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PRECISE DATA-DRIVEN MODELLING OF RETICLE HEATING
INDUCED SPATIAL DEFORMATIONS FOR CORRECTING
NON-MOVING AVERAGE EFFECTS

Navdeep Tripathy, Jan-Willem Van Wingerden, Kim Batselier
SYSTEMS AND CONTROL, FACULTY OF MECHANICAL, MARITIME AND MATERIALS ENGINEERING, TU DELFT

and
Nick Kant
FC-64, IMAGE ALIGNMENT, METROLOGY GROUP, ASML

In this paper, the challenge of precisely developing a data-driven
Linear Time Invariant MIMO Reticle Heating Induced Deforma-
tion Prediction (RHIDP) model for ASML’s DUV systems is pre-
sented to the reader. The model is developed for two inputs,

. A reduced
order data-driven based approach for developing a RHIDP model
for various is
presented in this paper. This prediction model will be used for pre-
cisely estimating the global reticle deformation geometry as well as

. The identified model exhibits
a very high degree of prediction accuracy for a broad working en-
velope, the prediction is accurate to within a range of

, with 99% variances accounted for (VAF) values for all

. . This model can thus be used for pre-
cise

.

Categories and Subject Descriptors: I.6.4 [Simulation and Modelling]:
Model Validation and Analysis; G.1.6 [Numerical Analysis]: Optimiza-
tion; G.1.1 [Numerical Analysis]: Interpolation; G.1.8 [Numerical Anal-
ysis]: Partial Differential Equations

Additional Key Words and Phrases: System Identification, Black-Box Mod-
elling, Grey Box Model, Linear Time Invariant Model, Machine Learning,
Data-driven Identification, Data Mining, Pattern Recognition

1. INTRODUCTION

Photo-lithography is a process of printing fine nano-meter scale ge-
ometric patterns from a photo-mask to a light sensitive photo-resist
on a silicon substrate for developing integrated circuits (ICs) . The
geometric patterns etched on the substrate are present on the reti-

The work in this thesis was supported by ASML and TU Delft. Their coop-
eration is hereby gratefully acknowledged.
Permission to make digital or hard copies of part or all of this work for per-
sonal or industrial use outside ASML is prohibited. Copies can not be made
or distributed for profit or commercial advantage and that copies show this
notice on the first page or initial screen of a display along with the full cita-
tion. Copyrights for components of this work owned by the authors must be
honored. Abstracting (non-ASML related information) with credit is per-
mitted. To copy otherwise, to republish, to post on servers, to redistribute
to lists, or to use any component of this work in other works requires prior
specific permission of the authors and ASML.

cle.

.

.
significant factors which affect the overlay pre-

cision of DUV lithography systems of ASML. These effects can
be corrected using a feed-forward prediction model and a con-
trol algorithm. ICs are a part of our everyday life, they form the
basis of electronic networks present in all devices used everyday.
The ICs are essentially semi-conductors, which contain fine elec-
trical circuits, printed using photo-lithography. Photo-lithography
is a micro-fabrication process, performed using state of the art sys-
tems having high level precision. [Tripathy 2018]. Precision of the
lithography machines is a key factor in helping accurately print ICs,
which have features in the scale of nano-meters.

Fig. 1. Wafer exposure illustration, [Willson Research Group, UT Austin]

During Photo-lithography, nano-meter scale geometric patterns
present on the reticle, are etched onto the substrate present on
the semiconductor (silicon) wafer. During the process, Deep Ultra-
Violet (DUV) light is exposed over the reticle, which transfers the
pattern on the mask onto the wafer surface containing the substrate.
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During the exposure process, DUV light passes through the reticle
stage and the projection lens onto the wafer. An illustration of the
wafer exposure process is shown in figure 1.

1.1 Reticle Heating

A fraction of the energy from the incident DUV light, is absorbed
by the reticle, specifically by the chrome layer, present at the bot-
tom of the reticle. [Tripathy 2018]. Figure 2 illustrates absorption
and transmission of the energy from illuminated DUV light through
the reticle. Absorption of energy from the DUV light, leads to heat-
ing of the reticle. The effect is also termed as Reticle Heating (RH).
RH is responsible for two primary effects which affects the preci-
sion of ASML’s Twinscan lithography systems, namely :

(1) RH induced thermal reticle deformation.
(2) RH induced non-MA effects.

These two effects will be explained in the sub-sections to follow:

Fig. 2. Energy absorption by Reticle

1.2 RH induced thermal reticle deformation

.
.

.
. Deformed

mask pattern leads to inaccurate etching on the wafer surface,
and is a cause of serious concern for precise imaging preformed
by photo-lithography systems. The thermally induced distortions
in the geometric pattern can be corrected by precise movement
of the lens and reticle stages using a feed-forward prediction model.

In order to correct the effects of thermally induced distortions,
the controller which controls the movement of the lens and
reticle stage[Tripathy 2018], requires a mathematical prediction

model which accurately predicts the global reticle deformation
for different DUV light settings (measured in dose J/m2 /
Irradiance J/s.m2). The model is Linear Time Invariant (LTI)
in nature as presented in [Kant 2017]. The physical description
of the prediction model currently used by ASML is presented in
subsection 1.2.1.

Note 1 :

.

.

.

.
.

1.2.1 Current Prediction System. :

.

.
.

.
. The state and output equations

of the current prediction model can be expressed using the follow-
ing first principle relationship [Kant 2017]:

Ṫr(t)[m×1] = −SG−1
[m×m]Tr(t)[m×1] + Bm×1[I(t)] (1)

D(t)[32×1] = EM−1
[32×m]Tr(t)[m×1] (2)

Where,

(1) G :

(2) M :

(3) S : .

(4) E :

(5) T :
.

(6) D :

(7) I :

(8) m : .

(9) B :
.

Please refer to Appendix A for

.
. . .

[van der Wielen 2010].
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Fig. 3.

1.3

, [Tripathy
2018],

.
.

.

(
.

.
. [Lammers

2016] .
.

.

[Lammers 2016].

.
This in effect necessitates a new RHIDP model

.

1.3.1 New Prediction System. :

.
.

:

(1)
.

(2)

.

.

.

.

The work presented in this paper, sheds light on developing a
purely data-driven prediction model, for various Use Cases (UCs).
An approach to develop a precise open-loop data-driven RHIDP
model for the new reticle deformation behaviour

will be the focus of the thesis work presented in this
article.

Note 2 :
What are Use Cases :

Use Cases (UCs) represent time independent combinations of
both inputs within the region of operation, which are kept con-
stant for the entire duration of the experiment. In essence each
UC represents a step input for the system.

1.4 Why A Data-Driven Model ?

Data driven modelling techniques provide a useful alternative
to Finite Element Method (FEM) based modelling strategies for
many industrial applications. In particular at ASML, where there
are strict requirements on model accuracy.

The primary reasons for developing a data-driven RHIDP model
are :

(1)

.
(2)

.
(3)

.

.

All the experiments associated with developing the new RHIDP
model are based on simulation of a physics based FEM model
embedded in the metrology simulator which mimics the DUV
systems of ASML.

.

.

1.5 Problem Statement

Developing an accurate deformation prediction model,

.

.

.

CONFIDENTIAL
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1
2 .
3 .
4 .
5
6
7 .
8
9 .

10 .
11 .

Table I.

Metrology Simulator Parameters

.

.

The problem statement gives way to the following research ques-
tions. These questions will be answered in subsequent sections of
this article.

(1) Using physical equations, describe the behaviour of the pro-
posed RHIDP model. Derive and represent the relationship of
the inputs with respect to the output in state-space notation.

(2) Owing to the high precision requirements from the new RHIDP
model, thoroughly verify the system behaviour using data col-
lected from the metrology simulator

.
(3)

.
(4) Perform a quantification to determine the prediction accuracy

of the calibrated model for different static and dynamic inputs.

The block diagram shown in in figure 4 shows the section wise
flow of work presented in this article which sequentially answer
each of the research questions.

2. NOVEL FIRST PRINCIPLE DESCRIPTION OF A
NEW RHIDP MODEL

.

.

2.1 Analyzing lumped mass single dimension reticle

The heat absorbed from the DUV light by the chrome layer at the
bottom of the reticle, is transmitted vertically to the top, which
acts as a heat sink, due to the continuous airflow on the reticle
surface. The heat transfer at any given point on the reticle occurs
predominantly in the z axis within the reticle, a heat balance

Fig. 4. Block diagram showing the flow of work presented in this report

analysis of a finite element is performed. An analysis of the
equations will shed light on the relationship between the inputs
and the temperature modes of the reticle,

.

Given a finite reticle volume with a constant thickness z, the
heat energy balance relationship is given by the following equation
[van der Wielen 2010] :

z
∂

∂x

(
kx
∂Tr(x, y, t)

∂x

)
+ z

∂

∂y

(
ky
∂Tr(x, y, t)

∂y

)
+ zQ(x, y, t)

+F (x, y, t) = zρcp
∂Tr(x, y, t)

∂t
+ 2h(Tr(x, y, t)− Ta(t))(3)

In the equation, the effects of heat loss, due to radiation is
neglected, this is due to its 4th order dependence on the absolute
temperature of the reticle. A general formulation of the differential
equation is provided in the following simplified heat transfer
equation:

z∇.(K.∇Tr(t)) + zQ+ F (t) = zρcpṪr(t) + 2h(Tr(t)− Ta(t))
(4)

Where,

(1) Tr is the reticle temperature. (K)

(2) Ta is the airflow temperature. (K)

(3) Q is the heat generated internally within the reticle. (W/m3)

(4) F is the externally applied heat load on the reticle surface due
to irradiance. (W/m2)

(5) z∇.(K.∇Tr) is the gradient of heat flow.

(6) zρcpṪr is the energy stored in the finite element.

(7) 2h(Tr −Ta) represents the heat lost due to convective cooling
with a heat transfer coefficient h.

CONFIDENTIAL
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Note 3 :

.

h =
E

Tr − Ta
(5)

.

.
.

.
.

Simplifying equation 4, and collecting terms associated with the
reticle temperature Tr , and collecting the sources adding energy to
the reticle, the following simplified equation for a finite element is
obtained.

KTr(t) + I(t) = ρcpṪr(t) + 2h(t)(Tr(t)− Ta(t)) (6)

Ṫr(t) = (ρcp)
−1(K−2h(t))Tr(t)+(ρcp)

−1I(t)+(ρcp)
−12h(t)Ta(t)

(7)
Note 4

.

. .

.

.

.

.

The explanation given in note 2 delineates that the variation in
convection coefficient is very minimal, as such the metrology sim-
ulator isn’t designed to account in the variations in the convection

coefficient. Therefore, the conduction and convection matrix pre-
sented in equation 7 is considered to to be time invariant, the equa-
tion converges to the following relationship:

Ṫr(t)m×1 = −G−1Sm×m.Tr(t)m×1 +
[
G−1 H

]
m×2

[
I(t)
Ta(t)

]
(8)

Where,

(1) S : Conduction and Convection Matrix, includes the effects
of conduction (K) and convection (h(t)). Considered time-
invariant due to minimal variation in convection coefficient
with respect to time.

(2) G : Heat capacity matrix, (ρcp).
(3) Ta : Scaled airflow temperature. (K)

(4) I : Scaled irradiance. (J/m2)

(5) H : Scaling on Ta. Time varying parameter.
(6) m : number of temperature modes describing the temperature

profile for the finite element.

The output equation is given by:

D(t)[32×1] = EM−1
[32×m].Tr(t)[m×1] (9)

Where,

(1) D : Deformation Vector (meter).
(2) E : Thermo-mechanical coupling matrix.
(3) M : Mass matrix.

The dynamics of the new RHIDP model shown using equations
8 and 9 indicate LTI nature of the system under certain assump-
tions.

Note 5

.

. .
.

[Michel Verhaegen 2007],

.

.

The states identified using measurement data may need not
necessarily be associated with the temperature of reticle. This
shall be discussed in section 4.3 with more detail. The equations
8 and 9 form a state-space representation of the new RHIDP
model with irradiance I(t) and airflow temperature Ta(t) as
inputs and deformation vector D(t) as the output. The mth other
state-space notation for the new RHIDP model derived using
physical equations can be presented in it’s equivalent state and
output equations :

State Equation :

ẋ(t)[m×1] = Ac[m×m].x(t)m×1 + Bc[m×2]u(t)[2×1] (10)

Output equation:

y(t)[16×1] = Cc[16×m].x(t)[m×1] (11)

CONFIDENTIAL
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A discretization of the system matrices using forward euler ap-
proximation with sampling interval chosen as RA instances, gen-
erates the following equivalent discrete time state-space represen-
tation of the system :

State Equation :

x(n+ 1)[m×1] = Ad[m×m].x(n)[m×1]+Bd[m×2]u(n)[2×1] (12)

Output equation:

y(n)[16×1] = Cd[16×m].x(n)[m×1] (13)

y, u x represent the output, inputs and states of the system re-
spectively. Where A, B and C are constant and time-independent
system matrices. n is used to indicate the time instances for the
discretized model. The evolution of state x(n) is linearly related to
the inputs u(n) of the system, indicating a Linear Time Invariant
description of the RHIDP model.

Note 6
No direct feedthrough :

An import observation from the first principle analysis reveals
that there exists no direct feed-through from the inputs on the
global reticle deformation magnitude. In other words, the D
matrix of the system is zero, in continuous and discrete time.
This result will play a key role in identifying a data-driven
RHIDP model explained in section 4.3.

Please refer to Appendix-C for more information on the com-
bined effects which lead to marginal non-linearity in new RHIDP
model.

It should be pointed out that, the state-space representation of
the RHIDP system is Linear Time Invariant under the following
two assumptions, namely :

(1) Heat lost from the reticle through radiation is neglected in the
heat balance equation 3. This is due to 4th order dependence
of radiation on the absolute temperature of the reticle and it’s
surrounding.

(2) The time dependent variation of heat transfer coefficient h
on the conduction and convection matrix S is considered to
be negligible and the matrices are considered constant in the
metrology simulator using which the model is developed.

Both the assumptions hold true on the metrology simulator. In
section 3, a step-response analysis of the system on the metrology
simulator will be performed in order to understand the MIMO Reti-
cle deformation behaviour. The step-response analysis will also aid
in development of the data-driven RHIDP model for static inputs
(Use Cases).

3. ANALYSIS OF THE SYSTEM USING THE K
FACTOR MODEL FOR STATIC INPUTS

In the previous section, mathematical formulation using the heat
balance analysis, converging to a state space description of a mth

order prediction model was presented to the reader. An account of
the possible reasons responsible for non-linearity in the new defor-
mation prediction model along with assumptions under which, the

system can be considered linear was also presented to the reader.
Owing to the precision requirements of photo-lithography, in this
section, an accurate quantification and validation of the system be-
haviour, through a step response analysis using measured (k4/my)
data on the metrology simulator will be provided. This will also
help understand the system behaviour for static inputs (Use cases)
around which a precise data-driven prediction model is developed
and elaborated to the reader in section 4. However, before proceed-
ing with the analysis, properties of k4 parameter and why is it used
for the analysis will be furnished to the reader.

Note 7
:

.

. . .

. . . .

. . . .

.
. . .

. . . .

. . .

.

.

3.1 Relevance of k4 parameter

As previously explained in [Tripathy 2018], reticle deforma-
tion behaviour is conventionally characterized using k-factors.
k-factors are coefficients of basic polynomial shapes, (described
using the shape’s dependency on x and y axis on the reticle
surface). These polynomial shapes are used for decomposing the
global reticle deformation on the resist at a given instant, into it’s
constituent k-factor shapes. In other words, k-factor shapes are
used for decomposition of the global reticle deformation shape,
into it’s constituent local deformation shapes. Their coefficients,
represented by k-factors, accommodate the temporal variation in
the magnitude of the shapes they represent. In general, the grid
distortions in x and y, for a given PARIS [Tripathy 2018] mark
at instant n + 1 on the reticle surface, can be described using the
k-factor model given below [Bogers 2011] :

The deformations observed at the marks are related to
the through the following over determined
set of equations :

The k-factors are computed using a least squares fit of dx and
dy measurement data, at a given time instant, using spatially
distributed measurement points on the reticle surface along x and
y axis by solving equations . originally devel-
oped the k-factor model for characterizing intra-field distortions.

CONFIDENTIAL
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[Bogers 2011].

Please refer to Appendix-D for a graphic representation of all
the shapes associated with even and odd k-factors which are used
for characterizing global deformations in y and x axis respectively.

One such k-factor of interest is k4(n), also called magnification
in y (my). Figure 5, illustrates the shape associated with k4(n),
y1x0 is it’s associated monomial. k4(n) represents the magnitude
of expansion/contraction purely along y axis. It essentially encap-
sulates the component of global reticle deformation along the y
axis. k4(n) signal will be used for analyzing the temporal mag-
nitude of reticle deformation for the new RHIDP model.

. .
.

.
.

. The black horizontal lines shown in figure 5, indicates
the height of the associated k4 shape, following a step-response at
UC 291 K, 6.25 J/m2 at n3. (304.7 seconds). (Illustrating global
contraction of the reticle along y axis). Owing to the absence of
magnification effects of the projection lens, k4(n) presents a very
accurate relationship between itself and the actual global deforma-
tion of the reticle.

Fig. 5. Shape associated with k4(n) parameter. The black horizontal lines
represent the steady state height of the shape following a step response for
a certain UC. y1x0 is the monomial associated with k4

Note 8
Why k4 ?:

The signal k4(n) is measured on the metrology simulator. It is
one of the two k-factors (other being k18(n)), which is uninflu-
enced by projection lens movements below the reticle. [van den
Berg 2018]. As a consequence the magnitude of k4(n) at any
instant, accurately represents the effect of both inputs on the
global reticle deformation at instant n for the new RHIDP
model.

Note 9:
:

.
[Tripathy 2018],

. . .

.
.

. [Pen 2016]

.
[Lammers 2016]

. . [Kunnen 2016][Tripathy 2018].

Note 10:
What is a Linear system ?:

A system is said to be linear, if it satisfies the superposition
principle, in the sense that the following two properties are sat-
isfied. [Won Y Yang 2009]

—Additivity - The response of the system actuated by two or
more inputs is the sum of the individual responses of the
system to each actuation independently..

—Homogeneity - The output of a system to a single indepen-
dent input is proportional to the input.

As an extension to the property of homogeneity, a linear system
satisfies zero input-zero output condition.
These two conditions are necessary and sufficient to validate
linearity of a system. Both of the conditions will be substanti-
ated in the sub-sections to follow.

3.2 Numerical analysis to demonstrate the law of
Additivity

An experimental analysis using step response data is performed
for verifying the linearity of the system. In this sub-section, the
property of additivity will be performed, followed by verification
of the property of homogeinity in the next sub-section. A sys-
tem which satisfies the additivity property; when excited by an
input U1(n) generates an output Y1(n), and for an input U2(n)
generates an output Y2(n). Then, the system when excited by
signal U1(n) + U2(n) would generate a response equivalent to
Y1(n) + Y2(n) as the output. Step response data is collected
from the metrology simulator for various UCs, an analysis will be
performed to verify the property of additivity for the two input one
output linear system, by providing a step signal for u1 (airflow
temperature) and u2 (dose) individually while keeping the other
input at zero. In the new RHIDP model, airflow temperature at
295 K and dose at 0 J/m2 yields negligible deformation on
the reticle.

. Step response k4

CONFIDENTIAL
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data collected for UC1, with u1 = 295 K and u2 = 0J/m2,
is shown in . (Please note the scaling by a factor of
10−4 J/m2 in k4 plot). Thus, UC1 295 K and 0 J/m2 will
be considered as a ’virtual’ zero input for identifying the new
RHIDP model. However, as can be deduced from , the
system exhibits certain minimal dynamics (in the scale of 10−4)
in k4 for the ’virtual’ zero inputs, and doesn’t satisfy the zero
input-zero output condition. Thus indicating that, the system is
not perfectly linear. As generally expected from real world systems.

In the first experiment, a step input U1(n) (UC2) is given, with
u2(n) = 6.25 J/m2, u1(n) = 295 K (virtual zero for u1(n)), the
dynamics Y1(n) obtained using k4(n) is shown in .

Note 11
Why step response analysis ?:

Step response analysis of a dynamical system with a given
initial state condition reveals how the system responds to a
sudden input. Equation 3 indicated that reticle heating/cooling
is a first order behaviour, as such a first order signal is sufficient
to excite the dominant temperature mode of the system.

In particular, important parameters such as rise time, settling
time and time-constant of a linear dynamic stable system can
be obtained. Unlike impulse response, a step response helps
obtain the DC gain of the system. A step response is a sim-
ple yet effective way to analyze two important effects, namely
transient and a steady state response of the dynamical system.
It is one of the most widely used signals by engineers and re-
searchers alike for validating linear system behaviour through
experiments. A regression analysis using step response data
collected from the system will help shed light on the rela-
tionship between the inputs u1,u2 and output k4 for the new
RHIDP model to be identified.

Similarly, for the second experiment, a step input U2(n) (UC3)
is given, with u1(n) = 291 K, u2(n) = 0 J/m2 (virtual zero),
the dynamics Y1(n) obtained using k4(n) is shown in .
In the last experiment, a step input (U1(n) + U2(n)), (UC4) is
provided to the system, with u1(n) = 291 K, u2(n) = 6.25 J/m2.
The generated k4 dynamics is shown in . UC4 is selected
in order to validate the property of additivity for the RHIDP model.
To this end, during the experiment, three time instances (n1, n2,
n3) are considered, n1, n2 are instances for the transient response
of the system, while n3 shows a value closer to the steady state
response. n1 represents the 13th RA instant (n = 13), n2 represents
the 26th RA instant (n = 26) and n3 represents the 40th RA instant
(n = 40). This data is tabulated in table II.

Table : 2

u1 (K), u2 (J/m2) 100 s (n1) 200 s (n2) 304.7s (n3)

UC1(295, 0) . . .
UC2(295, 6.25) .
UC3(291, 0)

UC4(291, 6.25)

Table II.

Measured k4 values at three time instances using four experiments, to
verify the principle of superposition.

Note 12
Time constants of the step responses :

Time constant is the duration of the system’s step response to
reach 1-1/e ≈ 63.2 % of its asymptotic value. The step re-
sponse data obtained for U1(n) (UC2), provides a measure of
the steady state value of the system, for a step input in u2. This
was used for computing the time-constant τ1 = 100s of the ob-
served exponential function. The step response data obtained
for U2(n) (UC3), provides a measure of the steady state value
of the system, for a step input in u1. This was used for com-
puting the time-constant τ2 = 118s of the observed exponential
function.

A simple analysis reveals that, k4(n) values at three time in-
stances for UC4 (291 K, 6.25 J/m2) is a sum of k4(n) values for
UC2 and UC3. The observation for k4(n) for three time instances
can be extended for the entire duration of the experiment (including
steady state), thus validating the additivity property of the princi-
ple of superposition. Thus, global reticle deformation magnitude
for any UC can be decomposed into the contributions of individ-
ual inputs on the overall reticle deformation. In other words, the
system generates a response (Y1(n) + Y2(n)) when actuated by a
signal (U1(n) + U2(n)). In fact, further analysis of the data reveals
that, k4(ni) values (where ni is an arbitrary time instant during the
experiment) when plotted on a 3-D graph, (with inputs u1, u2 and
output k4 representing the three orthogonal axes), for UC1, UC2,
UC3 and UC4 leads to creation of a flat surface. Thus k4(ni) value
for UC4 can be linearly predicted using k4(ni) values of UC1,
UC2 and UC3. The flatness of the surface also indicates propor-
tional relationship between the output and each individual input
along both axes. Since the gradient of k4 with respect to both in-
puts is constant, it leads to a flat 2-D plane in a 3-D space. This
is the property of homogeneity which will be validated in the next
sub-section.

Note 13
What are the boundary value inputs in the RO :

The RO can be described using a 2-D rectangular space created
using orthogonal axes containing both inputs of interest, within
the bounds specified in Note 9. Orthogonal axis for both inputs
were selected to uniquely denote each UC for the RO. Bound-
ary value inputs in the RO literally represent the UCs (step in-
puts) describing the edges of the rectangular space. Thus, the
boundary values are the static inputs which lie at the edge of
the RO shown in figure 6, along A-C-I-G-A.

3.3 Numerical analysis to demonstrate law of
homogeneity

The property of homogeneity of the superposition principle states
that, given a system which generates an output Y (n) for an input
U(n), when actuated by a signal κU(n) would generate a signal
κY (n). Where κ is the gain. In other words, the dynamic relation-
ship between input function U(n) and output Y (n) at any given
instant n can be represented by:

Y (n) ∝ U(n) (14)
Which can be rewritten as.

Y (n) = α× U(n) (15)

Where α is the linear proportionality constant at instant n for
the dynamic system. In this subsection, a regression analysis is per-
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formed using step response data to validate the consistency of α for
two time instances (n2, n3). Since k4(ni) is analyzed with respect
to inputs u1(ni) and u2(ni), necessary condition for homogeneity
becomes :

k4(ni) ∝ (u1(ni), u2(ni)) (16)

This can be rewritten as :

k4(ni) = α× u1(ni) + β × u2(ni) (17)

The step-response data is, collected over a duration of 2 weeks,
to verify the consistency of α and β and thus validate property
of homogeneity for the RHIDP model to be identified. As long
as α and β are consistent throughout the RO, the output will
consistently match the factor by which the input is changed.
The analysis will validate the linear description of the system
presented by equations 12, 13 in section 2.1. The step-response
data is collected using UCs which uniformly span the entire
RO. The analysis was first done using k4(n3) values, (since n3

closely indicates the steady state response) collected through 70
experiments, measured accurate to 2 decimal places. These values
are tabulated in table XV of appendix E. This will be followed
by an analysis at n2 (an instant of transient response) to validate
the property of homogeneity during the transient response of the
system to step inputs.

The measured data points create a 2-D plane, in a 3-D space,
illustrated in figure . The projection of the 2-D plane on
the horizontal (k4 = 0) surface of the 3-D space represents the
RO. With each point of the horizontal surface representative of
individual UC. Edges of this projection area show the boundary
values in RO. The k4(n3) data collected using 70 experiments
were linearly interpolated to generate the flat surface. The blue
dots in the horizontal (k4 = 0) plane represent each of the unique
UCs for which k4(n3) was measured through experiments on the
metrology simulator. Nine unique points on the RO plane, along
with associated k4(n3) values, are labeled in figure and table
XV for better understanding.

Fig. 6. Region of Operation, bifurcated into 16 spaces.

The predominantly flat nature of the linearly interpolated surface
created using measured values of k4(n3) for all UCs within the
RO, illustrates the linear decoupled nature of the output with
respect to both inputs for the new RHIDP model. In other words,
the sensitivity of k4(n3) with respect to both inputs, decides the
gradient of the flat plane with respect to RO. The gradients of the
2-D plane measured for k4(n3) with respect to both axes of RO;
is equivalent to the proportionality constants α and β presented
in equation 17. Therefore, consistent gradients of the plane with
respect to both inputs, validates that the law of homogeneity holds
true for the system at n3.

Note 14
Why does the flat nature of the k4(n3) surface indicate a
decoupling of the output with respect to both inputs ?:

The 2-D surface created using k4(n3) values validates the
property of homogeneity stated in equation 17. Which shows
that, the output (reticle deformation magnitude) dynamics of
the system is a scaled response to the decoupled input dynam-
ics at that instant.

The constant gradient of k4(n) with respect to both the hori-
zontal axes at time instant n3 (304.7 seconds), illustrated in figure

, shows that, a linear prediction algorithm can be developed
to predict the value of k4(ni) for any given UC. In fact, if α
and β can be computed numerically for all time instances of the
experiment, k4(ni) can also be very accurately predicted for any
given UC within RO.

A regression analysis of the gradient of measured k4(n3) values
with respect to airflow temperature (α) and dose (β) is presented
using tables IV, III respectively. k4(n3) values were measured on
the metrology simulator. The gradients presented in tables III , IV
are computed using step response of boundary value inputs of the
RO. The gradients (α) of k4(n3) with respect to airflow temper-
atures, is presented in table III, step inputs in u1 were used for
various fixed step inputs in u2, in order to determine α through a
regression analysis.

Step input u2 α - computed using step regressions in u1 for each u2
6.25 J/m2

8.25 J/m2

10.25 J/m2

12.5 J/m2

14.5 J/m2

16.5 J/m2

18.75 J/m2

Table III.

Gradient of k4(n) vs airflow temperature for fixed dose values at n3

Table above shows the computed values of α,
.

. . .
. , which amounts to 0.012%

variation in α within the RO for the two-input, one-output system.
The negligible variation validates the consistency of α within
the entire RO. Similarly, table IV shows the computed values
of β, the minimum gradient is computed .

. .
.
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. , which amounts to an overall 0.486% variation in β
within the RO for the two-input, one-output system. The neg-
ligible variation validates the consistency of β within the entire RO.

Step input u1 β - computed using step regressions in u2 for each u1
291K
291.5K
292K
292.5K
293K
293.5K
294K
294.5K
295K
295.2K

Table IV.

Gradient of k4(n) vs dose for fixed airflow temperature values at n3

It can also be inferred that, the average values of α is .

. . This also implies that, deformation
of the reticle is more sensitive to unit variation in the airflow
temperature (u2) than, a unit variation in dose (u1) within the RO.

Another way of accurately quantifying the consistency of α
and β values, is through linear de-trending [Zhaohua Wu and
Peng 2007][Estela Bee Dagum 2006] of the data set presented in
table XV. De-trending of the k4(n3) data-set leads to a magnified
representation of the variations in the k4(n3) values for different
UCs, indicating the negligible variations in α and β within the
RO. Table XVI in appendix E shows the residual k4(n3) values
following linear de-trending of the data-set presented in table XV.

Note 15
Why linear-detrending ?

A flat surface of k4(n3) data-set with respect to both inputs is
observed. This is also quantified through a regression analysis
of the gradients of k4(n3) with respect to both inputs in the
RO. A 2-D linear de-trending of the data-set removes the best
plane fit set from the data set, leaving behind the residual val-
ues. The residual values show the microscopic variation against
the macroscopic linearly trending k4 data-set.

The de-trended data-set reveals a maximum variation of 0.0289
in k4(n3) value for the UC 292K, 16.5J/m2, which is a neg-
ligible 0.05% variation in k4(n3) over the absolute value, while
minimal variation was observed for UC 292K, 14.5J/m2. The
de-trended k4(n3) values are presented graphically in figure .
The figure represents the negligible variations observed per UC
within the RO for the linear trending flat surface. Thus indicating
variations in the proportionality constants α and β associated
with the linear surface. However, the variations observed, can not
conclusively be ascertained to be associated with the marginal
non-linearity (in the scale of 10−4) presented in the previous
subsection, since k4(n3) were measured accurate to within only
two decimal places (10−2). Therefore, the variations can not
be totally associated with the system, and can be accounted
to be measurement error in the k4(n3) observations made on

the metrology simulator. The negligible variation in k4(n3)
values across all UCs also verifies the consistency of α and β
as presented through a regression analysis earlier in this subsection.

The regression analysis presented in this subsection using
k4(n3) data for several UCs, proves that, there exists a decoupled
and linear relationship of the output with respect to both inputs
for steady state, of the yet to be identified new RHIDP model
within the RO. In order to extend the results of the regression
analysis for any general instant n, k4 data was also collected over
2 weeks duration for another time instant n2 (200 seconds), n2

is associated with transient of the system response to step inputs.
The data obtained from the regression analysis for n2 is tabulated
in table V. Although only 9 k4(n2) data points were used for
validation. It is sufficient to indicate the linear relationship of the
output with respect to both decoupled inputs. k4(n2) values were
measured for boundary values in the RO.

Table : 7

Dose
/
Temp

6.25
J/m2

12.5
J/m2

18.75
J/m2

291 K
(A) (B) (C)

293 K
(D) (E) (F)

295.2
K (G) (H)

(I)

Table V.

Measured k4(n) values for 9 UCs at n2 (200 seconds)

To verify the linear relationship, the consistency in α and β is
again verified using a regression analysis. Step response data using
boundary UC inputs, within RO, are considered for computing the
α and β values. Table VI shows the β values computed using a
regression analysis of step response data from different UCs. It can
be observed that,

. .

.

Step input u1 β - computed using step regressions in u2 for each u1
291K
293K
295.2K

Table VI.

Gradient of k4(n) vs dose for fixed airflow temperature values at n2 (200
seconds)

The computed α values are tabulated in table VII. It can be ob-
served that, the sensitivity of k4(n2) with respect to airflow tem-
perature is also consistent with an average value of . .

.
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Step input u2 α - computed using step regressions in u1 for each u2
6.25 J/m2

12.5 J/m2

18.75 J/m2

Table VII.

Gradient of k4(n) vs dose for fixed airflow temperature values at n2 (200
seconds)

A flat 2-D surface is generated in the 3-D space for k4(n2) sim-
ilar to k4(n3). This is shown in figure . The analysis of k4(n2)
and k4(n3) data shows that, homogeneity property holds true at
transient, as well as steady state instances of the step response. The
result can be extended for any generic time instant ni for the new
RHIDP model to be identified.

3.4 Time Invariance

In the previous two subsections, additivity and homogeneity prop-
erties of the linear system was quantified and validated using ex-
perimental data for transient and steady state values. In this sub
section, the time invariant property of the system will be verified
using a mathematical proof, followed by an validation using mea-
surement data. In a mathematical sense, a dynamic system having
a time-dependent input U(n) and a time dependent output Y (n) ;
is considered time-invariant if a delay in it’s input U [n+c] directly
translates into a delay of the output Y [n+ c].

It was already shown in equations 12, 13 that A,B and C are con-
sidered constant system matrices in the metrology simulator. To
validate this result, a particular case of step input shifted by 5 RA
measurements accounting for a shift of 38.78 seconds will be con-
sidered. The time shift was performed using a step input for UC4.
This is shown in . An analysis was performed by compar-
ing the shifted response with the un-shifted response of the system.
This analysis is tabulated in table VIII. The tabulated values indi-
cate a consistent delay of the k4 signal over the entire experiment
duration, verified using three sample points.

Table : 10

k4
(m/m)
System
Response
(s)
Shifted re-
sponse (s)
Measured
delay (s)

Table VIII.

3 k4 values and their associated time instances for UC4 before and after
delay.

3.5 BIBO stability

Stability is a system property. BIBO stability stands for Bounded
Input Bounded Output stability. Which implies that, as long as the
absolute value of the input signals (u1, u2) is less than a certain
threshold, the system is guaranteed to have a response (k4) with
an absolute value less than another threshold. In other words, there

exists two constants C1 and C2 for a system with input u(n) and
output y(n), such that :

|u(n)| < C1 ∀n (18)

|y(n)| < C2 ∀n (19)

The necessary and sufficient condition for BIBO stability of a
discrete time Linear Time Invariant system is that, it’s impulse re-
sponse should be absolutely summable. In other words :

∞∑
n=−∞

|h(n)| = ‖h‖1 <∞ (20)

The impulse response h(n) for the RHIDP model is shown in
. It can be deduced that, h(n) is absolutely summable.

Thus, the RHIDP model is also BIBO stable.

3.6 Results of the analysis :

The mathematical and numerical analysis using step-response data
presented in this section points to the following results :

(1) The system doesn’t satisfy the zero-input/zero-output con-
dition. Thus has a minimal zero-state response. This non-
linearity can be neglected.

(2) The system validates the property of additivity for transient and
steady state values to step-inputs.

(3) The system validates the property of homogenity for transient
and steady state values to step inputs. Thus, the principle of
superposition holds true for the system, validating linear rela-
tionship between inputs u1, u2 and output k4 of the system.

(4) A mathematical and numeric proof validated the time-invariant
property of the system.

(5) The inputs have a decoupled effect on the reticle deformation
magnitude.

(6) The system is BIBO / asymptotically stable.

The RHIDP model is thus experimentally verified to be Linear
Time Invariant in nature. Consequently a linear regression mod-
elling strategy proposed in the next sub-section for precisely pre-
dicting the temporal and spatial reticle deformation behaviour for
static and low frequency dynamical inputs.

4. EXPERIMENT DESIGN

In order to perform a black-box identification, input-output
data from the system needs to be collected. Reticle Align (RA)
[Tripathy 2018] are instances when the deformations on the
reticle surface can be measured at PARIS marks. RA occurs
during interchange of wafers on the , thus
a model developed around RA instances will able to accurately
predict inter-wafer drifts of the measurement points on the reticle
surface. RA instances are used for sampling input-output data on
the metrology simulator for developing the new RHIDP model.
RA occurs after the exposure of each wafer. 40 wafer exchanges
are possible on the simulator, which provides 40 RA instances.
The average time instant for each of the 40 RA instances on the
metrology simulator is tabulated in IX. RA instances mark the
sampling duration used for modelling the new MIMO RHIDP
system for accounting inter-wafer drifts on the reticle surface. As
such there are 40 time series input and output data-points, for
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modelling the system behaviour. The LTPA algorithm explained
in this paper focuses of developing a linear-regression data driven
model for static and low-frequency dynamic inputs. Static inputs
refer to Use Cases for the RHIDP model. Section 4.1 will delineate
that, 40 RA input-output data points are sufficient for developing a
precise linear regression model for predicting spatial and temporal
reticle deformation for static and low frequency (≤ 0.01Hz ) inputs
signals.

RA Time (s)
1
2
3
4
5
6
...

...

20
...

...

40

Table IX.

RA instances on the metrology simulator

Prior to starting the actual identification process, choices need
to be made regarding the kind of input signal to be used, it’s fre-
quency range, and the sampling rate of output data set. The data set
once polished can be used for developing the RHIDP model. For
accurate modelling a noise-less environment is chosen, with zero
process noise. The data is directly measured from the simulator on
the system, thus, limiting the measurement noise to machine preci-
sion.

4.1 Input Data-set U(n)

Selection of proper input signal is crucial for estimating a model.
The input should be selected such that, the measured data-points
at RA contain enough information regarding the excitation of the
system. For example a system excited at a U(n) = 0, reveals only
the state trajectory of the autonomous system depending on it’s
initial condition, and doesn’t reveal any information on the transfer
from input U(n) to output Y (n). Therefore, for estimating a
model, a non-zero signal should be provided to the system. The
signal also needs to satisfy the persistency of excitation condition,
which implies, the input signal should have enough frequency
content in order to excite all the dominant modes of the system.
A signal is therefore called persistently excited if the order of the
input signal is at least greater than or equal to the system order;
i.e. the signal should be rich enough for precise identification of
system parameters. One way of generating a persistently excited
signal is to use PRBS signal, which stands for Pseudo-Random
Binary Sequence, it’s binary sequence with magnitude varying
between 0 and 1. The rate of variation of the signal decides the
order of the signal.

Due to the availability of 40 measurement instances at RA, it
becomes imperative to verify whether these instances provide a

sampling frequency which is rich enough for reconstructing the
RHIDP model using data. Therefore, an optimal frequency range
should be selected such that dominant modes of the RHIDP model
(ωB) are excited. A novel way of determining the band-width of
interest (ωB) for the system is through a step response analysis,
a rule of thumb states that the sampling frequency ωs = 10ωB .
It is known that, rise-time of the step response of a system
approximately equals 10ωB . Therefore, measuring the the rise
time of the system to step responses sheds light on the bandwidth
of interest (ωB) and sampling frequency (ωs). A simple step
response analysis using UC4 shown in shows that
the rise time of the system is approximately 182.15 seconds.
Therefore, the approximate sampling frequency which is close
to the bandwidth of interest ωB , turns out to be around 1

18.215
Hz. Therefore sampling the data from the system at every 18.215
seconds or faster is sufficient for reconstructing the RHIDP model
from the data, since RA occurs at every 7.59 seconds, which is
much smaller than 18.215 seconds, it can be concluded that RA
instances provide sufficient sampling frequency for developing the
data-driven model for any general dynamic input.

It is known from equation 3, that, reticle heating / cooling is a
first order behaviour, therefore, it is sufficient to provide the sys-
tem with a first order signal, such as a step input, which will excite
the dominant system mode. The objective of the work presented in
this paper revolves around developing a precise spatial and tempo-
ral prediction model for static and low frequency dynamical inputs.
The LTPA prediction algorithm for static and low-frequency dy-
namical inputs presented in this paper shows that only 3 UCs are
sufficient for calibrating the prediction model for static inputs using
40 RA measurement points. As such, step response input-output
data will be the primary data of analysis for developing a precise
RHIDP model.

4.1.1 Airflow temperature (u1(n)) :. Airflow temperature
(K) is one of the two inputs of interest for the new ret-
icle deformation model, the region of operation is selected

. Note 9 provides an explanation for se-
lecting the said input range for modelling the spatial and temporal
reticle deformation behaviour

4.1.2 Dose / Irradiance (u2(n)) :. DUV Dose (J/m2) is
an input to the reticle and is directly related to deformations
as proven in the preceding section. It represents the energy/area
transmitted by deep ultra-violet (DUV) light on the reticle sur-
face for etching the desired pattern present on the wafer. A dose

represents the range of interest
for the second input u2. Note 9 explains the reason for selecting
the above range for developing the model. Since, RA instances are
used for collecting the input-output data on the NTX Twinscan sys-
tem. Average dose (Irradiance) between two reticle align instances
(power W/m2) is used for developing the model. An important
point to note is that, the exposure area on the reticle surface is
fixed and since the RA instances are uniformly spaced, irradiance
(power) is a scaled value of dose (energy) for static inputs around
which the RHIDP model is developed.

4.2 Output Data-set Y (n):

The Output-data set plays a very important part in developing a
data-driven model. Output data along with signal input data set,
when sampled at appropriate frequency helps reveal the system pa-
rameters and identify precisely the transfer from input to output.
The reticle deformation as measured using PARIS marks, repre-
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sents the spatial and temporal deformation observed on the reticle
surface. As such it is essential to decompose these two properties
for developing a prediction model.

4.2.1 K-factor model for spatially and temporally modelling
the global reticle deformation behaviour:. k- factors were briefly
discussed in 3, they provide a way to decompose spatial and tem-
poral deformation effects seen on the reticle surface. It was also
seen that k4(n) presents a direct representation of the actual ret-
icle deformation magnitude, although k4(n) in reality represents
only temporal expansion magnitude along purely y-axis, this is due
to the fact that expansion effects along x-axis are affected due to
lens magnification effects, and therefore k-factors other than k4(n)
and k18(n) are not representative of the actual reticle deformation
magnitude. As a consequence k4(n) signal was analyzed for es-
tablishing the Linear Time Invariant nature of the RHIDP model in
section 3.

There are several challenges associated with developing RHIDP
model using k-factors. These challenges are delineated below :

(1) Supposing, k- factors are used for segregating spatial and tem-
poral behaviours, an LTI identification can only be performed
using These two k-factors are only represen-
tative of a fraction of the global reticle deformation, consider-
ing any general deformation of the reticle is not expected to
be purely associated with spatial magnification in y effect, but
rather a combination of various other spatial effects, associated
with the remaining k-parameters listed in Note 5 of section 3.

(2) Due to magnification effects, none of the k-factors, except
share a linear relationship with the inputs

of interest.
(3) A non-linear identification algorithm for establishing the rela-

tionship between inputs and k parameters would lead to a very
complicated and non-precise temporal and consequently spa-
tial prediction of the global reticle deformation.

Owing to the above mentioned reasons, k-factors were ruled out
as possible recourse for characterizing the time-invariant, temporal
deformation behaviour, of the reticle.

4.2.2 PARIS mark measurements for spatially and tempo-
rally modelling the global reticle deformation behaviour. In the
previous section it was established that, reticle deformation is
linearly related to the inputs. Since deformations are essentially
measured at PARIS marks on the reticle. A possible alternative
to k-factors, is a time series measurement of vectors representing
individual PARIS mark displacements along x and y axis.

A reticle contains PARIS marks and edge
marks [Tripathy 2018], combined represents a total
of measurement points (Please refer to ). Each of the

measurement vectors can be decomposed into it’s components
along x axis and y axis on the reticle surface, to indicate the defor-
mations observed. Theoretically, an LTI model for identification
of time domain variation of vectors ( associated with dx and

associated with dy) can be proposed. The LTI system can be
represented in the following state space form :

State equation : The equation is censored
Output equation : The equation is censored

Where,

(1) A,B are system matrices with parameters to be identified.

(2) C is a diagonal system matrix
(3) System matrix D is zero, since there is no direct feed-through

between the inputs and output (Note 4)
(4) ui(n) represents both inputs of interest (i = 1, 2)
(5) xp(n) represents the deformation vector at PARIS mark p at

instant n along x axis.
(6) yp(n) represents the deformation vector at PARIS mark p at

instant n along y axis.
(7) vx/y,p(n) represents the output of the MIMO system at instant

n along x/y axis, at PARIS mark p.

This LTI system provides a temporal prediction of deformation
magnitude vectors at each PARIS mark along x and y axis. The
solution of the output equation can be extended to obtain the
spatial deformation (vp(n)) prediction on the reticle surface using
the component vectors along x and y at each PARIS mark p. The
magnitude and direction of each deformation vector vx/y,p(n)
present at PARIS marks is given by the following relationship :

Magnitude of vector at PARIS mark p (vp(n))

|vp(n)| =
√

(vxp
2(n) + vyp

2(n)) (21)

The direction of vector at PARIS mark p (vp(n))

vp(n) = tan−1
[
vyp(n)

vxp(n)

]
(22)

However, such an identification has few limitations associated
with it, these are listed below :

(1) The identification requires potentially identifying
( ) 1088 parameters using ( )
1280 data points, which amounts to ≈ 1.17 data points
for each parameter, and may not be sufficient for precise
identification for general dynamic input signals.

(2) LTI identification is computationally intensive and requires
solving a order system. The algorithm therefore it is not
the fastest way to predict the temporal reticle deformation mag-
nitude. Specially at ASML, which has strict requirements on
processing time during photo-lithography to meet throughput
expectations.

4.2.3 Using reticle deformation modes for developing a re-
duced order spatially and temporally modelling global reticle de-
formation behaviour. To overcome the above mentioned short-
comings, a novel way of developing a reduced order system de-
scription, using singular value decomposition of the data-matrix,
into orthonormal (spatial and temporal) basis for segregating the
spatial and temporal effects of reticle deformation is proposed in
the next section. This technique is related to Multivariable Out-
put Error State sPace (MOESP) subspace identification algorithm
explained in [Michel Verhaegen 2007]. Figure 7 shows the block-
diagram representing the modelling strategy folowed in this paper.

4.3 Black-Box Identification

Subspace Identification methods are used to estimate the system
matrices directly using input-output data-set. These methods are
based on the fact that, by storing the input and output data in
structured block Hankel matrices, it is possible to retrieve certain
subspaces that are related to the system matrices of the signal
generating system [Michel Verhaegen 2007]. Consequently, sub-
space identification algorithms help us estimate system matrices
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Fig. 7. Flowchart of the algorithm used for developing the Data-Driven
RHIDP model for static and low frequency inputs.

A, B, C and D, which are related to the real system matrices
by an unknown similarity transformation T . In other words, the
estimated system matrices AT , BT , CT and DT are related to the
system matrices A, B, C and D of the signal generating model by
the following relationships :

AT = T−1AT , BT = T−1B, CT = CT , DT = D.

UCs are important class of inputs for the RHIDP model, and es-
sentially represents step inputs to the system. In this section, a novel
linear regression algorithm is proposed for precise identification of
global reticle deformation for various static inputs (UCs) and low
frequency dynamic inputs. It has already been shown that, the di-
rect feed-through from input to the output for the RHIDP model is
zero (Note 6). The Linear Temporal Prediction Algorithm (LTPA)
will be used for estimating system matrices A, B and C up to an
unknown similarity transformation. It was shown in section 3.4, the
state of a system 12, 13, with initial state x(0), at time instant n is
given by :

x(n) = Anx(0) +

n−1∑
i=0

An−i−1Bu(i) (23)

In order to identify the transfer parameters from inputs to output
(reticle deformation), using equation 13, the following relationship
between the input and output data-sequence is obtained :

y(n) = Cx(n) (24)

4.3.1 Estimating spatial output matrix φT for developing the
RHIDP model for static and low frequency input signals. :

It is known that the direct feed-through from inputs to spatial
reticle deformation is zero. The system matrices are time-invariant,
with initial state x(0). A singular value decomposition separates
the spatial orthonormal basis from the temporal orthonormal
basis connected by a similarity transformation. The SVD of step
response data directly generates the output trajectory for a given
Use Case, which is used for developing the final RHIDP model
using the Linear Temporal Prediction Algorithm (LTPA).

Observations / Knowledge:

(1) It is known that the direct feed-through (System Matrix D)
from the inputs to output is zero.

(2) It is also known that each measurement y(n) represents vec-
tor containing the spatial distribution of deformation for all
PARIS marks at instant n, and it becomes important to separate
the temporal and spatial behaviour, to develop a LTI prediction
algorithm.

(3) The presence of only 40 measurements points limits the size of
Y0,s,N

Note 16

.

.

Cn = R(G)T
⊕
N (G) (25)

Cm = R(G)
⊕
N (G)T (26)

.

[
UR UN

]


σ1 0 0 . . . 0 0
0 σ2 0 . . . 0 0
...

...
. . . . . . . . .

...
0 0 . . . σp 0 0
0 0 0 . . . 0 0
0 0 0 . . . 0 0


[
VR
VN

]
(27)

[
u1 . . . up up+1 . . . um

] [Sp×p 0
0 0

]


v1
...
vp
vp+1

...
vn


(28)

σ1 ≥ σ2 ≥ . . . ≥ σp > 0 (29)

S = diagonal(σ1, σ2, . . . , σp) ∈ Rp×p. (30)

.
The column vectors form spans for the subspaces:

R(G) = span{u1 . . . up} (31)

R(G)T = span{v1 . . . vp} (32)

N (G)T = span{up+1 . . . vm} (33)

N (G) = span{vp+1 . . . vn} (34)
With the knowledge at hand, a data equation created by stacking

time shifted outputs vectors next to each other using equation 24 is
considered, this converges the data-equation to the form :

[
y(0) y(1) · · · y(N − 1)

]
= CX0,N (35)
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Where,

X0,N = [x(0) x(1) · · ·x(N − 1)] (36)

Rewriting equation 35, to represent spatial and temporal data, the
following relationship is obtained :
This equation is censored.

This is a very important relationship, as it shows that, the spatial
distribution of the output deformation matrix lies in the range space
of time independent φT matrix. Where φT is related to output ma-
trix C presented in equation 35 through a similarity transformation
T . In other words, the data matrix can be factorized into a time
independent C matrix and and a time dependent X

0, ,N
matrix.

ForN = 40 (40 RA measurement instances), the above relationship
converges to the equation . The arrangement of the features in
the data-set presented in equation is important, it can be seen
that ”feature one” describing deformation vectors along x and y
axis on the reticle surface are arranged vertically for every time in-
stant n. While ”feature two” describing the temporal variation in
magnitude associated with the spatial description given by ”feature
one” is arranged horizontally for increasing time instances.
This equation is censored.
Singular Value Decomposition (SVD) is a very powerful statisti-
cal tool which determines the correlation between the orthonormal
basis describing both features of the data-set. The singular values
indicate the relative co-variance between each pair of orthonormal
basis determined by SVD. In a compact notation the data equation

can be written in the following way :

Y
0, ,40

= φTX0, ,40
(37)

In other words, Singular value decomposition of Y
0, ,40

presents a linear transformation taking a vector v1 in its row space
(feature one) to a vector u1 = Y

0, ,40
v1 in its column space

(feature two). The SVD arises from finding an orthogonal basis
for the row space that gets transformed into an orthogonal basis for
the column space: Y

0, ,40
vi = σiu. [Strang 2011]. Considering

the RHIDP model is developed for precise prediction of global ret-
icle deformation for various static and low frequency input signals.
A nominal step input excitation signal using UC4 is provided to
the system for analysis of row and column spaces of obtained data-
matrix Y

0, ,40
, The analysis will reveal insightful information re-

garding dominant modes obtained for each orthonormal ui and vi
basis which relate both features present in the data-matrix. SVD of
the Y

0, ,40
allows determination of the column space of Y

0, ,40
.

[Michel Verhaegen 2007]. This concept was obtained from [Kant
2018]. Singular Value Decomposition of Y0,40, produces the fol-
lowing factorization :

Y
0, ,40

=
⋃
×

.
∑
×40

.
∨

40×40

T
(38)

Where
⋃

× consists of orthonormal basis vectors

4.3.2 Reduced Model Order Selection. The singular value
plot shown in figure 8 indicates the dominant modes excited for
”nominal” UC4 (291,6.25). Although it’s difficult to differentiate
the system order looking at the gaps in the singular value, the first
14 dominant modes represent the significant singular values among

possible modes. However, for developing the reduced order
system description for the RHIDP model, the first 5 modes are
considered, since these modes contribute to deformation effects of

magnitude sufficient for developing an accurate prediction model
for static and low frequency dynamic input signals. In other words,
these singular values are associated with the most variance in the
deformation magnitudes. Consequently, selection of the first five
modes among the modes represents a reduction in the order of
the system presented in section 4.2.2.

Note 17
Percentage of variation explained by each SVD mode:

If the singular value decomposition of a matrix G is given by :

G =
⋃∑∨T

(39)

The amount of overall variance expound by the ith pair of or-
thonormal SVD vectors (”ith mode”) is given by :

s2 =
‖uiσivTi ‖2

‖G‖2
=

σ2
i∑
j σ

2
j

(40)

where, σj are singular values (diagonal of matrix
∑

). ui and
vi are the orthonormal basis vectors associated with mode i.
All norms are Frobenius norms.
The amount of variance expound by ith mode of kth column,
where gk is the kth column of G is given by :

s2 =
‖uiσivTi,k‖2

‖gk‖2
=
σ2
i v

2
i,k

‖g2k‖2
(41)

Note 18
SVD and physical interpretation of

⋃
and

∨T data-set:

In machine learning and statistics, Singular Value Decompo-
sition is known for extracting insightful information from any
data matrix, [Modarresi 2005] in particular, a singular value de-
composition is known for factorizing a matrix to reveal it’s con-
stituent rotation and scaling matrices [Pisani 2015][Marschner
2010][Olga Sorkine-Hornung 2017]. These rotation / scaling
matrices in general contain predominant features of interest
present in the data-set.
The data-set Y0,1,40 which is factorized using a Singular value
Decomposition contains spatial as well as temporal data ar-
ranged along vertical and horizontal axes of the matrix. As such
SVD factorization helps separate these two properties by plac-
ing them in orthogonal matrices

⋃
n and

∨
n
T , which basically

contain the mode shapes and modal magnitude. Mode shapes
contain the spatial reticle deformation vectors in the identified
φT system matrix, whereas the data encapsulating the tempo-
ral variations in the mode-shape is contained in X0,N,40 data-
set (

∑
n .
∨
n
T ). This data is used to determine modal transfer

functions. [J. B. Fahnline and Shepherd 2017].
shows the five most dominant modes and their con-

tribution to the global reticle deformation with respect to time. The
maximum contribution to the deformation magnitude of the least
dominant (5th) mode selected for developing the RHIDP model is
in the scale of 10−11 m. The contribution of the remainder ( −5)
modes is negligible and is thus more than sufficient for accounting
all variances less than nanometers (10−9) m in the deformation
magnitude as desired from the prediction model to be used for
lithography. Tables X, XI, XII tabulate the VAF % as a function
of increasing modal contributions for .
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Fig. 8. Singular Values from deformation data for the nominal step input
UC 291K, 6.25 J/m2

VAF is a metric used for assessing the quality of model. It is
defined by :

VAF(y(n), y ˆ(n)) = max(0, 1−
1
N

∑N
n=1 ‖y(n)− y ˆ(n)‖22

1
N

∑N
n=1 ‖y(n)‖22

.100%)(42)

Where, y is the signal from the signal generating model and ŷ
is the predicted (deformation magnitude) signal, n is the sample
index and N is the number of samples. The signal ŷ is determined
as a function of modal magnitude as specified in equation 40. For
example, ŷ values for first mode helps determine the predicted ‖vp‖
for each paris and edge mark specified in equation 21, through a
linear combination with the associated mode-shape (spatial output
matrix). In other words, ‖vp‖ using the first mode is determined in
the following way:

v(x/y),p(t)1 =

1∑
i=1

φT (x, y).η(t)i (43)

Similarly, ŷ values as a function of the first three modes is com-
puted in the following way:

v(x/y),p(t)3 =

3∑
i=1

φT (x, y).η(t)i (44)

Where φT contain the mode-shapes obtained using the SVD.
This is elaborated later in this subsection. VAF presents values be-
tween 0% to 100 %. Higher the VAF, lower is the prediction error,
better is the modeled system.

VAF %
Mode 1 99.7055 99.9121 99.9924 99.9919 99.9530
Mode 2 99.9929 99.9985 99.9999 99.9982 99.9971
Mode 3 99.9999 99.9999 99.9999 99.9999 99.9999
Mode 4 99.9999 99.9999 99.9999 99.9999 99.9999
Mode 5 99.9999 99.9999 99.9999 99.9999 99.9999
Mode 6 99.9999 99.9999 99.9999 99.9999 99.9999

Table X.

VAF for the as a function of increasing modes

VAF %
Mode 1 99.8974 99.8257 99.7354 99.3482 99.7143
Mode 2 99.9982 99.9993 99.9892 99.8376 99.9937
Mode 3 99.9999 99.9999 99.9998 99.9976 99.9999
Mode 4 99.9999 99.9999 99.9999 99.9999 99.9999
Mode 5 99.9999 99.9999 99.9999 99.9999 99.9999
Mode 6 99.9999 99.9999 99.9999 99.9999 99.9999

Table XI.

VAF for PARIS and Edge marks as a function of
increasing modes

VAF %
Mode 1 99.9168 99.9938 99.9906 99.9498 99.8929 99.8199
Mode 2 99.9989 99.9998 99.9977 99.9966 99.9978 99.9993
Mode 3 99.9999 99.9999 99.9999 99.9999 99.9999 99.9999
Mode 4 99.9999 99.9999 99.9999 99.9999 99.9999 99.9999
Mode 5 99.9999 99.9999 99.9999 99.9999 99.9999 99.9999
Mode 6 99.9999 99.9999 99.9999 99.9999 99.9999 99.9999

Table XII.

VAF for the PARIS Marks as a function of increasing modes

The determined mode-shapes containing the spatial descrip-
tion of reticle deformation associated with the five most domi-
nant modes are presented using figures 10, 11, 12, 13 and 14 in
Appendix-F. If Σr ∈Rr×r and rank(Σr) = r, then, the mode-shapes
contained in

⋃
×r can be denoted by :

⋃
×r

= φT (45)

Although it can be seen from the VAF % values, the first mode
accounts for 99 % of the overall deformation magnitude variances.
VAF % do not necessarily give an indication of the desired accuracy
for the RHIDP model. Note 17 expresses that, higher the number
of modes used for developing the prediction model, higher would
be the accuracy of prediction by the model. This can also be seen
from the VAF values presented in tables X, XI, XII. Considering
the precision requirements from the RHIDP model, first 5 modes
are selected for developing the model. This is also indicated in the
singular value plot shown in figure 8. Consequently, equation 45
converges to the following :

⋃
×5

= φT (46)

Therefore SVD helps determine φT , which contains the or-
thonormal basis describing the range space of spatial deformation,
up to an unknown similarity transformation T. An important point
to note is that, choosing

⋃
5

∑1/2
5 instead of

⋃
5, would lead to de-

termination of the spatial output matrix φT1
instead of φT , which

would be related to the spatial output matrix φ of the signal gener-
ating model with an unknown similarity transformation T1, instead
of T . Therefore the choice of system matrix to be equal to

⋃
5 is

arbitrary. However for the identification of the RHIDP model, the
five columns of left singular orthogonal vectors

⋃
5 are selected

for determining the spatial output matrix φT . Consequently, for the
RHIDP model, X0,40 data is the product of the singular values and

right singular orthogonal vectors
[∑

5×5
∨

5×40
T
]
, given by :

CONFIDENTIAL



Precise Data-Driven Modelling of Reticle Heating Induced Spatial Deformations for Correcting Non-Moving Average Effects • 18

[∑
5×5

∨
5×40

T ]
= X0,5,40 =

[
x(0) x(1) · · ·x(39)

]
(47)

4.3.3 Determination of AT , BT and CT system matrices for
static inputs. The singular value decomposition of the output data-
matrix was used for determination of the orthonormal basis vectors
describing the spatial description of reticle deformation (φT ) and
the orthonormal basis vectors describing the temporal description
for a the nominal step input signal. It was shown that the global
temporal and spatial reticle deformation behaviour lies in the range
space of φT . The temporal data obtained following the singular
value decomposition will be used for Linear Temporal Prediction
Algorithm (LTPA) developed for static and low frequency input sig-
nals explained in section 4.4. It is known from equation 23, the state
trajectory when excited by a external signal u is given by the fol-
lowing relationship :

x(n) = AT
nx(0) +

n−1∑
i=0

AT
n−i−1BTu(i) (48)

It can be deduced that, the function describing the output data
X0,5,40 can be described by the state trajectory 48 as long as the
the output CT matrix describing the temporal behaviour doesn’t
include any scaling terms and is used for linearly adding the de-
coupled state sequences X0,5,40 obtained for each input. In other
words output system matrix C which is related to the similarity
transformed output matrix CT can be expressed using the follow-
ing relationship :

X0,5,40 =
[
1 1
] [{X0,5,40}u1

{X0,5,40}u2

]
(49)

In other words,

X0,5,40 =
[
CT
] [{X0,5,40}u1

{X0,5,40}u2

]
(50)

Where, {X0,5,40}u1
and {X0,5,40}u2

are the state-trajectory
data obtained for static inputs u1 and u2. Considering the system
was excited using a step input, the relation of the obtained state data
({X0,5,40}u1

and {X0,5,40}u2
) with system matrices AT and BT ,

is given by plugging in values of n = (0 to 39) in the equation 48,
with u1(n) and u2(n) = 1 (or scaled version thereof, depending on
UC), gives the following relationship :

X0,5,40 =
[
x(0), ATx(0) +BT

[
u1(1)
u2(1)

]
, · · · (51)

AT
2x(0) + (ATBT +BT )

[
u1(2)
u2(2)

]
, · · ·

AT
40x(0) + (AT

39BT + · · ·+ATBT +BT )

[
u1(3)
u2(3)

] ]
x(0) can be determined directly by reading off the first 5 × 1

elements of the sequence presented in the equation 47. However,
considering the combination of AT and BT matrices present in the
state-trajectory X0,5,40 described by equation 51, determination of
system matrices AT and BT from the data for static inputs is not
very straight forward. Therefore a Grey-box identification strategy
for determination of the system matrices AT , BT and CT using
curve fitting is proposed in section 4.4 to the reader.

4.4 Grey-Box Identification

It is known that, DT = 0, having computed CT , a grey box iden-
tification using curve fitting of the X0,5,40 data-set presented in
equation 47 is another approach for determination of AT and BT
system matrices. The algorithm is presented in this section.

4.4.1 Estimating AT and BT through curve fitting of X0,i,n

data-set for temporal prediction. :

The function describing the reticle heating curve for any UC,
with mode i and unique UC setting j can be described using the
following relationship :

η(t)i,j = u1(t)j{κi,j1 (1− e
−t
τ1
i,j )}+ u2(t)j{κ2

i,j(1− e
−t
τ2
i,j )}
(52)

Where,

(1) u1(t)j is the airflow temperature associated with the unique
use case j.

(2) u2(t)j is the dose (scaled irradiance for static inputs) associ-
ated with the unique use case j.

(3) κ1 is a RH parameter. It is associated with mode i, and use case
j. It encompasses the sensitivity of the mode i with respect to
airflow temperature.

(4) κ2 is second RH parameter. It is associated with mode i, and
use case j. It encompasses the sensitivity of the mode i with
respect to dose.

(5) τ1 and τ2 are the third and fourth RH parameters, representing
time constants associated with the function describing RH for
mode i and use case j, with respect to airflow temperature and
dose respectively.

Each reticle heating mode can be described using the state space
form [Kant 2015] :

[
ẋ1(t)
ẋ2(t)

]
i,j

=

[
− 1
τ1

0

0 − 1
τ2

] [
x1(t)
x2(t)

]
i,j

+

[
κ
i,j
1
τ1

0

0 κ2
i,j

τ2

][
u1(t)j
u2(t)j

]
(53)

The output equation of the state dynamics is given by :

η(t)i =
[
1 1
] [x1(t)
x2(t)

]
i,j

(54)

Equation 54 indicates a linear addition of orthogonal state
prediction vectors for mode i and UC j.
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Note 19
Transfer function and stability:

The transfer function relating signal ηi(t) with airflow temper-
ature u1(t) and dose u2(t) (Scaled Irradiance) for a given state
order i, is given by :

η(s) =

κ1
τ1

s+ 1
τ1

u1(s) +

κ2
τ2

s+ 1
τ2

u2(s) (55)

The poles of the system associated with mode i lie at (− 1
τ1
, 0)

and (− 1
τ2
, 0) on the s plane. Where, τ1 and τ2 are time con-

stants associated with the function describing mode i. The time
constants of each of the function, irrespective of the mode i is
a positive number. Consequently, all the poles of the system lie
on the left half of the s plane, verifying the asymptotic stability
of the system presented to the reader in section 3.5.

The system matrices associated with equations 53 and 54 can be
represented by Ai,j , Bi,j and Ci,j for mode i and UC j. xi,j(t)
represents the state dynamics associated with mode i and UC j.

A complete linear state description of the RHIDP model, can
be developed, by combining all the states associated with higher
modes in a single state space model. Since the first five modes were
selected for modelling, the state space description is given by :

ẋj =


A1,j 0 · · · · · · 0

0 A2,j 0 · · · 0
0 0 A3,j · · · 0
...

...
. . .

...
0 0 · · · · · · A5,j

xj +


B1,j

B2,j

B3,j

...
B5,j


[
u1

u2

]
j

(56)

ηj =


C1,j 0 · · · 0

0 C2,j · · · 0
...

...
. . .

...
0 0 0 C5,j

xj (57)

With an equivalent representation of the form :

ẋj = ATxj +BT

[
u1

u2

]
j

(58)

ηj = CTxj (59)

Where,

(1) AT , BT and CT are the system matrices of the identified
RHIDP model known upto an unknown a simillarity transfor-
mation T .

(2) ηj is a continuous time function representative of the discrete
time state sequence X0,5,40 obtained from singular value de-
composition presented in section 4.3.

(3) xj encompasses the decoupled states associated with inputs u1

and u2 for each mode i = 1 to 5, for static input UC j.

The above description represents the dynamics of the RH model
for a certain use case j, within the region of operation. The sys-
tem matrices associated with equations 56 and 57 represent the

system matrices AT , BT and CT of the identified RHIDP model
upto an unknown similarity transformation T . The temporal modal
magnitude prediction results obtained from equation 57, represents
the data along the transformed orthogonal basis V T . It is known
that the spatial description of the global reticle deformation lies in
the range space of φT . The spatial and temporal description of the
reticle deformation behaviour is thus obtained by recombining the
modal temporal data described using the function ηT with mode
shapes contained in φT (equation 46). This is shown using the fol-
lowing relationship :

v(x/y),p(t) =

5∑
i=1

φT (x, y).η(t)i (60)

Where,

(1) v(x/y),p(t), represents the spatial and temporal global reticle
deformation prediction vectors along x and y axes at PARIS
mark p.

(2) φT (x, y) is the time independent spatial output matrix of the
signal generating model known upto a simillarity transforma-
tion T . It contains dominant the orthogonal basis describing
the mode-shapes which represent the spatial description of ret-
icle deformation.

(3) η(t) is the modal magnitude prediction function.
(4) i represents first five dominant modes of the system.

Magnitude of predicted vector at PARIS mark p (vp[t])

|vp[t]| =
√

(vxp
2[t] + vyp

2[t]) (61)

The direction of predicted vector at PARIS mark p (vp[t])

vp[t] = tan−1
[
vyp[t]

vxp[t]

]
(62)

Equations 53 and 54 showed that, each modal magnitude is rep-
resented using a second order system, thus the RHIDP model re-
quires 5 × 2 = 10th order state space description for precise reticle
deformation prediction. Each mode is associated with identification
of four unknown parameters, namely τ1, τ2, κ1 and κ2. Therefore,
an identification of 4 × 5 = 20 parameters (parameters per mode
× number of modes) would be required for every UC. The LTPA
presented to the reader in the next sub-section performs a linear
prediction of lumped-static parameters using linear least-squares.
LTPA will be used for precise spatial and temporal prediction of
Reticle deformation for various UCs.

4.5 Linear Temporal Prediction Algorithm (LTPA) for
any UC within RO

The dynamics of mode i and UC j was represented using the fol-
lowing relationship :

η(t)i,j = u1(t)j{κi,j1 (1− e
−t
τ1
i,j )}+ u2(t)j{κ2

i,j(1− e
−t
τ2
i,j )}
(63)

Each of the unique parameters τ1, τ2, κ1 and κ2 is dependent
on the mode for which the curve is estimated. In this sub-section, a
novel linear regression algorithm for precisely estimating the spa-
tial and temporal deformations of the reticle for various UCs within
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RO is explained to the reader. The regression model also estimates
reticle deformation for low frequency input signals. Considering
the limited number of available data-points, the LTPA is one of
the optimal approaches for estimating reticle deformation for var-
ious static inputs (UC) using only three data-points. To this end,
the sensitivity of ηi,j(t) with respect to decoupled inputs u1 and
u2 is determined for mode i and Use Case j. The relationship of
the temporal dynamics of each mode i, with respect to both inputs
(sensitivity) is given below :

∂η(t)i
∂u1

|(u2=6.25) = κi1(1− e
−t
τ1
i ) = P1(t) (64)

∂η(t)i
∂u2

|(u1=291) = κi2(1− e
−t
τ2
i ) = P2(t) (65)

Note 20
Optimization Algorithm for estimating lumped parame-
ters:

Equation 63 can be rewritten as :

η(t)i,j = u1(t)jP1 + u2(t)jP2 (66)

Using the measured sequence of output η(t)i,j , inputs u1(t)j
and u2(t)j at RA instances, static parameters P1 and P2 of
equation 66 for each mode i can be estimated using a least
squares approach by using 3 data-points (Use Cases) for the
linear system in the following way :

(67)

(68)

Subtracting equation 67 obtained for first UC from 68 obtained
for second UC, we obtain the following relationship :

(69)

Equation 69 can be re-written as :

[ ]−1 [ ]
= P1 (70)

for estimating parameter P1.
Similarly parameter P2 can be estimated using a third UC. This
is explained below :

(71)

Subtracting equation 67 obtained for first UC from 71 obtained
for third UC, we obtain the following relationship :

(72)

Equation 72 can be re-written as :

[ ]−1 [ ]
= P2 (73)

for estimating parameter P2.

ηi obtained for UC 291,6.25 is chosen as the nominal function
describing the heating dynamics of the reticle. The LTPA algorithm
is developed around this nominal input. The reason for selecting u1

= 291 K and u2 = 6.25 J/m2 is arbitrary, another UC within RO
can also be chosen as the nominal input for predicting the dynam-
ics using the LTPA. The step response analysis using the k-factor
model presented to the reader in section 3 indicated a linear rela-
tionship of the temporal reticle deformation magnitude with respect
to decoupled inputs. The LTPA uses relationships 74 and 75 for pre-
cisely predicting the state trajectory xi(t) of the system for a given
input combination u1(t) and u2(t) at time t using the sensitivities
determined in equations 64 and 65.

∂x1(t)i,j
∂t

= x(t)(i,j=291,6.25) + {u2 − 6.25} × ∂η(t)i
∂u2

|(u1=291)

(74)

∂x2(t)i,j
∂t

= x(t)(i,j=291,6.25) + {u1 − 291} × ∂η(t)i
∂u1

|(u2=6.25)

(75)

η(t)i,j =
[
1 1
] [x1(t)
x2(t)

]
i,j

(76)

Where,

(1) x(t) is the predicted modal magnitude with respect to time.
(2) i is the predicted mode.
(3) u1 is the step input in airflow temperature of the predicted UC.
(4) u2 is the step input in dose of the predicted UC.
(5) j is the UC associated with step inputs u1 and u2 used for

predicting η(t) within RO.

Fig. 9. Graphical Interpretation of LTPA

4.5.1 Graphical interpretation of LTPA. A graphical inter-
pretation of the LTPA is presented in this sub-section. The interpre-
tation will help the reader develop a better understanding of equa-
tions 64 , 65 describing the static sensitivities and state equation
74 and 75. Considering the decoupled nature of inputs u1 and u2

CONFIDENTIAL



Precise Data-Driven Modelling of Reticle Heating Induced Spatial Deformations for Correcting Non-Moving Average Effects • 21

with respect to reticle heating modes ηi, a 3-D visualization of the
LTPA is presented to the reader using figure 9. The A-B-C-D plane
is used to represent the RO for the RHIDP model with orthogo-
nal axes of RO illustrative of step input values in u1 and u2. The
vertical axis of the figure indicates the state trajectory xi(t) for a
given UC. In particular the state trajectory for UC A on the RO
is used as the nominal xi(t) for the LTPA. This novel algorithm
is used for predicting ηi(t) which is a linear combination of the
states xi(t). The nominal states xi(t) (i = 1,2,3,4,5) are illustrated
in . Similarly illustrate the state
sequences obtained for UCs B,C and D of the RO.

The analysis reveals that, the temporal magnitude of each mode i
is linearly proportional to the UC in question. In fact ηi for any UC
within RO can be predicted using a linear prediction algorithm by
computing the sensitivity of ηi with respect to decoupled inputs u1

and u2. The linearity is verified through a regression analysis (in
the lines of section 3.2) by randomly selecting two time instances
at 20th RA instant and 40th RA instant. η1 values for 12 uniformly
spaced UCs within RO are measured and interpolated. The inter-
polated data points generate a flat 2-D surface in a 3-D space. Tab-
ulated η1 values at 20th RA instant are labeled and presented in
table XIII and it’s associated interpolated surface is shown in figure

. Similarly, tabulated η1 values for 40th RA instant are labeled
and presented in table XIV and it’s associated interpolated surface
is shown in figure .

Table : 15 (×10−07)
Dose
/
Temp

6.25
J/m2

12.5
J/m2

18.75
J/m2

291 K
(A) (B) (C)

292.5
K (D) (E) (F)
294 K

(G) (H) (I)
295.2
K (J) (K) (L)

Table XIII.

Measured η1 at 20th RA instant for 12 uniformly spaced UCs

Table : 16 (×10−07)
Dose
/
Temp

6.25
J/m2

12.5
J/m2

18.75
J/m2

291 K
(A) (B) (C)

292.5
K (D) (E) (F)
294 K

(G) (H) (I)
295.2
K (J) (K) (L)

Table XIV.

Measured η1 at 40th RA instant for 12 uniformly spaced UCs

The flatness of the generated surface indicates consistency in
the sensitivity (equations 64 and 65) of ηi with respect to inputs u1

and u2 for any given time instant t. This experimental result can
be extended to all modes (i = 2,3,4,5). Consequently, the temporal
RH effect for any UC within RO can be precisely estimated using
a linear prediction of all the associated modes.

4.6 Results of LTPA for Various Static and Dynamic
Inputs in RO

In the previous section, computing the sensitivity of ηi(t) with re-
spect to decoupled static inputs u1 and u2 using measured ηi(t)
values for UCs A, Z and Y using a least squares prediction of static
parameters was illustrated. Z and Y stand for static data-points for
UCs - (292, 6.25) and (291, 8.25). The choice of UCs Z and Y for
computing sensitivities along inputs u1 and u2 was arbitrary since
it is proven that modal sensitivities ∂η(t)i

∂u1
and ∂η(t)i

∂u1
are constant

in section 4.5.1. Therefore, estimated ηi values for UCs A, Z and
Y represent the calibration data-set, where as the remaining UC
in the RO will be used for validating the novel approach used for
identifying the RHIDP model for various UCs.

4.6.1 Calibration results of the LTPA for static inputs (Use
Cases). The prediction results using the three calibration data
points for marks using VAF % val-
ues is presented in this subsection. The tabulated results are pre-
sented using tables XVII, XVIII, XIX and XX in Appendix-G.
The results indicate a 100 % VAF values for calibration UCs for

.

4.6.2 Validation results of the LTPA for static inputs
(Use Cases). The prediction results using the LTPA at

for 21 randomly chosen UCs
within RO using VAF % values is presented in this subsection. The
tabulated results are presented using tables XXI, XXII, XXIII and
XXIV in Appendix-G.

4.6.3 Validation Results of LTPA for Dynamic Inputs. The
RHIDP model developed using the LTPA for static inputs (Use
Cases) is extended for general dynamic sinusoidal inputs using
the constant sensitivities of ηi with respect to both inputs u1 and
u2 presented to the reader in section 4.5. However, the linear re-
gression developed using LTPA doesn’t include the effects of dy-
namic inputs on the prediction model, since estimation of lumped
parameters was performed using three data-points. In other words,
the effect of current inputs is not included in determining the sen-
sitivity of modal magnitudes with respect to future inputs. Thus,
the prediction model is not accurate for dynamic sinusoidal in-
puts for signals above 0.01 Hz. The linear regression model us-
ing LTPA was developed considering the limited number of avail-
able data-points. The results of the RHIDP model for sinusoidal
input signals (u1(t), u2(t) ∈ RO) for varying frequencies are pre-
sented to the reader using tables XXV, XXVI, XXVII, XXVIII and
XXIX in Appendix-G. The tables present the VAF % values for

for 23 randomly chosen combi-
nation of sinusoidal inputs. The prediction results show VAF %
values greater than 90 for sinusoidal inputs having frequencies less
than 0.01Hz. VAF % values fall for frequencies higher than 0.01Hz
for the RHIDP model developed using LTPA for static inputs.
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5. CONCLUSION AND RECOMMENDATIONS

A linear regression Reticle Heating Induced Deformation Predic-
tion (RHIDP) model was developed and presented to the reader in
this paper. The Regression model is developed for very low fre-
quency inputs, static inputs represent Use Cases for the prediction
model and the prediction model exhibits very high degree of pre-
cision for low frequency dynamic inputs within the Region of Op-
eration (RO). It was shown that a very precise prediction model
describing the spatial and temporal reticle deformation behaviour
can be developed using only 3 (RA) measurement points for de-
scribing inter-wafer drifts. Use Cases (UCs) represent static input
conditions for the RH system, and it is shown that mode-shapes
associated with reticle heating do not change significantly for all
UCs within RO. The three measurement point RHIDP model for
all UCs require determination of the static sensitivity of RH modes
with respect to Airflow Temperature and Dose as inputs. The linear
regression model presents very high prediction accuracy for low
frequency signals below 0.01 Hz, with VAF values above 99 %
for static inputs. However, the prediction accuracy falls for signals
with frequencies above 0.01 Hz. This can be attributed to the fact
that the regression model developed for static inputs using three
measurement points, doesn’t account for effects of present inputs
for predicting the future states dynamically.

5.1 Recommendations

Recommendations for future work are related to improving the cur-
rent RHIDP model by overcoming infirmities experienced in imple-
menting the data-driven model on the metrology simulator.

5.1.1 Using resist data for improved spatial modelling:.

.
.

5.1.2 Using higher number of RA measurements for im-
proved temporal modelling:.

.

.

5.1.3 Using system data instead of simulation
data from the metrology simulator:. Experimental data from the
NXT Twinscan system will not only improve the spatial and tem-
poral prediction results of the identified RHIDP model, but also aid
in developing a model which is more robust to system noise. The
effects of system noise can be eliminated by de-trending the mea-
sured data. De-trending of data-set was presented to the reader in
section 3.3. The de-trended data-set will also help capture any sig-
nificant non-linear effects due to time dependent variations in the
convection coefficient which was presented to the reader in Note 3.

5.1.4 Extending the model for Intra-wafer drift.

.

5.1.5 .

.

.

.
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APPENDIX

A. THERMAL MODE SHAPES

Figures show the first 90 Thermal mode-shapes
associated with RH.

The images have been commented.

B.
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.

D. ODD AND EVEN K-FACTORS

Figure illustrates the shapes of all the odd k-parameters which
are responsible for characterizing the global deformation in x.

Figure illustrates the shapes of all the odd k-parameters
which are responsible for characterizing the global deformation in
y.

Images are censored
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E. MEASURED EXPERIMENTAL DATA

Table : 3

Dose
/
Temp

6.25
J/m2

8.25
J/m2

10.25
J/m2

12.5
J/m2

14.5
J/m2

16.5
J/m2

18.75
J/m2

291
K (A) (B) (C)
291.5
K
292
K
292.5
K
293
K (D) (E) (F)
293.5
K
294
K
294.5
K
295
K
295.2
K (G) (H)

(I)

Table XV.

Measured k4(n) values for 70 uniformly spaced UCs within RO at n3

Table : 6 - De-trended k4(n3) values for uniformly spaced input data set
Dose
/
Temp

6.25
J/m2

8.25
J/m2

10.25
J/m2

12.5
J/m2

14.5
J/m2

16.5
J/m2

18.75
J/m2

291
K (A) (B) (C)
291.5
K
292
K
292.5
K
293
K (D) (E) (F)
293.5
K
294
K
294.5
K
295
K
295.2
K (G) (H) (I)

Table XVI.

De-trended k4(n) data set for 70 use cases at n3.

F. DOMINANT MODE-SHAPES ASSOCIATED
WITH STATIC INPUTS

Fig. 10. Mode-shape associated with the dominant Mode on the reticle
surface

Fig. 11. Mode-shape associated with the second dominant Mode on the
reticle surface

Fig. 12. Mode-shape associated with the third dominant Mode on the ret-
icle surface
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Fig. 13. Mode-shape associated with the fourth dominant Mode on the
reticle surface

Fig. 14. Mode-shape associated with the fifth dominant Mode on the reti-
cle surface

G. TABULATED RESULTS

VAF %
UC 291, 6.25 100 100 100 100 100
UC 291, 8.25 100 100 100 100 100
UC 292, 6.25 100 100 100 100 100

Table XVII.

VAF of PARIS Marks for calibration Use Cases

VAF %
UC 291, 6.25 100 100 100 100 100
UC 291, 8.25 100 100 100 100 100
UC 292, 6.25 100 100 100 100 100

Table XVIII.

VAF of PARIS Marks and edge marks for
calibration Use Cases

VAF %
UC 291,6.25 100 100 100 100
UC 291, 8.25 100 100 100 100
UC 292, 6.25 100 100 100 100

Table XIX.

VAF of PARIS Marks for calibration Use Cases

VAF %
UC 291, 6.25 100 100
UC 291, 8.25 100 100
UC 292, 6.25 100 100

Table XX.

VAF of PARIS Marks for calibration Use Cases

VAF %
UC 294.5, 17.25 99.9767 99.9805 99.9819 99.9825 99.9824
UC 293.22, 13.61 99.9999 99.9999 99.9999 99.9999 99.9999
UC 293.51, 18.71 99.9999 99.9999 99.9999 99.9999 99.9999
UC 294.85, 18.25 75.5665 75.2150 75.4445 75.4440 74.9347
UC 291.2, 15.71 99.9999 99.9999 99.9999 99.9999 99.9999
UC 295, 17.36 99.7377 99.7069 99.7109 99.7198 99.7171
UC 295.14, 12.29 99.8878 99.9345 99.9624 99.9836 99.9764
UC 295.2, 7.07 99.6744 99.8839 99.9777 99.9977 99.6787
UC 294.12, 10.97 99.9999 99.9999 99.9999 99.9999 99.9999
UC 294.89, 13.97 68.4956 75.5864 78.8825 80.7860 82.3953
UC 291.32, 8.58 99.9999 99.9999 99.9999 99.9999 99.9999
UC 292.42, 14.49 99.9999 99.9999 99.9999 99.9999 99.9999
UC 291.63, 11.83 99.9999 99.9999 99.9999 99.9999 99.9999
UC 294.69, 9.17 99.9913 99.9929 99.9934 99.9934 99.9932
UC 294.86, 16.11 65.5184 64.4253 64.2777 64.0401 63.2383
UC 291.71, 12.39 99.9999 99.9999 99.9999 99.9999 99.9999
UC 294.92, 17.83 98.2128 98.0779 98.1648 98.2031 98.0398
UC 295.2, 6.89 99.6668 99.8820 99.9780 99.9975 99.9461
UC 292.36, 7.79 99.9999 99.9999 99.9999 99.9999 99.9999
UC 291.11, 8.19 99.9999 99.9999 99.9999 99.9999 99.9999
UC 294.99, 17.49 99.6996 99.6514 99.6707 99.6874 99.6595

Table XXI.

VAF of PARIS Marks for validation use cases
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VAF %
UC 294.5, 17.25 99.9803 99.9729 99.9644 99.9602 99.9767
UC 293.22, 13.61 99.9999 99.9999 99.9999 99.9999 99.9999
UC 293.51, 18.71 99.9999 99.9999 99.9999 99.9999 99.9999
UC 294.85, 18.25 73.5578 69.9574 70.9728 64.3938 75.4054
UC 291.2, 15.71 99.9999 99.9999 99.9999 99.9999 99.9999
UC 295, 17.36 99.6497 99.3942 99.8030 99.7330 99.7552
UC 295.14, 12.29 99.8546 99.4587 99.9874 99.9793 99.8850
UC 295.2, 7.07 99.7860 99.4205 99.8961 99.6689 99.9764
UC 294.12, 10.97 99.9999 99.9998 99.9998 99.9998 99.9999
UC 294.89, 13.97 84.5600 89.2156 89.0987 90.4971 68.8016
UC 291.32, 8.58 99.9999 99.9999 99.9999 99.9999 99.9999
UC 292.42, 14.49 99.9999 99.9999 99.9999 99.9999 99.9999
UC 291.63, 11.83 99.9999 99.9999 99.9999 99.9999 99.9999
UC 291.63, 11.83 99.9924 99.9892 99.9867 99.9859 99.9913
UC 294.86, 16.11 61.2989 56.3144 55.9928 43.4905 65.3084
UC 291.71, 12.39 99.9999 99.9999 99.9999 99.9999 99.9999
UC 294.92, 17.83 97.4669 96.1756 98.4417 98.2311 98.2456
UC 295.2, 6.89 99.7832 99.4186 99.8896 99.6510 99.6713
UC 292.36, 7.79 99.9999 99.9999 99.9999 99.9999 99.9999
UC 291.11, 8.19 99.9999 99.9999 99.9999 99.9999 99.9999
UC 294.99, 17.49 99.5469 99.3322 99.6498 99.4700 99.7224

Table XXII.

VAF of PARIS Marks and edge marks for
validation use cases

VAF %
UC 294.5, 17.25 99.9804 99.9818 99.9824 99.9822
UC 293.22, 13.61 99.9999 99.9999 99.9999 99.9999
UC 293.51, 18.71 99.9999 99.9999 99.9999 99.9999
UC 294.85, 18.25 75.0518 75.2980 75.3061 74.7904
UC 291.2, 15.71 99.9999 99.9999 99.9999 99.9999
UC 295, 17.36 99.7235 99.7250 99.7325 99.7310
UC 295.14, 12.29 99.9325 99.9611 99.9831 99.9771
UC 295.2, 7.07 99.8864 99.9787 99.9972 99.9459
UC 294.12, 10.97 99.9999 99.9999 99.9999 99.9999
UC 294.89, 13.97 75.9661 79.2251 81.0927 82.6906
UC 291.32, 8.58 99.9999 99.9999 99.9999 99.9999
UC 292.42, 14.49 99.9999 99.9999 99.9999 99.9999
UC 291.63, 11.83 99.9999 99.9999 99.9999 99.9999
UC 291.63, 11.83 99.9929 99.9933 99.9934 99.9932
UC 294.86, 16.11 64.1737 64.0396 63.8134 62.9989
UC 291.71, 12.39 99.9999 99.9999 99.9999 99.9999
UC 294.92, 17.83 98.1150 98.1948 98.2291 98.0709
UC 295.2, 6.89 99.8847 99.9790 99.9970 99.9442
UC 292.36, 7.79 99.9999 99.9999 99.9999 99.9999
UC 291.11, 8.19 99.9999 99.9999 99.9999 99.9999
UC 294.99, 17.49 99.6756 99.6908 99.7052 99.6795

Table XXIII.

VAF of PARIS Marks for validation use cases

VAF %
UC 294.5, 17.25 99.9801 99.9729
UC 293.22, 13.61 99.9999 99.9999
UC 293.51, 18.71 99.9999 99.9999
UC 294.85, 18.25 73.3811 69.6877
UC 291.2, 15.71 99.9999 99.9999
UC 295, 17.36 99.6672 99.4168
UC 295.14, 12.29 99.8581 99.4681
UC 295.2, 7.07 99.7831 99.4168
UC 294.12, 10.97 99.9999 99.9998
UC 294.89, 13.97 84.8631 89.3854
UC 291.32, 8.58 99.9999 99.9999
UC 292.42, 14.49 99.9999 99.9999
UC 291.63, 11.83 99.9999 99.9999
UC 291.63, 11.83 99.9923 99.9891
UC 294.86, 16.11 61.0008 55.8478
UC 291.71, 12.39 99.9999 99.9999
UC 294.92, 17.83 97.5187 96.2763
UC 295.2, 6.89 99.7802 99.4146
UC 292.36, 7.79 99.9999 99.9999
UC 291.11, 8.19 99.9999 99.9999
UC 294.99, 17.49 99.5749 99.3727

Table XXIV.

VAF of PARIS Marks for validation use cases

VAF %
f1 = 0.004 Hz, f2 = 0.003 Hz 98.1356 98.1131 98.0961 98.0818
f1 = 0.005 Hz, f2 = 0.0044 Hz 95.4532 95.4008 95.3618 95.3285
f1 = 0.01 Hz, f2 = 0.0066 Hz 49.3684 47.9809 46.9036 46.0091
f1 = 0.0025 Hz, f2 = 0.0028 Hz 99.7042 99.7011 99.6987 99.6968
f1 = 0.0027 Hz, f2 = 0.0031 Hz 99.5952 99.5910 99.5879 99.5852
f1 = 0.0032 Hz, f2 = 0.0037 Hz 99.1795 99.1711 99.1649 99.1595
f1 = 0.0043 Hz, f2 = 0.0029 Hz 97.4433 97.4104 97.3854 97.3644
f1 = 0.0058 Hz, f2 = 0.0076 Hz 90.9732 90.8963 90.8415 90.7913
f1 = 0.0022 Hz, f2 = 0.004 Hz 99.7949 99.7939 99.7932 99.7985
f1 = 0.0024 Hz, f2 = 0.0032 Hz 99.7251 99.7226 99.7207 99.7191
f1 = 0.0030 Hz, f2 = 0.0025 Hz 99.3838 99.3763 99.3705 99.3656
f1 = 0.002 Hz, f2 = 0.0023 Hz 99.8785 99.8773 99.8763 99.8755
f1 = 0.01 Hz, f2 = 0.0083 Hz 68.3670 67.9364 67.6150 67.3261
f1 = 0.004 Hz, f2 = 0.005 Hz 68.3670 67.9364 67.6150 67.3261
f1 = 0.0026 Hz, f2 = 0.0025 Hz 99.6267 99.6223 99.6189 99.6161
f1 = 0.011 Hz, f2 = 0.0090 Hz 39.8357 37.8373 36.2133 34.8277
f1 = 0.0083 Hz, f2 = 0.02 Hz 70.0929 69.7152 69.4295 69.1699
f1 = 0.005 Hz, f2 = 0.04 Hz 95.0660 95.0029 94.9517 94.9075
f1 = 0.01428 Hz, f2 = 0.04 Hz 39.6215 37.0077 34.7333 32.8330
f1 = 0.0166 Hz, f2 = 0.025 Hz 32.8720 30.7772 28.8905 27.2052
f1 = 0.0090 Hz, f2 = 0.0071 Hz 60.2746 59.4537 58.8313 58.3075
f1 = 0.0133 Hz, f2 = 0.008 Hz 37.7306 35.1437 32.9527 31.1011
f1 = 0.0133 Hz, f2 = 0.01 Hz 37.4517 35.0567 33.0129 31.2590

Table XXV.

VAF of PARIS Marks for sine inputs
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VAF %
f1 = 0.004 Hz, f2 = 0.003 Hz 98.0667 98.0486 98.0262 98.0764
f1 = 0.005 Hz, f2 = 0.0044 Hz 95.2920 95.2466 95.1890 95.3234
f1 = 0.01 Hz, f2 = 0.0066 Hz 45.1082 44.0471 42.7230 45.3413
f1 = 0.0025 Hz, f2 = 0.0028 Hz 99.6946 99.6921 99.6888 99.6963
f1 = 0.0027 Hz, f2 = 0.0031 Hz 99.5823 99.5788 99.5744 99.5846
f1 = 0.0032 Hz, f2 = 0.0037 Hz 99.1537 99.1464 99.1373 99.1588
f1 = 0.0043 Hz, f2 = 0.0029 Hz 97.3427 97.3170 97.2854 97.3551
f1 = 0.0058 Hz, f2 = 0.0076 Hz 90.7268 90.6366 90.5150 90.8231
f1 = 0.0022 Hz, f2 = 0.004 Hz 99.7917 99.7904 99.7885 99.7940
f1 = 0.0024 Hz, f2 = 0.0032 Hz 99.7174 99.7151 99.7122 99.7192
f1 = 0.0030 Hz, f2 = 0.0025 Hz 99.3606 99.3548 99.3476 99.3631
f1 = 0.002 Hz, f2 = 0.0023 Hz 99.8746 99.8736 99.8723 99.8752
f1 = 0.01 Hz, f2 = 0.0083 Hz 66.9774 66.5058 65.8767 67.3125
f1 = 0.004 Hz, f2 = 0.005 Hz 66.9774 66.5058 65.8767 67.3125
f1 = 0.0026 Hz, f2 = 0.0025 Hz 99.6131 99.6097 99.6055 99.6147
f1 = 0.011 Hz, f2 = 0.0090 Hz 33.4358 31.8076 29.7665 33.4283
f1 = 0.0083 Hz, f2 = 0.02 Hz 68.8551 68.4323 67.8737 69.1840
f1 = 0.005 Hz, f2 = 0.04 Hz 94.8631 94.8124 94.7458 94.8926
f1 = 0.01428 Hz, f2 = 0.04 Hz 31.1683 29.5349 27.7047 30.0571
f1 = 0.0166 Hz, f2 = 0.025 Hz 25.5672 23.7534 21.5015 24.3748
f1 = 0.0090 Hz, f2 = 0.0071 Hz 57.7511 57.0645 56.1892 58.0516
f1 = 0.0133 Hz, f2 = 0.008 Hz 29.3764 27.5277 25.3157 28.6346
f1 = 0.0133 Hz, f2 = 0.01 Hz 29.5862 25.5085 28.8913 29.3664

Table XXVI.

VAF of PARIS Marks and edge marks for sine inputs

VAF %
f1 = 0.004 Hz, f2 = 0.003 Hz 98.1010 98.1366 98.1142
f1 = 0.005 Hz, f2 = 0.0044 Hz 95.3933 95.4559 95.4037
f1 = 0.01 Hz, f2 = 0.0066 Hz 46.4894 49.3911 48.0088
f1 = 0.0025 Hz, f2 = 0.0028 Hz 99.7000 99.7044 99.7013
f1 = 0.0027 Hz, f2 = 0.0031 Hz 99.5899 99.5954 99.5912
f1 = 0.0032 Hz, f2 = 0.0037 Hz 99.1701 99.1799 99.1716
f1 = 0.0043 Hz, f2 = 0.0029 Hz 97.3885 97.4447 97.4119
f1 = 0.0058 Hz, f2 = 0.0076 Hz 90.9999 90.9795 90.9029
f1 = 0.0022 Hz, f2 = 0.004 Hz 99.7975 99.7951 99.7940
f1 = 0.0024 Hz, f2 = 0.0032 Hz 99.7230 99.7253 99.7228
f1 = 0.0030 Hz, f2 = 0.0025 Hz 99.3703 99.3841 99.3766
f1 = 0.002 Hz, f2 = 0.0023 Hz 99.8767 99.8786 99.8773
f1 = 0.01 Hz, f2 = 0.0083 Hz 68.0722 68.3892 67.9604
f1 = 0.004 Hz, f2 = 0.005 Hz 68.0722 68.3892 67.9604
f1 = 0.0026 Hz, f2 = 0.0025 Hz 99.6191 99.6269 99.6225
f1 = 0.011 Hz, f2 = 0.0090 Hz 34.7842 39.8491 37.8579
f1 = 0.0083 Hz, f2 = 0.02 Hz 69.9387 70.1155 69.7393
f1 = 0.005 Hz, f2 = 0.04 Hz 94.9271 95.0662 95.0035
f1 = 0.01428 Hz, f2 = 0.04 Hz 29.9067 39.5832 36.9753
f1 = 0.0166 Hz, f2 = 0.025 Hz 24.7450 32.8377 30.7517
f1 = 0.0090 Hz, f2 = 0.0071 Hz 58.9563 60.2980 59.4803
f1 = 0.0133 Hz, f2 = 0.008 Hz 37.4371 35.0493 33.0099

Table XXVII.

VAF of edge mark and PARIS Marks for sine inputs

VAF %
f1 = 0.004 Hz, f2 = 0.003 Hz 98.0971 98.0828 98.0678
f1 = 0.005 Hz, f2 = 0.0044 Hz 95.3645 95.3313 95.2950
f1 = 0.01 Hz, f2 = 0.0066 Hz 46.9336 46.0426 45.1478
f1 = 0.0025 Hz, f2 = 0.0028 Hz 99.6989 99.6969 99.6948
f1 = 0.0027 Hz, f2 = 0.0031 Hz 99.5881 99.5854 99.5825
f1 = 0.0032 Hz, f2 = 0.0037 Hz 99.1653 99.1600 99.1542
f1 = 0.0043 Hz, f2 = 0.0029 Hz 97.3868 97.3659 97.3443
f1 = 0.0058 Hz, f2 = 0.0076 Hz 90.8478 90.7978 90.7339
f1 = 0.0022 Hz, f2 = 0.004 Hz 99.7934 99.7928 99.7919
f1 = 0.0024 Hz, f2 = 0.0032 Hz 99.7209 99.7193 99.7175
f1 = 0.0030 Hz, f2 = 0.0025 Hz 99.3708 99.3659 99.3609
f1 = 0.002 Hz, f2 = 0.0023 Hz 99.8764 99.8755 99.8747
f1 = 0.01 Hz, f2 = 0.0083 Hz 67.6390 67.3513 67.0052
f1 = 0.004 Hz, f2 = 0.005 Hz 67.6390 67.3513 67.0052
f1 = 0.0026 Hz, f2 = 0.0025 Hz 99.6191 99.6163 99.6133
f1 = 0.011 Hz, f2 = 0.0090 Hz 36.2375 34.8574 33.4739
f1 = 0.0083 Hz, f2 = 0.02 Hz 69.4536 69.1951 68.8829
f1 = 0.005 Hz, f2 = 0.04 Hz 94.9526 94.9085 94.8641
f1 = 0.01428 Hz, f2 = 0.04 Hz 34.7062 32.8121 31.1540
f1 = 0.0166 Hz, f2 = 0.025 Hz 28.8700 27.1906 25.5610
f1 = 0.0090 Hz, f2 = 0.0071 Hz 58.8586 58.3369 57.7844
f1 = 0.0133 Hz, f2 = 0.008 Hz 32.9486 31.1038 29.3884
f1 = 0.0133 Hz, f2 = 0.008 Hz 31.2625 29.5988 27.7745

Table XXVIII.

VAF of PARIS Marks for sine inputs

VAF %
f1 = 0.004 Hz, f2 = 0.003 Hz 98.0499 98.0276
f1 = 0.005 Hz, f2 = 0.0044 Hz 95.2501 95.1930
f1 = 0.01 Hz, f2 = 0.0066 Hz 44.0961 42.7828
f1 = 0.0025 Hz, f2 = 0.0028 Hz 99.6923 99.6891
f1 = 0.0027 Hz, f2 = 0.0031 Hz 99.5791 99.5747
f1 = 0.0032 Hz, f2 = 0.0037 Hz 99.1470 99.1379
f1 = 0.0043 Hz, f2 = 0.0029 Hz 97.3188 97.2874
f1 = 0.0058 Hz, f2 = 0.0076 Hz 90.6446 90.5241
f1 = 0.0022 Hz, f2 = 0.004 Hz 99.7905 99.7888
f1 = 0.0024 Hz, f2 = 0.0032 Hz 99.7153 99.7125
f1 = 0.0030 Hz, f2 = 0.0025 Hz 99.3552 99.3481
f1 = 0.002 Hz, f2 = 0.0023 Hz 99.8736 99.8724
f1 = 0.01 Hz, f2 = 0.0083 Hz 66.5385 65.9150
f1 = 0.004 Hz, f2 = 0.005 Hz 66.5385 65.9150
f1 = 0.0026 Hz, f2 = 0.0025 Hz 99.6099 99.6057
f1 = 0.011 Hz, f2 = 0.0090 Hz 31.8586 29.8322
f1 = 0.0083 Hz, f2 = 0.02 Hz 68.4647 67.9113
f1 = 0.005 Hz, f2 = 0.04 Hz 94.8137 94.7468
f1 = 0.01428 Hz, f2 = 0.04 Hz 29.5292 27.7081
f1 = 0.0166 Hz, f2 = 0.025 Hz 23.7585 21.5057
f1 = 0.0090 Hz, f2 = 0.0071 Hz 57.1045 56.2367
f1 = 0.0133 Hz, f2 = 0.008 Hz 27.5528 25.3554
f1 = 0.0133 Hz, f2 = 0.008 Hz 26.5387 25.5494

Table XXIX.

VAF of PARIS Marks for sine inputs
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H. OVERLAY SPECIFICATION OF CURRENT
LITHOGRAPHY SYSTEMS

.
.

. .

(1)
(2)
(3)
(4)

.

Overlay values of PAS 5500, TWINSCAN XT and TWINSCAN NXT systems
Number Machine Minimum Overlay

1 PAS 5500/100D
2 PAS 5500/275D
3 PAS 5500/350C
4 PAS 5500/450F
5 PAS 5500/750F
6 PAS 5500/850D
7 PAS 5500/8TFH-A
8 PAS 5500/1150C
9 TWINSCAN XT: 400L
10 TWINSCAN XT: 860M
11 TWINSCAN XT: 1060K
12 TWINSCAN XT: 1460K
13 TWINSCAN NXT: 1965Ci
14 TWINSCAN NXT: 1970Ci
15 TWINSCAN NXT: 1980Di

Table XXX.

Overlay of DUV systems

Overlay values of EUV systems
Number Machine Minimum Overlay

1 PAS 5500/100D
2 PAS 5500/275D
3 PAS 5500/350C

Table XXXI.

Overlay of DUV systems

.
.

Fig. 15. A rough chronological order representing reduction in overlay
specifications of DUV and EUV systems

.
. .

Fig. 16. Moore’s Law prediction for reduction in feature size over time

Paramount Matlab Scripts
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