errors during development [42], and the
results appear to indicate that newcomer developers within the sampled projects read doc-
umentation before making a contribution. When analyzing the sampled commits, many
documentation labelled contributions make minor changes, such as fixing spelling errors or
clarifying the phrasing of a comment. These trends seem to suggest that many newcomer
developers first utilize the documentation to obtain the necessary knowledge for other con-
tributions, but instead fix issues existing within the documentation. As a result, repositories
aiming to onboard new developer should aim to provide additional documentation-related
good first issues to reflect this tendency.

To investigate this finding further, 30 additional second contributions were identified
from developers that had provided an initial contribution to a project that was assigned a
documentation label. From these 30 sampled first contributions by newcomer developers,
10 secondary contributions were made, indicating at 33,3% rate of documentation labels
leading to a second contribution. Of these 10 secondary contributions, one secondary con-
tribution was related to a new feature, one was related to the enhancement of a feature, one
to testing, and one to refactoring. The majority of secondary contributions, however, con-
sisted of additional documentation based changes, adding six. This appears to suggest that,
although documentation related changes are a good good first issue for newcomers, they do
not directly result in more complex contributions being made after the initial commit.

Testing Despite having a small ∆ difference of -3.4%, the Mann-Whitney significance
test indicated that a significant difference existed within the testing category although there
was not effect size indicated. Upon analysis of the data, it was found that the difference
between the number of issues suggesting a testing related good first issue and actual first
contributions might be explained by a difference in approach. Projects tend to create one
(good first) issue per test that must be created, usually related to an entity or class. However,
commits tend to favor clustering many entities and classes into a single pull request. When
considering (tightly) coupled entities and classes, it makes sense to developer system-wide
tests and smoke tests in context of each other as opposed to developing them in isolation, as
the good first issues appear to suggest. This may help suggest that repositories might prefer
to mark related tests that need to be developed into a single good first issue as opposed to
multiple issues.

4.3.3 Additional Labels and Trends

During classification of both issues and commits, an additional type of contribution was
identified that could warrant its own label, namely that of organizational tasks. Organiza-
tional tasks are tasks related to the organization of the project or repository, such as adding or
removing dependencies, moving files between locations during a re-organization, or copy-
ing an existing repository over to a new git storage platform. The organizational label would
have accounted for 58 contributions, or 4,5%, from commits within the sample population.

50

4.4. Comparing Classification Combinations

4.4 Comparing Classification Combinations

After having analyzed the classification labels and their differences in Section 4.3, and
considering the nature of the taxonomy allowing for multiple labels to be applied to a single
commit or issue, an analysis was made of the existing combination of labels to identify
possible trends that can help improve labelling practices. An overview of the numerical
results of the classification combinations is given in Section 4.4.1, and an analysis of this
data is provided in Section 4.4.2.

4.4.1 Numerical Results of Combinations

The labels that are co-associated with each other within the sample population of commits
is given in Table 4.7, whereas the co-associated classifications found within the sampled
issue population is given in Table 4.8. Due to the nature of the data and the large number
of possible combinations, not every individual category combination is listed here. Addi-
tionally, some association data mining was done to identify whether any inferences existed
between label combinations, the results of which are presented in Table 4.9 for the commits
and Table 4.10 for the issues sampled.

4.4.2 Analysis of Combinations

Based upon the findings of the association mining and statistical analysis as shown in Ta-
ble 4.9 and Table 4.10, the combinations identified are not statistically significant. To be
statistically significant, one of the combinations would need to have a lift value of ≥ 1 to
determine some form of association, which none of the combinations are close to having.
To further analyze the combination results in context of the significance, a decision was
made to utilize the raw comparison numbers to analyze the data.

For both issues and commits, the same label combinations were found to be significant
and a common occurrence when utilizing raw values for analysis. For issues, the signif-
icant combinations consist of the Refactoring / Enhancing a Feature label combination
with 27 instances and the Refactoring / Bug Fixing label combination with 23 occurrences.
When considering commits, the significant combinations are identical, with Refactoring /
Enhancing a Feature yielding 45 instances of the combination and Refactoring / Bug Fix-
ing yielding 37 occurrences. As a result, it is interesting to consider why the refactoring
and bug fixing or feature enhancement combinations seem to occur more often than their
counterparts.

From the perspective of programming, refactoring and bug fixing form a natural associ-
ation. Previous work has shown that refactoring certain types of code smells within a code-
base has a tendency to fix bugs within the system at the same time [36][40], thereby helping
to explain the combination’s degree of coupling. Identifying the link between refactoring
and the enhancement of features is a bit more difficult, as no previous research provides
a clear indication of what causes this. Based upon observations within the scope of the
analysis, many enhancements contributed by newcomers focused on extending file format
capability or featured re-writes to make existing features more extendable, thereby usually

51

4. RESULTS AND ANALYSIS

C
ategory

A
/C

ategory
B

B
ug

Fix
E

nhancing
a

Feature
N

ew
Feature

D
ocum

entation
Testing

R
efactoring

B
ug

Fix
14

1
24

7
37

E
nhancing

a
Feature

14
9

6
7

45
N

ew
Feature

1
9

10
13

13
D

ocum
entation

24
6

10
7

12
Testing

7
7

13
7

13
R

efactoring
37

45
13

12
13

Table
4.7:Tabularrepresentation

ofthe
num

berofcom
m

its
perlabelin

the
row

thathave
a

com
bination

w
ith

the
labelin

the
colum

n.

52

4.4. Comparing Classification Combinations

C
at

eg
or

y
A

/C
at

eg
or

y
B

B
ug

Fi
x

E
nh

an
ci

ng
a

Fe
at

ur
e

N
ew

Fe
at

ur
e

D
oc

um
en

ta
tio

n
Te

st
in

g
R

ef
ac

to
ri

ng

B
ug

Fi
x

10
2

4
17

23
E

nh
an

ci
ng

a
Fe

at
ur

e
10

4
1

7
27

N
ew

Fe
at

ur
e

2
4

2
8

6
D

oc
um

en
ta

tio
n

4
1

2
3

3
Te

st
in

g
17

7
8

3
8

R
ef

ac
to

ri
ng

23
27

6
3

8

Ta
bl

e
4.

8:
Ta

bu
la

rr
ep

re
se

nt
at

io
n

of
th

e
nu

m
be

ro
fi

ss
ue

s
pe

rl
ab

el
in

th
e

ro
w

th
at

ha
ve

a
co

m
bi

na
tio

n
w

ith
an

ot
he

ri
ss

ue
s

la
be

lle
d

in
th

e
co

lu
m

n.

53

4. RESULTS AND ANALYSIS

C
ategory

A
/C

ategory
B

B
ug

Fix
E

nhancing
a

Feature
N

ew
Feature

D
ocum

entation
Testing

R
efactoring

B
ug

Fix
(0,011,
0,0610,
0,0002)

(0,0007,
0,0072,
0,00002)

(0,0188,
0,0537,
0,0002)

(0,0055,
0,1029,
0,0004)

(0,0291,
0,1193,
0,0004)

E
nhancing

a
Feature

(0,0110,
0,0511,
0,0002)

(0,007,
0,0652,
0,0003)

(0,0047,
0,0134,
0,00005)

(0,0055,
0,1029,
0,00044)

(0,0353,
0,1451,
0,0006)

N
ew

Feature
(0,0008,
0,0036,
0,00003)

(0,007,
0,0391,
0,0003)

(0,0078,
0,0224,
0,00016)

(0,0102,
0,1911,
0,0013)

(0,0102,
0,0419,
0,0003)

D
ocum

entation
(0,0188,
0,0882,
0,0002)

(0,0047,
0,026,
0,00006)

(0,0078,
0,0724,
0,00016)

(0,0055,
0,1029,
0,0002)

(0,0094,
0,0387,
0,00008)

Testing
(0,0055,
0,0257,
0,0003)

(0,0055,
0,0304,
0,00044)

(0,0102,
0,0942,
0,0014)

(0,0055,
0,0156,
0,00023)

(0,0102,
0,0419,
0,0006)

R
efactoring

(0,0290,
0,1360,
0,0004)

(0,0354,
0,1956,
0,00063)

(0,0102,
0,0942,
0,0003)

(0,0094,
0,0268,
0,00008)

(0,0102,
0,1911,
0,0006)

Table
4.9:Tabularrepresentation

ofthe
results

ofthe
association

rule
m

ining,displayed
as

tuples
consisting

of(support,confidence,lift),
forthe

com
binations

found
in

the
sam

pled
com

m
itpopulation.

54

4.4. Comparing Classification Combinations

C
at

eg
or

y
A

/C
at

eg
or

y
B

B
ug

Fi
x

E
nh

an
ci

ng
a

Fe
at

ur
e

N
ew

Fe
at

ur
e

D
oc

um
en

ta
tio

n
Te

st
in

g
R

ef
ac

to
ri

ng

B
ug

Fi
x

(0
,0

11
6,

0,
04

80
7,

0,
00

01
9)

(0
,0

02
3,

0,
01

83
4,

0,
00

00
7)

(0
,0

04
6,

0,
02

51
5,

0,
00

01
0)

(0
,0

19
8,

0,
22

66
6,

0,
00

09
0)

(0
,0

26
8,

0,
13

45
0,

0,
00

05
3)

E
nh

an
ci

ng
a

Fe
at

ur
e

(0
,0

11
6,

0,
03

98
,

0,
00

01
9)

(0
,0

04
7,

0,
03

66
9,

0,
00

01
7)

(0
,0

01
2,

0,
00

62
8,

0,
00

00
3)

(0
,0

08
2,

0,
09

33
3,

0,
00

04
4)

(0
,0

31
5,

0,
15

78
9,

0,
00

07
5)

N
ew

Fe
at

ur
e

(0
,0

02
3,

0,
00

79
,

0,
00

00
7)

(0
,0

04
6,

0,
01

92
3,

0,
00

01
7)

(0
,0

02
3,

0,
01

25
7,

0,
00

01
1)

(0
,0

09
3,

0,
10

66
6,

0,
00

09
7)

(0
,0

06
9,

0,
03

50
8,

0,
00

03
2)

D
oc

um
en

ta
tio

n
(0

,0
04

6,
0,

01
59

,
0,

00
01

0)

(0
,0

01
2,

0,
00

48
,

0,
00

00
3)

(0
,0

02
3,

0,
01

83
4,

0,
00

01
1)

(0
,0

03
5,

0,
04

00
0,

0,
00

02
5)

(0
,0

03
5,

0,
01

75
4,

0,
00

01
1)

Te
st

in
g

(0
,0

19
8,

0,
06

77
,

0,
00

09
0)

(0
,0

08
2,

0,
03

37
,

0,
00

02
1)

(0
,0

09
3,

0,
07

33
9,

0,
00

09
7)

(0
,0

03
5,

0,
01

88
6,

0,
00

02
5)

(0
,0

09
3,

0,
04

67
8,

0,
00

06
2)

R
ef

ac
to

ri
ng

(0
,0

26
8,

0,
09

16
,

0,
00

05
3)

(0
,0

31
5,

0,
12

98
,

0,
00

07
5)

(0
,0

07
0,

0,
05

50
4,

0,
00

03
2)

(0
,0

03
5,

0,
01

88
6,

0,
00

01
1)

(0
,0

09
3,

0,
10

66
6,

0,
00

06
2)

Ta
bl

e
4.

10
:

Ta
bu

la
r

re
pr

es
en

ta
tio

n
of

th
e

re
su

lts
of

th
e

as
so

ci
at

io
n

ru
le

m
in

in
g,

di
sp

la
ye

d
as

tu
pl

es
co

ns
is

tin
g

of
(s

up
po

rt
,c

on
fid

en
ce

,
lif

t)
,f

or
th

e
co

m
bi

na
tio

ns
fo

un
d

in
th

e
sa

m
pl

ed
is

su
e

po
pu

la
tio

n.

55

4. RESULTS AND ANALYSIS

retouching existing components to make them easier to extend or read. This follows a text-
book definition of refactoring, and enhancing features has been identified as a good moment
to consider changing parts of the codebase to meet the extension’s needs.

When considering good first issue labels, and keeping in mind the rate of significance
of the data, the combinations themselves do not appear to yield a clear indication that cer-
tain combinations are preferred by new developers or that a certain label tends to promote
another label taking place. There is also no clear indication that developers exhibit a pref-
erence to certain labels being combined under both raw and statistical considerations.

When considering one-way associations as represented in the confidence value of the tu-
ples shown in Tables 4.9 and 4.10, a number of one-way associations can be found related to
the testing classification. Within the commit associations, when considering the association
bug fixing to testing a confidence value of 10,29% whereas the association testing to bug
fixing is merely 2,57% is found, implying that first contributions that fix bugs are likely to
involve testing, but not the other way around. When attempting to fix bugs in a codebase, it
is likely seen as a good practice to contribute tests that help prevent those bugs from arising
again, possibly explaining the combination. It has also been found that tests are commonly
written to help replicate bugs and prevent them from occurring again [56]. It seems more
probable to write tests after fixing bugs, than fixing bugs after having made tests, as those
tests would have likely indicated bugs that could have been contributed before the bugged
code enter the codebase. An identical link was found when considering feature enhance-
ment and testing, which has a confidence value of 10,29%, whereas the testing to feature
enhancement association has a confidence value of 3,04%. This can also be explained by
enhanced features requiring testing, and testing itself likely not leading to the enhancement
of features. Another related association is the new feature to testing association with a
confidence of 19,11%, whereas the counterpart testing to new feature association is merely
9,42%. This suggests that new features tend to come bundled with tests to verify this new
functionality, whereas tests themselves are not a stable indicator of a new feature being
added. Across all facets, labels tend to invoke new testing behavior, even when considering
documentation changes or the refactoring to testing confidence of 19,11%, whereas tests
themselves do not guarantee another contribution being made directly.

One-way associations for issues reveal similar trends as the commit counterparts out-
lined above. The bug fixing to testing confidence tends to 22,66%, whereas the reverse
confidence tends to a mere 6,77%. This trend continues for all label combinations with test-
ing, in which the label to testing association reveals a high confidence, whereas the reverse
is not the case.

4.5 Developer Experience

Developer experience was tracked for commits that were implemented as outlined in Section
3.2.3 and employing the three-step categorization given in Table 3.3. To determine whether
developer experience caused a shift in the type of first contributions that were made, these
data ware tracked and analyzed to investigate whether a correlation between experience and
types of tasks existed. The numerical data related to developer experience are presented in

56

4.5. Developer Experience

Experience Classification Number of Commits Total %

Novice 154 12,1%
Intermediate 251 19,7%
Experienced 849 66,7%
Bot 18 1,4%

Total 1.272 100%

Table 4.11: Tabular overview of the developer experience distribution of sampled commits.

Classification Value Percentage

Bug Fix 35 22,7%
Documentation 77 50,0%
Enhancing a Feature 27 17,5%
New Feature 9 5,8%
Refactoring 4 2,5%
Testing 25 16,2%

Total 177 114,7%

Table 4.12: Tabular overview of the sampled commits distribution for the novice category
of developer experience.

Section 4.5.1, and an analysis of the data is performed in Section 4.5.2.

4.5.1 Numerical Developer Experience Data

The developer experience categorization was performed upon all sampled commits as de-
fined in Section 4.2.2. As shown in Table 4.11, a total of 154 first commits were found
to be contributed by a novice developer with less than a year of active experience, 251
contributions were made by a intermediate developer with between one and two years of
experience, and 846 commits were contributed by an experienced developer with more than
two years of active experience. Additionally, 18 contributions sampled were found to come
from automated processes (such as updating a dependency with a security vulnerability or
removing a deprecated file), which were labelled as bot contributions.

Additionally, the taxonomy for labels was also investigated based upon the developer
experience level they were associated with. A visual overview of the distributions per de-
veloper experience category is given in Figure 4.2.

For the novice category of developers, it was found that 35 of the commits were bug
fixes, 27 commits enhanced a new feature, 9 commits added new features to the codebase,
and 77 commits focused on enhancing or editing documentation. Additionally, 4 commits
added tests, and 25 commits were related to refactoring components within the codebase.
These data are provided in tabular form in Table 4.12.

57

4. RESULTS AND ANALYSIS

Classification Value Percentage

Bug Fix 53 21,1%
Documentation 88 35,0%
Enhancing a Feature 44 17,5%
New Feature 24 9,5%
Refactoring 62 24,7%
Testing 15 5,9%

Total 286 113,7%

Table 4.13: Tabular overview of the sampled commits distribution for the intermediate
category of developer experience.

Classification Value Percentage

Bug Fix 183 21,6%
Documentation 272 32,1%
Enhancing a Feature 159 18,7%
New Feature 105 12,4%
Refactoring 214 25,2%
Testing 48 5,6%

Total 981 115,6%

Table 4.14: Tabular overview of the sampled commits distribution for the experienced cat-
egory of developer experience.

When considering the intermediate category of developer experience as shown in Table
4.13, a total of 251 commits were identified of which 53 were bug fixing contributions, 88
were related to documentation, 62 were related to refactoring, and 15 were related to the cre-
ation of tests. Regarding features, 44 commits enhanced existing features and functionality
whereas 24 contributions added a new feature to the repository.

Finally, for the experienced developer category it was found that of the total 846 com-
mits, 183 were related to bug fixes and 214 were related to testing. Documentation related
changes consisted of 272 commits. For features, 159 commits enhanced an existing feature
in the codebase, whereas 105 commits provided a new feature to the codebase. These data
are provided in tabular form in Table 4.14.

4.5.2 Analysis of Developer Experience Differences

When considering the percentage of given labels across developer experience levels, it can
be stated that the bug fix and feature enhancement labels appear to be relatively leveled
regardless of developer experience level. This indicates that the fixing of bugs and the en-
hancement of existing features is not influenced by developer experience level, which is a

58

4.5. Developer Experience

Figure 4.2: Visual overview of the percentiles assigned to each taxonomy label for all de-
veloper experience categories, in which the blue components represent the novice developer
experience category, orange represents the intermediate category, and the experienced cat-
egory is represented by the grey color.

sensible conclusion, as the resolving of bugs needs to be done regardless of developer ex-
perience. The same can be said for feature enhancement, in which features can be extended
in a wide range of manners. A novice might add the ability to add a command line option
to a feature, whereas an experienced developer may extend the feature to perform entirely
new and complex functions.

To analyze the differences between developer experience levels and the category labels,
a Mann-Whitney significance analysis was performed over the data as shown in Table 4.15
and the associated effect size values were calculated. Based on the given results, it can be
stated that almost all pairs did not have a sufficient effect size to deduce any form of strong
correlation. This analysis shows that only the documentation label has a statistically signif-
icant difference, and this should be considered when attempting to derive conclusions from
the data. However, in an attempt to account for the difference in documentation-related
contributions between the novice category and intermediate and experienced categories, the
testing and refactoring labels are also considered as they are the most significant differences
after documentation. These labels show significant differences between developer experi-
ence levels, and each label deserves its own explanation due to the range of tasks associated
with each label.

Documentation The documentation label indicates that novice developers are more likely
to make a first contribution consisting of a documentation change than intermediate or expe-

59

4. RESULTS AND ANALYSIS

C
lassification

/E
xperience

N
ovice-Interm

ediate
N

ovice-E
xperienced

Interm
ediate-E

xperienced

B
ug

Fix
(0,703;0,381;0,017;N

o)
(0,762;0,303;0,009;N

o)
(0,861;-0,174;0,005;N

o)
D

ocum
entation

(0,003;2,966;0,138;Yes)
(0,0002;4,271;0,126;Yes)

(0,389;0,861;0,024;N
o)

E
nhancing

a
Feature

(1,000;0,000;0;N
o)

(0,712;-0,369;0,011;N
o)

(0,651;-0,453;0,013;N
o)

N
ew

Feature
(0,185;-1,325;0,062;N

o)
(0,018;-2,357;0,069;N

o)
(0,219;-1,230;0,035;N

o)
R

efactoring
(0,044;-2,011;0,093;N

o)
(0,0153;-2,424;0,071;N

o)
(0,849;-0,190;0,005;N

o)
Testing

(0,119;-1,557;0,072;N
o)

(0,114;-1,580;0,046;N
o)

(0,857;0,180;0,005;N
o)

Table
4.15:

Tabular
overview

of
the

M
ann-W

hitney
significance

results
and

effect
size

for
each

category
label

and
associated

pair
of

developer
experience

levels,presented
as

a
tuple

consisting
of

(p-value,z-value,effectsize,significance
indicator)

for
each

pair
w

ith
a

significance
level

α
=

0,01.

60

4.5. Developer Experience

rienced developers, with an effect size of 0,138 between notice and intermediate developers
and 0,126 between novice and experienced developers, indicating that the novice category
influences the likelihood to contribute a documentation-related change to a small degree.
This difference can be explained by the level of confidence developers may have obtained
over time. Since a newcomer developer has little to no experience with software develop-
ment or perhaps with the programming language employed within a repository, they are
more likely to consult the documentation as to understand intricacies of the project and
language that it employs, or perhaps to identify domain related knowledge related to the
project. It has been found that developers that are confident and experienced do not ex-
hibit such tendencies, where they are more likely to be certain in their programming abili-
ties [45] and, as a result, not consult the documentation to the same extent as newcomers.
As these newcomer developers consult the documentation more often, they are more likely
to uncover undocumented or unclear regions within the documentation and change them.
This results in a type of opportunity-benefit relationship causing additional contributions
by novice over intermediate and experienced developers. Many smaller documentation
changes were also exhibited by newcomer developers, such as a sentence re-ordering or a
fix of a typographical error, which supports the aforementioned findings. It should be noted
that the effect size factor for documentation contributions between novice-intermediate and
novice-experienced indicates that this association is weak, despite it being the strongest of
all experience-label pairs.

New Feature Creating a new feature appears to be a task performed more by experienced
and intermediate developers as opposed to novice developers, with a difference of 6,6%
between extrema, but under the constraint that the effect size indicates no effect with values
of 0,062 to 0,035. The creation of a new feature requires, among others, the ability to plan,
consider architectural requirements, and have a good knowledge of the existing codebase
and its possibilities. It can be assumed that these traits are more likely to be found with
experienced developers, who have already been involved in other projects or have a greater
degree of mastery of a programming language. As a result, this knowledge combined with
their tendency to be more certain of their programming abilities [45] results in experienced
developer being more likely to contribute new features and novice developer to less likely
make a first contribution containing a new feature.

Refactoring The most significant value difference between developer experience cate-
gories per taxonomy label is found for the refactoring category, in which novice developers
made almost no first contributions whereas intermediate and experienced developers made
many refactoring contributions, despite the effect size indicating no effect with a mere 0,093
to 0,071 for novice developers between the remaining categories. This is likely explained
by refactoring complexity when considering what is required to perform a good re-write of
an existing component of the codebase. A developer must understand the component of the
codebase they wish to refactor to a great degree, as to not break any existing functionality
within the codebase. Additionally, developer perception of code re-writing and refactoring
is one of high complexity [48], meaning the barrier to performing perceived refactoring

61

4. RESULTS AND ANALYSIS

for newcomer novice developers may be higher. If the overall attitude to a task is one of
complexity, it is unlikely a newcomer will be willing to perform it.

Testing Novice developers tend to make first-time contributions related to the testing label
significantly more often than intermediate or experienced developers, with a 10,6% differ-
ence existing between the extrema. Testing provides the ability to contribute meaningfully
to a codebase without necessarily needing to understand the codebase fully, as practice
states that tests should allow for a black-box evaluation of the codebase. A newcomer may
notice that certain features or components are not tested to a sufficient level, and may con-
tribute using existing tests or by creating a few tests of their own. Analysis indicated that
numerous novice test-related contributions consisted of a test aiming to check a misunder-
standing they had, such as whether parsing a certain type of file format was allowed. Ad-
ditionally, prior research indicates that although experienced developers are more effective
at creating and contributing unit-based testing solutions, novice developers only struggle to
identify best practices for test implementing, yielding a small performance penalty, but do
not appear to suffer from an inability or less-than-optimal rate of creating tests. These com-
bined forces help a novice developer learn more about the codebase while still contributing
useful content to it.

4.6 Surveying Developer Perception of Good First Issues

The results of the survey are presented in this section with the goal of identifying qualitative
outcomes and considerations regarding good first issues and the labelling of tasks for new-
comers. A numerical overview with the results of the survey is provided in Section 4.6.1,
whereas an analysis of the data of the survey is provided in Section 4.6.2.

4.6.1 Numerical Results of the Survey

A total of 537 developers were invited to participate in the survey, of which a total of 23
responses were given, garnering a response rate of 4,28%. Of the 23 responses, a single
response was found to be committed in malicious intent and containing obscenities, and
as a result of this it was filtered out of the response pool. As a result, the final response
population consists of 22 responses, or a response rate of 4,09%. The results of the survey
will be presented on a question-by-question basis, with the first question being split to
account for the difference in positive and negative surveys having been sent to developers.
The question given to the developers will also be provided alongside each question for ease
of reading.

Question 1 (Positive Variant)
You were identified to have made at least one first contribution to an (open
source) project that was related to a task/issue labelled as a good first issue.
Did you make this contribution due to this label, or in part as a reference from
this label? Can you describe how you identify your first possible contribution
when joining a project?

62

4.6. Surveying Developer Perception of Good First Issues

First Contribution Influence Responses Percentage

Good First Issue Label 3 23,08%
Good First Issue Label with Additional
Factor

3 23,08%

External Location of Suggested Tasks 1 7,69%
Work or External Requirement 2 15,38%
Random Selection or Other 4 30,77%

Total 13 100%

Table 4.16: Numerical results for the first question of the positive survey variant filtered by
response type and keywords in the responses.

The first question within the positive variant of the survey aimed to identify the rele-
vancy of the good first issue label to the developer’s first contribution and to identify and
possible alternative motivations for contributing to a repository. As indicated in Table 4.16,
a total of six responses indicated that they rely on good first issues to obtain a task when
they first join a project or repository. Three developers state they rely exclusively on the
good first issue label, whereas the remaining three developers state that they utilize good
first issues but employ an additional factor to determine their first contributions. Of these
developers, one states they also wish to have an affinity with the problem at hand (prefer-
ring good first issues related to their domain of choice), whereas two state they look for a
combination of a good first issue and have some form of unfamiliarity with the project. Ad-
ditionally, one developer indicated they based their first contribution on an external location
of suggested tasks, in which good first issues existed.

Of the developers that indicated that they did not make their contributions based on a
good first issue, four indicated that this was due to them using random selection of a task or
ignoring labels altogether, and two indicated they chose their first contributions based upon
work or external requirements. External requirements consisted of relevancy to personal
projects. One developer left this answer blank.

Question 1a (Negative Variant)
Your first contribution to the indicated (open source) project was not related to
a task/issue labelled as a good first issue. Why did you not employ a task/issue
assigned as a good first issue for your first contribution? Can you describe how
you identify your first possible contribution when joining a project?

The first question of the negative variant of the survey aimed to identify why developers
did not utilize a good first issue for their first contribution and what factors drive them to
contribute instead of a label. Based on the results displayed in Table 4.17, four developers
indicated that their first contributions tend to be guided by their personal needs. This could
consist of making changes that suited their personal project needs by enhancing compo-
nents they require. Three developers indicated that their first contributions were based on a

63

4. RESULTS AND ANALYSIS

First Contribution Influence Responses Percentage

Interest in Project (Component) 3 33,33%
Personal Needs 4 44,44%
Fixing Issues Affecting Developer 2 22,22%

Total 9 100%

Table 4.17: Numerical results for the first question of the negative survey variant filtered by
response type and keywords in the responses.

personal interest in a certain project component, such as by preference or educational back-
ground. Finally, two developers mentioned their first contributions are often based around
fixes required to make a project or dependency work within their personal environments,
such as bug fixes.

Question 1b (Negative Variant)
Do you prefer or try to find issues/tasks labelled as good first issues when you
want to make an initial contribution to a project/repository?
Answer Options: Yes, No

It is worth noting that two developers indicated that they contributed to many projects
that did not have good first issue labels at the time of their first contribution. When con-
sidering whether developers would personally consider good first issues to be useful, 7
respondents representing 77,78% stated they do find them useful, whereas 2 developers
representing 22,22% indicated they do not find them useful.

Question 2
You were identified to have made at least one first contribution to an (open
source) project that was related to a task/issue labelled as a good first issue.
Did you make this contribution due to this label, or in part as a reference from
this label? Can you describe how you identify your first possible contribution
when joining a project? Why do you believe that labelling tasks as suitable for
newcomers is as you indicated above?
Answer Options: Not Useful, Somewhat Useful, Very Useful

The second question aimed to identify a numerical value that developer place upon good
first issues. Each developer was able to indicate a weight value between zero (indicating that
they believed good first issues were useless) and 100 (indicating that the developer found
good first issues to be very useful) on a scale with increments of 25, and the amalgamation
of that data was used to obtain an average score of 70,45. The build-up of this score and all
associated values are given in Table 4.18.

Question 3
What types of tasks do you prefer doing when making a first contribution to a
project or software repository? Why do you prefer these types of tasks?

64

4.6. Surveying Developer Perception of Good First Issues

Weight Number of Developers Indicating Weight Percentage

0 2 9,10%
25 1 4,55%
50 5 22,73%
75 5 22,73%
100 9 40,91%

Total 22 100%

Table 4.18: Numerical weighting results for developer indicated usefulness of good first
issues in the survey.

Question three aimed to identify the reasoning behind the scores given in question two.
The identified trends per weight are presented in this section.

When considering responses from developer having assigned a usefulness weight of 0
or 25, one survey respondent states that the identification of good first issues takes place
from a point of view of intrinsic ability and motivation. It is difficult to consider multiple
types of motivation, as these can be dependent on work required by each developer or their
personal desires. They also state that a mismatch likely exists between the intention of
good first issue labels and newcomer developers, with one respondent summarizing it as “a
developer doesn’t randomly join a project to contribute whatever.” Developers are claimed
to contribute due to requirements or desires they have, and steering through issues will not
change that. The respondents also mention that they believe more experienced developer
are likely to find an issue during development, fix it with a pull request, and ignore labelling
altogether, negating the effects of newcomer task recommendation.

For the 50 weight category, the respondents indicated that they believed good first issues
and labelling are only partially effective due to the difference between novice developers
and more experienced developers. They also mention that existing contributors are unlikely
to find any usefulness of tagging tasks for newcomers, but could possibly cause them to
avoid such tasks, perhaps causing indefinite postponement of the task’s completion. The
respondents also state that, like the 0 to 25 weighting respondents, they believe many de-
velopers will join projects with their own intrinsic goals, not necessarily caring about tasks
that need to be done from the project’s perspective. One respondent within this category
stated that they believe that although labelling tasks as good first issues is a good thing, the
effort required to organize such labelling and to perform evaluation of which tasks would
be suitable outweigh the benefits.

The most positive categories are the 75-100 weight categories. Respondents highlight
the increased navigability in a repository with many issues, as newcomers can be directed
to the good first issue labels. They also believe that, since maintainers that create the labels
know the codebase the best, they are best suited to suggest newcomer tasks. In addition
to their expertise, allowing newcomers to get to know maintainers and make a contribution
without having to worry of additional barriers is seen by multiple respondents as a positive
aspect of these labels, as newcomers know exactly which tasks they can pick-up that are

65

4. RESULTS AND ANALYSIS

Category Responses Percentage

Bug Fix 13 37,14%
Documentation 7 20%
Enhancing a Feature 3 8,57%
New Feature 4 11,43%
Refactoring 1 2,85%
Testing 2 5,71%
Package Management 1 2,85%
Tasks Developer Needs 2 5,71%
No Preferences 2 5,71%

Total 35 100%

Table 4.19: Numerical preference results for developer preferred tasks for good first issues
or first contributions, with one respondent being able to give multiple responses.

desired. The majority of the justifications revolve around increased accessibility for new-
comers as aforementioned. Another respondent mentions how good first issues and task
labelling can prevent newcomers from doing a task that is too difficult to them, preventing
them from joining a project due to the perceived difficulty.

Question 4 (Both Variants)
How would you inform developers about tasks/issues that are good for new-
comers if you were a maintainer of a project?

To assess the types of tasks developers prefer when making an initial contribution, and
with the goal of identifying possible good first issues, the fourth question investigated what
types of tasks developers prefer. Just as with the taxonomy from Section 4.3, each devel-
oper was able to give multiple category preferences for this question. The results, as shown
in Table 4.19, indicate that developers prefer first contributions to consist of bug fixes with
13 preference indications, followed by documentation contributions with seven preferences.
First contributions consisting of new features are preferred with four indications, whereas
feature enhancements are preferred with three indicators. All other categories in the taxon-
omy have either one or two indicators.

In addition to the taxonomy labels, additional responses were identified outlining pack-
age management as a good first contribution with one indication, and any task related to
developer needs and having no preference for tasks both coming in at two indications each.

Question 5
If you wish to be informed of the completion of the thesis report and access it,
you may leave your e-mail address here. We will send you a notification once
research is completed. Please note that this is optional and you may skip this
question.

66

4.6. Surveying Developer Perception of Good First Issues

Method Responses Percentage

Issue Labelling 15 53,57%
Effort & Impact Labelling 1 3,57%
README or Documents 7 25%
Refer to Existing Developers 1 3,57%
Social Media 2 7,14%
Do not Recommend Tasks 2 7,14%

Total 28 100%

Table 4.20: Results of the newcomer task direction preferences for developers as indicated
by the survey results.

To identify alternative methods to good first issue labelling or Github issues, developers
were asked how they would provide an overview of good first issues to newcomer devel-
opers. Just as with question four, a single developer could indicate multiple methods for
newcomer task direction. Over half of the respondents indicated they would perform issues
labelling akin to good first issues. One respondent mentioned that within their project they
employ so-called effort & impact labelling to not only direct newcomers to possible tasks,
but to also indicate how much effort is required for the task and what the effect of their
contribution would be upon the codebase. Seven other respondents indicated they would
direct good newcomer tasks within a README file or another identical document within a
project repository.

Beyond labelling and in-repository documentation, one developer stated they preferred
newcomers being referred to an existing developer within the project to help them with
a smaller component of their task. This would provide a form of mentoring relationship
between newcomer and existing developer. Two other indications consisted of utilizing
social media (such as Facebook6 or Twitter7) to direct newcomers to pools of tasks that
would be suitable for them.

Two respondents indicated they would not do any form of newcomer task recommen-
dation, stating they would prefer to have newcomer identify these tasks themselves as to
account for differences in knowledge and developer experience among newcomers.

4.6.2 Analysis of Survey Results

To analyze the outcome of the survey, the questions must be grouped based on what can be
extracted from their responses. Questions one through three focus on identifying developer
usefulness perception of good first issues, whereas question four aims to identify the type of
tasks that developers prefer to do for initial contributions. Question five assesses alternatives
to good first issues. These categories are analyzed separately within this section.

6Located at: https://www.facebook.com
7Located at: https://twitter.com

67

https://www.facebook.com
https://twitter.com

4. RESULTS AND ANALYSIS

Perceived Good First Issue Usefulness Developers appear to perceive good first issues
as useful, with the majority of developers indicating they find them to be useful with an
average of 70,45 out of 100. Based on the responses given in question one and three, it
can be seen that over half of developers employ good first issues to identify any form of
task that is suitable for them, indicating effectiveness. If developers perceive the good first
issues as being effective, they are more likely to utilize them and refer others to them. The
most significant complaint regarding issues relegation for newcomers appears to come from
the idea that it may not be directly connected to the reality of open source development.
Developers indicate they do not join a project to contribute, but rather contribute because
they already identified issues within the codebase. As a result, developers indicate addi-
tional consideration should be made for issues that are within a broader range of domains
and regions within the codebase. Overall, the perception of good first issues is positive.

Preferred Initial Contribution Types The indicated developer preferences in Table 4.19
indicate that bug fixes and documentation-related initial contributions are preferred with
37,14% and 20% respectively, which stands in partial contrast to the mined results given in
Section 4.3.1 in which the results indicate 21,3% and 35,1%, respectively. The ordering be-
tween the preferences for bug fixing and documentation are reversed between the two, but
the most significant difference is the refactoring label. Developers in the survey indicate
that refactoring is one of their least preferred tasks with a 2,85% response rate, whereas
initial contributions consist of refactoring tasks for 24,3% of the total sample population.
Analysis of this difference related to refactoring is identified when comparing many refac-
toring first commits and the answers within the survey. Respondents indicate they believe
that refactoring is a complex task which requires knowledge of the codebase and is not a
task usually done by newcomers that have not been exposed to the codebase. This is in con-
trast with first commits related to refactoring, of which many perform small optimizations
that appear to have a local effect, such as refactoring a for-loop into a lambda expression or
changing a component to employ feature introduced in a new release of a programming en-
vironment, such as converting output to a stream in Java. Developers appear to overestimate
the difficulty of refactoring to newcomers and do not appear to understand that refactoring
can consist of smaller tasks.

Alternatives to Good First Issues Despite aiming to identify alternatives to good first is-
sue labelling, the majority of the respondents indicate that they would utilize issue labelling
to some degree, with 53,57% stating outright they would keep the recommendation system
as a label. One project maintainer mentioned that they would include effort and impact
labelling instead of only good first issue labelling, raising the concept of effort and impact.
If newcomers can be informed not only of a task’s difficulty but also the desirability of
that task’s completion within a repository and the expected effort, that would increase the
likelihood that newcomers are willing to perform certain tasks, according to developers.
Another 25% of the respondents indicate they would prefer labelling, but within a docu-
ment. This may provide the ability to allow for more nuance than within an issue, such as
adding additional labels or components that Github does not support.

68

4.7. Effectiveness Assessment of Good First Issues

Feature Value Percentage

Good First Issues taken by Newcomers 279 45%
Good First Issues taken by Existing De-
velopers

340 54,9%

Total 619 100%

Table 4.21: Numerical results of the sampled issues and their completion status weighted to
remove deprecated or incomplete good first issues.

Beyond these alternatives, developers indicate they would appreciate more social meth-
ods of task recommendation, such as by being referred to an existing developer in the
project. This would allow the newcomers to gain insights and a contact within the code-
base, increasing the likelihood that they will be able to get help when they need it. Addi-
tionally, 7,14% of respondents indicate they want social media of a project to be utilized.
Novice developers might be more likely to join and contribute to a project if their social,
non-developer channels also help newcomer developers to join the project. Only 7,14% of
respondents indicate they would not do any labelling.

4.7 Effectiveness Assessment of Good First Issues

To identify the overall effectiveness of good first issues, an assessment must be made of
the data and analysis results obtained in previous sections of this chapter. To assess the
effectiveness, data related to newcomer adoption of good first issues is assessed in Section
4.7.1, a numerical assessment of good first issue effectiveness is given in Section 4.7.2,
developer experience assessment is taken into account in Section 4.7.3, and the survey’s
findings are assessed in Section 4.7.4.

4.7.1 Issues taken by Newcomers

The number of issues that have been indicated as good first issues and sampled that were
taken by newcomer developers was 32,5%, but this includes deprecated and closed issues
that were either not completed or implemented. When considering only implemented com-
mits as shown in Table 4.21, 45% of good first issues are implemented by newcomer devel-
opers. This means close to half of the implemented good first issues are taken by newcomer
developers. When considering sample constraints, such as there likely being more good
first issues than there are developers and that certain tasks might be tied to a time constraint
meaning they will be completed at some point irregardless of completion status, it helps
to assess why certain tasks end up being performed by non-newcomer developers. With a
fulfillment rate of 45% of the sample population, the tasks suggested for good first issues
appear to be suitable for newcomers.

69

4. RESULTS AND ANALYSIS

4.7.2 Numerical Good First Issue Effectiveness

When considering the numerical data as presented in Sections 4.1 and 4.2, the matches be-
tween the distribution of first contributions and good first issues can be compared. As shown
in Figure 4.1, the distributions between issues and commits contain a somewhat similar
structure, but there are significant label mismatches for bug fixing, documentation, and fea-
ture enhancement classifications. This suggests that good first issues related to those three
labels are not being accurately assigned, and that less bug fix-related and feature enhance-
ment-related tasks should be assigned to new developers, and that documentation related
tasks warrant more assignees for a good first issue. When it comes to the remaining labels,
the rate of good first issue suggestion matches with the rate at which first contributions are
being made by newcomers.

As a result, when it comes to the effectiveness of the suggested issues, it seems that
the types of tasks being recommended to newcomers only partially match the actual trends
identified. Good first issues can be improved upon by re-evaluating the number of bug
and feature enhancement tasks assigned to newcomers, and by increasing the number of
documentation related tasks being suggested to compensate.

4.7.3 Good First Issues Effectiveness by Experience

A focus for good first issues should be to attract developers with little to no experience.
Within the context of having analyzed the novice developer category, it appears that the
suggested good first issues as discussed in Section 4.7.2 feature the same shortcomings re-
garding their classifications as the overall dataset. Novice developers have a tendency to
prefer documentation related changes, but also appear to have a bias towards testing related
changes. To further improve the effectiveness of good first issues for newcomers, additional
testing related issues should be created within a project, and the suggestions regarding the
balance between documentation and bug fixing or feature enhancement categories as sug-
gested in Section 4.7.2 need to be adopted.

4.7.4 Developer Indicated Good First Issue Effectiveness

Developers appreciate the existence of good first issues and utilize them to identify good
first issues. Developers do believe that assigning refactoring related tasks to newcomers
is not to be done, whereas numerical data suggests that refactoring work is suitable for
newcomers. It can be suggested that assigning simple refactoring tasks to newcomers in the
form of good first issues would be recommended to reflect the actual contributions versus
the perceived contributions. Additionally, developers suggest that good first issues indicate
effort and impact upon the project, and employ additional non-technical social means of
onboarding developers, such as by assigning a mentor for a good first issue or advertising
tasks through social media.

70

Chapter 5

Discussion

The discussion section aims to analyze and identify possible shortcomings and issues re-
lated to the research methods proposed in Chapter 3 and the results obtained in Chapter 4.
Limitations exist within the boundaries of the conclusions that were made that could pos-
sibly threaten the validity of the research, and by stating these and assessing their impact
the validity of the conclusions can be considered. The limitations related to the dataset are
described in Section 5.1, numerical data issues are discussed in Section 5.2, and the analy-
sis’ limitations are considered in Section 5.3. The survey is assessed in Section 5.4. Finally,
threats to validity are given and evaluated in Section 5.5.

5.1 Limitations Related to Dataset

When considering the dataset generated for this research, an evaluation of aspects of the
dataset can help to place conclusions within a certain scope or range. Assessing its validity
requires an analysis of the sample size, as given in Section 5.1.1, and an assessment of its
representativeness when considering a wider array of repositories, as done in Section 5.1.2.
Additionally, shortcomings and a reflection upon the sampling procedure is given in Section
5.1.3.

5.1.1 Sample Size

A limitation with the research work done is the limited sample size that was utilized for
the data set. The data set that was generated and sampled consisted of 105 repositories,
of which 46 were utilized for sampling. A total of 301.380 issues were sampled, of which
4.792 were good first issues. Regarding the number of commits, a total of 1.465 commits
were sampled. As per the 2019 Github year in review, the platform contains more than 40
million repositories, had at least 87 million commits within pull requests, and contained
20 million active issues1. When put into perspective over at most 0,0000026% of existing
repositories, the total number of issues sampled represent at most 0,000015% of the total
issue base, and the commits sampled represent at most 0,000055% of the total commits on

1Additional data available at: https://octoverse.github.com/#community-overview

71

https://octoverse.github.com/#community-overview

5. DISCUSSION

Github. The sample size is, as a result, relatively small compared to the total possible base
of samples in existence. Due to the large diversity existing within the types of software
development that are created (on Github) and the differences that occur between each of
these domains, the generalizability of the research could be harmed by the small sample
size. If a sample population was obtained which due to its small size had accidentally
obtained an outlying group, that would impact and, to a degree, act as a threat to the validity
of the findings of this thesis work.

To account for the small sample size of this research, an effort was made to ensure that
the dataset obtained was representative as discussed in Section 5.1.2 and to ensure that the
methodology employed as outlined in Chapter 3 consists of procedures guaranteeing equal
opportunity for all data to be sampled. This equality was ensured by employing random-
ization in chosen samples, resulting in each sample obtained of having had a probability of
1
n of being selected, in which n consists of the total number of issues or repositories within
a project. This guarantees that no form of bias entered the sample selection procedure,
thereby ensuring greater generalization of results. This focus on generalization means the
results from this thesis work can be applied with a greater generality to the larger popula-
tion. By accounting for this small sample size and ensuring that equal opportunity sampling
exists within all mined data, the generalizability of this work increases. Therefore, the sam-
ple size should be considered when drawing conclusions from the the findings of this work,
but not void them.

5.1.2 Representativeness of Dataset

Within the field of software development there are many domains which each have their own
expectations, development styles, and domain requirements. Some examples of domains
consist of web development, game development, financial domains, and medical software.
These domain-specific attributes can have an effect on the practices within a repository, and
can thus possibly affect the way in which issues are created, the type of first contributions
made, and even influence developer perception of related components within a project. Due
to the limited dataset size, a possibility existed that the repositories sampled and obtained
for analysis would be biased towards a certain domain. This would, in turn, reduce the
generalizability of the findings of this report. As a result, this aspect of the dataset was
given special attention.

To ensure that a broad spectrum of project and domain types was represented, the de-
cision was made as shown in Section 3.1 to obtain sampling repositories from multiple
sources. The Github trending page provided opportunity-sampled repositories, but was li-
able to bias, since a clear preference could be seen to projects within the web development
domain. As a result, additional samples were obtained from the most popular projects given
in StackOverflow’s 2019 developer survey, which contained a number of popular projects
that were not within the web development domain. When analyzing the repositories sam-
pled as shown in Table 5.1, it can be seen that this combination of sampling techniques
yielded a diverse set of domains within the sample base, but with some clearly dominating
domains. Of the 105 repositories, 19 were focused on application development, a category
relating to repositories that assist developers in doing development-related tasks that do not

72

5.1. Limitations Related to Dataset

Domain Type Instances Percentage

Application Development 19 18,10%
Web Development 17 16,19%
Machine Learning 11 10,48%
Educational 8 7,62%
Database Technology 7 6,67%
User Interface Design 6 5,71%
Administration Software 5 4,76%
Anti-Censorship/Firewall Evasion 3 2,86%
Crawling 3 2,86%
Data Analysis 3 2,86%
Distributed Data Storage 3 2,86%
Software Testing 3 2,86%
Integrated Development Environment 2 1,90%
Mobile Development 2 1,90%
Operating System 2 1,90%
Search Engine 2 1,90%
Academic Research Repository 1 1,00%
Artificial Speech System 1 1,00%
Cloud Computing 1 1,00%
Content Management System 1 1,00%
Game Development 1 1,00%
Illegal Cracking / Jail-breaking 1 1,00%
Mathematical Software 1 1,00%
Provisioning Software 1 1,00%
Reader 1 1,00%

Total 105 100%

Table 5.1: Numerical results of the sampled issues and their completion status weighted to
remove deprecated or incomplete good first issues.

fit in other categories. Web development continues to dominate the repositories distribution
with 17 instances, or 16,19%, with machine learning trailing it by 10,48%. Educational,
database, and user-interface based repositories trail, followed by domains such as mobile
development, software testing, data analysis, game development, and crawling domains.
The domain pool of the sample set even includes illegal activities, such as a jailbreaking
repository and anti-censorship or firewall evasion, often focusing on evading the restric-
tions enforced by the legislature known as the Great Firewall of China.

73

5. DISCUSSION

Based upon the data presented in Table 5.1, the dataset covers a large number of do-
mains and appears to be representative for a larger software development population. Major
domains such as general software development and web development are represented, as are
education and machine learning. Larger and less known categories, such as operating sys-
tem development, game design, and mathematical software are also represented. It should
be noted, however, that there is still a dominance by the web development and machine
learning domains, which should be taken into consideration when drawing conclusions from
this research.

5.1.3 Sampling Procedure

Upon reflection, the sampling procedure can be improved to ensure a larger number and
a more diverse subset of repositories could be obtained. Although this research purposely
limited itself to Github, additional Git hosting providers should be considered in future re-
search. These providers can include public Gitlab2 repositories or public Bitbucket3 reposi-
tories. There is no reason to believe that significant differences would exist between hosting
providers, and this would provide a larger number of data sets for analysis and sampling.
During the initial obtaining of data, it was seen that many repositories that did not employ
Good First Issues on Github would use them within mailing lists or upon other platforms.
This was especially the case for Apache’s4 projects, which feature communication and task-
assignments that take place off of the Github platform and usually among their self-hosted
alternatives.

Additionally, to increase reproducibility, the sampling methodology should rely on
static documented resources. The disadvantage of utilizing the Github trending repositories
category is that no manner exists to verify whether the repositories indicated are correct.
When considering the ability to reproduce the findings of this research, static resources
(such as StackOverflow’s developer surveys) should be employed. This removes the oppor-
tunity or time-limited aspect of the research, thereby increasing reproducibility.

5.2 Limitations Related to Numerical Data

The dataset was utilized for sampling as outlined in Sections 3.1.2 and 3.1.3, which brings
additional limitations within the research that must be assessed. These limitations can be
considered when drawing conclusions, since the numerical data have the ability to pose as a
threat to validity by undoing the measures taken within the sampling procedures discussed
in Section 5.1, thereby negatively impacting the research work. To assess the limitations
of numerical data, a discussion about the weight of individual repositories for sampling
is given in Section 5.2.1, whereas an automatic sampling procedure is outlined in Section
5.2.2.

2Website can be found at: https://about.gitlab.com/
3A list of public repositories can be found at: https://bitbucket.org/repo/all
4Website can be found at: https://www.apache.org/

74

https://about.gitlab.com/
https://bitbucket.org/repo/all
https://www.apache.org/

5.2. Limitations Related to Numerical Data

Figure 5.1: Overview of the sampled commit distribution and the sample’s commit popula-
tion per repository.

5.2.1 Weight of Individual Repositories

The sampling procedure relies on a maximum of 30 samples being taken for both issues and
commits from each available repository, as to allow the analysis phase to be manageable due
to its requirements for manual analysis. This raises the issue in which larger repositories
can dominate smaller repositories, possibly impacting the generalizability. If a small subset
of repositories dominates the obtained sampling then the analysis can only be applied to
those categories of repositories. To investigate this, a pair of repository impact assessment
charts was created as shown in Figure 5.1 for commit distribution and Figure 5.2 for issue
distribution, which aimed to identify whether this repository domination took place within
the sample population.

When considering the commit population, no repository appears to be dominating in
any form, with a relatively equal distribution taking place among all repositories. The only
projects that are dominated are Cordova, Leon AI, and DeepSpeed, which are a diverse

75

5. DISCUSSION

Figure 5.2: Overview of the sampled issue distribution and the sample’s provided issue
population per repository.

set of dominated repositories, meaning the findings of Section 5.1.2 could still hold. On
further inspection, however, it can be calculated that a significant statistical difference exists
between the populations, with a p-value of 0,00088. As a result, the commit sampling is
biased towards larger projects.

For the sampled issues, there is a greater level of variance. A total of 14 repositories
are dominated, consisting of the Express, Cordova, DeepSpeed, Front-End (Performance)
Checklist, CSS Working Draft, PowerToys, Animate.CSS, JSON for C++, Org-Roam, Leon
AI, Playwright, CleanArchitecture, Node Best Practices, and Unform projects. It should
be noted that most of these repositories are smaller projects, with a small number of con-
tributors. This results in a domination factor of 30,43%, indicating that the sampled good
first issue population is biased towards larger projects and repositories. This is reinforced
further when considering a perfectly distributed population of 46 projects containing 30
sample points each versus the actual sample population, a p-value of 0,000521 is obtained,
indicating that the difference is statistically significant.

76

5.3. Limitations Related to Analysis

As a result, it must be stated that the thesis research cannot be generalized for the com-
mit or issue results, as the sample and analyzed population is biased towards larger projects
and repositories. It is possible that this influenced the data, since larger projects may have
tendencies and processes that effect developer onboarding, possibly causing differing re-
sults, and are not generalized as a result. To alleviate this, the sampling work would have
to be done again, and a proportion of commits and issues should be obtained per repository.
That is, instead of selecting a fixed number of issues and commits per project, a proportion
1
n of commits and issues should be taken based on the repository size. In this proportion, n
could represent the number of contributors, the number of commits, or another size-based
indicator that could discriminate based upon project size.

5.2.2 Automatic Randomized Selection of Commits and Issues

During the sampling of numerical data, a random number generator was outlined as stated
in Section 3.1 which generated a set of numbers, indicating commits and good first issues
that had to be sampled. These would then be manually obtained from the output CSV
files as shown in Figure 3.4. This was a time-consuming process, and although it was done
manually with the purpose of verifying the data mining, it was time that would have allowed
additional repositories to be sampled and analyzed.

It would be beneficial for any future instances of this research to extend or optimize
the scripts developed for this research to do the random selection themselves. This would
prevent costly time from having to take place to relocate the sample population into their
own CSV files.

5.3 Limitations Related to Analysis

The analysis of this thesis report contains the majority of the findings and proposed con-
clusions regarding good first issues. This procedure must be analyzed to not only evaluate
its generalizability and the validity of its conclusions, but also to identify factors that may
influence the outcome of any repeated experiments related to these findings. An explana-
tion and justification of the significance value of 0,01 is given in Section 5.3.1, whereas the
manual workload for the analysis is evaluated in Section 5.3.2. An indication of the limited
adaptation possibilities of the dataset is given in Section 5.3.3.

5.3.1 Significance Value of 0,01

The decision was made to utilize a significance value of 0,01 to determine statistical signif-
icance for multiple analyzed components as opposed to using the standard 0,05 statistical
significance value. A significance value of 0,05 is often chosen as part of a tradition within
research [8], and a better justification than “tradition” should be used. Notions exist which
favor the selection of a significance level that matches the effects of a type I or II error [27],
and this seems like a fairer criteria to identify a possible significance level. The effects of
a type-I error would have a negative effect on this research, but may be considered to be
somewhat negligible, since a rejection of an existing correlation can allow it to be identified

77

5. DISCUSSION

through other research. The focus must be placed on the prevention of a type-II error occur-
ring, in which a correlation is identified without it actually existing. For this research, that
would lead to changes being suggested for good first issues and developer onboarding that
would lead to less effective newcomer assistance, a fact which must be avoided. It should
also be stated that although this would be a negative consequence it cannot be classified
as “dangerous,” as is possible within medical hypothesis testing. Based upon the findings
in the aforementioned works, and based on personal quantification, a decision to utilize a
significance value of 0,01 is therefore justified. It prevents incorrect conclusions from be-
ing made, but does not discard possible associations to the degree that may be required for
medical or financial research.

An additional reason for the selection of 0,01 as a significance level relies around the
closely coupled nature of this research. Many classifications presented in the taxonomy
feature concepts deriving from the computer science domain, specifically software devel-
opment. There may be a natural tendency for these to be correlated from the onset, possibly
leading to findings that are too general to be conclusive. Thus, selecting a smaller sig-
nificance value of 0,01 is beneficial to ensure that findings are likely to be due to actual
relatedness, and not due to a tight coupling or domain-implied relevance. Possible improve-
ments in this front could include changing the significance value to 0,001 or 0,0001 to see
if the findings still hold.

It should be noted that a significance value of 0,05 would have changed the outcome
of certain components of this research as shown in Table 5.2. For the direct classification
comparison between good first issues and commits, the refactoring label would have been
deemed statistically relevant as indicated in Table 4.6, which would have allowed refactor-
ing tasks to be considered for additional good first issues. Within the analysis of the label
combinations, the results in Table 4.15 indicate that refactoring for the novice-intermediate
and novice-experienced categories would become statistically significant, possibly explain-
ing the label that loses contributions to the advantage of the documentation label. It would
also have caused the new feature label difference between novice-experienced levels to be-
come significant.

5.3.2 Manual Workload for Analysis and Automation

A significant limitation of the scope of this research was caused by the manual workload
required to analyze each repository. The decision was made to select 30 issues and 30
commits for each repository, if available, and manually categorize them according to the
taxonomy introduced in Sections 3.2.2 and 3.2.3. Additionally, each issue and commit
sampled was verified manually to ensure that any additional information, such as emerging
labels or possible explanations for anomalies, could be identified. This meant that each
repository required 60 manual comparisons to be made, in which certain components of
the analysis were more time consuming than others, such as the identification of a pull
request related to a good first issue or anomalies within an issue itself. This procedure
was the reason for the small sample size of the research, and could have been improved by
increasing automation on a few points.

The identification of a pull request that is associated to a good first issue did not have to

78

5.3. Limitations Related to Analysis

Criterion and Associated
Table

p-Value 0,05
Signifi-
cance?

0,01
Signifi-
cance?

Refactoring Difference
(4.6)

0,016234 Yes No

New Feature Novice-
Experienced (4.15)

0,018 Yes No

Refactoring Novice-
Intermediate (4.15)

0,044 Yes No

Refactoring Novice-
Experienced (4.15)

0,0153 Yes No

Table 5.2: Aspects of the research and their p-values that would have varied if a significance
level of α = 0,05 or α = 0,01 was chosen.

be done manually, as the Github API provides means of identifying pull requests associated
with a specific issue. During manual inspection, it was seen that most good first issues
either had an empty associated pull request field, indicating the issue was not implemented
into the codebase, or an association. This would have saved a lot of time, although the
manual verification of links was not without reason. During analysis, it was found that the
Github API would often associate an incorrect pull request with an issue, possibly leading
to incorrect data points for consideration. However, as a starting point, future work should
consider directly mining associated pull requests for speedier analysis.

Additionally, the ability to directly analyze pull requests is also provided by the Github
API. This could have been utilized to obtain an automatic association between good first
issues and their associated pull requests, and allow for an additional dimension to be added
to the thesis work. However, after experimentation with the pull request components of the
API, it was found that they were faulty and unreliable. Multiple pull requests sampled were
found to contain links to incorrect pull requests (meaning the title of the sampled request
didn’t match the link or its contents), and some pull requests were found to be cast as issues
as stated within the API. This increase the likelihood of a certain good first issue being
sampled multiple times, once as a pull request, and once as an issue. As a result of this lack
of reliability from the API, the manual analysis was warranted, but if the API is improved
or a more reliable method can be identified, the process can be sped up significantly.

The largest removal of manual workload would have been to identify a manner in which
the taxonomy could be applied automatically. Within the Github API the ability to sample
the labels array is available for each issue and commit, possibly allowing for automatic ap-
plication of the taxonomy. It was found during manual analysis, however, that the taxonomy
utilized within this research differed from how certain repositories and projects would use
their labels. Some repositories state that a bug fix can be a refactoring, whereas the act of
refactoring would fall within its own label in this taxonomy. To account for these differ-
ences, a manual analysis of the keywords within the taxonomy was warranted, but this was

79

5. DISCUSSION

the most time consuming component of the analysis.

5.3.3 Adaptation of Analysis

The analysis relies on the taxonomy introduced within Sections 3.2.2 and 3.2.3, and the
analysis that was performed is focused on identifying the labels for each of the good first
issues and first commits from developers. Although this taxonomy helps identify factors
related to this research, the taxonomy is limited in scope and prevents the analysis from
being useful beyond the purpose of this research and directly related work. A broader
taxonomy or analysis could have provided additional data that might help future related
work, and the analysis’ limited scope must be stated. However, for the purpose of this
research, the analysis’ scope and use of taxonomy sufficed.

5.4 Limitations Related to the Survey

The survey that was sent to developers whose work was sampled for either a good first
issue or a first commit contains a number of limitations that must be considered both for
the drawing of conclusions and to understand its purpose. The goal of the survey was not
necessarily to be a numerical evaluation, but to identify information and aspects related to
good first issues that were not derivable from numerical data. To this extent, the limitations
emerging from the sample size are discussed in Section 5.4.1, and the bias from sample
attributes and respondent experience is given in Section 5.4.2.

5.4.1 Sample Size

The total sample size of the survey was 22 after correcting for a non-serious respondent
with a response rate of 4,09%. This sample size is, as a result, very limited both in terms
of the scope of the research and in terms of the developer population as a whole. Thus,
the results provided by the survey cannot be seen as representative, and in context of the
numerical data, are much less representative. However, the focus of the survey was to
obtain insights from developers that were not related to numerical aspects. As a result, the
sample size for the survey does not invalidate the findings, since the numerical components
can be derived from additional data, and the findings from the survey exist to complement
the other findings, and do not serve as the main focus of research.

If numerical data from the survey is to be considered for conclusions related to good
first issues, a larger sample size must be obtained. This can act as a window for future
work.

5.4.2 Sample Experience and Attributes

To conform to the ethical requirements as stated in Section 3.3.3, no personal or identifi-
able information was obtained from survey respondents. However, when considering the
distribution of developer experience as shown in Section 4.5 and given in Table 4.11, it
can be stated that the survey’s respondents were more likely to be developers with some

80

5.5. Threats to Validity

form of prior experience under the experienced category. Based upon the results given and
the answers given by certain individuals, a few of whom had the perspective of a project
integrator, these assumptions are further reinforced.

As a result, the survey results should be interpreted differently with a focus on un-
derstanding that experienced developers gave additional insights, not the larger developer
population. Reformulating the results as presented in Section 4.6 to acknowledge this can
help place them into the appropriate perspective and prevent nullification of these findings
due to sample bias.

5.5 Threats to Validity

Threats to validity can influence the extent to which the conclusions of the findings outlined
in Chapter 4 can be applied. Accounting for these threats to validity and identifying possible
points of improvement can help indicate areas for future research or possible weaknesses
in the methodology. To account for these issues, construct threats are discussed in Section
5.5.1, internal threats are discussed in Section 5.5.2, and external threats to validity are
discussed in Section 5.5.3.

5.5.1 Construct Threats

Construct threats to validity are related to incorrect measurements or test methodology.
These threats can decrease the validity of the identified conclusions or yield incorrect re-
sults.

The taxonomy that was created for this research was built and constructed to be as
broad as possible, but was constructed for this research. As a result, the metric obtained
for the taxonomy are limited to only this research and are not generalized from a broader
framework. Despite the best efforts to make this framework as broad as possible, disagree-
ments are possible among certain categories for the analyzed classifications. This may yield
differing conclusions between reproducers of this research. To accommodate this, the re-
search should be repeated in its current state by others, while also having the research be
repeated with existing categorization frameworks or taxonomies, such as domain-specific
taxonomies [49] or the Buckley taxonomy [4].

The decision to utilize a significance threshold of 0,01 was outlined in Section 5.3.1
resulted in multiple conclusions being declared as insignificant, as their p-value was greater
than 0,01 but less than 0,05. Had it been decided to utilize a greater value, the conclu-
sions would be different. To accommodate for this, the identified p-values are given in the
tables in Chapter 4 such that any possible disagreement considering the significance thresh-
old decision justified in the aforementioned section can draw the conclusions under those
assumptions.

5.5.2 Internal Threats

Internal validity refers to the extent to which the cause-effect relationships identified in this
thesis research are valid. If these relationships are not valid or cannot be generalized, the

81

5. DISCUSSION

conclusions that can be drawn from this research are weaker.
Due to the manual time and complexity constraints outlined in Section 5.3.2, a set of

at most 30 good first issues and 30 first commits were analyzed per repository, adding a
degree of randomness to the analysis. Although this randomness and the number of sampled
content should be sufficient, it makes reproducing the research difficult as it is difficult to
get the exact same sample. To alleviate this concern, two lists consisting of sampled issues
and commits were created and provided publicly to allow anyone to validate and reproduce
the findings of this research5.

Many of the conclusions and identified relationships within this research relied on a
small sample size and had to be validated for statistical significance to accommodate for
this. By employing association rule mining and by determining the significance through
both effect weighting and the employment of Mann-Whitney U testing, these limitations
were considered and put into perspective. As a result of these tests, multiple possible out-
comes were invalidated or nullified due to a lack of significance or a lack of effect. This
helped place the findings into the required perspective and helped ensure that conclusions
derived from the research are representative and not a result of a small sample size.

5.5.3 External Threats

External threats to validity consist of issues related to the representation and generalizabil-
ity of the study. These may cause the overall representativeness and applicability of the
identified conclusions to be limited.

When considering the sample set as outlined in Section 5.1.1, the size of the dataset was
small due to time constraints. To account for this, random sampling was utilized with the
goal of still creating a representative dataset. Future research should focus on repeating this
research with a larger set of repositories to identify whether conclusions still hold for a larger
dataset. Additional effort was made to ensure the dataset was representative and not biased
towards a single domain or sub-domain as outlined in Section 5.1.2, but future research
should be done to ensure conclusions hold and, if new domains were to emerge within
programming or computer science, to see if these conclusions extend to those domains.

The platform upon which the research was done was limited to Github due to both time
constraints and due to the application of issues upon the platform, meaning it cannot be
stated that good first issue adoption rate and completion are identical on other platforms.
Some work was done to identify good first issues upon external and self-hosted platforms,
but not to a degree that provides certainty that the research can be generalized. Future work
should consider alternative platforms to ensure that the research can be generalized to the
software development community as a whole.

As indicated in Section 5.2.1, this research is biased towards larger projects and repos-
itories due to a larger sample of good first issues and first commits being taken per project.
This can result in the results being valid for only larger projects, but falling short or not
being upheld when analyzing smaller repositories and projects. To improve this for fu-

5Lists can be found at: https://github.com/dalderliesten/Good-First-Issue/tree/master/Ana
lysis

82

https://github.com/dalderliesten/Good-First-Issue/tree/master/Analysis
https://github.com/dalderliesten/Good-First-Issue/tree/master/Analysis

5.5. Threats to Validity

ture research, a ratio should be utilized of sampled and analyzed content per repository as
opposed to a fixed upper limit.

83

Chapter 6

Conclusions and Future Work

This chapter contains the conclusions of the thesis research based upon the results found in
Section 4 and the evaluation over those results provided in Section 5. The conclusions and
findings drawn from this research based upon the research questions introduced in Section
1.3 are given in Section 6.1, suggestions based upon these conclusions are given in Section
6.2, and suggestions for possible future work are given in Section 6.3.

6.1 Findings

To study the usefulness of good first issues and to identify areas of improvement that were
possible, repositories were analyzed and their associated data were mined such that an as-
sessment could be made of the impact of good first issues upon developer onboarding. A
number of research questions ranging from adoption rate to developer perception were in-
cluded to achieve this goal. Based upon the sampling work done, it was found that out of
105 repositories a total of 46 utilized good first issues, indicating an adoption rate of 43,8%.
For each of the 46 sampled repositories the total body of good first issues was also mined
and stored, indicating that a total of 4.792 good first issues existed across 46 repositories.
The total body of issues found within the sampled projects amounts to 301.380, indicating
that good first issues represent 1,5% of the total issue population. These findings suggest
that good first issues see widespread adoption and are a known and well-employed method
of onboarding new developers to a project.

RQ1 - Result
What percentage of projects within the Github ecosystem employ good first is-
sue labels for their issues?

Based on the sampling methods utilized, 43,8% of repositories & projects on
the Github platform utilize good first issues as a label for newcomer task rec-
ommendation.

RQ2 - Result
What percentage of issues within repositories are labelled as good first issues

85

6. CONCLUSIONS AND FUTURE WORK

out of the total number of issues?

Based on the samples obtained, good first issues represent 1,5% of the total
issue set on Github.

Furthermore, an analysis was made in which manual application of a taxonomy was
done towards at most 30 individual good first issues per project to identify the types of
tasks that are suggested for newcomers by project maintainers and staff. When considering
the types of tasks that are suggested as good first issues, it was found that 29,2% of good
first issues focus on the fixing of bugs and issues that cause unintended behavior, 24,2% of
good first issues require a developer to contribute an enhanced feature to the project that
extends existing functionality, 19,9% consist of refactoring-based contributions that change
the codebase to provide greater efficiency or easier maintainability, and 18,5% of good first
issues focus on the creation or editing of documentation within a project. Additionally,
12,7% of good first issues recommend a newcomer developer a new feature that does not
yet exist within the codebase, and 8,7% of good first issues recommend that newcomers
perform tasks related to testing. This indicates that project maintainers and those carrying
the responsibility for good first issue recommendation see bug fixes, feature enhancements,
and documentation as suitable tasks for newcomers.

RQ3 - Result
What types of tasks and issues are generally recommended as good first issues?

Within the sample population, the most recommended tasks for newcomers in
the form of good first issues consist of bug fixes with 29,2%, feature enhance-
ments with 24,2%, and documentation with 19,9%.

In addition to the types of tasks developers were completing, an analysis was done
to identify the rate at which good first issues were completed by newcomers as opposed
to existing developers. It was found that of the 858 good first issues sampled, 279 were
completed by new developers, whereas 340 were completed by existing developers of a
project. 239 good first issues were not completed or deprecated. When accounting for
the deprecated issues, a total of 45,07% of good first issues are completed by newcomer
developers, indicating a high percentage. This suggests that good first issues are used and
are effective at onboarding new developers, considering that almost half of them are taken
by newcomers.

RQ4 - Result
Do new developers complete the tasks labelled as good first issues?

When weighting for completed tasks, 45,07% of good first issues are com-
pleted by developers that are new to a project.

The aforementioned issue analysis was repeated for a set of 30 sampled initial con-
tributions for a developer per project to identify what types of tasks new developers have

86

6.1. Findings

a tendency to contribute. The types of tasks that were found to be contributed most of-
ten were documentation-related tasks consisting of 35,1% of the total share, followed by
refactoring contributions at 24,3% and bug fixes at 21,3%. Newcomers would enhance a
feature in 17,1% of the initial contributions, with entirely new features being contributed
at 10,8% of the time. The lowest category assigned to first contributions was the testing
label at 5,3%. When comparing these contributions to the labels applied to tasks, there is a
significant difference between the bug fix, documentation. feature enhancement, and test-
ing labels. Analysis indicates that documentation and refactoring contributions occur more
often than their associated labels, whereas bug fix and feature enhancements are suggested
more often than they are contributed. Combinations of labels were also studied, finding that
although good first issue labelled tasks did not have combination tendencies, commits and
contributions by newcomers featuring a bug fix, refactoring, or a feature enhancement were
likely to also include testing related contributions.

Additional analysis was done into the effect of developer experience upon the initial
contribution that is made to a project. Findings indicate that developers with more than
a year of experience tend to show no significant deviation for any certain taxonomy label
for their first contribution, but novice developers with less than a year of experience were
found to favor documentation related tasks for their initial contribution, a difference that
was found to be statistically significant. Although no statistically significant difference was
found in other categories, findings suggest these documentation contributions for novice
developers come at a cost of new feature and refactoring related contributions.

RQ5 - Result
What types of contributions are made by newcomer developers within a project?

Within the sample population, initial contributions to a project by newcomers
consist mostly of documentation related changes at 35,1%, refactoring-based
changes at 24,3%, or bug fixing contributions at 21,3%. When a contribution
is related to a bug fix, refactoring, or feature enhancement it is also likely to
contain some form of testing. Developers with less than a year of develop-
ment experience were found to disproportionately favor documentation-based
contributions for their initial commit.

To investigate the developer perception of good first issues and task labelling for new-
comers, a survey was sent out which yielded a perceptive numerical usefulness value from
a developer viewpoint of 70,45, indicating that developers find good first issue labelling
and newcomer task suggestion to be a worthwhile endeavour. Approximately half of re-
spondents that contributed through a good first issue indicated that they utilized good first
issues to select their first task, with many developers that did not employ them stating that
external requirements often drive their initial contribution, and not suggested tasks. When
questioned which alternatives could be used to good first issues, developers mostly reiterate
labels as being an effective means at 53,57%, followed by a suggestion to utilize a README
document at 25%, indicating developers do find newcomer task suggestions to be useful.

87

6. CONCLUSIONS AND FUTURE WORK

RQ6 - Result
How do (new) developers perceive the labelling of good first issues and their
usefulness?

Developers rate good first issue utilization within a project with an average
score of 70,45. Developers state that contributions to a project are usually
driven by external requirements or personal interests, and not necessarily task
suggestion.

When considering these individual components, it can be stated that the good first issue
label is effective at indicating tasks within a software project that are suitable for newcom-
ers, but that there is room for improvement by performing additional vetting of the task
types according to the discrepancies in the taxonomy. Overall, good first issues appear to
help onboard new developers to projects and to point them in the direction of suitable tasks.

MRQ - Result
Is the good first issue label effective in indicating tasks within an open (source)
software project that are taken by newcomers?

Good first issues are effective at indicating tasks that are suitable for newcom-
ers, but adjustments need to be made when considering developer experience
and the type of tasks suggested to greater align them with newcomer prefer-
ences. Inexperienced developers would benefit from seeing a larger focus on
documentation related tasks. Overall, a larger focus should be placed upon doc-
umentation and refactoring related tasks, as these are contributed more often
by newcomers than they are suggested by good first issue labelled tasks.

6.2 Suggestions for Good First Issue Improvements

The findings given in Section 6.2 indicate a number of suggestions based off of this research
related to good first issues and newcomer onboarding. These suggestions can be adopted by
(open-source) repositories with the goal of increasing the rate at which newcomers join the
project, and to help with the selection of suitable newcomer tasks.

Good First Issue Utilization: Findings of this research indicate that good first issues
and task recommendation for newcomers works, with almost half of the tasks having been
completed by newcomers and developer perception of task recommendation being rated
with a score of 70,45. Projects and repositories that do not feature some form of newcomer
task recommendation are potentially seeing decreased level of developer onboarding, and
are encouraged to start utilizing good first issues.

Types of Task Labelled: When considering the types of tasks that should be labelled as
a good first issue, there is a discrepancy between the types of tasks that are labelled as good

88

6.3. Future work

for newcomers and actual newcomer contributions. Projects employing task recommenda-
tion or good first issues should aim to focus on tasks related to documentation or minor
refactoring labels to ensure a greater rate of developer onboarding through issue labelling.
Projects should also aim to provide less bug fixing and feature enhancement tasks in favor of
the aforementioned labels, as these tend to be contributed to a lesser degree by newcomers.

Increasing Initial Test Contributions: Projects and repositories that wish to see more
test related contributions from new developers need to couple these tasks with bug fix, refac-
toring, or feature enhancement tasks. The focus of these good first issues must rest upon the
bug fix, refactoring, or feature enhancement, as the test related contribution has a tendency
to be provided as a result of these contributions, not as an antecedent.

Increasing Novice Developer Onboarding: Novice developers were found to have a dif-
ferent initial contribution pattern than intermediate or experienced developers due to their
preference for documentation related tasks. Projects and repositories looking to increase
the number of novice developers, at which developers with little to no development expe-
rienced are referred to, should focus on creating additional good first issues that require a
documentation-related addition or change to be contributed.

Utilizing Social Media: Developers indicated in the survey that using external communi-
cation channels, such as social media, to communicate suitable tasks for newcomers. This
is already being done with the Twitter handle @goodfirstissue1, but could be adopted by
more projects. This would allow newcomers that may not be within the Git(hub) ecosystem
to participate and identify tasks they could contribute, possibly increasing the overall rate
of onboarding.

6.3 Future work

Multiple issues were identified in the evaluation as given in Chapter 5, and certain additional
angles of possible research were identified within the conclusions. This section aims to
provide a number of these alleys for future work.

Improving or Differing the Sample Set: The sample size and set for this research were
limited due to selection criteria. An improvement can be made by repeating this research
with a larger sample set, possibly by obtaining a randomized set of Github repositories and
utilizing more sources than only StackOverflow’s developer survey and the Github trending
page. The sample set for this research was also biased due to external occurrences, such
as the COVID-19 repositories taken for sampling. A better procedure can help increase
the applicability of the research. Additionally, attempting to reproduce the findings of this
research with a different dataset would help affirm its reproducibility. Another focus should
be placed upon re-sampling in which each repository or project contributes a proportion of

1Account can be found at: https://twitter.com/goodfirstissue

89

https://twitter.com/goodfirstissue

6. CONCLUSIONS AND FUTURE WORK

its good first issues and first contributions to be analyzed as opposed to a fixed limit of 30
each per project, as this was found to create a bias in favor of large repositories for this
research.

Additional Hosts: The research was limited to the Github platform, but additional public
free hosts for Git repositories exist, such as Gitlab and BitBucket. The research should be
repeated for these additional hosts to identify whether the trends and findings of this thesis
research apply generally or are more limited to the scope of Github.

Automated Analysis: The manual analysis utilized within this research required a signif-
icant time investment and prohibited a larger sample set from being studied within the given
time constraints. A large shortcoming within this research was the limited sample size for
both good first issues and commits, and these constraints were in place due to the amount of
manual labor required per issue and commit analyzed. If this process can be done automat-
ically, the research can be done to a sample size that is more representative. Additionally,
automatic analysis may identify certain relationships between developer or task aspects that
were not caught in this research due to the manual nature of the analysis.

Investigating Recurring Contributions: The focus of this thesis report was upon the
investigation of first contributions, but the consequences of the type of contribution made
was not investigated. Future research could attempt to identify whether a certain taxonomy
label or preference yields consequential results. For example, it may be found that novice
developers that make an initial contribution consisting of a new feature are more likely
to contribute testing related changes for their secondary or tertiary contribution. These
investigations can help identify whether projects and repositories might want to propose
certain tasks more often than others due to their domain. A repository that is in need of core
developers may then want to focus on contribution types that cause newcomers to make new
feature or feature enhancement contributions over time.

Studying Label Effectiveness: One assumption of this thesis work was that labelling is
effective at a global scope, focusing on identifying the effectiveness of good first issues
within the broader issue population. However, an interesting follow-up could be to identify
if task labelling is effective at all, effectively removing the focus on initial contributions.
Perhaps labelling does not correlate to increase contributions of those types of tasks, or
perhaps developers do not care for task labelling. This could help identify whether labelling
is a worth investment of time, and if alternatives need to be utilized. This type of research
could also help put this research work into a larger perspective, and could possibly act as an
extension to Labuschagne and Holmes’ [30] work.

90

Bibliography

[1] John Anvik and Gail C. Murphy. Reducing the effort of bug report triage: Recom-
menders for development-oriented decisions. ACM Trans. Softw. Eng. Methodol.,
20(3), August 2011. ISSN 1049-331X. doi: 10.1145/2000791.2000794. URL
https://doi.org/10.1145/2000791.2000794.

[2] Andrew Begel and Beth Simon. Novice software developers, all over again. In
Proceedings of the Fourth International Workshop on Computing Education Re-
search, ICER ’08, page 3–14, New York, NY, USA, 2008. Association for Com-
puting Machinery. ISBN 9781605582160. doi: 10.1145/1404520.1404522. URL
https://doi.org/10.1145/1404520.1404522.

[3] M. Beller, G. Gousios, and A. Zaidman. Oops, my tests broke the build: An ex-
plorative analysis of travis ci with github. In 2017 IEEE/ACM 14th International
Conference on Mining Software Repositories (MSR), pages 356–367, 2017.

[4] Jim Buckley, Tom Mens, Matthias Zenger, Awais Rashid, and Günter Kniesel. To-
wards a taxonomy of software change. Journal of Software Maintenance and Evo-
lution: Research and Practice, 17(5):309–332, 2005. doi: 10.1002/smr.319. URL
https://onlinelibrary.wiley.com/doi/abs/10.1002/smr.319.

[5] Casey Casalnuovo, Bogdan Vasilescu, Premkumar Devanbu, and Vladimir Filkov.
Developer onboarding in github: The role of prior social links and language ex-
perience. In Proceedings of the 2015 10th Joint Meeting on Foundations of Soft-
ware Engineering, ESEC/FSE 2015, pages 817–828, New York, NY, USA, 2015.
ACM. ISBN 978-1-4503-3675-8. doi: 10.1145/2786805.2786854. URL http:
//doi.acm.org/10.1145/2786805.2786854.

[6] Casey Casalnuovo, Bogdan Vasilescu, Premkumar Devanbu, and Vladimir Filkov. De-
veloper onboarding in github: The role of prior social links and language experience.
In Proceedings of the 2015 10th Joint Meeting on Foundations of Software Engineer-
ing, ESEC/FSE 2015, page 817–828, New York, NY, USA, 2015. Association for
Computing Machinery. ISBN 9781450336758. doi: 10.1145/2786805.2786854. URL
https://doi.org/10.1145/2786805.2786854.

91

https://doi.org/10.1145/2000791.2000794
https://doi.org/10.1145/1404520.1404522
https://onlinelibrary.wiley.com/doi/abs/10.1002/smr.319
http://doi.acm.org/10.1145/2786805.2786854
http://doi.acm.org/10.1145/2786805.2786854
https://doi.org/10.1145/2786805.2786854

BIBLIOGRAPHY

[7] Stefano Comino, Fabio M. Manenti, and Maria Laura Parisi. From planning to mature:
On the success of open source projects. Research Policy, 36(10):1575 – 1586, 2007.
ISSN 0048-7333. doi: https://doi.org/10.1016/j.respol.2007.08.003. URL http://ww
w.sciencedirect.com/science/article/pii/S0048733307001709.

[8] Michael Cowles and Caroline Davis. On the origins of the. 05 level of statistical
significance. American Psychologist, 37(5):553, 1982.

[9] Laura Dabbish, Colleen Stuart, Jason Tsay, and Jim Herbsleb. Social coding in github:
Transparency and collaboration in an open software repository. In Proceedings of the
ACM 2012 Conference on Computer Supported Cooperative Work, CSCW ’12, pages
1277–1286, New York, NY, USA, 2012. ACM. ISBN 978-1-4503-1086-4. doi: 10.
1145/2145204.2145396. URL http://doi.acm.org/10.1145/2145204.2145396.

[10] Marco D’Ambros, Harald Gall, Michele Lanza, and Martin Pinzger. Analysing Soft-
ware Repositories to Understand Software Evolution, pages 37–67. Springer Berlin
Heidelberg, Berlin, Heidelberg, 2008. ISBN 978-3-540-76440-3. doi: 10.1007/
978-3-540-76440-3 3. URL https://doi.org/10.1007/978-3-540-76440-3_3.

[11] Robert Dyer, Hoan Anh Nguyen, Hridesh Rajan, and Tien N. Nguyen. Boa: A lan-
guage and infrastructure for analyzing ultra-large-scale software repositories. In Pro-
ceedings of the 2013 International Conference on Software Engineering, ICSE ’13,
pages 422–431, Piscataway, NJ, USA, 2013. IEEE Press. ISBN 978-1-4673-3076-3.
URL http://dl.acm.org/citation.cfm?id=2486788.2486844.

[12] O. Elazhary, M. Storey, N. Ernst, and A. Zaidman. Do as i do, not as i say: Do contri-
bution guidelines match the github contribution process? In 2019 IEEE International
Conference on Software Maintenance and Evolution (ICSME), pages 286–290, 2019.

[13] F. Fagerholm, A. Sanchez Guinea, J. Borenstein, and J. Münch. Onboarding in open
source projects. IEEE Software, 31(6):54–61, Nov 2014. ISSN 1937-4194. doi:
10.1109/MS.2014.107.

[14] Brian Fitzgerald and Klaas-Jan Stol. Continuous software engineering and beyond:
Trends and challenges. In Proceedings of the 1st International Workshop on Rapid
Continuous Software Engineering, RCoSE 2014, page 1–9, New York, NY, USA,
2014. Association for Computing Machinery. ISBN 9781450328562. doi: 10.1145/
2593812.2593813. URL https://doi.org/10.1145/2593812.2593813.

[15] Andrew Forward and Timothy C. Lethbridge. The relevance of software documenta-
tion, tools and technologies: A survey. In Proceedings of the 2002 ACM Symposium on
Document Engineering, DocEng ’02, page 26–33, New York, NY, USA, 2002. Asso-
ciation for Computing Machinery. ISBN 1581135947. doi: 10.1145/585058.585065.
URL https://doi.org/10.1145/585058.585065.

[16] Matthieu Foucault, Marc Palyart, Xavier Blanc, Gail C. Murphy, and Jean-Rémy Fal-
leri. Impact of developer turnover on quality in open-source software. In Proceedings

92

http://www.sciencedirect.com/science/article/pii/S0048733307001709
http://www.sciencedirect.com/science/article/pii/S0048733307001709
http://doi.acm.org/10.1145/2145204.2145396
https://doi.org/10.1007/978-3-540-76440-3_3
http://dl.acm.org/citation.cfm?id=2486788.2486844
https://doi.org/10.1145/2593812.2593813
https://doi.org/10.1145/585058.585065

Bibliography

of the 2015 10th Joint Meeting on Foundations of Software Engineering, ESEC/FSE
2015, pages 829–841, New York, NY, USA, 2015. ACM. ISBN 978-1-4503-3675-8.
doi: 10.1145/2786805.2786870. URL http://doi.acm.org/10.1145/2786805.
2786870.

[17] Golara Garousi, Vahid Garousi-Yusifoğlu, Guenther Ruhe, Junji Zhi, Mahmoud
Moussavi, and Brian Smith. Usage and usefulness of technical software documen-
tation: An industrial case study. Information and Software Technology, 57:664 –
682, 2015. ISSN 0950-5849. doi: https://doi.org/10.1016/j.infsof.2014.08.003. URL
http://www.sciencedirect.com/science/article/pii/S095058491400192X.

[18] Marko Gasparic and Andrea Janes. What recommendation systems for software
engineering recommend: A systematic literature review. Journal of Systems and
Software, 113:101 – 113, 2016. ISSN 0164-1212. doi: https://doi.org/10.1016/j.
jss.2015.11.036. URL http://www.sciencedirect.com/science/article/pii/
S0164121215002605.

[19] G. Gousios, M. Storey, and A. Bacchelli. Work practices and challenges in pull-based
development: The contributor’s perspective. In 2016 IEEE/ACM 38th International
Conference on Software Engineering (ICSE), pages 285–296, May 2016. doi: 10.
1145/2884781.2884826.

[20] Georgios Gousios. The ghtorrent dataset and tool suite. In Proceedings of the
10th Working Conference on Mining Software Repositories, MSR ’13, pages 233–
236, Piscataway, NJ, USA, 2013. IEEE Press. ISBN 978-1-4673-2936-1. URL
http://dl.acm.org/citation.cfm?id=2487085.2487132.

[21] Georgios Gousios, Andy Zaidman, Margaret-Anne Storey, and Arie van Deursen.
Work practices and challenges in pull-based development: The integrator’s per-
spective. In Proceedings of the 37th International Conference on Software Engi-
neering - Volume 1, ICSE ’15, pages 358–368, Piscataway, NJ, USA, 2015. IEEE
Press. ISBN 978-1-4799-1934-5. URL http://dl.acm.org/citation.cfm?id
=2818754.2818800.

[22] Jungpil Hahn, Jae Yun Moon, and Chen Zhang. Emergence of new project teams
from open source software developer networks: Impact of prior collaboration ties.
Information Systems Research, 19(3):369–391, 2008. doi: 10.1287/isre.1080.0192.
URL https://pubsonline.informs.org/doi/abs/10.1287/isre.1080.0192.

[23] A. E. Hassan. The road ahead for mining software repositories. In 2008 Frontiers of
Software Maintenance, pages 48–57, Sep. 2008. doi: 10.1109/FOSM.2008.4659248.

[24] Kim Herzig and Andreas Zeller. Mining Your Own Evidence, chapter 27. O’Reilly
Media, Inc., October 2010. ISBN 9780596808327.

[25] Michael Hilton, Timothy Tunnell, Kai Huang, Darko Marinov, and Danny Dig. Usage,
costs, and benefits of continuous integration in open-source projects. In Proceedings

93

http://doi.acm.org/10.1145/2786805.2786870
http://doi.acm.org/10.1145/2786805.2786870
http://www.sciencedirect.com/science/article/pii/S095058491400192X
http://www.sciencedirect.com/science/article/pii/S0164121215002605
http://www.sciencedirect.com/science/article/pii/S0164121215002605
http://dl.acm.org/citation.cfm?id=2487085.2487132
http://dl.acm.org/citation.cfm?id=2818754.2818800
http://dl.acm.org/citation.cfm?id=2818754.2818800
https://pubsonline.informs.org/doi/abs/10.1287/isre.1080.0192

BIBLIOGRAPHY

of the 31st IEEE/ACM International Conference on Automated Software Engineering,
ASE 2016, pages 426–437, New York, NY, USA, 2016. ACM. ISBN 978-1-4503-
3845-5. doi: 10.1145/2970276.2970358. URL http://doi.acm.org/10.1145/
2970276.2970358.

[26] D. Izquierdo-Cortazar, G. Robles, F. Ortega, and J. M. Gonzalez-Barahona. Using
software archaeology to measure knowledge loss in software projects due to developer
turnover. In 2009 42nd Hawaii International Conference on System Sciences, pages
1–10, Jan 2009. doi: 10.1109/HICSS.2009.498.

[27] Jae Kim. How to choose the level of significance: A pedagogical note. https:
//mpra.ub.uni-muenchen.de/69992/, 2015.

[28] K. Kohl Silveira, S. Musse, I. H. Manssour, R. Vieira, and R. Prikladnicki. Confidence
in programming skills: Gender insights from stackoverflow developers survey. In
2019 IEEE/ACM 41st International Conference on Software Engineering: Companion
Proceedings (ICSE-Companion), pages 234–235, May 2019. doi: 10.1109/ICSE-Com
panion.2019.00091.

[29] Mehmet Kosa and Murat Yilmaz. Gamifying the onboarding process for novice soft-
ware practitioners. In Christian Kreiner, Rory V. O’Connor, Alexander Poth, and
Richard Messnarz, editors, Systems, Software and Services Process Improvement,
pages 242–248, Cham, 2016. Springer International Publishing. ISBN 978-3-319-
44817-6.

[30] A. Labuschagne and R. Holmes. Do onboarding programs work? In 2015 IEEE/ACM
12th Working Conference on Mining Software Repositories, pages 381–385, 2015.

[31] Sang-Yong Tom Lee, Hee-Woong Kim, and Sumeet Gupta. Measuring open source
software success. Omega, 37(2):426 – 438, 2009. ISSN 0305-0483. doi: https:
//doi.org/10.1016/j.omega.2007.05.005. URL http://www.sciencedirect.com/sc
ience/article/pii/S0305048307000898.

[32] N. Li, W. Mo, and B. Shen. Task recommendation with developer social network in
software crowdsourcing. In 2016 23rd Asia-Pacific Software Engineering Conference
(APSEC), pages 9–16, 2016.

[33] B. Lin, G. Robles, and A. Serebrenik. Developer turnover in global, industrial open
source projects: Insights from applying survival analysis. In 2017 IEEE 12th Interna-
tional Conference on Global Software Engineering (ICGSE), pages 66–75, May 2017.
doi: 10.1109/ICGSE.2017.11.

[34] C. Liu, D. Yang, X. Zhang, B. Ray, and M. M. Rahman. Recommending github
projects for developer onboarding. IEEE Access, 6:52082–52094, 2018. ISSN 2169-
3536. doi: 10.1109/ACCESS.2018.2869207.

94

http://doi.acm.org/10.1145/2970276.2970358
http://doi.acm.org/10.1145/2970276.2970358
https://mpra.ub.uni-muenchen.de/69992/
https://mpra.ub.uni-muenchen.de/69992/
http://www.sciencedirect.com/science/article/pii/S0305048307000898
http://www.sciencedirect.com/science/article/pii/S0305048307000898

Bibliography

[35] Chao Liu, Dan Yang, Xiaohong Zhang, Haibo Hu, Jed Barson, and Baishakhi Ray.
A recommender system for developer onboarding. In Proceedings of the 40th In-
ternational Conference on Software Engineering: Companion Proceeedings, ICSE
’18, page 319–320, New York, NY, USA, 2018. Association for Computing Ma-
chinery. ISBN 9781450356633. doi: 10.1145/3183440.3194989. URL https:
//doi.org/10.1145/3183440.3194989.

[36] W. Ma, L. Chen, Y. Zhou, and B. Xu. Do we have a chance to fix bugs when refactoring
code smells? In 2016 International Conference on Software Analysis, Testing and
Evolution (SATE), pages 24–29, 2016.

[37] K. Mao, Y. Yang, Q. Wang, Y. Jia, and M. Harman. Developer recommendation for
crowdsourced software development tasks. In 2015 IEEE Symposium on Service-
Oriented System Engineering, pages 347–356, 2015.

[38] Martin Michlmayr and Benjamin Mako Hill. Quality and the reliance on individuals
in free software projects. In in 3rd Workshop on Open Source Software Engineering,
pages 105–109, 10 2011.

[39] The Executive Board of Delft University of Technology. Tu delft regulations on
human trials, 2016. URL https://d1rkab7tlqy5f1.cloudfront.net/TUDelft
/Over_TU_Delft/Strategie/Integriteitsbeleid/Research%20ethics/HREC
-Articles_of_Association.pdf.

[40] F. Palomba, A. Zaidman, R. Oliveto, and A. De Lucia. An exploratory study on the
relationship between changes and refactoring. In 2017 IEEE/ACM 25th International
Conference on Program Comprehension (ICPC), pages 176–185, 2017.

[41] Raphael Pham, Stephan Kiesling, Leif Singer, and Kurt Schneider. Onboard-
ing inexperienced developers: Struggles and perceptions regarding automated test-
ing. Software Quality Journal, 25(4):1239–1268, December 2017. ISSN 0963-
9314. doi: 10.1007/s11219-016-9333-7. URL https://doi.org/10.1007/
s11219-016-9333-7.

[42] L. Prechelt, B. Unger-Lamprecht, M. Philippsen, and W. F. Tichy. Two controlled ex-
periments assessing the usefulness of design pattern documentation in program main-
tenance. IEEE Transactions on Software Engineering, 28(6):595–606, 2002.

[43] Gregorio Robles and Jesus M. Gonzalez-Barahona. Contributor turnover in libre soft-
ware projects. In Ernesto Damiani, Brian Fitzgerald, Walt Scacchi, Marco Scotto, and
Giancarlo Succi, editors, Open Source Systems, pages 273–286, Boston, MA, 2006.
Springer US. ISBN 978-0-387-34226-9.

[44] Y. Saito, K. Fujiwara, H. Igaki, N. Yoshida, and H. Iida. How do github users feel with
pull-based development? In 2016 7th International Workshop on Empirical Software
Engineering in Practice (IWESEP), pages 7–11, 2016.

95

https://doi.org/10.1145/3183440.3194989
https://doi.org/10.1145/3183440.3194989
https://d1rkab7tlqy5f1.cloudfront.net/TUDelft/Over_TU_Delft/Strategie/Integriteitsbeleid/Research%20ethics/HREC-Articles_of_Association.pdf
https://d1rkab7tlqy5f1.cloudfront.net/TUDelft/Over_TU_Delft/Strategie/Integriteitsbeleid/Research%20ethics/HREC-Articles_of_Association.pdf
https://d1rkab7tlqy5f1.cloudfront.net/TUDelft/Over_TU_Delft/Strategie/Integriteitsbeleid/Research%20ethics/HREC-Articles_of_Association.pdf
https://doi.org/10.1007/s11219-016-9333-7
https://doi.org/10.1007/s11219-016-9333-7

BIBLIOGRAPHY

[45] Hugo H. Schoonewille, Werner Heijstek, Michel R.V. Chaudron, and Thomas Kühne.
A cognitive perspective on developer comprehension of software design documenta-
tion. In Proceedings of the 29th ACM International Conference on Design of Com-
munication, SIGDOC ’11, page 211–218, New York, NY, USA, 2011. Association for
Computing Machinery. ISBN 9781450309363. doi: 10.1145/2038476.2038517. URL
https://doi.org/10.1145/2038476.2038517.

[46] Davide Spadini, Maurı́cio Aniche, and Alberto Bacchelli. PyDriller: Python frame-
work for mining software repositories. In Proceedings of the 2018 26th ACM Joint
Meeting on European Software Engineering Conference and Symposium on the Foun-
dations of Software Engineering - ESEC/FSE 2018, pages 908–911, New York, New
York, USA, 2018. ACM Press. ISBN 9781450355735. doi: 10.1145/3236024.
3264598. URL http://dl.acm.org/citation.cfm?doid=3236024.3264598.

[47] Igor Steinmacher, Tayana Conte, Marco Aurélio Gerosa, and David Redmiles. Social
barriers faced by newcomers placing their first contribution in open source software
projects. In Proceedings of the 18th ACM Conference on Computer Supported Coop-
erative Work & Social Computing, CSCW ’15, pages 1379–1392, New York, NY,
USA, 2015. ACM. ISBN 978-1-4503-2922-4. doi: 10.1145/2675133.2675215. URL
http://doi.acm.org/10.1145/2675133.2675215.

[48] Ewan Tempero, Tony Gorschek, and Lefteris Angelis. Barriers to refactoring. Com-
mun. ACM, 60(10):54–61, September 2017. ISSN 0001-0782. doi: 10.1145/3131873.
URL https://doi.org/10.1145/3131873.

[49] Muhammad Usman, Ricardo Britto, Jürgen Börstler, and Emilia Mendes. Tax-
onomies in software engineering: A systematic mapping study and a revised tax-
onomy development method. Information and Software Technology, 85:43 – 59,
2017. ISSN 0950-5849. doi: https://doi.org/10.1016/j.infsof.2017.01.006. URL
http://www.sciencedirect.com/science/article/pii/S0950584917300472.

[50] B. Vasilescu, S. van Schuylenburg, J. Wulms, A. Serebrenik, and M. G. J. van den
Brand. Continuous integration in a social-coding world: Empirical evidence from
github. In 2014 IEEE International Conference on Software Maintenance and Evolu-
tion, pages 401–405, Sep. 2014. doi: 10.1109/ICSME.2014.62.

[51] Bogdan Vasilescu, Yue Yu, Huaimin Wang, Premkumar Devanbu, and Vladimir
Filkov. Quality and productivity outcomes relating to continuous integration in github.
In Proceedings of the 2015 10th Joint Meeting on Foundations of Software Engineer-
ing, ESEC/FSE 2015, pages 805–816, New York, NY, USA, 2015. ACM. ISBN 978-
1-4503-3675-8. doi: 10.1145/2786805.2786850. URL http://doi.acm.org/10.
1145/2786805.2786850.

[52] G. Viviani and G. C. Murphy. Reflections on onboarding practices in mid-sized com-
panies. In 2019 IEEE/ACM 12th International Workshop on Cooperative and Human
Aspects of Software Engineering (CHASE), pages 83–84, 2019.

96

https://doi.org/10.1145/2038476.2038517
http://dl.acm.org/citation.cfm?doid=3236024.3264598
http://doi.acm.org/10.1145/2675133.2675215
https://doi.org/10.1145/3131873
http://www.sciencedirect.com/science/article/pii/S0950584917300472
http://doi.acm.org/10.1145/2786805.2786850
http://doi.acm.org/10.1145/2786805.2786850

Bibliography

[53] Mike Volpi. How open-source software took over the world, Jan 2019.
URL https://techcrunch.com/2019/01/12/how-open-source-software-too
k-over-the-world/.

[54] Jianguo Wang. Supporting developer-onboarding with enhanced resource finding and
visual exploration, 2012. URL https://digitalcommons.unl.edu/csetechrepo
rts/146/.

[55] Y. Yu, H. Wang, V. Filkov, P. Devanbu, and B. Vasilescu. Wait for it: Determi-
nants of pull request evaluation latency on github. In 2015 IEEE/ACM 12th Work-
ing Conference on Mining Software Repositories, pages 367–371, May 2015. doi:
10.1109/MSR.2015.42.

[56] Andreas Zeller. Why programs fail: a guide to systematic debugging. Elsevier, 2009.

[57] Minghui Zhou and Audris Mockus. Developer fluency: Achieving true mastery in
software projects. In Proceedings of the Eighteenth ACM SIGSOFT International Sym-
posium on Foundations of Software Engineering, FSE ’10, page 137–146, New York,
NY, USA, 2010. Association for Computing Machinery. ISBN 9781605587912. doi:
10.1145/1882291.1882313. URL https://doi.org/10.1145/1882291.1882313.

97

https://techcrunch.com/2019/01/12/how-open-source-software-took-over-the-world/
https://techcrunch.com/2019/01/12/how-open-source-software-took-over-the-world/
https://digitalcommons.unl.edu/csetechreports/146/
https://digitalcommons.unl.edu/csetechreports/146/
https://doi.org/10.1145/1882291.1882313

Appendix A

Glossary

This appendix provides an overview of frequently used terms and abbreviations that are
used within this thesis report. These terms are meant to provide the reader with a better
understanding of the concepts introduced and discussed within the thesis report.

Accidental Sampling: a sampling technique in which samples are chosen based on oppor-
tunity, and not on probabilistic factors.

Active Experience: a period of time for which a user made a certain number of commits
to be defined as active. Within the context of this research, a developer was deemed
active if they made at least 10 contributions within a year.

API: abbreviation for application programming interface.

Application Programming Interface: a set of tools that allow simplified communication
or data passing.

Branch: a developing part of a codebase that is maintained in isolation until it is ready to
be added to the master branch.

Build: an instance of continuous integration in which all tests and associated procedures
are executed. Can be seen as a single run.

Centralized Version Control: a version control variant in which one central location main-
tains a master copy of the repository, which developers can propose adjustments for.

Closed Source Software: software that cannot be publicly inspected or viewed.

Code: the content that makes up a software application.

Codebase: a term referring to all code for a certain software application.

Code Smell: term used to indicate stylistic or organizational issues within a code, such as
a lot of lines within a class or method.

99

A. GLOSSARY

Comma Separated Value: a type of file for the storage of a spreadsheet or data that sepa-
rates data entries and fields through the utilization of commas.

Company Sttering: a repository or project that is maintained and/or guided by a company.

Contributor: a person contributing to an open source software project, see also developer.

Continuous Integration: a term used to describe automated processes within a pull-based
development model.

CI: see continuous integration.

CSV: abbreviation for comma separated value.

∆ Difference: The difference between two percentile statistics, when considering the first
statistic value as the baseline.

Developer: a person who contributes to an open source project or piece of software.

Distributed Version Control: a version control variant in which each developer maintains
a local copy of the master copy of the repository and updates this over time.

Drill: the action of searching through a large dataset for specific data or queries.

End User: a person that uses software.

Experienced Developer: a developer with more than two years of experience on Github.

Git: a version control system developed by Linus Torvalds.

Github: a popular host of (free) Git repositories.

Good First Issue: a label given to tasks that are indicated to be simple or good for new
developers within a project.

Intermediate Developer: a developer with more than a year and less than two years of
experience on Github.

Issue: term given to a task stored within a repository in the Github ecosystem.

Medior: a term utilized for the research component of the project indicating a developer of
intermediate level with between one and two years of developing experience.

Merge: the process of combining one branch into another branch.

Mining: see software repository mining.

MRQ: abbreviation for main research question.

Novice Developer: a developer with less than a year of experience on Github.

Onboarding: the process of actively finding and involving new developers within a project.

100

Open Software: a software project that is developed like an open source project but comes
from or is owned by a for-profit corporation.

Open Source Software: a software project developed by uncompensated developers on
their own accord with the ability to view, modify, and inspect the codebase publicly.

OSS: abbreviation for open source software.

Pull Request: code reviews in which comments and specific lines of code can be high-
lighted for evaluation and discussion.

Private Steering: a repository that is not maintained and/or guided by a company.

Project: term used to refer to an entity that produces content, organizes, or works in a
repository.

Repository: a centralized location in which code or a codebase is stored.

Script: an alternative term for a code segment within the codebase.

Software Repository Mining: the process of extracting data related to software develop-
ment from a repository.

RQ: abbreviation used to denote a research question.

Secondary Contribution: a contribution made after the first contribution to a project.

Smoke Test: a test which aims to test the overall functionality of a program versus only a
small component of a program.

Task: an operation that must be performed by a developer.

Trending Repository: a repository that is shown on Github’s trending repositories page.

URL: abbreviation for a hyperlink.

Version Control: a system which manages changes within a codebase to allow multiple
developers to work together upon a codebase.

101

Appendix B

Dataset

This appendix provides hyperlinks to relevant aspects of the generated dataset for this re-
search.

Repository: The repository can be found on Github at:
https://github.com/dalderliesten/Good-First-Issue.

Sampled Repositories: The sampled repositories can be found as a CSV file at:
https://github.com/dalderliesten/Good-First-Issue/blob/master/Sampl
e%20Set/Sampled-Repositories.csv

Repositories with Good First Issues: The repositories sampled containing good first is-
sues can be found in a CSV file at:
https://github.com/dalderliesten/Good-First-Issue/blob/master/Sampl
e%20Set/Repositories-with-Good-First-Issues.csv

Codebase: The codebase developed for this research is provided on Github as Python code
at:
https://github.com/dalderliesten/Good-First-Issue/tree/master/Code

Raw Dataset: The obtained, non-analyzed data is stored as sets of CSV files and can be
found at:
https://github.com/dalderliesten/Good-First-Issue/tree/master/Data

Analyzed Data: The analyzed data is given as pairs of CSV files and a number of overview
files that can be found at:
https://github.com/dalderliesten/Good-First-Issue/tree/master/Analy
sis

Templates: The templates that were used for analysis are given as both Excel XLSV files
and CSV files and can be found at:
https://github.com/dalderliesten/Good-First-Issue/tree/master/Analy
sis

103

https://github.com/dalderliesten/Good-First-Issue
https://github.com/dalderliesten/Good-First-Issue/blob/master/Sample%20Set/Sampled-Repositories.csv
https://github.com/dalderliesten/Good-First-Issue/blob/master/Sample%20Set/Sampled-Repositories.csv
https://github.com/dalderliesten/Good-First-Issue/blob/master/Sample%20Set/Repositories-with-Good-First-Issues.csv
https://github.com/dalderliesten/Good-First-Issue/blob/master/Sample%20Set/Repositories-with-Good-First-Issues.csv
https://github.com/dalderliesten/Good-First-Issue/tree/master/Code
https://github.com/dalderliesten/Good-First-Issue/tree/master/Data
https://github.com/dalderliesten/Good-First-Issue/tree/master/Analysis
https://github.com/dalderliesten/Good-First-Issue/tree/master/Analysis
https://github.com/dalderliesten/Good-First-Issue/tree/master/Analysis
https://github.com/dalderliesten/Good-First-Issue/tree/master/Analysis

	Preface
	Contents
	List of Figures
	List of Tables
	Introduction
	Motivation for Research
	Background
	Research Questions
	Contributions
	Structure

	Related Work
	Developer Onboarding
	Task Recommendation
	Broader Software Engineering Topics

	Methodology
	Data Collection
	Analysis of Data
	Questioning of Individuals
	Overview of Procedures

	Results and Analysis
	Numerical Results of Data Mining & Sampling
	Numerical Results of Analysis
	Comparing Issue and Commit Classifications
	Comparing Classification Combinations
	Developer Experience
	Surveying Developer Perception of Good First Issues
	Effectiveness Assessment of Good First Issues

	Discussion
	Limitations Related to Dataset
	Limitations Related to Numerical Data
	Limitations Related to Analysis
	Limitations Related to the Survey
	Threats to Validity

	Conclusions and Future Work
	Findings
	Suggestions for Good First Issue Improvements
	Future work

	Bibliography
	Glossary
	Dataset

