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Abstract 

Through improved plastic waste separation EU recycling goals can be reached and environmental economic 

advantages can be unlocked. To help with this endeavour, this research explores dynamic separation 

efficiency determination and waste stream characterization  through near infrared (NIR) separation unit and 

belt weigher data in a plastic waste sorting plant in Scandinavia. For the showcasing of these concepts, the 

goal was to predict the product quality of the high-quality (HQ) agglomeration line, using data of the first NIR-

scanner in the agglomeration line as prediction input. In the agglomeration line two NIR-scanners are 

connected in series to ensure high-quality separation of the material. Through the NIR-scanners, 

material-specific area flow data is available and through the belt weighers mass flow input to each NIR-

scanner is provided. Quality criteria are weight shares of PO (target material) and PVC (main contaminant). 

Difficulties arose, as the material-specific mass flow is needed for quality determination but only the total 

mass flow is provided. This was addressed by modelling area densities using a linear regression model, with 

belt weigher and NIR-scanner data as input. Using the calculated area densities, the material-specific mass 

flow was determined. For validation, summed material flows were compared with belt weigher data, yielding 

a mean absolute error (MAE) of 141 [kg/h] and a mean relative error (MRE) of 3%. The separation efficiency 

was determined through an XGBoost model, to predict material-specific area flow of the second NIR-scanner. 

Results were a MAE of 50.02 [m²/h] and an MRE of 1.1% for the total area flow. The final separation step 

could not be validated, as no NIR-analyser is present behind the second NIR-scanner. Therefore, separation 

efficiencies from the previous separator were transferred. Joining all three concepts the weight share of PO 

and PVC could be predicted with a MAE of 0.36% and 0.007%. For the joint outcome, greater uncertainty 

contribution was ascertained for the area densities compared to the XGBoost application. Future research is 

recommended for separation efficiency determination of the last separation step and for improved modelling 

of the area densities. 
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1 Introduction 

1.1 General Context 

In 2018, EU recycling goals got updated and extended to include packaging material through the 

amendment of the waste framework directive. This results in a minimum recycling rate of 65% for 

municipal waste and a maximum 10% of waste that is landfilled by 2035. Fu rthermore, until 2030, 70% 

of all packaging waste has to be recycled. Here, the subcategory of plastics must reach a minimum 

recycling rate of 55%. (European Commission, 2018)  

 

Currently only Slovenia and Germany achieve the goal for municipal waste. On the worst performing 

end Romania has a recycling rate below 15%. Apart from that only 8 countries reach the goal for 

packaging waste where Romania is again the worst performing country with a recycling rate below 

40%. (Eurostat, 2024a; Eurostat, 2024b)  

 

On a broader scale, global waste generation is predicted to rise from 2.01 billion tons per year in 2016 

to 2.59 billion tons in 2030 and to 3.4 billion tons in 2050. Connecting the produced waste to its 

environmental damage, 1.6 billion tons of CO2 equivalents were connected to solid waste treatment in 

2016. This resembles 5% of the global greenhouse gas emissions. Translating this value to the 

predicted waste generation in 2050, this indicates 2.6 billion tons of CO2 eq. emissions for 2050. 

Zooming into specific regions, for Europe and central Asia, a growth from 393 million tons in 2016 to 

490 million tons in 2050 is predicted. (Kaza et al., 2018) 

 

These Figures show the need for an effective and sustainable waste management. This is necessary 

to treat the increasing waste production, to reach the recycling goals of the European Commission and 

to leaver the potential environmental benefits through recycling. 

 

Putting numbers on these environmental benefits, life cycle analysis (LCA) methodology is used. To do 

this, a focus on packaging materials is set. Maga et al. (2019) found that recycled PET in food packaging 

can reduce the footprint of the packaging by 40%. Tonini et al. (2021) concluded that recycled HDPE 

only has 67% of the emissions of virgin HDPE. Recycled PP only showed 44% of the emissions of 

virgin PP. Lastly, Civancik-Uslu et al. (2019) determined that a cosmetic bottle with mineral fillers and 

recycled HDPE can save more than 30% CO2 eq. emissions compared to a virgin material bottle. 

 

Transferring these benefits to a more systemic level, Schwarz et al. (2021) determined that with 

recycling of the 15 most used polymers in Europe CO2 eq. emissions can be reduced by 73%. This 

means that 200 million tons of CO2 eq. can be avoided through the recycling of these plastics. This 

figure was obtained for a scenario with improved waste sorting. Improved waste sorting is mainly 

hindered by impurities, but shows the greatest enhancement of environmental benefits. Dokl et al. 

(2024) show similar findings. They acknowledge advances in waste processing, but claim that too much 

material ends up in the mixed plastic fraction due to insufficient sorting. This fraction faces downcycling 

and therefore symbolizes unused potentials during plastic waste sorting.  

 

Unused potentials during material separation and recycling are furthermore reflected by the economic 

risks of a waste separation plant. This is due to the fact that not only products of positive value but also 
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of negative value are produced (Feil et al., 2017; Ozdemir et al., 2021). Therefore, it becomes not only 

evident from an ecological perspective, but also from an economic perspective, that improved sorting 

and recycling is beneficial. 

 

A waste separation process is commonly composed of an initial comminution and classification step 

using shredders, drum sieves, wind sifters and ballistic separators (Feil et al. 2017; Ozdemir et al., 

2021). During or after this step, metals get removed by over belt magnets and Eddy current separators 

(Ozdemir et al., 2021). Lastly, the most crucial units for plastic separation are sensor-based sorters. 

These units separate remaining waste streams into mono-material streams, which enables their further 

processing. (Friedrich et al., 2022) 

 

One of the hindrances for improved waste separation processes is that waste separation plants are 

only evaluated very sparsely. Very short time frames of several weeks for the entire life span of a plant 

are reported. Longer periods of 1-2 years are identified in rare cases and are commonly connected to 

scientific projects (Gadaleta et al., 2020). The consequence of this is that most plants only optimized 

their machine settings and process parameters once. This is done during the commissioning of the 

plant. Nevertheless, the composition of waste is constantly changing (even by season), wherefore this 

optimization gets outdated rather quickly. Accordingly, a more frequent or even real-time optimization 

of process parameters is needed to extract the maximum amount of secondary raw materials. (Kroel et 

al., 2024a)  

 

To address the described problems and to leverage the shown advantages of improved material 

separation, a more frequent material sorting plant optimization needs to be implemented. This study 

aims to help with this endeavour by exploring opportunities of in-plant recorded data use, with the 

ultimate goal of real-time plant optimization. As a first step towards this objective, the purity prediction 

of the agglomeration line product in a plastic waste sorting plant in Scandinavia will be showcased. 

1.2 Company Cooperation  

The thesis research project is conducted with Sutco Recyclingtechnik GmbH located in Bergisch 

Gladbach, Germany. Sutco is one of the leading waste separation plant planners for large scale waste 

separation facilities, with worldwide construction activities. Their latest projects were carried out in 

Poland, Chile and Austria, where they constructed a plastic sorting facility that has the capacity to 

process 50% of Austria’s plastic packaging waste. (Sutco, 2024a; WMW, 2024) 

 

Recently, Sutco increased effort for full digitalization of waste separation plants, with the ultimate goal 

of enabling real-time plant optimization and to set up a digital twin for each facility (Sutco, 2024b). This 

work hopes to deliver a useful building block to this goal. 

 

Apart from this, the thesis research project is part of the “Energieeffiziente Sortieranlage” (EnSort) 

project. The project has the objective to facilitate waste sorting plant optimization in real-time and to 

foster energy efficiency. Next to Sutco, other partners are TU Dresden, Universität Bremen and Ruhr-

Universität Bochum as well as TOMRA Sorting GmbH (TU Dresden, 2023). TOMRA is the company 

that produced the near infrared (NIR) scanners for the analysed waste sorting plant in Scandinavia.  
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1.2.1 Waste Separation Plant 

The data for this thesis research project is retrieved from a plastic sorting plant in Scandinavia, which 

was planned and built by Sutco. Belt weigher data is directly available from Sutco, while NIR-scanner 

data is provided by TOMRA. In Figure 1, a simplified process flow chart of the plastic sorting plant be 

found. Preconditioning and classification of the material are conducted upfront and have been left out 

for simplicity.  

 

 
Figure 1: Process overview of the analysed plastic waste sorting facility. 
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After the preconditioning and classification, the material is split up into a 2D and 3D section. For the 2D 

section subsequently PE, PP and misclassified 3D objects are removed and cleaned. The residues end 

up in the agglomeration (“Agglo”) section , which resembles a mixed plastic stream. The higher quality 

agglomeration stream can be turned into plastic products, which have low requirements regarding 

material characteristics. Low-quality agglomeration streams end up in incineration, but are wanted due 

to their high burning value. Due to the heat application in both cases, PVC gets removed from the 

streams to avoid the formation of chloric acid. For the 3D section PP, PET bottles, HDPE, PET trays, 

EPS, misclassified 2D materials, PS and opaque PET bottles get removed and cleaned. The residue 

of the 3D section is the basis for the low-quality agglomeration stream.  

 

1.2.2 Agglomeration – Working principles 

To limit the data, available to this study, to a reasonable and workable amount, it is further focused on 

the agglomeration section of the plant. This section was chosen due to its exceptional ly high data 

availability compared to other separation lines. This advantage comes with the payoff that this part of 

the plant is fed with the residuals of the remaining separation lines. Therefore, the received material is 

more likely to act unexpectedly but a higher data resolution is obtained.  

 

To generate the high-quality (HQ) and low-quality (LQ) agglomeration stream, six NIR-scanners and 

two belt weighers are involved. After the sorting steps, another process for compaction of the HQ 

product is added. Moreover, four additional belt weighers are installed for quality control and data 

acquisition. An overview of the agglomeration line can be found in Figure 2.  

 

 
Figure 2: Agglomeration line of the plastic waste sorting plant. 
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The HQ agglomeration line is fed with 2D residues and residues from preconditioning and classification 

with sizes between 15-50mm. To avoid overloading of the HQ agglomeration line belt weigher AA101 

was installed. Therefore, if material streams greater 5 [t/h] are detected, the preconditioning residue is 

led to the LQ agglomeration line for processing. This is done as the preconditioning residue contains 

less target material. Target materials are PE and PP, which are together known as polyolefins (PO) in 

this context. On PO75, PO is ejected, while all other materials are dropped and transported to PO50 

for processing in the LQ agglomeration line. The names of the NIR-scanners indicate the desired PO 

contents. Therefore, for the HQ agglomeration line a PO content of 75% is wished and for the LQ 

agglomeration product 50% PO content is aimed for. In a next step a cleaner ensures ejection of PVC 

to avoid formation of chloric acid during further processing. Finally, the HQ stream is sent to a bunker 

or to an additional compaction and cleaning step.  

 

The LQ agglomeration line receives input from the 3D residues as well as the preconditioning in the 

case that the HQ line is overloaded. With 8.5 [t/h] the LQ line has higher capacity than the HQ line and 

can redirect input to the unwanted fraction in case of overburdening. Like in the HQ agglomeration a 

hierarchy is applied, where the preconditioning residue is preferred over the 3D residue. This is done 

as the preconditioning residue has a higher PO content compared to the 3D residue. On PO50, PO is 

ejected and passed on to PO50C, while the dropped material enters the unwanted category. This 

unwanted material is sent to AA144, where PVC is ejected. The drop of AA144 resembles the residue 

of the sorting plant. On PO50C, separated PO is cleaned through ejection of PVC and sent to the LQ 

agglomeration bunker.  

 

After separation of the HQ and LQ agglomeration product, PVC ejects from PO75C, PO50C and AA144 

undergo another PVC separation on AA135. This showcases the importance of PVC removal and gives 

insight that the separation efficiency of NIR-scanners is not perfect. After processing on AA135, PVC 

is sent to a bunker, while the drop of the scanner enters the residual stream of the waste sorting plant.  

To fully understand the quality requirements of the HQ and LQ agglomeration products, desired product 

compositions are listed in Table 1. These compositions were agreed up on between Sutco and the 

sorting plant proprietor.  

 
Table 1: Quality requirements of the HQ and LQ agglomeration line product.   

Quality  PE and PP PVC PET Other Plastics Organics PS 

HQ >75%      

  <1.4%     

   <6%*    

    <13%*   

     <10%*  

LQ       

 >50%      

  <2%     

   <15%*    

    <20%*   

     <20%*  

      <5%* 

*Agreed upon but not tested/evaluated 
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Inspecting the quality requirements, especially the low PVC thresholds give reason to the focus on PVC 

removal during the agglomeration line processing. This is due to the fact that the agglomeration line 

product is either used for incineration or will be heated up for formation of new products. During these 

processes chloric acid could form, which explains the low threshold for PVC. With the high PO contents 

that are needed the targeting of PO on the initial NIR-scanners of both lines becomes compulsory. High 

PO content raises burning values and enables processing as a plastic, wherefore the material is 

wanted. Apart from that, it is interesting that fewer material contents that were agreed on were actually 

tested. This is due to cost constraints of probing and can be reasoned by a reduced amount of quality 

requirements, of the agglomeration product buyers, then initially expected.     

 

1.2.3 Area under study 

Zooming further in, the area of application for this study was determined. The goal of this research is 

to deliver an exploration regarding product purity prediction in waste separation plants. This is intended 

as starting point to enable real-time machine setting optimization during waste separation. No study 

with a similar goal could be found in literature research. Therefore, as a first step, the smallest possible 

unit for this undertaking was sought after. Accordingly, a part of the HQ agglomeration line was 

selected, as it has the highest data availability paired with the highest expected data quality. This 

expectation is due to a reduced amount of contaminations in the HQ agglomeration input compared to 

the LQ agglomeration input. The described part of the HQ agglomeration line can be observed in 

Figure 3. 

 

 
Figure 3: Area of application of this study, placed in the HQ agglomeration line and consisting out of two 
NIR-scanners and two belt weighers.  

 

Compared to Figure 2, belt weigher AA201 and bunker SB401 are left out. This was done as the 

material leaving PO75C is either led into the agglomeration process and weighed by AA201 or fed into 

the bunker and baled at a later stage. As the bunker filling level is detected in m3 and the density of the 

material is unknown, uncertainty for the use of this data was considered too high.  
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2 State of the art 

To lay the foundation for the identification of the knowledge gap and the development of the research 

question, important concepts to the problem and goal of this research will be explained. Regarding 

modelling, focus was laid on methodologies that turned out crucial during the execution of this work.  

2.1 NIR-scanner working principle 

NIR-scanners have become the prevalent technology and a global trend for the separation and 

identification of plastic waste (Zheng et al., 2018, Dokl et al., 2024). NIR separation units deploy 

material classification, using the near infrared spectrum between wavelengths of 750 nm and 2500 nm. 

To do this material is exposed to NIR radiation and the reflected spectra gets analysed. These spectra 

differ per type of plastic due to their unique chemical composition. Especially, the main groups of the 

polymers like carbon (C) – hydrogen (H), nitrogen (N) – hydrogen (H) and oxygen (O) – hydrogen (H) 

groups as well as other hydrogen containing groups react differently to the NIR spectra. These effects 

can be due to absorption of energy, overtones, interferences and more. Due to this, each material emits 

unique reflections, which resemble the classification mechanisms of NIR separation units (Zheng et al., 

2018; Du et al., 2022; Dokl et al., 2024).   

 

Although NIR-scanners are one of the technologies with the highest signal to noise ratio, the 

identification of materials is not an easy task (Zheng et al., 2018). To successfully classify and sort the 

particles several process steps need to happen. At first, objects have to be identified from the obtained 

image. This means that for each pixel of the image it has to be decided if it belongs to an object or not. 

Through these decisions, objects can be represented as clusters of pixels. After this, each pixel of an 

objects gets assigned a material class and with the help of customized recipes the object can be 

categorized. After successful detection, objects of interest gets ejected from the stream via air nozzles 

(Friedrich et al., 2022) 

 

Separation can either happen via positive or via negative sorting. In positive sorting, materials targeted 

by the separation process get ejected, while for negative sorting impurities are removed. In the first 

case the NIR separation unit can also be referred to as rougher, whereas for the second case they are 

called cleaners. (Kroell et al., 2024a)  

 

In Figure 4, common sensor-based separation unit setups can be observed. Particles can be either 

feed via a conveyor belt, a chute or by falling into the separation unit. Air nozzles are used to enlarge 

or decrease the trajectory of particles ejected from the conveyor belt (a,b,d) or to shoot out particles 

that are falling vertically (c). (Maier et al., 2020) 
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Figure 4: Different setups for a sensor-based separation unit with indication for radiation used during 
detection (yellow shapes), air flows for ejection (blue shapes), targeted particles (red shapes) and non -
targeted particles (green shapes) – a) Feeding via conveyor belt, b) Feeding via chute, c) Free fall feeding, 
d) Feeding via conveyor belt. (Maier et al., 2020)   

 

2.2 Machine Learning in Waste separation 

Machine learning (ML) is used and researched for several improvements of the waste management 

process. An overview of applications found during literature research is presented in the following.  

 

Several researchers propose the use of smart bins for improved source separation of waste. Desai et 

al. (2018) investigate the distinction between degradable and non-degradable waste via a camera unit 

together with a convolutional neural network (CNN). Implementation is planned using a raspberry pi 

unit and a robotic arm to take over separation for the user. Sheng et al. (2020) propose a similar but 

more sophisticated approach. Their goal is to separate waste into metal, plastic, paper and residual 

waste fractions. For this they apply a tensor flow deep learning model to recorded pictures and connect 

their outcomes to an internet of thing (IoT) approach. This approach is characterized by tracking the fill 

height of the bins to optimize collection. Rahman et al. (2022) implement a very similar methodology 

but show the potentials of the framework by implementing a CNN model instead of a tensor flow model. 

Chen et al. (2022) apply the same approach but take it a step further by implementing an additional ML 

model for the optimization of the waste collection routes. 

 

Identification of material with NIR data can be challenging due to noise present in the received spectra. 

To improve this several approaches implementing ML have been found. Du et al. (2022) established a 

CNN for the detection of different textile materials. For this, they converted NIR spectra of each object 

into a 40x40 greyscale image making. With this they made it usable for a CNN model and could achieve 

an accuracy of over 95%. The added benefit of the ML approach is the improved interpretation of the 

NIR spectra, which until now is one of the bottlenecks for successful textile waste classification. Zheng 

et al. (2018) used the combination of a hyperspectral imaging system (HIS), a NIR-scanner and 

principal component analysis (PCA). With this, they achieved 100% classification accuracy for 

acrylonitrile butadiene styrene (ABS), polystyrene (PS), polypropylene (PP), polyethylene (PE), 

polyethylene terephthalate (PET), and polyvinyl chloride (PVC). This is a success, as with conventional 
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NIR-scanners there is a time lag between provision of location and spectral data, while the NIR-HIS 

combination delivers this information in one step. Another difficulty is the detection of black objects. For 

this, Dokl et al. (2024) propose the joint use of cameras and NIR-sensors together with ML to achieve 

sufficient separation.  Kroell et al. (2024a) shift the focus from classification of material to the separation 

efficiency of the NIR-units. For this, they trained a polynomial regression (PR), a random forest (RF) 

and an artificial neural network (ANN). Their main feature for the model training was the conveyor belt 

occupation density [m2/m2] and the material-specific conveyor belt occupation density [m2/m2]. All three 

models predicted the separation efficiency of the unit with a mean absolute error (MAE) below 6.3%. 

The ANN performed best with a MAE of 3%. These findings represen t a step towards real-time machine 

setting optimizations and improved plant simulation. Nevertheless, their generalizability towards 

application in real world separation facilities is in question.     

 

Zooming out from material classification and separation efficiency determination, Kroell et al. (2021) 

contribute to sensor-based material flow characterization and process monitoring. As NIR-scanner 

information is finally broken down into 2D data, information about volume or weight through 

corresponding densities is not available. Furthermore, weighing is inhibited during the process, as this 

would mean a stopping of the conveyor belt if no belt weighers are present. Therefore, Kroell et al. 

(2021) used a setup consisting of laser triangulation and an RGB camera to retrieve the missing 

information. Training a RF model with RGB camera and laser triangulation data, R2 values of 0.76 could 

be reached. This resembles a major improvement compared to conventional area density databases, 

which reached a maximum R2 of 0.53 for the tested material. In a follow up research , Kroell et al. 

(2024b) managed to determine particle weights of plastic pre-concentrates in a lightweight-packaging 

sorting plant with NIR sensor data only. In the described case, they managed to outperform manual 

quality control with measurement uncertainties of 0.31 w-%.  

 

Searching for ML applications on a more systemic level, Xi et al. (2022) use an ANN model to predict 

waste processing capabilities in Chinese cities. For this, they use features like population, education 

level, number of waste collection vehicles, budget of the local government and many more. With this, 

a prediction accuracy of 95% could be achieved. Furthermore, the results were used to extract the most 

important feature of the model. Accordingly, the public budget expenditure was the most influential 

variable with a weight of 52%. Furthermore, it became evident that with an appropriate separation, 

municipal waste can be reduced by 30-40% in the observed cases. This shows the capability of ML 

methodologies to analyse large-scale systems, to pinpoint hotspots and to identify areas of interest in 

the field of waste management.  

2.3 System characterization and monitoring 

To understand how the quality of the agglomeration line product can be predicted, an introduction to 

waste sorting plant monitoring and waste stream characterization is needed.  

 

Prevalent methods for waste separation plant characterization are mass balance approaches like 

material flow analysis (MFA). These can be implemented using common MFA software like STAN. To 

do this, processes and transfer coefficients (TC) are defined. TCs symbolize the distribution of material 

inputs to the outputs of the process. This is done in percentual fashion and material wise. (Feil et al., 

2017; Gadaleta et al., 2020; Tanguay‐Rioux et al., 2022) 
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To successfully determine a system, all inputs regarding amount and material composition as well as 

TCs of all processes have to be known. Alternatively, enough in -plant streams, their composition and 

a sufficient amount of TCs must be determined. Furthermore, an underdetermined system can become 

determined through an optimization problem approach. This methodology is proposed by Tanguay‐

Rioux et al. (2022) and applies a mass conversion approach together with a defined set of constraints 

and sampling.  

 

For TC determination, predominantly expert knowledge is applied. Here, the problem is that already 

known TCs can hardly be transferred to a new separation problem. This is due to that waste stream 

composition is changing based on geographical scope. Therefore, TCs differ from separation process 

to separation process. Tanguay‐Rioux et al. (2021) try to summarize common TCs for separation units 

and to establish a minimum and maximum separation efficiency range. An example for NIR-scanner 

separators can be found in Table 2.  

 
Table 2: Minimum and maximum separation efficiencies for NIR separation units (Tanguay‐Rioux et 
al., 2021). 

Unit Minimum TC Maximum TC 

NIR-PET 0.83 0.93 

NIR-HDPE 0.71 0.83 

NIR-Mixed Plastics 0.74 0.74 

 

Another approach to characterize a waste separation system is the sampling of important flows within 

it. Following the methodology of Tanguay‐Rioux et al. (2022), composition and quantity of a flow are 

sampled. Alternatively, one of both information is retrieved, if this is sufficient to determine the system. 

Another framework for sampling is presented by Feil et al. (2017), where sampling can be classified 

into 3 main types. The first approach is to determine the quantity and the quality of the product. Th e 

second approach is to sample the residue to get to know the amount and type of wrongly sorted 

particles. Lastly, the third approach is to sample the process with the goal of complete data acquisition 

at all process steps. 

 

Nevertheless, the characterization of a system with static TCs and sampling comes with limitations. As 

described by Kroell et al. (2024a), composition of waste streams changes significantly over time, 

sometimes even by season. Furthermore, information on waste stream composition is barely available, 

as showcased by a study conducted by Eriksen & Astrup (2019). In their research , they sampled 

3700 kg of source separated plastic waste, to get to know its composition. This was necessary, as no 

information on source separated plastic waste was available upfront.  

 

Focusing on the material flows inside separation plants, Curtis et al. (2021) report influences on product 

purity due to material flow changes during operation. These fluctuations can be caused by braid 

formations, bridging and material flow delays due to object shapes or machine specific discontinuous 

material discharge. An example for the object specific delay could be a round object that rotates on top 

of a shredder unit and therewith delays its processing. Regarding the machine specific delay, drum 

sieves are a good example where smaller objects get discharged faster than bigger objects.   

 

Trying to establish dynamic TCs, Küppers et al. (2020) investigated the influence of material 

composition and conveyor belt occupation on the separation efficiency of NIR separation units. For the 

material composition, only a negligible influence could be found. Nevertheless, for the belt occupation, 

a 4th degree polynomial could be fitted. Therewith , TCs have been adjusted according to the conveyor 
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belt occupation and reached a R2 of 0.94. Kroell et al. (2024a) took a similar approach using an ANN 

model and could predict separation efficiency with a MAE of 3%.  

 

To implement dynamic TCs and process monitoring, data from sensor-based material analysers is 

needed. Nevertheless, sensor-based analysers are connected to high economical cost, wherefore 

intensive process monitoring with this technology is economically unfeasible. A potential solution could 

be the use of already existing units within the plant. Conveniently NIR separation units have to detect 

material composition to enable separation. As the data collected by the sensors is task specific, it 

requires additional process step to make it usable but resembles enormous process monitoring 

potentials (Kroell et al., 2022a). For complete process monitoring, additionally the time that the material 

travels from one unit to the next has to be known. Furthermore, fluctuations and delays of material flows 

must be detected and considered in monitoring and process modelling (Curtis et al., 2021). Apart from 

that, an out of the box benefit of extensive process monitoring is that dangerous objects can be 

identified and removed before they cause harm. (Vrancken et al., 2017) 

 

A last step to complete waste separation process characterization is the evaluation of the process 

performance. Three waste separation plant performance indicators were introduced by Feil et al. (2016) 

and used by the cited studies of Küppers et al. (2020), Curtis et al. (2021) and Kroell et al. (2022b, 

2024a). The indicators are purity, recovery and yield. Compared to this, Tanguay‐Rioux et al. (2022) 

and Gadaleta et al. (2020) make use of two main indicators, namely recovery and purity. As their 

definition of recovery is equivalent to the definition of yield from Feil et al. (2016), the definitions of Feil 

et al. (2016) will be used for the rest of this work to avoid confusion.  

The recovery R [-] describes the ratio of the sorting process input with regards to the sorting process 

product. Here, the sorting process product means the flow that can be sold with positive economic 

value. In the formula below 𝑚 is indicated as mass:  

 

 𝑅 = 
𝑚𝑝𝑟𝑜𝑑𝑢𝑐𝑡

𝑚𝑖𝑛𝑝𝑢𝑡

 (2.1) 

 

The yield Y [-] refers to the amount of targeted material that ended up in the product. This is evaluated 

based on the amount of targeted material that was present in the input stream. The formula can be 

found below, where 𝑚 is referred to as mass and 𝑐 is referred to as concentration:   

 

 𝑌 = 
𝑚𝑝𝑟𝑜𝑑𝑢𝑐𝑡 ∗  𝑐𝑡𝑎𝑟𝑔𝑒𝑡

𝑚𝑖𝑛𝑝𝑢𝑡 ∗ 𝑐𝑡𝑎𝑟𝑔𝑒𝑡

 (2.2) 

 

The purity P [-] symbolizes the ratio of target material in the product. As no separation process is perfect, 

it can be seen as the main quality criteria. In the following formula 𝑚 is represented as mass:  

 

 𝑃 = 
𝑚𝑡𝑎𝑟𝑔𝑒𝑡

𝑚𝑝𝑟𝑜𝑑𝑢𝑐𝑡

 (2.3) 
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2.4 Relevant statistical models and concepts for this work 

Moving on from the more general introduction of relevant research and concepts, in this subchapter 

important statistical methodologies, phenomena and models for this work will be introduced. 

 

2.4.1 Ordinary Least Square regression 

Starting off, the ordinary least square (OLS) regression plays a big role in the later deployed area 

density determination based on NIR-scanner and belt weigher data. When the OLS method was 

invented, the novelty of it was that the residuals between the estimated and measured values were 

considered (Dismuke & Lindrooth, 2006). This leads to a formulation of the regression problem, where 

𝑌 (𝑛,1) represents the dependent variable, 𝑋 (𝑛,𝑝) the independent variable, 𝛽 (𝑝,1)  the estimators 

and 𝜀 (𝑛,1)  the residuals. Apart from that, 𝑛 indicates the number of observations and p the number of 

independent variables:  

 𝑌 = 𝑋 ∗  β +  ε (2.4) 

 

The estimators are determined by summing up the squared residuals and minimizing them. For this, 

the estimate of the dependent variable gets calculated with the estimators as well as the independent 

variables. The result gets then subtracted from the measured values of the dependent variable to 

determine the residual. The advantage of this technique is that the minimization of the squared 

residuals can be solved through a mathematical formulation and does not require any iterative 

procedures. The respective formula can be found below (Dempster et al., 1977; Dismuke & Lindrooth, 

2006):  

 𝛽 = (𝑋𝑇𝑋)−1𝑋𝑇𝑌 (2.5) 

 

To obtain a valid result, several assumptions have to be fulfilled. These are the normal distribution of 

the residuals, homoscedasticity and independency of the independent variables. Homoscedasticity can 

be described as a constant variance of the residuals across the observed data. Furthermore, 

autocorrelation should be controlled for. (De Souza & Junqueira, 2005; Dismuke & Lindrooth, 2006) 

 

2.4.2 Multicollinearity 

A problem that can occur during the application of OLS is multicollinearity. Multicollinearity means that 

the independent variables are highly correlated. In general, this does not violate regression 

assumptions, but can cause problems with the interpretation of the regression coefficients 

(Gujarati, 2021). This means that the prediction of the dependent variable by the independent variables 

is not hampered but that e.g. confidence intervals of regression coefficients can contain zero. 

Confidence intervals with this characteristic are problematic, as it is unclear if an increase of the 

respective independent variable leads to an increase or decrease of the goal variable (Paul, 2006). 

This can also be explained in a way that the independent variables are correlated in a manner where 

they share very equal explanatory power. As a result, the model splits up the influence on the goal 

variable randomly. Lastly, multicollinearity can lead to sensitivity for small changes in data due to the 

numerical workings of the algorithm (Gujarati, 2021).  

 

2.4.3 Bootstrapping 

To obtain greater confidence in OLS modelling outcomes bootstrapping can be applied. Bootstrapping 

is used to generate inferences about population parameters with a limited number of samples. In other 

words, the goal is to quantify uncertainty about population parameters at hand. To achieve this, the 

data is resampled several times with the same amount of data points of the initial sample. The 
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resampling is done through random extraction of data points from the original dataset where several 

drawings of the same datapoint are possible. Assuming that the original sample is representative, 

bootstrapping can therefore help to estimate population parameters and their uncertainty. This is due 

to the variation in the generated samples and the parameters that can be calculated for each of them. 

(Choi, 2016; Youness et al., 2023) 

 

Another advantage is the application of further statistical methods like confidence intervals which can 

be explored through bootstrapping by a data driven approach. This can help to generate greater 

confidence in the retrieved population parameters, as they have not only been inferred from the initial 

sample but have been retrieved from a number of subsamples. (Choi, 2016; Mokhtar et al., 2023) 

 

2.5 Relevant machine learning models for this work 

For the state-of-the-art description of machine learning models, it was focused on four models that 

became important to the thesis project during the conduction of this work. These models are Ridge 

Regression, Gradient Boosting, Extreme Gradient Boosting (XGBoost) and Multilayer Perceptron 

(MLP). In the following subchapters the inner workings of each model are explained and other models 

that were used are briefly introduced. 

 

2.5.1 Ride Regression 

Ridge regression can be seen as a further development of OLS methodology. For this, a regularization 

term is added to the sum of squared errors before optimization. The influence of this term is controlled 

by the hyperparameter λ, which controls the balance between over- and underfitting. The term itself is 

composed of the sum of the squared estimators. This adds a penalty to the model for the use of 

estimators with great magnitude. Therefore, ridge regression tends towards shrinking estimators and 

spreading explanatory power over a broader range of them. As a result, the broader spread of 

explanatory power makes the model more robust regarding variation in the data. A representation of 

the optimization problem can be found below. (Rokem & Kai, 2020; Hoque & Aljamaan, 2021; La Tour 

et al., 2022; Nugroho et al., 2022)  

 

 𝛽 = 𝑎𝑟𝑔𝑚𝑖𝑛(∑(𝑌 −�̂�)2 + λ ∑𝛽2)  (2.6) 

 

Advantages of linear regressions are that the relationships they make are easy to understand and to 

interpret. While a non-linear model will sometimes be able to solve a prediction task in a more accurate 

way, a linear model will most probably have a more traceable result. Furthermore, linear models are 

computationally favourable and have advantages for small sample sizes (La Tour et al., 2022).  

 

2.5.2 Gradient Boosting 

Gradient boosting represents the idea of combining many weak learners into one strong learner. More 

specifically, each weak learner is fitted on the residuals of the previous model guided by a loss function. 

Next, the newly generated weak learner is added to the model, adjusted by a learning rate, creating the 

next iteration of the strong learner. Therefore, each iteration round is a combination of all weak learners 

that were fitted in previous rounds. The use of the residuals for each new fit is the reason why the 

algorithm is called gradient boosting, as the residuals represent the negative gradient of the loss 

function. After one of the predefined stopping criterions is met, the final gradient boosting model is the 

sum of all learners adjusted by a learning rate, where the fitting of the learners is guided by a loss 
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function. As a loss function several options can be chosen and regularization can be added. The weak 

learners are commonly deployed as decision trees. (Anghel et al., 2018; Fan et al., 2022)  

 

Decision trees answer regression or classification tasks by splitting up the data based on binary criteria 

until an estimate is reached. The split criteria are determined by splitting the data, iterating through all 

possible splits, and choosing the best split option based on a loss function. This process is repeated 

for each created split (node) until a predefined minimal split size or a predefined end point (leaf) sample 

size is reached. In a classification problem the leaves aim to represent unique classes while in a 

regression problem the average of the remaining data points is taken. (Xu et al., 2005; Pekel, 2020) 

 

2.5.3 XGBoost 

Extreme gradient boosting or XGBoost is a further development of gradient boosting (Fan et al., 2022). 

For this, solely decision trees are deployed as weak learners and a focus is laid on the scalability of the 

model. Therefore, one can talk of XGBoost as a gradient boosting model tuned for small process times, 

application to the biggest possible number of tasks and effective computational resource use. (Chen & 

Guestrin, 2016; Sahin, 2020) 

 

This is achieved by the implementation of approximate splitting instead of exact greedy splitting. 

Therefore, not all split possibilities are tested, but percentiles regarding each feature are used to cut 

computational resource use. Furthermore, shrinking and feature sampling are implemented. These two 

techniques were not commonly used in other gradient boosting approaches before. Feature sampling 

conducts a random sampling of available features before split search. Shrinking, on the other hand, 

introduces another term next to the learning rate that controls the influence of the newly added trees. 

Additionally, a procedure to handle sparse data was implemented. Conventional tree algorithms are 

commonly optimized for dense data. This does not reflect the majority of use cases, wherefore the 

sparse data handling of XGBoost resembles an advantage. Lastly a parallelization, for e.g. split finding 

across features, and improved memory usage were added to further tune the algorithm. The described 

improvements are claimed to be the key to the widespread use and success of the algorithm. (Chen & 

Guestrin, 2016; Sahin, 2020) 

 

2.5.4 MLP 

A multilayer perceptron or MLP model is a neural network defined by an input, an output and a varying 

number of hidden layers. The hidden layers represent the processing between the input and the output. 

Therefore, they are referred to as “hidden”, as they are not presented to the user of the model. Each 

hidden layer is composed of a number of nodes. These nodes are fed by all inputs of the layer, adjusted 

by weights and a node specific bias term. Nodes are also referred to as neurons and the bias is added 

to influence the activation function independently from the weights. The sum of the weighted inputs, 

together with the added bias term, is then fed into a non-linear activation function. The result of this 

function represents the value of the respective node. This process is repeated for all nodes and 

obtained values become the input of the next hidden layer, including their own weighing, bias and 

activation. Here, the non-linearity of the activation function becomes imperative, as it enables the model 

to represent non-linear relationships. Finally, the last hidden layer feeds into the output layer, which 

presents the result of the model (Itano et al., 2018; Nugroho et al., 2020; Ogunsanya et al., 2023). An 

example for an MLP model structure can be found in Figure 5.  
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Figure 5: MLP network structure for three hidden layers together with three neurons in the first, two 

neurons in the second and three neurons in the third hidden layer. ( Itano et al., 2018) 

 

Model training is achieved via optimization methods like gradient descent in combination with a loss 

function to update the weights and biases. Gradient descent indicates the needed direction of change 

for the weights and biases to minimize the loss function. This process is adjusted by a learning rate to 

balance over- and underfitting. The described process is called back-propagation. (Itano et al., 2018; 

Nugroho et al., 2020) 

 

2.5.5 Other relevant models 

Other models that are present in this work but were not important parts of it will briefly be introduced 

on in this section. 

 

The Decision Tree model has a straightforward approach. It makes predictions based on simple split 

decisions. These split decisions are derived from the features and result in a singular decision tree. 

Extra Trees, Random Forest, and Bagging Regression are ensemble ML models. These models 

combine the predictions of multiple decision trees and obtain an outcome by averaging their results. 

The Bagging Regression performs several bootstrapping rounds and builds a decision tree for each 

obtained data set. The Random Forest model also performs bootstrapping but introduces variance by 

only using a randomly selected subset of features to make split decision. The Extra Tree model does 

not perform bootstrapping but chooses random subsamples from the data. In a next step it builds a 

decision tree for each subsample with completely random split decisions. (Pedregosa et al., 2011). 

 

K-Nearest Neighbors (KNN) predicts outcomes based on the values of the nearest data points, using 

their proximity to the input. Elastic Net Regression (ENR) is a linear model that account for 

multicollinearity and overfitting through regularization. ENR incorporates an additional penalty to 

perform feature selection by shrinking redundant coefficients to zero (Pedregosa et al., 2011).  

 

2.6 Machine Learning Model Training 

A machine learning model must be trained and adapted to carry out classification and regression tasks. 

Therefore, in the following subchapters machine learning model training and connected concepts will 

be explained.   
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2.6.1 Training, Validation and Test Split 

To enable the different training phases of a machine learning model, available data must be split into 

different data sets. The training data set is made to do the actual model training. Model training is 

composed of adjustments to internal model parameters like weights or data splitting decisions. The 

validation set is used for hyperparameter tuning and is commonly created from the training data. This 

is often implemented through cross validation. Lastly, the test set is used to generate an unbiased 

evaluation of the model performance on data that was not seen during model training or 

hyperparameter tuning. (Kuhn & Johnson 2013; Yoon, 2021) 

 

2.6.2 Cross validation 

Cross validation is a technique that helps to evaluate the performance of trained ML models on unseen 

data. This is done by repeatedly performing a train validation split for different regions of the data. A 

common approach is k-fold cross validation. For this, the number of cross validations is defined and 

the data is divided into the same number of folds. Typical numbers of cross validations are 5 or 10. 

Afterwards the model training is repeated until each fold was used once as validation data set. Model 

performance is afterwards reported as an average of the predefined scoring function for all trained 

models. The advantage of this methodology is that it can accurately identify overfitting and indicates 

the generalizability of the compiled model. Through the repeated training with different splits, a rather 

complete image for different particularities is created. Therefore, if specific data points in the training 

data lead to overfitting, the proneness of the model is revealed through the different training validation 

splits. Furthermore, the procedure shows how well the model works with different parts of the data 

acting as unseen data. Therefore, if the model performs equally well in all cases generalizability is 

shown. (Kuhn & Johnson 2013; Wong, 2015; Berrar, 2019) 

 

2.6.3 Hyperparameter spaces for selected machine learning algorithms 

Hyperparameters are settings of machine learning models that are not tuned during training of the 

algorithms. Therefore, they are higher level tuning options that influence ML model training itself. 

Accordingly, hyperparameters have to be optimized apart from the model training. (Probst et al., 2019)  

Hyperparameters and their common tuning ranges for Gradient Boosting, MLP, Ridge Regression, and 

XGBoost were researched. This was done as these algorithms present important ML models used in 

this work. Results are presented in Table 3 to 6. Selection of hyperparameters, their workings and the 

specifics of their tuning are justified in the methodology section.   

 

In Table 3, hyperparameters for Ridge Regression that were found in literature are presented. Sources 

and areas of application are indicated. Regarding areas of application, an interesting focus of 

publications on brain activity and health can be observed  
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Table 3: Hyperparameter ranges for ridge regression. Areas of application are named at first appearance. 
After that the type of tasks is indicated as classification (C) and regression (R).   

Hyperparameter Hyperparameter Space Area of application Source 

alpha (10-5, 1015) - spaced 
logarithmically, 20 values 

Brain activity prediction, 
regression task 

La Tour et al. (2022) 

[0.1, 0.3, 0.5, 0.7, 1, 1.5] Health prediction of babies 
after birth, regression task 

Nugroho et al. (2022) 

(10-4, 105.5, 0.5 log10)  Brain activity prediction, 

regression task 

Rokem & Kay (2020) 

[0.001, 0.01, 0.1, 1, 10, 100, 
1000] 

Stock price forecasting, 
regression task 

Hoque & Aljamaan 
(2021) 

    

solver [svd, cholesky, lsqr, sag, 
sparse_cg] 

R La Tour et al. (2022) 

 

Hyperparameters, their area of application and respective sources of the MLP algorithm are indicated 

in Table 4. Focus in the literature is laid on improvement of hyperparameter tuning. Apart from that 

more literature for classification then regression tasks were found. 

 
Table 4: Hyperparameter ranges for MLP. Areas of application are named at first appearance . After that, the 

type of tasks is indicated as classification (C) and regression (R).   

Hyperparameter Hyperparameter Space Area of application Source 

hidden_layer_size 1st layer: [12, 18, 30, 42, 

60, 78] 

Health prediction of babies 

after birth, regression task 

Nugroho et al. (2022) 

1st layer: (4, 144) Methodology for improved 
hyperparameter 
optimization, classification 

tasks 

Youness et al. (2023) 

1st layer: (10, 15) 
2nd layer: (1,10) 
3rd layer: (1, 10) 
4th layer: (1, 10) 

Methodology for improved 
hyperparameter 
optimization, classification 
tasks 

El-Hassani et al. (2024) 

1st layer: (1, 16) 

2nd layer: (1,16) 
3rd layer: (1, 16) 
4th layer: (1, 16) 
5th layer: (1, 16) 

Methodology for improved 

hyperparameter 
optimization, classification 
tasks 

Itano et al. (2018) 

1st layer: [3, 6, 9] Product quality prediction, 
regression task 

Ogunsanya et al. (2023) 

    

alpha [0.001, 0.005, 0.01, 0.05, 
0.1, 0.5]  

R Nugroho et al. (2022) 

(0.0001, 2) C El-Hassani et al. (2024) 

(0, 0.001) C Itano et al. (2018) 

    

activation [tanh, relu, logistic]  C El-Hassani et al. (2024) 

 [tanh, rectifier, maxout] C Itano et al. (2018) 

    

solver [sgd, adam, lbfgs] C El-Hassani et al. (2024) 

    

learning_rate [constant, invscaling, 
adaptive] 

C El-Hassani et al. (2024) 

    

learning_rate_init (0.001, 0.1) C Youness et al. (2023) 

[0.00001, 0.0001, 0.001] R Ogunsanya et al. (2023) 
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Table 5 presents common ranges and value sets of hyperparameters for the gradient boosting 

algorithm. Reviewed publications focus on improvement of hyperparameter tuning methodologies but 

also topics regarding health and mining were found. Compared to the previous two algorithms a greater 

number of hyperparameters was found.   

 
Table 5: Hyperparameter ranges for gradient boosting. Areas of application are named at first appearance. 

After that, type of tasks is indicated as classification (C) and regression (R).   

Hyperparameter Hyperparameter Space Area of application Source 

loss [“deviance”, 

“exponential”] 

Gold mineral prospectivity 

mapping, classification task 

Fan et al. (2022) 

[“deviance”, 
“exponential”] 

Image processing for diabetic 
retinopathy detection, 
classification task  

Datta et al. (2022) 

    

n_estimators (25, 200, 25) C Fan et al. (2022) 

(5, 10) C Datta et al. (2022) 

(50, 150) Methodology for improved 
hyperparameter optimization, 
reg. and classification tasks 

Young et al. (2018) 

[40, 80, 160, 320, 480] Methodology for improved 
hyperparameter optimization, 

classification tasks 

Anghel et al. (2018) 

[200, 400, 600, 800] Wind energy prediction, 
regression task 

Alonso et al. (2015) 

    

learning_rate (0.1, 2.1, 0.1) C Fan et al. (2022) 

(0.15, 2)  C Datta et al. (2022) 

(0.00001, 1) C, R Young et al. (2018) 

(0.1, 0.3) C Anghel et al. (2018) 

[0.05, 0.1, 0.15] R Alonso et al. (2015) 

    

max_features (4, 20, 2)  C Fan et al. (2022) 

(1, 10)  C, R Young et al. (2018) 

[0.8, 1] as percentage of 
all features 

C Anghel et al. (2018) 

[0.3, 0.4, 0.5, 0.6] as 
percentage of all features 

R Alonso et al. (2015) 

    

subsample (0.1, 0.8, 0.1) C Fan et al. (2022) 

[0.33, 0.5, 0.9] C Datta et al. (2022) 

(0.1, 1) C, R Young et al. (2018) 

    

max_depth (2,30,2) C Fan et al. (2022) 

[3, 5, 8] C Datta et al. (2022) 

(2,10) C, R Young et al. (2018) 

[4, 8, 10, 12] C Anghel et al. (2018) 

[6, 9, 20, 40] R Alonso et al. (2015) 

    

min_impurity 

_increase 

(0,5,1) C Fan et al. (2022) 

    

min_samples_split (0.1, 0.2) as percentage 
of all samples 

C Datta et al. (2022)  

(2,100) C, R Young et al. (2018) 

[2, 4, 8] R Alonso et al. (2015) 

    

min_samples_leaf [0.1, 0.2, 0.3] as 

percentage of all samples 

C Datta et al. (2022) 

(1,100) C, R Young et al. (2018) 

[1, 2, 4] R Alonso et al. (2015) 
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Lastly hyperparameter ranges and value sets for XGBoost are listed in Table 6. A balance between 

regression and classification tasks can be observed. Apart from that, a wide range of topics is depicted, 

ranging from landslide prediction, improvement of hyperparameter tuning methodologies to health-

related research. As for the gradient boosting, a large number of hyperparameters is provided by the 

studies.   

 
Table 6: Hyperparameter ranges for XGBoost. Areas of application are named at first appearance. After 
that, type of tasks is indicated as classification (C) and regression (R).   

Hyperparameter Hyperparameter 
Space 

Area of application Source 

n_estimators (100, 500)  Prediction of landslide risk, clas. task Kavzoglu & Teke (2022) 

(100, 600) Product quality prediction, reg. task Zou et al. (2022) 

(1, 500)  Methodology for improved 
hyperparameter optimization, 

classification and regression tasks 

Ørebæk & Geitle (2021) 

(100, 300) soil property prediction in oil 
reservoirs based, regression task 

Pan et al. (2022) 

[40, 80, 160, 320, 
480] 

Methodology for improved 
hyperparameter optimization, 

classification tasks 

Anghel et al. (2018) 

    

learning_rate (0.1, 1) C Kavzoglu & Teke (2022) 

(0.01, 0.3) R Zou et al. (2022) 

(0.1, 2) C, R Ørebæk & Geitle (2021) 

(0, 1) Wave run up prediction, reg. task Tarwidi et al. (2023) 

(0.1, 0.3) C Anghel et al. (2018) 

(0.1, 0.3) Prediction of chronic kidney failure, 
classification task 

Anggoro et al. (2021) 

    

max_depth (1, 20) C Kavzoglu & Teke (2022) 

(1, 10) R Zou et al. (2022) 

(1, number of 
features) 

C, R Ørebæk & Geitle (2021) 

(10, 50) R Pan et al. (2022) 

[4, 8, 10, 12] C Anghel et al. (2018) 

[1, 3, 5] C Anggoro et al. (2021) 

    

min_child_weight (1, 20) C Kavzoglu & Teke (2022) 

(1,9) R Pan et al. (2022) 

    

gamma (0, 0.2) C Kavzoglu & Teke (2022) 

(0, 0.05) R Zou et al. (2022) 

(0, 5)  R Pan et al. (2022) 

(0.1, 0.9) C Anggoro et al. (2021) 

    

colsample_by 
_tree 

(0.5, 0.7) C Kavzoglu & Teke (2022) 

(0.8, 1) R Pan et al. (2022) 

(0.8, 1) C Anghel et al. (2018) 

(0.1, 0.9) C Anggoro et al. (2021) 

    

subsample (0.8, 1)  C Kavzoglu & Teke (2022) 

(0.8, 1) R Pan et al. (2022) 

(0.1, 0.9) C Anggoro et al. (2021) 

    

alpha (0.01, 0.3) R Zou et al. (2022) 

(0, 0.2) R Pan et al. (2022)  

    

lambda (0, 1) R Zou et al. (2022) 

(0, 0.2) R Pan et al. (2022) 



20 
 

2.6.4 Grid search 

Grid search is a methodology to guide the application of hyperparameter tuning. During grid search , a 

predefined set of values for each hyperparameter is used and a grid of all possible combinations is 

compiled. Afterwards, each of the combinations is tried out and the best performing set of 

hyperparameters is selected. To achieve this selection, an upfront determined scoring function is used. 

The advantage of this methodology is that each combination is tried out, wherefore no optimum present 

in the grid can be missed. On the other hand, the method is computationally expensive and not flexible. 

This means that an optimum could be missed, if it lies between two grid points. Furthermore, through 

the try-out of each possible combination, many irrelevant options will be tested. Nevertheless, grid 

search resembles the most commonly deployed hyperparameter tuning methodology. (Bergstra & 

Bengio, 2012; Youness et al., 2023) 
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3 Knowledge gap and research 
question  

In the following chapter, the knowledge gap for this thesis is derived. This is done based on the findings 

from the introduction and the state-of-the-art section. With the knowledge gap as foundation, the 

research question will be formulated to aid the generation of the sought-after insights. 

3.1 Knowledge gap 

In the previous chapters, it was shown that improved material separation can help to reach EU recycling 

goals and to diminish CO2 eq. emissions. Regarding CO2 emission savings, promising annual savings 

of up to 200 million tons of CO2 eq. for Europe were identified in the introduction. Furthermore, 

indications for economic advantages for waste separation plant proprietors were found. To understand 

what is required to achieve these economic and environmental benefits, shortcomings of nowadays 

waste separation plants were analysed. 

 

The optimization of machine settings and machine interplay in waste separation plants was identified 

as main hindrance. Waste separation plants are commonly only optimized once during their 

commissioning. This is due to the cost of probing and little knowledge regarding waste stream 

composition. Furthermore, state-of-the-art waste separation plant modelling mainly relies on expert 

valuation and experience values for separation efficiencies. This is problematic due to two reasons. 

First, plant modelling and process characterization become static. This means that separation 

efficiencies cannot be adopted, as information about inputs and composition of waste streams in the 

plant is missing. Second, waste composition is constantly changing, sometimes even per season. 

Therefore, plant optimization is outdated rather quickly, leading to suboptimal separation results. To 

avoid this, more frequent optimization is needed.  

 

Delving into requirements for improved plant optimization, another hindrance was identified: separation 

efficiencies cannot be transferred easily from one plant to another. This is due to the fact that waste 

composition changes based on regionality, wherefore generalizability is hampered. Therefore, plant 

specific process parameters like separation efficiencies and area densities are required to enable real-

time plant optimization. To achieve this, data about material stream composition in the waste sorting 

plants is needed. Nevertheless, a sufficient coverage of sensor-based waste stream classifiers is 

prohibited from an economical perspective.  

 

To still obtain a reasonable process characterization, the use of data from sensor-based sorters that 

are already present in the plant is proposed. Examples of this can be found in works of  Küppers et al. 

(2020) and Kroell et al. (2021, 2024a, 2024b). In their studies, they determined separation efficiencies 

of NIR-scanners based on material occurrence and occupancies and achieved reasonable accuracies. 

Furthermore, weight-based quality control, with the help of a NIR-scanner and laser triangulation, could 

be showcased.  
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As a shortcoming, the described studies were conducted with fully characterized material. While this is 

favourable for the explanatory power of the results, implementing these approaches into a real-world 

waste sorting plant would require extensive probing. This probing would need to be conducted on a 

regular basis and is therefore prohibited from an economic viewpoint. Another disadvantage is that for 

some studies machinery was modified in way that is normally not present in commercial waste sorting 

plants. An example for this would be the addition of laser triangulation for height detection of particles 

to a NIR-scanner. Lastly, the discussed studies showcase dynamic separation efficiency determination 

and waste stream characterization as stand-alone concepts but do not research their interplay.  

 

This study, therefore, tries to implement material characterization in an industrial setting with data 

supplied from a waste sorting plant in Scandinavia. This means that no fully characterized material is 

available for algorithm training and testing, which resembles real world conditions. Furthermore, a 

dynamic material separation efficiency determination is implemented. This will be done in the form of 

material stream prediction from one NIR-scanner to the other. These methodologies will be applied 

together to predict the purity of the HQ agglomeration product. Therefore, not only concepts introduced 

by Kroell et al. and Küppers et al. will be applied to a real-world sorting plant, but also their interplay is 

researched.  

 

Further novelty of the research is given through the use of belt weighers data. No studies regarding 

belt weigher data use for waste stream characterization in plastic sorting plants could be found during 

literature research. Therefore, insights in the opportunities arising from the use of this data will be 

obtained. Apart from that, this study contributes to the literature by using NIR-scanner data for material 

stream characterization, which is originally produced for sorting of the materials. The benefits of the 

use of this data are described and showcased by several authors, but through the application in an 

industrial setting, new insight can be generated. 

3.2 Research question 

Concluding from the introduction, the state-of-the-art section and the identified knowledge gap the 

following research question can be formulated: 

 

How can the quality of the agglomeration line product in a plastic waste separation plant be predicted 

based on NIR-scanner and belt weigher information through a data driven approach? 

 

This research question tries to facilitate the aspirations of the goal of this study and the derived 

knowledge gap. Through the quality prediction of the agglomeration line product the interplay of 

dynamic material separation and area density determination can be showcased. As a smallest possible 

building block, the answering of this research questions can showcase concepts and methodologies 

that enable real-time process optimization for waste sorting plants. To answer the main research 

question, the following sub research questions are compiled:  

 

– What correlations and relationships exist in the data?  

– How can the area density, the area flow prediction and the separation efficiency be modelled? 

– How does a joint application of the developed concepts perform for quality prediction of the 

agglomeration line product? 
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The first sub-research question guides the exploration of the data that is available in the waste 

separation plant. This is necessary to identify modelling opportunities and to assess the quality of the 

data. Understanding of this is important to generate insights about the uncertainty that comes with the 

application of the prediction and modelling methodologies. Furthermore, the gained knowledge will be 

applied to guide data pre-processing. The second sub-research question provides the setup for the 

modelling techniques that are tried out with the explored data. Here, the required information, that was 

identified through the knowledge gap, is gathered. Furthermore, the performance of the model building 

blocks is assessed. The third sub-research question guides the analysis of the interplay between area 

density and separation efficiency modelling as well as the connections to the area flow prediction. This 

is important to move from stand-alone observations to a joint analysis of opportunities for waste stream 

characterization and prediction.     
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4 Methodology 

To answer the research question, a methodology to tackle the established knowledge gap was set up. 

The governing approach consists out of a data exploration phase, statistical modelling for area density 

determination, ML modelling for separation efficiency determination, area flow prediction and a joint 

application of all three concepts. A visualization of the different phases can be found in Figure 6.  

 

 
Figure 6: Overarching methodology for the answering of the research question, different phases and 
connected sub research questions are indicated.  

 

The data exploration is connected to sub research question one, to search for already existing 

correlations and relationships in the provided data. Area density modelling, area flow prediction and 

separation efficiency determination are addressing sub question two. This connection is made, as they 

represent the modelling and calculation of important information necessary to answer the overall 

research question. Sub research question three is represented through the final quality prediction. 

During quality prediction, all modelled concepts are applied together, wherefore their interplay can be 

probed and analysed.  

4.1 Used software 

To conduct calculations, modelling and data handling Python 3.11.7 in the integrated development 

environment Spyder 5.5.1 was used.  

 

Data handling was performed with the help of the Pandas 2.14 library. Basic mathematics and indicator 

calculation were implemented though the use of Numpy 1.26.4. Apart from that, the Statsmodels 0.14.0 

library aided the implementation of the OLS modelling, while the Scikit-learn library 1.2.2 was used for 

machine learning applications. Finally, plotting was conducted with the help of Matplotlib 3.8.0.  

4.2 Indicators and Metrics 

Several indicators and metrics were used during the thesis and will be explained in this subchapter. 
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The Pearson correlation coefficient is a measure for the linear correlation between two data sets. In the 

remainder of this work it is denoted as r. For a perfect positive correlation, the coefficient will be 1 while 

for a perfect negative coefficient it will result in -1. If no correlation at all is present, the Pearson 

correlation coefficient will be calculated with 0 (Cohen et al., 2009; Rainio et al., 2024). A mathematical 

formulation of the Pearson correlation coefficient can be found below, with 𝑥𝑖 representing a value of 

the first data set and �̅� representing the mean of the first data set. The same notation is applied to the 

second data set with 𝑦 as its representation.  

 

 𝑟 =  
∑ (𝑥𝑖 − �̅�)(𝑦𝑖 − �̅�)𝑛

𝑖=1

√∑ (𝑥𝑖 − �̅�)2 ∑ (𝑦𝑖 − �̅�)2𝑛
𝑖=1

𝑛
𝑖=1

 (4.1) 

 

The mean absolute error (MAE) is a useful metric to determine the mean deviation from predicted to 

measured values. It is determined by summing the absolute errors of the model and then dividing it by 

the number of samples. Due to this calculation, it does not lay specific emphasis on outliers or other 

special cases in data. Therefore, it can be considered rather robust (Pedregosa et al., 2011; Rainio et 

al., 2024). The formula of the MAE can be found below, where 𝑦𝑖  represents one of the observed values, 

𝑦�̂� indicates the prediction of the same observation, 𝑌 is the vector of all observed values, �̂� represents 

the vector of all predicted values and 𝑛𝑆𝑎𝑚𝑝𝑙𝑒𝑠 is the number of samples.  

 

 
𝑀𝐴𝐸(𝑌, �̂�) =  

1

𝑛𝑆𝑎𝑚𝑝𝑙𝑒𝑠

∑ |𝑦𝑖 − �̂�𝑖|

𝑛𝑆𝑎𝑚𝑝𝑙𝑒𝑠

𝑖 =1

 (4.2) 

 

The mean squared error (MSE) is determined by squaring all errors of the model, summing them up 

and dividing the result by the number of samples. Therewith, the mean squared deviation from the 

predicted to the measured values gets computed. Due to the squaring, attention is given to errors of 

bigger magnitude, as they gain greater influence on the result (Pedregosa et al., 2011; Naidu et al., 

2023; Rainio et al., 2024). A mathematical formulation of the MSE is indicated below, where 𝑦𝑖  and �̂�𝑖 

are single values from the observation vector 𝑌 and the prediction vector �̂�. Lastly 𝑛𝑆𝑎𝑚𝑝𝑙𝑒𝑠 indicates 

the number of samples that were taken.   

 

 
𝑀𝑆𝐸(𝑌, �̂�) =  

1

𝑛𝑆𝑎𝑚𝑝𝑙𝑒𝑠

∑ (𝑦𝑖 − �̂�𝑖)
2

𝑛𝑆𝑎𝑚𝑝𝑙𝑒𝑠

𝑖=1

 (4.3) 

 

The coefficient of determination, also denoted as R2, measures the goodness of fit of a model. It 

indicates how well the model's predictions resemble the observed values. Putting it into other words, 

R2 represents the proportion of variance, in the measured data, that is explained by the model’s 

predictions. R2 can have values between 1, indicating the perfect fit, and minus infinity, as the model 

can be arbitrarily worse. A model that always predicts the mean of the data results in 0 and can, 

therefore, be seen as baseline. To calculate R2, the sum of the squared difference between 

measurement and prediction is divided by the sum of the squared difference between each 

measurement and the mean of the measurements. The result of this term is then subtracted from 1 and 

R2 is obtained (Hagquist & Stenbeck, 1998; Pedregosa et al., 2011). On the next page, a mathematical 

representation of R2 is depicted, where 𝑌 is the vector of all observed values, �̂� is the vector of all 

predicted values and 𝑦𝑖  and �̂�𝑖 represent single values from these vectors.  
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 𝑅2(𝑌, �̂�) = 1 −
∑ (𝑦𝑖 − �̂�𝑖)

2𝑛
𝑖=1

∑ (𝑦𝑖 − �̅�)2𝑛
𝑖=1

 (4.4) 

 

To predict the quality of the agglomeration product, a weight percentage metric is necessary. For this, 

the material of interest is divided by the total material. This indicates the weight share of the material in 

the product. A mathematical formulation of the indicator can be found below, where 𝑚𝑚𝑎𝑡𝑒𝑟𝑖𝑎𝑙 represents 

the weight of a specific material and 𝑚𝑇𝑜𝑡𝑎𝑙 indicates the weight of all materials that are present.  

 

 

 𝑤𝑡%𝑀𝑎𝑡𝑒𝑟𝑖𝑎𝑙 =
𝑚𝑀𝑎𝑡𝑒𝑟𝑖𝑎𝑙

𝑚𝑇𝑜𝑡𝑎𝑙

 (4.5) 

 

 

4.3 Data Composition, Collection and Processing 

In this subchapter, the retrieval of the data that was used in this work will be explained. Furthermore, 

emphasis is laid on the composition of the data and initial processing that enabled data exploration.  

 

NIR-scanner data was retrieved through the TOMRA Insight portal and by an influx database provided 

by Bremen University. The influx database aggregates data from the TOMRA Insight portal and 

facilitates downloads of greater time intervals. Here, the finest available resolution is one data point per 

minute. Data was retrieved in the unified material statistic format. This format was developed to ensure 

comparability between different TOMRA NIR-scanner units. Statistics that were retrieved show 

material-specific area flows as well as the placement of the material on the conveyor belt in [m2/h]. 

Available material categories are shown in Table 7. Although, the unified material statistic is made for 

comparability and to ensure similar material categories across all scanners, BOARD_CT and PET_G 

are missing for PO75C. Additional data like the sorting program, valve cycles and lamp health are 

available but have not been used for the conducted research. Nevertheless, this data could be used in 

the future.  
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Table 7: Material categories for PO75 and PO75C indicated with their original name, the name used in this 
work, their meaning and the sorting indication per scanner.  

Unit  Original Name Meaning Name in this work Eject Drop 

PO75 BOARD_CT Corrugated Cardboard   X 

EPS Expanded Polystyrene   X 

GT Getränke Karton  
(= Beverage Carton) 

BC  X 

OTHER_POLYMERS All polymers that do not have 
an own category 

  X 

PAPER Paper   X 

PE_FILM Films of Polyethylene  X  

PE_RIGID Objects of Polyethylene that 
are not film 

 X  

PET_BOTTLE Bottles made of Polyethylene 
terephthalate 

  X 

PET_G Glycol-modified Polyethylene 

terephthalate 

  X 

PET_MONO_TRAY Polyethylene terephthalate 
only trays 

  X 

PP Polypropylene  X  

PP_FILM Films of Polypropylene  X  

PS Polystyrene   X 

PVC Polyvinyl chloride   X 

      

PO75C EPS Expanded Polystyrene   X 

GT Getränke Karton  
(= Beverage Carton) 

BC  X 

OTHER_POLYMERS All polymers that do not have 
an own category 

  X 

PAPER Paper  X  

PE_FILM Films of Polyethylene   X 

PE_RIGID Objects of Polyethylene that 

are not film 

  X 

PET_BOTTLE Bottles made of Polyethylene 
terephthalate 

  X 

PET_MONO_TRAY Polyethylene terephthalate 
only trays 

  X 

PP Polypropylene   X 

PP_FILM Films of Polypropylene   X 

PS Polystyrene   X 

PVC Polyvinyl chloride  X  

 

After retrieval, the data was cleaned from missing values and brought into a multilevel column index 

form. Afterwards, the data was sorted by unit, statistic and belt part as well as material or drop or eject 

stream if applicable.  

 

Regarding the belt weighers, data was retrieved from Sutco through a MySQL database, with the help 

of a SECOMA connection. Data is available in 3-7 second steps and was aggregate to the same time 

steps as the NIR-scanner data.  

 

In total, four-month worth of data were used. The data set was recorded from the second of March 2024 

at 12:35 to the second of July 2024 at 7:11. To avoid a temporal offset between the different data 

sources, the data was synchronized. This was done with the help of the Pearson correlation coefficient. 

Temporal offsets can e.g. arise due to unaligned time stamps within the machines or through the time 

that the material needs to travel from one unit to the next.   



28 
 

4.4 Data Exploration 

To assess the model building capabilities of the data, exploration of the data is necessary. Avoidable 

noise and special events that could hamper explanatory power have to be identified. Proper exploration 

enables to either remove disruptive data points or to develop strategies to treat these cases. 

 

The data exploration for belt weigher data, NIR-scanner area flows and belt occupation data was guided 

by the Pearson correlation coefficient and the analysis of the data distribution. The latter was done from 

a frequency view point. Here, high correlations and normal distributions were sought of, wherefore data 

pre-processing strategies were developed based on this regard.  

4.5 Statistical modelling – Area densities 

To determine the area densities, ordinary least squares (OLS) modelling was applied. This was done 

to enable the conversion from area flow data to mass flow data and ultimately facilitate quality prediction 

in weight percent. Since the connection between area flow and mass flow through area density is linear, 

OLS modelling was chosen. This was done because OLS is a linear modelling method, which fits the 

introduced relationship. Apart from that, an 80/20 training test split for model training and testing was 

applied.      

 

After application of the model, outcomes from Statsmodels were checked for violations of assumptions. 

Additionally, signs of invalid model properties were examined and discussed.  

 

4.5.1 Multicollinearity 

Multicollinearity was tested and detected according to Shrestha (2020). This was done with the help of 

a correlation matrix. In a next step, multicollinearity was treated through grouping of independent 

variables as proposed by Paul (2006).  

 

4.5.2 Bootstrapping 

Bootstrapping was applied to gain additional trust in the obtained area densities. This was done next 

to the confidence intervals obtained from the initial modelling. For application, 10,000 bootstrapping 

rounds for each area density were conducted. From this, area density distributions were determined, 

along with quantiles similar to the confidence intervals from the initial modelling. Additionally, the mean 

and median of the distributions were calculated.     

 

4.5.3 Testing and evaluation 

To test the obtained area densities, they were multiplied with the area flows from the test set. Afterwards 

they were summed up and plotted against the belt weigher data of the same time frame. For evaluation 

the MAE was used. Additionally, generalizability of the area densities to other scanners was tested. 

4.6 Machine learning – Area flow prediction 

For area flow prediction, ML models were identified as appropriate approach. This judgement is based 

on experience from the Sutco research and development department. They found out that for the 

prediction of area flows from one scanner to the next scanner no purely linear relationships are present. 

Therefore, non-linear modelling is needed. Furthermore, physical properties of waste are changing and 

limited information on waste characteristics is available through the limitation on 2D data. Therefore, 
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machine learning was preferred over a physics-based approach or empirical models. For the ML 

modelling, an 80/20 training test data split was applied.  

 

4.6.1 Model Try-Out and selection 

As proposed by Kuhn & Johnson (2013), a broad range of models was tried out. Furthermore, a variety 

of ML model architectures was represented. Accordingly, the following models were tested: Decision 

Tree, Extra Tree, Random Forest, Gradient Boosting, K-nearest Neighbours, Bagging Regressor, 

Ridge Regression, Elastic Net Regression and MLP. Regarding model architectures the Decision Tree 

model represents a simple decision tree architecture. Extra Tree, Random Forest, Bagging Regressor 

and Gradient Boosting resemble tree-based ensemble models, where a combination of various trees 

leads to the prediction outcome. K-nearest Neighbours is a neighbour-based regression algorithm 

where the predicted value is computed as a function of the measured values of the input's nearest 

neighbours. Ridge Regression and Elastic Net Regression represent linear regression models. Lastly, 

MLP is a neural network type machine learning model. (Pedregosa et al., 2011)  

 

Models are selected according to their performance and their simplicity, as presented by Kuhn & 

Johnson (2013). Balancing these two properties keeps computational expenses at bay and improves 

interpretability. The interpretability of simpler models is given , as their final model structure tends to 

stay close to real world principles, instead of being based on decision trees or nested mathematical 

functions. 

 

4.6.2 Hyperparameter tuning 

Hyperparameter tuning was conducted based on grid search and applied to the training data set. This 

was done to leave the test data set for final performance evaluation.   

 

To scope down the selection of hyperparameters to a reasonable computational effort, a maximum of 

five hyperparameters per ML model was selected. Selection was guided by the amount of mentions. 

Furthermore, areas of application that included regression task were prioritized, as they better reflect 

the task at hand. Selected hyperparameters and their ranges are described in the following, together 

with a small explanation of their workings. 

 

For ridge regression, two hyperparameters were found in literature and applied accordingly. These 

hyperparameters are the solver of the regression and the alpha value.   

 

The solver hyperparameter is responsible for the computational implementation of the underlying 

mathematics. Nevertheless, the hyperparameter was considered to indicate which of the solvers is the 

fastest. For hyperparameter selection all options were taken over, giving the following range for the grid 

search: [svd, cholesky, lsqr, sag, sparse_cg]. (Pedregosa et al., 2011) 

 

The following values were set for the alpha hyperparameter: [0.0001, 0.0005, 0.001, 0.005, 0.01, 0.05, 

0.1, 0.5, 1, 5, 10, 50, 100, 500, 1000, 5000, 10000]. This range was chosen to include the default 

parameter value and to represent the widespread range of values found in the literature. The alpha 

hyperparameter controls the influence of the sum of squared weights added to the loss function in the 

ridge regression model, affecting the penalty applied to high magnitude weights. (Pedregosa et al., 

2011; La Tour et al., 2022)  
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In Table 8, a summary of the hyperparameters and their respective values of the Ridge Regression 

model can be found. 

 
Table 8: Hyperparameter sets for ridge regression applied during grid search. 

Hyperparameter Values applied in grid search 

alpha [0.0001, 0.0005, 0.001, 0.005, 0.01, 0.05, 0.1, 0.5, 1, 5, 10, 50, 100, 500, 1000, 5000, 

10000] 

solver [svd, cholesky, lsqr, sag, sparse_cg] 

  

For the MLP model, hidden_layer_size, alpha, activation and learning_rate_init were selected as 

hyperparameters. It was decided to try out 9 hidden_layer_size versions, as it resembles the most 

important hyperparameter of the algorithm. Therefore, the other hyperparameters have been limited to 

three options each. This was done to keep the grid search computationally reasonable.  

 

The hidden_layer_size hyperparameter determines the number of hidden layers and the respective 

number of nodes. An increased number of nodes enables the layer to represent more complicated 

relationships between input and output. Looking at the number of layers, an increased number of hidden 

layers enables the detection of “deeper” patterns. This is achieved through the repeated use of the 

activation function and updated weighing. Therefore, each layer refines the pattern from input to output 

(Pedregosa et al., 2011; Itano et al., 2018). For the hyperparameter, a use of one to three hidden layers 

was chosen. To not overcomplicate things, all layers have the same size with either 50, 100 or 150 

nodes per layer. The number of nodes is slightly higher than seen in literature, but was chosen to 

balance out the decreased number of layers.  

 

The MLP model adds the sum of squared weights to the result of its loss function. The influence of this 

term is controlled by the alpha hyperparameter (Pedregosa et al., 2011; La Tour et al., 2022). For 

hyperparameter tuning, the set of alpha values was chosen with: [0.001, 0.01, 0.1]. This was done to 

represent the values found in literature. Interestingly, all encountered values were higher than the 

default value of 0.0001 but kept below 1 for the majority of the findings.   

 

The activation hyperparameter selects the activation function that is applied to each node of the hidden 

layers (Pedregosa et al., 2011; Nugroho et al., 2020). For this, “tanh”, “relu” and “logistic” were selected, 

as they are the three applicable activation functions to the problem at hand. Apart from that the “identity” 

function is available. This function is commonly used when near-linear behaviour is expected, as it does 

not modify the input. (Pedregosa et al., 2011)   

 

An overview of hyperparameters and their ranges that were applied in the MLP tuning process are 

depicted in Table 9.   

 
Table 9: Hyperparameter sets for MLP applied in grid search. 

Hyperparameter Values applied in grid search 

hidden_layer_size 1 layer: [50, 100, 150] 

2 layers: [[50, 50], [100, 100], [150, 150]] 
3 layers: [[50, 50, 50], [100, 100, 100], [150, 150, 150]] 

alpha [0.001, 0.01, 0.1] 

activation [tanh, relu, logistic] 
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As hyperparameters for the gradient boosting model, n_estimators, learning_rate, max_features, 

max_depth and min_sample_split were selected. Min_sample_split and min_sample_leave have equal 

amount of mentions, but due to their similarity max_sample_split was chosen. This was done, as the 

decision to continue splitting or not, was preferred to be done before the split rather than after the split. 

Apart from that, the number of options per hyperparameter were limited to three. With this setting, a 

total of 243 combinations was tested during grid search, which represents a reasonable use of 

computational power.   

 

The n_estimators hyperparameter dictates how many boosting stages are performed. This means that 

it controls how often a new tree will be fitted to the residuals of the latest model (Alonso et al., 2015; 

Fan et al., 2022). For n_estimators, grid search values are set to [50, 250, 500]. This was done to test 

for values that are below and above the default value of 100 and to represent the range of values found 

in literature.  

 

The impact of each added tree on the overall model performance is determined by th e learning rate 

(Pedregosa et al., 2011; Alonso et al., 2015; Fan et al., 2022). Learning rate values are set to [0.05, 

0.15, 0.3]. This was done to explore options around the default value of 0.1.  

 

To adjust the maximum number of features that are used for split calculation the max_feature 

hypermparameter is tuned (Pedregosa et al., 2011; Datta et al., 2022). Following the percentual 

approach found in literature, together with a number of 21 features, the max_feature values were set 

to [7, 14, 21].  

 

The max_depth hyperparameter indicates the maximum level of layers in a decision tree. This directly 

influences its complexity (Pedregosa et al., 2011; Datta et al., 2022). With a default of 3, the values for 

max_depth were set to [2, 10, 18]. This was done to check options below and above the default values 

and to represent the greater values found in literature.  

 

The decision of how many observations must be contained in a node to make a split is made by the 

min_samples_split hyperparameter (Pedregosa et al., 2011; Alonso et al., 2015). The values for the 

hyperparameter were set to [2, 50, 100]. This was done to have the default value of 2 within the range 

and to test higher values present in the literature.  

 

In Table 10 all hyperparameters and their ranges that were used for Gradient Boosting hyperparameter 

tuning are depicted.  

 
Table 10: Hyperparameter sets for gradient boosting applied in grid search. 

Hyperparameter Values applied in grid search 

n_estimators [50, 250, 500] 

learning_rate [0.05, 0.15, 0.3] 

max_feature [7, 14, 21] 

max_depth [2, 10, 18] 

min_samples_split [2, 50, 100] 

  

Hyperparameters that were chosen for XGBoost hyperparameter tuning are n_estimators, 

learning_rate, max_depth, gamma and lambda. Alpha and lambda have the same amount of mentions 

and both resemble regularization terms for the loss function. As lambda represents a preferred 

regularization method, it was chosen for grid search instead of alpha. Furthermore, the number of 
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values per parameter was limited to three. This was done to not increase the number of possible 

combinations above the limitation that was set for the other models.   

 

The n_estimators hyperparameter selects the total number of times a new tree gets fitted to the residual 

of the model. High number of rounds can lead to overfitting and unnecessary expense of computing 

power. On the other hand, a low number of rounds could have underfitting as a consequence 

(Pedregosa et al., 2011; Kavzoglu & Teke, 2022). The following values were used for the grid search: 

[50, 175, 300]. This was done to represent the range of values found in literature, while avoiding 

emphasis on the extremes.  

 

To influence the learning rate of XGBoost, the learning_rate hyperparameter is used. This parameter 

determines the influence of each newly added tree to the model (Tarwidi et al, 2023). Here, extensive 

learning rates can oversee optimal solutions, while too conservative learning rates can trap the model 

into a local optimum (Itano et al., 2018). For the learning rate, the subsequent set of values was 

selected: [0.1, 1, 2]. This was done to resemble the range of values used in literature with a focus on 

regression tasks. 

 

The max_depth hyperparameter sets the maximum number of splits a tree branch can have until 

reaching an end point. Higher values allow the model to represent more complicated relationships but 

come with the risk of overfitting (Pedregosa et al., 2011; Kavzoglu & Teke, 2022). The following set of 

values was selected for the max_depth parameter: [1, 8, 15]. With this, the minimum value from the 

literature and greater values that were found for regression tasks are tested.  

 

Gamma represents the minimum loss function reduction that is needed to further split the data (Chen 

& Guestrin 2016; Tarwidi et al, 2023). The hyperparameter prevents overfitting and can be used to safe 

computational resources by stopping model training when no significant improvement is detected. 

Seeking orientation in literature with a focus on regression tasks, the following values were chosen: [0, 

0.25, 0.5].  

 

The lambda hyperparameter has the same workings as the alpha hyperparameter for the MLP and the 

Ridge Regression model. Finding a middle ground between the values from the literature, the following 

values were selected: [0, 0.15, 0.3]. 

 

A summary of the hyperparameters that were used for the tuning of the XGBoost model can be 

observed in Table 11. 

 
Table 11: Hyperparameter sets for XGBoost applied in grid search. 

Hyperparameter Values applied in grid search 

n_estimators [50, 300, 550] 

learning_rate [0.1, 1, 2] 

max_depth [1, 15, 30] 

gamma [0, 0.25, 0.5] 

lambda [0, 0.15, 0.3] 
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4.6.3 Cross validation and grid search  

A 5-fold cross-validation was applied during grid search to test the generalizability of the ML models. 

Furthermore, this approach was chosen to increase robustness against outliers during model selection. 

Model selection was conducted based on the mean of the indicators obtained from the cross validation. 

As guiding scoring function the MAE was used.   

 

4.6.4 Testing and evaluation 

To test and evaluate the area flow prediction, the test set was used and predictions were plotted against 

measured data. Evaluation was guided by the MAE, MSE and R2 only played a secondary role.  

4.7 Separation efficiency 

Separation efficiencies from PO75C to the agglomeration product were taken over from the sorting step 

between PO75 and PO75C. This was done as no validation data for the last separation step was 

available. Validation data is needed for model training and testing. Therefore, the assumption of 

transferable separation efficiency was made to showcase the full solving of the research question. 

When a suitable modelling technique without validation data needs is identified, or validation data is 

obtained, this part of the work should be revisited.  

 

The absence of validation data is given, as no final quality determination is carried out in the process. 

Insufficient quality is normally reported by the buyer of the product to the operator of the plant. This 

comes with the difficulty of mapping the reported bale to a temporal scope of processing in the plant. 

Furthermore, there is only a very limited amount of data available, if data is recorded at all.     

 

To determine the separation efficiency, it was assumed that separation efficiencies are constant over 

time and that ejected material separates equally well. Additional focus was laid on material that is 

ejected together with the targeted material. The accidently ejected material was ascertained as 

percentual share of the separated target material. Apart from that, separation efficiencies were 

determined based on the area flows instead of mass flows. This was done to not include additional 

uncertainty from area density determination into the calculations.  

4.8 Quality prediction 

To conduct the final quality prediction, the area density modelling, the area flow prediction and the 

separation efficiency determination were applied together. Here, the area flows on PO75C were 

predicted by the area flows on PO75. Next, the separation efficiencies were used to determine the area 

flows after the last separation step. Lastly, the predicted area flows for the agglomeration product were 

converted into mass flows using the modelled area densities. These steps enable quality prediction in 

weight percent which is required for quality determination.  

 

Evaluation was conducted between results that were obtained with predicted area flows and results 

that were realized with the help of measured area flows. As main indicator the MAE was used. The 

obtained mass flows include several sources of uncertainty. For PO75, the uncertainty comes from 

area density modelling. For PO75C, the material-specific mass flows include the uncertainties from the 

area density modelling and the area flow prediction. Finally, for the agglomeration product, the 

uncertainty arises from area density modelling, area flow prediction, and separation efficiency 

determination.  
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5 Results and discussion 

In the following chapter, the results of the conducted research will be presented and discussed. As 

there will be frequent reference to specific units in the plant, in Figure 7 a repeated representation of 

the observed plant part can be found.  

 

 
Figure 7: Schematic of the observed part of the agglomeration process in the waste separation plant.  

 

The belt weigher that measures the input of the first scanner is referred to as AA101, while the belt 

weigher measuring the eject stream is indicated as AA106. The first separation step is conducted by 

the PO75 rougher and the second separation step is achieved through the PO75C clean er. Upfront and 

following there are many more separation and processing steps, but it was focussed on this part due 

to the high availability of data. Furthermore, this was done to narrow down the number of separation 

units to a reasonable amount for the scope of this thesis. What is also noticeable that for PO75 the 

eject stream is of interest, as this is the stream that gets fed into the cleaner. On the other hand, for 

PO75C the dropped stream is of interest, as it resembles the product. 

5.1 Data exploration 

Data exploration was done to delve into the characteristics of the data and to ease application of 

methodologies important to this research. For this, special focus was laid on sanity checks, correlation 

between data sets and the distribution of the data. This information helps to generate insights about 

uncertainty in the data. Understanding this uncertainty is important, as it will influence the explanatory 

power of the established quality prediction. Through this subchapter, sub research question one will be 

answered, as correlations and relationships in the available data are researched. 

 

5.1.1 Belt Weigher Data 

Starting off, the distributions of the belt weighers AA101 and AA106 were plotted and can be found in 

Figure 8. On the x-axis the measured weight in [t/h] is displayed, while the y-axis indicates the number 

of occurrences over the observed time frame. 
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Figure 8: Mass flow distribution in [t/h] for belt weighers AA101 and AA106 without further processing.   

 

Mass flow ranges from 0 [t/h] to 18.97 [t/h] for AA101 and from 0 [t/h] to 10.37 [t/h] for AA106. Due to 

the heavy left tail in the data, it can be claimed, that the majority of the data is empty. Therefore, zeros 

have been removed. Nevertheless, after the removal no significant change was observed. This is due 

to the fact that the belt weighers tend to measure very small weight flows, although the belt is empty. 

To balance this out, several thresholds for removing the left tail were tested. As a result, excluding data 

below 0.3 [t/h] was considered an appropriate threshold. Outcomes of this procedure can be examined 

in Figure 9. 

 

Figure 9: Mass flow distributions in [t/h] for AA101 and AA106 after removal of all values below 0.3 [t/h].  

 

Nearly normal distributed mass flow distributions can be observed in the newly generated plots. The 

mean for AA101 is determined with 5.14 [t/h] and with 2.37 [t/h] for AA106. Medians are rather similar 

with values of 5 [t/h] and 2.34 [t/h]. Belt weigher AA106 measures the mass flow after the first scanner 

(PO75). This also resembles the input to PO75C. As between PO75 and PO75C a separation step 

happens, the more than halved mean from AA101 to AA106 is a good sign of consistency in the data. 

Nevertheless, the distribution is cut on the left side for AA106. This is due to the fact that, for AA101, 

the threshold had to be moved up to 0.3 [t/h] to eliminate the vast amount of empty data. Naturally, the 

same data was removed for AA106, as the data sets are used in combination. A possible explanation 

for this difference is that AA106 has lower expected mass flows. Therefore, the machine could be set 

to a greater sensitivity. On the other hand, for AA101, greater mass flows are expected, wherefore the 

sensitivity could be toned down to handle higher weights more accurately.  
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In a next step, the correlation between AA101 and AA106 was tested. For this, a scatter plot before 

and after the removal of the low value tail was compiled and can be found in Figure 10. On the y-axis, 

mass flows measured by AA106 are presented and on the x-axis mass flows recorded by AA101 are 

indicated.   

 

 
Figure 10: Scatter plots between belt weigher AA106 and belt weigher AA101, before the cut of low-value 

data (left) and after the removal of low-value data (right). The pearson correlation coefficient is indicated at 
the top left corner of both plots.   

 

What can be observed is that r decreases after the removal of the low-value tails. At the same time, 

the amount of impossible values decreases. These values are present on the left-hand plot, when one 

of the axes has values of zero, but the other belt weigher is still detecting a mass flow. This is most 

probably due to a temporal measurement error of one belt weigher, while the other belt weigher is 

functioning. The decreasing r can be explained by the removal of the close to zero values. In the left-

hand version of the plot a vast amount of data is empty for both belt weighers. When both belt weighers 

measure values close to zero, the correlation of the respective value pairs is high. This effect could 

explain the higher correlation before the removal of the low value tail.   

 

To gain an advanced understanding of the correlation of the belt weighers, the data was split in 200 

bins by time. In a next step, r was computed for all bins. Regarding plots can be found in Figure 11.  

  

 
Figure 11: Pearson correlation coefficient for belt weigher AA101 with regards to belt weigher AA106 with 
200 bins compiled by time, before the removal of low-value data (left) and after removal of low-value data 

(right).  

 

Before the removal of low value data, correlation can go down until a r value of -0.09 but also reaches 

a value of 1 on a frequent basis. After the low-value data is eliminated, the extremes are removed from 

the correlation plot. Maxima of the right-hand plot are reached with values of 0.95, while minima go 
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down to values of 0.68. Positive extremes of the first plot can again be explained with the values close 

to zero. Although they represent faulty datapoints, they are still very similar in magnitude. Therefore, 

their correlation is high. Negative extremes can be explained by one of the belt weighers not functioning. 

Here, values close to zero are paired with normal weight flows on the other belt weigher, leading to low 

r values.  

 

Concluding the belt weigher data exploration, it can be said that the interplay of belt weigher AA101 

and AA106 should not hamper model building in later stages of this research. With a proper pre-

processing, no inconsistency can be found, and correlation is reasonably high. Problems occurred due 

to situations where one of the belt weighers detected a mass flow but the other not. These cases can 

be excluded by only including data points that lay above a mass flow of 0.3 [t/h].   

 

The described insights deliver valuable information to the answering of the first sub research questions, 

as correlations and relationships in the belt weigher data were researched.  

 

5.1.2 NIR-scanner Data – Area Flow 

To explore the area flow of the NIR-scanners PO75 and PO75C, a joint distribution plot was created. 

For this, all area flows per scanner were summed up, to gather a first understanding of the overall 

behaviour. Results can be found in Figure 12.  

 

 

 
Figure 12: Distribution of occurrences of total area flows for PO75 and PO75C, using 50 bins for 
accumulation. Zeros were removed upfront.    

 

Similar to the belt weighers, zeros were removed upfront and a left tail in the distribution can be 

observed. Furthermore, a shift of the left tail from PO75 to PO75C is seen. This raises the suspicion 

that PO75 does not measure 0 [m2/h], when the belt is empty, but reports values close to zero instead. 

Through visual inspection of a distribution plot, with increased bin number, this suspicion could be 

confirmed.  

 

In comparison to PO75, the tail of PO75C is right shifted. This can be due to the fact that PO75C is a 

cleaner. As the cleaning step aims to remove crucial impurities, a higher sensitivity of the scanner is 

expected. Therefore, if the belt is empty but PO75C still detects material, as result of a measurement 

error, the faulty data is probably of higher magnitude.   
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Following up with a more parameter driven analysis, the mean reduces from 4672.2 [m2/h] to 

3836.9 [m2/h] from PO75 to PO75C. For both scanners, the median is slightly higher with values of 

4955.1 [m2/h] and 4058 [m2/h]. Compared to the mass flow decrease of the belt weighers, the change 

in area flows feels rather low. This can be explained by the nature of the targeted material. At this stage 

of the separation process, PP and PE are mainly present as films and foils. Therefore, their area to 

weight ratio is fairly low. Furthermore, PP and PE represent the majority of the transferred material from 

PO75 to PO75C. Accordingly, the smaller magnitude of change, for the area flow compared to the mass 

flow, should result from a small area to weight ration of the discussed materials. Apart from the change 

of mean and median, it can be seen that the histogram extends up to 17,500 [m2/h]. This represents 

some barely visible outliers on the higher end of the total area flows.   

 

Delving into the material-based exploration, material-specific distributions plots were created. It was 

focused on PP_Film and BC as two examples that showed expected behaviour. Furthermore, PP and 

OTHER_POLYMERS were scrutinized, as they represent two examples that led to unexpected 

findings. The regarding plots are presented in Figure 13 and 14. Plots of all material-specific 

distributions can be found in Appendix 1. 

 

 

Figure 13: Material-specific area flow distribution for BC and PP_Film with zeros removed upfront.  

 

It can be observed that the left tail of the distribution prevails in the material-specific plots. Furthermore, 

a greater magnitude of the tail for PO75 is present. Apart from that, both materials show the expected 

sorting behaviour. PP_FILM is expected to be fully transferred from rougher to cleaner, which is 

resembled by the overlapping distributions. For BC a decrease in material is presumed, as it resembles 

a non-targeted material. This is confirmed by the left shifted peak of PO75C as well as the left shifted 

mean and median.  

 

Returning to the right-shifted tail of PO75C in Figure 12, another potential explanation emerges. The 

right shifted tail could be explained by the left shifted peaks for the separated materials on PO75C. 

Here, BC can resemble an example. Especially, materials with a lower area flow magnitude have their 

peak shifted to the left. Through this shift in magnitude and different separation efficiencies per material, 

the right shifted tail could occur. Materials that show the right shifted tail are PE_RIGID, PE_FILM, 

PET_BOTTLE and PET_MONO_TRAY. The respective plots are depicted in Appendix 1. 

 

Going on to materials that did not show expected behaviour, the material-specific distributions for PP 

and OTHER_POLYMERS are presented in Figure 14.  
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Figure 14: Material-specific area flow distribution for OTHER_POLYMERS (original x-axis range: 0 to 1300) 
and PP (original x-axis range: 0 to 5000), with zeros removed from the data beforehand. 

 

On a first glance, the OTHER_POLYMERS plot passes the sanity check, as material occurrence seems 

to decreased from PO75 to PO75C. Nevertheless, observing the mean of the data, it is shown that the 

mean actually increases from 56 [m2/h] to 78.3 [m2/h]. As both distributions have the same amount of 

observations, an increasing mean indicates a greater detected total area. Due to the fact that from 

PO75 to PO75C material can only be removed but not be added, this change becomes impossible. 

Therefore, this finding can only be explained by a machine malfunction or di fferent measurement 

behaviour of the scanners.  

 

Different measurement behaviour of the scanners can be due to the inner workings of the unified 

material statistic, provided by TOMRA. This means that the statistic could compose the 

OTHER_POLYMERS category differently from scanner to scanner. Another reason could be the 

sensitivity regarding targeted and non-targeted materials. If there is a high priority that all particles of 

the targeted materials are detected, the machine could lean towards overclassifying these categories. 

This would mean that particles that do not belong to this group could be classified as targeted materials 

out of precaution. As both scanners have different target materials, this mechanism could overlap, 

which would amplify the described effect. Therefore, if the effect is strong enough, it could be the reason 

for seeing more material on the cleaner than initially detected on the rougher. The same explanation 

could be valid for the PP plot. Here, an increase of the mean from 686.8 [m2/h] to 724.8 [m2/h] is 

observed.   

 

For the application of the modelling approaches, the correlation of the two scanners is of interest. 

Therefore, a scatter plot for visual inspection of the correlation between PO75 and PO75C was plotted. 

Results are depicted in Figure 15. Furthermore, r was calculated and is indicated within the plot.   
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Figure 15: Scatter plots between NIR-scanner PO75 and NIR-scanner PO75C. The pearson correlation 
coefficient is indicated at the top left corner of the plots.   

 

The Pearson correlation coefficient shows a strong positive correlation with a value of 0.887. Apart from 

that, a group of outliers can be observed for area flows around 5000 [m2/h] for PO75. This could be a 

measurement mistake, as the outlier values triple the measured material from rougher to cleaner. As 

an alternative explanation, it could be imagined that particles got stuck between the two scanners. The 

release of the hold-back material later in time could lead to the elevated values on PO75C.  

 

What furthermore sticks out is the high occurrence of measured material on one scanner, while the 

other scanner is empty or detects values close to zero. As empty entries for both scanners were 

removed, the hypothesis is made that the scanners occasionally measure values close to zero instead 

of zero. Therefore, these values were not removed upfront and the inconsistencies become tangible in 

the described plot.  

 

Another possibility are temporal patterns in the data. Therefore, datapoints were ordered by time, split 

into 200 bins and for each bin r was computed. The result can be observed in Figure 16.     

 

 
Figure 16: Pearson correlation coefficient for NIR-scanner PO75 with regards to NIR-scanner PO75C with 
200 bins compiled by time.  
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Maximum correlation is indicated with 0.97, while minimum correlation was determined with 0.48. 

Except for two negative outliers, no temporal pattern can be observed. These outliers can be due to 

measurement errors. Furthermore, they could be based on the described suspicion that the scanners 

occasionally do not detect materials, but indicate values above zero. Apart from that, correlations 

toward the end of the plot can lead towards the hypothesis of a positive trend in the data. Nevertheless, 

if the plot would be truncated at bin number 40, the positive trend from bin 25 onwards could lead to 

the same hypothesis. Therefore, these kinds of trend detection should be done with caution. Moving 

on, an oscillation around the mean value of 0.89 can be observed, with amplitudes in the region of ± 

0.1. This behaviour can be explained through the natural variance in the data and is therefore expected.      

 

Continuing with the material-specific exploration between PO75 and PO75C, PP_FILM and BC were 

chosen as examples with expected behaviour and PVC and OTHER_POLYMERS as examples with 

unexpected behaviour. The regarding scatter plots are presented in Figure 17 and 18, while scatter 

plots for all materials are made available in Appendix 2. In general, PE_FILM and PE_RIGID were the 

best correlating materials with r values of 0.9 and 0.89, while OTER_POLYMERS and PS were the 

materials with the lowest correlations with r values of 0.07 and 0.13.  

 

 
Figure 17: Correlations for BC and PP_FILM in form of scatter plots. The Pearson correlation coefficient is 

computed in the top right corner.  

 

For BC and PP_FILM, high correlation values of 0.88 and 0.84 are reached. Outliers are present, but 

do not enter extreme value ranges. These positive circumstances indicate that both machines can 

identify the respective materials equally well and that the separation behaviour is as expected. Materials 

that show similar behaviour are PE_FILM, PE_RIGID, PET_MONO_TRAY, PET_BOTTLE and PP. 

PAPER performed reasonably well, but with a r value of 0.65 it has significantly lower correlation than 

the better performing materials.   

 

Looking into the correlations for OTHER_POLYMERS and PVC this impression changes. 

Corresponding plots are depicted in Figure 18.   
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Figure 18: Correlations for OTHER_POLYMERS and PVC in form of scatter plots. The Pearson correlation 
coefficient is computed in the top right corner.  

 

For OTHER_POLYMERS and PVC, low r values of 0.07 and 0.46 are observed. Ostentatiously, a 

majority of the values from PO75 get surpassed by values of PO75C. This is represented by the high 

accumulation of datapoints close to the y-axis. The presence of these datapoints is impossible, as 

material can only be removed but not added from PO75 to PO75C. This could be due to three reasons. 

First, PVC is a targeted material by PO75C but not by PO75. Therefore, the machine could be prone 

to over detecting this category. Second, the NIR spectra detected by the scanner is not always 

unambiguous to decide which material is present on the belt. Accordingly, each scanner follows a set 

of rules to decide the categorization. This set of rules is different for each machine. Reasons for 

ambiguous situations can be mixed materials or particles that lay too close to each other. Due to this 

vicinity, they can be confused as one bigger particle, instead of a number of small ones. When smaller 

particles are detected together as one larger particle, the machine still has to classify the entire particle. 

Therefore, if the smaller particles consist of different materials, inconsistencies arise and information 

about material is lost. Lastly, changing particle orientation on the belt can lead to different area flows 

on different scanners. NIR-scanners detect the area of a particle that is horizontally oriented to the belt. 

In other words, if a different side of the particle lays face up from one scanner to the next, the detected 

area changes.   

 

Moving on, other not as well performing materials were EPS and PS. Comparing the good and the bad 

performing materials, it stood out that lower correlations occur with materials that have a lower 

magnitude area flow. Although this idea was not further tested, it could be an interesting starting point 

for further research.  

 

Due to the materials with lower correlations, the idea emerged that there could be temporal patterns in 

the data. Therefore, the data was ordered by time, split into 200 bins and r was computed for each of 

them. Again, two well performing materials and two poorly performing materials were selected. For the 

good performing materials, BC and PP_FILM were chosen while OTHER_POLYMERS and PVC were 

picked respectively. The plots can be found in Figure 19 and 21. Plots for all materials are presented 

in Appendix 3.  
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Figure 19: Pearson correlation coefficient for BC and PP_FILM regarding NIR-scanner PO75 and PO75C 
with 200 bins compiled by time.  

 

No clear patterns can be observed for BC or PP_FILM. A slight positive trend is suspected towards the 

later bins, but is most probably due to normal fluctuation. Apart from that, a few negative outliers are 

seen. Interestingly these outliers do not overlap. This could be due to material-specific machine 

malfunctions. An alternative explanation is that the input material varied exceptionally from the norm 

for the specific materials. This could lead to an altered separation behaviour, having changed 

correlation as consequence. Examining the frequency of outliers, with only three outliers for BC and 

two outliers for PP_FILM their occurrence seems acceptable. The highest correlation is 0.98 for BC 

and 0.99 for PP_FILM, while the lowest correlation is 0.55 and 0.49 respectively. Scatter plots for the 

bins with the lowest r value were computed to generate an idea for the reasons of the outliers. The 

results can be found in Figure 20. Plots for the lowest correlating bins of all materials are presented in 

Appendix 4. 

 

 
Figure 20: Correlations for BC and PP_FILM in form of scatter plots for the lowest performing correlation 

bin by time. The Pearson correlation coefficient is indicated at the top right corner of the plot.  

 

Starting off with BC, the scatter plot does not reveal any new inconsistencies. Correlation is lowered by 

some outliers around the point cloud. These outliers depict higher values for PO75 than PO75C, which 

is physically possible. This could indicate an especially good separation for these occurrences, as less 

material then normally reached the next scanner. As BC is supposed to be dropped, this symbolizes 

an expected behaviour.  

 

Delving into the reason for the lowered correlation, the idea of a connection to the area flow magnitude 

on the separating scanner was risen. Therefore, the mean of the lowest performing bin was compared 

to the mean of the complete data set for PO75. Here, an increased mean of 559.96 [m2/h], compared 
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to 489.2 [m2/h] for the complete data set was determined for BC. This can be explained by the outliers 

on the right-hand side of the plot. Here, either especially large particles or a high occurrence of normal 

particles was successfully separated. As a result, the correlation was lowered and the mean increased 

for BC on PO75.  

 

Focusing on PP_FILM, the suspicion of events where one scanner detects material why the other 

scanner does not detect material gets substantiated. Another explanation for the accumulation of data 

points close to zero for PO75C could be a temporal malfunction of the separation mechanism. PP_FILM 

is targeted by PO75. Therefore, a malfunction of the air nozzles could explain the occurrences where 

PO75 detects the material but it does not reach PO75C. Comparing the mean of the complete data vs. 

the data of the lowest performing bin, an increased mean of 457.9 [m2/h] compared to 399.5 [m2/h] is 

observed. In this case, the explanation could be the other way around. Too much material could have 

been present on the belt hindering the ejection of PP_FILM. This could also explain the occurrences 

where PP_FILM was detected on PO75 but not on PO75C.  

 

Examining the lower performing materials, the correlations of OTHER_POLYMERS and PVC for 200 

bins computed by time are depicted in Figure 21.  

 

 
Figure 21: Pearson correlation coefficient for OTHER_POLYMERS and PVC regarding NIR-scanner PO75 
and PO75C with 200 bins compiled by time.  

 

For OTHER_POLYMERS, an oscillation of the correlation around 0.3 with an approximate magnitude 

of +0.3 and -0.4 is observed. Furthermore, a positive shift towards the end of the data is seen. This 

shift could be due to a change of programming of the machine or some other special event. For PVC, 

no clear trends are observed but two outliers are visible in the plot. These outliers do not overlap with 

the outliers of Figure 19. Therefore, material-specific malfunctions or special events could be the 

explanation. An example for a special event could be a heavy material occurrence, which hampered 

separation. The highest correlation is seen with 0.93 for OTHER_POLYMERS and with 0.97 for PVC, 

while the lowest correlation is detected with -0.38 and -0.3 respectively. To gain better insight into the 

least correlating parts of the data, scatter plots for the bins with the lowest correlation were plotted. The 

scatter plots for OTHER_POLYMERS and PVC and are presented in Figure 22.  
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Figure 22: Correlations for OTHER_POLYMERS and PVC in form of scatter plots for the lowest performing 
correlation bin by time. The Pearson correlation coefficient is indicated at the top right corner of the plot.  

 

For OTHER_POLYMERS, a clear trend is visible. High values on PO75 paired with low values on 

PO75C indicate a successful separation. Apart from that, the high occurrence of values that are close 

to zero for PO75 paired with values not close to zero for PO75C explains the negative correlation. As 

the addition of material is impossible, a malfunction of OTHER_POLYMER detection on PO75 is 

suspected for these instances. Scrutinizing the mean of the observed bin compared to the mean of the 

complete data set, an increase from 31.5 [m2/h] to 56 [m2/h] is observed. Resulting of this, another 

potential explanation for impossible material increases arises. Increased area flow means could 

indicate situations where the mono layer of the material on the conveyor is not given. This can lead to 

overlapping particles. Therefore, particles that have another particle on top cannot be detected. If in the 

overlapped material OTHER_POLYMERS is present in high volumes, the impossible values can be 

explained.  

 

Regarding the PVC scatter plot, no clear pattern is seen. Examining the scaling of the x- and the y-axis, 

one can observe that the majority of the values lies in the impossible range. This means that values 

from PO75C have greater magnitudes then values from PO75. As PVC is meant to be ejected on 

PO75C, the sensitivity of the classification could be the reason for this occurrence. Comparing the 

mean of the lowest performing bin to the complete data set, a decrease from 132.5 [m2/h] to 

110.9 [m2/h] is seen. An explanation for the joint occurrence of low correlation and a decreased mean 

could be that with less material present on the belt inconsistencies or special events have a higher 

influence on the correlation. In these cases, the inconsistencies represent a bigger percentual share of 

the total material, wherefore their impact is higher. Nevertheless, this is contradicted by the upfront 

created hypotheses for the joint occurrence of low correlations and increased means. Therefore, an 

analysis of which effect is dominant in which situation could be of great interest. 

 

To give this analysis a start, plots for the lowest correlation bin with total area flows from PO75 and 

PO75C as well as material-specific area flows for PO75 and PO75C were compiled. Here, it was 

focused on two well performing materials and two low performing materials. The materials are BC and 

PP_FILM as well as OTHER_POLYMERS and PVC. The created plots are depicted in Figure 23 and 

24. Plots for all materials are presented in Appendix 5.    
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Figure 23: Total area flows on PO75 (grey dots, right axis) and PO75C (black dots, right axis) as well BC 

and PP_FILM for PO75 (light lines, left axis) and PO75C (solid lines, left axis).  

 

In the Figure, black dots represent total area flows on PO75 and grey dots indicate total area flows for 

PO75C. Their magnitude is indicated on the right y-axis. The dark line shows the values for BC on 

PO75C and the light line indicates BC on PO75. Both lines refer to the left y-axis. It is seen that BC 

performs as expected. The light line stays on top of the dark line for the majority of the time steps. Also, 

the total area flows act accordingly. This means that black dots are present below grey dots for most 

of the observed datapoints. A noticeable exception is represented by the peak of PO75 and the 

depression of PO75C close to bin 170. On PO75, an accumulation of specific and total material is 

happening. At the same time, the total and specific material decreases on PO75C. Right after, PO75C 

jumps back to normal behaviour, while PO75 drops to zero for the total and specific area flows. This 

could be due to an over occupation of PO75. An over occupation on PO75 potentially leads to 

decreased separation successes, wherefore less material in total reaches PO75C. To explain the drop 

to zero of PO75, it is imaginable, that as a reaction to the over occupation the conveyer belt was 

emptied. The less extreme drop for PO75C could be due to the time delay between the scanners. This 

means that the phase where the belt is empty could be spread over two time steps for PO75C. 

Therefore, no drop to zero but a drop close to it is detected.  

 

Way more questions than for BC arise while examining the plot for PP_FILM. The first observation that 

can be made is around bin number 50. Here, PO75 drops close to zero, while PP_FILM for PO75C 

stagnates around 100 [m2/h] and the total area flow of PO75C close to 500 [m2/h]. This stagnation over 

a course of roughly 35 bins is unusual compared to the fluctuation for the rest of the data. Therefore, a 

constant offset for special cases during measurement can be suspected. Directly after this, a maximum 

of roughly 9000 [m2/h] occurs for PO75. At the same time PO75C detects area flows close to zero. This 

peak could originate from stuck material that was released in one go. Possibly this is an explanation 

for the empty belt upfront, as the accumulated material could resembles the material that did not reach 

the scanner before.  

 

The difference in detection from PO75 to PO75C could be due to a measuring error. This is suspected 

as PP_FILM is a target material of PO75. Therefore, it should be transferred to PO75C, but PO75C 

stays close to empty. An explanation for this could arise from the comparison of summed and material-

specific area flows on PO75. It can be observed that values decline in a linear fashion with a similar 

slope. Checking the data for other materials, in the same time period, a similar behaviour can be 

observed for BOARD_CT, PET_BOTTLE, PET_MONO_TRAY and PP. This could be due to a stopped 

belt or to material that got stuck on the detection area of the scanner. The non-moving material could 
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then be successively registered as background over time, what would explain the linear decline of 

detection.  

 

In Figure 24, plots for the joint analysis of summed and specific area f lows for PO75 and PO75C 

regarding OTHER_POLYMERS and PVC are depicted.  

 

 
Figure 24: Total area flows on PO75 (grey dots) and PO75C (black dots) as well OTHER_POLYMERS and 
PVC for PO75 (light lines) and PO75C (solid lines). 

 

A lower correlation can be observed for OTHER_POLYMERS and PVC. The OTHER_POLYMERS plot 

shows greater magnitude of variation for PO75 than for PO75C. This lowers the correlation , as for 

greater change on PO75 lower change on PO75C is seen. Apart from that, from bin 280 onwards, the 

material-specific lines start to swap position. This symbolizes a switch from more OTHER_POLYMERS 

on PO75 to more OTHER_POLYMERS on PO75C. As this is impossible, a measurement error needs 

to be at hand. For the occurrences around bin 290 and 320, the area flow sum of PO75 drops close to 

zero, wherefore a malfunction can be assumed. From bin 350 onwards, OTHER_POLYMERS peaks 

heavily on PO75C and starts to decline again. With a time delay, this peak is mirrored on PO75 and 

then converts into a stagnation for both sums of the scanners. Here, P075 stagnates close to 0 [m2/h], 

while the stagnation for PO75C is observed around 1000 [m2/h]. It is interesting that the same 

stagnation pattern as for PP_FILM can be observed. This raises the suspicion, that when the sum of 

PO75 is close to zero, PO75C still detects a sum of roughly 1000 [m2/h]. Another hunch that emerges 

is that OTHER_POLYMERS somehow could balance other material categories during stagnation, as it 

declines, while the sum of the scanner stays unnaturally stable.   

 

For PVC, the material-specific area flows measured on PO75 and PO75C develop in different directions 

on a frequent basis. Strong examples resemble opposite peaks around bin 70 and the area between 

bin 220 to 240. Furthermore, the encountered stagnation pattern can be also observed for PVC arounf 

bin 250 and from bin 370 onwards. Interestingly, a third behaviour for this case can be seen in the data. 

PP_FILM dropped with the sum of the scanners and stagnated at a low value, OTHER_POLYMERS 

peaked and declined during stagnation, while PVC peaks during stagnation and oscillates at high 

values. These behaviours could not be reproduced in the time periods of lowest correlation bins of other 

materials, but they reveal a range of behaviours the scanners show during these stagnations. This 

leads to the suspicion that a state of the scanner exists where it tries to keep the sum of detected area 

flows constant. In these cases, some materials deliver a constant contribution, while other materials 

balance each other out through declining or increasing over time.    
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The described explorations motivate several pre-processing procedures that will be tested later in this 

work for model building. Through the depicted histograms and the found stagnation for the lowest 

correlation bins, upper and lower area sum thresholds were considered good candidates for data pre-

processing. In general, if a data point gets removed for one scanner it is also removed for the other 

scanner to avoid NaN values and resulting calculation errors. To test the thresholds out, it was decided 

to remove all data points that have a lower total area flow of 1000 [m2/h] for PO75 and a lower total 

area flow than 1250 [m2/h] for PO75C. This was done due to the discovered stagnations around 

1000 [m2/h] for PO75C and the left tail of the distribution for both scanners in the initially discussed 

histograms. These histograms also were the motivation to implement the upper threshold to remove 

outliers from the data. Here, an upper threshold of 12,500 [m2/h] and 10,000 [m2/h] was selected for 

PO75 and PO75C. A histogram with the applied thresholds for total area flow on PO75 and PO75C can 

be found in Figure 25.  

 

 
Figure 25: Distribution of occurrences of total area flows for PO75 and PO75C, using 50 bins for 

accumulation. Zeros were removed upfront and thresholds of 1000 and 12500 as well as 1250 and 10000 
were applied for PO75 and PO75C respectively. 

 

Applying the thresholds results in normal distributed data. Furthermore, a slight truncation at the left 

side of the distribution and centred means and medians for both scanners are observed.  

 

Concluding the NIR-scanner area flow data exploration, it can be said that the data should be used with 

care. Especially, for occurrences of low magnitude total area flows or low correlations, inner workings 

of the NIR-scanners were encountered that are not understood. Furthermore, attention should be given 

to occasions where material that is detected on PO75C exceeds material detected on PO75. These 

occurrences are impossible and can only be explained to a limited amount by belt over occupations, 

stuck material that gets released in bulk or fluctuations due to changed particle orientation. 

Furthermore, situations where one NIR-scanner is detecting material, but the other NIR is detecting no 

material at all need to be considered. Interestingly enough these events were present on a material-

specific level and for the total area flows.       

 

The obtained information provides valuable insights to answer the first sub-research question. For this, 

correlations and relationships in the data have to be analysed. This was successfully done for NIR-

scanner area flow information. 
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5.1.3 NIR-scanner Data – Belt Occupation 

Position specific NIR-scanner data regarding belt occupation was made available by TOMRA. For this, 

the belt is split up into 70 pieces over its width. While the machine is running, the total material 

occurrence is measured for each of these sections. The analysis of this data will help solving sub 

research question one. An exemplary graphical representation of the belt occupation information can 

be found in Figure 26. The Figure resembles a screenshot from the TOMRA Insight portal.   

 

 
Figure 26: Exemplary graphical representation for the specific belt occupation in [m2/h] provided by 

TOMRA. (TOMRA, 2024) 

 

To make the data usable for model building and data exploration , the provided information was 

aggregated. For this, the occurrences of belt occupations were counted between 0-50 [m2/h], 

50-100 [m2/h], 100-200 [m2/h], 200-300 [m2/h] and >300 [m2/h]. The used steps were inspired by the 

color-coding scheme used by TOMRA. For this, information displayed for PO75 and PO75C, in the 

TOMRA Insight portal, was scrutinized and the categories were derived. In a first step, the distributions 

of the different categories were plotted and are presented in Figure 27.  
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Figure 27: Distributions in form of histograms for counted belt occupancies on PO75.  

 

The 50-100 [m2/h] category has the greatest number of total occurrences with more than 2.14 million 

counts. Directly after, the 0-50 [m2/h] category follows with 2.08 million counts. On the lower end is the 

100-200 [m2/h] category with 1.17 million counts, while the 200-300 [m2/h] category and the >300 [m2/h] 

are rarely registered with 11,704 and 1,144 occurrences.  

 

The only range of belt occupations that is visibly normal distributed, except for its left tail, is 

50-100 [m2/h]. All other categories do not follow a common distribution , based on visual inspection. 

What can be noticed is that 0-50 [m2/h] has a strong right tail, while all other categories have a strong 

left tail. This means that there is a part of the data where all sections are not over occupied. This is 

resembled by 70 counts for the 0-50 [m2/h] category for over 8500 occurrences. These 8500 

occurrences are mirrored by the other categories having a count of 0 occurrences. For 50-100 [m2/h], 

the number of 0 counts does not exceed the number of 70 counts for 0-50 [m2/h]. Therefore, when not 

all sections are within the 0-50 [m2/h] category, always sections that are in the 0-50 [m2/h] and in the 

50-100 [m2/h] category occur. For all remaining categories, the amount of 0 occurrences exceeds this 

value, wherefore they are less often present. The 100-200 [m2/h] category has a maximum number of 
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66 counts, while the 200-300 [m2/h] category and the >300 [m2/h] category have maximum counts of 

60 and 15. Furthermore, the 0 counts increase dramatically. For the 100-200 [m2/h] category they lie at 

19,316, for the 200-300 [m2/h] category they already go up to 74,188 and for the >300 [m2/h] category 

they increase to 77,055. These described occurrences and distribution are as expected. While very 

high to high occupations occur rather rarely, moderate to low occupancies represent the majority of the 

data. This is wanted for favourable separation conditions.  

 

Starting the material-specific exploration, it was checked if occupation counts correlate with material 

occurrences. For this, scatter plots with the different materials and the occupation counts were 

compiled. Furthermore, for each material a version was added where the coloration of the data points 

is set to 0.5%. This means that for full correlation 200 data points or more have to overlap. This 

generates a better feeling for the density of the data. To not discuss all available materials, four 

examples were selected. BC and PP_FILM show distinguishable patterns, while OTHER_POLYMERS 

and PVC are harder to interpret, wherefore they have been picked. This was done to show the range 

in between the materials. The plots can be found in Figure 28 and 29 respectively. Scatter plots for all 

materials are presented in Appendix 6.  

 

 
Figure 28: Scatter plots for BC and PP_FILM area flows on PO75 together with belt occupation counts from 
PO75. One version with full coloration (upper plots) and one version with 0.5% coloration (lower plots).  

 

Both materials show rather similar behaviour. In the 100% coloration plots a slight difference is seen 

for the >300 [m2/h] and 200-300 [m2/h] category. For PP_FILM, higher occurrences of these categories 

are present in the lower half of the y-axis. For BC, they are placed towards the middle of the y-axis. At 

a first glance this seems counterintuitive. One would expect a high amount of the highest category 

occurrences on areas with high magnitudes area flows. Nevertheless, it is revealed that these two 

categories are not responsible for the high area flow magnitudes on a common basis. Instead, the 

100-200 [m2/h] category is governing. Therefore, it can be claimed that the >300 [m2/h] and the 
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200-300 [m2/h] categories are more exceptions than useful indicators. In the 0.5% coloration plots, 

more patterns become visible. The 100-200 [m2/h] category shows a positive trend with high magnitude 

area flows. On the other hand, the 0-50 [m2/h] category shows a negative trend together with a 

balancing peak at the right side of the plot. Especially, the high area flows in this peak resemble an 

ideal case. This is because a high amount of material is spread out evenly enough to avoid over 

occupation, but still reaches the detected throughput. The 50-100 [m2/h] category acts as balancing 

ground noise. It has no positive or negative correlation and a normal distribution around 500 [m2/h] for 

both materials. This could not add any explanatory power to a linear model. Nevertheless, the peak 

around 60 counts for both materials could help to predict an area flow of 500 [m2/h]. This is valid for 

both materials, but would need to be leveraged with a non-linear or machine learning model. 

    

Moving on to the correlations between belt occupation and OTHER_POLYMERS, as well as PVC, 0.5% 

coloration plots and full coloration plots are depicted in Figure 29.   

 

 
Figure 29: Scatter plots for OTHER_POLYMERS and PVC area flows on PO75 together with belt occupation 
counts from PO75. One version with full coloration (upper plots) and one version with 0.5% coloration 
(lower plots).  

 

For the full coloration plots, both materials behave similarly. The 0-50 [m2/h] and 50-100 [m2/h] 

categories show equal occurrences of all counts for values up to 300 [m2/h] for OTHER_POLYMERS 

and for values up to 1000 [m2/h] for PVC. Afterwards, a rather random occurrence of categories, for 

values above these thresholds can be observed. Furthermore, for data points above 45 belt occupation 

counts, only the 100-200 [m2/h] category is depicted, for area flows above the thresholds. This 

observation could resemble the fact that after a certain  threshold of occurrences, material sums can 

only be realized by categories that allow for enough area flow in combination with high enough belt 

occupation counts. This time the >300 category has their highest counts on the lower level of area 

flows. This could lead to the conclusion that with over occupied areas on the belt, PVC and 
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OTHER_POLYMERS do not get detected as well as normal. The same applies for the 200-300 [m2/h] 

category. This strengthens the idea that the 100-200 [m2/h] category is governing while the >300 [m2/h] 

and 200-300 [m2/h] categories are less influential due to their low occurrence. Furthermore, they could 

indicate hindered detection. The 0.5% coloration plots only reveal slightly more information. For 

OTHER_POLYMERS a vague positive trend of the 100-200 [m2/h] category can be seen. The 

0-50 [m2/h] category has a right tail for both materials, but no trend is visible for the other parts of the 

data. Apart from that, other categories do not show any clear patterns. This means that these categories 

most probably do not have great influence on the appearance of the materials.  

 

Another idea for the belt occupation data is, that for over occupied parts of the belt, separation could 

be hampered. Therefore, occupation counts were plotted against area flow data from PO75C and are 

presented in the form of scatter plots. BC and PP_FILM are used as positive examples, while 

OTHER_POLYMERS and PVC are showcased as negative examples. Plots can be found in Figure 30 

and 31, while representations of all materials are depicted in Appendix 6.  

 

 
Figure 30: Scatter plots for BC and OTHER_POLYMERS area flows on PO75C together with belt occupation 
counts from PO75. One version with full coloration (upper plots) and one version with 0.5% coloration 
(lower plots).  

 

In general, similar trends as in the plots for PO75 can be observed. A decreased area flow is seen for 

BC because of the separation from PO75 to PO75C. For PP_FILM, similar area flows occur due to the 

successful transference of target material. Considering the 50-100 [m2/h] category, a positive trend 

could be suspected. Nevertheless, scrutinizing a scatter plot of only this category, it is revealed that the 

category performs as for PO75. The difference is that this category has a reduced occurrence for up to 

bin 15 for PP_FILM and BC, wherefore the joint plot appears differently. Furthermore, it can be 

observed that for BC the 200-300 [m2/h] category seems to have more counts for higher area flows. 
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Nevertheless, in the 0.5% coloration plot it is revealed that the density of these values lies in the lower 

half of the area flow magnitudes. 

 

Starting the analysis of the belt occupation on PO75 together with the area flows on PO75C for 

OTHER_POLYMERS and PVC, scatter plots were compiled. A 0.5% coloration and full coloration 

version for both materials are presented in Figure 31.   

 

 
Figure 31: Scatter plots for OTHER_POLYMERS and PVC area flows on PO75C together with belt 

occupation counts from PO75. One version with full coloration (upper plots) and one version with 0.5% 
coloration (lower plots).  

Scrutinizing the plots for OTHER_POLYMERS and PVC, similar behaviour to the PO75 plots can be 

observed. Nevertheless, compared to the 0.5% plot of PO75, in the PO75C version, no trend for 

OTHER_POLYMERS is visible. Furthermore, the data points in the full coloration plot are more 

clustered, without the scarce point cloud above the dense data point area, as in the PO75 versions. 

This could be due to the successful removal of high area flow outliers during separation. In contradiction 

to this hypothesis, for PO75, the dense data point area of OTHER_POLYMERS is seen up to 300 [m2h], 

while for PO75C it goes until 500 [m2/h]. For the 0.5% coloration plot, these values are 200 [m2/h] and 

300 [m2/h] respectively. For PVC, this dense data point area decreases intensely from 1000 [m2/h] to 

600 [m2/h] for PO75C. Additionally, a decrease from 800 [m2/h] to 200 [m2/h] can be observed for the 

0.5% coloration plot. This is backed up by the mean of OTHER_POLYMERS, of 56 [m2/h] for PO75, 

and 78.2 [m2/h] for PO75C, as well as 132.5 [m2/h] and 57.9 [m2/h] for PVC. While this is an expected 

behaviour for PVC due to the sorting, OTHER_POLYMERS should normally decrease. Therefore, a 

changed classification could be an explanation. 

 

Concluding, slight correlations between belt occupation and material flow magnitude can be seen. 

Expected relationships between PO75C and belt occupation could not be confirmed. This was initially 

suspected due to expected changes in sorting efficiency, triggered by altered belt occupations. 
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Nevertheless, similar correlations as for PO75 are observed, but with a decreased significance. While 

this information has limited use for linear model building, enough non-linear trends are observed to 

suspect added value in machine learning applications.    

 

The gained knowledge completes the information that is needed to answer the first sub research 

question. All available data sources were explored and insights about correlations and relationships 

that are present in the data were gathered. Therefore, model building and prediction tasks can be 

conducted on a well-informed basis and are describe in the following subchapters. 

 

5.2 Statistical Modelling – Area Density 

To join belt weigher and NIR-scanner data, an OLS modelling approach was chosen. This was done to 

determine the area densities for the processed materials. Determination of area densities is a crucial, 

as it enables transference from area flow data into mass stream data, which necessary for reliable 

quality predictions. Quality prediction could be done in m2, but due to the missing information about the 

height of the particles, this prediction results in high variance of final volume or mass. The outcomes of 

this subchapter will, therefore, deliver an important contribution to the answering of sub research 

question two.  

 

5.2.1 OLS use case 

Area densities multiplied by area flows result in mass flows. Therefore, summing up area flows that are 

multiplied with area densities, for all available materials of a NIR-scanner, result in the mass input of 

the same. This can be seen as a linear model describing the relationship between area flows, area 

densities and mass flows. A mathematical formulation of the described relationship can be found below.  
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𝜌𝑚𝑎𝑡1,  𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑
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…

] (5.1) 

 

As one can see, this formula also represents the form of an OLS model. Here, the mass flow act as 

dependent variable, while the area flows represent the independent variables and the area densities 

are the estimators. Applying the OLS model like this, it is not used in the classical way. As the goal is 

to determine the area densities, the objective is not to find estimators that predict the mass flow as 

precisely as possible, but to find area densities that resemble reality as close as they can.  

 

If this is successful, material-specific mass flows can be determined, which enables the prediction of 

the product composition. Material-specific mass flows are calculated by multiplying the area flows with 

the determined area densities. A mathematical representation is depicted on the next page. 
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(5.2) 

 

 

5.2.2 Data Pre-processing 

To prepare the data for the application of the model, a histogram of NIR-scanner data and a scatter 

plot of NIR-scanner data together with belt weigher data was compiled. According to the belt weigher 

exploration, data below 0.3 [t/h] was excluded. Data points that were removed for the belt weighers 

were also excluded from the NIR-scanner data set. The respective plots are depicted in Figure 32.   

 

 
Figure 32: Total area flow histogram for PO75 and scatter plot of PO75 together with AA101 and AA106. 
NIR-scanner PO75 with all data points of belt weigher AA101 below 0.3 [t/h] removed. 

 

Correlations extracted from the scatter plot are surprisingly low, with r values of 0.55 for PO75 and 

AA101, and 0.55 for PO75 and AA106. What furthermore can be seen, is that with the removal of empty 

data for AA101 and AA106, not all empty data for PO75 is removed. This is indicated by the left tail of 

the histogram as well as belt weigher data close to the y-axis of the scatter plot. To tackle this issue 

and to improve correlation, several thresholds to remove the left tail of PO75 were tried out. Good 

results were obtained for a threshold of 200 [m2/h]. Respective plots are depicted in Figure 33.   

 

 
Figure 33: Total area flow histogram for PO75 and scatter plot of PO75 together with AA101 and AA106. 

NIR-scanner PO75 with all data points of belt weigher AA101 below 0.3 [t/h] removed and all PO75 area flow 
sums below 200 [m2/h] excluded. 
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It can be seen that the left tail of the histogram and a majority, of the data points close to the y-axis of 

the scatter plot is removed. Therefore, all empty data points of PO75 were excluded successfully. 

Nevertheless, correlations between PO75 and AA101 as well as PO75 and AA106 are still lower than 

expected. To further tackle this issue, the data was split into 200 bins by time and r was computed for 

each bin. This was done to check for temporal patterns in the data. The resulting plot can be found in 

Figure 34.    

 

 
Figure 34:  Pearson correlation coefficients for NIR-scanner PO75 with regards to belt weigher AA101 and 

AA106 with 200 bins compiled by time.  

 

A clear temporal pattern is seen with a negative deviation up to bin number 45. Up to this bin , r oscillates 

around 0 with magnitudes of -0.2 and 0.4. Afterwards, the coefficient jumps to 0.8 and oscillates around 

this value. An exception of this is seen from bin 135 until bin 165 where the oscillation is shifted to 0.6. 

These patterns can be either explained by a malfunction of the belt weighers or the NIR-scanners. For 

the NIR-scanners, a change in the categorization program could be the reason , while for the belt 

weighers a changing measurement offset could be an explanation. To tackle this issue, it was decided 

to exclude all bins that have a correlation below 0.7. A histogram and scatter plot of the modified data 

is presented in Figure 35.        

 

 
Figure 35: Total area flow histogram for PO75 and scatter plot of PO75 together with AA101 and AA106. 

NIR-scanner PO75 with all data points of belt weigher AA101 below 0.3 [t/h] removed, all PO75 area flow 
sums below 200 [m2/h] excluded and bins with correlations below 0.7 were not considered.  

 

Although the amount of data points decreases dramatically from 65 thousand to 34 th ousand, the 

correlation increases to expected r values of 0.83 for PO75 and AA101, as well as 0.82 for PO75 and 

AA106. Impossible values, where either the belt weigher or the scanners delivers no data, while the 
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other unit detects material, also decreases significantly. This becomes even more clear plotting a 

scatter plot with 0.5% coloration, where these instances for AA101 basically completely disappear.  

 

In conclusion, the data pre-processing for OLS model application revealed a temporal correlation 

pattern for belt weigher data in combination with NIR-scanner area flows. Through this, an unexpected 

contribution to the answering of sub research question one is made. Complications for joint application 

of different data types were not expected. Nevertheless, difficulties could be overcome and new insights 

were gained.  

 

5.2.3 OLS application 

After proper pre-processing of the data, an 80/20 test training was realized. Afterwards, the OLS model 

was applied with NIR-scanner data from PO75 and belt weigher data from AA101. Results are depicted 

in Table 12. 

 
Table 12: OLS results for area density prediction after exclusion of bins below r values of 0 .7, belt weigher 

data below 0.3 [t/h] and total area flows on PO75 below 200 [m2/h].  

 Regression Coefficient /  

Area density [kg/m2] 

Standard Error [kg/m2] 95% interval 

Constant -245,296 24,148 [-292,628, -197,964] 

BC -0,153 0,166 [-0,479, 0,173] 

BOARD_CT 18,930 1,461 [16,067, 21,794] 

EPS 1,638 0,173 [1,298, 1,977] 

OTHER_POLYMERS 8,83 0,669 [7,518, 10,142] 

PAPER 
5,874 0,261 [5,362, 6,386] 

PET_BOTTLE 4,029 0,536 [2,979, 5,079] 

PET_G 18,873 5,605 [7,888, 29,859] 

PET_MONO_TRAY 0,36 0,595 [-0,807, 1,527] 

PE_FILM 1,636 0,097 [1,446, 1,826] 

PE_RIGID -1,5 0,14 [-1,774, -1,226] 

PP 1,699 0,171 [1,364, 2,033] 

PP_FILM -1,015 0,217 [-1,44, -0,59] 

PS -5,116 0,562 [-6,218, -4,014] 

PVC 0,453 0,07 [0,316, 0,589] 

 

At a first glance, materials like PVC and PE_FILM have area densities that lie in reasonable ranges 

and have small standard errors of 0.07 and 0.097. This would indicate expected deviation per m2 of 

material of 70 grams and 97 grams, which could be acceptable. An especially negative example is 

represented by PET_MONO_TRAY. Here, the confidence interval ranges from -0.81 [kg/m2] to 

1.53 [kg/m2]. This means that within the confidence interval it is unclear if the regression coefficient 

indicates a positive or a negative correlation. Apart from that, four negative regression coefficients 

occur. In this case, negative regression coefficients mean negative area densities. These are physically 

impossible, wherefore they should not occur.  

 

A possible explanation for this could be multicollinearity, which is treated in the next subchapter. 

Furthermore, autocorrelation could influence the model result. Nevertheless, with a Durbin -Watson 

number of 2.07, there was no indication for further testing. Another explanation could be that one of the 

materials has a negative correlation with the belt weigher. Negative correlations are not expected, but 
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if they occur, they could be the reason for regression coefficients turning negative. To exclude this 

possibility, correlation of all materials from PO75, together with belt weigher AA101, are depicted in 

scatter plots and can be found in Figure 36.  

 

 
Figure 36: Scatter plots for materials from PO75 together with AA101 and an indication of the Pearson 
correlation coefficient on the top left corner.  

 

Highest correlation is seen for BC and PE_FILM with 0.79 and 0.78. Lowest correlations are detected 

with 0.32 and 0.43 for PVC and PET_G. In total, all materials show positive correlation. Therefore, the 

hypothesis of a negative correlation between material and belt weigher leading to negative regression 

coefficients can be neglected.  
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Lastly, the OLS model could also be hampered by the violation of the normal distributed error 

assumption. To check for this a histogram of the errors is depicted in Figure 37.  

 

 
Figure 37: Error distribution of the initial OLS model with indications for the mean, median, 0.1 quantile and 
0.9 quantile of the data with 200 bins. 

 

Visibly, the assumptions of the normality of the errors is not violated. The errors are distributed around 

zero and the mean as well as the median align accordingly. The 0.1 and 0.9 quantile lie at -1072.1 [kg/h] 

and 1180.6 [kg/h]. Therefore, the error of the majority of the predicted datapoints lies in this area. With 

a mean of 5128 [m2/h] for the belt weigher, this seems like a high range. The MAE for the model of 

740 [kg/h] gives a slightly better perspective, but is still not excellent.  

 

5.2.4 Multicollinearity 

Multicollinearity can be detected through pairwise scatter plots or by compiling a correlation matrix for 

the independent variables. The second approach was chosen and the correlation matrix is depicted in 

Table 13.   

 
Table 13: Correlation matrix for the independent variables of the OLS model without grouping. Dark 

colorations indicate higher values while light colorations indicate lower values. B_CT = BOARD_CT; OP = 
OTHER_POLYMERS; P = PAPER; PET_B = PET_BOTTLE; PET_M = PET_MONO_TRAY; PE_F = PE_FILM. 

  B_CT EPS BC OP P PET_B PET_G PET_M PE_F PE_R PP PP_F PS PVC 

B_CT 1,00 0,52 0,82 0,52 0,89 0,48 0,30 0,51 0,67 0,52 0,59 0,67 0,54 0,24 

EPS 0,52 1,00 0,39 0,76 0,33 0,43 0,30 0,44 0,38 0,36 0,45 0,45 0,88 -0,03 

BC 0,82 0,39 1,00 0,45 0,79 0,53 0,36 0,53 0,90 0,80 0,70 0,71 0,43 0,44 

OP 0,52 0,76 0,45 1,00 0,32 0,51 0,37 0,50 0,46 0,44 0,56 0,54 0,95 -0,05 

P 0,89 0,33 0,79 0,32 1,00 0,32 0,19 0,35 0,55 0,36 0,36 0,46 0,36 0,37 

PET_B 0,48 0,43 0,53 0,51 0,32 1,00 0,66 0,99 0,64 0,61 0,71 0,65 0,46 0,05 

PET_G 0,30 0,30 0,36 0,37 0,19 0,66 1,00 0,64 0,45 0,45 0,49 0,45 0,34 0,01 

PET_M 0,51 0,44 0,53 0,50 0,35 0,99 0,64 1,00 0,62 0,58 0,69 0,65 0,46 0,07 

PE_F 0,67 0,38 0,90 0,46 0,55 0,64 0,45 0,62 1,00 0,93 0,89 0,85 0,42 0,41 

PE_R 0,52 0,36 0,80 0,44 0,36 0,61 0,45 0,58 0,93 1,00 0,85 0,75 0,40 0,22 

PP 0,59 0,45 0,70 0,56 0,36 0,71 0,49 0,69 0,89 0,85 1,00 0,96 0,51 0,17 

PP_F 0,67 0,45 0,71 0,54 0,46 0,65 0,45 0,65 0,85 0,75 0,96 1,00 0,50 0,23 

PS 0,54 0,88 0,43 0,95 0,36 0,46 0,34 0,46 0,42 0,40 0,51 0,50 1,00 -0,05 

PVC 0,24 -0,03 0,44 -0,05 0,37 0,05 0,01 0,07 0,41 0,22 0,17 0,23 -0,05 1,00 
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What directly can be seen is that there is a high amount of correlation present between the independent 

variables. Looking at correlating categories, they follow an intuitive pattern, as they resemble the same 

material. As an example, PP has a correlation of 0.96 with PP_FILM and PE_Film has a correlation of 

0.93 with PE_RIGID. The only categories that fall out of place are the high correlation of BC and 

PE_FILM with 0.9, and the low correlation of PET_G with PET_BOTTLE and PET_MONO_TRAY, with 

r values of 0.66 and 0.64, respectively. To get a better understanding of the correlation matrix, the 

mean correlation coefficient was calculated with 0.47. Furthermore, the occurrences of correlations 

above 0.85 were counted. With 10 occurrences they resemble 12% of the calculated correlations.  

 

To treat the correlation between the categories, highly correlating materials were grouped sub 

sequentially. It was started by grouping PET_BOTTLE and PET_MONO_TRAY, as they had the highest 

correlation with 0.99. Next, PP and PP_FILM showed the correlation with the highest magnitude with a 

r value of 0.96. Accordingly, they were grouped. After this, still a very high correlation was seen for 

OTHER_POLYMERS and PS with 0.95. Additionally, EPS was added, as it has its two highest 

correlations with these materials and resembles a rather small area flow. Following this step PE and 

PE_FILM were grouped, with a correlation of 0.93. Although BC has a correlation of 0.9 with PE_FILM 

it was not added to avoid grouping of polyolefin and non-polyolefin material. As polyolefins are one of 

the materials that are tested for quality determination, BC cannot be added to the grouping. The reason 

for this is that it would become undistinguishable which part of the area density belongs to BC and 

which not. The highest correlation found at this point is between PAPER and BOARD_CT with 0.89. 

This time BC was added to the mix, as PAPER and BOARD_CT are the categories it has its best 

correlations with apart from PE. Lastly, PE and PP were aggregated to POLYOLEFINS as they still had 

a correlation of 0.88. For each step, the mean Pearson correlation coefficient, the count of correlations 

above 0.85 and the percentage of correlations above this threshold was compiled. Furthermore, the 

amount of negative regression coefficients and the number of categories is indicated. Results can be 

found in Table 14.  

 
Table 14: Mean Pearson correlation coefficient, counts of correlations above 0.85 and threshold of these 
counts from the total number of calculated correlations for the OLS model data and its different grouping 
steps.  

Grouping Steps Mean 
r 

Count 
> 0.85 

Counts from 
total number [%] 

Negative regression 
coefficients 

Number of 
categories 

Without grouping 0,47 10 12 4 14 

PET grouped 0,46 9 13 4 13 

PP grouped 0,44 6 10 3 12 

PS and 
OTHER_POLYMERS 
grouped 

0,45 4 10 2 10 

PE grouped 0,42 3 9 1 8 

CELLULOSICS grouped 0,38 1 6 0 7 

POLYOLEFINS grouped 0,33 0 0 0 6 

 

As expected, the mean Pearson correlation coefficient, the number of correlations above 0.85 and the 

percentage of these values decreases steadily for each grouping. One exception is seen for the PET 

grouping. Here, the number of categories and the number of instances with a correlation of greater 0.85 

decreased by one. This leads to an increased share of values above 0.85 despite the negative trend. 

Nevertheless, after the last grouping no correlation above 0.85 can be found and regression coefficients 
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turn out positive with OLS modelling. In Table 15, the correlation matrix of the data after the last 

grouping is presented.  

 
Table 15: Correlation matrix for the independent variables of the OLS after grouping. Dark colorations 
indicate higher values while light colorations indicate lower values.  

  OTHER_POLYMERS PET_G PVC PET CELLULOSICS PO 

OTHER_POLYMERS 1,00 0,36 -0,05 0,49 0,49 0,49 

PET_G 0,36 1,00 0,01 0,65 0,32 0,48 

PVC -0,05 0,01 1,00 0,06 0,38 0,30 

PET 0,49 0,65 0,06 1,00 0,50 0,67 

CELLULOSICS 0,49 0,32 0,38 0,50 1,00 0,74 

PO 0,49 0,48 0,30 0,67 0,74 1,00 

 

The highest correlation that is left is observed between CELLULOSICS and PO with 0.74. This is 

probably due to the high correlation between PE_FILM and BC, which were grouped into PO and 

CELLULOSICS. The next highest correlations are seen for PO and PET with 0.67, as well as with a r 

value of 0.65 for PET_G and PET. These correlations were considered acceptable, wherefore it was 

decided to continue the OLS model analysis with this setup. In Table 16, the results of the OLS 

modelling for the final grouping can be found. 

 
Table 16: OLS results for area density prediction after exclusion of bins below r values of 0.7, belt weigher 

data below 0.3 [t/h], total area flows on PO75 below 200 [m2/h] and grouping.  
 

Regression Coefficient /  
Area density [kg/m2] 

Standard Error [kg/m2] 95% interval 

Constant -395.958 23.703 [-442.416, -349.5] 

OTHER_POLYMERS 1.527 0.074 [1.382, 1.673]  

PET_G 18.882 5.619 [7.868, 29.895]  

PVC 1.154 0.051 [1.055, 1.253]  

PET 2.706 0.065 [2.579, 2.834]  

CELLULOSICS 2.3 0.028 [2.241, 2.351]  

PO 0.472 0.011 [0.45, 0.494]  

 

The determined area densities have small standard errors between 0.011 [kg/m2] and 0.075 [kg/m2]. 

One exception for this is PET_G with a standard error of 5.619 [kg/m2]. While investigating where this 

deviation could result from, it was noticed that PET_G resembles only a minor share of the data. With 

a mean value of 1.9 [m2/h], compared to a mean of 5186 [m2/h] for the total area flows on PO75, PET_G 

only contributes 0.04% percent to the detected area. Therefore, it was decided to exclude it from the 

modelling. After PET_G was dropped from the data, the OLS modelling process was repeated. Results 

are depicted in Table 17.  
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Table 17: OLS results for area density prediction after exclusion of bins below r values of 0.7, belt weigher 
data below 0.3 [t/h], sum of areas on PO75 below 200 [m2/h], grouping and drop of PET_G data. 

 Regression Coefficient /  
Area density [kg/m2] 

Standard Error [kg/m2] 95% interval 

Constant -402.86 23.62 [-449.156, -356.572] 

OTHER_POLYMERS 1.539 0.074 [1.394, 1.684] 

PVC 1.1478 0.051 [1.049, 1.247] 

PET 2.811 0.057 [2.699, 2.923] 

CELLULOSICS 2.289 0.028 [2.234, 2.344] 

PO 0.476 0.011 [0.454, 0.498] 

 

After dropping PET_G, all standard errors of the material densities stay in the same range between 

0.11 [kg/m2] and 0.074 [kg/m2]. For most of the categories, standard errors are unaltered, but for the 

constant, and for PET, they further decrease slightly to 23.62 [kg/m2] and 0.057 [kg/m2], from 

23.7 [kg/m2] and 0.065 [kg/m2], respectively. In Figure 38, the error distribution for the newly trained 

OLS model can be found.  

 

 
Figure 38: Error distribution of the OLS model with grouped data and indications for the mean, median, the 
0.1 quantile and the 0.9 quantile of the data with 200 bins. 

 

The error distribution is quite similar to the initial model, with a mean of zero and the 0.1 and 0.9 quantile 

at -1095.9 [kg/h] and 1206.3 [kg/h]. A slightly increased MAE of 757 [kg/h] can be observed, but still 

stays close to the original model. This can be explained by the nature of fixing multicollinearity. Through 

treated multicollinearity, a clear explanatory power is assigned to each regression coefficient, but the 

quality of the prediction is not necessarily increased.  

  

5.2.5 Bootstrapping 

To generate greater trust in the area densities, bootstrapping was applied. This was done to not only 

rely on the confidence interval provided by the initial sample. Bootstrapping is less prone to violation of 

assumptions due to its resampling nature. For the same reason, it is less prone to outliers. Simply said, 

a heavy influential outlier does not have to be drawn in each sample. Therefore, heavy in fluence of 

single data points would be revealed. The bootstrapping was done with 10,000 resampling rounds and 

results can be found in Figure 39.  
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Figure 39: Bootstrapping results for the area densities and the constant of PO75 and AA101 after 10,000 
resampling applications. The mean, the median and the 0.025 and 0.975 quantiles are indicated.  

 

The resulting area density distributions for the bootstrapping align with the results from the OLS 

modelling and the determined confidence intervals. Greatest deviation from the mean of the distribution 

to the original regression coefficient can be found for the constant with a change from -402.86 [kg] 

to -402.73 [kg]. Second greatest change is found for PET with a deviation from 2.811 [kg/m2] to 

2.819 [kg/m2]. The 0.025 and 0.975 quantiles can be seen as an equivalent to the 95% confidence 

interval. Compared to the confidence intervals, the quantiles of the bootstrapping are a little bit wider. 

Greatest deviation is observed for the constant where the quantile values are -456.94 [kg] 

and -347.01 [kg], while the confidence interval indicates -449.16 [kg] and -356.57 [kg]. For the area 

densities, PET and PVC show the greatest divergence, with quantile values of 2.5 [kg/m2] and 

3.13 [kg/m2] for PET, and 0.98 [kg/m2] and 1.32 [kg/m2] for PVC, as well as confidence intervals of 

2.7 [kg/m2] and 2.92 [kg/m2] for PET, and 1.05 [kg/m2] and 1.25 [kg/m2] for PVC. This indicates that 

through the bootstrapping additional variation in the data could be revealed, but apart from that no 

unexpected behaviour is found. The mean, median and quantiles for each material as well as the 

constant are depicted in Table 18.    
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Table 18: Summary of bootstrapping results presenting the mean, median, 0.025 and 0.975 quantile for t he 
area densities determined with PO75 and AA101. 

 Mean Median 0.025 quantlile 0.975 quantile 

Constant -402.73 -402.64 -456.936 -347.01 

CELLULOSICS 2.289 2.288 2.22 2.357 

OTHER_POLYMERS 1.538 1.537 1.357 1.729 

PET 2.819 2.821 2.501 3.127 

PO 0.475 0.475 0.437 0.513 

PVC 1.149 1.149 0.98 1.322 

      

5.2.6 Testing and evaluation 

To test the determined area densities, the test dataset was used. Area densities were multiplied with 

the area flows of the respective materials and plotted together with the belt weigher data. For better 

visibility, the data was aggregated in bins of 30 minutes. The plot can be found in Figure 40.  

 

 

Figure 40: Comparison of actual belt weigher data from AA101 and mass flows compiled through area flows 
from PO75 with the help of area densities determined from PO75 and AA101, aggregation in bins of 30 
minutes. 

 

The fit appears accurate and follows the trends in the data. Most of the peaks are matched by the 

prediction with exemplary exceptions around time step 20, 35 and 215. In these occasions, peaks were 

predicted but the data showed a rather small or no peak. Through the aggregation of the data, the MAE 

decreases from 760.7 [kg/h] to 141 [kg/h]. This resembles a mean relative error (MRE) of 16% and 3%. 

This happens as due to the aggregation positive and negative deviations balance each other out. 

Therefore, the prediction appears more accurate in greater time step aggregations. To gain a better 

understanding of the performance of the model, error distributions for the aggregated and unaggregated 

data is presented in Figure 41.   
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Figure 41: Error distribution of the OLS model with no aggregation (left) and aggregation of 30 -minute 
periods (right) for test data application together with indications for the mean, median, the 0.1 quantile and 
the 0.9 quantile of the data. 

 

The 0.1 quantile is measured at -1201.8 [kg/h] while the 0.9 quantile lies at 1105.4 [kg/h]. Compared to 

the quantiles of the trainings data, a shift can be observed towards greater values for the negative side 

of the distribution, while for the training data the 0.9 quantiles tended to be of greater magnitude. Apart 

from that, the errors are normally distributed. The shape of the errors of the aggregated data does not 

follow a normal distribution as clearly as the unaggregated data does, but its normality is still visible. 

This is due to the decreased amount of data points, wherefore outliers gain greater influence. The 0.1 

and the 0.9 quantile are determined with -218.7 [kg/h] and 214.8 [kg/h].   

 

Gathering this data, a clear picture of the abilities of the model can be drawn . Results from the 

aggregation show that with higher aggregation higher accuracy can be obtained. Therefore, the 

question for the need of granularity for the final model application is raised. Apart from that, in the final 

quality prediction, it has to be shown if the determined accuracy is precise enough for a reliable quality 

prediction. Furthermore, the obtained constant symbolizes the part of the model that could not be 

assigned to a specific material, wherefore a strategy to treat this part of the data needs to be developed.  

 

5.2.7 Generalizability 

In a next step, the generalizability of the area density was tested. For this, area densities determined 

with PO75 and AA101 were applied to belt weigher and NIR-scanner data of AA106 and PO75C. 

Results are presented in Figure 42.  
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Figure 42: Comparison of actual belt weigher AA106 data and data compiled through area flows from 

PO75C and determined area densities from PO75 in combination with AA101.  

 

It can be seen that, by applying the area densities determined with PO75 and AA101 to predict AA106, 

values are heavily overestimated. The MAE for this case is indicated with 743.9 [kg/h], for the 

aggregated data, and with 862 [kg/h], for the unaggregated data. Furthermore, it can be deducted from 

the plot that a strictly positive deviation is present. This indicates a positive offset. Although it is 

inconvenient that the determined area densities are not applicable across multiple NIR-scanners, it is 

an expected finding.  

 

Due to the separation of targeted material, the area densities of the material flow will change. This is 

due to the fact that not 100% of the targeted material will be transferred to the following scanner. The 

particles that reach the next scanner are biased through the separation abilities of the previous scanner. 

This means that the first scanner will separate particles with certain properties better than others. 

Therefore, particles with a property set influenced by the separation itself will reach the next scanner. 

In return, the particles on the next scanner have a different set of properties than on the previous one. 

 

5.2.8 Fitting of PO75C and AA106 

Due to the prohibited generalizability of area densities from PO75 and AA101, the area densities from 

PO75C and AA106 are fitted and analysed in this subchapter. As the principles of this fitting procedure 

were explained in depth in the previous subchapters, an abbreviated version is presented in this 

section. Accordingly, a similar grouping procedure as for PO75 was applied and the results of the OLS 

modelling for the final grouping can be found in Table 19.  

 
Table 19: OLS results for area density prediction after exclusion of bins below r values of 0.7, belt weigher 
data below 0.3 [t/h], sum of areas on PO75C below 200 [m2/h], grouping and drop of PET_G data. 

 Regression Coefficient /  
Area density [kg/m2] 

Standard Error [kg/m2] 95% interval 

Constant -298.08 15.539 [-328.537, -267.623] 

OTHER_POLYMERS 0.33 0.022 [0.287, 0.373] 

PVC 0.25 0.053 [0.146, 0.354] 

PET 3.814 0.105 [3.608, 4.02]  

CELLULOSICS 0.811 0.044 [0.724, 0.897] 

PO 0.534 0.009 [0.517, 0.551] 
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Standard errors lie in a range from 0.009 [kg/m2] to 0.105 [kg/m2], for the materials, and a standard 

error of 15.54 [kg/m2] is obtained for the constant. For OTHER_POLYMERS and PO, the standard error 

outperforms the previous fit of the area densities. Regarding PVC, PET and CELLULOSICS, the other 

area densities have smaller standard errors. Nevertheless, in between the two fits standard errors are 

small and confidence intervals are acceptably narrow. To gain further understanding of the behaviour 

of the determined area densities, bootstrapping was applied. Here 10,000 resampling rounds were 

conducted and results are presented in Figure 43.  

 

 
Figure 43: Bootstrapping results for the area densities and the constant of PO75 and AA101 after 10,000 
resampling applications, the mean, the median and the 0.025 and 0.975 quantiles are indicated.  

 

Also, for PO75C and AA106, the results align with the determined area densities from the OLS model 

and their confidence intervals. Especially, the mean and median overlap accurately with the area 

densities from the OLS model. For better overview, all quantiles, means and medians from the 

bootstrapping are presented in Table 20.   
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Table 20: Summary of bootstrapping results presenting the mean, median, 0.025 and 0.975 quantile for the 
area densities determined with PO75C and AA106. 

 Mean Median 0.025 quantlile 0.975 quantile 

Constant -298.41 -298.34 -337.59 -259.67 

CELLULOSICS 0.811 0.811 0.712 0.909 

OTHER_POLYMERS 0.330 0.331 0.287 0.373 

PET 3.819 3.819 3.481 4.166 

PO 0.534 0.534 0.511 0.556 

PVC 0.25 0.249 0.143 0.362 

 

Compared to the confidence intervals, the quantiles are wider. An exception is resembled by 

OTHER_POLYMERS, which has exactly the same value as the confidence intervals. Apart from that, 

the changes are small with below 0.02 [kg/m2], for the materials, and below 10 [kg] for the constant. 

Delving into the evaluation, compiled mass flows were plotted together with measured belt weigher 

data against time. To do this, area flows have been multiplied with the respective area densities and 

summed up for comparison with the belt weigher. For better visibility, the data was aggregated into bins 

of 30 minutes. The plot is depicted in Figure 44.  

 

 
Figure 44: Comparison of actual belt weigher data from AA106 and mass flows compiled through area flows 
from PO75C with the help of area densities determined from PO75C and AA106. 

By visual inspection, a good fit of the data can be observed. In some cases, the prediction deviates like 

for bin 40 and 55, but overall the majority of positive and negative peaks is matched by the model. 

Following up with a more parameter driven evaluation, the MAE is 92.6 [kg/h] for the aggregated data 

and 486.7 [kg/h] for the non-aggregated case. Lastly, the error distributions were analysed and are 

presented in Figure 45. 
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Figure 45: Error distribution of the OLS model for PO75C with no aggregation (left, 150 bins) and 
aggregation of 30-minute periods (right, 35 bins) for unseen data, indications for the mean, median, the 0.1 
quantile and the 0.9 quantile of the data. 

 

Interestingly, the mean of the error distribution is shifted for both versions by 19.6 into the positive 

direction of the distribution. This is most probably due to the application of the model to the test data, 

as for the trainings data the mean is centred around 0 [kg/h]. The quantiles for the non-aggregated 

results lie at -758.3 [kg/h] and 765.4 [kg/h], while for the aggregated version they are determined 

with -124.7 [kg/h] and 158.8 [kg/h].  

 

Concluding, the modelling of area densities using OLS was demonstrated and evaluated. This 

contributes to answering the second sub research question, which focuses on modelling key 

components necessary for quality prediction of the agglomeration line product. Furthermore, insights 

were gained about the generalizability of the area density, which inconveniently is not given.       
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5.3 Machine Learning – Area Flow prediction 

To compile another puzzle piece for the quality prediction of the agglomeration product, predicting the 

area flows on PO75C based on the area flows from PO75C is of interest. For this, a ML approach was 

chosen, as non-linear behaviour for the prediction is expected. Furthermore, through this, belt 

occupation data can be easily included without derivation of physical correlations between belt 

occupation and material transference. Lastly, the results of this subchapter will contribute to answering 

sub research question two.  

 

5.3.1 Data Pre-processing 

Inspired by the data exploration different pre-processing options were applied and are elucidated in 

Table 21.   

 
Table 21: Pre-processing versions applied to prepare the data for machine learning model training and 
application. 

Version Description 

V1 NaN dropped 

V2 NaN and zeros dropped 

V3 NaN and zeros dropped, area sum thresholds (PO75: 1000/12500; PO75C: 1250/10000) 
applied 

V4 NaN and zeros dropped, two additional materials from PO75 left in  

V5 NaN and zeros dropped, two additional materials from PO75 left in, area sum thresholds 

V6 NaN and zeros dropped, two additional materials from PO75 left in, AA101 and AA106 data 
included 

V7 NaN and zeros dropped, two additional materials from PO75 left in, AA101 and AA106 data 
included, area sum thresholds 

V8 NaN and zeros dropped, two additional materials from PO75 left in, AA101 and AA106 data 

included, belt occupation indicator included 

V9 NaN and zeros dropped, two additional materials from PO75 left in, AA101 and AA106 data 
included, belt occupation indicator included, area sum thresholds 

 

As can be seen in the Table, the versions are gradually constructed. The derivation of the total area 

flow thresholds is explained in subchapter 5.1.2. All sums that lie below the first value or above the 

second value are excluded for all data. This means that the entire data point is removed, to avoid NaN 

handling and other numerical problems. With two additional materials, two further material categories 

that are included for PO75 but are not present on PO75C are meant. These categories are PET_G and 

BOARD_CT. Initially, they were left out for consistency in between the scanners. With the belt 

occupation indicator, the occupation counts explained in subchapter 5.1.3 are referred to. Finally, with 

inclusion of AA101 and AA106, the incorporation of the available belt weigher data is meant. 

 

Apart from that, after the pre-processing of the data, an 80/20 train test split is applied.  

 

5.3.2 Model Try Out and Selection 

For the broad model try out, the following models were tested: Decision Tree (DT), Extra Tree (ET), 

Random Forest (RF), Gradient Boosting (GB), K-Nearest Neighbours (KNN), Bagging Regressor (BR), 

Ridge Regression (RR), Elastic-Net Regression (ENR) and Multi-Layer Perceptron (MLP). Model 

performance is evaluated based on the MAE, the MSE and the R2 value. Indicator calculation is done 

for the results of the model that was trained on the training data and afterwards applied to the test data. 

The three indicators were plotted for all models and all versions with one plot per indicator. Materials 

are indicated separately to develop insight into the contributions of each material to the indicator. 

Results can be observed in Figure 46, 48 and 49.  
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Figure 46:  MSE for all models participating in the try out, grouping by data pre-processing version and 

contribution of each material presented as a stacked bar. DT = Decision Tree; ET = Extra Tree; RF = Random 
Forest; GB = Gradient Boosting; KNN = K-Nearest Neighbours; BR = Bagging Regressor; RR = Ridge 
Regression; ENR = Elastic-Net Regression; MLP = Multi-Layer Perceptron. 

For the MSE, smaller values indicate a better fit of the model. As the errors are squared, emphasis is 

laid on large errors. Therefore, the MSE is also a good indication for a constantly well performing model. 

What directly can be seen, is that V1 is performing especially well compared to the other versions. This 

is due to the large number of zeros and values close to zero in the data. Therefore, the prediction is not 

necessarily better but errors are smaller. As shown in the data exploration, data points with this small 

area flow occurrence introduce great randomness. Therefore, together with the described distortion of 

the model evaluation, it was decided to remove V1 from the selection process. An updated plot can be 

found in Figure 47.   

  

Figure 47:  MSE for all models participating in the try out, grouping by data pre-processing version with V1 
excluded and contribution of each material presented as a stacked bar. DT = Decision Tree; ET  = Extra 
Tree; RF = Random Forest; GB = Gradient Boosting; KNN = K-Nearest Neighbours; BR = Bagging 

Regressor; RR = Ridge Regression; ENR = Elastic-Net Regression; MLP = Multi-Layer Perceptron. 
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In the updated plot, it can be observed that performance oscillates between odd and even version 

numbers. Furthermore, an improving trend for later version is seen. For MSE, odd version numbers 

perform better. This are the versions that have the thresholds for the total area flows included. 

Interpreting this means that these versions either result in more outlier resistant models or have less 

outliers in their data initially. Apart from that, the best performing model (MLP) decreases from an MSE 

of 127,89 [m4/h2] in V2 to 92,58 [m4/h2] in V9. Furthermore, first trends of the model performance can 

be derived. In all version, the DT model performs worst, while RF, GB, ET, MLP and RR show the best 

performances in a tight range. Apart from that, biggest contributions to the MSE come from PE_FILM, 

PE_RIGID and PP. The two smallest contribution are seen by PET_BOTTLE and EPS. This aligns with 

the general occurrence of the material, as PE_FILM, PE_RIGID and PP have the highest mean 

magnitude of area flows, while PET_BOTTLE and EPS are on the lower end. To investigate model 

performance, also on a less outlier prone basis, the MAE was computed next. Results are depicted in 

Figure 48. 

 

Figure 48:  MAE for all models participating in the try out, grouping by data pre-processing version with V1 
excluded and contribution of each material presented as a stacked bar. DT = Decision  Tree; ET = Extra 
Tree; RF = Random Forest; GB = Gradient Boosting; KNN = K-Nearest Neighbours; BR = Bagging 

Regressor; RR = Ridge Regression; ENR = Elastic-Net Regression; MLP = Multi-Layer Perceptron. 

A similar but less pronounced trend between the versions can be observed. The odd versions perform 

again better. These are the versions, which include the thresholds for the summed area flows. 

Furthermore, this means that these versions show a very stable performance. Together with the good 

performance for MSE, this indicates that the most robust models will result out of the odd versions data 

pre-processing. Apart from that, the greatest contributions to the MAE stem again from PE_FILM, 

PE_RIGID and PP. Nevertheless, the contribution of PP_FILM, OTHER_POLYMERS and PS 

increased compared to the MSE. This is due to the nature of the squaring during the compilation of the 

MSE and indicates that these categories have more consistent errors with less extremes. The best 

performing models, over all versions, are again RF, GB, ET, MLP and RR. Of these models MLP 

outperforms the rest and is decreasing from 657.1 [m2/h] to 608.4 [m2/h] from V2 to V9.   

 

Moving away from analysing the magnitude of the errors and the stability of the model, R2 was compiled 

for all versions and materials. The regarding plot can be found in Figure 49.  
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Figure 49:  R2 for all models participating in the try out, grouping by data pre-processing version with V1 

excluded and contribution of each material presented as a stacked bar. DT = Decision Tree; ET  = Extra 
Tree; RF = Random Forest; GB = Gradient Boosting; KNN = K-Nearest Neighbours; BR = Bagging 
Regressor; RR = Ridge Regression; ENR = Elastic-Net Regression; MLP = Multi-Layer Perceptron. 

 

For R2, higher values indicate a better performance. An R2 value of 1 means complete explanation of 

the variability in the data and the capturing of all patterns that are present. An oscillation of performance 

between odd and even versions can be seen. Furthermore, better performance for later versions is 

observed. Looking back at the MSE and MAE, it seems contradictory that this time the even versions 

perform better. This means that versions that perform better for R2 perform worse for MSE, as well as 

MAE, and the other way around. A possible explanation of that is that the even versions manage to 

better detect patterns in the data, but at the same time produce larger errors. A simple example for this 

would be the comparison of an offset, with regards to the measured values, and an oscillation around 

them. If the oscillation is small enough, it would produce a smaller error but would not capture the 

present pattern as well as the offset would do. Apart from that, RF, GB, ET, MLP and RR are again the 

best performing models and out of this group ET displays the largest R2 value. Comparing the R2 value 

of ET between the versions it increases from 5.58 to 6.5 from V3 to V8.    

 

Delving into the model selection, a governing indicator has to be determined. The predicted area by the 

ML model will be used together with the modelled area densities to determine mass flows for product 

composition and quality prediction. Therefore, smaller errors are valued more over better detected 

patterns. As a result, the MAE and the MSE will be preferred over R2. Using the same argument, it will 

be focused on the MAE instead of the MSE, as smaller general errors are preferred over robustness to 

outliers. Accordingly, V7 and V9 were picked for further analysis.  

 

To bring material-specific behaviour better into play, material-specific model performance was plotted 

for V7 and V9. In Figure 50, the regarding plots for PE_FILM, PE_RIGID, PP, PP_FILM and PVC are 

presented. This list of materials was picked, as the quality determination of the agglomeration product 

is guided by these materials. Plots for all materials can be found in Appendix 7.  
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Figure 50: Model performance measured in MAE for V7 and V9 pre-processing and relevant materials 
regarding the quality prediction of the agglomeration product.   

 

As seen in the previous analyses, there are five models that perform best across the scrutinized 

materials. These models are RF, GB, ET, MLP and RR. It can be seen that ET and MLP perform best, 

with an exception for PVC. Here, GB has a better MAE. For the remainder of the cases, GB together 

with RR perform worst within the top group. Apart from that, the DT model performs worst for all 

materials.  

 

The DT model fits a single decision tree on the data. Through the bad performance, it is shown that the 

modelling task is too complex for this approach. An explanation could be that the data is too widespread 

for a single decision tree. Therefore, no split route can be found that captures the variability of the data. 

Furthermore, the approach could be hampered by the multicollinearity present in the data. Here, the 

model will spread splitting decisions randomly across correlated features. This happens, as these 

features share explanatory power, which increases uncertainty. From the best performing models RF, 

GB and ET represent decision tree-based ensemble models. This speaks for the fact that the use of 

several decision trees in combination can keep up with the patterns present in  the data. An exemption 
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to the strong performance of decision tree-based ensemble models is the BR model. The BR model is 

also a decision tree-based ensemble model, but does not show the performance of RF, GB and ET. 

This is due to the fact that BR does not introduce additional randomness to the model, like RF and ET. 

Furthermore, it does not improve the model by fitting the new decision trees on the result of the loss 

function, like GB does. Instead, it only introduces variation through bootstrapping, which does not seem 

to be enough to capture the data in the patterns. Comparing BG to the performance of the DT model, 

it is shown that the bootstrapping approach can balance variability and potentially counteracts 

multicollinearity. Nevertheless, it is outperformed by ensemble models that incorporate additional 

randomness or optimize splits based on previous errors. 

 

The RR model is part of the best performing group and represents a linear regression approach. This 

speaks for linear trends that are present in the data and fits previous observations. Models based on 

singular decision trees struggle with this type of relationship. This happens, as they split the data at 

different points and therewith create piecewise constant predictions instead of linear patterns. As also 

ENR represents a linear regression model, they question of why RR performs better than ENR is risen. 

Compared to RR, ENR adds another penalty term to the loss function. The additional penalty term is 

the sum of all absolute weights. This effectively performs feature selection, as the model attempts to 

set some feature weights to zero in order to minimize the sum of the absolute weights.  At first, the 

better performance of RR shows that all features are relevant for the workings of the model. This is 

proven by the fact, that ENR inherently tends to exclude features and performs worse than RR. 

Furthermore, due to multicollinearity, ENR is likely to eliminate all but one feature from a group of 

correlated features. As high multicollinearity was shown in subchapter 5.2.4, the better performance of 

RR can be explained.   

 

To choose models for the hyperparameter tuning, additionally to the described analysis, the presence 

of different model architecture was considered. Therefore, MLP and RR are set for the hyperparameter 

tuning. This was done, as they represent neural network and linear regression architectures. GB, ET 

and RF are all tree-based ensemble model. Although GB performs worst for four out of five materials 

in the ensemble model group, it is selected for hyperparameter tuning. This was done, as the greatest 

improvement through tuning is expected for this model.  

 

Lastly, the XGBoost model was added to the hyperparameter tuning. This was done, as it resembles 

an improved version of the GB model and was not considered upfront by accident.   

 

5.3.3 Hyperparameter tuning and cross validation 

The used hyperparameter spaces for the hyperparameter tuning can be found in Table 22. Explanation 

of the functioning for each hyperparameter and the reasoning for the selected search space are 

explained in subchapter 2.6.3 and 4.6.2. The hyperparameter tuning was conducted via grid search. 
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Table 22: Hyperparameter space for grid search for Ridge Regression, MLP, Gradient Boosting and 
XGBoost. 

Model Hyperparameter Values applied in grid search 

Ridge 
Regression 

alpha [0.0001, 0.0005, 0.001, 0.005, 0.01, 0.05, 0.1, 0.5, 1, 5, 10, 50, 100, 
500, 1000, 5000, 10000] 

solver [svd, cholesky, lsqr, sag, sparse_cg] 

MLP hidden_layer_size 1 layer: [50, 100, 150] 
2 layers: [[50, 50], [100, 100], [150, 150]] 

3 layers: [[50, 50, 50], [100, 100, 100], [150, 150, 150]] 

alpha [0.001, 0.01, 0.1] 

activation [tanh, relu, logistic] 

Gradient 
Boosting 

n_estimators [50, 250, 500] 

learning_rate [0.05, 0.15, 0.3] 

max_feature [7, 14, 21] 

max_depth [2, 10, 18] 

min_samples_split [2, 50, 100] 

XGBoost n_estimators [50, 175, 399] 

learning_rate [0.1, 1, 2] 

max_depth [1, 8, 15] 

gamma [0, 0.25, 0.5] 

lambda [0, 0.15, 0.3] 

 

Together with the hyperparameter tuning cross validation was implemented. To keep computational 

cost at bay, a 5-fold cross validation was applied.  

 

For Gradient Boosting, best results were achieved with a learning rate of 0.05, a max_depth of 2, a 

maximum of 7 features, a minimum sample split of 2, and 50 estimators. As a result, a MAE of 

56.9 [m2/h], an MSE of 9446.7 [m4/h2] and a R2 of 0.422 were obtained. Interestingly enough, running 

the Gradient Boosting algorithm with its default settings leads to better results with 51.9 [m2/h] for the 

MAE, 8076.4 [m4/h2] for the MSE and 0.48 for R2. This showcases the weaknesses of grid search, as 

only a fixed set of combinations is searched. Nevertheless, the information is obtained that an ideal 

hyperparameter setting can be found around the default values. This is due to the fact that the indicators 

show better performance for the default values. Therefore, a local or global optimum should be present 

around these values. This optimum could be identified by a more specific grid search around these 

values or an alternative but more advanced hyperparameter tuning methodology.  

 

Regarding the MLP model, best results were obtained with the rectified linear unit function as activation 

function, an alpha value of 0.1, and three hidden layers with 100 neurons each. This results into a MAE 

of 51.4 [m2/h], an MSE of 8191.3 [m4/h2] and a R2 of 0.435. Also, for the MLP model, the 

hyperparameter tuned version is outperformed by the default version of the model. The default version 

has a MAE of 51.1 [m2/h], an MSE of 7788.2 [m4/h2] and a R2 of 0.484.  

 

In the grid search, the ridge regression model performed best with an alpha value of 1 and with a 

singular value decomposition solver. For this hyperparameters, a MAE of 52.8 [m2/h], an MSE of 

8222 [m4/h2] and a R2 of 0.459 were obtained. This time, the hyperparameter tuned model has the 

same settings as the default model, wherefore they perform equally well.  

 

Already the default XGBoost model outperforms all other models based on the MAE. A MAE of 

50.67 [m2/h], an MSE of 7820 [m4/h2] and a R2 of 0.49 is calculated. Nevertheless, the hyperparameter 

tuned XGBoost model shows better scoring than the default version. This is indicated with a MAE of 

50.02 [m2/h], an MSE of 7680.1 [m4/h2] and a R2 of 0.50. The hyperparameters that are needed to 
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obtain these values are 175 for the n_estimators parameter, a learning rate of 0.1, a max_depth of 8, 

a gamma value of 0.25 and a lambda value of 0.3.      

 

In Table 23, all scoring indicators and hyperparameters for the best performing combinations of all 

models are indicated. 

 
Table 23: Scoring results and hyperparameter settings for the best performing versions of the MLP, the RR, 
the GB and the XGB model.  

Model MAE MSE R2 Hyperparameter Values applied in grid search 

Ridge 
Regression 

52.8 8222 0.459 alpha 100 

solver svd 

MLP 51.1 7788.2 0.484 hidden_layer_size (100,) 

alpha 0.0001 

activation relu 

Gradient 
Boosting 

51.9 8076.4 0.48 n_estimators 100 

learning_rate 0.1 

max_feature None 

max_depth 3 

min_samples_split 2 

XGBoost 50.02 7680.1 0.5 n_estimators 175 

learning_rate 0.1 

max_depth 8 

gamma 0.25 

lambda 0.3 

 

5.3.4 Testing and evaluation  

To do the final testing after the hyperparameter tuning, the total area flows for PO75C and the total 

predicted area flows for the test data set were plotted. For better visibility, the data was aggregated into 

bins of 90 minutes. The outcome of this procedure can be found in Figure 51.  

 

Figure 51: Predicted and measured total area flows for PO75C, aggregated for 90-minute bins with an 

indication of MAE, MSE and R2 in the top left corner.  

 

In the Figure, it can be seen that the prediction in general follows the trend of the data. The majority of 

the positive and negative trends is matched by the prediction , with exemplary malfunctioning at bin 11, 

66 and 140. Furthermore, depressions at bin 62, 80 and 126 are underestimated. This is meant in a 

way, that the model detects the depression but expects a less negative peak than in the measured 

data. The R2 value is not as wished with 0.503. This indicates that not all patterns in the data can be 
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depicted by the model. In contrary, the MAE for the aggregated data is exceptional with 45.5 [m2/h] and 

also performs well for the non-aggregated case with 50.02 [m2/h]. Compared to that, the MSE is not 

performing as well with 3222.3 [m4/h2] and 7680.1 [m4/h2] for the non-aggregated data. Besides the 

unexpected poor performance of R2 and the MSE, the small MAE gives confidence for the quality of 

the prediction. Transferring the obtained MAE into a percentual deviation for the aggregated data, a 

mean relative deviation of 1.1% is obtained.   

 

Concluding, through the broad try out of ML models together with the hyperparameter tuning, a mean 

relative deviation of 1.1% for the area flow prediction from PO75 to PO75C could be reached. The MAE 

was identified as most important parameter during analysis, while MSE and R2 play a secondary role. 

Furthermore, the best performing models were found to be RR, MLP, ET, RF, GB and XGB. Through 

hyperparameter tuning, XGB delivered the best results. Nevertheless, shortcomings of the grid search 

methodology were encountered. Therefore, with an improved hyperparameter tuning other models still 

could perform better.     

 

These findings help to answer the second sub research , as they showcase an area flow prediction with 

the help of ML models. Furthermore, a wide array of possible improvements is indicated, which 

represents the potentials that lie in the methodology.  

 

5.4 Quality prediction 

As a final step, material flow prediction and area density determination will be applied together for 

agglomeration quality prediction in this sub chapter. This is important, as the interplay between the 

different developed models needs to be research. Here, it is of interest, if the intrinsic uncertainties of 

each model will reinforce each other or if outcomes still deliver sufficient explanatory power. The 

obtained insights will directly contribute to the solving of sub research question three.    

 

5.4.1 Joint application of area density and area flow prediction 

For the final quality prediction, area flow predictions from PO75 to PO75C, and area density 

determination for PO75C and AA106 were combined. Obtained material-specific waste flows are 

presented together with the belt weigher data from AA106. The described plot can be found in 

Figure 52.  
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Figure 52: Predicted and measured material-specific mass flows, calculated with area densities obtained 
with OLS modelling from PO75C and AA106, together with belt weigher data from AA106 and the sum of 
specific mass flows for comparison, aggregation with 200 minutes per bin.  

 

It can be seen, that the predicted mass flow for AA106 has an offset to the belt weigher data. A possible 

reason for that could be the different data pre-processing from the OLS modelling to the ML modelling. 

Therefore, the OLS modelling was repeated, with the data pre-processing from V9. The results can be 

found in Table 24.  

 
Table 24: OLS results for area density prediction for PO75C, using data from PO75C and AA106 after similar 

data pre-processing to V9, grouping and drop of PET_G data. 

 Regression Coefficient /  

Area density [kg/m2] 

Standard Error [kg/m2] 95% interval 

Constant -41,656 15,662 [-72,354, -10,958] 

CELLULOSICS 0,466 0,040 [0,386, 0,545] 

OTHER_POLYMERS 0,376 0,025 [0,327, 0,425] 

PET 3,752 0,114 [3,529, 3,976] 

PO 0,464 0,008 [0,448, 0,479] 

PVC 0,938 0,061 [0,818, 1,058] 

 

Especially the constant deviates quite heavily from the value obtained with the OLS chapter pre-

processing. Nevertheless, with a reduction of roughly 90% it is a favourable development. This means 

that the model can capture more patterns and behaviour of the data without assigning it to the constant. 

Furthermore, as it is not clear which materials the value of the constant belongs to, uncertainty is 

reduced. Similar to the previous determined area densities, bootstrapping was performed and results 

are presented in Table 25.  

 
Table 25: Summary of bootstrapping results presenting the mean, median, 0.025 and 0.975 quantile for the 
area densities determined with PO75C and AA106 as well as V9 pre-processing. 

 Mean Median 0.025 quantlile 0.975 quantile 

Constant -41.487 -41.517 -75.141 -6.445 

CELLULOSICS 0.466 0.466 0.375 0.556 

OTHER_POLYMERS 0.376 0.376 0.334 0.418 

PET 3.755 3.754 3.465 4.044 

PO 0.463 0.463 0.445 0.482 

PVC 0.939 0.939 0.829 1.052 
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As for the other fits, the bootstrapping results overlap well with initial OLS model results. Mean and 

median only show minor deviations. The strongest difference is observed for the constant with 0.17 [kg] 

and with 0.003 [kg/m2] for PET, representing the biggest deviation for the materials. Quantiles are wider 

for the constant, CELLULOSICS, PET and PO. This indicates that they have a greater variability then 

initially expected. Nevertheless, their ranges are still sufficiently narrow and for OTHER_POLYMERS 

and PVC they even outperform the initial prediction of the OLS model.  

 

Application of the newly determined area densities can be observed in Figure 53. Here, material-

specific mass flows are compiled by combining the area densities with predicted and measured area 

flows. Belt weigher data is provided for testing and comparison.  

 

 
Figure 53: Predicted and measured material-specific mass flows, calculated with area densities obtained 

with OLS modelling and V9 pre-processing from PO75C and AA106, together with belt weigher data of 
AA106 and the sum of specific mass flows for comparison, aggregation with 200 minutes per bin.  

 

This time, the sum of mass flows aligns visibly better with the belt weigher data from AA106. The offset 

from the previous area density fit is overcome, but the less pronounced peaks in the data remain. To 

gain a better understanding of possible reasons for this, the sum of material flows, their prediction and 

the belt weigher data is shown in a separate plot. The described plot is depicted in Figure 54.  
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Figure 54: Belt weigher data from AA106 and the sum of mass flows based on predicted and measured area 
flows, and area densities obtained with OLS modelling and V9 pre-processing from PO75C and AA106, 
aggregation with 200 minutes per bin. 

 

It can be seen that the general trend of the data is captured by the combination of models but that the 

more extreme peaks are missed. Examples for this are present at bin 7, 33, 41 and 56. For most of 

these peaks, the model depicts the correct sign but fails to predict the correct magnitude. This could be 

due to the linear nature of the area density modelling. This means that in situations where particular 

heavy particles pass the scanner, the same area density has to be applied as when lighter particles of 

the same material are present. Here, it could be interesting, if with an OLS application for shorter time 

periods the magnitude of these peaks would be predicted with greater accuracy.  

 

Moving on to a more parameter driven evaluation, the MAE between the belt weigher data and the 

predicted sum of mass flows lies at 63.36 [kg/h] for the aggregated data. For the unaggregated data, 

this value increases to 651.6 [kg/h]. Especially the aggregated case is a good example for the gap in 

performance between R2 and MAE. Through the slight mismatches during the observed time period the 

model has a low R2 of 0.16. Nevertheless, these mismatches stay relatively close to the true values, 

wherefore the MAE is kept at bay.  

 

Through the influence of the aggregation on the MAE, it can be chosen which accuracy is needed and 

if the prediction can still generate sufficient insights. Insights can be hampered by too high aggregation 

of the data. An example could be a situation where higher temporal resolution is needed. Applying the 

same aggregation, as for the prediction of the area flows (90 minutes), a mean relative deviation of 4% 

for the prediction of the belt weigher data is determined. Therefore, the error increased from 1.1% to 

4% but still lies in an acceptable range.  

 

If the area densities would be directly applied to the measured area flows instead of the predicted area 

flows, the relative error would lie at 3.8%. This showcases that the combined uncertainty from area flow 

prediction and area density determination leads to greater errors. Nevertheless, an increase of only 

0.2% is a very promising result. Although this is an expected outcome, it can be seen that the 

uncertainty of the area densities is of greater magnitude than the uncertainty of the area flow prediction.  

Starting the material-specific analysis, material flows were plotted separately. Accordingly, mass flow 

for PO and its prediction can be found in Figure 55.  
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Figure 55: Mass flow for PO obtained from measured and predicted area flows of PO75C, together with 

determined area densities from PO75C and AA106 following V9 data pre-processing, temporal aggregation 
in bins of 200 minutes.   

 

A very good fit of the mass flow for PO is observed in the plot. Almost all peaks are matched with the 

right magnitude and only slight variations are visible. Mismatches occur around bin 56 and 59, but the 

direction of the peak was predicted correctly by the model. The MAE for the aggregated data is 

determined with 11.6 [kg/h] and with 144.5 [kg/h] for the unaggregated data.  

 

In the next plot, PET and CELLULOSICS are analysed. They have been grouped together, due to a 

convenient range for plotting and can be found in Figure 56.     

 

 
Figure 56: Mass flows for PET and CEL obtained from measured and predicted area flows of PO75C, 
together with determined area densities from PO75C and AA106 following V9 data pre-processing, temporal 

aggregation in bins of 200 minutes.   

 

For PET, the model overestimates the majority of the data points, except for three cases at bin 17, 56 

and 60. Nevertheless, the deviation is quite small, with a MAE of 6.27 [kg/h] for the aggregated data 

and 66.83 [kg/h] for the unaggregated data set. The CELLULOSICS show a greater variance in over- 
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and underestimation. This can be seen with underestimations around bin 7 and 59, as well as 

overestimations around bin 13 and 48. Calculating the MAE, a value of 31.14 [kg/h] and 2.34 [kg/h] is 

obtained for the unaggregated and aggregated case. Approaching the low magnitude materials, in 

Figure 57, mass flows for OTHER_POLYMERS are presented.  

 

 
Figure 57: Mass flow for OP obtained from measured and predicted area flows of PO75C, together with 
determined area densities from PO75C and AA106 following V9 data pre-processing, temporal aggregation 
in bins of 200 minutes.   

 

Observing the plot, the suspicion of lower accuracies and prediction abilities for lower magnitude 

materials is confirmed. The prediction oscillates around the mean of the mass flow with lower magnitude 

then the measured data. Futhermore, it fails to match the direction of the peaks frequently. Examples 

for this can be found around bin 13, 38, 44 and 65. Through the low occurrence, the MAE is comparable 

small with 3.47 [kg/h] for the aggregated data and 40.09 [kg/h] for the unaggregated data. Nevertheless, 

as the mean for OP is 54.36 [kg/h], this means a mean relative deviation of 73.7% for the unaggregated 

case. Scrutinizing the last remaining material, the mass flow for PVC is presented in Figure 58.  

 

 
Figure 58: Mass flow for PVC obtained from measured and predicted area flows of PO75C, together with 

determined area densities from PO75C and AA106 following V9 data pre-processing, temporal aggregation 
in bins of 200 minutes.   
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It can be seen that the trend from the OTHER_POLYMERS plot can be confirmed with PVC. Direction 

and magnitude of the prediction are mostly wrong and tendency for overestimation is seen between bin 

15 and 33. On the positive side, no consistent trend for underestimation is present. This is favourable, 

as for the quality assessment of the agglomeration product it is of  importance that PVC is not 

underestimated. Through the tendency of overestimation, a surprisingly increased PVC occurrence 

during real world testing of the quality becomes less probable. The MAE for PVC is determined with 

3.32 [kg/h], for the aggregated data, and with 27.55 [kg/h], for the unaggregated data. This signifies an 

MRE of 47.6%.   

 

As a last step, the percentual weight share of each material was determined and plotted over time. 

Result are presented in Figure 59.    

 

 
Figure 59: Weight shares on PO75C resulting from measured and predicted area flows, calculated with area 
densities obtained with OLS modelling and V9 pre-processing from PO75C and AA106, aggregation with 

30 minutes per bin. 

 

Relatively stable percentual mass shares can be observed, which oscillate around a common mean in 

small magnitudes. Compared to the mass flow plots, a way smaller aggregation is chosen with 30-

minute time steps instead of 200 minutes per bin. Still peaks and changes in trend are visible, which 

speaks for the stability of the data. PO has a mean weight percentage of 68.9%, PET was calculated 

with 14.1%, CELLULOSICS were determined with 11.8%, while OTHER_POLYMERS have a mean 

share of 2.5% and PVC has a mean percentage of 2.7%.   

 

5.4.2 Separation efficiency 

To finalize the quality prediction of the agglomeration product, the separation efficiency of PO75C has 

to be estimated. As PO75C is the last NIR-scanner before the dispatch of the product, no material 

characterization after the separation work of PO75C is available. Therefore, conclusions have to be 

drawn from the separation step between PO75 and PO75C.  

 

For this, the assumption is made that targeted and untargeted materials behave similar for PO75 and 

PO75C. This means that the separation efficiency from PO75 to PO75C will be transferred to the 

separation step from PO75C to the final product. For the separation step from PO75 to PO75C, 
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PE_FILM, PE_RIGID, PP and PP_FILM (later grouped as PO) are the targeted materials. Observing 

the separation step from PO75C to the final product, PVC and PAPER are ejected and the non-targeted 

particles result in the agglomeration product. To transfer the separation efficiency, the share of material 

that was transferred from the first to the second stage has to be determined. Furthermore, information 

is needed how much non-targeted material was removed together with the targeted material.  

 

To determine the separation efficiencies, area densities for PO75 were ascertained with AA101 belt 

weigher data and V9 data pre-processing. Results are presented in Appendix 8. This was done to 

match the data pre-processing for the area densities from PO75C and to calculate the separation 

efficiency through the obtained mass flows. PO was calculated with a mean mass flow of 1294.3 [kg/h], 

for PO75, and with 1551.28 [kg/h], for PO75C.  

 

As the material cannot increase from one scanner to the next, this resembles an impossible result. This 

could be due to measurement errors, the general uncertainty of the scanners, changed categorization 

based on changed target materials or because of the uncertainty from the area density determination. 

Especially the area densities for PO75 have a high constant of 602.3 [kg/h], compared to -41.49 [kg/h] 

for PO75C. This results in a range of 643.8 [kg/h] of unexplained mass flow based on area densities, 

which could explain the unrealistic increase of PO.  

 

To decrease the uncertainty for separation efficiency determination , it was fallen back on the 

comparison of area flows from PO75 to PO75C. As separation efficiency is material-specific, it turned 

out that no broader context of other materials present on the scanner is needed. Therefore, the 

conversion into mass flows is not necessary. Through determination of separation efficiencies before 

the conversion into mass flows, uncertainty of the area densities is added later. Therefore, deducted 

separation efficiencies are more accurate. To use this advantage, the mean PO content on PO75 was 

determined with 3434.6 [m2/h] and a mean PO content of 3342.94 [m2/h] was obtained for PO75C. This 

indicates a separation efficiency of 97.3%. In a next step, the percentual area share of PO on PO75C 

was determined with 79.5%. This means that, with the targeted material, an additional amount of 

material that has an area of 25.8% of the moved targeted material is transferred. 

 

Assuming that these figures are applicable for the separation step from PO75C to the final product, this 

means that 97.3% of the PAPER and PVC area flow will be removed. Furthermore, additional material, 

of the area of 25.8% of the removed PAPER and PVC, will be transferred with it. Here, the assumption 

is made, that these 25.8% are spread over the remaining materials according to their share of area 

flow. Inconveniently, the PAPER category was grouped together with BC and BOARD_CT for area 

density determination to address multicollinearity. This is a problem, as in the next step area densities 

need to be applied, but the material composition of the material grouping is altered.  

 

To mitigate this alteration, area densities were determined again for PO75C together with V9 data pre-

processing and the goal of keeping PAPER a distinct category. Complete results can be found in 

Appendix 9. Checking for multicollinearity, correlation between BC and PO was considered too high 

with 0.83. Furthermore, 0.025 and 0.975 quantiles are wider compared to CELLULOSICS if PAPER 

and BC are kept separate. Therefore, area densities with the grouping of BC and PAPER as 

CELLULOSICS were kept. This decision was strengthened by the fact that area densities for the 

respective categories were closely together, with 0.452 [kg/m2] for BC, 0.466 [kg/m2] for BOARD_CT 

and 0.483 [kg/m2] for PAPER. Here, it is favourable that PAPER has the highest area density. Through 

the removal of PAPER area flows, more dense particles are removed in reality, but due to the 
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application of the CELLULOSICS area density, less material is removed in the model. Therefore, results 

are on the safe side of the estimation, as in reality product purity should be slightly better. In Figure 60, 

an application of the determined separation efficiencies to the material-specific mass flows on PO75C 

can be found.  

 

 
Figure 60: Material-specific mass flows of the agglomeration product resulting from predicted and 
measured area flows, calculated with area densities, obtained with OLS modelling and V9 pre-processing 
from PO75C and AA106, together with application of separation efficiencies as well as belt weigher data 

from AA106 for comparison. Aggregation with 90 minutes per bin. 

 

Compared to Figure 53, PVC and CELLULOSICS show the greatest deviation. Before, CELLULOSICS 

were on a similar magnitude to PET, while now they are clearly separated. CELLULOSICS are 

observed on a lower occurrence level, with a mean of 178.13 [kg/h] for the predicted value. PVC also 

changed in magnitude and is separately visible from OP in this version of the plot. The new mean of 

the PVC category is 1.6 [kg/h] for the predicted value.   

 

5.4.3 Prediction results 

Through the joint application of area flow prediction, area density determination and separation 

efficiency approximation, the quality of the agglomeration product can finally be predicted. Results for 

the test data set can be observed in Figure 61. 
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Figure 61: Percentual weight shares for measured and predicted area flows after application of separation 
efficiencies, calculated with area densities obtained with OLS modelling and V9 pre-processing from 
PO75C and AA106, aggregation with 30 minutes per bin. 

 

Similar to the previous weight percentage plot, a very stable percentual weight share can be observed. 

This stability facilitates to aggregate the time steps to only 30 minutes per bin , while results are still 

visibly assessible. Mean weight shares for PO of 73.7% and 73.6%, for the measured and predicted 

area flows, are obtained. Maximum values are detected with 76.4% and 75.1%, for measured and 

predicted area flows, while minimum values lie at 70.5% and 71.8% respectively. The MAE, from 

predicted to measured area flows for PO, lies at 0.34%. For PVC, mean weight shares are determined 

with 0.08%, for both area flow determination methods. Maximum and minimum values lie at 0.12% and 

0.11%, as well as 0.05% and 0.06%, for measured and predicted area flows. Comparing the weight 

shares resulting from predicted and measured area flows, it is seen, that percentages obtained from 

the predicted area flows underestimate the percentage in both directions. This can be explained by the 

same trend, that was observed for area flow prediction and mass flow determination. As the final quality 

prediction is composed of these two modelling parts, it resembles an expected finding.  

 

Circling back to the quality requirements introduced at the beginning of this work, the quality 

requirement for PVC can be met with high security. A mass percentage below 1.4% of PVC is needed 

and would be still achieved with separation efficiencies of down to 69.5%. On the other end, PO quality 

criteria with a minimum of 75% weight share are not met. Nevertheless, this could change with a higher 

separation of PET or CELLULOSICS, which could be targeted together with PVC and PAPER on 

PO75C. PET has a mean weight share of 15% and 15.1%, and CELLULOSICS are present with 8.6%, 

for measured and predicted mass flows. 

  



 
 
 

89 
 

 

6 Conclusion and recommendations 

The motivation of this research was to help with the implementation of  improved plastic waste 

separation, to unlock environmental and economic advantages. To achieve this, real-time machine 

setting optimization in waste separation plants was identified as one of the most promising approaches. 

This type of optimization is enabled by dynamic separation efficiency modelling and real-time waste 

stream characterization. As extensive waste stream characterization with sensors is economically 

prohibited, the use of data from NIR separation units, that are already present in the plant, is sought 

after.     

 

To explore the joint application of these concepts, the prediction of the HQ agglomeration line product 

in a plastic waste separation plant in Scandinavia was analysed. In the agglomeration line, two NIR-

separators are connected in series to ensure high-quality separation of the material. The input to both 

NIR-scanners is measured by belt weighers. Through the belt weighers and NIR-scanners, total mass 

flow and material-specific area flow data is available. In total, 4-month worth of data was provided. The 

specific goal of the research was to predict the agglomeration line product quality, after the material 

has been processed by both separators. Here, data from the first NIR-scanner serves as the basis for 

the prediction. Quality requirements of the product are defined by weight shares of PO and PVC. PO is 

the target material with a minimum presence of 75 w-%, while PVC resembles the most important 

contaminant with a maximum occurrence of 1.4 w-%.  

 

To model the quality prediction, material-specific mass flow data needs to be obtained. As only material-

specific area flows are available, this can be achieved by the determination of area densities. When 

area densities are obtained, the prediction of area flows from the first to the second NIR-scanner and 

from the second NIR-scanner to the product is needed. Alternatively, separation efficiencies can be 

used. Through a joint application of these concepts, the agglomeration line product quality can be 

predicted in weight percent.  

 

To guide the modelling of the agglomeration line product quality, the following research question was 

compiled:  

 

How can the quality of the agglomeration line product in a plastic waste separation plant be predicted 

based on NIR-scanner and belt weigher information through a data driven approach? 

 

To split up the research question in workable sections, three sub research question were formulated: 

 

– What correlations and relationships exist in the data?  

– How can the area density, the area flow prediction and the separation efficiency be modelled? 

– How does a joint application of the developed concepts perform for quality prediction of the 

agglomeration line product? 
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6.1 Summary and conclusions 

In this section, the research question and sub research questions are answered. Furthermore, the 

derivation of the results is summarized.   

 

Starting with the first sub research question, data exploration for belt weigher data, NIR-scanner area 

flow data and NIR-scanner belt occupation data was conducted. This was needed, as prediction quality 

is highly dependent on the quality of the input data. Therefore, pitfalls in the data and remedies for 

these pitfalls have to be identified. Furthermore, present correlation in the data delivers insight about 

potential modelling approaches and how the data can be made usable for the goal of this research. 

 

For the belt weigher data, a tendency was found that values close to zero instead of zero are measured. 

Through this effect, the cleaning of the data set from empty data points is hampered. To avoid this, 

different thresholds for data exclusion were tested. Best results were obtained with a threshold of 

0.3 [t/h]. After this clean-up, a correlation of 0.867 between belt weigher AA101 and AA106 was 

obtained. Furthermore, it could be ascertained that the data is free from temporal correlation patterns.  

 

Regarding area flows, a similar behaviour to the belt weighers was found. It could be shown, that the 

NIR-scanners tend to measure values close to zero instead of zero. This happens when either the belt 

is empty or the scanners are malfunctioning. Furthermore, it was observed that this effect applies for 

all materials together, but also for single materials. During the search for temporal correlation patterns, 

it was found, that correlation drops of the materials do not overlap. Furthermore, for low area flow 

material, lower correlation and increased erroneous behaviour was observed. These findings 

strengthen the hypothesis of material-specific malfunctions in detection. Furthermore, a state of the 

machines was encountered, where the total detected area drops to a threshold and then oscillates 

around this value with small magnitudes. In this state of stagnation , different materials are either 

measured with constant values or increasing or declining behaviour in a balancing fashion. This 

phenomenon was observed for several materials on NIR-scanner PO75C. Values for these stagnations 

were total area flows around 500 [m2/h] or 1000 [m2/h]. To tackle the encountered problem, thresholds 

for data inclusion, of total area flows on the NIR-scanners PO75 and PO75C, were defined. This was 

done with 1000 [m2/h] and 12,500 [m2/h] for PO75 and 1250 [m2/h] and 10,000 [m2/h] for PO75C. The 

upper thresholds were motivated from distribution analysis of the total area flows. They were 

implemented to exclude high magnitude outliers. Regarding correlation, the NIR-scanners correlate 

reasonably after application of the thresholds with a r value of 0.829. PE_FILM and PE_RIGID were 

the highest correlating materials with r values of 0.9 and 0.89. OTER_POLYMERS and PS were the 

materials with the lowest correlations with r values of 0.07 and 0.13. Lastly it could be determined, that 

the data is free from temporal correlation patterns.             

 

For eased exploration of belt occupation data, belt occupation was divided in 5 categories. Next, the 

conveyor belt was split into 70 compartments over its width and occurrences of the categories were 

counted. The 50-100 [m2/h] category was most appearing (2.14 million) followed by the 0-50 [m2/h] 

category (2.08 million). Lower occurrences were detected for the 100-200 [m2/h] category (1.17 million), 

while the 200-300 [m2/h] category (11,704) and the >300 [m2/h] category (1,144) were rarely present. 

Regarding correlation, the 0-50 [m2/h] category showed a negative trend with high magnitude area 

flows. In contrast, the 100-200 [m2/h] category showed a positive trend towards it. In general, the 

100-200 [m2/h] category was identified as the governing category for high magnitude area flows. The 

50-100 [m2/h] category and the 200-300 [m2/h], as well as the >300 [m2/h] categories showed no 
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significant linear trend during analysis. As a great variance of non-linear patterns was visible, it was 

decided to integrate the data into a ML approach.  

 

Although not part of the official data exploration, insights about the joint use of belt weigher and area 

flow data were gained during area density modelling. Here, a clear temporal correlation pattern was 

encountered. Correlation first oscillates around r values of 0, then they elevate to r values of 0.8 with a 

drop to r values of 0.6 for a short period of time. No clear explanation, apart from machine malfunctions, 

could be found. To counteract this effect, all data below a r value of 0.7 was excluded. After removal, 

a correlation of 0.827 between belt weigher AA101 and NIR-scanner PO75, and a correlation of 0.822 

between belt weigher AA101 and NIR-scanner PO75 was obtained. 

 

The conducted data exploration answers the first sub research question “What correlations and 

relationships exist in the data?” in the following way: Belt weigher data correlates well with each other. 

Problems due to a tendency of measuring values close to zero instead of zero arise. Excluding values 

below 0.3 [t/h] was found to handle this issue reasonably well. NIR-scanner data offers a wide range of 

inconsistencies. Hot spots are total area flows below 1000 [m2/h] and low magnitude area flow 

materials. Apart from that, correlation is high. Encountered problems can be fixed by applying 

thresholds of 1000 [m2/h] and 12,500 [m2/h], for PO75, and 1250 [m2/h] and 10,000 [m2/h], for PO75C. 

Belt occupation data delivers low explanatory power by linear correlation. The 100-200 [m2/h] category 

is governing for the correlation that was found and an array of non-linear patterns is present. Therefore, 

the information hidden in the data could be leveraged through a ML approach. Joint belt weigher and 

area flow data application uncovered an unexpected temporal correlation pattern. A potential remedy 

is to remove time periods below a defined correlation threshold.  

 

Starting into the quality prediction modelling, first the area densities had to be determined. This was 

done to enable the conversion of material-specific area flows into material-specific mass flows. Material-

specific mass flows are needed, as quality is determined in weight percent.  

 

To do this, OLS methodology, as most suitable linear regression technique, was applied. 

Multicollinearity was encountered and treated by grouping of the materials. Final material categories 

were CELLULOSICS, OTHER_POLYMERS, PET, PO and PVC. The effects of multicollinearity were 

successfully mitigated through this approach. During the course of the thesis, the insight was gained, 

that determined area densities are sensitive to different data pre-processing. This showcases the heavy 

influence of data input on the modelling outcome and highlights the need of similar data pre-processing 

during joint application of modelling approaches. Furthermore, it was proven that area densities are not 

generalizable from NIR-scanner to NIR-scanner. This is due to the material composition change during 

sorting. Through bootstrapping, greater trust in the confidence intervals for the area densities could be 

obtained. Calculated 0.025 and 0.975 quantiles match the confidence intervals for all area densities, 

with slightly increased magnitude. The area densities that were obtained for final application showed 

standard errors below 0.01 [kg/m2] and confidence interval spreads under 0.3 [kg/m2]. During 

application on the test data set, a MAE of 141 [kg/h] for an aggregation of 30 minutes was observed. 

This resembles an MRE of 3%.  

 

In a next step, the material-specific area flow from the first to the second scanner was modelled. This 

was necessary, as the final quality prediction is intended to solely rely on data from the first 

NIR-scanner. While the area density was modelled to have the right unit for the prediction result, the 

area flow prediction resembles the first prediction component of the research.  
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For area flow prediction, nine different data subsets and data pre-processing were tested. This was 

inspired by the upfront conducted data exploration. During a broad model try-out, the area flows on 

NIR-scanner PO75C were predicted based on data from NIR-scanner PO75, belt weigher AA101 and 

belt weigher AA106. This was done with the following models: Decision Tree, Extra Tree, Random 

Forest, Gradient Boosting, K-Nearest Neighbours, Bagging Regressor, Ridge Regression, Elastic-Net 

Regression and Multi-Layer Perceptron. During analysis, it was noted that versions with thresholds for 

total area flow performed better regarding MAE and MSE. Versions without these thresholds showed 

better results for R2. For model selection and further analysis, it was decided to focus on MAE over 

MSE and R2. This was done, as smaller general errors were preferred over better detected patterns 

and improved outlier handling. The best performing data base and data pre-processing version was 

picked with V9. This includes a drop of NaN and zeros, integration of two additional material categories 

on PO75, data from AA101 and AA106, belt occupation counts and thresholds for total area flows on 

PO75 and PO75C. Apart from that, Random Forest, Gradient Boosting, Ridge Regression, Extra Tree 

and Multilayer Perceptron were the best performing models during the try-out.  Further selection was 

based on the representation of different model architectures and expected improvement during 

hyperparameter tuning. Accordingly, Ridge Regression, Multilayer Perceptron and Gradient Boosting 

were selected. Additionally, XGBoost was added to the hyperparameter tuning, as it resembles an 

improved version of Gradient Boosting. During hyperparameter tuning, XGBoost outperformed the 

other models. This was achieved with hyperparameter values of 175 for n_estimators, 0.1 for the 

learning rate, 8 as max depth, 0.25 for gamma and 0.3 for lambda. Finally, a MAE of 50.02 [m2/h], an 

MRE of 1.1%, an MSE of 7680.1 [m4/h2] and a R2 value of 0.5 was obtained.      

 

The last needed information, to assemble the quality prediction of the agglomeration line product, is the 

separation efficiency from the second NIR-scanner (PO75C) to the final product. Together with the area 

densities and the area flow prediction, from the first to the second NIR-scanner, mass-based material 

composition on the second NIR-scanner can be determined. Therefore, only the separation efficiency 

from PO75C to the agglomeration product is missing to achieve agglomeration product quality 

prediction.  

 

For separation efficiency determination from PO75C to the final agglomeration product, no data driven 

modelling approach could be identified. This was due to missing validation data. To still reach a result, 

the assumption was made that separation efficiencies from PO75 to PO75C are generalizable to the 

step from PO75C to the product. For targeted material, a separation efficiency of 97.3% was obtained. 

Additionally, the amount of non-targeted material, ejected along with the targeted material, was 

estimated. For this, a material flow, of the size of 25.8% of the successfully ejected target material, was 

determined.  

 

The summarized modelling section answers the second sub research question “How can the area 

density, the area flow prediction and the separation efficiency be modelled?” in the following way: Area 

densities can be modelled by an OLS approach. Multicollinearity is successfully treated through 

material grouping. Together with the application of bootstrapping, greater trust in the confidence 

intervals and calculated area densities is obtained. The procedure enables the determination of area 

densities with an MRE of 3%. Area flow prediction can be obtained through a ML approach. With the 

help of a broad try-out of models, data subsets and data pre-processing, their best combination can be 

determined. Together with hyperparameter tuning, a MAE of 50.02 [m2/h], an MRE of 1.1%, an MSE of 

7680.1 [m4/h2] and a R2 value of 0.5 could be obtained for the XGBoost model. For the separation 
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efficiency from PO75C to the final product, no data driven modelling approach could be identified. 

Nevertheless, through the assumption of generalizability of separation efficiencies from PO75 to 

PO75C to the last separation step, separation efficiencies could be approximated. Therefore, a 

separation efficiency of 97.3% and 25.8% additional material transferal could be estimated.  

 

To conduct the final quality prediction, the determined area densities, area flow predictions and 

separation efficiencies were applied together. First, the area flow prediction was joined with the area 

densities to determine the mass flows on PO75C. It was found, that the OLS model has to be trained 

with the same data pre-processing as the ML model to obtain the best results. Testing was done with 

the test data set and AA106 belt weigher data. For a 90-minute aggregation, an MRE of 4% was found, 

for application of predicted area flows, and an MRE of 3.8% was obtained, for application of measured 

area flows. Therefore, through the use of predicted area flows the MRE only increased by 0.2%. 

Through application of separation efficiencies, conversion into mass flows and calculation of their mass 

share, the final quality prediction was determined. For a 30-minute time step aggregation, PO showed 

a mean weight share of 73.7%, for application of measured area flows, and 73.6%, for application of 

predicted area flows. Maximum and minimum values were 76.4% and 75.1%, as well as 70.5% and 

71.8%, for application of measured and predicted area flows. The MAE from measured to predicted 

area flows was obtained with 0.36%. For PVC, a mean weight share of 0.08%, for measured and 

predicted area flows, was determined. Maximum and minimum values were 0.12% and 0.11%, as well 

0.05% and 0.06%, respectively. Furthermore, a MAE of 0.007% was calculated. With the described 

values, the quality criteria for PO were not met, but the quality criteria for PVC was held by a fair margin. 

 

With the obtained results, the third sub research question “How does a joint application of the developed 

concepts perform for quality prediction of the agglomeration line product?” can be answered as follows: 

If the assumption of transferability of separation efficiencies from PO75 to PO75C to the final separation 

step holds, the prediction of PO has an expected MAE of 0.36%. For PVC a MAE of 0.007% is 

anticipated. Regarding the interplay of the models, greater uncertainty results out of the area density 

determination. This is based on the mass flow prediction on PO75C. Here, the area density contributed 

3.8% to the MRE and the area flow prediction only was responsible for 0.2% of the MRE indicator.     

 

Joining the obtained information, the main research question “How can the quality of the agglomeration 

line product in a plastic waste separation plant be predicted based on NIR-scanner and belt weigher 

information through a data driven approach?” is resolved in the subsequent way: The quality of the 

agglomeration line product, in a plastic waste separation plant, can be predicted using multiple 

modelling building blocks. An OLS model is applied to determine area densities. Subsequently, an 

XGBoost model is used to predict area flow. Finally, separation efficiency is transferred from a 

representative separation unit to complete the prediction process. Through this, MAE for weight share 

prediction of 0.36%, for PO, and 0.007%, for PVC, for a 30-minute time step aggregation are obtained.  
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6.2 Recommendations 

In this section, recommendations that are derived from the findings of the study will be presented.  

 

During data exploration it was seen, that especially the use of NIR-scanner data, for waste stream 

characterization and quality prediction, should be done with great care. Therefore, it is highly 

recommended to explore all data thoroughly. This is particularly the case before model building, to 

avoid incorporation of inconsistency through the data. Especially, the stagnation of total area flow 

around 1000 [m2/h] for the NIR-scanners show an interesting example of inconsistencies. Without data 

exploration, this erroneous data would have been incorporated into the model. Therefore, all input data 

should be scrutinized for inconsistencies and remedies for encountered problems should be thought 

of.  

 

Working with the data used in this thesis, upper and lower total area flow thresholds should be applied. 

These are 1000 [m2/h] and 12,500 [m2/h], for PO75, and 1250 [m2/h] and 10,000 [m2/h], for PO75C. To 

handle inconsistencies of belt weigher data, a threshold for data inclusion of 0.3 [t/h] is imperative. 

Furthermore, it is recommended to compute correlation over time, to check for temporal correlation 

patterns. If temporal correlation patterns are encountered, the exclusions of data points with low 

correlation should be thought of. Here, the threshold is case dependent and should be determined 

based on the needs of the given modelling task.  

 

Apart from this, it is recommended, to seek better understanding of the inner workings of the NIR-

separators. For this, contact with TOMRA should be sought to discuss and understand the encountered 

inconsistencies. Here, especially the stagnations states of the machines and the reduced accuracy of 

low area flow magnitude materials is of interest.  

 

Delving into specific model components, an improved separation efficiency determination from PO75C 

to the agglomeration product should be found. This is of importance, if the developed methodology is 

applied for quality prediction in a real-world separation process. Here, the use of a classification unit is 

recommended. If economic constraints prevent this, probing or expert knowledge can be potential 

remedies. Furthermore, using a more representative unit pair for transferring separation efficiencies to 

the last separation step, is recommended to gain greater trust in the prediction. Additionally, more direct 

validation methods for the remaining modelling components should be developed. By now, only the 

area flow prediction is directly validated through area flow data from the second NIR-scanner. If results 

of this work can be confirmed, a way must be found to meet the quality requirements for PO. This can 

be done by targeting CELLULOSICS or PET next to PAPER and PVC on PO75C. 

 

An interesting point, that was revealed during the writing of this work, is the influence of temporal 

aggregation on the MAE and the MRE. Here, it is recommended to find the needed temporal 

aggregation for plant optimization and focus further model building on this time scope. Apart from that, 

the ideal combination of pre-processing approaches for the interplay of models should be found. The 

development of a respective methodology is recommended. Furthermore, the amount of data, used for 

area density determination, should be reviewed. The OLS model searches for the area densities that 

give the smallest possible error over the given time frame. As the used data has a time span of 4 months 

and waste composition is constantly changing, uncertainty could become smaller with the use of smaller 

time frames. Therefore, it is recommended to research this part before further applying the developed 

area density determination. Switching the focus to the ML modelling, an improved hyperparameter 
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tuning methodology should be implemented. This is due to the fact, that the implemented 

hyperparameter tuning in this study showed only minor effects, but bigger potentials are expected. 

Here, either a more extensive use of grid search, the combined use of grid search and random search 

or implementation of more advanced hyperparameter tuning methods should be applied.  

 

Thinking of a more widespread application of the showcased concepts, a use of all available 

characterization information is recommended. For this, each belt weigher NIR-scanner pair in the plant 

should be used for area density determination. Afterwards, area densities should be analysed, aiming 

for insight about needed air nozzle pressure for ejection. If this information can be retrieved, fine tuning 

of air nozzle pressure is recommended to unlock economic and environmental advantages. 

Furthermore, through the obtained area densities, material-specific mass flows determination should 

be implemented for each belt weigher NIR-scanner pair. Through this, mass-based material 

composition changes, from NIR-scanner belt weigher pair to NIR-scanner belt weigher pair, can be 

revealed. With this, information about separation efficiencies gets unlocked and plant optimization 

should be put into action. Here, changes in machine settings can be analysed more precisely and their 

effect can be evaluated. Furthermore, prediction elements of the showcased modelling should be added 

to the described approach. Through this, simulation, of the effects of machine setting changes, can be 

developed. Apart from that, if waste stream characterization and prediction is implemented in detailed 

temporal granularity, the plant can be optimized in real-time. This would enable the sorting of each 

waste input in an optimal way and therewith unlock further economic and environmental advantages. 

Therefore, setting the described implementation as a long-term goal is highly recommended.  

 

6.3 Limitations  

Limitations arise from different parts of this work. These can be split up in to data exploration limitations, 

model building and model capability limitations as well as limitations resulting from the higher-level 

approach of this research.  

 

Starting off with the data exploration limitations, it is not guaranteed that the data is sufficiently explored. 

This means that correlations and relationships, that would enable improved modelling, could remain 

unrevealed. On the contrary, crucial inconsistencies, that hamper the explanatory power of the 

developed model building blocks, could have been missed. Apart from that, not all available data from 

the TOMRA Insight portal was used. Therefore, useful relationships in the data could remain 

unexplored. Strong limitations were encountered for NIR-scanner data. This is mostly due to the 

described stagnation states of the machines and the measurements of values close to zero instead of 

zero. Furthermore, the explanatory power for lower magnitude material is limited and the results cannot 

be used with the same confidence as for high magnitude materials 

 

Delving into the modelling part, the limitations of the area density determination must be understood. 

The area densities can only be validated indirectly. Through a probing and characterization campaign 

this could be done in the future, but by now the area densities were only validated indirectly. This 

means, that the material-specific mass flows were summed up and tested against belt weigher data. 

Here, the resulting error was evaluated. Bootstrapping and confidence intervals were applied, but it is 

important to understand that they do not come with the same validity, as validation data would provide. 

The biggest limitation of this study is resembled by the separation efficiency determination of the last 

separation step. By now, there is no data to validate it, also not indirectly. Furthermore, no statistical 
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methods to enhance trust in the obtained results were conducted. The only source of confidence is that 

the separation efficiencies were transferred from a previous unit of the same plant. Therefore, the 

determination of the separation efficiency from the second NIR-scanner to the agglomeration product, 

should be solely seen as a measure to answer the initial research question, but not as a 

recommendation for implementation.  

 

Regarding the area flow prediction from PO75 to PO75C, limitations arise from the lower prediction 

accuracy for lower magnitude area flow materials. With respect to hyperparameter tuning, grid search 

does not guarantee to find the optimal hyperparameters. Therefore, limitations to the model capabilities 

occur. Further limitations arise due to the sole focus on MAE, as other indicators where not considered 

during final ML model building. Lastly all trained models can only learn from data that they have seen. 

This signifies a limitation to past waste compositions. Therefore, if new materials are introduced into 

the waste stream, other sorting behaviour could occur, which limits the explanatory power of the model.  

 

From a methodological viewpoint, no framework was set up to identify modelling approaches for the 

goal of the research. Therefore, this research could be limited by better suited methodologies that were 

missed. Furthermore, the final goal of achieving a real-time waste sorting plant optimization was 

identified but better suited approached for improved plastic waste separation could exist. Zooming out 

even further, other approaches for waste management improvement, that yield greater economic and 

environmental advantages than improved plastic waste separation , could be worth investing time and 

effort into. Putting it differently, limitations could arise, through more effective h igher-level 

methodological approaches that were not considered.  

 

6.4 Future research 

Future research is recommended for areas of th is work that come with greatest reduction in uncertainty. 

Furthermore, research that enables the widespread use of the explored concepts as well as 

methodologies that improve the approach of this work should be explored. 

 

Regarding uncertainty reduction, the separation efficiency determination, from PO75C to the final 

product, should be improved. This can be done by conducting research on how validation data for this 

step can be retrieved in an economically sound way. If this is not possible, methodologies on how to 

approximate the sought information, while minimizing uncertainty, should be explored. Potential 

research approaches could be the transferral of separation efficiencies from other units, including a 

proof of their similarity, or application of statistical methods, to gain greater trust in the retrieved values. 

Regarding area densities, it should be researched how they can be validated directly, instead of 

indirectly, in an economically sound way. Apart from that, exploration of the influence of data set size 

and data pre-processing, for the area density modelling is of interest. It is suspected that with smaller 

data set sizes the area density determination could become more accurate. This would also decrease 

uncertainty of material-specific mass streams and uncertainty of separation efficiency determination 

between belt weigher NIR-scanner pairs, which shows the advantages of respective research. To 

minimise uncertainty of material-specific mass flow prediction, a precise as possible area flow prediction 

is needed. Therefore, research for enhanced ML modelling should be conducted. First, it could be 

explored how low magnitude area flow materials can be predicted better. Here, ML model building with 

a focus on R2 or a multiple indicator optimization is expected to deliver improved results. Furthermore, 

application of different hyperparameter tuning methodologies is recommended for research to leverage 
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the full potential of the applied ML models. Approaches like random search, a combination of random 

search and grid search or the application of more elaborated hyperparameter tuning methods resemble 

potential research directions.  

 

To unlock the potentials of the developed modelling building blocks, the generalizability of the approach 

to the rest of the plant and to other plants need to be tested. Furthermore, the interplay of belt weigher 

NIR-scanner pairs for separation efficiency determination, at different places in the plant, should be 

researched. Together with the prediction of area flows, real-time machine optimization and simulation 

of impacts on the plant, through changed material input and machine settings, can be unlocked. To 

achieve this goal, several research areas have to be resolved. First, it is of interest how sufficient 

temporal resolution, with high enough accuracy for real-time plant optimization, can be obtained. In the 

best case, the developed approach in this work can deliver this information. If it fails to do so, alternative 

approaches have to be researched. Furthermore, the validity of the derived models into the future and 

the frequency of needed updates is of interest. When sufficient temporal resolution and accuracy is 

proven, the best approaches to put the sought-after real-time machine optimization into practice should 

be explored. Here, not only product purity, but also research regarding energy saving is recommended, 

to unlock greatest economic and environmental potentials.  
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Appendix 1: Material-specific 
distributions  

In the following, all material-specific distributions in form of histograms can be found. The decision if 

values for PO75 or PO75C were made transparent was made material by material favouring plots 

where the least information was lost. Due to the amount of plots the figure is spread over two pages.     

 

 

 

 
Figure A1.1: Material-specific area flow distribution for all available material, zeros have been removed 
upfront.  
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Figure A1.2: Material-specific area flow distribution for all available material, zeros have been removed 
upfront. 
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Appendix 2: Material-specific 
correlations 

Below all material-specific correlations in form of scatter plots can be found. Due to the amount of plots 

the figure is spread over two pages.     

 

  

 
Figure A2.1: Material-specific correlations in form of scatter plots for all available material, zeros have been 

removed upfront.  
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Figure A2.2: Material-specific correlations in form of scatter plots for all available material, zeros have been 

removed upfront. 
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Appendix 3: Material-specific correlation 
computed by time 

The subsequent plots present all material-specific correlations over time. For this, the data was split up 

into 200 bins by time. Due to the amount of plots the figure is spread over two pages. 

 

 

 

 
Figure A3.1: Pearson correlation coefficient for all available materials regarding NIR-scanner PO75 and 

PO75C with 200 bins compiled by time.  
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Figure A3.2: Pearson correlation coefficient for all available materials regarding NIR-scanner PO75 and 

PO75C with 200 bins compiled by time.  
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Appendix 4: Material-specific 
correlations of lowest performing 
correlation bins 

In the following, all material-specific correlations, computed for the lowest correlation bin, can be found. 

Due to the amount of plots the figure is spread over two pages. 

 

 
Figure A4.1: Material-specific correlations in form of scatter plots for the lowest performing correlation bin 
for all available material, zeros have been removed upfront. 
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Figure A4.2: Material-specific correlations in form of scatter plots for the lowest performing correlation bin 
for all available material, zeros have been removed upfront. 
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Appendix 5: Sum PO75, Sum PO75C and 
material for PO75 and PO75C plot for the 
lowest correlation bin by time 

Below, all material-specific plots for the sum of PO75 and PO75C as well as the material-specific area 

flows for all materials computed for the lowest correlation bin can be found. Due to the amount of plots 

the figure is spread over several pages. 

 

 
Figure A5.1: Sum of areas on PO75 (grey dots) and PO75C (black dots) as well as for the examined materials 
for PO75 (light lines) and PO75C (solid lines). 
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Figure A5.2: Sum of areas on PO75 (grey dots) and PO75C (black dots) as well as for the examined materials 
for PO75 (light lines) and PO75C (solid lines). 
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Appendix 6: Conveyor belt occupancies 
of PO75 and material occurrence for all 
materials for PO75 and PO75C 

The subsequent plots present material-specific area flows and belt occupancies for PO75 (blue color 

palette) and material-specific area flows from PO75C together with belt occupancies of PO75 (red color 

palette). Furthermore, a full coloration and a 0.5% coloration version of the plots is provided. For better 

overview, the occupancies were separated in 5 categories. These categories are 0-50 [m2/h], 50-

100 [m2/h], 100-200 [m2/h], 200-300 [m2/h] and >300 [m2/h].  On the x-axis the number of occurrences 

per category is indicated. On the y-axis the corresponding material-specific area flow is presented. Due 

to the amount of plots the figure is spread over two pages.    

 

 
Figure A6.1: Scatter plot for all materials on PO75 together with belt occupation counts of PO75.  
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Figure A6.2: Scatter plot for all materials on PO75 together with belt occupation counts of PO75.  
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Figure A7.1: Scatter plot for all materials on PO75 together with belt occupation counts on PO75 with 0.5% 
coloration.  
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Figure A7.2: Scatter plot for all materials on PO75 together with belt occupation counts on PO75 with 0.5% 
coloration.  

 

 

 
Figure A8.1: Scatter plot for all materials on PO75C together with belt occupation counts of PO75.  
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Figure A8.2: Scatter plot for all materials on PO75C together with belt occupation counts of PO75.  
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Figure A9.1: Scatter plot for all materials on PO75C together with belt occupation counts on PO75 with 

0.5% coloration.  
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Figure A9.2: Scatter plot for all materials on PO75C together with belt occupation counts on PO75 with 
0.5% coloration.  
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Appendix 7: Machine Learning Model 
Performance for V7 and V9 measured in 
MAE for all materials 

Below, the performance of all machine learning models tested during the try-out can be found. Pre-

processing versions V7 and V9 are indicated and on the y-axis the MAE can be observed. Due to the 

amount of plots the figure is spread over two pages.  

 

 

 

 
Figure A10.1: ML model try-out results for V7 and V9 data pre-processing with MAE as performance 
indicator.  
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Figure A10.2: ML model try-out results for V7 and V9 data pre-processing with MAE as performance 
indicator. 
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Appendix 8: Area densities with V9 pre-
processing for PO75 and AA101  

Below, important figures and information for the area densities determined for PO75, with belt weigher 

data from AA101 and V9 data pre-processing, can be found.  

 
Table A1: OLS results for area density prediction for PO75 using data from PO75 and AA101 after similar 
data pre-processing to V9, grouping and drop of PET_G data. 

 Regression Coefficient /  
Area density [kg/m2] 

Standard Error [kg/m2] 95% interval 

Constant 602,052 27,517 548,118 

OTHER_POLYMERS 0,910 0,090 0,733 

PVC 1,522 0,059 1,406 

PET 1,971 0,066 1,842 

CELLULOSICS 1,695 0,034 1,628 

PO 0,376 0,013 0,350 

 
Table A2: Summary of bootstrapping results presenting the mean, median, 0.025 and 0.975 quantile for the 

area densities determined with PO75C and AA106 as well as V9 pre-processing. 

 Mean Median 0.025 quantlile 0.975 quantile 

Constant 602.3 602.17 540.7 663.08 

OTHER_POLYMERS 0.913 0.912 0.698 1.133 

PVC 1.524 1.524 1.344 1.706 

PET 1.973 1.973 1.803 2.144 

CELLULOSICS 1.694 1.694 1.615 1.775 

PO 0.376 0.376 0.345 0.405 

 



 
 
 

123 
 

 

 
Figure A11: Bootstrapping results for the area densities and the constant of PO75 and AA101 after 10,000 
resampling applications and V9 data pre-processing. The mean, the median and the 0.025 and 0.975 

quantiles are indicated.  
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Appendix 9: Area densities with V9 pre-
processing and PAPER as distinct 
category for PO75C and AA101 

Below, important figures and information for the area densities determined for PO75C, with belt weigher 

data from AA101 and V9 data pre-processing as well as PAPER as distinct category, can be found.  
 

Table A3: OLS results for area density prediction with PAPER as distinct category for PO75C using data 

from PO75C and AA106 after similar data pre-processing to V9, grouping and drop of PET_G data. 

 Regression Coefficient /  

Area density [kg/m2] 

Standard Error [kg/m2] 95% interval 

Constant -41,875 15,684 -72,616 

BC 0,452 0,066 0,322 

OTHER_POLYMERS 0,376 0,025 0,328 

PAPER 0,482 0,073 0,338 

PVC 0,939 0,061 0,819 

PET 3,752 0,114 3,528 

PO 0,464 0,008 0,448 

 
Table A4: Summary of bootstrapping results presenting the mean, median, 0.025 and 0.975 quantile for the 

area densities determined with PO75C and AA106 and V9 pre-processing. 

 Mean Median 0.025 quantlile 0.975 quantile 

Constant -41.9 -42 -76.84 -6.61 

BC 0.452 0.451 0.299 0.609 

OTHER_POLYMERS 0.376 0.376 0.334 0.418 

PAPER 0.483 0.482 0.323 0.645 

PVC 0.938 0.938 0.823 1.051 

PET 3.754 3.755 3.458 4.043 

PO 0.464 0.464 0.444 0.484 
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Figure A12: Bootstrapping results for the area densities and the constant of PO75C and AA106 after 10,000 

resampling applications and V9 data pre-processing with PAPER as distinct category. The mean, the 
median and the 0.025 and 0.975 quantiles are indicated.  

 


