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ABSTRACT

Maritime Autonomous Surface Ships (MASS) are advancing the shipping industry, requiring a mixed waterborne
transport system (MWTS) where human supervision provides a supporting role for maintaining safety and ef-
ficiency, particularly in complex scenarios. This study explores the dynamics of seafarers’ trust in MASS during
collision avoidance (CA) scenarios involving a vessel approaching from the starboard side. An empirical study
with 26 participants representing diverse maritime experience levels examined how time, demographic factors,
and collision avoidance strategies influence trust. Using a linear mixed model (LMM), trust was found to fluc-
tuate across navigation stages: gradual accumulation during the routine navigation stage, sharp dissipation
during strategy determination and execution stages, and partial recovery at the final stage. Strategies aligned
with maritime regulations and appropriately timed evasive actions fostered higher trust, while overly early or
imminent actions reduced trust. Additionally, a factor analysis consolidated the five trust dimensions, including
dependability, predictability, anthropomorphism, faith, and safety, into two aspects: System Competence,
encompassing the first four dimensions, and Situational Safety, representing safety-related trust. Furthermore,
Bayesian Network (BN) is developed to model trust in the autonomous decision-making of MASS, integrating
human observers demographics and situational factors. The model captures sequential trust dependencies,
revealing the cascading effects of trust across various stages and the role of System Competence in shaping
overall trust in the entire decision-making process. These findings provide actionable insights for designing MASS
that support trust-building and optimise collision avoidance strategies, contributing to safer and more efficient
autonomous maritime operations.

Introduction

Background

such situations, human supervisors are important in overseeing the
system’s actions and intervening when necessary.

Trust in autonomous systems is a key factor in ensuring safe and
efficient collaboration between autonomous systems of MASS and

Maritime Autonomous Surface Ships (MASS) are being increasingly
recognised for their potential to enhance operational efficiency and
safety within the maritime industry. While advances in automation
technology lay the groundwork, it is primarily the integration of intel-
ligent systems that enable ships to perform navigation tasks autono-
mously, reducing the need for constant human control. However, human
supervision will remain important in the near future (Negenborn et al.,
2023), as autonomous systems may require monitoring and necessary
intervention to ensure safe operations, especially in complicated navi-
gational environments, e.g., for collision avoidance (CA) scenarios. In

human operators (Song et al., 2024b). A proper level of trust facilitates
human operators to confidently delegate navigational tasks to these
systems in specific scenarios. Trust affects how operators perceive the
system’s actions, their willingness to rely on the system, and their
readiness to intervene when required. In addition, trust is not static
(Kirkpatrick et al., 2017); it fluctuates based on factors such as system
performance, environmental conditions, and operator characteristics
(Poornikoo et al., 2024). Understanding the dynamics of trust in MASS
operations, particularly with CA scenarios, is foundational for devel-
oping systems that maintain suitable trust levels.
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Despite advances in automation, the dynamics of trust in human-
supervised autonomous ship navigation, especially in CA contexts,
remain underexplored. In CA scenarios, compliance with the Convention
on the International Regulations for Preventing Collisions at Sea (COL-
REGs) is legally required for safe navigation. Operator trust in autono-
mous systems likely depends on how consistently the system adheres to
these regulations, particularly in terms of its evasion strategies and the
timing of evasive actions. Studying these dynamics, however, is chal-
lenging due to the limited availability of real-world interaction data
between MASS and manned vessels, which restricts empirical insights
and limits data-driven model development.

Recent studies have highlighted that one major challenge in MASS
collision avoidance (CA) lies in the vagueness and interpretative flexi-
bility of the COLREGs. (Wrobel et al., 2022) discussed that the current
state of collision avoidance systems struggles with fully adhering to
COLREG requirements due to rule vagueness. (Chang et al., 2024)
conducted a systematic review, identifying gaps in aligning MASS
decision-making with COLREG frameworks across varied navigational
contexts. Additionally, concepts such as “declarative ship arenas”
(Zarzycki et al., 2025) and “critical danger areas” (Gil, 2021) have been
proposed to provide clearer spatial and temporal guidance for MASS
avoidance actions. These works underline the necessity of exploring how
such operational uncertainties influence human trust in MASS decision-
making under CA scenarios.

Given these constraints, the central research problem addressed by
this study is: How can operator trust in MASS be measured, analysed, and
modelled within controlled experimental settings? Addressing this problem
is important for understanding how operators interact with MASS, as
trust dynamics directly influence operator confidence, intervention
likelihood, and overall system performance.

In this study, the supervised autonomous vessel refers to systems
where human operators are responsible for both monitoring and po-
tential intervention. This study specifically focuses on the observational
aspect of human supervision. Participants acted as observers, assessing
the autonomous system’s collision avoidance decisions without
engaging in direct control actions.

To address this problem, this study makes the following
contributions:

1. Design simulator-based experiments to simulate CA scenarios be-
tween MASS and conventional ships, enabling the controlled
collection of trust-related data.

2. Explore how operator trust varies over time in CA situations through
a linear mixed model (LMM), identifying and quantifying the influ-
ence of key factors, such as evasion strategies and timings, on trust
dynamics.

3. Develop a Trust Bayesian Network (TBN) model to further analyse
and predict operator trust dynamics in CA scenarios, focusing on
diagnostic analysis informed by sensitivity analysis and predictive
reasoning.

Structure of the paper

This paper is structured as follows: Section 2 reviews existing the-
ories for trust investigation and modelling in human-robot/autonomous
vehicles interaction, explicitly focusing on maritime applications. Sec-
tion 3 details the experiment scheme and the framework for analysing
human trust dynamics. Section 4 presents the development of the TBN
model, describing how the model is constructed to predict human trust
based on empirical data and key influencing factors. Section 5 discusses
the results of the empirical study and the evaluation of the TBN model.
Section 6 concludes the research and provides directions for future
research.
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State of the art

In recent years, the study of human trust in human-autonomy
interaction has gained much attention, particularly in critical domains
such as autonomous navigation (Basu and Singhal, 2016). The reason is
that trust influences the safety and efficiency of these interactions
through its effect on operator behaviour: appropriate trust reduces un-
necessary intervention while maintaining adequate oversight. In this
section, we will explore the nature of trust in the human-autonomy
interaction, the methods used to measure and investigate trust, and
various approaches to modelling trust.

Trust in human-autonomy interaction

Nature of trust

In human-autonomy interaction, trust is commonly defined as a
user’s willingness to be vulnerable to the actions of an autonomous
system based on positive expectations of its performance. A widely
referenced conceptualisation of trust was proposed in (Mayer et al.,
1995), which characterises trustworthiness through three critical di-
mensions: ability, benevolence, and integrity. In this model, ability re-
fers to the system’s competence in fulfilling tasks, benevolence captures
the alignment of the system’s goals with those of the user, and integrity
reflects the system’s adherence to acceptable standards.

In (Lee and See, 2004), a definition of trust drawn from previous
studies is the attitude that an agent will help achieve an individual’s
goals in a situation characterised by uncertainty and vulnerability. It is
pointed out that proper trust calibration prevents overtrust (misuse) and
undertrust (disuse) by ensuring that user trust corresponds to the sys-
tem’s real-world performance. Furthermore, this definition was used by
(Guo and Yang, 2021) to investigate the evolution of trust within
human-computer interaction, categorising users into Bayesian decision-
makers, oscillators, and disbelievers, each reflecting unique patterns of
trust adjustment.

Expanding further, focusing on the factors that may have an impact
on trust, (Peter A. Hancock et al. 2011) presented a meta-analytic
framework that provides an empirical perspective by examining human,
robot, and environmental factors affecting trust in human-robot inter-
action. Their meta-analysis concludes that robot performance and
attribute-based factors are significant contributors to trust development,
while environmental factors play a moderate role.

Trust is dynamic and responsive to changes in the operational
environment (PARK et al., 2008) and system performance (Alhaji et al.,
2023). Moreover, dynamic models, such as OPTIMo proposed by (Xu
and Dudek 2015a), conceptualise trust as a probabilistic and context-
sensitive belief that adapts in real-time to fluctuations in system per-
formance. Trust is viewed as continually updated based on system
behaviour, contrasting with static measures that provide only a
momentary view.

A three-layered trust model comprising dispositional, situational,
and learned trust was proposed by (Hoff and Bashir, 2015) to better
understand trust in human-automation interactions. In this model,
dispositional trust is an individual’s inherent tendency to trust or
distrust automation, situational trust arises from contextual elements
like task complexity and perceived risk, and learned trust builds through
prior experiences with the system. This layered approach integrates
individual, contextual, and experiential factors, illustrating that trust
varies independently across these layers and is influenced by the dy-
namic interplay between user expectations and real-time system
feedback.

Recently, frameworks like IMPACTS proposed by (Hou et al., 2021)
have extended these trust considerations to encompass practical char-
acteristics essential for building trust in autonomous systems. The model
identifies seven characteristics, including intention, measurability,
performance, adaptivity, communication, transparency, and security, as
crucial for establishing and sustaining trust in autonomy. This model
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emphasises adaptability and real-time feedback mechanisms, aligning
with dynamic models while providing actionable insights for designing
trust-supportive systems. Its practical relevance is notable in high-stakes
domains, where decision-making must be precise, transparent, and
adaptive to changing conditions, underscoring trust as a dynamic,
context-sensitive construct.

Additionally, key factors that may influence trust evolvement were
investigated by (Alhaji et al., 2021), including reliability, predictability,
and dependability. Further, studies by (Alhaji et al., 2023) focused on
the accumulation and decay of trust, identifying that trust can be
asymmetrical in response to system performance: while reliability is
crucial in building trust, its erosion is more pronounced when systems
fail, particularly in high-risk environments.

In summary, while existing studies provide insights into the nature,
dimensions, and dynamics of trust in human-autonomy interaction,
their application to MASS remains limited, particularly during critical
operational scenarios like collision avoidance. In this study, we address
this gap by incorporating both the dynamic and its multidimensional
characteristics, such as reliability, predictability, and safety. Using these
established theories, we aim to understand trust dynamics and charac-
teristics in MASS in CA scenarios.

Trust measurement and investigation

In the study of trust dynamics within human-autonomy interaction,
researchers utilise a diverse array of measurement methods, including
subjective, objective, and hybrid techniques.

Subjective methods, such as self-report questionnaires (Malle and
Ullman, 2020), allow operators to directly express their perceived trust
levels. For instance, frequent trust measurement intervals have been
used to observe how trust levels shift in response to interaction quality
and timing (Jackson et al., 2022). A subjective trust measurement scale
tailored to human-robot interaction was developed and validated by
(Yagoda and Gillan, 2012), exploring how dispositional and history-
based trust components influence user trust in varying contexts.

In contrast, objective methods provide physiological indicators of
trust fluctuations during task execution. For instance, using psycho-
physiological data, such as heart rate variability, electrodermal activity,
and Electroencephalography (EEG), offers insights into trust dynamics
within virtual environments by identifying immediate physiological
responses associated with trust levels (Chauhan et al., 2024). Among
these, EEG signals capture the brain’s immediate response under con-
ditions of trust and thus have been used as a more objective physio-
logical indicator (Wang et al., 2018; Xu et al., 2024). In addition, eye
tracking, another measurement method, has been employed to infer
trust levels. For example, it was combined with Bayesian models to be
used to estimate the workload of operators in real time (Luo et al., 2024).

To provide a more comprehensive view of trust, hybrid measure-
ments have emerged, integrating both subjective and objective data. The
study (Krausman et al., 2022) proposed a toolkit for trust measurement
in human-autonomy teams, combining self-report, behavioural in-
dicators (e.g., reliance, compliance, eye-tracking), and physiological
data (e.g., heart rate variability) to capture dynamic trust levels.
Furthermore, the study (Hopko et al., 2023) examined how cognitive
fatigue, robot reliability, and operator gender impact trust in collabo-
rative robots, where both physiological (performance, heart rate vari-
ability) and subjective measures (surveys) were employed.

In exploring trust dynamics, statistical methods are commonly
employed to analyse how trust varies under different conditions. Tech-
niques like ANOVA and Signal Temporal Logic (STL) are utilised to
assess environmental impacts on trust, examining factors such as alarm
types or task conditions (Sheng et al., 2019). Multi-factor analysis,
including t-tests and correlation, further reveals how interaction levels
and workspace settings impact trust, supporting a nuanced under-
standing of trust fluctuations (Chauhan et al., 2024). In addition, Linear
Mixed Models have been instrumental in capturing trust dynamics over
time. For example, exploring specific EEG frequencies (Delta and
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Gamma) associated with trust fluctuations (Wang et al., 2018) and
investigating the variables of time and frequency, showing the accu-
mulation effect of the frequency of positive interactions on trust
(Jackson et al., 2022).

Overall, trust measurement methods include subjective, objective,
and hybrid approaches, each with advantages and limitations. Subjec-
tive methods are straightforward but are prone to bias. Objective
methods provide real-time insights but require complex tools. Hybrid
methods are comprehensive but costly. Among statistical approaches,
LMM excels at capturing dynamics while accounting for individual dif-
ferences, whereas traditional methods like ANOVA are limited in
handling repeated measures and complex hierarchical data. This study
uses subjective measurements to gather trust data and apply LMM to
analyse its dynamic evolution in MASS collision avoidance scenarios.

Trust computational models

In the field of trust modelling for human-autonomy interaction,
research has developed multiple approaches to address the dynamic
nature of human trust in autonomous systems, each categorised by
distinct modelling techniques. Probabilistic models are widely applied
in trust modelling. Guo and Yang (2021b) employed Bayesian inference
with a Beta distribution to capture trust adjustments following suc-
cessful or unsuccessful robotic tasks, emphasising time dependency and
the impact of negative experiences. Their findings categorised users into
types (e.g., rational, oscillating, disbeliever), enabling real-time trust
updates tailored to individual preferences. The OPTIMo model by (Xu
and Dudek, 2015) combines dynamic Bayesian Networks (DBN) with
feedback to estimate trust continuously in high-risk, multi-task settings.
In multi-robot environments, (Zheng et al., 2023) used Bayesian opti-
misation and state-space equations for trust modelling, applying Markov
Chain Monte Carlo and Bayesian Optimization Experimental Design to
enhance task allocation. Additionally, (Fooladi Mahani et al., 2021)
explored trust in multi-robot settings using a DBN-based model with
Boltzmann machines, parameterised by an Expectation-Maximization
(EM) algorithm, which aids operators in trust allocation across multi-
ple autonomous agents. These probabilistic models provide high inter-
pretability and adaptability, making them ideal for the real-time
demands of human-autonomy interaction operations.

Time-series models further deepen trust modelling by analysing
historical trust trends, enabling accurate predictions of future trust
levels in sustained human-robot collaboration. (Guo and Yang, 2021a)
leveraged time-series data to study trust’s self-reinforcing effects and
sensitivity to negative feedback. (Sadrfaridpour et al., 2016) combined
time-series methods with neural networks to dynamically adjust robot
speed in response to human feedback.

Decision-theoretic models apply structured frameworks, such as
Markov Decision Processes (MDP) and Partially Observable MDPs
(POMDP), to manage trust by integrating trust as a decision variable in
task optimisation. (Wu et al., 2017) used an MDP-based trust model to
optimise trust through dynamic task allocation, aligning with the safe-
ty—critical needs of MASS operations. (Chen et al., 2018; Chen et al.,
2020) built on this by treating trust as a hidden variable within a
POMDP, enabling trust inference and decision optimisation.

Machine learning and hybrid models offer enhanced predictive
power and flexibility for managing complex, nonlinear trust dynamics.
(Soh et al., 2020) combined Recurrent Neural Networks and Gaussian
processes to capture trust shifts across tasks, providing adaptability for
multi-task contexts. In the customer experience domain, (Roy et al.,
2024) integrated Partial Least Squares Structural Equation Modeling
with Artificial Neural Networks to analyse trust’s nonlinear effects,
highlighting trust’s role in complex and interactive settings. (Lee et al.,
2021) employed sparse Gaussian processes and deep neural networks to
estimate uncertainty in trust, making their model suitable for decision-
making in complex environments. Together, machine learning models
address the need for precision and responsiveness in trust modelling,
enabling autonomous systems to adjust to diverse operator requirements
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effectively.

Trust modelling methods, including probabilistic models, time-series
analyses, and machine-learning techniques, offer different strengths for
capturing trust dynamics. Among these, Bayesian networks excel in
representing trust evolution and real-time updates. In this study, a BN-
based approach is used to model trust dynamics in MASS collision
avoidance scenarios, enabling the integration of trust changes with
system performance across navigation stages.

Trust consideration in MASS’s navigation

Following general theories of human-robot interaction, trust in
MASS demands particular consideration of the multi-stakeholder
context and the dynamic nature of maritime environments. In both
Remote Control Centres (RCCs) for fully autonomous ships and in
human-autonomy collaborative navigation scenarios, trust is essential
for operators who must rely on indirect data transmission and opera-
tional feedback without direct physical control (Misas et al., 2022; Song
et al., 2024b).

Recent studies in MASS collision-avoidance increasingly incorporate
human supervisory perspectives. (Huang, 2019) proposed a human-
-machine cooperation system emphasising transparent decision-making
and operator intervention support, which indirectly relates to trust by
improving operator awareness and perceived control. (van de Merwe
et al., 2024) highlighted that effective human supervision requires
continuous, clear information, an element foundational to fostering trust
through improved situational awareness. Furthermore, by translating
COLREGs into a machine-executable fuzzy expert system, the study
(Bakdi and Vanem, 2022) enhances the transparency and predictability
of MASS collision avoidance behaviour, which is essential for fostering
human trust in remote monitoring and human-machine collaborative
maritime operations.

It is emphasised by (Misas et al., 2022) that in RCC settings, trust is
closely linked to the reliability of data transmission and cybersecurity,
both of which are critical for maintaining the situational awareness
needed for safe supervision. Therefore, it is crucial to maintain network
security and ensure the reliability of information transmission. Addi-
tionally, the study conducted by (Gregor et al., 2023) observed that high
levels of VR immersion may introduce complexities, such as increased
motion sickness and slower situational awareness response times,
which, if left unchecked, could impact operator trust and decision-
making.

Furthermore, a Schema World Action Research Method (SWARM)
was employed by (Lynch et al., 2023) and (Lynch et al., 2024) to explore
the decision-making process of MASS operators in a remote monitoring
centre and to analyse the impact of trust on their operations in
conjunction with the Trust Module, revealing that trust in high-
automation settings relies heavily on precise feedback and transparent
system behaviour.

By combining both quantitative and qualitative methods (question-
naires, interviews, and technician logs), a mixed-methods approach was
used by (Alsos et al., 2024) to triangulate findings on public trust and
system performance, showing that trust can fluctuate based on
perceived system reliability and interaction context.

A decision-making framework designed for MASS was given by
(Song et al., 2024b), where human trust was considered a key element
that influences situational awareness and safe navigation of the de-
cisions made by autonomous systems. The trust module of this frame-
work can be modulated by taking human reactions as input during the
interaction between human operators and MASS.

Trust within MASS is also recognised as extending beyond individual
operators, encompassing collective trust across a mixed waterborne
system in which autonomous and conventional ships co-exist (Mallam
etal., 2020). In such an environment, trust among stakeholders becomes
essential to facilitate safe and coordinated operations. Additionally,
research conducted by (Mallam et al., 2020) examined the changing role
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of human operators in autonomous maritime systems, noting that trust is
influenced by operators’ understanding and control over system de-
cisions. Trust is presented as vital for system predictability and reli-
ability, especially as traditional seafaring skills become less relevant.
While progress has been made in exploring trust within MASS sys-
tems, critical gaps remain, particularly regarding trust dynamics in
collision avoidance scenarios. To address these gaps, this study employs
an empirical approach to investigate trust dynamics and develops a BN-
based model to capture the evolution of trust across different navigation
stages. By incorporating trust’s multidimensional characteristics into
the dynamic model, this research seeks to provide insights into the un-
derstanding of trust in MASS decision-making in CA scenarios.

Trust data collection and dynamics analysis

Definitions: Human trust in the context of MASS’s autonomous
navigation systems can be narrowly defined as the belief that humans
hold to the autonomous system’s capability of situational awareness and
appropriate task implementation (Song et al., 2024b). The trust is dy-
namic, evolving across different stages of navigation and influenced by
factors such as compliance with COLREGsS, decision-making strategies,
and the timing of evasive actions. Furthermore, trust levels and evasion
timings are defined as follows:

(1) Trust Levels: human trust in MASS reflects their confidence in
the system’s autonomous performance. Higher trust means a
stronger observer’s confidence in MASS’s abilities to perform
tasks successfully, while lower trust refers to more frequent
manual checks and doubts about the capabilities of MASS’s
decision-making system.

Evasion timing: it refers to the latency between the identifica-
tion of a potential collision object and the initiation of an evasive
manoeuvre by MASS. It is categorised into three key timing
windows in this study, listed below:

Standard: a range where manoeuvres are typically expected to
take place based on conventional practices and safety standards.
This is a dynamic window that adjusts based on the operational
context, allowing for sufficient time to assess the situation and
respond appropriately.

Early: initiating manoeuvres earlier than typically expected,
providing additional safety margin. This timing anticipates po-
tential risks and acts before the standard window. This aligns
with the concept of “declarative ship arenas” discussed in mari-
time collision avoidance literature (Zarzycki et al., 2025).
Imminent: the very last feasible moment when collision avoid-
ance must be executed. This timing is used as a last resort when
all prior opportunities to mitigate the situation have passed. This
corresponds to‘“critical areas” as defined in prior studies (Gil,
2021).

(2

—

Building on the foundational concepts of trust levels and evasion
timing, this study formulates three hypotheses to examine the dynamics
of human trust in MASS during CA scenarios:

Hypothesis 1 (H1): Human trust in MASS will fluctuate, including
trust accumulation and dissipation, depending on the system’s compli-
ance with COLREGs rules, in particular Rules 15, 16, and 17, and the
timing of evasive manoeuvres such as early and imminent moments.

Hypothesis 2 (H2): Right-turn evasion strategies will lead to a higher
trust of the participant than left-turn strategies in the scenario where a
vessel approaches from the starboard side, assuming the importance of
COLREGSs compliance.

Hypothesis 3 (H3): Early evasion actions and imminent action in
general risk situations for the COLREGs-aware MASS with a “give-way”
role will lead to lower trust levels of human observers, assuming the
importance of proper evasive timing.
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This study investigates the dynamics of observer trust in MASS
during collision avoidance scenarios. The experiment was conducted in
two phases to examine both the evolution of trust and the impact of
different factors influencing trust, such as compliance with COLREGs
and timing of evasive actions. Participants observed simulated scenarios
and evaluated their trust levels in a controlled environment where MASS
executed various collision avoidance strategies in response to an
approaching vessel from the starboard side.

Participants: The experiment engaged 26 participants recruited
through maritime channels, including captains and officers, ensuring
diverse professional experience levels. Each participant voluntarily took
part in the experiment, and all had prior experience with ship navigation
but with various experiences ranging from < 5 years to > 8 years. The
experiment took place over two phases, lasting approximately 30 min
per participant. To ensure clarity in the experimental context, all par-
ticipants were explicitly informed prior to the start of each scenario that
the observed vessel was an MASS.

Apparatus: The experiment was conducted using the NT-PRO 5000
ship manoeuvring simulator, a full-task ship navigation simulator that
provides a realistic maritime environment. The simulator setup includes
radar, ECDIS, and ARPA systems consistent with equipment found on
operational bridges, featuring high-fidelity graphical environments and
hydrodynamic modelling that accurately replicate real-world ship be-
haviours under varying navigational and environmental conditions. The
simulator was designed to replicate a standard open-sea navigation
scenario where an autonomous vessel encounters a conventional vessel
from the starboard side. Table 1 presents the initial parameters of both
the own and surrounding ships. The ships were set to start each scenario
with identical positions, speeds, and headings, with the surrounding
ship serving as a constant movement while the own ship executing
predefined CA strategies.

To simulate the decision-making capabilities of MASS, an experi-
enced ship operator controlled the vessel behind the scenes, following
predetermined decision-making logic that emulated the behaviour of an
autonomous system. As shown in Fig. 1, the logic included two key
strategies: (1) Left-turn and right-turn manoeuvres performed at standard
timing, representing compliance and deviation from COLREGs. (2) In the
right-turn condition, additional strategies involving early and imminent
evasive actions were implemented to examine the effect of manoeuvre
timing.

Fig. 1 shows the vessel trajectories for all experimental conditions. It
demonstrates how the own ship responded to the surrounding ship’s
movements. The trajectories displayed in Fig. 1 represent only the active
collision avoidance phase, concluding once the own ship has safely
avoided the target ship. This reflects the experimental design, where
scenarios ended after the avoidance action was completed, and no col-
lisions occurred throughout the study. In Fig. 1, ‘OS’ (Own Ship) rep-
resents the MASS executing collision avoidance manoeuvres, and ‘TS’
(Target Ship) refers to the conventional vessel maintaining its course
and speed according to COLREGs. The depicted left-turn and right-turn
strategies by OS were designed to investigate trust dynamics under both
COLREG-compliant and non-compliant scenarios. The traffic separation
scheme is shown for context only and does not influence the

Table 1
Initial parameters of the own and surrounding ships in the experimental
scenarios.

Vessel Ship type Ship Width Speed Heading
length
The own vessel Bulk carrier 225 m 32.3 10.5kn 090 °
m
The surrounding Container 190 m 30.0 12.0 000 °

vessel ship m kn

Transportation Research Interdisciplinary Perspectives 34 (2025) 101634

Vessels trajectories

10000 :
9000 }
8000 - I ——— "~ 1
7000 f r -

£ 6000 T
>- 1 '
| |=——TS trajectory |
5000 —— OS Left&Standard ! ]
OS Right&Standard ] '
4000 -|——0sS Right&Early i —
—— OS Right&Imminent ' '
| |---- Traffic separation scheme | | L
3000 OS Direction i '
—TS Direction ‘ R T
2000 . % y .
1.8 2 2.2 24 2.6 2.8
X (m) x10*

Fig. 1. Trajectories of the own and surrounding ships under varying conditions.

experimental logic. These behaviours were based on the initial param-
eters outlined in Table 1.

Participants’ task in the experiment was to observe the scenarios
and evaluate their trust levels in the MASS at various navigation and
collision avoidance stages. They were instructed to focus on the system’s
decision-making behaviour, including evasive actions and timing. This
approach ensured consistent and reproducible implementation of CA
strategies. These included both COLREGs-compliant and non-compliant
manoeuvres. The target vessel maintained a constant course and speed,
in accordance with maritime regulations.

Experimental Design and Conditions: The experiment followed a
two-phase structure, as shown in Fig. 2. The condition setting is pre-
sented in Table 2. The experiment consisted of two distinct phases:
Phase 1, which explored trust levels associated with left-turn and right-
turn strategies, and Phase 2, which examined trust differences between
early and imminent manoeuvre responses in the right-turn condition.
Participants were divided into two groups within each phase, experi-
encing the scenarios in reverse order.

Phase 1 -COLREGs compliance consideration: Participants observed
the MASS navigating under two conditions: one in which the autono-
mous vessel complied with COLREGs by altering course to the starboard
side to avoid the collision, and another where it neglected COLREGs
with a left-turn strategy but still successfully avoided a collision. In both
scenarios, MASS takes CA manoeuvres at standard timings, as previously
defined, where manoeuvres are typically expected to take place based on
conventional practices and safety standards. This design choice was
made to control for timing-related variability when comparing
compliant versus non-compliant strategies. Timing variations (early and
imminent actions) were specifically examined in Phase 2 under the
compliant right-turn condition.

Phase 2 — Evasion timing consideration: In the second phase, the
focus was on the timing of CA strategies. Participants were exposed to
two conditions: one where the MASS took early evasive action and
another where it took imminent strategy.

In the two phases, trust dynamics were captured through post-
scenario questionnaires after each run and were evaluated across five
key stages, details presented below:

o Initial Trust: At the beginning of the navigation process.

e Trust During Regular Navigation: Before any collision-avoidance
decisions are made.

e Trust During Decision-Making for Collision Avoidance: As the ship
initiates avoidance strategies.
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Fig. 2. Illustration of experimental procedure for collecting observers’ trust in CA scenarios.

Table 2

Experimental groups and conditions. COLREGs-aware: succeeds with collision avoidance while complying with COLREGs. COLREGs-neglected: succeeds with collision
avoidance but neglects COLREGs. Early: taking actions earlier than at the standard time that the corresponding action occurs. Imminent: taking imminent actions.

First phase — COLREGs compliance

Second phase - Timings

Group No. Trust dynamics Group No. Trust dynamics

First run Second run First run Second run
GO1 (N = 20) COLREGs-aware COLREGs-neglected Break & randomisation Group G1 (N = 20) Early Imminent
GO02 (N = 20) COLREGs-neglected COLREGs-aware Group G2 (N = 20) Imminent Early

e Trust During Collision-Avoidance Execution: When the ship per-
forms the manoeuvre after deciding on the CA strategy.

e Final Trust: At the conclusion of the scenario, after the whole CA
process has been completed.

Hereafter, these five stages are denoted as Trustl (Initial Trust),
Trust2 (Trust During Regular Navigation), Trust3 (Trust During
Collision-Avoidance Execution), Trust4 (Trust During Collision-
Avoidance Execution), and Trust5 (Final Trust) for brevity and consis-
tency in the subsequent analysis.

In addition to the stage-based trust assessments, trust was also
measured across five key dimensions after each scenario, using specific
questions designed to capture different aspects of trust. These di-
mensions were as follows:

e Dependability: Assessed by asking participants to rate how confident
they were in the MASS’s ability to avoid collisions (e.g., “To what
extent can you count on the MASS to avoid collisions in this
scenario?”).

e Predictability: Evaluated based on how predictable the autonomous
vessel’s behaviour was according to standard maritime practices (e.
g., “To what extent did you think the behaviour of the MASS was
predictable based on standard maritime practices?”).

e Anthropomorphism: Related to the interpretation of non-human
things or events in terms of human characteristics and measured
by comparing the MASS’s behaviour to that of a well-trained human
operator (e.g., “How consistent was the MASS’s behaviour with how
a well-trained human operator would have acted?”).

e Faith: Captured by asking participants about their belief in the
MASS’s ability to handle future collision scenarios (e.g., “To what
extent do you believe the MASS will be able to cope with all collision
situations?”).

e Safety: Rated by asking how safe participants felt during the collision
avoidance process (e.g., “How much do you feel unsafe in the whole
process of autonomous collision avoidance?”).

The trust questionnaire was adapted from validated scales in human-
automation interaction (Yagoda and Gillan, 2012) and (Alhaji et al.,
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2021). It included five single-item 7-point Likert scales covering
Dependability, Predictability, Anthropomorphism, Faith, and Safety. To
ensure relevance in the MASS context, items were reviewed by maritime
experts for content validity.

Data collection: Trust scores were collected through quantitative
trust ratings in the post-scenario questionnaires administered via the
Qualtrics platform, which allowed participants to reflect on their trust
levels across various stages after each scenario. Trust scores across both
the dynamic stages and dimensions were gathered, enabling further
analysis of how trust evolved under different experimental conditions.

Procedure: participants were briefed on the experimental setup and
provided with a demonstration of the ship manoeuvring simulator. A
pre-experiment survey was administered to collect demographic infor-
mation. After familiarising themselves with the simulator, participants
proceeded with the scenarios in both phases. In each scenario, the
participant observed an autonomous ship’s behaviour varied according
to the experimental conditions as the autonomous vessel encountered an
approaching conventional vessel from the starboard side. The partici-
pant’s view on engaging in simulator experiments is shown in Fig. 3.

After collecting the data, we conducted statistical analysis to
compare trust dynamics. The analysis examined how trust changed over
time and how it was influenced by different collision avoidance strate-
gies and their timing.

Exploratory analysis

Data were collected via Qualtrics from a sample of 26 seafarers
(hereafter referred to as “observers™) with diverse backgrounds in terms
of navigation experience, vessel types, positions, and age groups,
enabling exploratory analysis of trust dynamics in autonomous naviga-
tion. The participants ranged from 29 to 55, with a majority falling
between 30 and 35. In terms of position, the sample included captains
(15.4 %), first officers (30.8 %), second officers (30.8 %), third officers
(7.7 %), and pilots (15.4 %). Experience levels varied, with 50 % of
participants reporting over eight years of maritime experience, 30.8 %
between five to eight years, and 19.2 % with less than five years of
experience. The types of vessels that the observer was familiar with were
also diverse, including general vessels (65.4 %), tankers (23.1 %), and
special-purpose vessels (11.5 %). Trust ratings were measured across
five stages, with mean scores ranging from 3.62 to 3.94 (standard de-
viations of approximately 1.4 to 1.6).

Furthermore, a repeated measures analysis was conducted to inves-
tigate the dynamics of trust ratings across experimental stages. The
result revealed significant variability in trust levels between partici-
pants, as indicated by the significant main effect of individual differ-
ences (p < 0.001). This result underscores the presence of underlying
factors contributing to differences in trust across individuals. To further
investigate the trust dynamics and account for both fixed effects (e.g.,
experimental conditions) and random effects (e.g., variability across
participants), LMM was employed. This method is suitable for analysing
repeated measures data while capturing individual differences.

Current Trust Level: 4

00 0000

Fig. 3. Participants’ view on engaging in simulator experiments.
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LMM model development

Mann-Whitney U tests were first employed to evaluate trust differ-
ences across experimental orders within each phase to determine
whether the order influenced participants’ trust. The results indicated
that for both the left-right strategy comparison and the early-imminent
timing comparison, there were no significant differences in trust levels
across any of the five measured trust dimensions (trustl through trust5).
Specifically, the p-values were 0.604 (Trustl), 0.672 (Trust2), 0.765
(Trust3), 0.443 (Trust4), and 0.852 (Trust5), all above the 0.05
threshold, suggesting that the sequence of presentation had no signifi-
cant impact on trust ratings. Thus, the sequence of scenario presentation
was considered to have a negligible impact on trust ratings. Conse-
quently, sequence effects were excluded from the LMM to concentrate
on primary factors of interest.

Given these findings, the LMM model includes the condition, trust
moment (defined by the five key stages in Sec. 3.1), and demographic
variables (e.g., experience, vessel type, position, age) as fixed effects,
while individual participant differences were treated as random effects
to account for variability in trust responses. Model performance was
evaluated using multiple metrics. The model’s marginal R? of 0.338
indicated that fixed effects alone explained 33.8 % of the variance, while
the conditional R? reached 0.771, signifying that the combined influ-
ence of fixed and random effects accounted for 77.1 % of the overall
variance. Subsequent analyses focus on significant main and interaction
effects, providing insights into trust dynamics across various factors.

The statistical results of the main and interaction effects for trust are
presented in Table 3, highlighting key factors influencing trust dy-
namics. The analysis reveals that trust moment and condition are sig-
nificant predictors of trust, indicating that both the stages of navigation
and the conditions influenced participants’ trust in the autonomous
system. Additionally, interaction effects between age, vessel type, and
experience with trust moment suggest that trust evolved differently
based on participants’ maritime backgrounds and professional experi-
ence. These findings underscore the importance of operational context
and individual characteristics in shaping trust, setting the stage for a
more detailed examination of how these factors influence trust in
autonomous navigation.

Main effects analysis

Fig. 4 presents the mean trust scores across five distinct stages of the
navigation process, illustrating how trust levels evolve as the MASS
progresses through various CA stages. Stage 1 (Initial Trust): Trust is
measured at the outset, representing baseline confidence in the system
before any navigation manoeuvres. Participants’ trust at this stage
serves as a reference level and shows relatively high stability. Stage 2
(Trust During Regular Navigation): Trust is assessed during standard
navigation, prior to any collision-avoidance decisions. Here, trust levels
remain close, with a slight increase to the initial levels, indicating that
participants maintain a relatively steady trust during routine navigation
without imminent risks. Stage 3 (Trust During Decision-Making for

Table 3
Type III Tests of Fixed Effects Dependent Variable: Trust.
Factors Source F Sig.
Main effects Intercept 137.462 <0.001
Position 0.421 0.826
Experience 1.558 0.245
Vessel type 2.736 0.099
Trust moment 2.840 0.024
Condition 5.117 0.002
Age 0.654 0.535
Interaction effects Trust moment * age 5.723 <0.001
Trust moment * condition 0.728 0.725
Vessel type * trust moment 2.075 0.037
Experience * trust moment 2.102 0.034
Position * trust moment 0.653 0.872
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Fig. 4. Illustration of trust scores across all stages based on linear
mixed models.

Collision Avoidance): Trust is recorded as the autonomous system ini-
tiates collision-avoidance strategies and timings. This stage shows a
shape decline in trust compared to both Stage 1 (p = 0.01) and Stage 2
(p = 0.035), suggesting that participants’ confidence diminishes when
the system shifts from routine navigation to making critical decisions.
Stage 4 (Trust During Collision-Avoidance Execution): Trust is further
evaluated as the system performs the avoidance strategies. Another
decline in trust is observed, with significant differences between Stage 1
and Stage 4 (p = 0.036) and Stage 2 and Stage 4 (p = 0.01), indicating
increased participant uncertainty or caution during the strategy execu-
tion. Finally, at Stage 5 (Final Trust), Trust is assessed at the conclusion
of the scenario after all manoeuvres have been executed. Trust levels
partially recover at this stage but do not fully return to initial levels,
suggesting residual caution even after observing the system’s successful
task completion.

Fig. 5 displays the mean trust levels across four conditions: Early/
Starboard, Imminent/Starboard, Standard/Port, and Standard/Star-
board. This comparison highlights how variations in collision-avoidance
timing (early vs. imminent) and direction (starboard vs. port) affect trust
in the autonomous system. A statistically significant difference between
conditions is noted, with Standard/Starboard showing a higher mean
trust than Standard/Port (p < 0.001).

Mean trust across different conditions
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Fig. 5. Illustration of trust scores comparison between different conditions
based on LMM.
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Interaction effects analysis

As presented in Table 3, the significance test results indicate that
trust dynamics vary significantly across navigation stages depending on
observers’ Vessel Type (p = 0.037), Experience Level (p = 0.034), and
Age (p < 0.001). Given the lack of significance for other interactions,
such as trust moment with condition (p = 0.725) and position (p =
0.872), the subsequent analysis focuses on these significant effects to
provide a targeted exploration of trust dynamics across various stages.
Thus, we analysed how trust scores varied across the five navigation
stages (from initial to final trust) under specific demographic factors that
have significant impacts. Fig. 6 illustrates these variations concerning
three demographic variables: Vessel Type, Experience Level, and Age.
Each subplot provides a focused view of how these demographic factors
interact with trust dynamics, revealing distinct trends and potential
influences at each stage.

For vessel type, as shown in Fig. 6(a), participants navigating tankers
generally exhibited higher trust levels across all stages, while those
associated with special-purpose ships showed a notable decline in trust
from Stages 2 to 4.

In terms of experience level, as shown in Fig. 6(b), participants with
less than 5 years of experience displayed consistently high and relatively
stable trust levels across stages. Participants with 5-8 years of experi-
ence displayed more variability, with trust peaking at the beginning and
decreasing notably by the collision-avoidance stages. Conversely, those
observers with over 8 years of experience started lower and exhibited a
slight downward trend.

Finally, the age-based interaction highlights that participants over
40 years old exhibited relatively stable and higher trust scores (see Fig. 6
(c)), while those younger than 30 had more pronounced declines,
particularly from Stages 2 to 4. Together, these interaction effects
emphasise that trust is not only influenced by system actions but also by
demographic characteristics.

Five dimensions of trust

To gain insight into the key dimensions shaping observers’ trust in
MASS’s navigation, we conducted a factor analysis on five trust-related
metrics: Dependability, Predictability, Anthropomorphism, Faith, and
Safety. Preliminary tests confirmed that the dataset was suitable for
factor analysis, with a Kaiser-Meyer-Olkin (KMO) value of 0.843 (indi-
cating sampling adequacy) and a significant Bartlett’s Test of Sphericity
was significant (y2 = 365.757, p < 0.001). The factor analysis yielded a
two-factor solution, explaining 88.16 % of the variance, indicating a
stable structure in trust assessments (see Fig. 7). Factor 1 accounts for
67.6 % of the variance and includes Dependability, Predictability,
Anthropomorphism, and Faith, while Factor 2 explains an additional 20.6
% and is represented solely by Safety. The extracted factors reveal that
observers assess trust along two distinct dimensions: general System
Competence and Situational Safety.

Specifically, the first factor, which we labelled “System Compe-
tence”, aggregates four dimensions: Dependability, Predictability,
Anthropomorphism, and Faith. As shown in Fig. 7, each of these di-
mensions has a strong loading on Factor 1. Dependability and Predict-
ability capture the reliability and consistency of the MASS’ navigation,
while Anthropomorphism and Faith add human likeness and forward-
looking trust, respectively. The second factor, labelled “Situational
Safety”, is defined exclusively by the safety-related dimension, which
loads solely on this factor. Unlike the broad reliability-based attributes
found in Factor 1, Safety reflects observers’ perceptions of safety during
collision avoidance.

Correlation analysis of trust dimensions and two related factors

Following the factor analysis, a correlation analysis was conducted to
further investigate the relationships between the two key factors of trust
and trust levels across different operational stages. This analysis aimed
to understand how perceptions of trust evolve during the stages of
navigation and how they correlate with the two identified trust factors.
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Fig. 6. Trust dynamics across five navigation stages in relation to vessel type, experience level, and age.

Factor Analysis of Trust Dimensions
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Fig. 7. The illustration of the factor analysis on five trust-related dimensions.

Using Pearson’s correlation coefficients, we assessed the strength
and direction of relationships between the five trust stages and the two
factors identified in the factor analysis. Only significant correlations
were visualised in the matrix, with non-significant cells left blank to
emphasise meaningful associations. As illustrated in Fig. 8, The corre-
lation matrix presents a series of moderate to strong positive correlations
among trust scores across various stages. Additionally, trust scores be-
tween adjacent stages show the highest correlations, such as Trustl and
Trust2 (0.69) and Trust3 and Trust4 (0.90), indicating that trust levels
evolve sequentially as participants progress through the stages.

System competence exhibited moderate positive correlations with
trust scores across various stages (ranging from 0.51 to 0.64), under-
scoring the consistent influence of perceived competence on partici-
pants’ trust. In contrast, Situational safety displayed no significant
correlations with the trust scores at stages other than the trust at stage 1.
This result aligns with the earlier factor analysis, where Situational safety
emerged as a distinct factor.

Building on the insights from our exploratory analysis, which high-
lighted key demographic and experimental conditions influencing trust,
we propose a BN model for trust to capture these complex dynamics.
This model formalises the relationships among System Competence,
Situational Safety, stage-specific trust levels, and demographic and
situational variables (strategies and timings), allowing us to quantify the
influence of each factor on trust formation and development.

/]
@(\o
R S
9 ) RS & & s
ST A -
Trust-1| 069 050 052 057 053 0.24 08
0.6
Trust-2 060 056 068 051
0.4
Trust-3| 0.90 072 058 0.2
e 0
Trust-4 | 076 0.64 02
-0.4
Trust-5  0.63
-0.6
Competence W‘OB

Fig. 8. Correlation matrix between trust scores across each stage and the two
identified components.

Trust model design
Bayesian network construction for trust

BN were selected as the trust modelling tool in this study due to their
capability to represent complex probabilistic dependencies among
multiple interacting variables while managing uncertainty. Compared to
conventional regression models, BN provides a structured and inter-
pretable approach for capturing conditional dependencies and sequen-
tial trust progression across navigation stages. This is particularly
suitable for modelling trust in human-autonomy interaction contexts,
such as MASS navigation, where trust evolves dynamically based on
situational factors and observer characteristics.

Building on the insights from our exploratory analysis, which high-
lighted key demographic and experimental conditions influencing trust,
we propose a BN model for trust to capture these complex dynamics.
This model formalises the relationships among System Competence,
Situational Safety, stage-specific trust levels, and demographic and
situational variables (strategies and timings), providing a structured
framework to quantify the influence of each factor on trust formation
and development.
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Fig. 9. Development of a human trust model with Bayesian Networks for MASS operation.

Node definition and network structure

The Bayesian network incorporates five sequential trust nodes, each
representing trust at a specific stage, from InitialTrust to FinalTrust. This
structure leverages the Markov property, as was considered in (Kok and
Soh, 2020), where each trust stage depends solely on the trust level of its
immediate predecessor. By adopting this assumption, the model focuses
on the local dependencies in trust evolution, simplifying the structure
while preserving the temporal dynamics of trust development. FinalTrust
serves as the node that represents the cumulative confidence built
throughout the CA process. It reflects how trust, as it propagates through
the stages, aggregates into an overall assessment of the navigational
performance of the autonomous system.

In addition to temporal dependency, trust varies among participants
across various backgrounds, such as age, experience, and vessel types.
Thus, this model integrates demographics that were identified as key
factors, including age, experience, and vessel type, as parent nodes to
InitialTrust, reflecting their role in shaping baseline trust levels. These
factors account for inherent individual differences in trust propensity, as
indicated by the exploratory findings. Furthermore, situational factors
such as Strategies and Timings are introduced as parent nodes to Trust 3,
representing the influence of CA decisions on trust in the decision-
making stage. This structure ensures that the model captures both in-
dividual propensity and situational factors on trust transitions.

To capture the multidimensional evaluation of trust, the model in-
corporates two extracted components: System competence and Situational
Safety. System Competence reflects perceptions of dependability, pre-
dictability, human likeness, and forward-looking beliefs, while Situa-
tional Safety focuses on safety evaluations during collision avoidance.
These dimensions are linked directly to FinalTrust, representing their
role in shaping the overall trust in the autonomous system. This
framework lays the groundwork for further analysis, including diag-
nostic analysis informed by sensitivity analysis, predictive reasoning,
and causal inference, to explore trust mechanisms in depth.

Fig. 9 illustrates the staged trust formation process of MASS in the CA
process, showing the interaction between performance, real-time be-
liefs, and stage-specific trust across navigation phases. Trust evolves
sequentially, starting with initial trust (T,) and baseline beliefs (By), and
progressing through key stages, including T; (routine navigation), T
(strategy and timing decisions), T» (CA execution), and final trust T,. At
each stage, real-time beliefs (Byx) are updated dynamically based on
ongoing system performance Py, which directly shape staged trust.
During CA execution, the system’s manoeuvres (e.g., CA strategies and
timing) are captured in performance nodes (P;), which influence T; via
updated beliefs (B;). Throughout the process, observer evaluations of
System Competence (SC) and Situational Safety (SS) are integrated into
final trust judgments. These two dimensions are critical to linking spe-
cific system performance to comprehensive trust evaluations at the final
stage. This framework highlights the interplay of system performance,
real-time beliefs, stage trust, and trust-related factors assessment in trust
formation. Given the uniformity of vessel performance and the

10

controlled nature of the experimental scenarios, performance variability
was minimal. As such, the model excludes explicit performance nodes,
focusing instead on Strategy and Timing as key situational factors of
trust.

Parameter setting and model training

The constructed trust Bayesian network is shown in Fig. 10, where
InitialTrust serves as the baseline trust level influenced by demographic
factors, including age and vessel type, which were derived from mari-
time industry reports,'.? For example, age distributions (below 30: 16 %,
30-40: 29 %, above 40: 55 %) and vessel type (General: 63 %, Tanker:
13 %, and Special-purpose ships: 25 %). For factors lacking statistical
support, such as Strategy and Timing, prior probabilities were estimated
based on domain expertise. For instance, left-turns (25 %) and right-
turns (75 %) were assigned probabilities reflecting standard maritime
practices under COLREGs, while collision-avoidance timing was set as
standard (70 %), early (15 %) and imminent (15 %). Additionally,
System Competence and Situational Safety were discretised into low,
medium, and high categories using tertile thresholds (0.33 and 0.66)
derived from factor analysis scores, while trust ratings (1-7) were
similarly classified into low (1-2), medium (3-5), and high (6-7). The
prior probabilities of other nodes and conditional probabilities were
calculated by using the trust data collected from our survey through the
Genie software.

Application

Following the construction of the TBN model, its utility was evalu-
ated through targeted applications. These included diagnostic analysis
informed by sensitivity insights and predictive reasoning. Diagnostic
analysis, built on sensitivity analysis methods, aims to identify the most
influential factors contributing to a specific observed outcome.. Pre-
dictive inference estimates future trust levels based on current condi-
tions, aiding in proactive management.

Diagnostic analysis

To evaluate the robustness and identify critical determinants of the
trust model, we conducted a diagnostic analysis informed by sensitivity
insights targeting the Trust5 = high outcome. A 30 % parameter spread,
reflecting realistic variability in parameters, was implemented to
simulate realistic uncertainties, visualising results using a tornado dia-
gram (see Fig. 11), where the top ten bars represent the factors
contributing most significantly to the variability of the outcome.

As shown in Fig. 11, the tornado diagram highlights the diagnostic

! https://www.statista.com/statistics/264024,/number-of-merchant-ships
-worldwide-by-type/.

2 https://www.gov.uk/government/statistical-data-sets/seafarer-statistics
-sfr#certificated-officers-and-trainees-sfr02.
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Fig. 10. Trust model design for autonomous decision-making of MASS in CA scenarios.

results of Trust5 = high to variations in key parameters, demonstrating
how trust outcomes respond to changes in the TBN. Competence = high
exhibits the most significant positive influence, aligning with its direct
pathway to FinalTrust and underscoring its central role in trust forma-
tion. Sequential trust stages, such as Trust4 = high | Trust3 = high,
reveal cascading effects, emphasising the importance of consistent trust-
building across stages. Together, the insights emphasise the interplay
between System Competence and sequential trust evolution, offering
actionable guidance for enhancing user trust in autonomous navigation
systems.

In TBN, Trust 3 represents a critical stage where trust is influenced by
the prior trust level, that is, TrustPreCA, and situational factors (e.g.,
Strategies, Timings). This node is important to explore because it indi-
rectly impacts FinalTrust, as identified in Fig. 11 (The second most
important impact factor: Trust4 = high|Trust3 = high). In addition, it is
the key stage in the whole process at which the Strategy and Timing
were imposed. Thus, the diagnostic analysis for Trust3 = high was
conducted further, as shown in Fig. 12. Specifically, the analysis reveals
that Trust2 = medium, conditional on Trustl = medium, exerts the
strongest influence, with a steep negative derivative (—0.207), indi-
cating that small changes in Trust2 greatly impact Trust3. Similarly, the
interaction between Timing=Standard and Strategy = TurnRight dem-
onstrates a marked influence on Trust3 = medium, evidenced by its
contribution and derivative (—0.133). Notably, the direct influence of
Timing=Standard (ranked 5th) compared to its interaction with Strat-
egy (ranked 2nd and 3rd) highlights the compounding effect of navi-
gation strategies on trust. This aligns with the finding that Strategy =
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TurnRight combined with a higher trust level in Trust2 contributes
positively to Trust3 = high (derivative: +0.276). Furthermore, while
other factors also show the impact on Trust3, such as vessel type =
General, their effects are weaker, underscoring the dominance of
imminent variables such as situational factors over demographics.
Similarly, a diagnostic analysis on Trustl = high was also conducted,
as shown in Fig. 13. The results reveal that Vessel Type exhibits the

Sensitivity for Trust5 = High
compete| ce=high

Trust4=high | Trust3=high
Trust5=medium | Trust4=medium, safety=medium, competence=high
Trust2=medium | Trusti=medium
competence=low
Trust4=medium | Trust3=medium
Trust5=high | Trust4=medium, safety=high, competence=high
Trust5=medium | Trust4=medium, safety=high, competence=high

Trust4d=medium | Trust3=high

Trust5=medium | Trust4=medium, sifety=medium, competence=medium
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Fig. 11. Diagnostic analysis visualisation results for Trust5(Final Trust) = high.
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Trust3=low | Timing=StanHard, Strategy=TurnRight, Trust2=medium

0.18 0.2025

I I |
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Fig. 12. Diagnostic analysis visualisation results for Trust3(TrustStrategy)
= high.

Sensitivity for Trust1 = High
Vessel typg=General

Veséel type=Tanker
Trust1=medium | Experience=moderate, Age=below30, Vessel type=General
Experience=good
Age=between30and40

Trust1=high | Experience=good, ﬁge=above40, Vessel type=Tanker
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Trust1=medium | Experience=moderate, Age=between30and40, Vessel type=Tanker
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I
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Fig. 13. Diagnostic analysis visualisation results for Trustl(InitialTrust)
= high.

strongest influence on Trust1, particularly for general vessels showing a
negative relationship (derivative: —0.170) and tanker vessels with a
positive influence (derivative: +0.206), indicating a higher trust de-
pendency on vessel types. Other demographic factors such as Experience
and Age demonstrate moderate but substantial effects, with experienced
participants (rated as “good”) and those aged 30-40 exhibiting negative
impacts on Trustl = high. Conversely, specific combinations of de-
mographic features (e.g., good experience and vessel type “tanker”)
highlight positive influence, reflecting that senior, experienced

TrustStrategy
Right&Standard -
=)
£
£ Right&mminent -
=
>
=)
)
© Right&Early .
=
7]
Left&Standard .
0.00 0.25 0.50 0.75
Trust Level

(a) Trust Evasion under Different Collision

Avoidance Strategies
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personnel on takers enhance InitialTrust. This analysis underscores the
importance of tailoring strategies to specific observer profiles to foster
trust in autonomous systems from the outset.

Predictive reasoning

Following the diagnostic analysis, we conducted predictive
reasoning to estimate the trust dynamics under the variations in Stra-
tegies and Timings, particularly focusing on critical trust nodes, such as
FinalTrust and TrustEvasion, see Fig. 14. As shown in Fig. 14 (a), medium
trust consistently dominates, with the Right & Early strategy achieving
the highest proportion (60 %). High trust levels are, although relatively
low, peak in Right & Standard (28 %), indicating its effectiveness in
maintaining trust during the evasive stage. Conversely, low trust is most
prevalent in Left & Standard (33 %), suggesting its potential drawbacks
in trust-sensitive scenarios. Similarly, the FinalTrust subplot, as shown
in Fig. 14 (b), shows medium trust as the dominant outcome across all
strategies, with Right & Early achieving the highest proportion (64 %)
and Left & Standard again exhibiting higher low trust levels (27 %).

These findings underscore the diagnostic finding of trust outcomes to
operational strategies, highlighting Right & Standard, Right & Early,
and Right & Imminent as favourable strategy combinations for sus-
taining trust during the entire CA process.

Discussion
Interpretation of results

Trust was measured using post-scenario evaluations collected via
Qualtrics, where participants rated their trust after observing specific
collision avoidance manoeuvres. The use of simulated navigation videos
embedded within Qualtrics ensured that participants evaluated the
autonomous system’s performance in controlled, consistent scenarios,
capturing trust fluctuations across distinct navigation stages. Further-
more, the analysis, conducted using LMM, uncovered trust dynamics
across navigation stages.

Aligned with H1: Firstly, consistent with H1, trust in the MASS
fluctuated throughout the CA process. Participants’ trust varies signifi-
cantly across several stages (e.g., TrustPreCA vs TrustStrategy) but
partially recovered during the final stage, see Fig. 4. This fluctuation
reflects increased scrutiny during high-stakes manoeuvres and a gradual
convergence towards a calibrated level of trust as participants gained a
deeper understanding of the system. However, the final trust levels did
not return to their initial levels, suggesting residual caution or incom-
plete trust recovery even after successful task completion. Secondly,
trust levels exhibit slight increases during the early stages (Trustl to

FinalTrust
1.00 0.00 0.25 0.50 0.75 1.00
Probability
Low [ Medium [l High

(b) Final Trust under Different Collision

Avoidance Strategies

Fig. 14. Predictive reasoning on trust evasion and final trust under different CA Strategies.
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Trust2), reflecting trust accumulation, but a shapely decrease in Trust3
and Trust4, underscoring the asymmetric nature of trust formation
versus erosion, followed by partial recovery at the final stage (Trust5).
The initial slight increase may result from the system’s adherence to
stable navigation practices and predictable behaviour. The abrupt
decline likely corresponds to participants’ heightened scrutiny during
strategies/timings selection and execution stages, where system limita-
tions or perceived inefficiencies become more evident. Trust recovery at
the final stage suggests an accumulation effect, where the overall per-
formance in earlier stages is synthesised into a final trust judgment. This
pattern aligns with trust accumulation, typically requiring consistent
system performance over time, while dissipation can occur rapidly due
to a single negative event.

Aligned with H2: Furthermore, trust in the Right&Standard sce-
nario differs significantly from the Left & Standard scenario, as shown in
Fig. 5, suggesting participants’ preference for manoeuvres that align
more closely with COLREGs. This result, aligning with H2, may turn out
that in CA scenarios, where a vessel is approaching from her starboard
side, right-turn strategies may have been perceived as more consistent
with standard maritime practices to accumulate trust, while left-turn
strategies might have been interpreted as riskier or less conventional
to dissipate trust.

Aligned with H3: Finally, aligning with H3, while proactive re-
sponses aligned with standard timings were associated with higher trust
levels, actions that were “too early” or “too late” demonstrated subop-
timal outcomes, see Fig. 5. The findings imply that MASS systems must
balance evasion strategies and proper timings, avoiding evasions that
are either too proactive or overly reactive.

Overall, these two factors reveal that observers differentiate between
general System Competence and Situational Safety when forming trust
in autonomous navigation systems. This insight emphasises the need for
MASS designs to address both Competence and Safety to ensure reli-
ability and promote trust in dynamic navigational environments.

In terms of demographic factors consideration, the inclusion of
participants with diverse professional backgrounds aimed to ensure the
representativeness of trust dynamics across various groups. Thiis di-
versity allowed to identify overall trend in trust evoluation while also
capturing the variability that emerges when demographic factors
interact with other factors. The results indicate while the main effects
analysis revealed that trust dynamics were primarily influenced by
navigational stages and conditions, interaction effects highlighted subtle
differences based on experience level, vessel type, and age during spe-
cific CA stages, as shown in Fig. 6. These differences were not the pri-
mary focus of this study but provide supplemetary insights into how
trust responses may vary in certain CA scenarios. Such insights highlight
the need for context-specific considerations when evaluating trust in
MASS navigation in CA scenarios.

Regarding the dimensional structure of trust, trust was found to
encompass two overarching dimensions: System Competence and Situ-
ational Safety. The linkage between System Competence and Situational
Safety and FinalTrust demonstrates the multidimensional nature of trust.
This finding highlights that observers evaluate trust both as a compre-
hensive judgment of the system’s competence and as a context-specific
assessment of safety. Additionally, System competence exhibited moder-
ate positive correlations with trust scores across various stages (ranging
from 0.51 to 0.64), underscoring the consistent influence of perceived
competence on participants’ trust. This result suggests that observers’
perceptions of the MASS’s navigational reliability, human likeness, and
forward-looking beliefs contribute continuously to their trust across all
stages, indicating their foundational role in trust formation. In contrast,
situational safety was primarily linked to InitialTrust. Its influence on
subsequent trust stages was limited. This may reflect the controlled
nature of the experimental design, in which participants were implicitly
assured of the system’s safety. In other words, in this context, Safety
might become a “given” in participants’ minds, leading them to assume
that the MASS will handle high-risk scenarios adequately. As a result,
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Safety ratings might remain stable across different conditions, especially
if no unexpected behaviours challenge this expectation. However, this
does not imply that situational safety is irrelevant in real-world appli-
cations. Instead, it suggests that observers’ perceptions of safety are
formed early and remain stable unless disrupted by unexpected system
failures or high-risk scenarios.

With respect to TBN, this model captures the staged progression of
trust in MASS, integrating temporal dynamics, demographics, and
situational factors. This structured approach is essential for under-
standing how trust evolves and identifying the determinants of trust-
building at different stages of the CA process. Firstly, the sequential
trust nodes represent a staged process of trust evaluation from Initial-
Trust to FinalTrust. The Markov property simplifies the model by
assuming that each stage depends primarily on the previous one, which
is consistent with the exploratory analysis showing strong correlations
between consecutive trust ratings, see Fig. 8. Secondly, baselined trust
levels (InitialTrust) are influenced by demographic variables, such as
vessel type, age, and experience (see Fig. 13 and Fig. 6(a)).

Focusing on the results of diagnostic analysis informed by sensitivity
insights, two aspects of insights can be drawn. (1) The tornado diagram
for Trust5 = high (Fig. 11) indicates that System Competence exerts the
most significant positive influence on FinalTrust. It underscores that
perceptions of dependability, predictability, human likeness, and
forward-looking beliefs of the autonomous system in the entire CA
process are critical for building overall trust. (2) The cascading influence
of earlier trust stages on later outcomes (e.g., Trust4 = high | Trust3 =
high) emphasises the cumulative nature of trust (Fig. 11). The significant
impact of TrustStrategy (Trust3) on FinalTrust highlights the critical role
of decision-making strategies and timings in the trust pathway.
Furthermore, TrustStrategy (Trust3) was found to be influenced not only
by situational factors (e.g., strategy and timing) but also by the trust
level in the preceding stage (TrustPreCA). This sequential dependency
supports the hypothesis that trust evolves progressively, with earlier
stages laying the foundation for subsequent evaluations. The findings
support the need for consistent trust-building throughout all stages of
interaction.

Finally, the following key takeaways can be derived regarding the
results of predictive reasoning: (1) strategies involving Right & Early,
Right & Imminent, and Right & Standard manoeuvres consistently
achieve higher levels of trust compared to Left strategies, as shown in
Fig. 14, also aligning with the hypothesis of H3. (2) Despite variations
during evasive actions, trust partially stabilises at the FinalTrust stage.
This indicates that the system’s overall performance, which affects the
system competence of the autonomous system, can mitigate earlier
fluctuations, reinforcing the importance of holistic trust-building efforts.

Implications of findings

Overall, the results have the following two aspects of implications for
the design and operation of autonomous navigation systems.

(1) Prioritising competence in system design: System Competence
was underscored, comprising reliability, predictability, anthro-
pomorphism, and forward-looking decision-making, as the most
critical factor influencing observer overall trust in the entire CA
process. MASS systems should prioritise performance consistency
and predictability, especially in CA scenarios. To achieve this,
developers must enhance the transparency of system behaviour
by incorporating real-time feedback mechanisms that clarify de-
cision rationales, particularly during unconventional manoeuvres
such as left-turn strategies. Additionally, to maintain trust
consistently, MASS systems must focus on early-stage perfor-
mance to prevent dissipation that could propagate through later
evaluations.

Optimising evasion strategies and timing: The study highlights
the importance of proper evasive strategy and timing. While
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proactive responses are generally associated with higher trust
levels, actions that are too early or too delayed can dissipate
observer trust. To address this, MASS systems should incorporate
adaptive algorithms that optimise the timing of evasive ma-
noeuvres with compliance with regulations like COLREGs.
Furthermore, autonomous systems should focus on transparency,
particularly in explaining the decision logic in scenarios where
deviations from observer expectations (e.g., delayed or uncon-
ventional manoeuvres) occur. As suggested by (Song et al,
2024a), observer trust in autonomous navigational decisions can
be strengthened when the regulations are involved in the
decision-making mechanism, which can improve the system’s
transparency.

In terms of comparison with prior research, the findings align with
previous studies on trust in automation, particularly the dynamic nature
of trust, accumulation and dissipation (Alhaji et al., 2023), and its
dependence on system performance (Xu and Dudek 2015a). In the
maritime domain, this study, which is different from (Poornikoo et al.,
2024), investigates observer trust in the autonomous decision-making
system of MASS across several stages in a CA process instead of real-
time measurement. However, this study expands the understanding of
trust in autonomous systems by introducing the dual dimensions of
competence and situational safety, providing an in-depth understanding
of trust in the autonomous system of MASS in an MWTS.

Limitations

Despite its contributions, this study has several limitations that
warrant further investigation. The use of a simulator-based experi-
mental setup, while providing a controlled and realistic maritime
environment through the ship manoeuvring simulator, cannot fully
replicate the complexity of real-world MASS navigation. Factors such as
variable sea states, multi-ship encounters, and communication delays in
actual operations were not incorporated, which may affect ecological
validity.

Additionally, the sample size (N = 26), although diverse in maritime
experience, limits the generalisability of findings across the broader
seafaring population. The participant pool did not specific ally include
officers with experience on passenger-carrying vessels, whose height-
ened safety responsibilities might influence trust perceptions differently.
Future studies should aim to include this demographic to broaden the
applicability of the findings.

Furthermore, this study focuses solely on observational aspects of
human supervision in MASS operations. While this mirrors real-world
RCC scenarios, it does not capture trust dynamics involving direct
human intervention, which may need further investigation.

The TBN model relies on Markovian assumptions, simplifying trust
progression to local dependencies and potentially overlooking long-term
influences. Moreover, trust was assessed post-scenario, which may not
fully capture real-time fluctuations during critical events. Furthermore,
participants’ relatively stable evaluations of situational safety may
reflect the controlled nature of the experiment, where baseline expec-
tations shaped their perceptions.

Conclusions & future research

This study investigated the dynamics of observer trust in MASS
during CA scenarios, combining quantitative trust measurement,
exploratory analysis using LMM, and predictive reasoning via the pro-
posed TBN model.

Trust was measured through post-scenario evaluations collected via
Qualtrics, allowing participants to rate their trust in MASS after
observing simulated navigation videos. These measurements captured
stage-specific fluctuations, which were analysed using LMM to identify
key patterns: slight and gradual trust accumulation during routine
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navigation and sharp dissipation during the CA strategies and timings
selection and execution stages. Trust at the final stage, that is, overall
trust, is partially recovered, underscoring the cumulative influence of
prior stages. Trust dynamics varied significantly by demographic fac-
tors, such as experience and vessel type. Moreover, left-turn strategies
were associated with lower trust compared to right-turn strategies,
reflecting observer preferences for COLREGs-compliant evasion strate-
gies. Factor analysis identified two trust dimensions, including System
Competence and Situational Safety, with System Competence strongly
correlating with trust across all stages. The Markov-like stage correla-
tions further supported the sequential nature of trust evolution.

Building on these findings, the TBN model quantified trust dynamics,
highlighting the dominant role of System Competence in shaping final
trust and the cascading influence of intermediate stages. Diagnostic
analysis informed by sensitivity analysis emphasised the -critical
importance of decision-making strategies and timely actions, while
predictive reasoning demonstrated the positive impact of proactive
right-turn manoeuvres. These insights provide actionable guidance for
designing MASS systems that align with observer expectations, improve
transparency, and optimise CA strategies.

Future research should validate these findings in real-world mari-
time contexts and extend trust modelling to encompass variable envi-
ronmental conditions. Moreover, integrating physiological data and
real-time monitoring tools could offer deeper insights into trust fluctu-
ations during dynamic navigation tasks. Expanding participant di-
versity, particularly involving officers with experience on passenger-
carrying vessels and including both observational and intervention-
based supervision, will further enhance the validity and applicability
of trust models in MASS operations. These efforts will contribute to
developing autonomous navigation systems that are not only technically
robust but also aligned with human supervisory expectations in complex
maritime environments.
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