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Abstract

Through improved plastic waste separation EU recycling goals can be reached and environmental economic
advantages can be unlocked. To help with this endeavour, this research explores dynamic separation
efficiency determination and waste stream characterization through nearinfrared (NIR) separation unitand
belt weigher data in a plastic waste sorting plantin Scandinavia. For the showcasing of these concepts, the
goal was to predictthe product quality of the high-quality (HQ) agglomeration line, using data of the first NIR-
scanner in the agglomeration line as prediction input. In the agglomeration line two NIR-scanners are
connected in series to ensure high-quality separation of the material. Through the NIR-scanners,
material-specific area flow data is available and through the belt weighers mass flow inputto each NIR-
scanneris provided. Quality criteria are weightshares of PO (target material) and PVC (main contaminant).
Difficulties arose, as the material-specific mass flow is needed for quality determination but only the total
mass flow is provided. This was addressed by modelling area densities using a linear regression model, with
belt weigher and NIR-scanner data as input. Using the calculated area densities, the material-specific mass
flow was determined. For validation, summed material flows were compared with belt weigher data, yielding
a mean absolute error (MAE) of 141 [kg/h] and a mean relative error (MRE) of 3%. The separation efficiency
was determined through an XGBoostmodel, to predict material-specific area flow of the second NIR-scanner.
Results were a MAE of 50.02 [m#h] and an MRE of 1.1% for the total area flow. The final separation step
could notbe validated, as no NIR-analyseris present behind the second NIR-scanner. Therefore, separation
efficiencies from the previous separator were transferred. Joining all three concepts the weightshare of PO
and PVC could be predicted with a MAE of 0.36% and 0.007%. For the joint outcome, greater uncertainty
contribution was ascertained for the area densities compared to the XGBoost application. Future research is
recommended for separation efficiency determination of the last separation step and for improved modelling
of the area densities.
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1 Introduction

1.1 General Context

In 2018, EU recycling goals got updated and extended to include packaging material through the
amendment of the waste framework directive. This results in a minimum recycling rate of 65% for
municipal waste and a maximum 10% of waste that is landfilled by 2035. Fu rthermore, until 2030, 70%
of all packaging waste has to be recycled. Here, the subcategory of plastics must reach a minimum
recycling rate of 55%. (European Commission, 2018)

Currently only Slovenia and Germany achieve the goal for municipalwaste. On the worst performing
end Romania has a recycling rate below 15%. Apart from that only 8 countries reach the goal for
packaging waste where Romania is again the worst performing country with a recycling rate below
40%. (Eurostat, 2024a; Eurostat, 2024b)

On a broader scale, global waste generation is predicted to rise from 2.01 billion tons peryear in 2016
to 2.59 billion tons in 2030 and to 3.4 billion tons in 2050. Connecting the produced waste to its
environmental damage, 1.6 billion tons of CO2 equivalents were connected to solid waste treatment in
2016. This resembles 5% of the global greenhouse gas emissions. Translating this value to the
predicted waste generation in 2050, this indicates 2.6 billion tons of CO2z eq. emissions for 2050.
Zooming into specific regions, for Europe and central Asia, a growth from 393 million tonsin 2016 to
490 million tonsin 2050 is predicted. (Kaza et al., 2018)

These Figures show the need for an effective and sustainable waste management. Thisis necessary
to treat the increasing waste production, to reach the recycling goals of the European Commission and
to leaverthe potential environmental benefits through recycling.

Puttingnumberson these environmental benefits, life cycle analysis (LCA) methodology is used. To do
this,afocuson packaging materialsis set. Maga et al. (2019) found thatrecycled PET in food packaging
can reduce the footprint of the packaging by 40%. Tonini et al. (2021) concludedthat recycled HDPE
only has 67% of the emissions of virgin HDPE. Recycled PP only showed 44% of the emissions of
virgin PP. Lastly, Civancik-Uslu etal. (2019) determined that a cosmetic bottle with mineral fillers and
recycled HDPE can save more than 30% CO:2 eq. emissions compared to a virgin material bottle.

Transferring these benefits to a more systemic level, Schwarz et al. (2021) determined that with
recycling of the 15 most used polymers in Europe CO: eq. emissions can be reduced by 73%. This
means that 200 million tons of CO:z eq. can be avoided through the recycling of these plastics. This
figure was obtained for a scenario with improved waste sorting. Improved waste sorting is mainly
hindered by impurities, but shows the greatest enhancement of environmental benefits. Dokl et al.
(2024) show similarfindings. They acknowledge advancesin waste processing, butclaimthattoo much
material ends up in the mixed plastic fraction dueto insufficient sorting. This fraction faces downcycling
and therefore symbolizes unused potentials during plastic waste sorting.

Unused potentials during material separation and recycling are furthermore reflected by the economic
risks of a waste separation plant. Thisis due to the fact that not only products of positive value but also



of negative value are produced (Feil et al., 2017; Ozdemir et al., 2021). Therefore, it becomes not only
evidentfrom an ecological perspective, but also from an economic perspective, that improved sorting
and recycling is beneficial.

A waste separation process is commonly composed of an initial comminution and classification step
using shredders, drum sieves, wind sifters and ballistic separators (Feil et al. 2017; Ozdemir et al.,
2021). During or after this step, metals get removed by over belt magnets and Eddy current separators
(Ozdemir et al., 2021). Lastly, the most crucial units for plastic separation are sensor-based sorters.
These units separate remaining waste streams into mono-material streams, which enablestheirfurther
processing. (Friedrich etal., 2022)

One of the hindrances for improved waste separation processes is that waste separation plants are
only evaluated very sparsely. Very short time frames of several weeks for the entire life span of a plant
are reported. Longer periods of 1-2 years are identified in rare cases and are commonly connected to
scientific projects (Gadaleta et al., 2020). The consequence of this is that most plants only optimized
their machine settings and process parameters once. This is done during the commissioning of the
plant. Nevertheless, the composition of waste is constantly changing (even by season), wherefore this
optimization gets outdated rather quickly. Accordingly, a more frequentor even real-time optimization
of process parameters is needed to extract the maximum amount of secondary raw materials. (Kroel et
al., 2024a)

To address the described problems and to leverage the shown advantages of improved material
separation, a more frequent material sorting plant optimization needs to be implemented. This study
aims to help with this endeavour by exploring opportunities of in-plant recorded data use, with the
ultimate goal of real-time plantoptimization. As a first step towards this objective, the purity prediction
of the agglomeration line productin a plastic waste sorting plantin Scandinavia will be showcased.

1.2 Company Cooperation

The thesis research project is conducted with Sutco Recyclingtechnik GmbH located in Bergisch
Gladbach, Germany. Sutco is one of the leading waste separation plant planners for large scale waste
separation facilities, with worldwide construction activities. Their latest projects were carried out in
Poland, Chile and Austria, where they constructed a plastic sorting facility that has the capacity to
process 50% of Austria’s plastic packaging waste. (Sutco, 2024a; WMW, 2024)

Recently, Sutco increased effort for full digitalization of waste separation plants, with the ultimate goal
of enabling real-time plant optimization and to set up a digital twin for each facility (Sutco, 2024b). This
work hopes to deliver a useful building block to this goal.

Apart from this, the thesis research project is part of the “Energieeffiziente Sortieranlage” (EnSort)
project. The project has the objective to facilitate waste sorting plant optimization in real-time and to
foster energy efficiency. Nextto Sutco, other partners are TU Dresden, Universitat Bremen and Ruhr-
UniversitatBochum as well as TOMRA Sorting GmbH (TU Dresden, 2023). TOMRA is the company
that produced the nearinfrared (NIR) scanners for the analysed waste sorting plantin Scandinavia.



1.2.1 Waste Separation Plant
The data for this thesis research project is retrieved from a plastic sorting plantin Scandinavia, which
was planned and built by Sutco. Belt weigher data is directly available from Sutco, while NIR-scanner
data is provided by TOMRA. In Figure 1, a simplified process flow chart of the plastic sorting plantbe
found. Preconditioning and classification of the material are conducted upfrontand have been left out
for simplicity.
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Figure 1: Process overview of the analysed plastic waste sorting facility.



Afterthe preconditioning and classification, the material is splitup into a 2D and 3D section. For the 2D
section subsequently PE, PP and misclassified 3D objects are removed and cleaned. The residuesend
upin the agglomeration (“Agglo”) section, which resembles a mixed plastic stream. The higher quality
agglomeration stream can be turned into plastic products, which have low requirements regarding
material characteristics. Low-quality agglomeration streams end up in incineration, butare wanted due
to their high burning value. Due to the heat application in both cases, PVC gets removed from the
streams to avoid the formation of chloric acid. For the 3D section PP, PET bottles, HDPE, PET trays,
EPS, misclassified 2D materials, PS and opaque PET bottles get removed and cleaned. The residue
of the 3D section is the basis for the low-quality agglomeration stream.

1.2.2 Agglomeration — Working principles

To limit the data, available to this study, to a reasonable and workable amount, it is further focused on
the agglomeration section of the plant. This section was chosen due to its exceptionally high data
availability compared to other separation lines. This advantage comes with the payoff that this part of
the plantis fed with the residuals of the remaining separation lines. Therefore, the received material is
more likely to act unexpectedly buta higher data resolution is obtained.

To generate the high-quality (HQ) and low-quality (LQ) agglomeration stream, six NIR-scanners and
two belt weighers are involved. After the sorting steps, another process for compaction of the HQ
product is added. Moreover, four additional belt weighers are installed for quality control and data
acquisition. An overview of the agglomeration line can be found in Figure 2.
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Figure 2: Agglomeration line of the plastic waste sorting plant.



The HQ agglomeration lineisfedwith 2D residues andresiduesfrom preconditioning and classification
with sizes between 15-50mm. To avoid overloading of the HQ agglomeration line beltweigher AA101
was installed. Therefore, if material streams greater 5 [t/h] are detected, the preconditioning residue is
led to the LQ agglomeration line for processing. This is done as the preconditioning residue contains
less target material. Target materials are PE and PP, which are together known as polyolefins (PO) in
this context. On PO75, PO is ejected, while all other materials are dropped and transported to PO50
for processingin the LQ agglomeration line. The names of the NIR-scannersindicate the desired PO
contents. Therefore, for the HQ agglomeration line a PO content of 75% is wished and for the LQ
agglomeration product50% PO contentis aimed for. In a nextstep a cleanerensures ejection of PVC
to avoid formation of chloric acid during further processing. Finally, the HQ stream is sent to a bunker
or to an additional compaction and cleaning step.

The LQ agglomeration line receives inputfrom the 3D residues as well as the preconditioning in the
case thatthe HQ line is overloaded. With 8.5 [t/h] the LQ line has higher capacity than the HQ line and
can redirect inputto the unwanted fraction in case of overburdening. Like in the HQ agglomeration a
hierarchy is applied, where the preconditioningresidue is preferred over the 3D residue. This is done
as the preconditioning residue has a higher PO content compared to the 3D residue. On PO50, PO is
ejected and passed on to PO50C, while the dropped material enters the unwanted category. This
unwanted material is sentto AA144, where PVC is ejected. The drop of AA144 resembles the residue
of the sorting plant. On PO50C, separated PO is cleaned through ejection of PVC and sent to the LQ
agglomeration bunker.

After separation ofthe HQ and LQ agglomeration product, PVC ejects from PO75C, PO50C and AA144
undergoanotherPVC separation on AA135. Thisshowcasestheimportance of PVC removal and gives
insightthat the separation efficiency of NIR-scanners is not perfect. After processing on AA135, PVC
is sentto a bunker, while the drop of the scanner enters the residual stream of the waste sorting plant.
To fullyunderstand the quality requirements of the HQ and LQ agglomeration products, desired product
compositions are listed in Table 1. These compositions were agreed up on between Sutco and the
sorting plant proprietor.

Table 1: Quality requirements of the HQ and LQ agglomeration line product.

Quality PE and PP | PVC PET Other Plastics | Organics PS
HQ >75%
<1.4%
<6%*
<13%*
<10%*
LQ
>50%
<2%
<15%*
<20%*
<20%*
<5%*

*Agreed upon but not tested/evaluated



Inspecting the quality requirements, especially the low PVC thresholds give reason to the focuson PVC
removal during the agglomeration line processing. This is due to the fact that the agglomeration line
productis either used for incineration or will be heated up for formation of new products. During these
processes chloricacid could form, which explainsthelowthreshold forPVC. With the high PO contents
thatare neededthetargeting of PO on the initial NIR-scanners of both lines becomes compulsory. High
PO content raises burning values and enables processing as a plastic, wherefore the material is
wanted. Apart from that, it is interesting that fewer material contents that were agreed on were actually
tested. This is due to cost constraints of probing and can be reasoned by a reduced amount of quality
requirements, of the agglomeration product buyers, then initially expected.

1.2.3 Areaunder study

Zooming furtherin, the area of application forthis study was determined. The goal of this research is
to deliver an exploration regarding productpurity prediction in waste separation plants. Thisis intended
as starting pointto enable real-time machine setting optimization during waste separation. No study
with a similar goal could be found in literature research. Therefore, as a first step, the smallest possible
unit for this undertaking was sought after. Accordingly, a part of the HQ agglomeration line was
selected, as it has the highest data availability paired with the highest expected data quality. This
expectation is due to a reduced amount of contaminations in the HQ agglomeration input compared to
the LQ agglomeration input. The described part of the HQ agglomeration line can be observed in
Figure 3.
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Figure 3: Area of application of this study, placed in the HQ agglomeration line and consisting out of two
NIR-scanners and two belt weighers.

Compared to Figure 2, belt weigher AA201 and bunker SB401 are left out. This was done as the
material leaving PO75C is either led into the agglomeration process and weighed by AA201 or fed into
the bunker and baled at a later stage. As the bunker filling level is detected in m® and the density of the
material is unknown, uncertainty for the use of this data was considered too high.



2 State of the art

To lay the foundation for the identification of the knowledge gap and the development of the research
question, important concepts to the problem and goal of this research will be explained. Regarding
modelling, focus was laid on methodologies thatturned out crucial during the execution of this work.

2.1 NIR-scanner working principle

NIR-scanners have become the prevalent technology and a global trend for the separation and
identification of plastic waste (Zheng et al., 2018, Dokl et al., 2024). NIR separation units deploy
material classification, usingthe nearinfrared spectrumbetween wavelengths of 750 nmand 2500 nm.
To do this material is exposed to NIR radiation and the reflected spectra gets analysed. These spectra
differ per type of plastic due to their unique chemical composition. Especially, the main groups of the
polymers like carbon (C) — hydrogen (H), nitrogen (N) — hydrogen (H) and oxygen (O) — hydrogen (H)
groups as well as other hydrogen containing groups react differently to the NIR spectra. These effects
can be dueto absorption of energy, overtones, interferencesand more. Dueto this, each material emits
unique reflections, which resemble the classification mechanisms of NIR separation units (Zhengetal.,
2018; Du et al., 2022; Dokl et al., 2024).

Although NIR-scanners are one of the technologies with the highest signal to noise ratio, the
identification of materials is not an easy task (Zheng etal., 2018). To successfully classify and sortthe
particles several process steps need to happen. Atfirst, objects have to be identified from the obtained
image. This means thatfor each pixel of the image it has to be decided if it belongs to an object or not.
Through these decisions, objects can be represented as clusters of pixels. After this, each pixel of an
objects gets assigned a material class and with the help of customized recipes the object can be
categorized. After successful detection, objects of interest gets ejected from the stream via air nozzles
(Friedrich et al., 2022)

Separation can either happen via positive or via negative sorting. In positive sorting, materials targeted
by the separation process get ejected, while for negative sorting impurities are removed. In the first
case the NIR separation unitcan also be referred to as rougher, whereas forthe second case they are
called cleaners. (Kroell et al., 2024a)

In Figure 4, common sensor-based separation unit setups can be observed. Particles can be either
feed via a conveyor belt, a chute or by falling into the separation unit. Airnozzles are used to enlarge
or decrease the trajectory of particles ejected from the conveyor belt (a,b,d) or to shoot out particles
that are falling vertically (c). (Maier et al., 2020)
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Figure 4: Different setups for a sensor-based separation unit with indication for radiation used during
detection (yellow shapes), air flows for ejection (blue shapes), targeted particles (red shapes) and non -

targeted particles (green shapes) —a) Feeding viaconveyor belt, b) Feeding via chute, c) Free fall feeding,
d) Feeding viaconveyor belt. (Maier et al., 2020)

2.2 Machine Learning in Waste separation

Machine learning (ML) is used and researched for several improvements of the waste management
process. An overview of applications found during literature research is presented in the following.

Several researchers propose the use of smart bins for improved source separation of waste. Desai et
al. (2018) investigate the distinction between degradable and non-degradable waste via a camera unit
together with a convolutional neural network (CNN). Implementation is planned using a raspberry pi
unitand a robotic arm to take over separation for the user. Sheng et al. (2020) propose a similar but
more sophisticated approach. Their goal is to separate waste into metal, plastic, paper and residual
waste fractions. For this they apply a tensor flow deep learning model to recorded pictures and connect
theiroutcomes to an internetof thing (IoT) approach. This approach is characterized by tracking the fill
height of the binsto optimize collection. Rahman et al. (2022) implement a very similar methodology
butshowthe potentials of the framework by implementinga CNN model instead of a tensor flow model.
Chen etal. (2022) apply the same approach buttake it a step further by implementing an additional ML
model forthe optimization of the waste collection routes.

Identification of material with NIR data can be challenging due to noise presentin the received spectra.
To improve this several approaches implementing ML have been found. Du etal. (2022) established a
CNN for the detection of differenttextile materials. For this, they converted NIR spectra of each object
intoa 40x40 greyscale image making. With thisthey made itusablefora CNN model and could achieve
an accuracy of over 95%. The added benefitof the ML approach is the improved interpretation of the
NIR spectra, which until nowis one of the bottlenecks for successful textile waste classification. Zheng
et al. (2018) used the combination of a hyperspectral imaging system (HIS), a NIR-scanner and
principal component analysis (PCA). With this, they achieved 100% classification accuracy for
acrylonitrile butadiene styrene (ABS), polystyrene (PS), polypropylene (PP), polyethylene (PE),
polyethylene terephthalate (PET), and polyvinyl chloride (PVC). This is a success, as with conventional



NIR-scannersthere is a time lag between provision of location and spectral data, while the NIR-HIS
combination deliversthisinformation in one step. Anotherdifficulty is the detection of black objects. For
this, Dokl et al. (2024) propose the jointuse of cameras and NIR-sensors together with ML to achieve
sufficientseparation. Kroell et al. (2024a) shiftthe focusfrom classification of material to the separation
efficiency of the NIR-units. For this, they trained a polynomial regression (PR), a random forest (RF)
and an artificial neural network (ANN). Their main feature for the model training was the conveyor belt
occupation density [m?/m?] and the material-specific conveyor belt occupation density [m?/m?]. All three
models predicted the separation efficiency of the unitwith a mean absolute error (MAE) below 6.3%.
The ANN performed bestwith a MAE of 3%. Thesefindingsrepresentastep towards real-time machine
setting optimizations and improved plant simulation. Nevertheless, their generalizability towards
application in real world separation facilities is in question.

Zooming out from material classification and separation efficiency determination, Kroell et al. (2021)
contribute to sensor-based material flow characterization and process monitoring. As NIR-scanner
information is finally broken down into 2D data, information about volume or weight through
corresponding densities is notavailable. Furthermore, weighing is inhibited during the process, as this
would mean a stopping of the conveyor belt if no belt weighers are present. Therefore, Kroell et al.
(2021) used a setup consisting of laser triangulation and an RGB camera to retrieve the missing
information. Training a RF model with RGB camera and laser triangulation data, R? values of 0.76 could
be reached. This resembles a major improvementcompared to conventional area density databases,
which reached a maximum R2 of 0.53 for the tested material. In a follow up research, Kroell et al.
(2024b) managed to determine particle weights of plastic pre-concentratesin a lightweight-packaging
sorting plant with NIR sensor data only. In the described case, they managed to outperform manual
quality control with measurement uncertainties of 0.31 w-%.

Searching for ML applications on a more systemic level, Xi et al. (2022) use an ANN model to predict
waste processing capabilities in Chinese cities. For this, they use features like population, education
level, number of waste collection vehicles, budget of the local governmentand many more. With this,
a prediction accuracy of 95% could be achieved. Furthermore, the results were used to extractthe most
important feature of the model. Accordingly, the public budget expenditure was the most influential
variable with a weight of 52%. Furthermore, it became evident that with an appropriate separation,
municipal waste can be reduced by 30-40% in the observed cases. This shows the capability of ML
methodologies to analyse large-scale systems, to pinpoint hotspots and to identify areas of interestin
the field of waste management.

2.3 System characterization and monitoring

To understand how the quality of the agglomeration line product can be predicted, an introduction to
waste sorting plantmonitoring and waste stream characterization is needed.

Prevalent methods for waste separation plant characterization are mass balance approaches like
material flow analysis (MFA). These can be implemented using common MFA software like STAN. To
do this, processes and transfer coefficients (TC) are defined. TCs symbolize the distribution of material
inputsto the outputs of the process. This is donein percentual fashion and material wise. (Feil et al.,
2017; Gadaleta et al., 2020; Tanguay-Rioux etal., 2022)



To successfully determine a system, all inputs regarding amountand material composition as well as
TCs of all processes have to be known. Alternatively, enough in-plant streams, their composition and
a sufficientamountof TCs mustbe determined. Furthermore,an underdetermined system can become
determined through an optimization problem approach. This methodology is proposed by Tanguay-
Rioux et al. (2022) and applies a mass conversion approach together with a defined set of constraints
and sampling.

For TC determination, predominantly expert knowledge is applied. Here, the problem is that already
known TCs can hardly be transferred to a new separation problem. This is due to that waste stream
composition is changing based on geographical scope. Therefore, TCs differ from separation process
to separation process. Tanguay-Rioux etal. (2021) try to summarize common TCs for separation units
and to establish a minimum and maximum separation efficiency range. An example for NIR-scanner
separators can be found in Table 2.

Table 2: Minimum and maximum separation efficiencies for NIR separation units (Tanguay-Rioux et
al., 2021).

Unit Minimum TC Maximum TC
NIR-PET 0.83 0.93
NIR-HDPE 0.71 0.83
NIR-Mixed Plastics 0.74 0.74

Anotherapproach to characterize a waste separation system is the sampling of important flows within
it. Following the methodology of Tanguay-Rioux et al. (2022), composition and quantity of a flow are
sampled. Alternatively, one of both information is retrieved, if this is sufficient to determine the system.
Another framework for sampling is presented by Feil et al. (2017), where sampling can be classified
into 3 main types. The first approach is to determine the quantity and the quality of the product. The
second approach is to sample the residue to get to know the amount and type of wrongly sorted
particles. Lastly, the third approach is to sample the process with the goal of complete data acquisition
at all process steps.

Nevertheless, the characterization of a system with static TCs and sampling comes with limitations. As
described by Kroell et al. (2024a), composition of waste streams changes significantly over time,
sometimes even by season. Furthermore, information on waste stream composition is barely available,
as showcased by a study conducted by Eriksen & Astrup (2019). In their research, they sampled
3700 kg of source separated plastic waste, to get to know its composition. Thiswas necessary, as no
information on source separated plastic waste was available upfront.

Focusingon the material flowsinside separation plants, Curtisetal. (2021) report influences on product
purity due to material flow changes during operation. These fluctuations can be caused by braid
formations, bridging and material flow delays due to object shapes or machine specific discontinuous
material discharge. An example for the object specific delay could be a round object that rotates on top
of a shredder unitand therewith delays its processing. Regarding the machine specific delay, drum
sieves are a good example where smaller objects get discharged faster than bigger objects.

Trying to establish dynamic TCs, Kuppers et al. (2020) investigated the influence of material
composition and conveyor belt occupation on the separation efficiency of NIR separation units. For the
material composition, only a negligible influence could be found. Nevertheless, for the belt occupation,
a 4" degree polynomial could be fitted. Therewith, TCs have been adjusted according to the conveyor
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belt occupation and reached a R? of 0.94. Kroell et al. (2024a) took a similar approach using an ANN
model and could predict separation efficiency with a MAE of 3%.

To implement dynamic TCs and process monitoring, data from sensor-based material analysers is
needed. Nevertheless, sensor-based analysers are connected to high economical cost, wherefore
intensive process monitoring with this technology is economically unfeasible. A potential solution could
be the use of already existing units within the plant. Conveniently NIR separation units have to detect
material composition to enable separation. As the data collected by the sensors is task specific, it
requires additional process step to make it usable but resembles enormous process monitoring
potentials (Kroell et al., 2022a). For complete process monitoring, additionally the time that the material
travels from oneunittothe nexthasto be known.Furthermore, fluctuations and delays of material flows
must be detected and considered in monitoring and process modelling (Curtis et al., 2021). Apart from
that, an out of the box benefit of extensive process monitoring is that dangerous objects can be
identified and removed before they cause harm. (Vrancken etal., 2017)

A last step to complete waste separation process characterization is the evaluation of the process
performance. Three waste separation plantperformanceindicators were introduced by Feil etal. (2016)
and used by the cited studies of Klippers et al. (2020), Curtis et al. (2021) and Kroell et al. (2022b,
2024a). The indicators are purity, recovery and yield. Compared to this, Tanguay-Rioux et al. (2022)
and Gadaleta et al. (2020) make use of two main indicators, namely recovery and purity. As their
definition of recovery is equivalentto the definition of yield from Feil et al. (2016), the definitions of Feil
et al. (2016) will be used for the rest of this work to avoid confusion.

The recovery R [-] describes the ratio of the sorting process inputwith regards to the sorting process
product. Here, the sorting process product means the flow that can be sold with positive economic
value. In the formula below m isindicated as mass:

R = Mproduct 2.1)

minvut

The yield Y [-] refers to the amount of targeted material that ended up in the product. Thisis evaluated
based on the amountof targeted material that was present in the inputstream. The formula can be
found below, where m is referred to as mass and c is referred to as concentration:

Y = mp'roduct* Ctarget (22)

minvut * Ctar.qet

The purity P [-] symbolizestheratio of target material in the product. As no separation processis perfect,
it can be seen as the main quality criteria. In the following formula m is represented as mass:

p= Miarget (2_3)

mproduct
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2.4 Relevant statistical models and concepts for this work

Moving on from the more general introduction of relevantresearch and concepts, in this subchapter
important statistical methodologies, phenomena and models for this work will be introduced.

2.4.1 Ordinary Least Square regression

Starting off, the ordinary least square (OLS) regression plays a big role in the later deployed area
density determination based on NIR-scanner and belt weigher data. When the OLS method was
invented, the novelty of it was that the residuals between the estimated and measured values were
considered (Dismuke & Lindrooth, 2006). This leads to a formulation of the regression problem, where
Y (n,1) represents the dependentvariable, X (n,p) the independentvariable, § (p,1) the estimators
and e (n,1) theresiduals. Apartfromthat, n indicates the number of observations and p the number of
independentvariables:

Y=X=x*B+ ¢ (2.4)

The estimators are determined by summing up the squared residuals and minimizing them. For this,
the estimate of the dependentvariable gets calculated with the estimators as well as the independent
variables. The result gets then subtracted from the measured values of the dependent variable to
determine the residual. The advantage of this technique is that the minimization of the squared
residuals can be solved through a mathematical formulation and does not require any iterative
procedures. The respective formula can be found below (Dempster et al., 1977; Dismuke & Lindrooth,
2006):
B =XTX)"1xTy (2.5)

To obtain a valid result, several assumptions have to be fulfilled. These are the normal distribution of
the residuals,homoscedasticityandindependency of the independentvariables. Homoscedasticity can
be described as a constant variance of the residuals across the observed data. Furthermore,
autocorrelation should be controlled for. (De Souza & Junqueira, 2005; Dismuke & Lindrooth, 2006)

2.4.2 Multicollinearity

A problem that can occur during the application of OLS is multicollinearity. Multicollinearity means that
the independent variables are highly correlated. In general, this does not violate regression
assumptions, but can cause problems with the interpretation of the regression coefficients
(Gujarati, 2021). This meansthatthe prediction of the dependentvariable by theindependentvariables
is not hampered but that e.g. confidence intervals of regression coefficients can contain zero.
Confidence intervals with this characteristic are problematic, as it is unclear if an increase of the
respective independent variable leads to an increase or decrease of the goal variable (Paul, 2006).
This can also be explainedin a way that the independent variables are correlated in a mannerwhere
they share very equal explanatory power. As a result, the model splits up the influence on the goal
variable randomly. Lastly, multicollinearity can lead to sensitivity for small changesin data due to the
numerical workings of the algorithm (Gujarati, 2021).

2.4.3 Bootstrapping

To obtain greater confidence in OLS modelling outcomes bootstrapping can be applied. Bootstrapping
is used to generate inferences about population parameters with a limited number of samples. In other
words, the goal is to quantify uncertainty about population parameters at hand. To achieve this, the
data is resampled several times with the same amount of data points of the initial sample. The
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resampling is done through random extraction of data points from the original dataset where several
drawings of the same datapoint are possible. Assuming that the original sample is representative,
bootstrapping can therefore help to estimate population parameters and their uncertainty. This is due
to the variation in the generated samples and the parameters that can be calculated for each of them.
(Choi, 2016; Youness etal., 2023)

Another advantage is the application of further statistical methods like confidence intervals which can
be explored through bootstrapping by a data driven approach. This can help to generate greater
confidence in the retrieved population parameters, as they have not only been inferred from the initial
sample but have been retrieved from a number of subsamples. (Choi, 2016; Mokhtar et al., 2023)

2.5 Relevant machine learning models for this work

For the state-of-the-art description of machine learning models, it was focused on four models that
became important to the thesis project during the conduction of this work. These models are Ridge
Regression, Gradient Boosting, Extreme Gradient Boosting (XGBoost) and Multilayer Perceptron
(MLP). In the following subchapters the inner workings of each model are explained and other models
that were used are briefly introduced.

2.5.1 Ride Regression

Ridge regression can be seen as a further development of OLS methodology. Forthis, a regularization
term is added to the sum of squared errors before optimization. The influence of this term is controlled
by the hyperparameter A, which controls the balance between over- and underfitting. The term itself is
composed of the sum of the squared estimators. This adds a penalty to the model for the use of
estimators with great magnitude. Therefore, ridge regression tends towards shrinking estimators and
spreading explanatory power over a broader range of them. As a result, the broader spread of
explanatory power makes the model more robust regarding variation in the data. A representation of
the optimization problem can be found below. (Rokem & Kai, 2020; Hoque & Aljamaan, 2021; La Tour
et al., 2022; Nugroho etal., 2022)

B = argmin(X(Y —¥)? + 13 p?%) (2.6)

Advantages of linear regressions are that the relationships they make are easy to understand and to
interpret. While a non-linear model will sometimes be able to solve a prediction task in a more accurate
way, a linear model will most probably have a more traceable result. Furthermore, linear models are
computationally favourable and have advantages for small sample sizes (La Tour et al., 2022).

2.5.2 Gradient Boosting

Gradientboosting represents the idea of combining many weak learners into one strong learner. More
specifically, each weaklearnerisfitted on the residuals of the previous model guided by a loss function.
Next, the newly generatedweaklearneris added to the model, adjusted by a learningrate, creating the
nextiteration of the stronglearner. Therefore, each iteration roundisa combination of allweaklearners
that were fitted in previous rounds. The use of the residuals for each new fit is the reason why the
algorithm is called gradient boosting, as the residuals represent the negative gradient of the loss
function. After one of the predefined stopping criterions is met, the final gradient boosting model is the
sum of all learners adjusted by a learning rate, where the fitting of the learners is guided by a loss
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function. As a loss function several options can be chosen and regularization can be added. The weak
learners are commonly deployed as decision trees. (Anghel etal., 2018; Fan et al., 2022)

Decision trees answer regression or classification tasks by splitting up the data based on binary criteria
until an estimate is reached. The split criteria are determined by splitting the data, iterating through all
possible splits, and choosing the best split option based on a loss function. This process is repeated
for each created split (node)until a predefined minimal splitsize or a predefined end point(leaf) sample
size is reached. In a classification problem the leaves aim to represent unique classes while in a
regression problem the average of the remaining data pointsis taken. (Xu et al., 2005; Pekel, 2020)

2.5.3 XGBoost

Extreme gradientboosting or XGBoostis a further development of gradient boosting (Fan etal., 2022).
For this, solely decision trees are deployed as weak learners and a focus is laid on the scalability of the
model. Therefore, one can talk of XGBoost as a gradientboosting model tuned for small process times,
application to the biggest possible number of tasks and effective computational resource use. (Chen &
Guestrin, 2016; Sahin, 2020)

This is achieved by the implementation of approximate splitting instead of exact greedy splitting.
Therefore, not all split possibilities are tested, but percentiles regarding each feature are used to cut
computational resource use. Furthermore, shrinking and feature sampling areimplemented. These two
techniques were not commonly used in other gradientboosting approaches before. Feature sampling
conducts a random sampling of available features before split search. Shrinking, on the other hand,
introduces anotherterm next to the learningrate that controls the influence of the newly added trees.
Additionally, a procedure to handle sparse data was implemented. Conventional tree algorithms are
commonly optimized for dense data. This does not reflect the majority of use cases, wherefore the
sparse data handling of XGBoost resembles an advantage. Lastly a parallelization, for e.g. splitfinding
across features, and improved memory usage were added to furthertune the algorithm. The described
improvements are claimed to be the key to the widespread use and success of the algorithm. (Chen &
Guestrin, 2016; Sahin, 2020)

254 MLP

A multilayer perceptron or MLP model is a neural network defined by an input, an outputand a varying
numberofhidden layers. The hidden layersrepresentthe processing between theinputandthe output
Therefore, they are referred to as “hidden”, as they are not presented to the user of the model. Each
hidden layeris composed of a numberof nodes. These nodes are fed by all inputs of the layer, adjusted
by weights and a node specific bias term. Nodes are also referred to as neurons and the biasis added
to influence the activation function independently from the weights. The sum of the weighted inputs,
together with the added bias term, is then fed into a non-linear activation function. The result of this
function represents the value of the respective node. This process is repeated for all nodes and
obtained values become the input of the next hidden layer, including their own weighing, bias and
activation.Here, the non-linearity of the activation function becomesimperative, as it enablesthe model
to represent non-linear relationships. Finally, the last hidden layer feeds into the output layer, which
presents the resultof the model (Itano et al., 2018; Nugroho etal., 2020; Ogunsanyaet al., 2023). An
example for an MLP model structure can be found in Figure 5.
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Hidden Layers
Input Layer Output Layer

Figure 5: MLP network structure for three hidden layers together with three neurons in the first, two
neurons inthe second and three neurons in the third hidden layer. (Itano et al., 2018)

Model training is achieved via optimization methods like gradientdescentin combination with a loss
function to update the weights and biases. Gradient descentindicates the needed direction of change
for the weights and biases to minimize the loss function. This process is adjusted by a learning rate to
balance over- and underfitting. The described process is called back-propagation. (Itano et al., 2018;
Nugroho etal., 2020)

2.5.5 Other relevant models
Other models that are presentin this work but were not important parts of it will briefly be introduced
on in this section.

The Decision Tree model has a straightforward approach. It makes predictions based on simple split
decisions. These split decisions are derived from the features and resultin a singular decision tree.
Extra Trees, Random Forest, and Bagging Regression are ensemble ML models. These models
combine the predictions of multiple decision trees and obtain an outcome by averaging their results.
The Bagging Regression performs several bootstrapping rounds and builds a decision tree for each
obtained data set. The Random Forest model also performs bootstrapping but introduces variance by
only using a randomly selected subset of features to make split decision. The Extra Tree model does
not perform bootstrapping but chooses random subsamples from the data. In a next step it builds a
decision tree for each subsample with completely random splitdecisions. (Pedregosaetal., 2011).

K-Nearest Neighbors (KNN) predicts outcomes based on the values of the nearestdata points, using
their proximity to the input. Elastic Net Regression (ENR) is a linear model that account for
multicollinearity and overfitting through regularization. ENR incorporates an additional penalty to
perform feature selection by shrinking redundant coefficients to zero (Pedregosa et al., 2011).

2.6 Machine Learning Model Training

A machinelearningmodel mustbe trained and adapted to carry out classification and regression tasks.
Therefore, in the following subchapters machine learning model training and connected concepts will
be explained.
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2.6.1 Training, Validation and Test Split

To enable the differenttraining phases of a machine learning model, available data must be splitinto
different data sets. The training data set is made to do the actual model training. Model training is
composed of adjustments to internal model parameters like weights or data splitting decisions. The
validation set is used for hyperparameter tuning and is commonly created from the training data. This
is often implemented through cross validation. Lastly, the test set is used to generate an unbiased
evaluation of the model performance on data that was not seen during model training or
hyperparametertuning. (Kuhn & Johnson 2013; Yoon, 2021)

2.6.2 Cross validation

Cross validation is a technigue that helps to evaluate the performance of trained ML models on unseen
data. This is done by repeatedly performing a train validation split for differentregions of the data. A
common approach is k-fold cross validation. For this, the number of cross validationsis defined and
the data is divided into the same number of folds. Typical numbers of cross validations are 5 or 10.
Afterwards the model training is repeated until each fold was used once as validation data set. Model
performance is afterwards reported as an average of the predefined scoring function for all trained
models. The advantage of this methodology is that it can accurately identify overfitting and indicates
the generalizability of the compiled model. Through the repeated training with different splits, a rather
complete image for different particularities is created. Therefore, if specific data points in the training
data lead to overfitting, the proneness of the model is revealed through the different training validation
splits. Furthermore, the procedure shows how well the model works with different parts of the data
acting as unseen data. Therefore, if the model performs equally well in all cases generalizability is
shown. (Kuhn & Johnson 2013; Wong, 2015; Berrar, 2019)

2.6.3 Hyperparameter spaces for selected machine learning algorithms

Hyperparameters are settings of machine learning models that are not tuned during training of the
algorithms. Therefore, they are higher level tuning options that influence ML model training itself.
Accordingly, hyperparameters have to be optimized apart from the model training. (Probstet al., 2019)
Hyperparameters and their common tuning ranges for Gradient Boosting, MLP, Ridge Regression, and
XGBoost were researched. This was done as these algorithms present important ML models used in
this work. Results are presented in Table 3 to 6. Selection of hyperparameters, their workings and the
specifics of their tuning are justified in the methodology section.

In Table 3, hyperparameters for Ridge Regression thatwere found in literature are presented. Sources

and areas of application are indicated. Regarding areas of application, an interesting focus of
publications on brain activity and health can be observed
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Table 3: Hyperparameter ranges for ridge regression. Areas of application are named at first appearance.
After that the type of tasks isindicated as classification (C) and regression (R).

Hyperparameter Hyperparameter Space Area of application Source
alpha (105, 10%%) - spaced | Brain activity prediction, | La Tour et al. (2022)
logarithmically, 20 values regression task
[0.1, 0.3, 0.5, 0.7, 1, 1.5] Health prediction of babies | Nugroho et al. (2022)
after birth, regression task
(104, 1055, 0.5 logio) Brain activity prediction, | Rokem & Kay (2020)
regression task
[0.001, 0.01, 0.1, 1, 10, 100, | Stock price forecasting, | Hoqgue & Aljamaan
1000] regression task (2021)
solver [svd, cholesky, Isgr, sag, | R La Tour et al. (2022)

sparse_cg]

Hyperparameters, their area of application and respective sources of the MLP algorithm are indicated
in Table 4. Focus in the literature is laid on improvement of hyperparameter tuning. Apart from that
more literature for classification then regression tasks were found.

Table 4: Hyperparameter ranges for MLP. Areas of application are named at first appearance. After that, the
type of tasks is indicated as classification (C) and regression (R).

Hyperparameter

Hyperparameter Space

Area of application

Source

hidden_layer_size

1st layer: [12, 18, 30, 42,
60, 78]

Health prediction of babies
after birth, regression task

Nugroho et al. (2022)

1st layer: (4, 144)

Methodology for improved

Youness et al. (2023)

hyperparameter
optimization, classification
tasks
1st layer: (10, 15) Methodology for improved | El-Hassani et al. (2024)
2nd Jayer: (1,10) hyperparameter
3rd Jayer: (1, 10) optimization, classification
4th layer: (1, 10) tasks
1st layer: (1, 16) Methodology for improved | Itano et al. (2018)
2nd Jayer: (1,16) hyperparameter
3rd Jayer: (1, 16) optimization, classification
4th layer: (1, 16) tasks

5t Jayer: (1, 16)

Istlayer: [3, 6, 9]

Product quality prediction,
regression task

Ogunsanya et al. (2023)

alpha [0.001, 0.005, 0.01, 0.05, | R Nugroho et al. (2022)
0.1, 0.5]
(0.0001, 2) C El-Hassani et al. (2024)
(0, 0.001) C Itano et al. (2018)

activation [tanh, relu, logistic] C El-Hassani et al. (2024)
[tanh, rectifier, maxout] C Itano et al. (2018)

solver [sgd, adam, Ibfgs] C El-Hassani et al. (2024)

learning_rate [constant, invscaling, | C El-Hassani et al. (2024)
adaptive]

learning_rate_init (0.001, 0.1) C Youness et al. (2023)
[0.00001, 0.0001, 0.001] R Ogunsanya et al. (2023)
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Table 5 presents common ranges and value sets of hyperparameters for the gradient boosting
algorithm. Reviewed publications focus on improvement of hyperparameter tuning methodologies but
also topics regarding health and mining were found. Comparedto the previou stwo algorithms a greater
number of hyperparameters was found.

Table 5: Hyperparameter ranges for gradient boosting. Areas of application are named at first appearance.
After that, type of tasks is indicated as classification (C) and regression (R).

Hyperparameter

Hyperparameter Space

Area of application

Source

loss

[“deviance”,
“exponential”’]

Gold mineral prospectivity
mapping, classification task

Fan et al. (2022)

[‘deviance”,

Image processing for diabetic

Datta et al. (2022)

“exponential’] retinopathy detection,
classification task
n_estimators (25, 200, 25) C Fan et al. (2022)
(5, 10) C Datta et al. (2022)
(50, 150) Methodology for improved | Young et al. (2018)

hyperparameter optimization,
reg. and classification tasks

[40, 80, 160, 320, 480]

Methodology for improved
hyperparameter optimization,
classification tasks

Anghel et al. (2018)

[200, 400, 600, 800]

Wind  energy
regression task

prediction,

Alonso et al. (2015)

learning_rate (0.1, 2.1,0.1) C Fan et al. (2022)
(0.15, 2) C Datta et al. (2022)
(0.00001, 1) C,R Young et al. (2018)
(0.1, 0.3) C Anghel et al. (2018)
[0.05, 0.1, 0.15] R Alonso et al. (2015)

max_features (4, 20, 2) C Fan et al. (2022)
(1, 10) C,R Young et al. (2018)
[0.8, 1] as percentage of | C Anghel et al. (2018)
all features
[0.3, 04, 05, 06] as|R Alonso et al. (2015)
percentage of all features

subsample (0.1, 0.8, 0.1) C Fan et al. (2022)
[0.33, 0.5, 0.9] C Datta et al. (2022)
(0.1, 1) C,R Young et al. (2018)

max_depth (2,30,2) C Fan et al. (2022)
[3, 5, 8] C Datta et al. (2022)
(2,10) C,R Young et al. (2018)
[4, 8,10, 12] C Anghel et al. (2018)
[6, 9, 20, 40] R Alonso et al. (2015)

min_impurity (0,5,1) C Fan et al. (2022)

increase

min_samples_split | (0.1, 0.2) as percentage | C Datta et al. (2022)
of all samples
(2,100) C,R Young et al. (2018)
[2, 4, 8] R Alonso et al. (2015)

min_samples_leaf | [0.1, 0.2, 03] as|C Datta et al. (2022)
percentage of all samples
(1,100) C,R Young et al. (2018)
[1, 2, 4] R Alonso et al. (2015)
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Lastly hyperparameter ranges and value sets for XGBoost are listed in Table 6. A balance between
regression and classificationtasks can be observed. Apart from that, a wide range of topics is depicted,
ranging from landslide prediction, improvement of hyperparameter tuning methodologies to health-
related research. As for the gradientboosting, a large number of hyperparametersis provided by the

studies.

Table 6: Hyperparameter ranges for XGBoost. Areas of application are named

that, type of tasks is indicated as classification (C) and regression (R).

at first appearance. After

Hyperparameter | Hyperparameter | Area of application Source
Space
n_estimators (100, 500) Prediction of landslide risk, clas. task | Kavzoglu & Teke (2022)
(100, 600) Product guality prediction, reg. task | Zou et al. (2022)
(1, 500) Methodology for improved | @rebaek & Geitle (2021)
hyperparameter optimization,
classification and regression tasks
(200, 300) soil  property prediction in oil | Pan et al. (2022)
reservoirs based, regression task
[40, 80, 160, 320, | Methodology for improved | Anghel et al. (2018)
480] hyperparameter optimization,

classification tasks

learning_rate (0.1, 1) C Kavzoglu & Teke (2022)
(0.01, 0.3) R Zou et al. (2022)
(0.1, 2) C,R Prebaek & Geitle (2021)
0,1 Wave run up prediction, reg. task Tarwidi et al. (2023)
(0.1, 0.3) C Anghel et al. (2018)
(0.1, 0.3) Prediction of chronic kidney failure, | Anggoro et al. (2021)
classification task
max_depth (1, 20) C Kavzoglu & Teke (2022)
(1, 10 R Zou et al. (2022)
(1, number of | C,R Drebaek & Geitle (2021)
features)
(10, 50) R Pan et al. (2022)
[4, 8, 10, 12] C Anghel et al. (2018)
[1, 3, 5] C Anggoro et al. (2021)
min_child_weight | (1, 20) C Kavzoglu & Teke (2022)
(1,9) R Pan et al. (2022)
gamma (0,0.2) C Kavzoglu & Teke (2022)
(0, 0.05) R Zou et al. (2022)
(0, 5) R Pan et al. (2022)
(0.1, 0.9) C Anggoro et al. (2021)
colsample_by (0.5, 0.7) C Kavzoglu & Teke (2022)
_tree (0.8, 1) R Pan et al. (2022)
(0.8, 1) C Anghel et al. (2018)
(0.1, 0.9) C Anggoro et al. (2021)
subsample (0.8, 1) C Kavzoglu & Teke (2022)
(0.8, 1) R Pan et al. (2022)
(0.1, 0.9) C Anggoro et al. (2021)
alpha (0.01, 0.3 R Zou et al. (2022)
(0,0.2) R Pan et al. (2022)
lambda 0,1 R Zou et al. (2022)
(0, 0.2) R Pan et al. (2022)
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2.6.4 Grid search

Grid search is a methodology to guide the application of hyperparameter tuning. During grid search, a
predefined set of values for each hyperparameter is used and a grid of all possible combinationsis
compiled. Afterwards, each of the combinations is tried out and the best performing set of
hyperparametersis selected. To achieve this selection, an upfrontdetermined scoring function is used.
The advantage of this methodologyisthat each combination istried out, wherefore no optimumpresent
inthe grid can be missed. On the other hand,the methodis computationally expensive and notflexible.
This means that an optimum could be missed, if it lies between two grid points. Furthermore, through
the try-out of each possible combination, many irrelevant options will be tested. Nevertheless, grid
search resembles the most commonly deployed hyperparameter tuning methodology. (Bergstra &
Bengio, 2012; Youness etal., 2023)
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3 Knowledge gap and research
guestion

In the following chapter,the knowledge gapforthisthesis is derived. This is done based on the findings
from the introduction and the state-of-the-art section. With the knowledge gap as foundation, the
research question will be formulated to aid the generation of the sought-after insights.

3.1 Knowledge gap

In the previous chapters, it was shown thatimproved material separation can helptoreach EU recycling
goals andto diminish CO2 eq. emissions. Regarding CO2 emission savings, promising annual savings
of up to 200 million tons of CO2 eq. for Europe were identified in the introduction. Furthermore,
indications for economic advantages for waste separation plant proprietors were found. To understand
whatis required to achieve these economic and environmental benefits, shortcomings of nowadays
waste separation plants were analysed.

The optimization of machine settings and machine interplay in waste separation plants was identified
as main hindrance. Waste separation plants are commonly only optimized once during their
commissioning. This is due to the cost of probing and litle knowledge regarding waste stream
composition. Furthermore, state-of-the-art waste separation plant modelling mainly relies on expert
valuation and experience values for separation efficiencies. This is problematic due to two reasons.
First, plant modelling and process characterization become static. This means that separation
efficiencies cannotbe adopted, as information aboutinputs and composition of waste streams in the
plant is missing. Second, waste composition is constantly changing, sometimes even per season.
Therefore, plant optimization is outdated rather quickly, leading to suboptimal separation results. To
avoid this, more frequentoptimization is needed.

Delvingintorequirementsforimproved plant optimization,anotherhindrance wasidentified: separation
efficiencies cannotbe transferred easily from one plantto another. This is due to the fact that waste
composition changes based on regionality, wherefore generalizability is hampered. Therefore, plant
specific process parameters like separation efficiencies and area densities are required to enable real-
time plant optimization. To achieve this, data about material stream composition in the waste sorting
plants is needed. Nevertheless, a sufficient coverage of sensor-based waste stream classifiers is
prohibited from an economical perspective.

To still obtain a reasonable process characterization, the use of data from sensor-based sorters that
are already presentin the plantis proposed. Examples of this can be found in works of Klippers et al.
(2020) and Kroell et al. (2021, 20244, 2024b). In their studies, they determined separation efficiencies
of NIR-scanners based on material occurrence and occupancies and achieved reasonable accuracies.
Furthermore, weight-based quality control, with the help of a NIR-scannerand lasertriangulation, could
be showcased.
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As a shortcoming, the described studies were conducted with fully characterized material. While this is
favourable for the explanatory power of the results, implementing these approachesinto a real-world
waste sorting plant would require extensive probing. This probing would need to be conductedon a
regular basis and is therefore prohibited from an economic viewpoint. Another disadvantage is that for
some studies machinery was modified in way thatis normally not presentin commercial waste sorting
plants. An example for this would be the addition of laser triangulation for height detection of particles
to a NIR-scanner. Lastly, the discussed studies showcase dynamic separation efficiency determination
and waste stream characterization as stand-alone concepts butdo notresearch theirinterplay.

This study, therefore, tries to implement material characterization in an industrial setting with data
supplied from a waste sorting plantin Scandinavia. This means that no fully characterized material is
available for algorithm training and testing, which resembles real world conditions. Furthermore, a
dynamic material separation efficiency determination is implemented. This will be done in the form of
material stream prediction from one NIR-scanner to the other. These methodologies will be applied
togetherto predict the purity of the HQ agglomeration product. Therefore, not only concepts introduced
by Kroell et al. and Kiippers et al. will be applied to a real-world sorting plant, butalso theirinterplay is
researched.

Further novelty of the research is given through the use of belt weighers data. No studies regarding
belt weigher data use for waste stream characterization in plastic sorting plants could be found during
literature research. Therefore, insights in the opportunities arising from the use of this data will be
obtained. Apart from that, this study contributes to the literature by using NIR-scanner data for material
stream characterization, which is originally produced for sorting of the materials. The benefits of the
use of this data are described and showcased by several authors, but through the application in an
industrial setting, new insight can be generated.

3.2 Research question

Concluding from the introduction, the state-of-the-art section and the identified knowledge gap the
following research question can be formulated:

How can the quality of the agglomeration line product in a plastic waste separation plant be predicted
based on NIR-scanner and beltweigher information through a data driven approach?

This research question tries to facilitate the aspirations of the goal of this study and the derived
knowledge gap. Through the quality prediction of the agglomeration line product the interplay of
dynamic material separation and area density determination can be showcased. As a smallestpossible
building block, the answering of this research questions can showcase concepts and methodologies
that enable real-time process optimization for waste sorting plants. To answer the main research
question, the following sub research questions are compiled:

— What correlations and relationships exist in the data?

— How can the area density, the area flow prediction and the separation efficiency be modelled?

— How does a joint application of the developed concepts perform for quality prediction of the
agglomeration line product?
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The first sub-research question guides the exploration of the data that is available in the waste
separation plant. This is necessary to identify modelling opportunities and to assess the quality of the
data. Understanding of thisis importantto generate insights aboutthe uncertainty that comes with the
application of the prediction and modelling methodologies. Furthermore, the gained knowledge will be
applied to guide data pre-processing. The second sub-research question provides the setup for the
modelling techniques that are tried outwith the explored data. Here, the required information, that was
identified through the knowledge gap, is gathered. Furthermore, the performance of the model building
blocks is assessed. The third sub-research question guides the analysis of the interplay between area
density and separation efficiency modelling as well as the connections to the area flow prediction. This
is importantto move from stand-alone observations to a jointanalysis of opportunities for waste stream
characterization and prediction.
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4 Methodology

To answer the research question, a methodology to tackle the established knowledge gap was set up.
The governing approach consists out of a data exploration phase, statistical modelling for area density
determination, ML modelling for separation efficiency determination, area flow prediction and a joint
application of all three concepts. A visualization of the different phases can be found in Figure 6.

Data collection

\4

Data exploration Sub
RQ 1
A 4 v L
5 ti ffici Sub
Area density modelling Area Flow Prediction epara ion‘ € I,Clency Y
determination RQ 2

A

Sub

Quiality Prediction RQ 3

Figure 6: Overarching methodology for the answering of the research question, different phases and
connected sub research questions are indicated.

The data exploration is connected to sub research question one, to search for already existing
correlations and relationshipsin the provided data. Area density modelling, area flow prediction and
separation efficiency determination are addressing sub question two. This connection is made, as they
represent the modelling and calculation of important information necessary to answer the overall
research question. Sub research question three is represented through the final quality prediction.
During quality prediction, all modelled concepts are applied together, wherefore theirinterplay can be
probed and analysed.

4.1 Used software

To conduct calculations, modelling and data handling Python 3.11.7 in the integrated development
environment Spyder 5.5.1 was used.

Data handlingwas performed with the help ofthe Pandas 2.14 library. Basic mathematics andindicator
calculationwereimplemented though the use of Numpy 1.26.4. Apart from that, the Statsmodels 0.14.0

library aided the implementation of the OLS modelling, while the Scikit-learn library 1.2.2 was used for
machine learning applications. Finally, plotting was conducted with the help of Matplotlib 3.8.0.

4.2 Indicators and Metrics

Several indicators and metrics were used during the thesis and will be explained in this subchapter.
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The Pearson correlation coefficientis a measure for the linear correlation between two data sets. In the
remainder of thiswork itis denoted as r. For a perfect positive correlation, the coefficientwill be 1 while
for a perfect negative coefficientit will result in -1. If no correlation at all is present, the Pearson
correlation coefficientwill be calculated with 0 (Cohen etal., 2009; Rainio etal., 2024). A mathematical
formulation of the Pearson correlation coefficientcan be found below, with x; representing a value of
the first data set and x representing the mean of the first data set. The same notation is applied to the
second data set with y as its representation.

= 20—y —y)
\/Z?=1(xi =022 (i —P)?

4.1)

The mean absolute error (MAE) is a useful metric to determine the mean deviation from predicted to
measured values. It is determined by summing the absolute errors of the model and then dividing it by
the number of samples. Due to this calculation, it does not lay specific emphasis on outliers or other
special cases in data. Therefore, it can be considered ratherrobust (Pedregosa et al., 2011; Rainio et
al., 2024). The formulaofthe MAE can be found below, where y; represents one of the observed values,
¥, indicates the prediction of the same observation, Y is the vector of all observed values, Y represents
the vector of all predicted values and ng,,.,. is the number of samples.

Nsamples

> -3l 42)

i=1

MAE(Y’Y) - nSamples

The mean squared error (MSE) is determined by squaring all errors of the model, summing them up
and dividing the result by the number of samples. Therewith, the mean squared deviation from the
predicted to the measured values gets computed. Due to the squaring, attention is given to errors of
bigger magnitude, as they gain greater influence on the result (Pedregosa et al., 2011; Naidu et al.,
2023; Rainio etal., 2024). A mathematical formulation of the MSE is indicated below, where y; and J;
are single values from the observation vector Y and the prediction vector Y. Lastly ng,,,,,.s indicates
the number of samples that were taken.

Nsamples

MSE(Y,Y) = i —9)? (4.3)

Samples =1
The coefficient of determination, also denoted as R?, measures the goodness of fit of a model. It
indicates how well the model's predictions resemble the observed values. Putting it into other words,
R? represents the proportion of variance, in the measured data, that is explained by the model’s
predictions. R? can have values between 1, indicating the perfectfit, and minus infinity, as the model
can be arbitrarily worse. A model that always predicts the mean of the data results in 0 and can,
therefore, be seen as baseline. To calculate R? the sum of the squared difference between
measurement and prediction is divided by the sum of the squared difference between each
measurementandthe mean of the measurements. The resultof this term is then subtracted from 1 and
RZ?is obtained (Hagquist & Stenbeck, 1998; Pedregosa etal., 2011). On the next page, a mathematical
representation of R? is depicted, where Y is the vector of all observed values, Y is the vector of all
predicted values and y; and y; represent single values fromthese vectors.
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RA(1,7) = 1- Z%l(yi - 9_)22 (4.4)
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To predict the quality of the agglomeration product, a weight percentage metric is necessary. For this,

the material of interestis divided by the total material. This indicates the weight share of the material in

the product. A mathematical formulation of the indicator can be found below, wherem,,, ;... fepresents

the weightof a specific material and m,,,, indicates the weight of all materials that are present.

m i
Material
0, -
wt! A)Maten‘al (45)
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4.3 Data Composition, Collection and Processing

In this subchapter, the retrieval of the data that was used in this work will be explained. Furthermore,
emphasis is laid on the composition of the data and initial processing that enabled data exploration.

NIR-scanner data was retrieved through the TOMRA Insight portal and by an influx database provided
by Bremen University. The influx database aggregates data from the TOMRA Insight portal and
facilitates downloads of greater time intervals. Here, the finest available resolution is one data point per
minute. Data was retrieved in the unified material statistic format. This format was developed to ensure
comparability between different TOMRA NIR-scanner units. Statistics that were retrieved show
material-specific area flows as well as the placement of the material on the conveyor belt in [m?/h].
Available material categories are shown in Table 7. Although, the unified material statistic is made for
comparability and to ensure similar material categories across all scanners, BOARD_CTand PET_G
are missing for PO75C. Additional data like the sorting program, valve cycles and lamp health are
available buthave notbeen used for the conducted research. Nevertheless, this data could be used in
the future.
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Table 7: Material categories for PO75 and PO75C indicated with their original name, the name used in this
work, their meaning and the sorting indication per scanner.

Unit Original Name Meaning Name in this work | Eject | Drop
PO75 BOARD CT Corrugated Cardboard X
EPS Expanded Polystyrene X
GT Getranke Karton | BC X
(= Beverage Carton)
OTHER_POLYMERS | All polymers that do not have X
an own category
PAPER Paper X
PE_FILM Films of Polyethylene X
PE_RIGID Objects of Polyethylene that X
are not film
PET_BOTTLE Bottles made of Polyethylene X
terephthalate
PET_G Glycol-modified Polyethylene X
terephthalate
PET_MONO_TRAY Polyethylene terephthalate X
only trays
PP Polypropylene X
PP FILM Films of Polypropylene X
PS Polystyrene X
PVC Polyvinyl chloride X
PO75C | EPS Expanded Polystyrene X
GT Getranke Karton | BC X
(= Beverage Carton)
OTHER_POLYMERS | All polymers that do not have X
an own category
PAPER Paper X
PE_FILM Films of Polyethylene X
PE_RIGID Objects of Polyethylene that X
are not film
PET_BOTTLE Bottles made of Polyethylene X
terephthalate
PET_MONO_TRAY Polyethylene terephthalate X
only trays
PP Polypropylene X
PP_FILM Films of Polypropylene X
PS Polystyrene X
PVC Polyvinyl chloride X

After retrieval, the data was cleaned from missing values and brought into a multilevel column index
form. Afterwards, the data was sorted by unit, statistic and belt part as well as material or drop or eject
stream if applicable.

Regarding the beltweighers, data was retrieved from Sutco through a MySQL database, with the help
of a SECOMA connection. Data is available in 3-7 second steps and was aggregate to the same time
steps as the NIR-scanner data.

In total, four-month worth of data were used. The data set was recorded from the second of March 2024
at 12:35 to the second of July 2024 at 7:11. To avoid a temporal offset between the different data
sources, the data was synchronized. Thiswas done with the help of the Pearson correlation coefficient.
Temporal offsets can e.g. arise due to unaligned time stamps within the machines or through the time
that the material needs to travel from one unitto the next.
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4.4  Data Exploration

To assess the model building capabilities of the data, exploration of the data is necessary. Avoidable
noise and special eventsthat could hamperexplanatory powerhaveto be identified. Properexploration
enablesto either remove disruptive data points or to develop strategies to treat these cases.

The data exploration forbeltweigherdata, NIR-scannerareaflows and beltoccupation datawas guided
by the Pearson correlation coefficientand the analysis of the data distribution. The latter was done from
a frequencyview point. Here, high correlations and normal distributions were soughtof, wherefore data
pre-processing strategies were developed based on this regard.

4.5 Statistical modelling — Area densities

To determine the area densities, ordinary least squares (OLS) modelling was applied. This was done
to enablethe conversionfromareaflow data to mass flow data and ultimately facilitate quality prediction
in weightpercent. Since the connection between areaflow and mass flow through areadensityislinear,
OLS modelling was chosen. This was done because OLS is a linear modelling method, which fits the
introduced relationship. Apart from that, an 80/20 training test split for model training and testing was
applied.

After application ofthe model, outcomesfrom Statsmodels were checkedfor violations of assumptions.
Additionally, signs of invalid model properties were examined and discussed.

4.5.1 Multicollinearity

Multicollinearity was tested and detected according to Shrestha (2020). This was done with the help of
a correlation matrix. In a next step, multicollinearity was treated through grouping of independent
variables as proposed by Paul (2006).

4.5.2 Bootstrapping

Bootstrapping was applied to gain additional trustin the obtained area densities. This was done next
to the confidence intervals obtained from the initial modelling. For application, 10,000 bootstrapping
rounds for each area density were conducted. From this, area density distributions were determined,
along with quantiles similar to the confidence intervals from the initial modelling. Additionally, the mean
and median of the distributions were calculated.

4.5.3 Testing and evaluation

To test the obtained areadensities, they were multiplied with the areaflows fromthe test set. Afterwards
they were summed up and plotted againstthe beltweigher data of the same time frame. For evaluation
the MAE was used. Additionally, generalizability of the area densities to other scanners was tested.

4.6 Machine learning — Area flow prediction

For area flow prediction, ML models were identified as appropriate approach. This judgementis based
on experience from the Sutco research and development department. They found out that for the
prediction of area flows from one scannerto the nextscannerno purelylinearrelationships are present.
Therefore, non-linearmodellingisneeded. Furthermore, physical properties of waste are changingand
limited information on waste characteristics is available through the limitation on 2D data. Therefore,
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machine learning was preferred over a physics-based approach or empirical models. For the ML
modelling, an 80/20 training test data split was applied.

4.6.1 Model Try-Out and selection

As proposed by Kuhn & Johnson (2013), a broad range of models was tried out. Furthermore, a variety
of ML model architectures was represented. Accordingly, the following models were tested: Decision
Tree, Extra Tree, Random Forest, Gradient Boosting, K-nearest Neighbours, Bagging Regressor,
Ridge Regression, Elastic Net Regression and MLP. Regarding model architectures the Decision Tree
model represents a simple decision tree architecture. Extra Tree, Random Forest, Bagging Regressor
and Gradient Boosting resemble tree-based ensemble models, where a combination of various trees
leads to the prediction outcome. K-nearest Neighbours is a neighbour-based regression algorithm
where the predicted value is computed as a function of the measured values of the input's nearest
neighbours. Ridge Regression and Elastic Net Regression representlinear regression models. Lastly,
MLP is a neural network type machine learning model. (Pedregosa et al., 2011)

Models are selected according to their performance and their simplicity, as presented by Kuhn &
Johnson (2013). Balancing these two properties keeps computational expenses at bay and improves
interpretability. The interpretability of simpler models is given, as their final model structure tends to
stay close to real world principles, instead of being based on decision trees or nested mathematical
functions.

4.6.2 Hyperparameter tuning
Hyperparameter tuning was conducted based on grid search and applied to the training data set. This
was done to leave the test data set for final performance evaluation.

To scope down the selection of hyperparameters to a reasonable computational effort, a maximum of
five hyperparameters per ML model was selected. Selection was guided by the amountof mentions.
Furthermore, areas of application that included regression task were prioritized, as they better reflect
the task at hand. Selected hyperparameters and their ranges are described in the following, together
with a small explanation of their workings.

For ridge regression, two hyperparameters were found in literature and applied accordingly. These
hyperparameters are the solver of the regression and the alphavalue.

The solver hyperparameter is responsible for the computational implementation of the underying
mathematics. Nevertheless, the hyperparameter was considered to indicate which of the solversis the
fastest. For hyperparameter selection all optionswere taken over, giving the followingrange forthe grid
search: [svd, cholesky, Isqr, sag, sparse_cg]. (Pedregosa et al., 2011)

The following values were setfor the alpha hyperparameter: [0.0001, 0.0005, 0.001, 0.005, 0.01, 0.05,
0.1, 0.5, 1, 5, 10, 50, 100, 500, 1000, 5000, 10000]. This range was chosen to include the default
parameter value and to represent the widespread range of valuesfoundin the literature. The alpha
hyperparameter controls the influence of the sum of squared weights added to the loss function in the
ridge regression model, affecting the penalty applied to high magnitude weights. (Pedregosa et al.,
2011; La Tour et al., 2022)

29



In Table 8, a summary of the hyperparameters and their respective values of the Ridge Regression
model can be found.

Table 8: Hyperparameter sets for ridge regression applied during grid search.

Hyperparameter | Values applied in grid search

alpha [0.0001, 0.0005, 0.001, 0.005, 0.01, 0.05, 0.1, 0.5, 1, 5, 10, 50, 100, 500, 1000, 5000,
10000]

solver [svd, cholesky, Isgr, sag, sparse cg]

For the MLP model, hidden_layer_size, alpha, activation and learning_rate_init were selected as
hyperparameters. It was decided to try out 9 hidden_layer_size versions, as it resembles the most
important hyperparameter of the algorithm. Therefore, the other hyperparameters have been limited to
three options each. This was done to keep the grid search computationally reasonable.

The hidden_layer_size hyperparameter determines the number of hidden layers and the respective
number of nodes. An increased number of nodes enables the layer to represent more complicated
relationships betweeninputandoutput. Looking atthe number of layers, an increased numberof hidden
layers enables the detection of “deeper” patterns. This is achieved through the repeated use of the
activation function and updated weighing. Therefore, each layer refines the pattern frominputto output
(Pedregosacetal., 2011; ltano et al., 2018). For the hyperparameter, a use of oneto three hidden layers
was chosen. To not overcomplicate things, all layers have the same size with either 50, 100 or 150
nodes per layer. The number of nodes is slightly higher than seen in literature, but was chosen to
balance outthe decreased number of layers.

The MLP model adds the sum of squared weights to the result of its loss function. The influence of this
term is controlled by the alpha hyperparameter (Pedregosa et al., 2011; La Tour et al., 2022). For
hyperparameter tuning, the set of alpha values was chosen with:[0.001, 0.01, 0.1]. This was done to
represent the values found in literature. Interestingly, all encountered values were higher than the
defaultvalue of 0.0001 butkept below 1 for the majority of the findings.

The activation hyperparameter selects the activation function thatis applied to each node of the hidden
layers (Pedregosaet al., 2011; Nugrohoetal., 2020). For this, “tanh”, “relu”and “logistic”’ were selected,
asthey are the three applicable activation functions tothe problem at hand. Apartfrom that the “identity”
function isavailable. Thisfunction iscommonly used when near-linearbehaviouris expected, as itdoes
not modify the input. (Pedregosa et al., 2011)

An overview of hyperparameters and their ranges that were applied in the MLP tuning process are
depicted in Table 9.

Table 9: Hyperparameter sets for MLP applied in grid search.

Hyperparameter Values applied in grid search

hidden_layer_size 1 layer: [50, 100, 150]

2 layers: [[50, 50], [100, 100], [150, 150]]

3 layers: [[50, 50, 50], [100, 100, 100], [150, 150, 150]]
alpha [0.001, 0.01, 0.1]

activation [tanh, relu, logistic]
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As hyperparameters for the gradient boosting model, n_estimators, learning_rate, max_features,
max_depth and min_sample_splitwere selected. Min_sample_splitand min_sample_leave have equal
amountof mentions, but due to their similarity max_sample_splitwas chosen. This was done, as the
decision to continue splitting or not, was preferred to be done before the splitrather than after the split.
Apart from that, the number of options per hyperparameter were limited to three. With this setting, a
total of 243 combinations was tested during grid search, which represents a reasonable use of
computational power.

The n_estimators hyperparameter dictates how many boosting stages are performed. This means that
it controls how often a new tree will be fitted to the residuals of the latest model (Alonso et al., 2015;
Fan et al., 2022). For n_estimators, grid search values are set to [50, 250, 500]. This was done to test
forvaluesthatare below and above the defaultvalue of 100 andto representthe range of valuesfound
in literature.

The impact of each added tree on the overall model performance is determined by th e learning rate
(Pedregosa et al., 2011; Alonso et al., 2015; Fan et al., 2022). Learning rate values are set to [0.05,
0.15, 0.3]. Thiswas done to explore options around the defaultvalue of 0.1.

To adjust the maximum number of features that are used for split calculation the max_feature
hypermparameter is tuned (Pedregosa et al.,, 2011; Datta et al., 2022). Following the percentual
approach found in literature, together with a number of 21 features, the max_feature values were set
to [7, 14, 21].

The max_depth hyperparameter indicates the maximum level of layers in a decision tree. This directly
influences its complexity (Pedregosa et al., 2011; Datta et al., 2022). With a default of 3, the values for
max_depth were set to [2, 10, 18]. This was done to check options below and above the default values
and to represent the greater values found in literature.

The decision of how many observations must be contained in a node to make a split is made by the
min_samples_splithyperparameter (Pedregosa et al., 2011; Alonso et al., 2015). The values for the
hyperparameter were set to [2, 50, 100]. This was done to have the defaultvalue of 2 within the range
and to test highervalues presentin the literature.

In Table 10 all hyperparametersandtheirrangesthatwere used for GradientBoosting hyperparameter
tuning are depicted.

Table 10: Hyperparameter sets for gradient boosting applied in grid search.

Hyperparameter Values applied in grid search
n_estimators [50, 250, 500]

learning_rate [0.05, 0.15, 0.3]

max feature [7, 14, 21]

max_depth [2, 10, 18]

min_samples split | [2, 50, 100]

Hyperparameters that were chosen for XGBoost hyperparameter tuning are n_estimators,
learning_rate, max_depth, gamma and lambda. Alpha and lambda have the same amount of mentions
and both resemble regularization terms for the loss function. As lambda represents a preferred
regularization method, it was chosen for grid search instead of alpha. Furthermore, the number of
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values per parameter was limited to three. This was done to not increase the number of possible
combinations above the limitation that was set for the other models.

The n_estimators hyperparameter selects the total number oftimes a new tree gets fitted to the residual
of the model. High number of rounds can lead to overfitting and unnecessary expense of computing
power. On the other hand, a low number of rounds could have underfitting as a consequence
(Pedregosacet al., 2011; Kavzoglu & Teke, 2022). The following values were used for the grid search:
[50, 175, 300]. This was done to represent the range of values found in literature, while avoiding
emphasis on the extremes.

To influence the learning rate of XGBoost, the learning_rate hyperparameteris used. This parameter
determines the influence of each newly added tree to the model (Tarwidi et al, 2023). Here, extensive
learning rates can oversee optimal solutions, while too conservative learning rates can trap the model
into a local optimum (ltano et al., 2018). For the learning rate, the subsequent set of values was
selected: [0.1, 1, 2]. This was done to resemble the range of values used in literature with a focus on
regression tasks.

The max_depth hyperparameter sets the maximum number of splits a tree branch can have until
reaching an end point. Higher values allow the model to represent more complicated relationships but
come with the risk of overfitting (Pedregosa et al., 2011; Kavzoglu & Teke, 2022). The following set of
values was selected for the max_depth parameter: [1, 8, 15]. With this, the minimum value from the
literature and greater values thatwere found for regression tasks are tested.

Gamma represents the minimum loss function reduction thatis needed to further split the data (Chen
& Guestrin 2016; Tarwidiet al, 2023). The hyperparameter prevents overfitting and can be used to safe
computational resources by stopping model training when no significantimprovement is detected.
Seeking orientation in literature with a focus on regression tasks, the following values were chosen: [0,
0.25, 0.5].

The lambda hyperparameter has the same workings as the alpha hyperparameter forthe MLP and the
Ridge Regression model. Finding a middle ground between the values fromthe literature, the following
values were selected: [0, 0.15, 0.3].

A summary of the hyperparameters that were used for the tuning of the XGBoost model can be
observed in Table 11.

Table 11: Hyperparameter sets for XGBoost applied in grid search.

Hyperparameter | Values applied in grid search
n_estimators [50, 300, 550]

learning_rate [0.1, 1, 2]

max_depth [1, 15, 30]

gamma [0, 0.25, 0.5]

lambda [0, 0.15, 0.3]
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4.6.3 Cross validation and grid search

A 5-fold cross-validation was applied during grid search to test the generalizability of the ML models.
Furthermore, this approach was chosen to increase robustness againstoutliers during model selection.
Model selection was conducted based on the mean of the indicators obtained from the cross validation.
As guiding scoring function the MAE was used.

4.6.4 Testing and evaluation
To test and evaluate the area flow prediction, the test set was used and predictions were plotted against
measured data. Evaluation was guided by the MAE, MSE and R2 only played a secondary role.

4.7 Separation efficiency

Separation efficienciesfrom PO75C to the agglomeration productwere taken over from the sorting step
between PO75 and PO75C. This was done as no validation data for the last separation step was
available. Validation data is needed for model training and testing. Therefore, the assumption of
transferable separation efficiency was made to showcase the full solving of the research question.
When a suitable modelling technique without validation data needs is identified, or validation data is
obtained, this part of the work should be revisited.

The absence of validation data is given, as nofinal quality determination is carried out in the process.
Insufficient quality is normally reported by the buyer of the product to the operator of the plant. This
comes with the difficulty of mapping the reported bale to a temporal scope of processingin the plant
Furthermore, there is only a very limited amount of data available, if data is recorded at all.

To determine the separation efficiency, it was assumed that separation efficiencies are constantover
time and that ejected material separates equally well. Additional focus was laid on material that is
ejected together with the targeted material. The accidently ejected material was ascertained as
percentual share of the separated target material. Apart from that, separation efficiencies were
determined based on the area flows instead of mass flows. This was done to not include additional
uncertainty from area density determination into the calculations.

4.8 Quality prediction

To conduct the final quality prediction, the area density modelling, the area flow prediction and the
separation efficiency determination were applied together. Here, the area flows on PO75C were
predicted by the area flowson PO75. Next, the separation efficiencieswere usedto determinethe area
flows after the last separation step. Lastly, the predicted area flows for the agglomeration product were
converted into mass flows using the modelled area densities. These steps enable quality prediction in
weightpercentwhich is required for quality determination.

Evaluation was conducted between results that were obtained with predicted area flows and results
that were realized with the help of measured area flows. As main indicatorthe MAE was used. The
obtained mass flows include several sources of uncertainty. For PO75, the uncertainty comes from
area density modelling. For PO75C, the material-specific mass flows include the uncertainties from the
area density modelling and the area flow prediction. Finally, for the agglomeration product, the
uncertainty arises from area density modelling, area flow prediction, and separation efficiency
determination.

33



5 Results and discussion

In the following chapter, the results of the conducted research will be presented and discussed. As
there will be frequentreference to specific unitsin the plant, in Figure 7 a repeated representation of
the observed plantpart can be found.

Ejected Material

AA101 AA106 _— Dropped Material
> PO75 = PP, PE= - Paper, PVC :
Rougher

PET, PVC, Cellulosics, EhpRERREL P, II

Other Pol , Tet
PS, Other Polymers erioymers, leia
Cleaner

Belt Weigher

Figure 7: Schematic of the observed part of the agglomeration process in the waste separation plant.

The belt weigherthat measures the inputof the first scanneris referred to as AA101, while the belt
weigher measuring the eject stream is indicated as AA106. The first separation step is conducted by
the PO75 rougherandthe second separation step is achievedthroughthe PO75C clean er. Upfrontand
following there are many more separation and processing steps, but it was focussed on this part due
to the high availability of data. Furthermore, this was done to narrow down the number of separation
unitsto a reasonable amountfor the scope of this thesis. What s also noticeable that for PO75 the
eject stream is of interest, as this is the stream that gets fed into the cleaner. On the other hand, for
PO75C the dropped stream is of interest, as it resembles the product.

5.1 Data exploration

Data exploration was done to delve into the characteristics of the data and to ease application of
methodologies importantto this research. For this, special focus was laid on sanity checks, correlation
between data sets and the distribution of the data. This information helpsto generate insights about
uncertainty in the data. Understanding this uncertainty is important, as it will influence the explanatory
power of the established quality prediction. Through this subchapter, sub research question one will be
answered, as correlations and relationships in the available data are researched.

5.1.1 Belt Weigher Data

Starting off, the distributions of the belt weighers AA101 and AA106 were plotted and can be foundin
Figure 8. On the x-axis the measured weightin [t/h]is displayed, while the y-axis indicates the number
of occurrences over the observed time frame.
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Figure 8: Mass flow distribution in [t/h] for belt weighers AA101 and AA106 without further processing.

Mass flow ranges from 0 [t/h] to 18.97 [t/h] for AA101 and from O [t/h] to 10.37 [t/h] for AA106. Dueto
the heavy lefttail in the data, it can be claimed, that the majority of the data is empty. Therefore, zeros
have been removed. Nevertheless, after the removal no significantchange was observed. Thisis due
to the fact that the belt weigherstend to measure very small weightflows, although the belt is empty.
To balance this out, several thresholds for removing the left tail were tested. As a result, excluding data
below 0.3 [tt/h] was considered an appropriate threshold. Outcomes of this procedure can be examined
in Figure 9.
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Figure 9: Mass flow distributions in [t/h] for AA101 and AA106 after removal of all values below 0.3 [t/h].

Nearly normal distributed mass flow distributions can be observed in the newly generated plots. The
mean for AA101 is determined with 5.14 [t/h] and with 2.37 [t/h] for AA106. Medians are rather similar
with values of 5 [t/h] and 2.34 [t/h]. Belt weigher AA106 measures the mass flow after the first scanner
(PO75). This also resembles the inputto PO75C. As between PO75 and PO75C a separation step
happens, the more than halved mean from AA101 to AA106 is a good sign of consistency in the data.
Nevertheless, the distribution is cut on the left side for AA106. This is due to the fact that, for AA101,
the threshold had to be moved up to 0.3 [t/h] to eliminate the vastamount of empty data. Naturally, the
same data was removed for AA106, as the data sets are used in combination. A possible explanation
for this difference is that AA106 has lower expected mass flows. Therefore, the machine could be set
to a greater sensitivity. On the other hand, for AA101, greater mass flows are expected, wherefore the
sensitivity could be toned down to handle higher weights more accurately.
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In a next step, the correlation between AA101 and AA106 was tested. For this, a scatter plot before
and after the removal of the low value tail was compiled and can be found in Figure 10. On the y-axis,
mass flows measured by AA106 are presented and on the x-axis mass flows recorded by AA101 are
indicated.
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Figure 10: Scatter plots between belt weigher AA106 and belt weigher AA101, before the cut of low-value
data (left) and after the removal of low-value data (right). The pearson correlation coefficient is indicated at
thetop left corner of both plots.

What can be observed is that r decreases after the removal of the low-value tails. At the same time,
the amount of impossible values decreases. These values are presenton the left-hand plot, when one
of the axes has values of zero, but the other belt weigheris still detecting a mass flow. This is most
probably due to a temporal measurement error of one belt weigher, while the other belt weigheris
functioning. The decreasing r can be explained by the removal of the close to zero values. In the left-
handversion of the plota vast amountof data is empty for both beltweighers. When both beltweighers
measure values close to zero, the correlation of the respective value pairs is high. This effect could
explain the higher correlation before the removal of the low value tail.

To gain an advanced understanding of the correlation of the belt weighers, the data was splitin 200
bins by time. In a next step, r was computed for all bins. Regarding plots can be foundin Figure 11.
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Figure 11: Pearson correlation coefficient for belt weigher AA101 with regards to belt weigher AA106 with
200 bins compiled by time, before the removal of low-value data (left) and after removal of low-value data

(right).

Before the removal of low value data, correlation can go down until a r value of -0.09 but also reaches
a value of 1 on a frequentbasis. Afterthe low-value data is eliminated, the extremes are removed from
the correlation plot. Maxima of the right-hand plot are reached with values of 0.95, while minima go
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down to values of 0.68. Positive extremes of the first plot can again be explained with the values close
to zero. Although they represent faulty datapoints, they are still very similar in magnitude. Therefore,
theircorrelation ishigh. Negative extremes can be explained by one of the belt weighers notfunctioning.
Here, values close to zero are paired with normal weight flows on the other beltweigher, leading to low
r values.

Concluding the belt weigher data exploration, it can be said that the interplay of belt weigher AA101
and AA106 should not hamper model buildingin later stages of this research. With a proper pre-
processing, no inconsistency can be found, and correlation is reasonably high. Problems occurred due
to situations where one of the belt weighers detected a mass flow butthe other not. These cases can
be excluded by only including data points that lay above a mass flow of 0.3 [t/h].

The describedinsightsdelivervaluableinformation tothe answering of the first sub research questions,
as correlations and relationships in the beltweigher data were researched.

5.1.2 NIR-scanner Data —Area Flow

To explore the area flow of the NIR-scanners PO75 and PO75C, a joint distribution plotwas created.
For this, all area flows per scanner were summed up, to gather a first understanding of the overall
behaviour. Results can be found in Figure 12.
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Figure 12: Distribution of occurrences of total area flows for PO75 and PO75C, using 50 bins for
accumulation. Zeros were removed upfront.

Similar to the belt weighers, zeros were removed upfront and a left tail in the distribution can be
observed. Furthermore, a shift of the left tail from PO75 to PO75C is seen. This raises the suspicion
that PO75 does not measure 0 [m?/h], when the beltis empty, butreports values close to zero instead.
Through visual inspection of a distribution plot, with increased bin number, this suspicion could be
confirmed.

In comparison to PO75, the tail of PO75C is right shifted. This can be due to the fact that PO75C is a
cleaner. As the cleaning step aims to remove crucial impurities, a higher sensitivity of the scanneris
expected. Therefore, if the belt is empty but PO75C still detects material, as result of a measurement
error, the faulty data is probably of higher magnitude.
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Following up with a more parameter driven analysis, the mean reduces from 4672.2 [m?/h] to
3836.9 [m?/h] from PO75 to PO75C. For both scanners, the median is slightly higher with values of
4955.1 [m?/h] and 4058 [m?/h]. Compared to the mass flow decrease of the belt weighers, the change
in area flowsfeelsratherlow. This can be explained by the nature of the targeted material. Atthis stage
of the separation process, PP and PE are mainly present as films and foils. Therefore, their area to
weightratio is fairly low. Furthermore, PP and PE representthe majority of the transferred material from
PO75to PO75C. Accordingly,the smallermagnitude of change, forthe area flow compared to the mass
flow, should resultfrom a small area to weightration of the discussed materials. Apart from the change
of mean and median, it can be seen that the histogram extends up to 17,500 [m?/h]. This represents
some barely visible outliers on the higher end of the total area flows.

Delving into the material-based exploration, material-specific distributions plots were created. It was
focused on PP_Filmand BC as two examples that showed expected behaviour. Furthermore, PP and
OTHER_POLYMERS were scrutinized, as they represent two examples that led to unexpected
findings. The regarding plots are presented in Figure 13 and14. Plots of all material-specific
distributions can be found in Appendix 1.
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Figure 13: Material-specific area flow distribution for BC and PP_Film with zeros removed upfront.

It can be observed that the lefttail of the distribution prevailsin the material-specific plots. Furthermore,
a greater magnitude of the tail for PO75 is present. Apart from that, both materials show the expected
sorting behaviour. PP_FILM is expected to be fully transferred from rougher to cleaner, which is
resembled by the overlappingdistributions. For BC a decrease in material is presumed, as it resembles
a non-targeted material. Thisis confirmed by the left shifted peak of PO75C as well as the left shifted
mean and median.

Returning to the right-shifted tail of PO75C in Figure 12, another potential explanation emerges. The
right shifted tail could be explained by the left shifted peaks for the separated materials on PO75C.
Here, BC can resemble an example. Especially, materials with a lower area flow magnitude have their
peak shiftedto theleft. Through this shiftin magnitude and differentseparation efficie ncies permaterial,
the right shifted tail could occur. Materials that show the right shifted tail are PE_RIGID, PE_FILM,
PET_BOTTLE and PET_MONO_TRAY. The respective plots are depicted in Appendix 1.

Going on to materials that did not show expected behaviour, the material-specific distributions for PP
and OTHER_POLYMERS are presented in Figure 14.
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Figure 14: Material-specific area flow distribution for OTHER_POLYMERS (original x-axis range: 0 to 1300)
and PP (original x-axis range: 0 to 5000), with zeros removed from the data beforehand.

On afirstglance,the OTHER_POLYMERS plotpassesthe sanity check, as material occurrence seems
to decreased from PO75to PO75C. Nevertheless, observing the mean of the data, it is shown thatthe
mean actually increases from 56 [m?/h] to 78.3 [m?/h]. As both distributions have the same amount of
observations, an increasing mean indicates a greater detected total area. Due to the fact that from
PO75 to PO75C material can only be removed but not be added, this change becomes impossible.
Therefore, this finding can only be explained by a machine malfunction or different measurement
behaviour of the scanners.

Different measurement behaviour of the scanners can be due to the inner workings of the unified
material statistic, provided by TOMRA. This means that the statistic could compose the
OTHER_POLYMERS category differently from scanner to scanner. Another reason could be the
sensitivity regarding targeted and non-targeted materials. If there is a high priority that all particles of
the targeted materials are detected, the machine could lean towards overclassifying these categories.
This would mean that particlesthat do notbelongto this group could be classified as targeted materials
out of precaution. As both scanners have different target materials, this mechanism could overlap,
which would amplify the described effect. Therefore, if the effectis strong enough, itcould be the reason
for seeing more material on the cleanerthan initially detected on the rougher. The same explanation
could be valid for the PP plot. Here, an increase of the mean from 686.8 [m?/h] to 724.8 [m?/h] is
observed.

For the application of the modelling approaches, the correlation of the two scanners is of interest.

Therefore, a scatter plot for visual inspection of the correlation between PO75 and PO75C was plotted.
Results are depicted in Figure 15. Furthermore, r was calculated and is indicated within the plot.
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Figure 15: Scatter plots between NIR-scanner PO75 and NIR-scanner PO75C. The pearson correlation
coefficientis indicated at the top left corner of the plots.

The Pearson correlation coefficientshows a strong positive correlation with a value of 0.887. Apart from
that, a group of outliers can be observed for area flows around 5000 [m?/h] for PO75. This could be a
measurement mistake, as the outlier values triple the measured material from rougherto cleaner. As
an alternative explanation, it could be imagined that particles got stuck between the two scanners. The
release of the hold-back material later in time could lead to the elevated values on PO75C.

What furthermore sticks out is the high occurrence of measured material on one scanner, while the
other scanneris empty or detects values close to zero. As empty entries for both scanners were
removed, the hypothesis is made that the scanners occasionally measure values close to zero instead
of zero. Therefore, these values were notremoved upfrontand the inconsistencies become tangible in
the described plot.

Another possibility are temporal patternsin the data. Therefore, datapoints were ordered by time, split
into 200 bins and for each bin r was computed. The resultcan be observedin Figure 16.
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Figure 16: Pearson correlation coefficient for NIR-scanner PO75 with regards to NIR-scanner PO75C with
200 bins compiled by time.
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Maximum correlation is indicated with 0.97, while minimum correlation was determined with 0.48.
Except for two negative outliers, no temporal pattern can be observed. These outliers can be due to
measurementerrors. Furthermore, they could be based on the described suspicion thatthe scanners
occasionally do not detect materials, but indicate values above zero. Apart from that, correlations
toward the end of the plot can lead towards the hypothesis of a positive trend in the data. Nevertheless,
if the plot would be truncated at bin number 40, the positive trend from bin 25 onwards could lead to
the same hypothesis. Therefore, these kinds of trend detection should be done with caution. Moving
on, an oscillation around the mean value of 0.89 can be observed, with amplitudes in the region of +
0.1. Thisbehaviourcan be explainedthroughthe natural variancein the dataandis therefore expected.

Continuing with the material-specific exploration between PO75 and PO75C, PP_FILM and BC were
chosen as examples with expected behaviourand PVC and OTHER_POLYMERS as examples with
unexpected behaviour. The regarding scatter plots are presented in Figure 17 and 18, while scatter
plots for all materials are made available in Appendix 2. In general, PE_FILM and PE_RIGID were the
best correlating materials with r values of 0.9 and 0.89, while OTER_POLYMERS and PS were the
materials with the lowest correlations with r values of 0.07 and 0.13.
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Figure 17: Correlations for BC and PP_FILM in form of scatter plots. The Pearson correlation coefficient is
computed in thetop right corner.

For BC and PP_FILM, high correlation values of 0.88 and 0.84 are reached. Outliers are present, but
do not enter extreme value ranges. These positive circumstances indicate that both machines can
identify the respective materialsequallywell andthatthe separation behaviouris as expected. Materials
that show similar behaviour are PE_FILM, PE_RIGID, PET_MONO_TRAY, PET_BOTTLE and PP.
PAPER performed reasonably well, butwith a r value of 0.65 it has significantly lower correlation than
the better performing materials.

Looking into the correlations for OTHER_POLYMERS and PVC this impression changes.
Corresponding plots are depicted in Figure 18.
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Figure 18: Correlations for OTHER_POLYMERS and PVC in form of scatter plots. The Pearson correlation
coefficient is computed in the top right corner.

For OTHER_POLYMERS and PVC, low r values of 0.07 and 0.46 are observed. Ostentatiously, a
majority of the values from PO75 get surpassed by values of PO75C. This is represented by the high
accumulation of datapoints close to the y-axis. The presence of these datapoints is impossible, as
material can only be removed butnotadded from PO75 to PO75C. This could be due to three reasons.
First, PVC is a targeted material by PO75C but not by PO75. Therefore, the machine could be prone
to over detecting this category. Second, the NIR spectra detected by the scanner is not always
unambiguous to decide which material is presenton the belt. Accordingly, each scannerfollows a set
of rules to decide the categorization. This set of rules is different for each machine. Reasons for
ambiguoussituations can be mixed materials or particles that lay too close to each other. Due to this
vicinity, they can be confused as one bigger particle, instead of a number of small ones. When smaller
particles are detected together as onelarger particle, the machine still hasto classify the entire particle.
Therefore, if the smaller particles consist of different materials, inconsistencies arise and information
about material is lost. Lastly, changing particle orientation on the belt can lead to differentarea flows
on differentscanners. NIR-scanners detectthe area of a particle thatis horizontally oriented to the belt
In other words, if a different side of the particle lays face up from one scanner to the next, the detected
area changes.

Moving on, other notas well performing materials were EPS and PS. Comparing the good and the bad
performing materials, it stood out that lower correlations occur with materials that have a lower
magnitude area flow. Although thisidea was not further tested, it could be an interesting starting point
for furtherresearch.

Due to the materials with lower correlations, the idea emerged that there could be temporal patternsin
the data. Therefore, the data was ordered by time, splitinto 200 bins and r was computed for each of
them. Again, two well performing materials and two poorly performing materials were selected. For the
good performing materials, BC and PP_FILM were chosen while OTHER_POLYMERS and PVC were
picked respectively. The plots can be foundin Figure 19 and 21. Plots for all materials are presented
in Appendix 3.
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Figure 19: Pearson correlation coefficient for BC and PP_FILM regarding NIR-scanner PO75 and PO75C
with 200 bins compiled by time.

No clear patterns can be observed for BC or PP_FILM. A slight positive trend is suspected towards the
later bins, butis most probably due to normal fluctuation. Apart from that, a few negative outliers are
seen. Interestingly these outliers do not overlap. This could be due to material-specific machine
malfunctions. An alternative explanation is that the input material varied exceptionally from the norm
for the specific materials. This could lead to an altered separation behaviour, having changed
correlation as consequence. Examining the frequency of outliers, with only three outliers for BC and
two outliers for PP_FILM their occurrence seems acceptable. The highestcorrelation is 0.98 for BC
and 0.99 for PP_FILM, while the lowest correlation is 0.55 and 0.49 respectively. Scatter plots for the
bins with the lowest r value were computed to generate an idea for the reasons of the outliers. The
results can be found in Figure 20. Plots for the lowest correlating bins of all materials are presented in
Appendix 4.
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Figure 20: Correlations for BC and PP_FILM in form of scatter plots for the lowest performing correlation
bin by time. The Pearson correlation coefficientis indicated at the top right corner of the plot.

Starting off with BC, the scatter plot does notreveal any new inconsistencies. Correlation is lowered by
some outliers around the pointcloud. These outliers depict higher values for PO75 than PO75C, which
is physically possible. This could indicate an especially good separation for these occurrences, as less
material then normally reached the next scanner. As BC is supposed to be dropped, this symbolizes
an expected behaviour.

Delving into the reason for the lowered correlation, the idea of a connection to the area flow magnitude

on the separating scanner was risen. Therefore, the mean of the lowest performing bin was compared
to the mean of the complete data set for PO75. Here, an increased mean of 559.96 [m?/h], compared
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to 489.2 [m?/h] for the complete data set was determined for BC. This can be explained by the outliers
on theright-hand side of the plot. Here, either especially large particles or a high occurrence of nomal
particles was successfully separated. As a result, the correlation was lowered and the mean increased
for BC on PO75.

Focusing on PP_FILM, the suspicion of events where one scanner detects material why the other
scanner does notdetect material gets substantiated. Another explanation for the accumulation of data
pointscloseto zero for PO75C could be a temporal malfunction of the separation mechanism.PP_FILM
is targeted by PO75. Therefore, a malfunction of the air nozzles could explain the occurrences where
PO75 detects the material butit does not reach PO75C. Comparing the mean of the complete data vs.
the data of the lowest performing bin, an increased mean of 457.9 [m?/h] compared to 399.5 [m?/h] is
observed. In this case, the explanation could be the otherway around. Too much material could have
been present on the belt hindering the ejection of PP_FILM. This could also explain the occurrences
where PP_FILMwas detected on PO75 but noton PO75C.

Examining the lower performing materials, the correlations of OTHER_POLYMERS and PVC for 200
bins computed by time are depicted in Figure 21.
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Figure 21: Pearson correlation coefficient for OTHER_POLYMERS and PVC regarding NIR-scanner PO75
and PO75C with 200 bins compiled by time.

For OTHER_POLYMERS, an oscillation of the correlation around 0.3 with an approximate magnitude
of +0.3 and -0.4 is observed. Furthermore, a positive shift towards the end of the data is seen. This
shiftcould be due to a change of programming of the machine or some other special event. For PVC,
no clear trends are observed buttwo outliers are visible in the plot. These outliers do not overlap with
the outliers of Figure 19. Therefore, material-specific malfunctions or special events could be the
explanation. An example for a special event could be a heavy material occurrence, which hampered
separation. The highestcorrelation is seen with 0.93 for OTHER_POLYMERS and with 0.97 for PVC,
while the lowest correlation is detected with -0.38 and -0.3 respectively. To gain better insightinto the
least correlating parts of the data, scatter plots for the bins with the lowest correlation were plotted. The
scatter plots for OTHER_POLYMERS and PVC and are presented in Figure 22.
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Figure 22: Correlations for OTHER_POLYMERS and PVC in form of scatter plots for the lowest performing
correlation bin by time. The Pearson correlation coefficientis indicated at the top right corner of the plot.

For OTHER_POLYMERS, a clear trend is visible. High values on PO75 paired with low values on
PO75C indicate a successful separation. Apart from that, the high occurrence of values that are close
to zero for PO75 paired with values notclose to zero for PO75C explains the negative correlation. As
the addition of material is impossible, a malfunction of OTHER_POLYMER detection on PO75 is
suspected for these instances. Scrutinizing the mean of the observed bin compared to the mean of the
complete data set, an increase from 31.5 [m?/h] to 56 [m?/h] is observed. Resulting of this, another
potential explanation for impossible material increases arises. Increased area flow means could
indicate situations where the mono layer of the material on the conveyoris notgiven. This can lead to
overlappingparticles. Therefore, particlesthat have anotherparticle on top cannotbe detected. If in the
overlapped material OTHER_POLYMERS is presentin high volumes, the impossible values can be
explained.

Regardingthe PVC scatter plot, noclear pattern is seen.Examiningthe scalingof the x- andthe y-axis,
one can observe that the majority of the valueslies in the impossible range. This means that values
from PO75C have greater magnitudes then values from PO75. As PVC is meant to be ejected on
PO75C, the sensitivity of the classification could be the reason for this occurrence. Comparing the
mean of the lowest performing bin to the complete data set, a decrease from 132.5 [m?/h] to
110.9 [m?/h] is seen. An explanation forthe joint occurrence of low correlation and a decreased mean
could be that with less material present on the belt inconsistencies or special events have a higher
influence on the correlation. In these cases, the inconsistencies representa bigger percentual share of
the total material, wherefore their impact is higher. Nevertheless, this is contradicted by the upfront
created hypotheses forthe joint occurrence of low correlations and increased means. Therefore, an
analysis of which effectis dominantin which situation could be of great interest.

To give this analysis a start, plots for the lowest correlation bin with total area flows from PO75 and
PO75C as well as material-specific area flows for PO75 and PO75C were compiled. Here, it was
focused on two well performing materials and two low performing materials. The materials are BC and
PP_FILM as well as OTHER_POLYMERS and PVC. The created plots are depicted in Figure 23 and
24. Plots for all materials are presentedin Appendix 5.
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Figure 23: Total area flows on PO75 (grey dots, right axis) and PO75C (black dots, right axis) as well BC
and PP_FILM for PO75 (light lines, left axis) and PO75C (solid lines, left axis).

In the Figure, black dots representtotal area flows on PO75 and grey dots indicate total area flows for
PO75C. Their magnitude is indicated on the right y-axis. The dark line shows the values for BC on
PO75C and the lightline indicates BC on PO75. Both linesrefer to the left y-axis. It is seen that BC
performs as expected. The lightline stays on top of the dark line for the majority of the time steps. Also,
the total area flows act accordingly. This means that black dots are presentbelow grey dots for most
of the observed datapoints. A noticeable exception is represented by the peak of PO75 and the
depression of PO75C close to bin 170. On PO75, an accumulation of specific and total material is
happening. Atthe same time, the total and specific material decreases on PO75C. Rightafter, PO75C
jumps back to normal behaviour, while PO75 drops to zero for the total and specific area flows. This
could be due to an over occupation of PO75. An over occupation on PO75 potentially leads to
decreased separation successes, wherefore less material in total reaches PO75C. To explain the drop
to zero of PO75, it is imaginable, that as a reaction to the over occupation the conveyer belt was
emptied. The less extreme drop for PO75C could be due to the time delay between the scanners. This
means that the phase where the belt is empty could be spread over two time steps for PO75C.
Therefore, no drop to zero but a drop close to itis detected.

Way more questions than for BC arise while examining the plotfor PP_FILM. The first observation that
can be made is around bin number 50. Here, PO75 drops close to zero, while PP_FILM for PO75C
stagnates around 100 [m?/h] and the total area flow of PO75C close to 500 [m?/h]. This stagnation over
a course of roughly 35 bins is unusual compared to the fluctuation for the rest of the data. Therefore, a
constantoffsetfor special cases during measurementcan be suspected. Directly after this, a maximum
of roughly 9000 [m?/h]occurs for PO75. Atthe same time PO75C detects area flows close to zero. This
peak could originate from stuck material that was released in one go. Possibly this is an explanation
for the empty belt upfront, as the accumulated material could resembles the material that did notreach
the scanner before.

The difference in detection from PO75to PO75C could be due to a measuring error. This is suspected
as PP_FILM is a target material of PO75. Therefore, it should be transferred to PO75C, but PO75C
stays close to empty. An explanation for this could arise from the comparison of summed and material-
specific area flows on PO75. It can be observed that values declinein a linear fashion with a similar
slope. Checking the data for other materials, in the same time period, a similar behaviour can be
observed forBOARD_CT,PET_BOTTLE, PET_MONO_TRAY and PP. This could be due to a stopped
belt or to material that got stuck on the detection area of the scanner. The non-moving material could
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then be successively registered as background over time, what would explain the linear decline of
detection.

In Figure 24, plots for the joint analysis of summed and specific area flows for PO75 and PO75C
regarding OTHER_POLYMERS and PVC are depicted.
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Figure 24: Total area flows on PO75 (grey dots) and PO75C (black dots) as well OTHER_POLYMERS and
PVC for PO75 (light lines) and PO75C (solid lines).

A lower correlation can be observed for OTHER_POLYMERS andPVC.The OTHER_POLYMERS plot
shows greater magnitude of variation for PO75 than for PO75C. This lowers the correlation, as for
greater change on PO75 lower change on PO75C is seen. Apart from that, from bin 280 onwards, the
material-specificlines startto swap position. This symbolizes a switch from more OTHER_POLYMERS
on PO75 to more OTHER_POLYMERS on PO75C. As this is impossible, a measurement error needs
to be at hand. Forthe occurrences around bin 290 and 320, the area flow sum of PO75 drops close to
zero, wherefore a malfunction can be assumed. From bin 350 onwards, OTHER_POLYMERS peaks
heavily on PO75C and starts to decline again. With a time delay, this peak is mirrored on PO75 and
then converts into a stagnation for both sums of the scanners. Here, PO75 stagnates close to 0 [m?/h],
while the stagnation for PO75C is observed around 1000 [m?/h]. It is interesting that the same
stagnation pattern as for PP_FILM can be observed. This raises the suspicion, that when the sum of
PO75 is close to zero, PO75C still detects a sum of roughly 1000 [m?/h]. Another hunch that emerges
is that OTHER_POLYMERS somehow could balance other material categories during stagnation, as it
declines, while the sum of the scanner stays unnaturally stable.

For PVC, the material-specific areaflows measured on PO75and PO75C developin differentdirections
on a frequentbasis. Strong examples resemble opposite peaks around bin 70 and the area between
bin 220 to 240. Furthermore, the encountered stagnation pattern can be also observed for PVC arounf
bin 250 and from bin 370 onwards. Interestingly, a third behaviourfor this case can be seenin the data.
PP_FILM dropped with the sum of the scanners and stagnated at a low value, OTHER_POLYMERS
peaked and declined during stagnation, while PVC peaks during stagnation and oscillates at high
values. These behaviours could notbereproducedin the time periods of lowest correlation bins of other
materials, but they reveal a range of behaviours the scanners show during these stagnations. This
leads to the suspicion that a state of the scanner exists where ittries to keep the sum of detected area
flows constant. In these cases, some materials deliver a constant contribution, while other materials
balance each other outthrough declining orincreasing over time.
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The described explorations motivate several pre-processing procedures thatwill be tested later in this
work for model building. Through the depicted histograms and the found stagnation for the lowest
correlation bins, upper and lower area sum thresholds were considered good candidates for data pre-
processing. In general, if a data point gets removed for one scannerit is also removed for the other
scannerto avoid NaN values and resulting calculation errors. To test the thresholds out, it was decided
to remove all data points that have a lower total area flow of 1000 [m?/h] for PO75 and a lower total
area flow than 1250 [m?/h] for PO75C. This was done due to the discovered stagnations around
1000 [m?/h] for PO75C and the left tail of the distribution for both scanners in the initially discussed
histograms. These histograms also were the motivation to implement the upper threshold to remove
outliers from the data. Here, an upper threshold of 12,500 [m?/h] and 10,000 [m?/h] was selected for
PO75 and PO75C. A histogramwith the applied thresholds for total area flowon PO75 and PO75C can
be foundin Figure 25.
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Figure 25: Distribution of occurrences of total area flows for PO75 and PO75C, using 50 bins for

accumulation. Zeros were removed upfront and thresholds of 1000 and 12500 as well as 1250 and 10000
were applied for PO75 and PO75C respectively.

Applying the thresholds results in normal distributed data. Furthermore, a slight truncation at the left
side of the distribution and centred means and medians for both scanners are observed.

Concludingthe NIR-scannerarea flow data exploration, it can be said that the data should be used with
care. Especially, for occurrences of low magnitude total area flows or low correlations, inner workings
of the NIR-scannerswere encounteredthatare notunderstood. Furthermore, attention should be given
to occasions where material that is detected on PO75C exceeds material detected on PO75. These
occurrences are impossible and can only be explained to a limited amountby belt over occupations,
stuck material that gets released in bulk or fluctuations due to changed particle orientation.
Furthermore, situations where one NIR-scanner is detecting material, butthe other NIR is detecting no
material at all need to be considered. Interestingly enough these events were present on a material-
specific level and for the total area flows.

The obtained information provides valuable insights to answer the first sub-research question. For this,

correlations and relationshipsin the data have to be analysed. This was successfully done for NIR-
scanner area flow information.

48



Position on belt (mm)

5.1.3 NIR-scanner Data —Belt Occupation

Position specific NIR-scanner data regarding belt occupation was made available by TOMRA. For this,
the belt is split up into 70 pieces over its width. While the machine is running, the total material
occurrence is measured for each of these sections. The analysis of this data will help solving sub
research question one. An exemplary graphical representation of the belt occupation information can
be foundin Figure 26. The Figure resembles a screenshotfromthe TOMRA Insightportal.
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Figure 26: Exemplary graphical representation for the specific belt occupation in [m?/h] provided by
TOMRA. (TOMRA, 2024)

To make the data usable for model building and data exploration, the provided information was
aggregated. For this, the occurrences of belt occupations were counted between 0-50 [m?#/h],
50-100 [m?/h], 100-200 [m?/h], 200-300 [m?/h] and >300 [m?/h]. The used steps were inspired by the
color-coding scheme used by TOMRA. For this, information displayed for PO75 and PO75C, in the
TOMRA Insight portal, was scrutinized and the categories were derived. In a first step, the distributions
of the different categories were plotted and are presented in Figure 27.
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Figure 27: Distributions in form of histograms for counted belt occupancies on PO75.

The 50-100 [m?/h] category hasthe greatest number of total occurrences with more than 2.14 million
counts. Directly after, the 0-50 [m?/h] category follows with 2.08 million counts. On the lower end is the
100-200 [m?/h] category with 1.17 million counts, while the 200-300 [m?/h] category and the >300 [m?/h]
are rarely registered with 11,704 and 1,144 occurrences.

The only range of belt occupations that is visibly normal distributed, except for its left tail, is
50-100 [m?/h]. All other categories do not follow a common distribution, based on visual inspection.
What can be noticed is that 0-50 [m?/h] has a strong right tail, while all other categories have a strong
left tail. This means that there is a part of the data where all sections are not over occupied. This is
resembled by 70 counts for the 0-50 [m?/h] category for over 8500 occurrences. These 8500
occurrences are mirrored by the other categories having a countof 0 occurrences. For 50-100 [m?/h],
the number of 0 counts does not exceed the number of 70 counts for 0-50 [m?/h]. Therefore, when not
all sections are within the 0-50 [m2/h] category, always sections that are in the 0-50 [m?/h] and in the
50-100 [m?/h] category occur. For all remaining categories, the amountof 0 occurrences exceeds this
value, wherefore they are less often present. The 100-200 [m?/h] category has a maximum number of
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66 counts, while the 200-300 [m?/h] category and the >300 [m?/h] category have maximum counts of
60 and 15. Furthermore, the 0 counts increase dramatically. For the 100-200 [m?/h] category they lie at
19,316, for the 200-300 [m?/h] category they already go up to 74,188 and for the >300 [m?/h] category
they increase to 77,055. These described occurrences and distribution are as expected. While very
high to high occupations occur rather rarely, moderate to low occupancies represent the majority of the
data. Thisis wanted for favourable separation conditions.

Starting the material-specific exploration, it was checked if occupation counts correlate with material
occurrences. For this, scatter plots with the different materials and the occupation counts were
compiled. Furthermore, for each material a version was added where the coloration of the data points
is set to 0.5%. This means that for full correlation 200 data points or more have to overlap. This
generates a better feeling for the density of the data. To not discuss all available materials, four
examples were selected. BC and PP_FILM show distinguishable patterns, while OTHER_POLYMERS
and PVC are harderto interpret, wherefore they have been picked. This was done to show the range
in between the materials. The plots can be found in Figure 28 and 29 respectively. Scatter plots for alll
materials are presented in Appendix 6.
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Figure 28: Scatter plots for BC and PP_FILM area flows on PO75 together with belt occupation counts from
PO75. One version with full coloration (upper plots) and one version with 0.5% coloration (lower plots).

Both materials show rather similar behaviour. In the 100% coloration plots a slightdifference is seen
forthe >300 [m?/h] and 200-300 [m?/h] category. For PP_FILM, higher occurrences of these categories
are presentin the lower half of the y-axis. For BC, they are placed towards the middle of the y-axis. At
a first glance this seems counterintuitive. One would expect a high amount of the highest category
occurrences on areas with high magnitudes area flows. Nevertheless, it is revealed that these two
categories are not responsible for the high area flow magnitudes on a common basis. Instead, the
100-200 [m?/h] category is governing. Therefore, it can be claimed that the >300 [m?/h] and the
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200-300 [m?/n] categories are more exceptions than useful indicators. In the 0.5% coloration plots,
more patterns become visible. The 100-200 [m?/h] category shows a positive trend with high magnitude
area flows. On the other hand, the 0-50 [m?/h] category shows a negative trend together with a
balancing peak at the right side of the plot. Especially, the high area flows in this peak resemble an
ideal case. This is because a high amount of material is spread out evenly enough to avoid over
occupation, but still reaches the detected throughput. The 50-100 [m?/h] category acts as balancing
ground noise. It has no positive or negative correlation and a normal distribution around 500 [m?/h] for
both materials. This could not add any explanatory power to a linear model. Nevertheless, the peak
around 60 counts for both materials could helpto predict an area flow of 500 [m?/h]. This is valid for
both materials, but would need to be leveraged with a non-linear or machine learning model.

Moving on to the correlations between beltoccupationand OTHER_POLYMERS,aswellas PVC, 0.5%
coloration plots and full coloration plots are depicted in Figure 29.
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Figure 29: Scatter plots for OTHER_POLYMERS and PVC areaflows on PO75together with belt occupation
counts from PO75. One version with full coloration (upper plots) and one version with 0.5% coloration
(lower plots).

For the full coloration plots, both materials behave similarly. The 0-50 [m?/h] and 50-100 [m?/h]
categories show equal occurrences of all counts for values up to 300 [m?/h] for OTHER_POLYMERS
and for values up to 1000 [m?/h] for PVC. Afterwards, a rather random occurrence of categories, for
valuesabove these thresholds can be observed. Furthermore, for data pointsabove 45 belt occupation
counts, only the 100-200 [m?/h] category is depicted, for area flows above the thresholds. This
observation could resemble the fact that after a certain threshold of occurrences, material sums can
only be realized by categories that allow for enough area flow in combination with high enough belt
occupation counts. This time the >300 category has their highest counts on the lower level of area
flows. This could lead to the conclusion that with over occupied areas on the belt, PVC and
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OTHER_POLYMERS do not get detected as well as normal. The same applies for the 200-300 [m?/h]
category. This strengthens theidea that the 100-200 [m?/h] category is governing while the >300 [m?/h]
and 200-300 [m?/h] categories are less influential due to their low occurrence. Furthermore, they could
indicate hindered detection. The 0.5% coloration plots only reveal slightly more information. For
OTHER_POLYMERS a vague positive trend of the 100-200 [m?/h] category can be seen. The
0-50 [m?/h] category has a righttail for both materials, but no trend is visible for the other parts of the
data. Apartfrom that, other categoriesdo notshow any clearpatterns. This meansthatthese categories
most probably do nothave great influence on the appearance of the materials.

Anotheridea for the belt occupation datais, that for over occupied parts of the belt, separation could
be hampered. Therefore, occupation counts were plotted againstarea flow data from PO75C and are
presented in the form of scatter plots. BC and PP_FILM are used as positive examples, while
OTHER_POLYMERS and PVC are showcased as negative examples. Plots can be foundin Figure 30
and 31, while representations of all materials are depicted in Appendix 6.
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Figure 30: Scatter plotsfor BC and OTHER_POLYMERS area flows on PO75C togetherwith belt occupation
counts from PO75. One version with full coloration (upper plots) and one version with 0.5% coloration
(lower plots).

In general, similartrends as in the plots for PO75 can be observed. A decreased area flow is seen for
BC because of the separation from PO75 to PO75C. For PP_FILM, similar area flows occur due to the
successful transference of target material. Considering the 50-100 [m?/h] category, a positive trend
could be suspected. Nevertheless, scrutinizing a scatter plot of only this category, itis revealed thatthe
category performs as for PO75. The difference is that this category has a reduced occurrence for up to
bin 15 for PP_FILM and BC, wherefore the joint plot appears differently. Furthermore, it can be
observed that for BC the 200-300 [m?/h] category seems to have more counts for higher area flows.
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Nevertheless, in the 0.5% coloration plotit is revealed that the density of these valuesliesin the lower
half of the area flow magnitudes.

Starting the analysis of the belt occupation on PO75 together with the area flows on PO75C for
OTHER_POLYMERS and PVC, scatter plots were compiled. A 0.5% coloration and full coloration
version for both materials are presented in Figure 31.
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Figure 31: Scatter plots for OTHER_POLYMERS and PVC area flows on PO75C together with belt
occupation counts from PO75. One version with full coloration (upper plots) and one version with 0.5%
coloration (lower plots).

Scrutinizing the plots for OTHER_POLYMERS and PVC, similar behaviourto the PO75 plots can be
observed. Nevertheless, compared to the 0.5% plot of PO75, in the PO75C version, no trend for
OTHER_POLYMERS is visible. Furthermore, the data points in the full coloration plot are more
clustered, withoutthe scarce pointcloud above the dense data point area, as in the PO75 versions.
Thiscould be dueto the successful removal of high areaflow outliers during separation. In contradiction
to thishypothesis, forPO75, the dense data pointarea of OTHER_POLYMERS s seen upto 300 [m?h],
while for PO75C it goes until 500 [m?/h]. For the 0.5% coloration plot, these values are 200 [m?/h] and
300 [m?/h] respectively. For PVC, this dense data pointarea decreases intensely from 1000 [m?/h] to
600 [m?/h] for PO75C. Additionally, a decrease from 800 [m?/h] to 200 [m?/h] can be observed for the
0.5% coloration plot. This is backed up by the mean of OTHER_POLYMERS, of 56 [m?/h] for PO75,
and 78.2 [m?/h] for PO75C, as well as 132.5 [m?/h] and 57.9 [m?/h] for PVC. While this is an expected
behaviourfor PVC due to the sorting, OTHER_POLYMERS should normally decrease. Therefore, a
changed classification could be an explanation.

Concluding, slight correlations between belt occupation and material flow magnitude can be seen.

Expected relationships between PO75C and beltoccupation could notbe confirmed. This was initially
suspected due to expected changes in sorting efficiency, triggered by altered belt occupations.
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Nevertheless, similar correlations as for PO75 are observed, butwith a decreased significance. While
this information has limited use for linear model building, enough non-linear trends are observed to
suspectadded value in machine learning applications.

The gained knowledge completes the information that is needed to answer the first sub research
guestion. All available data sources were explored and insights about correlations and relationships
that are present in the data were gathered. Therefore, model building and prediction tasks can be
conducted on awell-informed basis and are describe in the following subchapters.

5.2 Statistical Modelling — Area Density

To join beltweigherand NIR-scanner data, an OLS modelling approach was chosen. This was done to
determine the area densities for the processed materials. Determination of area densitiesis a crucial,
as it enables transference from area flow data into mass stream data, which necessary for reliable
quality predictions. Quality prediction could be done in m?, butdue to the missing information about the
heightof the particles, this prediction results in high variance of final volume or mass. The outcomes of
this subchapter will, therefore, deliver an important contribution to the answering of sub research
guestion two.

5.2.1 OLS use case

Area densities multiplied by area flows resultin mass flows. Therefore, summing up area flows that are
multiplied with area densities, for all available materials of a NIR-scanner, resultin the mass input of
the same. This can be seen as a linear model describing the relationship between area flows, area
densitiesand massflows. A mathematical formulation of the described relationship can be found below.

[mtl] -"‘.lmatl, t1 ‘é.lmatz, t1 4mat3, t1

|m52| Amatl, t2 Amatz, t2 Amat3, t2 pmatl, predicted

rilf-” [= Amatl. t3 Amatz, t3 Amats, 3 | x Pmatz, predicted (51)
ztz} Amat1, t4 Amatz, t4 Amat3, " pmat3, predicted

l tSJ Amatl, t5 Amatz, t5 Amat3, t5

As one can see, this formula also represents the form of an OLS model. Here, the mass flow act as
dependentvariable, while the area flows represent the independentvariables and the area densities
are the estimators. Applying the OLS model like this, itis notused in the classical way. As the goal is
to determine the area densities, the objective is not to find estimators that predict the mass flow as
precisely as possible, butto find area densities that resemble reality as close as they can.

If this is successful, material-specific mass flows can be determined, which enables the prediction of

the product composition. Material-specific mass flows are calculated by multiplying the area flows with
the determined area densities. A mathematical representation is depicted on the next page.
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(5.2)

5.2.2 Data Pre-processing

To prepare the data for the application of the model, a histogram of NIR-scanner data and a scatter
plot of NIR-scanner data together with belt weigher data was compiled. According to the belt weigher
exploration, data below 0.3 [t/h] was excluded. Data points that were removed for the belt weighers
were also excluded fromthe NIR-scanner data set. The respective plots are depicted in Figure 32.
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Figure 32: Total area flow histogram for PO75 and scatter plot of PO75 together with AA101 and AA106.
NIR-scanner PO75 with all data points of belt weigher AA101 below 0.3 [t/h] removed.

Correlations extracted from the scatter plot are surprisingly low, with r values of 0.55 for PO75 and
AA101,and0.55 for PO75 and AA106. Whatfurthermore can be seen, is that with the removal of empty
data for AA101 and AA106, not all empty data for PO75 is removed. This is indicated by the left tail of
the histogram as well as belt weigher data close to the y-axis of the scatter plot. To tackle this issue
and to improve correlation, several thresholds to remove the left tail of PO75 were tried out. Good
results were obtained for a threshold of 200 [m?/h]. Respective plots are depicted in Figure 33.
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Figure 33: Total area flow histogram for PO75 and scatter plot of PO75 together with AA101 and AA106.
NIR-scanner PO75 with all data points of belt weigher AA101 below 0.3 [t/h] removed and all PO75 area flow
sums below 200 [m?/h] excluded.
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It can be seen that the left tail of the histogram and a majority, of the data points close to the y-axis of
the scatter plot is removed. Therefore, all empty data points of PO75 were excluded successfully.
Nevertheless, correlations between PO75 and AA101 as well as PO75 and AA106 are still lower than
expected. To furthertackle this issue, the data was split into 200 bins by time and r was computed for
each bin. This was done to check for temporal patterns in the data. The resulting plot can be foundin
Figure 34.
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Figure 34: Pearson correlation coefficients for NIR-scanner PO75 with regards to belt weigher AA101 and
AA106 with 200 bins compiled by time.

A clear temporal pattern is seen with a negative deviation up to bin number45.Up to thisbin, r oscillates
around 0 with magnitudesof-0.2 and 0.4. Afterwards, the coefficientjumpsto 0.8 and oscillatesaround
this value. An exception of this is seen from bin 135 until bin 165 where the oscillation is shifted to 0.6.
These patterns can be either explained by a malfunction of the beltweighers orthe NIR-scanners. For
the NIR-scanners, a change in the categorization program could be the reason, while for the belt
weighers a changing measurement offsetcould be an explanation. To tackle thisissue, it was decided
to exclude all bins thathave a correlation below 0.7. A histogram and scatter plot of the modified data
is presented in Figure 35.
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Figure 35: Total area flow histogram for PO75 and scatter plot of PO75 together with AA101 and AA106.
NIR-scanner PO75 with all data points of belt weigher AA101 below 0.3 [t/h] removed, all PO75 area flow
sums below 200 [m?/h] excluded and bins with correlations below 0.7 were not considered.

Although the amount of data points decreases dramatically from 65 thousand to 34 thousand, the
correlation increases to expected r values of 0.83 for PO75 and AA101, as well as 0.82 for PO75 and

AA106. Impossible values, where either the belt weigheror the scanners delivers no data, while the
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other unit detects material, also decreases significantly. This becomes even more clear plotting a
scatter plot with 0.5% coloration, where these instances for AA101 basically completely disappear.

In conclusion, the data pre-processing for OLS model application revealed a temporal correlation
pattern for belt weigher data in combination with NIR-scanner area flows. Through this, an unexpected
contribution to the answering of sub research question one is made. Complications for joint application
of differentdata types were notexpected. Nevertheless, difficulties could be overcome and new insights
were gained.

5.2.3 OLS application

After proper pre-processing of the data, an 80/20 test training was realized. Afterwards, the OLS model
was appliedwith NIR-scannerdata from PO75 and beltweigherdata from AA101. Resultsare depicted
in Table 12.

Table 12: OLS results for area density prediction after exclusion of bins below r values of 0.7, belt weigher
databelow 0.3 [t/h] and total area flows on PO75 below 200 [m?/h].

Regression Coefficient /| Standard Error [kg/m?2] 95% interval

Area density [kg/m?]
Constant -245,296 24,148 [-292,628, -197,964]
BC -0,153 0,166 [-0,479, 0,173]
BOARD_CT 18,930 1,461 [16,067, 21,794]
EPS 1,638 0,173 [1,298, 1,977]
OTHER_POLYMERS | g g3 0,669 [7,518, 10,142]
PAPER 5,874 0,261 5,362, 6,386]
PET_BOTTLE 4,029 0,536 [2,979, 5,079]
PET_G 18,873 5,605 [7,888, 29,859]
PET_MONO_TRAY | ¢34 0,595 [-0,807, 1,527]
PE_FILM 1,636 0,097 [1,446, 1,826]
PE_RIGID -15 0,14 [-1,774, -1,226]
PP 1,699 0,171 [1,364, 2,033]
PP_FILM -1,015 0,217 [-1,44, -0,59]
PS 5,116 0,562 [-6,218, -4,014]
PVC 0,453 0,07 0,316, 0,589]

At a first glance, materials like PVC and PE_FILM have area densities that lie in reasonable ranges
and have small standard errors of 0.07 and 0.097. This would indicate expected deviation per m? of
material of 70 grams and 97 grams, which could be acceptable. An especially negative example is
represented by PET_MONO_TRAY. Here, the confidence interval ranges from -0.81 [kg/m?] to
1.53 [kg/m?]. This means that within the confidence interval it is unclear if the regression coefficient
indicates a positive or a negative correlation. Apart from that, four negative regression coefficients
occur. In this case, negative regression coefficients mean negative areadensities. These are physically
impossible, wherefore they should not occur.

A possible explanation for this could be multicollinearity, which is treated in the next subchapter.
Furthermore, autocorrelation could influence the model result. Nevertheless, with a Durbin -Watson
number of 2.07, there was no indication for further testing. Another explanation could be that one of the
materials has a negative correlation with the belt weigher. Negative correlations are notexpected, but
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if they occur, they could be the reason for regression coefficients turning negative. To exclude this
possibility, correlation of all materials from PQO75, together with belt weigher AA101, are depicted in
scatter plots and can be foundin Figure 36.
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Figure 36: Scatter plots for materials from PO75 together with AA101 and an indication of the Pearson
correlation coefficient on the top left corner.

Highest correlation is seen for BC and PE_FILM with 0.79 and 0.78. Lowest correlations are detected
with 0.32 and 0.43 for PVC and PET_G. In total, all materials show positive correlation. Therefore, the
hypothesis of a negative correlation between material and belt weigher leading to negative regression
coefficients can be neglected.
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Lastly, the OLS model could also be hampered by the violation of the normal distributed error
assumption. To check forthis a histogram of the errors is depicted in Figure 37.
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Figure 37: Error distribution of the initial OLS model with indications forthe mean, median, 0.1 quantile and
0.9 quantile of the data with 200 bins.

Visibly, the assumptions of the normality of the errors is notviolated. The errors are distributed around
zero andthe mean as well as the median align accordingly. The 0.1 and 0.9 quantilelieat-1072.1 [kg/h]
and 1180.6 [kg/h]. Therefore, the error of the majority of the predicted datapoints lies in this area. With
a mean of 5128 [m?/h] for the belt weigher, this seems like a high range. The MAE for the model of
740 [kg/h] gives a slightly better perspective, butis still not excellent.

5.2.4 Multicollinearity

Multicollinearity can be detected through pairwise scatter plots or by compiling a correlation matrix for
the independent variables. The second approach was chosen and the correlation matrix is depicted in
Table 13.

Table 13: Correlation matrix for the independent variables of the OLS model without grouping. Dark
colorations indicate higher values while light colorations indicate lower values. B_CT = BOARD_CT; OP =

OTHER_POLYMERS; P = PAPER; PET_B = PET_BOTTLE; PET_M = PET_MONO_TRAY; PE_F = PE_FILM.

B CTIEPS |BC |OP [P PET_B|PET_G|PET M|PE F|PE_R|PP |PP F|PS PVC
B_CT 052 0,82 |052 [0,89 |0,48 0,30 0,51 0,67 1052 |0,59[067 |0,54 |0,24
EPS 0,52 0,39 |0,76 | 0,33 [0,43 0,30 0,44 038 036 |045(045 |0,88 |-0,03
BC 0,82 |0,39 0,45 | 0,79 |0,53 0,36 0,53 0% |080 |0,70{0,71 |0,43 044
OoP 052 |0,76 |0,45 0,32 | 0,51 0,37 0,50 0,46 |044 |0,56 | 0,54 -0,05
P 089 [033 |0,79 [0,32 0,32 0,19 0,35 055 |036 |0,36[046 |0,36 |0,37
PET B|048 (043 [053 |0,51 | 0,32 0,66 064 |061 |0,71[065 |0,46 |0,05
PET G| 030 (030 |0,36 |0,37 | 0,19 | 0,66 0,64 045 |045 [049(045 (0,34 (001
PET_ M| 051 (044 [053 | 0,50 | 0,35 0,64 0,62 |058 |0,69|065 |046 |0,07
PEF |067 [038 |090 [046 |055 |0,64 0,45 0,62 089|085 [042 |041
PER |052 |036 |080 [044 |036 |061 0,45 0,58 0,85|0,75 [040 |0,22
PP 059 045 (0,70 (056 |0,36 |0,71 0,49 0,69 0,89 0,85 051 (0,17
PP F |067 |[045 |0,71 [054 |0/46 |0,65 0,45 0,65 0,85 |0,75 0,50 |[0,23
PS 054 088 043 H 0,36 |0,46 0,34 0,46 042 1040 |0,51]0,50 -0,05
PVC 024 |-003 |044 [-0,05]|0,37 |0,05 0,01 0,07 041 1022 |0,17[0,23 |-0,05
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Whatdirectly can be seenis thatthere is a high amountof correlation presentbetween the independent
variables. Looking at correlating categories, they follow an intuitive pattern, as they resemble the same
material. As an example, PP has a correlation of 0.96 with PP_FILM and PE_Film has a correlation of
0.93 with PE_RIGID. The only categories that fall out of place are the high correlation of BC and
PE_FILMwith 0.9, and the low correlation of PET_G with PET_BOTTLE and PET_MONO_TRAY , with
r values of 0.66 and 0.64, respectively. To get a better understanding of the correlation matrix, the
mean correlation coefficient was calculated with 0.47. Furthermore, the occurrences of correlations
above 0.85 were counted. With 10 occurrences they resemble 12% of the calculated correlations.

To treat the correlation between the categories, highly correlating materials were grouped sub
sequentially. ltwas started by groupingPET_BOTTLEandPET_MONO_TRAY ,astheyhadthe highest
correlation with 0.99. Next, PP and PP_FILM showed the correlation with the highest magnitude with a
r value of 0.96. Accordingly, they were grouped. After this, still a very high correlation was seen for
OTHER_POLYMERS and PS with 0.95. Additionally, EPS was added, as it has its two highest
correlations with these materials and resembles a rather small area flow. Following this step PE and
PE_FILMwere grouped, with a correlation of 0.93. Although BC has a correlation of 0.9 with PE_FILM
it was notadded to avoid grouping of polyolefin and non-polyolefin material. As polyolefins are one of
the materials that are tested for quality determination, BC cannotbe added to the grouping. Thereason
for this is that it would become undistinguishable which part of the area density belongs to BC and
which not. The highestcorrelation found at this pointis between PAPER and BOARD_CT with 0.89.
This time BC was added to the mix, as PAPER and BOARD_CT are the categories it has its best
correlationswith apart from PE. Lastly, PE and PP were aggregated to POLYOLEFINS as they still had
a correlation of 0.88. For each step, the mean Pearson correlation coefficient, the count of correlations
above 0.85 and the percentage of correlations above this threshold was compiled. Furthermore, the
amountof negative regression coefficients and the number of categories is indicated. Results can be
foundin Table 14.

Table 14: Mean Pearson correlation coefficient, counts of correlations above 0.85 and threshold of these
counts from the total number of calculated correlations for the OLS model data and its different grouping
steps.

Grouping Steps Mean | Count | Counts from | Negative regression | Number of
r > 0.85 | total number [%] | coefficients categories

Without grouping 0,47 10 12 4 14

PET grouped 0,46 9 13 4 13

PP grouped 0,44 6 10 3 12

PS and 0,45 4 10 2 10

OTHER_POLYMERS

grouped

PE grouped 0,42 1

CELLULOSICS grouped 0,38

POLYOLEFINS grouped 0,33 0 0 0

As expected, the mean Pearson correlation coefficient, the number of correlations above 0.85 and the
percentage of these values decreases steadily for each grouping. One exception is seen for the PET
grouping.Here,the numberof categories and the number of instances with a correlation of greater 0.85
decreased by one. This leads to an increased share of values above 0.85 despite the negative trend.
Nevertheless, afterthe last groupingno correlation above 0.85 can be found and regression coefficients
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turn out positive with OLS modelling. In Table 15, the correlation matrix of the data after the last
groupingis presented.

Table 15: Correlation matrix for the independent variables of the OLS after grouping. Dark colorations
indicate higher values while light colorations indicate lower values.

OTHER POLYMERS |PET G |PVC PET CELLULOSICS | PO
OTHER_POLYMERS | 1,00 0,36 -0,05 [0,49 0,49 0,49
PET G 0,36 1,00 0,01 0,65 0,32 0,48
PVC -0,05 0,01 1,00 0,06 0,38 0,30
PET 0,49 0,65 0,06 1,00 0,50 0,67
CELLULOSICS 0,49 0,32 0,38 0,50 1,00 0,74
PO 0,49 0,48 0,30 0,67 0,74 1,00

The highest correlation that is left is observed between CELLULOSICS and PO with 0.74. This is
probably due to the high correlation between PE_FILM and BC, which were grouped into PO and
CELLULOSICS. The next highest correlations are seen for PO and PET with 0.67, as well as withar
value of 0.65 for PET_G and PET. These correlations were considered acceptable, wherefore it was
decided to continue the OLS model analysis with this setup. In Table 16, the results of the OLS
modelling for the final grouping can be found.

Table 16: OLS results for area density prediction after exclusion of bins below rvalues of 0.7, belt weigher
databelow 0.3 [t/h], total area flows on PO75 below 200 [m?/h] and grouping.

Regression Coefficient / | Standard Error [kg/m2] 95% interval

Area density [kg/m?]
Constant -395.958 23.703 [-442.416, -349.5]
OTHER_POLYMERS | 1 557 0.074 [1.382, 1.673]
PET_G 18.882 5.619 [7.868, 29.895]
PVC 1.154 0.051 [1.055, 1.253]
PET 2.706 0.065 [2.579, 2.834]
CELLULOSICS 2.3 0.028 [2.241, 2.351]
PO 0.472 0.011 [0.45, 0.494]

The determined area densities have small standard errors between 0.011 [kg/m?] and 0.075 [kg/m?].
One exception forthis is PET_G with a standard error of 5.619 [kg/m?]. While investigating where this
deviation could resultfrom, it was noticed that PET_G resembles only a minor share of the data. With
amean value of 1.9 [m?/h], compared to a mean of 5186 [m?/h] for the total area flowson PO75, PET_G
only contributes 0.04% percent to the detected area. Therefore, it was decided to exclude it from the
modelling. After PET_G was dropped from the data, the OLS modelling process was repeated. Results
are depicted in Table 17.
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Table 17: OLS results for area density prediction after exclusion of bins below r values of 0.7, belt weigher
databelow 0.3 [t/h], sum of areas on PO75 below 200 [m?/h], grouping and drop of PET_G data.

Regression Coefficient /| Standard Error [kg/m?2] | 95% interval

Area density [kg/m?]
Constant -402.86 23.62 [-449.156, -356.572]
OTHER_POLYMERS | 4 53g 0.074 [1.394, 1.684]
PVC 1.1478 0.051 [1.049, 1.247]
PET 2811 0.057 [2.699, 2.923]
CELLULOSICS 2289 0.028 [2.234, 2.344]
PO 0.476 0.011 [0.454, 0.498]

After dropping PET_G, all standard errors of the material densities stay in the same range between
0.11 [kg/m?] and 0.074 [kg/m?]. For most of the categories, standard errors are unaltered, but for the
constant, and for PET, they further decrease slightly to 23.62 [kg/m?] and 0.057 [kg/m?], from
23.7 [kg/m?] and 0.065 [kg/m?], respectively. In Figure 38, the error distribution for the newly trained
OLS model can be found.
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Figure 38: Error distribution of the OLS model with grouped data and indications for the mean, median, the
0.1 quantile and the 0.9 quantile of the data with 200 bins.

The error distribution is quite similarto theinitial model, with a mean of zero andthe 0.1 and 0.9 quantile
at -1095.9 [kg/h] and 1206.3 [kg/h]. A slightly increased MAE of 757 [kg/h] can be observed, but still
stays closeto the original model. This can be explained by the nature of fixing multicollinearity. Through
treated multicollinearity, a clear explanatory power is assigned to each regression coefficient, but the
quality of the prediction is not necessarily increased.

5.2.5 Bootstrapping

To generate greater trust in the area densities, bootstrapping was applied. This was done to not only
rely on the confidence interval provided by the initial sample. Bootstrapping is less prone to violation of
assumptions due to its resampling nature. For the same reason, itis less prone to outliers. Simply said,
a heavy influential outlier does not have to be drawn in each sample. Therefore, heavy influence of
single data points would be revealed. The bootstrapping was done with 10,000 resampling rounds and
results can be found in Figure 39.
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Figure 39: Bootstrapping results for the area densities and the constant of PO75 and AA101 after 10,000
resampling applications. The mean, the median and the 0.025 and 0.975 quantiles are indicated.

The resulting area density distributions for the bootstrapping align with the results from the OLS
modelling andthe determined confidence intervals. Greatest deviation fromthe mean of the distribution
to the original regression coefficient can be found for the constant with a change from -402.86 [kg]
to -402.73 [kg]. Second greatest change is found for PET with a deviation from 2.811 [kg/m?] to
2.819 [kg/m?]. The 0.025 and 0.975 quantiles can be seen as an equivalentto the 95% confidence
interval. Compared to the confidence intervals, the quantiles of the bootstrapping are a little bit wider.
Greatest deviation is observed for the constant where the quantile values are -456.94 [kg]
and -347.01 [kg], while the confidence interval indicates -449.16 [kg] and -356.57 [kg]. For the area
densities, PET and PVC show the greatest divergence, with quantile values of 2.5 [kg/m?] and
3.13 [kg/m?] for PET, and 0.98 [kg/m?] and 1.32 [kg/m?] for PVC, as well as confidence intervals of
2.7 [kg/m?] and 2.92 [kg/m?] for PET, and 1.05 [kg/m?] and 1.25 [kg/m?] for PVC. This indicates that
through the bootstrapping additional variation in the data could be revealed, but apart from that no
unexpected behaviour is found. The mean, median and quantiles for each material as well as the
constantare depicted in Table 18.
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Table 18: Summary of bootstrapping results presenting the mean, median, 0.025 and 0.975 quantile for t he
area densities determined with PO75 and AA101.

Mean Median 0.025 quantlile 0.975 quantile
Constant -402.73 -402.64 -456.936 -347.01
CELLULOSICS 2.289 2.288 2.22 2.357
OTHER_POLYMERS | 1.538 1.537 1.357 1.729
PET 2.819 2.821 2.501 3.127
PO 0.475 0.475 0.437 0.513
PVC 1.149 1.149 0.98 1.322

5.2.6 Testing and evaluation

To test the determined area densities, the test dataset was used. Area densities were multiplied with
the area flows of the respective materials and plotted together with the belt weigher data. For better
visibility, the data was aggregated in bins of 30 minutes. The plotcan be found in Figure 40.
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Figure 40: Comparison of actual belt weigherdatafrom AA101 and mass flows compiled through area flows
from PO75 with the help of area densities determined from PO75 and AA101, aggregation in bins of 30
minutes.

The fit appears accurate and follows the trends in the data. Most of the peaks are matched by the
prediction with exemplary exceptionsaroundtime step 20, 35 and215. In these occasions, peakswere
predicted butthe data showed a rather smallor no peak. Through the aggregation of the data, the MAE
decreases from 760.7 [kg/h] to 141 [kg/h]. This resemblesa mean relative error (MRE) of 16% and 3%.
This happens as due to the aggregation positive and negative deviations balance each other out.
Therefore, the prediction appears more accurate in greater time step aggregations. To gain a better
understanding of the performance of the model, error distributions forthe aggregated and unaggregated
data is presented in Figure 41.
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Figure 41: Error distribution of the OLS model with no aggregation (left) and aggregation of 30-minute
periods (right) for test data application together with indications for the mean, median, the 0.1 quantile and
the 0.9 quantile of the data.

The 0.1 quantile is measured at-1201.8 [kg/h] while the 0.9 quantilelies at 1105.4 [kg/h]. Compared to
the quantiles of the trainings data, a shift can be observed towards greater values for the negative side
of the distribution, while for the training data the 0.9 quantiles tended to be of greater magnitude. Apart
from that, the errors are normally distributed. The shape of the errors of the aggregated data does not
follow a normal distribution as clearly as the unaggregated data does, but its normality is still visible.
This is due to the decreased amount of data points, wherefore outliers gain greaterinfluence. The 0.1
andthe 0.9 quantile are determined with -218.7 [kg/h] and 214.8 [kg/h].

Gathering this data, a clear picture of the abilities of the model can be drawn. Results from the
aggregation show that with higher aggregation higher accuracy can be obtained. Therefore, the
guestion forthe need of granularity for the final model application is raised. Apart from that, in the final
quality prediction, ithas to be shown if the determined accuracy is precise enough for a reliable quality
prediction. Furthermore, the obtained constant symbolizes the part of the model that could not be
assignedto a specific material, wherefore a strategy to treat this part of the data needsto be developed.

5.2.7 Generalizability

In a next step, the generalizability of the area density was tested. For this, area densities determined
with PO75 and AA101 were applied to belt weigher and NIR-scanner data of AA106 and PO75C.
Results are presented in Figure 42.
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Figure 42: Comparison of actual belt weigher AA106 data and data compiled through area flows from
PO75C and determined area densities from PO75 in combination with AA101.

It can be seen that, by applying the area densities determined with PO75 and AA101 to predict AA106,
values are heavily overestimated. The MAE for this case is indicated with 743.9 [kg/h], for the
aggregated data, and with 862 [kg/h], for the unaggregated data. Furthermore, it can be deducted from
the plot that a strictly positive deviation is present. This indicates a positive offset. Although itis
inconvenientthat the determined area densities are not applicable across multiple NIR-scanners, itis
an expected finding.

Dueto the separation of targeted material, the area densities of the material flow will change. Thisis
dueto the fact that not 100% of the targeted material will be transferred to the following scanner. The
particlesthatreach the nextscannerare biased through the separation abilities of the previous scanner.
This means that the first scanner will separate particles with certain properties better than others.
Therefore, particles with a property set influenced by the separation itself will reach the next scanner.
In return, the particles on the nextscanner have a different set of properties than on the previous one.

5.2.8 Fitting of PO75C and AA106

Due to the prohibited generalizability of area densities from PO75 and AA101, the area densities from
PO75C and AA106 are fitted and analysed in this subchapter. As the principles of this fitting procedure
were explained in depth inthe previous subchapters, an abbreviated version is presented in this
section. Accordingly, a similar grouping procedure as for PO75 was applied and the results of the OLS
modelling for the final grouping can be found in Table 19.

Table 19: OLS results for area density prediction after exclusion of bins below r values of 0.7, belt weigher
databelow 0.3 [t/h], sum of areas on PO75C below 200 [m?#h], grouping and drop of PET_G data.

Regression Coefficient /| Standard Error [kg/m?2] | 95% interval

Area density [kg/m2]
Constant -298.08 15.539 [-328.537, -267.623]
OTHER_POLYMERS| ( 33 0.022 [0.287, 0.373]
PVC 0.25 0.053 [0.146, 0.354]
PET 3.814 0.105 [3.608, 4.02]
CELLULOSICS 0.811 0.044 [0.724, 0.897]
PO 0.534 0.009 [0.517, 0.551]
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Standard errors lie in a range from 0.009 [kg/m2] to 0.105 [kg/m?], for the materials, and a standard
error of 15.54 [kg/m?] is obtained forthe constant. For OTHER_POLYMERS and PO, the standard error
outperforms the previous fit of the area densities. Regarding PVC, PET and CELLULOSICS, the other
area densities have smaller standard errors. Nevertheless, in between the two fits standard errors are
small and confidence intervals are acceptably narrow. To gain further understanding of the behaviour
of the determined area densities, bootstrapping was applied. Here 10,000 resampling rounds were
conducted and results are presented in Figure 43.
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Figure 43: Bootstrapping results for the area densities and the constant of PO75 and AA101 after 10,000
resampling applications, the mean, the median and the 0.025 and 0.975 quantiles are indicated.

Also, for PO75C and AA106, the results align with the determined area densities fromthe OLS model
and their confidence intervals. Especially, the mean and median overlap accurately with the area
densities from the OLS model. For better overview, all quantiles, means and medians from the
bootstrapping are presented in Table 20.
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Table 20: Summary of bootstrapping results presenting the mean, median, 0.025 and 0.975 quantile for the
area densities determined with PO75C and AA106.

Mean Median 0.025 quantlile 0.975 quantile
Constant -298.41 -298.34 -337.59 -259.67
CELLULOSICS 0.811 0.811 0.712 0.909
OTHER_POLYMERS | 0.330 0.331 0.287 0.373
PET 3.819 3.819 3.481 4.166
PO 0.534 0.534 0.511 0.556
PVC 0.25 0.249 0.143 0.362

Compared to the confidence intervals, the quantiles are wider. An exception is resembled by
OTHER_POLYMERS, which has exactly the same value as the confidence intervals. Apart from that,
the changes are small with below 0.02 [kg/m?], for the materials, and below 10 [kg] for the constant.
Delving into the evaluation, compiled mass flows were plotted together with measured belt weigher
data againsttime. To do this, area flows have been multiplied with the respective area densities and
summed up for comparison with the beltweigher. For better visibility, the data was aggregated into bins
of 30 minutes. The plotis depicted in Figure 44.
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Figure 44: Comparison of actual belt weigherdatafrom AA106 and mass flows compiled through area flows
from PO75C with the help of area densities determined from PO75C and AA106.

By visual inspection, a good fit of the data can be observed. In some cases, the prediction deviates like
for bin 40 and 55, but overall the majority of positive and negative peaks is matched by the model.
Following up with a more parameter driven evaluation, the MAE is 92.6 [kg/h] for the aggregated data
and 486.7 [kg/h] for the non-aggregated case. Lastly, the error distributions were analysed and are
presented in Figure 45.
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Figure 45: Error distribution of the OLS model for PO75C with no aggregation (left, 150 bins) and
aggregation of 30-minute periods (right, 35 bins) forunseen data, indications for the mean, median, the 0.1
quantile and the 0.9 quantile of the data.

Interestingly, the mean of the error distribution is shifted for both versions by 19.6 into the positive
direction of the distribution. This is most probably due to the application of the model to the test data,
as for the trainings data the mean is centred around 0 [kg/h]. The quantiles for the non-aggregated
results lie at -758.3 [kg/h] and 765.4 [kg/h], while for the aggregated version they are determined
with -124.7 [kg/h] and 158.8 [kg/h].

Concluding, the modelling of area densities using OLS was demonstrated and evaluated. This
contributes to answering the second sub research question, which focuses on modelling key
components necessary for quality prediction of the agglomeration line product. Furthermore, insights
were gained aboutthe generalizability of the area density, which inconveniently is not given.
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5.3 Machine Learning — Area Flow prediction

To compile another puzzle piece forthe quality prediction of the agglomeration product, predicting the
area flows on PO75C based on the area flows from PO75C is of interest. For this, a ML approach was
chosen, as non-linear behaviour for the prediction is expected. Furthermore, through this, belt
occupation data can be easily included without derivation of physical correlations between belt
occupation and material transference. Lastly, the results of this subchapter will contribute to answering
sub research question two.

5.3.1 Data Pre-processing
Inspired by the data exploration different pre-processing options were applied and are elucidated in
Table 21.

Table 21: Pre-processing versions applied to prepare the data for machine learning model training and
application.

Version | Description

V1 NaN dropped

V2 NaN and zeros dropped

V3 NaN and zeros dropped, area sum thresholds (PO75: 1000/12500; PO75C: 1250/10000)
applied

V4 NaN and zeros dropped, two additional materials from PO75 left in

V5 NaN and zeros dropped, two additional materials from PO75 left in, area sum thresholds

V6 NaN and zeros dropped, two additional materials from PO75 left in, AA101 and AA106 data
included

V7 NaN and zeros dropped, two additional materials from PO75 left in, AA101 and AA106 data
included, area sum thresholds

V8 NaN and zeros dropped, two additional materials from PO75 left in, AA101 and AA106 data
included, belt occupation indicator included

V9 NaN and zeros dropped, two additional materials from PO75 left in, AA101 and AA106 data
included, belt occupation indicator included, area sum thresholds

As can be seen in the Table, the versions are gradually constructed. The derivation of the total area
flow thresholds is explainedin subchapter 5.1.2. All sums that lie below the first value or above the
second value are excluded for all data. This meansthatthe entire data pointis removed, to avoid NaN
handling and other numerical problems. With two additional materials, two further material categories
thatare included for PO75 butare not presenton PO75C are meant. These categories are PET_G and
BOARD_CT. Initially, they were left out for consistency in between the scanners. With the belt
occupation indicator, the occupation counts explained in subchapter 5.1.3 are referred to. Finally, with
inclusion of AA101 and AA106, the incorporation of the available beltweigher data is meant.

Apart from that, after the pre-processing of the data, an 80/20 train test splitis applied.

5.3.2 Model Try Out and Selection

For the broad model try out, the following models were tested: Decision Tree (DT), Extra Tree (ET),
Random Forest (RF), Gradient Boosting (GB), K-Nearest Neighbours (KNN), Bagging Regressor (BR),
Ridge Regression (RR), Elastic-Net Regression (ENR) and Multi-Layer Perceptron (MLP). Model
performance is evaluated based on the MAE, the MSE and the R2 value. Indicator calculation is done
forthe results of the model thatwas trained on the training data and afterwards applied to the test data.
The three indicators were plotted for all models and all versions with one plot per indicator. Materials
are indicated separately to develop insight into the contributions of each material to the indicator.
Results can be observed in Figure 46,48 and 49.
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Figure 46: MSE for all models participating in the try out, grouping by data pre-processing version and
contribution of each material presented as a stacked bar. DT = Decision Tree; ET = Extra Tree; RF =Random
Forest; GB = Gradient Boosting; KNN = K-Nearest Neighbours; BR = Bagging Regressor; RR = Ridge
Regression; ENR = Elastic-Net Regression; MLP = Multi-Layer Perceptron.

For the MSE, smaller values indicate a better fit of the model. As the errors are squared, emphasis is
laidon large errors. Therefore, the MSE is also a good indication foraconstantly well performing model.
Whatdirectly can be seen,isthat V1 is performing especially well compared to the other versions. This
is due to the large number of zeros and values closeto zero in the data. Therefore, the prediction is not
necessarily better but errors are smaller. As shown in the data exploration, data points with this small
area flow occurrence introduce greatrandomness. Therefore, together with the described distortion of
the model evaluation, itwas decided to remove V1 from the selection process. An updated plotcan be

foundin Figure 47.
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Figure 47: MSE for all models participating in the try out, grouping by data pre-processing version with V1
excluded and contribution of each material presented as a stacked bar. DT = Decision Tree; ET = Extra

Tree; RF = Random Forest; GB = Gradient Boosting; KNN = K-Nearest Neighbours; BR = Bagging
Regressor; RR = Ridge Regression; ENR = Elastic-Net Regression; MLP = Multi-Layer Perceptron.
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MAE

In the updated plot, it can be observed that performance oscillates between odd and even version
numbers. Furthermore, an improving trend for later version is seen. For MSE, odd version numbers
perform better. This are the versions that have the thresholds for the total area flows included.
Interpreting this means that these versions either resultin more outlier resistant models or have less
outliersin their data initially. Apart from that, the best performing model (MLP) decreases from an MSE
of 127,89 [m*/h?]in V2 to 92,58 [m*/h?] in V9. Furthermore, first trends of the model performance can
be derived. In all version, the DT model performs worst, while RF, GB, ET, MLP and RR show the best
performances in a tightrange. Apart from that, biggest contributions to the MSE come from PE_FILM,
PE_RIGID andPP. The two smallest contribution are seen by PET_BOTTLE and EPS. This alignswith
the general occurrence of the material, as PE_FILM, PE_RIGID and PP have the highest mean
magnitude of area flows, while PET_BOTTLE and EPS are on the lower end. To investigate model
performance, also on a less outlier prone basis, the MAE was computed next. Results are depicted in
Figure 48.
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Figure 48: MAE for all models participating in the try out, grouping by data pre-processing version with V1
excluded and contribution of each material presented as a stacked bar. DT = Decision Tree; ET = Extra
Tree; RF = Random Forest; GB = Gradient Boosting; KNN = K-Nearest Neighbours; BR = Bagging
Regressor; RR = Ridge Regression; ENR = Elastic-Net Regression; MLP = Multi-Layer Perceptron.

A similar butless pronounced trend between the versions can be observed. The odd versions perform
again better. These are the versions, which include the thresholds for the summed area flows.
Furthermore, this means that these versions show a very stable performance. Together with the good
performance for MSE, this indicates that the most robust models will result out of the odd versions data
pre-processing. Apart from that, the greatest contributions to the MAE stem again from PE_FILM,
PE_RIGID and PP. Nevertheless, the contribution of PP_FILM, OTHER_POLYMERS and PS
increased compared to the MSE. This is due to the nature of the squaring during the compilation of the
MSE and indicates that these categories have more consistent errors with less extremes. The best
performing models, over all versions, are again RF, GB, ET, MLP and RR. Of these models MLP
outperforms the rest and is decreasing from 657.1 [m?/h] to 608.4 [m2/h] from V2 to V9.

Moving away from analysing the magnitude of the errors and the stability of the model, R?was compiled
for all versions and materials. The regarding plotcan be found in Figure 49.
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Figure 49: RZfor all models participating in the try out, grouping by data pre-processing version with V1
excluded and contribution of each material presented as a stacked bar. DT = Decision Tree; ET = Extra
Tree; RF = Random Forest; GB = Gradient Boosting; KNN = K-Nearest Neighbours; BR = Bagging
Regressor; RR = Ridge Regression; ENR = Elastic-Net Regression; MLP = Multi-Layer Perceptron.

For R?, highervalues indicate a better performance. An R? value of 1 means complete explanation of
the variabilityin the data and the capturing of all patterns that are present. An oscillation of performance
between odd and even versions can be seen. Furthermore, better performance for later versions is
observed. Looking back at the MSE and MAE, it seems contradictory that this time the even versions
perform better. This means that versions that perform better for R? perform worse for MSE, as well as
MAE, and the other way around. A possible explanation of that is that the even versions manage to
better detect patternsin the data, butat the same time produce larger errors. A simple example for this
would be the comparison of an offset, with regards to the measured values, and an oscillation around
them. If the oscillation is small enough, it would produce a smaller error but would not capture the
present pattern as well as the offsetwould do. Apart from that, RF, GB, ET, MLP and RR are again the
best performing models and out of this group ET displays the largest R? value. Comparing the R? value
of ET between the versionsitincreases from 5.58 to 6.5 from V3 to V8.

Delvingintothe model selection,a governingindicatorhas to be determined. The predicted area by the
ML model will be used together with the modelled area densities to determine mass flows for product
composition and quality prediction. Therefore, smaller errors are valued more over better detected
patterns. As a result, the MAE and the MSE will be preferred over R2. Using the same argument, it will
be focused on the MAE instead of the MSE, as smaller general errors are preferred over robustness to
outliers. Accordingly, V7 and V9 were picked for further analysis.

To bring material-specific behaviour better into play, material-specific model performance was plotted
for V7 and V9. In Figure 50, the regarding plots for PE_FILM, PE_RIGID, PP, PP_FILM and PVC are
presented. This list of materials was picked, as the quality determination of the agglomeration product
is guided by these materials. Plots for all materials can be found in Appendix 7.
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Figure 50: Model performance measured in MAE for V7 and V9 pre-processing and relevant materials
regarding the quality prediction of the agglomeration product.

As seen in the previous analyses, there are five models that perform best across the scrutinized
materials. These models are RF, GB, ET, MLP and RR. It can be seen thatET and MLP perform best,
with an exception for PVC. Here, GB has a better MAE. For the remainder of the cases, GB together
with RR perform worst within the top group. Apart from that, the DT model performs worst for all
materials.

The DT model fits a single decision tree on the data. Through the bad performance, itis shown that the
modellingtaskis too complex for thisapproach. An explanation could be thatthe data is too widespread
fora single decision tree. Therefore, no splitroute can be foundthat captures the variability of the data.
Furthermore, the approach could be hampered by the multicollinearity presentin the data. Here, the
model will spread splitting decisions randomly across correlated features. This happens, as these
features share explanatory power, which increases uncertainty. From the best performing models RF,
GB and ET represent decision tree-based ensemble models. This speaks for the fact that the use of
several decision trees in combination can keep up with the patterns presentin the data. An exemption
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to the strong performance of decision tree-based ensemble models is the BR model. The BR model is
also a decision tree-based ensemble model, but does not show the performance of RF, GB and ET.
Thisis dueto the fact that BR does not introduce additional randomness to the model, like RF and ET.
Furthermore, it does not improve the model by fitting the new decision trees on the result of the loss
function, like GB does. Instead, it only introduces variation through bootstrapping, which doesnotseem
to be enough to capture the data in the patterns. Comparing BG to the performance of the DT model,
it is shown that the bootstrapping approach can balance variability and potentially counteracts
multicollinearity. Nevertheless, it is outperformed by ensemble models that incorporate additional
randomness or optimize splits based on previous errors.

The RR model is part of the best performing group and represents a linear regression approach. This
speaks for linear trends that are present in the data and fits previous observations. Models based on
singular decision trees struggle with this type of relationship. This happens, as they split the data at
different points and therewith create piecewise constant predictions instead of linear patterns. As also
ENR represents a linear regression model, they question of why RR performs betterthan ENR isrisen.
Compared to RR, ENR adds another penalty term to the loss function. The additional penalty term is
the sum of all absolute weights. This effectively performs feature selection, as the model attempts to
set some feature weights to zero in order to minimize the sum of the absolute weights. At first, the
better performance of RR shows that all features are relevant for the workings of the model. This is
proven by the fact, that ENR inherently tends to exclude features and performs worse than RR.
Furthermore, due to multicollinearity, ENR is likely to eliminate all but one feature from a group of
correlated features. As high multicollinearity was shown in subchapter 5.2.4, the better performance of
RR can be explained.

To choose models for the hyperparameter tuning, additionally to the described analysis, the presence
of different model architecture was considered. Therefore, MLP and RR are setfor the hyperparameter
tuning. This was done, as they represent neural network and linear regression architectures. GB, ET
and RF are all tree-based ensemble model. Although GB performs worst for four out of five materials
in the ensemble model group, it is selected for hyperparametertuning. Thiswas done, as the greatest
improvementthrough tuning is expected for this model.

Lastly, the XGBoost model was added to the hyperparameter tuning. This was done, as it resembles
an improved version of the GB model and was not considered upfront by accident.

5.3.3 Hyperparameter tuning and cross validation

The used hyperparameter spaces for the hyperparameter tuning can be foundin Table 22. Explanation
of the functioning for each hyperparameter and the reasoning for the selected search space are
explained in subchapter 2.6.3 and 4.6.2. The hyperparameter tuning was conducted via grid search.
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Table 22: Hyperparameter space for grid search for Ridge Regression, MLP, Gradient Boosting and
XGBoost.

Model Hyperparameter Values applied in grid search
Ridge alpha [0.0001, 0.0005, 0.001, 0.005, 0.01, 0.05, 0.1, 0.5, 1, 5, 10, 50, 100,
Regression 500, 1000, 5000, 10000]
solver [svd, cholesky, Isgr, sag, sparse cqg]
MLP hidden_layer_size | 1 layer: [50, 100, 150]
2 layers: [[50, 50], [100, 100], [150, 150]]
3 layers: [[50, 50, 50], [100, 100, 100], [150, 150, 150]]
alpha [0.001, 0.01, 0.1]
activation [tanh, relu, logistic]
Gradient n_estimators [50, 250, 500]
Boosting learning_rate [0.05, 0.15, 0.3]
max_feature [7, 14, 21]
max_depth [2, 10, 18]
min_samples split | [2, 50, 100]
XGBoost n_estimators [50, 175, 399]
learning_rate [0.1, 1, 2]
max_depth [1, 8, 15]
gamma [0, 0.25, 0.5]
lambda [0, 0.15, 0.3]

Together with the hyperparameter tuning cross validation was implemented. To keep computational
cost at bay, a 5-fold cross validation was applied.

For Gradient Boosting, best results were achieved with a learning rate of 0.05, a max_depth of 2, a
maximum of 7 features, a minimum sample split of 2, and 50 estimators. As a result, a MAE of
56.9 [m2/h], an MSE of 9446.7 [m*/h?] and a R? of 0.422 were obtained. Interestingly enough, running
the Gradient Boosting algorithm with its default settings leads to better results with 51.9 [m?/h] for the
MAE, 8076.4 [m*/h?] for the MSE and 0.48 for R2. This showcases the weaknesses of grid search, as
only a fixed set of combinationsis searched. Nevertheless, the information is obtained that an ideal
hyperparametersetting can be found aroundthe defaultvalues. Thisisdueto the factthatthe indicators
show better performance for the default values. Therefore, a local or global optimum should be present
around these values. This optimum could be identified by a more specific grid search around these
values or an alternative but more advanced hyperparameter tuning methodology.

Regardingthe MLP model, best resultswere obtained with the rectified linearunitfunction as activation
function, an alphavalue of 0.1, and three hidden layers with 100 neurons each. This results into a MAE
of 51.4[m?h], an MSE of 8191.3 [m*h?] and a R? of 0.435. Also, for the MLP model, the
hyperparameter tuned version is outperformed by the default version of the model. The default version
has a MAE of 51.1 [m?/h], an MSE of 7788.2 [m*/h?] and a R? of 0.484.

In the grid search, the ridge regression model performed best with an alpha value of 1 and with a
singular value decomposition solver. For this hyperparameters, a MAE of 52.8 [m?/h], an MSE of
8222 [m*/h?] and a R? of 0.459 were obtained. This time, the hyperparameter tuned model has the
same settings as the default model, wherefore they perform equally well.

Already the default XGBoost model outperforms all other models based on the MAE. A MAE of
50.67 [m?/h], an MSE of 7820 [m*/h?]and a R? of 0.49 is calculated. Nevertheless, the hyperparameter
tuned XGBoost model shows better scoring than the defaultversion. This is indicated with a MAE of
50.02 [m?/h], an MSE of 7680.1 [m*/h?] and a R? of 0.50. The hyperparameters that are needed to
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obtain these values are 175 for the n_estimators parameter, a learning rate of 0.1, a max_depth of 8,

a gamma value of 0.25 and a lambda value of 0.3.

In Table 23, all scoring indicators and hyperparameters for the best performing combinations of all

models are indicated.

Table 23: Scoring results and hyperparameter settingsforthebest performing versions of the MLP, the RR,

the GB and the XGB model.

Model MAE MSE R2 Hyperparameter Values applied in grid search
Ridge 52.8 8222 0.459 alpha 100
Regression solver svd
MLP 51.1 7788.2 0.484 hidden_layer size (100,)
alpha 0.0001
activation relu
Gradient 51.9 8076.4 0.48 n_estimators 100
Boosting learning_rate 0.1
max_feature None
max_depth 3
min_samples_split | 2
XGBoost 50.02 7680.1 0.5 n_estimators 175
learning_rate 0.1
max_depth 8
gamma 0.25
lambda 0.3

5.3.4 Testing and evaluation

All materials [m2/h]

To do the final testing after the hyperparameter tuning, the total area flows for PO75C and the total
predicted area flowsfor the test data set were plotted. For better visibility, the data was aggregated into
bins of 90 minutes. The outcome of this procedure can be foundin Figure 51.

—— Predicted
Actual Data

MAE = 453
MSE = 32223
R2= 0.503 |

] Al N 1 '

1‘ |' || j \\ | 14 | )’ \‘ '\"\J I ‘ ‘ Nt ]| | | lr I/

A
AN

U I

4000 ‘ \

4500

4400

4300

4200

4100

3900

0 20 a0 & &0
Aggregated Time Steps
Figure 51: Predicted and measured total area flows for PO75C, aggregated for 90-minute bins with an

indication of MAE, MSE and R2in the top left corner.
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In the Figure, it can be seen thatthe prediction in general follows the trend of the data. The majority of
the positive and negative trends is matched by the prediction, with exemplary malfunctioning at bin 11,
66 and 140. Furthermore, depressions at bin 62, 80 and 126 are underestimated. This is meantin a
way, that the model detects the depression but expects a less negative peak than in the measured
data. The R? valueis not as wished with 0.503. This indicates that not all patterns in the data can be
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depicted by the model. In contrary, the MAE for the aggregated data is exceptional with 45.5 [m?/h] and
also performs well for the non-aggregated case with 50.02 [m?/h]. Compared to that, the MSE is not
performing as well with 3222.3 [m*/h?] and 7680.1 [m*/h?] for the non-aggregated data. Besides the
unexpected poor performance of R2 and the MSE, the small MAE gives confidence for the quality of
the prediction. Transferring the obtained MAE into a percentual deviation for the aggregated data, a
mean relative deviation of 1.1% is obtained.

Concluding, through the broad try out of ML models together with the hyperparametertuning, a mean
relative deviation of 1.1% for the area flow prediction from PO75 to PO75C could be reached. The MAE
was identified as most important parameter during analysis, while MSE and R? play a secondary role.
Furthermore, the best performing models were found to be RR, MLP, ET, RF, GB and XGB. Through
hyperparametertuning, XGB delivered the best results. Nevertheless, shortcomings of the grid search
methodology were encountered. Therefore, with an improved hyperparameter tuning other models still
could perform better.

These findings helpto answer the second sub research, as they showcase an area flow prediction with
the help of ML models. Furthermore, a wide array of possible improvements is indicated, which
represents the potentials thatlie in the methodology.

5.4 Quality prediction

As a final step, material flow prediction and area density determination will be applied together for
agglomeration quality prediction in this sub chapter. This is important, as the interplay between the
differentdeveloped models needs to be research. Here, itis of interest, if the intrinsic uncertainties of
each model will reinforce each other or if outcomes still deliver sufficient explanatory power. The
obtained insights will directly contribute to the solving of sub research question three.

5.4.1 Joint application of area density and area flow prediction

For the final quality prediction, area flow predictions from PO75 to PO75C, and area density
determination for PO75C and AA106 were combined. Obtained material-specific waste flows are
presented together with the belt weigher data from AA106. The described plot can be found in
Figure 52.
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Figure 52: Predicted and measured material-specific mass flows, calculated with area densities obtained
with OLS modelling from PO75C and AA106, together with belt weigher data from AA106 and the sum of
specific mass flows for comparison, aggregation with 200 minutes per bin.

It can be seen, thatthe predicted mass flow for AA106 has an offsetto the beltweigherdata. A possible
reason forthat could be the different data pre-processing fromthe OLS modelling to the ML modelling.
Therefore, the OLS modelling was repeated, with the data pre-processing from V9. The results can be
foundin Table 24.

Table24: OLSresults for area density prediction for PO75C, using data from PO75C and AA106 after similar
data pre-processing to V9, grouping and drop of PET_G data.

Regression Coefficient /| Standard Error [kg/m?] 95% interval

Area density [kg/m?]
Constant -41,656 15,662 [-72,354, -10,958]
CELLULOSICS 0,466 0,040 [0,386, 0,545]
OTHER_POLYMERS | 0,376 0,025 [0,327, 0,425]
PET 3,752 0,114 [3,529, 3,976]
PO 0,464 0,008 [0,448, 0,479]
PVC 0,938 0,061 [0,818, 1,058]

Especially the constant deviates quite heavily from the value obtained with the OLS chapter pre-
processing. Nevertheless, with areduction of roughly 90% it is a favourable development. This means
thatthe model can capture more patterns and behaviourofthe data withoutassigningitto the constant.
Furthermore, as it is not clear which materials the value of the constant belongs to, uncertainty is
reduced. Similarto the previous determined area densities, bootstrapping was performed and results
are presented in Table 25.

Table 25: Summary of bootstrapping results presenting the mean, median, 0.025 and 0.975 quantile for the
area densities determined with PO75C and AA106 as well as V9 pre-processing.

Mean Median 0.025 quantlile 0.975 quantile
Constant -41.487 -41.517 -75.141 -6.445
CELLULOSICS 0.466 0.466 0.375 0.556
OTHER_POLYMERS [ 0.376 0.376 0.334 0.418
PET 3.755 3.754 3.465 4.044
PO 0.463 0.463 0.445 0.482
PVC 0.939 0.939 0.829 1.052
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As for the other fits, the bootstrapping results overlap well with initial OLS model results. Mean and
median only show minordeviations. The strongestdifferenceis observed for the constantwith 0.17 [kg]
andwith 0.003 [kg/m2] for PET, representingthe biggestdeviation for the materials. Quantiles are wider
for the constant, CELLULOSICS, PET and PO. This indicates thatthey have a greater variability then
initially expected. Nevertheless, theirranges are still sufficiently narrow and for OTHER_POLYMERS
and PVC they even outperform the initial prediction of the OLS model.

Application of the newly determined area densities can be observed in Figure 53. Here, material-
specific mass flows are compiled by combining the area densities with predicted and measured area
flows. Belt weigher data is provided for testing and comparison.
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Figure 53: Predicted and measured material-specific mass flows, calculated with area densities obtained
with OLS modelling and V9 pre-processing from PO75C and AA106, together with belt weigher data of
AA106 and the sum of specific mass flows for comparison, aggregation with 200 minutes per bin.

This time, the sum of mass flows aligns visibly better with the beltweigher data from AA106. The offset
from the previous area density fit is overcome, but the less pronounced peaks in the data remain. To
gain a better understanding of possible reasons for this, the sum of material flows, their prediction and
the belt weigher data is shown in a separate plot. The described plotis depicted in Figure 54.
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Figure 54: Belt weigher data from AA106 and the sum of mass flows based on predicted and measured area
flows, and area densities obtained with OLS modelling and V9 pre-processing from PO75C and AA106,
aggregation with 200 minutes per bin.

It can be seen thatthe general trend of the data is captured by the combination of models butthat the
more extreme peaks are missed. Examples for this are present at bin 7, 33, 41 and 56. For most of
these peaks, the model depicts the correct sign butfails to predict the correct magnitude. This could be
due to the linear nature of the area density modelling. This means that in situations where particular
heavy particles pass the scanner, the same area density has to be applied as when lighter particles of
the same material are present. Here, it could be interesting, if with an OLS application for shorter time
periods the magnitude of these peaks would be predicted with greater accuracy.

Moving on to a more parameter driven evaluation, the MAE between the belt weigher data and the
predicted sum of mass flows lies at 63.36 [kg/h] for the aggregated data. For the unaggregated data,
this value increases to 651.6 [kg/h]. Especially the aggregated case is a good example for the gap in
performance between R2and MAE. Through the slightmismatches duringthe observedtime period the
model has a low R? of 0.16. Nevertheless, these mismatches stay relatively close to the true values,
wherefore the MAE is kept at bay.

Through the influence of the aggregation on the MAE, it can be chosen which accuracy is needed and
if the prediction can still generate sufficientinsights. Insights can be hampered by too high aggregation
of the data. An example could be a situation where higher temporal resolution is needed. Applying the
same aggregation, as forthe prediction of the area flows (90 minutes), a mean relative deviation of 4%
for the prediction of the belt weigherdata is determined. Therefore, the error increased from 1.1% to
4% but still liesin an acceptable range.

If the area densities would be directly applied to the measured area flows instead of the predicted area
flows, the relative error wouldlie at 3.8%. This showcasesthatthe combined uncertainty from area flow
prediction and area density determination leads to greater errors. Nevertheless, an increase of only
0.2% is a very promising result. Although this is an expected outcome, it can be seen that the
uncertainty of the area densitiesis of greater magnitude than the uncertainty of the area flow prediction.
Starting the material-specific analysis, material flows were plotted separately. Accordingly, mass flow
for PO and its prediction can be found in Figure 55.
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Figure 55: Mass flow for PO obtained from measured and predicted area flows of PO75C, together with
determined area densities from PO75C and AA106 following V9 data pre-processing, temporal aggregation
in bins of 200 minutes.

A very good fit of the mass flow for PO is observed in the plot. AImost all peaks are matched with the
rightmagnitude and only slight variations are visible. Mismatches occur around bin 56 and 59, but the
direction of the peak was predicted correctly by the model. The MAE for the aggregated data is
determined with 11.6 [kg/h] and with 144.5 [kg/h] for the unaggregated data.

In the next plot, PET and CELLULOSICS are analysed. They have been grouped together, due to a
convenientrange for plotting and can be found in Figure 56.
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Figure 56: Mass flows for PET and CEL obtained from measured and predicted area flows of PO75C,
togetherwith determined area densities from PO75C and AA106 following V9data pre-processing,temporal
aggregation in bins of 200 minutes.

For PET, the model overestimates the majority of the data points, except for three cases at bin 17, 56
and 60. Nevertheless, the deviation is quite small, with a MAE of 6.27 [kg/h] for the aggregated data
and 66.83 [kg/h] for the unaggregated data set. The CELLULOSICS show a greater variance in over-
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and underestimation. This can be seen with underestimations around bin 7 and 59, as well as
overestimations around bin 13 and 48. Calculating the MAE, a value of 31.14 [kg/h] and 2.34 [kg/h] is
obtained for the unaggregated and aggregated case. Approaching the low magnitude materials, in

Figure 57, mass flows for OTHER_POLYMERS are presented.
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Figure 57: Mass flow for OP obtained from measured and predicted area flows of PO75C, together with

determined area densities from PO75C and AA106 following V9 data pre-processing, temporal aggregation
in bins of 200 minutes.

Observing the plot, the suspicion of lower accuracies and prediction abilities for lower magnitude
materials is confirmed. The prediction oscillates around the mean of the mass flow with lower magnitude
then the measured data. Futhermore, it fails to match the direction of the peaks frequently. Examples
forthiscan be foundaroundbin 13,38, 44 and 65. Through the low occurrence,the MAE is comparable
smallwith 3.47 [kg/h] for the aggregated data and 40.09 [kg/h]forthe unaggregated data. Nevertheless,
as the mean for OP is 54.36 [kg/h], this meansa mean relative deviation of 73.7% for the unaggregated
case. Scrutinizing the last remaining material, the mass flow for PVC is presentedin Figure 58.
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Figure 58: Mass flow for PVC obtained from measured and predicted area flows of PO75C, together with

determined area densities from PO75C and AA106 following V9 data pre-processing, temporal aggregation
in bins of 200 minutes.
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It can be seen that the trend from the OTHER_POLYMERS plot can be confirmed with PVC. Direction
and magnitude of the prediction are mostly wrong andtendency foroverestimation is seen between bin
15 and 33. On the positive side, no consistenttrend for underestimation is present. This is favourable,
as for the quality assessment of the agglomeration product it is of importance that PVC is not
underestimated. Through the tendency of overestimation, a surprisingly increased PVC occurrence
during real world testing of the quality becomes less probable. The MAE for PVC is determined with
3.32 [kg/h], for the aggregated data, and with 27.55 [kg/h], for the unaggregated data. This signifies an
MRE of 47.6%.

As a last step, the percentual weight share of each material was determined and plotted over time.
Resultare presentedin Figure 59.
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Figure 59: Weight shares on PO75C resulting from measured and predicted area flows, calculated with area
densities obtained with OLS modelling and V9 pre-processing from PO75C and AA106, aggregation with
30 minutes per bin.

Relatively stable percentual mass shares can be observed, which oscillate around a common mean in
small magnitudes. Compared to the mass flow plots, a way smaller aggregation is chosen with 30-
minute time steps instead of 200 minutes per bin. Still peaks and changesin trend are visible, which
speaks for the stability of the data. PO has a mean weightpercentage of 68.9%, PET was calculated
with 14.1%, CELLULOSICS were determined with 11.8%, while OTHER_POLYMERS have a mean
share of 2.5% and PVC has a mean percentage of 2.7%.

5.4.2 Separation efficiency

To finalize the quality prediction of the agglomeration product, the separation efficiency of PO75C has
to be estimated. As PO75C is the last NIR-scanner before the dispatch of the product, no material
characterization after the separation work of PO75C is available. Therefore, conclusions have to be
drawn from the separation step between PO75 and PO75C.

For this, the assumption is made that targeted and untargeted materials behave similar for PO75 and

PO75C. This means that the separation efficiency from PO75 to PO75C will be transferred to the
separation step from PO75C to the final product. For the separation step from PO75 to PO75C,
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PE_FILM, PE_RIGID, PP and PP_FILM (later grouped as PO) are the targeted materials. Observing
the separation step from PO75C to the final product, PVYC and PAPER are ejected and the non-targeted
particles resultin the agglomeration product. To transferthe separation efficiency, the share of material
that was transferred from the first to the second stage hasto be determined. Furthermore, information
is needed how much non-targeted material was removed together with the targeted material.

To determine the separation efficiencies, area densities for PO75 were ascertained with AA101 belt
weigher data and V9 data pre-processing. Results are presented in Appendix 8. This was done to
match the data pre-processing for the area densities from PO75C and to calculate the separation
efficiencythroughthe obtained mass flows. PO was calculated with amean mass flow of 1294.3 [kg/h],
for PO75, and with 1551.28 [kg/h], for PO75C.

As the material cannotincrease from one scannerto the next, this resembles an impossible result. This
could be due to measurementerrors, the general uncertainty of the scanners, changed categorization
based on changed target materials or because of the uncertainty fromthe area density determination.
Especially the area densities for PO75 have a high constant of 602.3 [kg/h], compared to -41.49 [kg/h]
for PO75C. This resultsin a range of 643.8 [kg/h] of unexplained mass flow based on area densities,
which could explain the unrealistic increase of PO.

To decrease the uncertainty for separation efficiency determination, it was fallen back on the
comparison of area flows from PO75 to PO75C. As separation efficiency is material-specific, it turned
out that no broader context of other materials present on the scanner is needed. Therefore, the
conversion into mass flows is not necessary. Through determination of separation efficiencies before
the conversion into mass flows, uncertainty of the area densitiesis added later. Therefore, deducted
separation efficiencies are more accurate. To use this advantage, the mean PO contenton PO75 was
determined with 3434.6 [m?/h]and a mean PO contentof 3342.94 [m?/h] was obtainedfor PO75C. This
indicates a separation efficiency of 97.3%. In a next step, the percentual area share of PO on PO75C
was determined with 79.5%. This means that, with the targeted material, an additional amount of
material thathas an area of 25.8% of the moved targeted material is transferred.

Assumingthatthese figures are applicable for the separation step from PO75C to the final product, this
means that 97.3% of the PAPER and PV C area flow will be removed. Furthermore, additional material,
of the area of 25.8% of the removed PAPER and PVC, will be transferred with it. Here, the assumption
is made, that these 25.8% are spread over the remaining materials accordingto their share of area
flow. Inconveniently, the PAPER category was grouped together with BC and BOARD_CT for area
density determination to address multicollinearity. This is a problem, as in the next step area densities
need to be applied, butthe material composition of the material grouping is altered.

To mitigate this alteration, area densities were determined again for PO75C together with V9 data pre-
processing and the goal of keeping PAPER a distinct category. Complete results can be found in
Appendix 9. Checking for multicollinearity, correlation between BC and PO was considered too high
with 0.83. Furthermore, 0.025 and 0.975 quantiles are wider compared to CELLULOSICS if PAPER
and BC are kept separate. Therefore, area densities with the grouping of BC and PAPER as
CELLULOSICS were kept. This decision was strengthened by the fact that area densities for the
respective categories were closely together, with 0.452 [kg/m?] for BC, 0.466 [kg/m?] for BOARD_CT
and 0.483 [kg/m?] for PAPER. Here, it is favourable that PAPER has the highest area density. Through
the removal of PAPER area flows, more dense particles are removed in reality, but due to the
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application of the CELLULOSICS area density, less material is removed in the model. Therefore, results
are on the safe side of the estimation, as in reality product purity should be slightly better. In Figure 60,
an application of the determined separation efficiencies to the material-specific mass flows on PO75C
can be found.
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Figure 60: Material-specific mass flows of the agglomeration product resulting from predicted and
measured area flows, calculated with area densities, obtained with OLS modelling and V9 pre-processing
from PO75C and AA106, together with application of separation efficiencies as well as belt weigher data
from AA106 for comparison. Aggregation with 90 minutes per bin.

Comparedto Figure 53, PVC and CELLULOSICS show the greatest deviation. Before, CELLULOSICS
were on a similar magnitude to PET, while now they are clearly separated. CELLULOSICS are
observed on a lower occurrence level, with a mean of 178.13 [kg/h] for the predicted value. PVC also
changed in magnitude and is separately visible from OP in this version of the plot. The new mean of
the PVC category is 1.6 [kg/h] for the predicted value.

5.4.3 Prediction results

Through the joint application of area flow prediction, area density determination and separation
efficiency approximation, the quality of the agglomeration product can finally be predicted. Results for
the test data set can be observed in Figure 61.
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Figure 61: Percentual weight shares for measured and predicted area flows after application of separation
efficiencies, calculated with area densities obtained with OLS modelling and V9 pre-processing from
PO75C and AA106, aggregation with 30 minutes per bin.

Similarto the previous weight percentage plot, a very stable percentual weight share can be observed.
This stability facilitates to aggregate the time steps to only 30 minutes per bin, while results are still
visibly assessible. Mean weightshares for PO of 73.7% and 73.6%, for the measured and predicted
area flows, are obtained. Maximum values are detected with 76.4% and 75.1%, for measured and
predicted area flows, while minimum values lie at 70.5% and 71.8% respectively. The MAE, from
predicted to measured area flows for PO, lies at 0.34%. For PVC, mean weight shares are determined
with 0.08%, for both area flow determination methods. Maximum and minimum values lie at 0.12% and
0.11%, as well as 0.05% and 0.06%, for measured and predicted area flows. Comparing the weight
shares resulting from predicted and measured area flows, it is seen, that percentages obtained from
the predicted area flows underestimate the percentage in both directions. This can be explained by the
same trend, that was observed for area flow prediction and mass flow determination. Asthe final quality
prediction is composed of these two modelling parts, it resembles an expected finding.

Circling back to the quality requirements introduced at the beginning of this work, the quality
requirementfor PVC can be met with high security. A mass percentage below 1.4% of PVC is needed
and would be still achieved with separation efficiencies of down to 69.5%. On the otherend, PO quality
criteriawith a minimum of 75% weightshare are not met. Nevertheless, this could change with a higher
separation of PET or CELLULOSICS, which could be targeted together with PVC and PAPER on
PO75C. PET has a mean weightshare of 15% and 15.1%, and CELLULOSICS are presentwith 8.6%,
for measured and predicted mass flows.
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6 Conclusion and recommendations

The motivation of this research was to help with the implementation of improved plastic waste
separation, to unlock environmental and economic advantages. To achieve this, real-time machine
setting optimization in waste separation plants wasidentified as one of the most promisingapproaches.
This type of optimization is enabled by dynamic separation efficiency modelling and real-time waste
stream characterization. As extensive waste stream characterization with sensors is economically
prohibited, the use of data from NIR separation units, that are already presentin the plant, is sought
after.

To explore the joint application of these concepts, the prediction of the HQ agglomeration line product
in a plastic waste separation plant in Scandinavia was analysed. In the agglomeration line, two NIR-
separators are connected in series to ensure high-quality separation of the material. The inputto both
NIR-scannersis measured by belt weighers. Through the beltweighers and NIR-scanners, total mass
flow and material-specific area flow data is available. In total, 4-month worth of data was provided. The
specific goal of the research was to predict the agglomeration line product quality, after the material
has been processed by both separators. Here, data from the first NIR-scanner serves as the basis for
the prediction. Quality requirements of the product are defined by weight shares of POand PVC. POis
the target material with a minimum presence of 75 w-%, while PVC resembles the most important
contaminantwith a maximum occurrence of 1.4 w-%.

To modelthe quality prediction, material-specific mass flow dataneedsto be obtained. As only material-
specific area flows are available, this can be achieved by the determination of area densities. When
area densities are obtained, the prediction of area flows from the first to the second NIR-scanner and
from the second NIR-scannerto the product is needed. Alternatively, separation efficiencies can be
used. Through a joint application of these concepts, the agglomeration line product quality can be
predicted in weight percent.

To guide the modelling of the agglomeration line product quality, the following research question was
compiled:

How can the quality of the agglomeration line product in a plastic waste separation plant be predicted
based on NIR-scanner and beltweigher information through a data driven approach?

To splitup the research question in workable sections, three sub research question were formulated:
— What correlations and relationships exist in the data?
— How can the area density, the area flow prediction and the separation efficiency be modelled?

— How does a joint application of the developed concepts perform for quality prediction of the
agglomeration line product?
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6.1 Summary and conclusions

In this section, the research question and sub research questions are answered. Furthermore, the
derivation of the results is summarized.

Starting with the first sub research question, data exploration for belt weigher data, NIR-scanner area
flow data and NIR-scannerbelt occupation datawas conducted. Thiswas needed, as prediction quality
is highly dependent on the quality of the input data. Therefore, pitfalls in the data and remedies for
these pitfalls have to be identified. Furthermore, present correlation in the data delivers insight about
potential modelling approaches and how the data can be made usable forthe goal of this research.

Forthe beltweigherdata, atendencywasfoundthatvaluescloseto zero instead of zero are measured.
Through this effect, the cleaning of the data set from empty data points is hampered. To avoid this,
different thresholds for data exclusion were tested. Best results were obtained with a threshold of
0.3 [t/h]. After this clean-up, a correlation of 0.867 between belt weigher AA101 and AA106 was
obtained. Furthermore, it could be ascertained thatthe data is free from temporal correlation patterns.

Regarding area flows, a similar behaviourto the belt weighers was found. It could be shown, that the
NIR-scanners tend to measure values close to zero instead of zero. This happens when either the belt
is empty or the scanners are malfunctioning. Furthermore, it was observed that this effect applies for
all materials together, butalso for single materials. During the search for temporal correlation patterns,
it was found, that correlation drops of the materials do not overlap. Furthermore, for low area flow
material, lower correlation and increased erroneous behaviour was observed. These findings
strengthen the hypothesis of material-specific malfunctions in detection. Furthermore, a state of the
machines was encountered, where the total detected area drops to a threshold and then oscillates
around this value with small magnitudes. In this state of stagnation, different materials are either
measured with constant values or increasing or declining behaviour in a balancing fashion. This
phenomenon was observed for several materials on NIR-scannerPO75C. Valuesforthese stagnations
were total area flows around 500 [m?/h] or 1000 [m?/h]. To tackle the encountered problem, thresholds
for data inclusion, of total area flows on the NIR-scanners PO75 and PO75C, were defined. This was
done with 1000 [m?/h] and 12,500 [m?/h] for PO75 and 1250 [m?/h] and 10,000 [m?/h] for PO75C. The
upper thresholds were motivated from distribution analysis of the total area flows. They were
implemented to exclude high magnitude outliers. Regarding correlation, the NIR-scanners correlate
reasonably after application of the thresholds with a r value of 0.829. PE_FILM and PE_RIGID were
the highest correlating materials with r values of 0.9 and 0.89. OTER_POLYMERS and PS were the
materials with the lowest correlations with r values of 0.07 and 0.13. Lastly it could be determined, that
the data is free from temporal correlation patterns.

For eased exploration of belt occupation data, belt occupation was divided in 5 categories. Next, the
conveyor belt was split into 70 compartments over its width and occurrences of the categories were
counted. The 50-100 [m?/h] category was most appearing (2.14 million) followed by the 0-50 [m?/h]
category (2.08 million). Loweroccurrenceswere detected for the 100-200 [m?/h] category (1.17 million),
while the 200-300 [m?/h] category (11,704) and the >300 [m?/h] category (1,144) were rarely present.
Regarding correlation, the 0-50 [m?/h] category showed a negative trend with high magnitude area
flows. In contrast, the 100-200 [m?/h] category showed a positive trend towards it. In general, the
100-200 [m?/h] category was identified as the governing category for high magnitude area flows. The
50-100 [m?/h] category and the 200-300 [m?/h], as well as the >300 [m?/h] categories showed no
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significantlineartrend during analysis. As a great variance of non-linear patterns was visible, it was
decided to integrate the data into a ML approach.

Although not part of the official data exploration, insights aboutthe joint use of belt weigherand area
flow data were gained during area density modelling. Here, a clear temporal correlation pattern was
encountered. Correlation first oscillates around r values of 0, then they elevate to r values of 0.8 with a
dropto r valuesof 0.6 for a short period of time. No clear explanation, apart from machine malfunctions,
could be found. To counteractthis effect, all data below a r value of 0.7 was excluded. After removal,
a correlation of 0.827 between belt weigher AA101 and NIR-scanner PO75, and a correlation of 0.822
between beltweigher AA101 and NIR-scanner PO75 was obtained.

The conducted data exploration answers the first sub research question “What correlations and
relationships existin the data?” in the following way: Belt weigher data correlates well with each other.
Problems due to a tendency of measuring values close to zero instead of zero arise. Excluding values
below 0.3 [t/h] was found to handle this issue reasonably well. NIR-scanner data offers a wide range of
inconsistencies. Hot spots are total area flows below 1000 [m2/h] and low magnitude area flow
materials. Apart from that, correlation is high. Encountered problems can be fixed by applying
thresholds of 1000 [m?/h] and 12,500 [m?/h], for PO75, and 1250 [m?/h] and 10,000 [m?/h], for PO75C.
Belt occupation data delivers low explanatory power by linear correlation. The 100-200 [m?/h] category
is governingforthe correlation thatwas found and an array of non-linear patternsis present. Therefore,
the information hidden in the data could be leveraged through a ML approach. Jointbelt weigher and
area flow data application uncovered an unexpected temporal correlation pattern. A potential remedy
is to remove time periods below a defined correlation threshold.

Starting into the quality prediction modelling, first the area densities had to be determined. This was
doneto enablethe conversion of material-specific area flows into material-specific mass flows. Material-
specific mass flows are needed, as quality is determined in weight percent.

To do this, OLS methodology, as most suitable linear regression technique, was applied.
Multicollinearity was encountered and treated by grouping of the materials. Final material categories
were CELLULOSICS,OTHER_POLYMERS, PET, PO and PVC. The effects of multicollinearity were
successfully mitigated through this approach. During the course of the thesis, the insightwas gained,
thatdetermined area densities are sensitive to differentdata pre-processing. Thisshowcasesthe heavy
influence of data inputon the modelling outcome and highlightsthe need of similardata pre-processing
duringjointapplication of modelling approaches. Furthermore,itwas proven that area densitiesare not
generalizable from NIR-scanner to NIR-scanner. This is due to the material composition change during
sorting. Through bootstrapping, greater trust in the confidence intervals for the area densities could be
obtained. Calculated 0.025 and 0.975 quantiles match the confidence intervals for all area densities,
with slightly increased magnitude. The area densities that were obtained for final application showed
standard errors below 0.01 [kg/m?] and confidence interval spreads under 0.3 [kg/m?]. During
application on the test data set, a MAE of 141 [kg/h] for an aggregation of 30 minutes was observed.
This resembles an MRE of 3%.

In a nextstep, the material-specific area flow from the first to the second scannerwas modelled. This
was necessary, as the final quality prediction is intended to solely rely on data from the first
NIR-scanner. While the area density was modelled to have the right unitfor the prediction result, the
area flow prediction resembles the first prediction component of the research.
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For area flow prediction, nine different data subsets and data pre-processing were tested. This was
inspired by the upfrontconducted data exploration. During a broad model try-out, the area flows on
NIR-scanner PO75C were predicted based on data from NIR-scanner PO75, belt weigher AA101 and
belt weigher AA106. This was done with the following models: Decision Tree, Extra Tree, Random
Forest, Gradient Boosting, K-Nearest Neighbours, Bagging Regressor, Ridge Regression, Elastic-Net
Regression and Multi-Layer Perceptron. During analysis, itwas noted that versions with thresholds for
total area flow performed better regarding MAE and MSE. Versions withoutthese thresholds showed
better results for R2. For model selection and further analysis, it was decided to focus on MAE over
MSE and R2. This was done, as smaller general errors were preferred over better detected patterns
and improved outlier handling. The best performing data base and data pre-processing version was
picked with V9. This includesa drop of NaN and zeros, integration of two additional material categories
on PO75, data from AA101 and AA106, belt occupation counts and thresholds for total area flows on
PO75 and PO75C. Apart from that, Random Forest, Gradient Boosting, Ridge Regression, Extra Tree
and Multilayer Perceptron were the best performing models during the try-out. Further selection was
based on the representation of different model architectures and expected improvement during
hyperparameter tuning. Accordingly, Ridge Regression, Multilayer Perceptron and Gradient Boosting
were selected. Additionally, XGBoost was added to the hyperparameter tuning, as it resembles an
improved version of Gradient Boosting. During hyperparameter tuning, XGBoost outperformed the
other models. This was achieved with hyperparameter values of 175 for n_estimators, 0.1 for the
learning rate, 8 as max depth, 0.25 for gamma and 0.3 for lambda. Finally, a MAE of 50.02 [m?/h], an
MRE of 1.1%, an MSE of 7680.1 [m*/h?] and a R? value of 0.5 was obtained.

The last neededinformation, to assemble the quality prediction of the agglomeration line product, is the
separation efficiency fromthe second NIR-scanner (PO75C)to thefinal product. Together with the area
densities and the area flow prediction, from the first to the second NIR-scanner, mass-based material
composition on the second NIR-scanner can be determined. Therefore, only the separation efficiency
from PO75C to the agglomeration product is missing to achieve agglomeration product quality
prediction.

For separation efficiency determination from PO75C to the final agglomeration product, no data driven
modelling approach could be identified. This was due to missing validation data. To still reach a result,
the assumption was made that separation efficiencies from PO75 to PO75C are generalizable to the
step from PO75C to the product. For targeted material, a separation efficiency of 97.3% was obtained.
Additionally, the amount of non-targeted material, ejected along with the targeted material, was
estimated. For this, a material flow, of the size of 25.8% of the successfully ejected target material, was
determined.

The summarized modelling section answers the second sub research question “How can the area
density, the area flow prediction and the separation efficiency be modelled?”in the followingway: Area
densities can be modelled by an OLS approach. Multicollinearity is successfully treated through
material grouping. Together with the application of bootstrapping, greater trust in the confidence
intervals and calculated area densities is obtained. The procedure enables the determination of area
densities with an MRE of 3%. Area flow prediction can be obtained through a ML approach. With the
help of a broad try-out of models, data subsets and data pre-processing, their best combination can be
determined. Together with hyperparameter tuning, a MAE of 50.02 [m?/h], an MRE of 1.1%, an MSE of
7680.1 [m*/h?] and a R? value of 0.5 could be obtained for the XGBoost model. For the separation
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efficiency from PO75C to the final product, no data driven modelling approach could be identified.
Nevertheless, through the assumption of generalizability of separation efficiencies from PO75 to
PO75C to the last separation step, separation efficiencies could be approximated. Therefore, a
separation efficiency of 97.3% and 25.8% additional material transferal could be estimated.

To conduct the final quality prediction, the determined area densities, area flow predictions and
separation efficiencies were applied together. First, the area flow prediction was joined with the area
densities to determine the mass flows on PO75C. It was found, thatthe OLS model has to be trained
with the same data pre-processing as the ML model to obtain the best results. Testing was done with
the test data set and AA106 beltweigher data. For a 90-minute aggregation, an MRE of 4% was found,
for application of predicted area flows, and an MRE of 3.8% was obtained, for application of measured
area flows. Therefore, through the use of predicted area flows the MRE only increased by 0.2%.
Through application of separation efficiencies, conversion into mass flows and calculation of theirmass
share, the final quality prediction was determined. For a 30-minute time step aggregation, PO showed
a mean weightshare of 73.7%, for application of measured area flows, and 73.6%, for application of
predicted area flows. Maximum and minimum values were 76.4% and 75.1%, as wellas 70.5% and
71.8%, for application of measured and predicted area flows. The MAE from measured to predicted
area flows was obtained with 0.36%. For PVC, a mean weight share of 0.08%, for measured and
predicted area flows, was determined. Maximum and minimum values were 0.12% and 0.11%, as well
0.05% and 0.06%, respectively. Furthermore, a MAE of 0.007% was calculated. With the described
values, the quality criteria for PO were not met, butthe quality criteria for PYC was held by a fair margin.

With the obtainedresults, the third sub research question “Howdoes a jointapplication ofthe developed
concepts perform for quality prediction of the agglomeration line product?” can be answered as follows:
If the assumption of transferability of separation efficienciesfromPO75 to PO75C to the final separation
step holds, the prediction of PO has an expected MAE of 0.36%. For PVC a MAE of 0.007% is
anticipated. Regarding the interplay of the models, greater uncertainty results out of the area density
determination. This is based on the mass flow prediction on PO75C. Here, the area density contributed
3.8% to the MRE and the area flow prediction only was responsible for 0.2% of the MRE indicator.

Joiningthe obtainedinformation,the main research question “How can the quality of the agglomeration
line product in a plastic waste separation plant be predicted based on NIR-scanner and belt weigher
information through a data driven approach?” is resolved in the subsequent way: The quality of the
agglomeration line product, in a plastic waste separation plant, can be predicted using multiple
modelling building blocks. An OLS model is applied to determine area densities. Subsequently, an
XGBoost model is used to predict area flow. Finally, separation efficiency is transferred from a
representative separation unitto complete the prediction process. Through this, MAE for weight share
prediction of 0.36%, for PO, and 0.007%, for PVC, for a 30-minute time step aggregation are obtained.
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6.2 Recommendations

In this section, recommendations that are derived from the findings of th e study will be presented.

During data exploration it was seen, that especially the use of NIR-scanner data, for waste stream
characterization and quality prediction, should be done with great care. Therefore, it is highly
recommended to explore all data thoroughly. This is particularly the case before model building, to
avoid incorporation of inconsistency through the data. Especially, the stagnation of total area flow
around 1000 [m?/h] forthe NIR-scanners show an interesting example of inconsistencies. Without data
exploration, this erroneous data would have been incorporated into the model. Therefore, all input data
should be scrutinized for inconsistencies and remedies for encountered problems should be thought
of.

Working with the data used in this thesis, upper and lower total area flow thresholds should be applied.
These are 1000 [m?/h] and 12,500 [m?/h], for PO75, and 1250 [m?/h] and 10,000 [m?/h], for PO75C. To
handle inconsistencies of belt weigher data, a threshold for data inclusion of 0.3 [t/h] is imperative.
Furthermore, it is recommended to compute correlation over time, to check for temporal correlation
patterns. If temporal correlation patterns are encountered, the exclusions of data points with low
correlation should be thought of. Here, the threshold is case dependent and should be determined
based on the needs of the given modelling task.

Apart from this, it is recommended, to seek better understanding of the inner workings of the NIR-
separators. For this, contact with TOMRA should be soughtto discussand understand the encountered
inconsistencies. Here, especially the stagnations states of the machines and the reduced accuracy of
low area flow magnitude materials is of interest.

Delving into specific model components, an improved separation efficiency determination from PO75C
to the agglomeration productshould be found. This is of importance, if the developed methodology is
applied for quality prediction in a real-world separation process. Here, the use of a classification unitis
recommended. If economic constraints prevent this, probing or expert knowledge can be potential
remedies. Furthermore, using a more representative unit pair for transferring separation efficiencies to
the last separation step, is recommended to gain greater trustin the prediction. Additionally, more direct
validation methods for the remaining modelling components should be developed. By now, only the
area flow prediction is directly validated through area flow data from the second NIR-scanner. If results
of thiswork can be confirmed, a way must be found to meet the quality requirements for PO. This can
be done by targeting CELLULOSICS or PET nextto PAPER and PVC on PO75C.

An interesting point, that was revealed during the writing of this work, is the influence of temporal
aggregation on the MAE and the MRE. Here, it is recommended to find the needed temporal
aggregation for plantoptimization and focus further model building on this time scope. Apart from that,
the ideal combination of pre-processing approaches for the interplay of models should be found. The
development of a respective methodology is recommended. Furthermore, the amount of data, used for
area density determination, should be reviewed. The OLS model searches for the area densities that
givethe smallestpossible error over the given time frame. As the used data has a time span of 4 months
andwaste composition is constantly changing, uncertainty could become smallerwith the use of smaller
time frames. Therefore, itis recommended to research this part before further applying the developed
area density determination. Switching the focus to the ML modelling, an improved hyperparameter

94



tuning methodology should be implemented. This is due to the fact, that the implemented
hyperparameter tuning in this study showed only minor effects, but bigger potentials are expected.
Here, either a more extensive use of grid search, the combined use of grid search and random search
or implementation of more advanced hyperparameter tuning methods should be applied.

Thinking of a more widespread application of the showcased concepts, a use of all available
characterization information is recommended. For this, each beltweigher NIR-scanner pair in the plant
should be used for area density determination. Afterwards, area densities should be analysed, aiming
forinsightabout needed air nozzle pressure for ejection. If this information can be retrieved, fine tuning
of air nozzle pressure is recommended to unlock economic and environmental advantages.
Furthermore, through the obtained area densities, material-specific mass flows determination should
be implemented for each belt weigher NIR-scanner pair. Through this, mass-based material
composition changes, from NIR-scanner belt weigher pair to NIR-scanner belt weigher pair, can be
revealed. With this, information about separation efficiencies gets unlocked and plant optimization
should be putinto action. Here, changes in machine settings can be analysed more precisely and their
effectcan be evaluated. Furthermore, prediction elements of the showcased modelling should be added
to the described approach. Through this, simulation, of the effects of machine setting changes, can be
developed. Apart from that, if waste stream characterization and prediction is implemented in detailed
temporal granularity, the plant can be optimized in real-time. This would enable the sorting of each
waste inputin an optimal way and therewith unlock further economic and environmental advantages.
Therefore, setting the described implementation as along-term goal is highly recommended.

6.3 Limitations

Limitations arise from different parts of this work. These can be splitup into data exploration limitations,
model building and model capability limitations as well as limitations resulting from the higher-level
approach of this research.

Starting off with the data exploration limitations, itis not guaranteed thatthe data is sufficiently explored.
This means that correlations and relationships, that would enable improved modelling, could remain
unrevealed. On the contrary, crucial inconsistencies, that hamper the explanatory power of the
developed model building blocks, could have been missed. Apart from that, notall available data from
the TOMRA Insight portal was used. Therefore, useful relationships in the data could remain
unexplored. Strong limitations were encountered for NIR-scanner data. This is mostly due to the
described stagnation states of the machines and the measurements of values close to zero instead of
zero. Furthermore, the explanatory powerfor lowermagnitude material is limited and the results cannot
be used with the same confidence as for high magnitude materials

Delving into the modelling part, the limitations of the area density determination mustbe understood.
The area densities can only be validated indirectly. Through a probing and characterization campaign
this could be done in the future, but by now the area densities were only validated indirectly. This
means, that the material-specific mass flows were summed up and tested against belt weigher data.
Here, the resulting error was evaluated. Bootstrapping and confidence intervals were applied, butitis
importantto understand thatthey do not come with the same validity, as validation data would provide.
The biggest limitation of this study is resembled by the separation efficiency determination of the last
separation step. By now, there is no data to validate it, also not indirectly. Furthermore, no statistical
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methods to enhancetrustin the obtained resultswere conducted. The only source of confidence isthat
the separation efficiencies were transferred from a previous unit of the same plant. Therefore, the
determination of the separation efficiency from the second NIR-scanner to the agglomeration product,
should be solely seen as a measure to answer the initial research question, but not as a
recommendation forimplementation.

Regarding the area flow prediction from PO75 to PO75C, limitations arise from the lower prediction
accuracy for lower magnitude area flow materials. With respect to hyperparameter tuning, grid search
does notguaranteeto findthe optimal hyperparameters. Therefore, limitationsto the model capabilities
occur. Further limitations arise due to the sole focus on MAE, as other indicators where not considered
during final ML model building. Lastly all trained models can only learn from data that they have seen.
This signifies a limitation to past waste compositions. Therefore, if new materials are introduced into
the waste stream, other sorting behaviourcould occur,whichlimitsthe explanatory power of the model.

From a methodological viewpoint, no framework was set up to identify modelling approaches for the
goal of the research. Therefore, this research could be limited by better suited methodologies thatwere
missed. Furthermore, the final goal of achieving a real-time waste sorting plant optimization was
identified but better suited approached forimproved plastic waste separation could exist. Zooming out
even further, other approaches for waste managementimprovement, that yield greater economic and
environmental advantages than improved plastic waste separation, could be worth investing time and
effort into. Putting it differently, limitations could arise, through more effective higher-level
methodological approaches thatwere not considered.

6.4 Future research

Futureresearch isrecommended for areas of thiswork that come with greatest reduction in uncertainty.
Furthermore, research that enables the widespread use of the explored concepts as well as
methodologies thatimprove the approach of this work should be explored.

Regarding uncertainty reduction, the separation efficiency determination, from PO75C to the final
product, should be improved. This can be done by conducting research on how validation data for this
step can be retrieved in an economically sound way. If this is not possible, methodologies on how to
approximate the sought information, while minimizing uncertainty, should be explored. Potential
research approaches could be the transferral of separation efficiencies from other units, including a
proof of their similarity, or application of statistical methods, to gain greater trustin the retrieved values.
Regarding area densities, it should be researched how they can be validated directly, instead of
indirectly, in an economically sound way. Apart from that, exploration of the influence of data set size
and data pre-processing, for the area density modelling is of interest. It is suspected that with smaller
data set sizes the area density determination could become more accurate. This would also decrease
uncertainty of material-specific mass streams and uncertainty of separation efficiency determination
between belt weigher NIR-scanner pairs, which shows the advantages of respective research. To
minimise uncertainty of material-specific mass flow prediction, a precise as possible areaflow prediction
is needed. Therefore, research for enhanced ML modelling should be conducted. First, it could be
explored how low magnitude area flow materials can be predicted better. Here, ML model building with
a focus on RZ or a multiple indicator optimization is expected to deliver improved results. Furthermore,
application of differenthyperparametertuning methodologiesisrecommended for research to leverage
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the full potential of the applied ML models. Approaches like random search, a combination of random
search and grid search orthe application of more elaborated hyperparametertuning methods resemble
potential research directions.

To unlockthe potentials of the developed modelling building blocks, the generalizability of the approach
to therest of the plantand to other plants need to be tested. Furthermore, the interplay of beltweigher
NIR-scanner pairs for separation efficiency determination, at different places in the plant, should be
researched. Together with the prediction of area flows, real-time machine optimization and simulation
of impacts on the plant, through changed material inputand machine settings, can be unlocked. To
achieve this goal, several research areas have to be resolved. First, it is of interest how sufficient
temporal resolution, with high enough accuracy for real-time plant optimization, can be obtained. In the
bestcase, the developed approach in thiswork can deliverthisinformation. If it failsto do so, alternative
approaches have to be researched. Furthermore, the validity of the derived models into the future and
the frequency of needed updates is of interest. When sufficient temporal resolution and accuracy is
proven, the best approachesto putthe sought-afterreal-time machine optimization into practice should
be explored. Here, notonly productpurity, butalso research regarding energy savingis recommended,
to unlock greatest economic and environmental potentials.
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Appendix 1: Material-specific
distributions

In the following, all material-specific distributions in form of histograms can be found. The decision if
values for PO75 or PO75C were made transparentwas made material by material favouring plots
where the least information was lost. Due to the amount of plots the figure is spread over two pages.
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Figure A1.1: Material-specific area flow distribution for all available material, zeros have been removed

upfront.

103

PET_MONO_TRAY [m2/h]




. PO75
e pO7sC
—— mean POT5
—— median POT5
------ mean PO75C
g 00y o e median POT5C
B
g
&
t T T T
1000 2000 3000 4000 5000 6000
PE_FILM [m?2/h]
[ pOysc
. PO75
—— mean POTS
—— median PO75
------ mean PO75C
(O median POT5C
2
g
<]
T T T
2000 3000 4000
PP [m?/h]
20000 - PO7S
17500 1 . PO75C
—— mean POT5
15000 A —— median POT5
------ mean POT5C
g12s004 @R median POT5C
(=
£ 10000 {
2
& 7500 1
5000 A
2500
0- ' T T T T T
o 200 400 500 800 1000 1200 1400
P5 [m2/h]
Figure A1.2:
upfront.

Occurrences

Qccurrences

Occurrences

12000 A

10000 A

B0OOO0 1

6000 +

4000 1

2000 A

T T T T T T
500 1000 1500 2000 2500 3000 3500 4000

[ pOTs

PO75C
—— mean PO75
—— median PO75
mean POT5C
median POT5C

PE_RIGID [m?/h]

. PO7SC

PO75
—— mean POTS
—— median POT5
mean PO75C
median POTSC

1000 1500

2000 2500

PP_FILM [m2/h]
35000 A — o
-

00001 — :faanPOTS
g
o004 8 median POTSC
15000 4
10000

5000 4

0

T
1000

T T
2000 3000

PVC [m2/h]

T
4000

Material-specific area flow distribution for all available material, zeros have been removed

104



Appendix 2: Material-specific

correlations

Below all material-specific correlations in form of scatter plots can be found. Due to the amount of plots

thefigure is spread over two pages.
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Figure A2.1: Material-specific correlationsin form of scatter plots for all available material, zeros have been

removed upfront.

105

EPS POT5C [m2/h]

PAPER POT5C [m2/h]

175 A

I
=1

]
n

5
=

b

3

r= 028

T
50 75 100 125

EP5 POT5 [m?/h]

T T
150 175

800

600 1

400

r= 065

200

T T
400 600 800

PAPER P75 [m?/h]

T
1000




£000 o r= 090 4000 + r= 089
* 3500 1
_ 5000 . =
= . < 3000 1
t *|E
= 4000 = 2500
5] A
un -
S 3000 4 S 2000 1
= =
g 5 1500 A
i, 2000 2
w w' 1000 A
1000 500 4
0 0
1000 2000 3000 4000 5000 0 500 1000 1500 2000 2500 3000
PE_FILM PO75 [m2/h] PE_RIGID POTS [m2/h]
500
r= 074 3501 r= 075
= 400 1 < 300
N £
E 5 2501
U300 A =
a
§ . g 200
m | = | ™
g 20 . 5 150
(=]
o, § 100
E 100 4 . s ol o .
[ ] o [ ]
0 o1
50 S00 750 1000 1250 1500 1750 0 250 500 750 1000 1250 1S00 1750
PET_BOTTLE PO75 [m2/h] PET_MONO_TRAY POTS [m2/h]
- Cm 2500
- r=10
g [ ]
4000 2000 1
. <
= 3
< 3000 £ )
T e | =500
o 2
2 g
5 2000 1 £ 1000
o 0
=3 ey
o 1
o
1000 1 .
01 o1
500 1000 1500 2000 2500 3000 0 500 1000 1500 2000 500
PF POT5 [m2/h] PP_FILM POT5 [m2/h]
600 1 .
r= 013 r= 046
] 800 4
500 N
—— < .
£ a0 < 600 1 . ¢ . ®
£ E bd . * o0
= [ ] [ ]
o 300 { 2 .. © % “ L. .
5 - 5 400 1 vy o .,
= 2001 ¢, o .
= ¢ e o| & o
. 200 { Po
100 4 ae .
[ ]
(1]
04 0+
200 400 600 800 1000 1200 1400 2000 3000 4000

PS PO75 [m?/h]

PVC POTS [m2/h]
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Appendix 3: Material-specific correlation
computed by time

The subsequent plots present all material-specific correlations over time. For this, the data was splitup
into 200 bins by time. Due to the amount of plots the figure is spread over two pages.
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Figure A3.1: Pearson correlation coefficient for all available materials regarding NIR-scanner PO75 and
PO75C with 200 bins compiled by time.
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Appendix 4: Material-specific
correlations of lowest performing
correlation bins

In the following, all material-specific correlations, computed for the lowest correlation bin, can be found.
Due to the amountof plots the figure is spread over two pages.

a0
600 .
- s r= 0547 . r=-0.099
’itﬁ 35 ° »
500 ot &
[ ] [ ] 30
< <
3 I 5
400 .
E 3 ol
(5] w |
L [ ] [ ] [l L ]
- -
2 00 vt | &5 ¢
o g . [ ]
«° . . wg e @ oy
200 4 - . . .
sl %y N 5 [
[ ] e e L ]
004 » 0
0 200 400 600 800 1000 1200 B 70 80
BC POTS5 [m2/h]
L ]
120 - r=-0.384
—_ L ]
= . 600
T $ .
£ 100 4 . .
= [ 4 = 500
wn [ ] <
g £
& . =400
" o 7
& &0 5
= & 300
3 &
£ 401 = 200 1
= e o*
£ 20 [ ] [ ] L]
5 B ege wPet | g
™ e []
04
T T T T T T 01— T T T T T
0 20 40 60 80 100 0 100 200 300 400 500
OTHER_POLYMERS PO75 [m2/h] PAPER POT5 [m2/h]

Figure A4.1: Material-specific correlations in form of scatter plots for the lowest performing correlation bin
for all available material, zeros have been removed upfront.
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Figure A4.2: Material-specific correlations in form of scatter plots forthe lowest performing correlation bin
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Appendix 5: Sum PO75, Sum PO75C and
material for PO75 and PO75C plot for the
lowest correlation bin by time

Below, all material-specific plots for the sum of PO75 and PO75C as well as the material-specific area
flows for all materials computed for the lowest correlation bin can be found. Due to the amount of plots
the figure is spread over several pages.
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Figure A5.1: Sum of areas on PO75 (grey dots)and PO75C (black dots) as well as for the examined materials
for PO75 (light lines) and PO75C (solid lines).
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Figure A5.2: Sum of areas on PO75 (grey dots)and PO75C (black dots) as well as for th e examined materials
for PO75 (light lines) and PO75C (solid lines).
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Appendix 6: Conveyor belt occupancies
of PO75 and material occurrence for all
materials for PO75 and PO75C

The subsequent plots present material-specific area flows and belt occupancies for PO75 (blue color
palette) and material-specific areaflows from PO75C together with belt occupancies of PO75 (red color
palette). Furthermore, a full coloration and a 0.5% coloration version of the plots is provided. For better
overview, the occupancies were separated in 5 categories. These categories are 0-50 [m?/h], 50-
100 [m?/h], 100-200 [m?/h], 200-300 [m?/h] and >300 [m?/h]. On the x-axis the number of occurrences
per category is indicated. On the y-axis the corresponding material-specific area flow is presented. Due
to the amount of plots the figure is spread over two pages.

. e [ ]
F oo ) o
50-100 [m2/h] -100 [m
1500
100-200 [m2/h] 150 ® 100-200 [m2/h]
1250 200-300 [m2/h] | _ . . . ® 200-300 [m2/h]
< =300 [m2/h] €125 (N 3 ® & =300 [m2fh]
< £ .
E 1000 = 100 .
" =
5 70 2
o wn
& &
500 50
250 5
0 0
0 10 0 30 40 50 60 0
Belt occupation counts
1200 { * . 0-50 [m2/h] . . 0-50 [m2/h]
= . . 50-100 [mZ/h] 1000 o . 50-100 [m2/h]
T 1000 - ® ® 100-200 [m2/h] . e @ 100-200[m2fn]
E ® 200-300 [m2/h] | — L . ® @ 200-300 [m2/h]
< 800 Py
2 ann ® =300 [m2/h] NE . L 4 . ® =300 [m2fh]
[=]
& = . .t . o*
2 9§00 n'o'.. oo o
w [=]
E [-4
= (=
2 400 g 400
& &
£ 200 200
(=]
0 0
0 10 0 0 40 50 60 0
Belt occupation counts
0| ese ., 0.50 [m2/h] 17501 e oe *e 0-50 [m2/h]
e . 50-100 [m2/h] 50-100 [m2/h]
el [ ] L] . = & & [ ]
_ 150 . e 10200[mzn | € B0 0 %% o® ® 100-200 [m2/h]
= [ ] . . .
T 1250 e . ® 200300 (m2/h] | £ 1359 o« o ® . ® 200-300 [m2/h]
£ =300 [m2/h] o =300 [m2/h]
& -
£ 1000 £ 1000
g 2
] 750 = 750
5 °
@, 500 g 500
I i
50 B 20
0 0
0 10 0 0 40 50 60 70 0 10 0 n 40 50 &0 70
Belt accupation counts Belt occupation counts

Figure A6.1: Scatter plot for all materials on PO75 together with belt occupation counts of PO75.
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Figure A6.2: Scatter plot for all materials on PO75 together with belt occupation counts of PO75.
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Figure A8.1: Scatter plot for all materials on PO75C together with belt occupation counts of PO75.
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Figure A8.2: Scatter plot for all materials on PO75C together with belt occupation counts of PO75.
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Figure A9.1: Scatter plot for all materials on PO75C together with belt occupation counts on PO75 with
0.5% coloration.
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Figure A9.2: Scatter plot for all materials on PO75C together with belt occupation counts on PO75 with
0.5% coloration.
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Appendix 7: Machine Learning Model
Performancefor V7 and V9 measured in
MAE for all materials

Below, the performance of all machine learning models tested during the try-out can be found. Pre-
processing versions V7 and V9 are indicated and on the y-axis the MAE can be observed. Due to the
amountof plots the figure is spread over two pages.
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Figure A10.1: ML model try-out results for V7 and V9 data pre-processing with MAE as performance
indicator.
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Appendix 8: Area densities with V9 pre-

processing for PO75 and AA101

Below, importantfigures and information for the area densities determined for PO75, with beltweigher
data from AA101 and V9 data pre-processing, can be found.

Table Al: OLSresults for area density prediction for PO75 using data from PO75 and AA101 after similar
data pre-processing to V9, grouping and drop of PET_G data.

Regression Coefficient / | Standard Error [kg/m?] 95% interval

Area density [kg/m?]
Constant 602,052 27,517 548,118
OTHER_POLYMERS 0,910 0,090 0,733
PVC 1,522 0,059 1,406
PET 1,971 0,066 1,842
CELLULOSICS 1,695 0,034 1,628
PO 0,376 0,013 0,350

Table A2: Summary of bootstrapping results presenting themean, median, 0.025 and 0.975 quantile for the
area densities determined with PO75C and AA106 as well as V9 pre-processing.

Mean Median 0.025 quantlile 0.975 quantile
Constant 602.3 602.17 540.7 663.08
OTHER_POLYMERS 0.913 0.912 0.698 1.133
PVC 1.524 1.524 1.344 1.706
PET 1.973 1.973 1.803 2.144
CELLULOSICS 1.694 1.694 1.615 1.775
PO 0.376 0.376 0.345 0.405
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Figure A11: Bootstrapping results for the area densities and the constant of PO75 and AA101 after 10,000
resampling applications and V9 data pre-processing. The mean, the median and the 0.025 and 0.975
quantiles are indicated.
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Appendix 9: Area densities with V9 pre-
processing and PAPER as distinct
category for PO75C and AA101

Below,importantfiguresandinformation forthe area densities determined for PO75C, with beltweigher
data from AA101 and V9 data pre-processing as well as PAPER as distinct category, can be found.

Table A3: OLS results for area density prediction with PAPER as distinct category for PO75C using data
from PO75C and AA106 after similar data pre-processing to V9, grouping and drop of PET_G data.

Regression Coefficient / | Standard Error [kg/m?] 95% interval

Area density [kg/m?]
Constant -41,875 15,684 72,616
BC 0,452 0,066 0,322
OTHER_POLYMERS 0.376 0,025 0,328
PAPER 0,482 0,073 0,338
pvC 0,939 0,061 0,819
PET 3,752 0,114 3,528
PO 0,464 0,008 0,448

Table A4: Summary of bootstrapping results presenting themean, median, 0.025 and 0.975 quantile for the
area densities determined with PO75C and AA106 and V9 pre-processing.

Mean Median 0.025 quantlile 0.975 quantile
Constant -41.9 -42 -76.84 -6.61
BC 0.452 0.451 0.299 0.609
OTHER POLYMERS 0.376 0.376 0.334 0.418
PAPER 0.483 0.482 0.323 0.645
PVC 0.938 0.938 0.823 1.051
PET 3.754 3.755 3.458 4.043
PO 0.464 0.464 0.444 0.484
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Figure A12: Bootstrapping results for the area densities and the constant of PO75C and AA106 after 10,000
resampling applications and V9 data pre-processing with PAPER as distinct category. The mean, the
median and the 0.025 and 0.975 quantiles are indicated.



