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A B S T R A C T

Maritime Autonomous Surface Ships (MASS) are advancing the shipping industry, requiring a mixed waterborne 
transport system (MWTS) where human supervision provides a supporting role for maintaining safety and ef
ficiency, particularly in complex scenarios. This study explores the dynamics of seafarers’ trust in MASS during 
collision avoidance (CA) scenarios involving a vessel approaching from the starboard side. An empirical study 
with 26 participants representing diverse maritime experience levels examined how time, demographic factors, 
and collision avoidance strategies influence trust. Using a linear mixed model (LMM), trust was found to fluc
tuate across navigation stages: gradual accumulation during the routine navigation stage, sharp dissipation 
during strategy determination and execution stages, and partial recovery at the final stage. Strategies aligned 
with maritime regulations and appropriately timed evasive actions fostered higher trust, while overly early or 
imminent actions reduced trust. Additionally, a factor analysis consolidated the five trust dimensions, including 
dependability, predictability, anthropomorphism, faith, and safety, into two aspects: System Competence, 
encompassing the first four dimensions, and Situational Safety, representing safety-related trust. Furthermore, 
Bayesian Network (BN) is developed to model trust in the autonomous decision-making of MASS, integrating 
human observers demographics and situational factors. The model captures sequential trust dependencies, 
revealing the cascading effects of trust across various stages and the role of System Competence in shaping 
overall trust in the entire decision-making process. These findings provide actionable insights for designing MASS 
that support trust-building and optimise collision avoidance strategies, contributing to safer and more efficient 
autonomous maritime operations.

Introduction

Background

Maritime Autonomous Surface Ships (MASS) are being increasingly 
recognised for their potential to enhance operational efficiency and 
safety within the maritime industry. While advances in automation 
technology lay the groundwork, it is primarily the integration of intel
ligent systems that enable ships to perform navigation tasks autono
mously, reducing the need for constant human control. However, human 
supervision will remain important in the near future (Negenborn et al., 
2023), as autonomous systems may require monitoring and necessary 
intervention to ensure safe operations, especially in complicated navi
gational environments, e.g., for collision avoidance (CA) scenarios. In 

such situations, human supervisors are important in overseeing the 
system’s actions and intervening when necessary.

Trust in autonomous systems is a key factor in ensuring safe and 
efficient collaboration between autonomous systems of MASS and 
human operators (Song et al., 2024b). A proper level of trust facilitates 
human operators to confidently delegate navigational tasks to these 
systems in specific scenarios. Trust affects how operators perceive the 
system’s actions, their willingness to rely on the system, and their 
readiness to intervene when required. In addition, trust is not static 
(Kirkpatrick et al., 2017); it fluctuates based on factors such as system 
performance, environmental conditions, and operator characteristics 
(Poornikoo et al., 2024). Understanding the dynamics of trust in MASS 
operations, particularly with CA scenarios, is foundational for devel
oping systems that maintain suitable trust levels.
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Despite advances in automation, the dynamics of trust in human- 
supervised autonomous ship navigation, especially in CA contexts, 
remain underexplored. In CA scenarios, compliance with the Convention 
on the International Regulations for Preventing Collisions at Sea (COL
REGs) is legally required for safe navigation. Operator trust in autono
mous systems likely depends on how consistently the system adheres to 
these regulations, particularly in terms of its evasion strategies and the 
timing of evasive actions. Studying these dynamics, however, is chal
lenging due to the limited availability of real-world interaction data 
between MASS and manned vessels, which restricts empirical insights 
and limits data-driven model development.

Recent studies have highlighted that one major challenge in MASS 
collision avoidance (CA) lies in the vagueness and interpretative flexi
bility of the COLREGs. (Wróbel et al., 2022) discussed that the current 
state of collision avoidance systems struggles with fully adhering to 
COLREG requirements due to rule vagueness. (Chang et al., 2024) 
conducted a systematic review, identifying gaps in aligning MASS 
decision-making with COLREG frameworks across varied navigational 
contexts. Additionally, concepts such as “declarative ship arenas” 
(Zarzycki et al., 2025) and “critical danger areas” (Gil, 2021) have been 
proposed to provide clearer spatial and temporal guidance for MASS 
avoidance actions. These works underline the necessity of exploring how 
such operational uncertainties influence human trust in MASS decision- 
making under CA scenarios.

Given these constraints, the central research problem addressed by 
this study is: How can operator trust in MASS be measured, analysed, and 
modelled within controlled experimental settings? Addressing this problem 
is important for understanding how operators interact with MASS, as 
trust dynamics directly influence operator confidence, intervention 
likelihood, and overall system performance.

In this study, the supervised autonomous vessel refers to systems 
where human operators are responsible for both monitoring and po
tential intervention. This study specifically focuses on the observational 
aspect of human supervision. Participants acted as observers, assessing 
the autonomous system’s collision avoidance decisions without 
engaging in direct control actions.

To address this problem, this study makes the following 
contributions: 

1. Design simulator-based experiments to simulate CA scenarios be
tween MASS and conventional ships, enabling the controlled 
collection of trust-related data.

2. Explore how operator trust varies over time in CA situations through 
a linear mixed model (LMM), identifying and quantifying the influ
ence of key factors, such as evasion strategies and timings, on trust 
dynamics.

3. Develop a Trust Bayesian Network (TBN) model to further analyse 
and predict operator trust dynamics in CA scenarios, focusing on 
diagnostic analysis informed by sensitivity analysis and predictive 
reasoning.

Structure of the paper

This paper is structured as follows: Section 2 reviews existing the
ories for trust investigation and modelling in human-robot/autonomous 
vehicles interaction, explicitly focusing on maritime applications. Sec
tion 3 details the experiment scheme and the framework for analysing 
human trust dynamics. Section 4 presents the development of the TBN 
model, describing how the model is constructed to predict human trust 
based on empirical data and key influencing factors. Section 5 discusses 
the results of the empirical study and the evaluation of the TBN model. 
Section 6 concludes the research and provides directions for future 
research.

State of the art

In recent years, the study of human trust in human-autonomy 
interaction has gained much attention, particularly in critical domains 
such as autonomous navigation (Basu and Singhal, 2016). The reason is 
that trust influences the safety and efficiency of these interactions 
through its effect on operator behaviour: appropriate trust reduces un
necessary intervention while maintaining adequate oversight. In this 
section, we will explore the nature of trust in the human-autonomy 
interaction, the methods used to measure and investigate trust, and 
various approaches to modelling trust.

Trust in human-autonomy interaction

Nature of trust
In human-autonomy interaction, trust is commonly defined as a 

user’s willingness to be vulnerable to the actions of an autonomous 
system based on positive expectations of its performance. A widely 
referenced conceptualisation of trust was proposed in (Mayer et al., 
1995), which characterises trustworthiness through three critical di
mensions: ability, benevolence, and integrity. In this model, ability re
fers to the system’s competence in fulfilling tasks, benevolence captures 
the alignment of the system’s goals with those of the user, and integrity 
reflects the system’s adherence to acceptable standards.

In (Lee and See, 2004), a definition of trust drawn from previous 
studies is the attitude that an agent will help achieve an individual’s 
goals in a situation characterised by uncertainty and vulnerability. It is 
pointed out that proper trust calibration prevents overtrust (misuse) and 
undertrust (disuse) by ensuring that user trust corresponds to the sys
tem’s real-world performance. Furthermore, this definition was used by 
(Guo and Yang, 2021) to investigate the evolution of trust within 
human–computer interaction, categorising users into Bayesian decision- 
makers, oscillators, and disbelievers, each reflecting unique patterns of 
trust adjustment.

Expanding further, focusing on the factors that may have an impact 
on trust, (Peter A. Hancock et al. 2011) presented a meta-analytic 
framework that provides an empirical perspective by examining human, 
robot, and environmental factors affecting trust in human-robot inter
action. Their meta-analysis concludes that robot performance and 
attribute-based factors are significant contributors to trust development, 
while environmental factors play a moderate role.

Trust is dynamic and responsive to changes in the operational 
environment (PARK et al., 2008) and system performance (Alhaji et al., 
2023). Moreover, dynamic models, such as OPTIMo proposed by (Xu 
and Dudek 2015a), conceptualise trust as a probabilistic and context- 
sensitive belief that adapts in real-time to fluctuations in system per
formance. Trust is viewed as continually updated based on system 
behaviour, contrasting with static measures that provide only a 
momentary view.

A three-layered trust model comprising dispositional, situational, 
and learned trust was proposed by (Hoff and Bashir, 2015) to better 
understand trust in human-automation interactions. In this model, 
dispositional trust is an individual’s inherent tendency to trust or 
distrust automation, situational trust arises from contextual elements 
like task complexity and perceived risk, and learned trust builds through 
prior experiences with the system. This layered approach integrates 
individual, contextual, and experiential factors, illustrating that trust 
varies independently across these layers and is influenced by the dy
namic interplay between user expectations and real-time system 
feedback.

Recently, frameworks like IMPACTS proposed by (Hou et al., 2021) 
have extended these trust considerations to encompass practical char
acteristics essential for building trust in autonomous systems. The model 
identifies seven characteristics, including intention, measurability, 
performance, adaptivity, communication, transparency, and security, as 
crucial for establishing and sustaining trust in autonomy. This model 
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emphasises adaptability and real-time feedback mechanisms, aligning 
with dynamic models while providing actionable insights for designing 
trust-supportive systems. Its practical relevance is notable in high-stakes 
domains, where decision-making must be precise, transparent, and 
adaptive to changing conditions, underscoring trust as a dynamic, 
context-sensitive construct.

Additionally, key factors that may influence trust evolvement were 
investigated by (Alhaji et al., 2021), including reliability, predictability, 
and dependability. Further, studies by (Alhaji et al., 2023) focused on 
the accumulation and decay of trust, identifying that trust can be 
asymmetrical in response to system performance: while reliability is 
crucial in building trust, its erosion is more pronounced when systems 
fail, particularly in high-risk environments.

In summary, while existing studies provide insights into the nature, 
dimensions, and dynamics of trust in human-autonomy interaction, 
their application to MASS remains limited, particularly during critical 
operational scenarios like collision avoidance. In this study, we address 
this gap by incorporating both the dynamic and its multidimensional 
characteristics, such as reliability, predictability, and safety. Using these 
established theories, we aim to understand trust dynamics and charac
teristics in MASS in CA scenarios.

Trust measurement and investigation
In the study of trust dynamics within human-autonomy interaction, 

researchers utilise a diverse array of measurement methods, including 
subjective, objective, and hybrid techniques.

Subjective methods, such as self-report questionnaires (Malle and 
Ullman, 2020), allow operators to directly express their perceived trust 
levels. For instance, frequent trust measurement intervals have been 
used to observe how trust levels shift in response to interaction quality 
and timing (Jackson et al., 2022). A subjective trust measurement scale 
tailored to human-robot interaction was developed and validated by 
(Yagoda and Gillan, 2012), exploring how dispositional and history- 
based trust components influence user trust in varying contexts.

In contrast, objective methods provide physiological indicators of 
trust fluctuations during task execution. For instance, using psycho
physiological data, such as heart rate variability, electrodermal activity, 
and Electroencephalography (EEG), offers insights into trust dynamics 
within virtual environments by identifying immediate physiological 
responses associated with trust levels (Chauhan et al., 2024). Among 
these, EEG signals capture the brain’s immediate response under con
ditions of trust and thus have been used as a more objective physio
logical indicator (Wang et al., 2018; Xu et al., 2024). In addition, eye 
tracking, another measurement method, has been employed to infer 
trust levels. For example, it was combined with Bayesian models to be 
used to estimate the workload of operators in real time (Luo et al., 2024).

To provide a more comprehensive view of trust, hybrid measure
ments have emerged, integrating both subjective and objective data. The 
study (Krausman et al., 2022) proposed a toolkit for trust measurement 
in human-autonomy teams, combining self-report, behavioural in
dicators (e.g., reliance, compliance, eye-tracking), and physiological 
data (e.g., heart rate variability) to capture dynamic trust levels. 
Furthermore, the study (Hopko et al., 2023) examined how cognitive 
fatigue, robot reliability, and operator gender impact trust in collabo
rative robots, where both physiological (performance, heart rate vari
ability) and subjective measures (surveys) were employed.

In exploring trust dynamics, statistical methods are commonly 
employed to analyse how trust varies under different conditions. Tech
niques like ANOVA and Signal Temporal Logic (STL) are utilised to 
assess environmental impacts on trust, examining factors such as alarm 
types or task conditions (Sheng et al., 2019). Multi-factor analysis, 
including t-tests and correlation, further reveals how interaction levels 
and workspace settings impact trust, supporting a nuanced under
standing of trust fluctuations (Chauhan et al., 2024). In addition, Linear 
Mixed Models have been instrumental in capturing trust dynamics over 
time. For example, exploring specific EEG frequencies (Delta and 

Gamma) associated with trust fluctuations (Wang et al., 2018) and 
investigating the variables of time and frequency, showing the accu
mulation effect of the frequency of positive interactions on trust 
(Jackson et al., 2022).

Overall, trust measurement methods include subjective, objective, 
and hybrid approaches, each with advantages and limitations. Subjec
tive methods are straightforward but are prone to bias. Objective 
methods provide real-time insights but require complex tools. Hybrid 
methods are comprehensive but costly. Among statistical approaches, 
LMM excels at capturing dynamics while accounting for individual dif
ferences, whereas traditional methods like ANOVA are limited in 
handling repeated measures and complex hierarchical data. This study 
uses subjective measurements to gather trust data and apply LMM to 
analyse its dynamic evolution in MASS collision avoidance scenarios.

Trust computational models
In the field of trust modelling for human-autonomy interaction, 

research has developed multiple approaches to address the dynamic 
nature of human trust in autonomous systems, each categorised by 
distinct modelling techniques. Probabilistic models are widely applied 
in trust modelling. Guo and Yang (2021b) employed Bayesian inference 
with a Beta distribution to capture trust adjustments following suc
cessful or unsuccessful robotic tasks, emphasising time dependency and 
the impact of negative experiences. Their findings categorised users into 
types (e.g., rational, oscillating, disbeliever), enabling real-time trust 
updates tailored to individual preferences. The OPTIMo model by (Xu 
and Dudek, 2015) combines dynamic Bayesian Networks (DBN) with 
feedback to estimate trust continuously in high-risk, multi-task settings. 
In multi-robot environments, (Zheng et al., 2023) used Bayesian opti
misation and state-space equations for trust modelling, applying Markov 
Chain Monte Carlo and Bayesian Optimization Experimental Design to 
enhance task allocation. Additionally, (Fooladi Mahani et al., 2021) 
explored trust in multi-robot settings using a DBN-based model with 
Boltzmann machines, parameterised by an Expectation-Maximization 
(EM) algorithm, which aids operators in trust allocation across multi
ple autonomous agents. These probabilistic models provide high inter
pretability and adaptability, making them ideal for the real-time 
demands of human-autonomy interaction operations.

Time-series models further deepen trust modelling by analysing 
historical trust trends, enabling accurate predictions of future trust 
levels in sustained human-robot collaboration. (Guo and Yang, 2021a) 
leveraged time-series data to study trust’s self-reinforcing effects and 
sensitivity to negative feedback. (Sadrfaridpour et al., 2016) combined 
time-series methods with neural networks to dynamically adjust robot 
speed in response to human feedback.

Decision-theoretic models apply structured frameworks, such as 
Markov Decision Processes (MDP) and Partially Observable MDPs 
(POMDP), to manage trust by integrating trust as a decision variable in 
task optimisation. (Wu et al., 2017) used an MDP-based trust model to 
optimise trust through dynamic task allocation, aligning with the safe
ty–critical needs of MASS operations. (Chen et al., 2018; Chen et al., 
2020) built on this by treating trust as a hidden variable within a 
POMDP, enabling trust inference and decision optimisation.

Machine learning and hybrid models offer enhanced predictive 
power and flexibility for managing complex, nonlinear trust dynamics. 
(Soh et al., 2020) combined Recurrent Neural Networks and Gaussian 
processes to capture trust shifts across tasks, providing adaptability for 
multi-task contexts. In the customer experience domain, (Roy et al., 
2024) integrated Partial Least Squares Structural Equation Modeling 
with Artificial Neural Networks to analyse trust’s nonlinear effects, 
highlighting trust’s role in complex and interactive settings. (Lee et al., 
2021) employed sparse Gaussian processes and deep neural networks to 
estimate uncertainty in trust, making their model suitable for decision- 
making in complex environments. Together, machine learning models 
address the need for precision and responsiveness in trust modelling, 
enabling autonomous systems to adjust to diverse operator requirements 
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effectively.
Trust modelling methods, including probabilistic models, time-series 

analyses, and machine-learning techniques, offer different strengths for 
capturing trust dynamics. Among these, Bayesian networks excel in 
representing trust evolution and real-time updates. In this study, a BN- 
based approach is used to model trust dynamics in MASS collision 
avoidance scenarios, enabling the integration of trust changes with 
system performance across navigation stages.

Trust consideration in MASS’s navigation

Following general theories of human-robot interaction, trust in 
MASS demands particular consideration of the multi-stakeholder 
context and the dynamic nature of maritime environments. In both 
Remote Control Centres (RCCs) for fully autonomous ships and in 
human-autonomy collaborative navigation scenarios, trust is essential 
for operators who must rely on indirect data transmission and opera
tional feedback without direct physical control (Misas et al., 2022; Song 
et al., 2024b).

Recent studies in MASS collision-avoidance increasingly incorporate 
human supervisory perspectives. (Huang, 2019) proposed a human
–machine cooperation system emphasising transparent decision-making 
and operator intervention support, which indirectly relates to trust by 
improving operator awareness and perceived control. (van de Merwe 
et al., 2024) highlighted that effective human supervision requires 
continuous, clear information, an element foundational to fostering trust 
through improved situational awareness. Furthermore, by translating 
COLREGs into a machine-executable fuzzy expert system, the study 
(Bakdi and Vanem, 2022) enhances the transparency and predictability 
of MASS collision avoidance behaviour, which is essential for fostering 
human trust in remote monitoring and human–machine collaborative 
maritime operations.

It is emphasised by (Misas et al., 2022) that in RCC settings, trust is 
closely linked to the reliability of data transmission and cybersecurity, 
both of which are critical for maintaining the situational awareness 
needed for safe supervision. Therefore, it is crucial to maintain network 
security and ensure the reliability of information transmission. Addi
tionally, the study conducted by (Gregor et al., 2023) observed that high 
levels of VR immersion may introduce complexities, such as increased 
motion sickness and slower situational awareness response times, 
which, if left unchecked, could impact operator trust and decision- 
making.

Furthermore, a Schema World Action Research Method (SWARM) 
was employed by (Lynch et al., 2023) and (Lynch et al., 2024) to explore 
the decision-making process of MASS operators in a remote monitoring 
centre and to analyse the impact of trust on their operations in 
conjunction with the Trust Module, revealing that trust in high- 
automation settings relies heavily on precise feedback and transparent 
system behaviour.

By combining both quantitative and qualitative methods (question
naires, interviews, and technician logs), a mixed-methods approach was 
used by (Alsos et al., 2024) to triangulate findings on public trust and 
system performance, showing that trust can fluctuate based on 
perceived system reliability and interaction context.

A decision-making framework designed for MASS was given by 
(Song et al., 2024b), where human trust was considered a key element 
that influences situational awareness and safe navigation of the de
cisions made by autonomous systems. The trust module of this frame
work can be modulated by taking human reactions as input during the 
interaction between human operators and MASS.

Trust within MASS is also recognised as extending beyond individual 
operators, encompassing collective trust across a mixed waterborne 
system in which autonomous and conventional ships co-exist (Mallam 
et al., 2020). In such an environment, trust among stakeholders becomes 
essential to facilitate safe and coordinated operations. Additionally, 
research conducted by (Mallam et al., 2020) examined the changing role 

of human operators in autonomous maritime systems, noting that trust is 
influenced by operators’ understanding and control over system de
cisions. Trust is presented as vital for system predictability and reli
ability, especially as traditional seafaring skills become less relevant.

While progress has been made in exploring trust within MASS sys
tems, critical gaps remain, particularly regarding trust dynamics in 
collision avoidance scenarios. To address these gaps, this study employs 
an empirical approach to investigate trust dynamics and develops a BN- 
based model to capture the evolution of trust across different navigation 
stages. By incorporating trust’s multidimensional characteristics into 
the dynamic model, this research seeks to provide insights into the un
derstanding of trust in MASS decision-making in CA scenarios.

Trust data collection and dynamics analysis

Definitions: Human trust in the context of MASS’s autonomous 
navigation systems can be narrowly defined as the belief that humans 
hold to the autonomous system’s capability of situational awareness and 
appropriate task implementation (Song et al., 2024b). The trust is dy
namic, evolving across different stages of navigation and influenced by 
factors such as compliance with COLREGs, decision-making strategies, 
and the timing of evasive actions. Furthermore, trust levels and evasion 
timings are defined as follows: 

(1) Trust Levels: human trust in MASS reflects their confidence in 
the system’s autonomous performance. Higher trust means a 
stronger observer’s confidence in MASS’s abilities to perform 
tasks successfully, while lower trust refers to more frequent 
manual checks and doubts about the capabilities of MASS’s 
decision-making system.

(2) Evasion timing: it refers to the latency between the identifica
tion of a potential collision object and the initiation of an evasive 
manoeuvre by MASS. It is categorised into three key timing 
windows in this study, listed below:

• Standard: a range where manoeuvres are typically expected to 
take place based on conventional practices and safety standards. 
This is a dynamic window that adjusts based on the operational 
context, allowing for sufficient time to assess the situation and 
respond appropriately.

• Early: initiating manoeuvres earlier than typically expected, 
providing additional safety margin. This timing anticipates po
tential risks and acts before the standard window. This aligns 
with the concept of “declarative ship arenas” discussed in mari
time collision avoidance literature (Zarzycki et al., 2025).

• Imminent: the very last feasible moment when collision avoid
ance must be executed. This timing is used as a last resort when 
all prior opportunities to mitigate the situation have passed. This 
corresponds to“critical areas” as defined in prior studies (Gil, 
2021).

Building on the foundational concepts of trust levels and evasion 
timing, this study formulates three hypotheses to examine the dynamics 
of human trust in MASS during CA scenarios:

Hypothesis 1 (H1): Human trust in MASS will fluctuate, including 
trust accumulation and dissipation, depending on the system’s compli
ance with COLREGs rules, in particular Rules 15, 16, and 17, and the 
timing of evasive manoeuvres such as early and imminent moments.

Hypothesis 2 (H2): Right-turn evasion strategies will lead to a higher 
trust of the participant than left-turn strategies in the scenario where a 
vessel approaches from the starboard side, assuming the importance of 
COLREGs compliance.

Hypothesis 3 (H3): Early evasion actions and imminent action in 
general risk situations for the COLREGs-aware MASS with a “give-way” 
role will lead to lower trust levels of human observers, assuming the 
importance of proper evasive timing.
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Experimental design

This study investigates the dynamics of observer trust in MASS 
during collision avoidance scenarios. The experiment was conducted in 
two phases to examine both the evolution of trust and the impact of 
different factors influencing trust, such as compliance with COLREGs 
and timing of evasive actions. Participants observed simulated scenarios 
and evaluated their trust levels in a controlled environment where MASS 
executed various collision avoidance strategies in response to an 
approaching vessel from the starboard side.

Participants: The experiment engaged 26 participants recruited 
through maritime channels, including captains and officers, ensuring 
diverse professional experience levels. Each participant voluntarily took 
part in the experiment, and all had prior experience with ship navigation 
but with various experiences ranging from < 5 years to > 8 years. The 
experiment took place over two phases, lasting approximately 30 min 
per participant. To ensure clarity in the experimental context, all par
ticipants were explicitly informed prior to the start of each scenario that 
the observed vessel was an MASS.

Apparatus: The experiment was conducted using the NT-PRO 5000 
ship manoeuvring simulator, a full-task ship navigation simulator that 
provides a realistic maritime environment. The simulator setup includes 
radar, ECDIS, and ARPA systems consistent with equipment found on 
operational bridges, featuring high-fidelity graphical environments and 
hydrodynamic modelling that accurately replicate real-world ship be
haviours under varying navigational and environmental conditions. The 
simulator was designed to replicate a standard open-sea navigation 
scenario where an autonomous vessel encounters a conventional vessel 
from the starboard side. Table 1 presents the initial parameters of both 
the own and surrounding ships. The ships were set to start each scenario 
with identical positions, speeds, and headings, with the surrounding 
ship serving as a constant movement while the own ship executing 
predefined CA strategies.

To simulate the decision-making capabilities of MASS, an experi
enced ship operator controlled the vessel behind the scenes, following 
predetermined decision-making logic that emulated the behaviour of an 
autonomous system. As shown in Fig. 1, the logic included two key 
strategies: (1) Left-turn and right-turn manoeuvres performed at standard 
timing, representing compliance and deviation from COLREGs. (2) In the 
right-turn condition, additional strategies involving early and imminent 
evasive actions were implemented to examine the effect of manoeuvre 
timing.

Fig. 1 shows the vessel trajectories for all experimental conditions. It 
demonstrates how the own ship responded to the surrounding ship’s 
movements. The trajectories displayed in Fig. 1 represent only the active 
collision avoidance phase, concluding once the own ship has safely 
avoided the target ship. This reflects the experimental design, where 
scenarios ended after the avoidance action was completed, and no col
lisions occurred throughout the study. In Fig. 1, ‘OS’ (Own Ship) rep
resents the MASS executing collision avoidance manoeuvres, and ‘TS’ 
(Target Ship) refers to the conventional vessel maintaining its course 
and speed according to COLREGs. The depicted left-turn and right-turn 
strategies by OS were designed to investigate trust dynamics under both 
COLREG-compliant and non-compliant scenarios. The traffic separation 
scheme is shown for context only and does not influence the 

experimental logic. These behaviours were based on the initial param
eters outlined in Table 1.

Participants’ task in the experiment was to observe the scenarios 
and evaluate their trust levels in the MASS at various navigation and 
collision avoidance stages. They were instructed to focus on the system’s 
decision-making behaviour, including evasive actions and timing. This 
approach ensured consistent and reproducible implementation of CA 
strategies. These included both COLREGs-compliant and non-compliant 
manoeuvres. The target vessel maintained a constant course and speed, 
in accordance with maritime regulations.

Experimental Design and Conditions: The experiment followed a 
two-phase structure, as shown in Fig. 2. The condition setting is pre
sented in Table 2. The experiment consisted of two distinct phases: 
Phase 1, which explored trust levels associated with left-turn and right- 
turn strategies, and Phase 2, which examined trust differences between 
early and imminent manoeuvre responses in the right-turn condition. 
Participants were divided into two groups within each phase, experi
encing the scenarios in reverse order.

Phase 1 –COLREGs compliance consideration: Participants observed 
the MASS navigating under two conditions: one in which the autono
mous vessel complied with COLREGs by altering course to the starboard 
side to avoid the collision, and another where it neglected COLREGs 
with a left-turn strategy but still successfully avoided a collision. In both 
scenarios, MASS takes CA manoeuvres at standard timings, as previously 
defined, where manoeuvres are typically expected to take place based on 
conventional practices and safety standards. This design choice was 
made to control for timing-related variability when comparing 
compliant versus non-compliant strategies. Timing variations (early and 
imminent actions) were specifically examined in Phase 2 under the 
compliant right-turn condition.

Phase 2 – Evasion timing consideration: In the second phase, the 
focus was on the timing of CA strategies. Participants were exposed to 
two conditions: one where the MASS took early evasive action and 
another where it took imminent strategy.

In the two phases, trust dynamics were captured through post- 
scenario questionnaires after each run and were evaluated across five 
key stages, details presented below: 

• Initial Trust: At the beginning of the navigation process.
• Trust During Regular Navigation: Before any collision-avoidance 

decisions are made.
• Trust During Decision-Making for Collision Avoidance: As the ship 

initiates avoidance strategies.

Table 1 
Initial parameters of the own and surrounding ships in the experimental 
scenarios.

Vessel Ship type Ship 
length

Width Speed Heading

The own vessel Bulk carrier 225 m 32.3 
m

10.5kn 090 ◦

The surrounding 
vessel

Container 
ship

190 m 30.0 
m

12.0 
kn

000 ◦

Fig. 1. Trajectories of the own and surrounding ships under varying conditions.
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• Trust During Collision-Avoidance Execution: When the ship per
forms the manoeuvre after deciding on the CA strategy.

• Final Trust: At the conclusion of the scenario, after the whole CA 
process has been completed.

Hereafter, these five stages are denoted as Trust1 (Initial Trust), 
Trust2 (Trust During Regular Navigation), Trust3 (Trust During 
Collision-Avoidance Execution), Trust4 (Trust During Collision- 
Avoidance Execution), and Trust5 (Final Trust) for brevity and consis
tency in the subsequent analysis.

In addition to the stage-based trust assessments, trust was also 
measured across five key dimensions after each scenario, using specific 
questions designed to capture different aspects of trust. These di
mensions were as follows: 

• Dependability: Assessed by asking participants to rate how confident 
they were in the MASS’s ability to avoid collisions (e.g., “To what 
extent can you count on the MASS to avoid collisions in this 
scenario?”).

• Predictability: Evaluated based on how predictable the autonomous 
vessel’s behaviour was according to standard maritime practices (e. 
g., “To what extent did you think the behaviour of the MASS was 
predictable based on standard maritime practices?”).

• Anthropomorphism: Related to the interpretation of non-human 
things or events in terms of human characteristics and measured 
by comparing the MASS’s behaviour to that of a well-trained human 
operator (e.g., “How consistent was the MASS’s behaviour with how 
a well-trained human operator would have acted?”).

• Faith: Captured by asking participants about their belief in the 
MASS’s ability to handle future collision scenarios (e.g., “To what 
extent do you believe the MASS will be able to cope with all collision 
situations?”).

• Safety: Rated by asking how safe participants felt during the collision 
avoidance process (e.g., “How much do you feel unsafe in the whole 
process of autonomous collision avoidance?”).

The trust questionnaire was adapted from validated scales in human- 
automation interaction (Yagoda and Gillan, 2012) and (Alhaji et al., 

Fig. 2. Illustration of experimental procedure for collecting observers’ trust in CA scenarios.

Table 2 
Experimental groups and conditions. COLREGs-aware: succeeds with collision avoidance while complying with COLREGs. COLREGs-neglected: succeeds with collision 
avoidance but neglects COLREGs. Early: taking actions earlier than at the standard time that the corresponding action occurs. Imminent: taking imminent actions.

First phase – COLREGs compliance Second phase – Timings

Group No. Trust dynamics Group No. Trust dynamics

First run Second run First run Second run

G01 (N = 20) COLREGs-aware COLREGs-neglected Break & randomisation Group G1 (N = 20) Early Imminent
G02 (N = 20) COLREGs-neglected COLREGs-aware Group G2 (N = 20) Imminent Early
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2021). It included five single-item 7-point Likert scales covering 
Dependability, Predictability, Anthropomorphism, Faith, and Safety. To 
ensure relevance in the MASS context, items were reviewed by maritime 
experts for content validity.

Data collection: Trust scores were collected through quantitative 
trust ratings in the post-scenario questionnaires administered via the 
Qualtrics platform, which allowed participants to reflect on their trust 
levels across various stages after each scenario. Trust scores across both 
the dynamic stages and dimensions were gathered, enabling further 
analysis of how trust evolved under different experimental conditions.

Procedure: participants were briefed on the experimental setup and 
provided with a demonstration of the ship manoeuvring simulator. A 
pre-experiment survey was administered to collect demographic infor
mation. After familiarising themselves with the simulator, participants 
proceeded with the scenarios in both phases. In each scenario, the 
participant observed an autonomous ship’s behaviour varied according 
to the experimental conditions as the autonomous vessel encountered an 
approaching conventional vessel from the starboard side. The partici
pant’s view on engaging in simulator experiments is shown in Fig. 3.

After collecting the data, we conducted statistical analysis to 
compare trust dynamics. The analysis examined how trust changed over 
time and how it was influenced by different collision avoidance strate
gies and their timing.

Exploratory analysis

Data were collected via Qualtrics from a sample of 26 seafarers 
(hereafter referred to as “observers”) with diverse backgrounds in terms 
of navigation experience, vessel types, positions, and age groups, 
enabling exploratory analysis of trust dynamics in autonomous naviga
tion. The participants ranged from 29 to 55, with a majority falling 
between 30 and 35. In terms of position, the sample included captains 
(15.4 %), first officers (30.8 %), second officers (30.8 %), third officers 
(7.7 %), and pilots (15.4 %). Experience levels varied, with 50 % of 
participants reporting over eight years of maritime experience, 30.8 % 
between five to eight years, and 19.2 % with less than five years of 
experience. The types of vessels that the observer was familiar with were 
also diverse, including general vessels (65.4 %), tankers (23.1 %), and 
special-purpose vessels (11.5 %). Trust ratings were measured across 
five stages, with mean scores ranging from 3.62 to 3.94 (standard de
viations of approximately 1.4 to 1.6).

Furthermore, a repeated measures analysis was conducted to inves
tigate the dynamics of trust ratings across experimental stages. The 
result revealed significant variability in trust levels between partici
pants, as indicated by the significant main effect of individual differ
ences (p < 0.001). This result underscores the presence of underlying 
factors contributing to differences in trust across individuals. To further 
investigate the trust dynamics and account for both fixed effects (e.g., 
experimental conditions) and random effects (e.g., variability across 
participants), LMM was employed. This method is suitable for analysing 
repeated measures data while capturing individual differences.

LMM model development
Mann-Whitney U tests were first employed to evaluate trust differ

ences across experimental orders within each phase to determine 
whether the order influenced participants’ trust. The results indicated 
that for both the left–right strategy comparison and the early-imminent 
timing comparison, there were no significant differences in trust levels 
across any of the five measured trust dimensions (trust1 through trust5). 
Specifically, the p-values were 0.604 (Trust1), 0.672 (Trust2), 0.765 
(Trust3), 0.443 (Trust4), and 0.852 (Trust5), all above the 0.05 
threshold, suggesting that the sequence of presentation had no signifi
cant impact on trust ratings. Thus, the sequence of scenario presentation 
was considered to have a negligible impact on trust ratings. Conse
quently, sequence effects were excluded from the LMM to concentrate 
on primary factors of interest.

Given these findings, the LMM model includes the condition, trust 
moment (defined by the five key stages in Sec. 3.1), and demographic 
variables (e.g., experience, vessel type, position, age) as fixed effects, 
while individual participant differences were treated as random effects 
to account for variability in trust responses. Model performance was 
evaluated using multiple metrics. The model’s marginal R2 of 0.338 
indicated that fixed effects alone explained 33.8 % of the variance, while 
the conditional R2 reached 0.771, signifying that the combined influ
ence of fixed and random effects accounted for 77.1 % of the overall 
variance. Subsequent analyses focus on significant main and interaction 
effects, providing insights into trust dynamics across various factors.

The statistical results of the main and interaction effects for trust are 
presented in Table 3, highlighting key factors influencing trust dy
namics. The analysis reveals that trust moment and condition are sig
nificant predictors of trust, indicating that both the stages of navigation 
and the conditions influenced participants’ trust in the autonomous 
system. Additionally, interaction effects between age, vessel type, and 
experience with trust moment suggest that trust evolved differently 
based on participants’ maritime backgrounds and professional experi
ence. These findings underscore the importance of operational context 
and individual characteristics in shaping trust, setting the stage for a 
more detailed examination of how these factors influence trust in 
autonomous navigation.

Main effects analysis
Fig. 4 presents the mean trust scores across five distinct stages of the 

navigation process, illustrating how trust levels evolve as the MASS 
progresses through various CA stages. Stage 1 (Initial Trust): Trust is 
measured at the outset, representing baseline confidence in the system 
before any navigation manoeuvres. Participants’ trust at this stage 
serves as a reference level and shows relatively high stability. Stage 2 
(Trust During Regular Navigation): Trust is assessed during standard 
navigation, prior to any collision-avoidance decisions. Here, trust levels 
remain close, with a slight increase to the initial levels, indicating that 
participants maintain a relatively steady trust during routine navigation 
without imminent risks. Stage 3 (Trust During Decision-Making for 

Fig. 3. Participants’ view on engaging in simulator experiments.

Table 3 
Type III Tests of Fixed Effects Dependent Variable: Trust.

Factors Source F Sig.

Main effects Intercept 137.462 <0.001
Position 0.421 0.826
Experience 1.558 0.245
Vessel type 2.736 0.099
Trust moment 2.840 0.024
Condition 5.117 0.002
Age 0.654 0.535

Interaction effects Trust moment * age 5.723 <0.001
Trust moment * condition 0.728 0.725
Vessel type * trust moment 2.075 0.037
Experience * trust moment 2.102 0.034
Position * trust moment 0.653 0.872
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Collision Avoidance): Trust is recorded as the autonomous system ini
tiates collision-avoidance strategies and timings. This stage shows a 
shape decline in trust compared to both Stage 1 (p = 0.01) and Stage 2 
(p = 0.035), suggesting that participants’ confidence diminishes when 
the system shifts from routine navigation to making critical decisions. 
Stage 4 (Trust During Collision-Avoidance Execution): Trust is further 
evaluated as the system performs the avoidance strategies. Another 
decline in trust is observed, with significant differences between Stage 1 
and Stage 4 (p = 0.036) and Stage 2 and Stage 4 (p = 0.01), indicating 
increased participant uncertainty or caution during the strategy execu
tion. Finally, at Stage 5 (Final Trust), Trust is assessed at the conclusion 
of the scenario after all manoeuvres have been executed. Trust levels 
partially recover at this stage but do not fully return to initial levels, 
suggesting residual caution even after observing the system’s successful 
task completion.

Fig. 5 displays the mean trust levels across four conditions: Early/ 
Starboard, Imminent/Starboard, Standard/Port, and Standard/Star
board. This comparison highlights how variations in collision-avoidance 
timing (early vs. imminent) and direction (starboard vs. port) affect trust 
in the autonomous system. A statistically significant difference between 
conditions is noted, with Standard/Starboard showing a higher mean 
trust than Standard/Port (p < 0.001).

Interaction effects analysis
As presented in Table 3, the significance test results indicate that 

trust dynamics vary significantly across navigation stages depending on 
observers’ Vessel Type (p = 0.037), Experience Level (p = 0.034), and 
Age (p < 0.001). Given the lack of significance for other interactions, 
such as trust moment with condition (p = 0.725) and position (p =
0.872), the subsequent analysis focuses on these significant effects to 
provide a targeted exploration of trust dynamics across various stages. 
Thus, we analysed how trust scores varied across the five navigation 
stages (from initial to final trust) under specific demographic factors that 
have significant impacts. Fig. 6 illustrates these variations concerning 
three demographic variables: Vessel Type, Experience Level, and Age. 
Each subplot provides a focused view of how these demographic factors 
interact with trust dynamics, revealing distinct trends and potential 
influences at each stage.

For vessel type, as shown in Fig. 6(a), participants navigating tankers 
generally exhibited higher trust levels across all stages, while those 
associated with special-purpose ships showed a notable decline in trust 
from Stages 2 to 4.

In terms of experience level, as shown in Fig. 6(b), participants with 
less than 5 years of experience displayed consistently high and relatively 
stable trust levels across stages. Participants with 5–8 years of experi
ence displayed more variability, with trust peaking at the beginning and 
decreasing notably by the collision-avoidance stages. Conversely, those 
observers with over 8 years of experience started lower and exhibited a 
slight downward trend.

Finally, the age-based interaction highlights that participants over 
40 years old exhibited relatively stable and higher trust scores (see Fig. 6 
(c)), while those younger than 30 had more pronounced declines, 
particularly from Stages 2 to 4. Together, these interaction effects 
emphasise that trust is not only influenced by system actions but also by 
demographic characteristics.

Five dimensions of trust
To gain insight into the key dimensions shaping observers’ trust in 

MASS’s navigation, we conducted a factor analysis on five trust-related 
metrics: Dependability, Predictability, Anthropomorphism, Faith, and 
Safety. Preliminary tests confirmed that the dataset was suitable for 
factor analysis, with a Kaiser-Meyer-Olkin (KMO) value of 0.843 (indi
cating sampling adequacy) and a significant Bartlett’s Test of Sphericity 
was significant (χ2 = 365.757, p < 0.001). The factor analysis yielded a 
two-factor solution, explaining 88.16 % of the variance, indicating a 
stable structure in trust assessments (see Fig. 7). Factor 1 accounts for 
67.6 % of the variance and includes Dependability, Predictability, 
Anthropomorphism, and Faith, while Factor 2 explains an additional 20.6 
% and is represented solely by Safety. The extracted factors reveal that 
observers assess trust along two distinct dimensions: general System 
Competence and Situational Safety.

Specifically, the first factor, which we labelled “System Compe
tence”, aggregates four dimensions: Dependability, Predictability, 
Anthropomorphism, and Faith. As shown in Fig. 7, each of these di
mensions has a strong loading on Factor 1. Dependability and Predict
ability capture the reliability and consistency of the MASS’ navigation, 
while Anthropomorphism and Faith add human likeness and forward- 
looking trust, respectively. The second factor, labelled “Situational 
Safety”, is defined exclusively by the safety-related dimension, which 
loads solely on this factor. Unlike the broad reliability-based attributes 
found in Factor 1, Safety reflects observers’ perceptions of safety during 
collision avoidance.

Correlation analysis of trust dimensions and two related factors
Following the factor analysis, a correlation analysis was conducted to 

further investigate the relationships between the two key factors of trust 
and trust levels across different operational stages. This analysis aimed 
to understand how perceptions of trust evolve during the stages of 
navigation and how they correlate with the two identified trust factors.

Fig. 4. Illustration of trust scores across all stages based on linear 
mixed models.

Fig. 5. Illustration of trust scores comparison between different conditions 
based on LMM.
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Using Pearson’s correlation coefficients, we assessed the strength 
and direction of relationships between the five trust stages and the two 
factors identified in the factor analysis. Only significant correlations 
were visualised in the matrix, with non-significant cells left blank to 
emphasise meaningful associations. As illustrated in Fig. 8, The corre
lation matrix presents a series of moderate to strong positive correlations 
among trust scores across various stages. Additionally, trust scores be
tween adjacent stages show the highest correlations, such as Trust1 and 
Trust2 (0.69) and Trust3 and Trust4 (0.90), indicating that trust levels 
evolve sequentially as participants progress through the stages.

System competence exhibited moderate positive correlations with 
trust scores across various stages (ranging from 0.51 to 0.64), under
scoring the consistent influence of perceived competence on partici
pants’ trust. In contrast, Situational safety displayed no significant 
correlations with the trust scores at stages other than the trust at stage 1. 
This result aligns with the earlier factor analysis, where Situational safety 
emerged as a distinct factor.

Building on the insights from our exploratory analysis, which high
lighted key demographic and experimental conditions influencing trust, 
we propose a BN model for trust to capture these complex dynamics. 
This model formalises the relationships among System Competence, 
Situational Safety, stage-specific trust levels, and demographic and 
situational variables (strategies and timings), allowing us to quantify the 
influence of each factor on trust formation and development.

Trust model design

Bayesian network construction for trust

BN were selected as the trust modelling tool in this study due to their 
capability to represent complex probabilistic dependencies among 
multiple interacting variables while managing uncertainty. Compared to 
conventional regression models, BN provides a structured and inter
pretable approach for capturing conditional dependencies and sequen
tial trust progression across navigation stages. This is particularly 
suitable for modelling trust in human-autonomy interaction contexts, 
such as MASS navigation, where trust evolves dynamically based on 
situational factors and observer characteristics.

Building on the insights from our exploratory analysis, which high
lighted key demographic and experimental conditions influencing trust, 
we propose a BN model for trust to capture these complex dynamics. 
This model formalises the relationships among System Competence, 
Situational Safety, stage-specific trust levels, and demographic and 
situational variables (strategies and timings), providing a structured 
framework to quantify the influence of each factor on trust formation 
and development.

Fig. 6. Trust dynamics across five navigation stages in relation to vessel type, experience level, and age.

Fig. 7. The illustration of the factor analysis on five trust-related dimensions.

Fig. 8. Correlation matrix between trust scores across each stage and the two 
identified components.
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Node definition and network structure
The Bayesian network incorporates five sequential trust nodes, each 

representing trust at a specific stage, from InitialTrust to FinalTrust. This 
structure leverages the Markov property, as was considered in (Kok and 
Soh, 2020), where each trust stage depends solely on the trust level of its 
immediate predecessor. By adopting this assumption, the model focuses 
on the local dependencies in trust evolution, simplifying the structure 
while preserving the temporal dynamics of trust development. FinalTrust 
serves as the node that represents the cumulative confidence built 
throughout the CA process. It reflects how trust, as it propagates through 
the stages, aggregates into an overall assessment of the navigational 
performance of the autonomous system.

In addition to temporal dependency, trust varies among participants 
across various backgrounds, such as age, experience, and vessel types. 
Thus, this model integrates demographics that were identified as key 
factors, including age, experience, and vessel type, as parent nodes to 
InitialTrust, reflecting their role in shaping baseline trust levels. These 
factors account for inherent individual differences in trust propensity, as 
indicated by the exploratory findings. Furthermore, situational factors 
such as Strategies and Timings are introduced as parent nodes to Trust 3, 
representing the influence of CA decisions on trust in the decision- 
making stage. This structure ensures that the model captures both in
dividual propensity and situational factors on trust transitions.

To capture the multidimensional evaluation of trust, the model in
corporates two extracted components: System competence and Situational 
Safety. System Competence reflects perceptions of dependability, pre
dictability, human likeness, and forward-looking beliefs, while Situa
tional Safety focuses on safety evaluations during collision avoidance. 
These dimensions are linked directly to FinalTrust, representing their 
role in shaping the overall trust in the autonomous system. This 
framework lays the groundwork for further analysis, including diag
nostic analysis informed by sensitivity analysis, predictive reasoning, 
and causal inference, to explore trust mechanisms in depth.

Fig. 9 illustrates the staged trust formation process of MASS in the CA 
process, showing the interaction between performance, real-time be
liefs, and stage-specific trust across navigation phases. Trust evolves 
sequentially, starting with initial trust (T0) and baseline beliefs (B0), and 
progressing through key stages, including T1 (routine navigation), Ts 
(strategy and timing decisions), T2 (CA execution), and final trust Te. At 
each stage, real-time beliefs (Bk) are updated dynamically based on 
ongoing system performance Pk, which directly shape staged trust. 
During CA execution, the system’s manoeuvres (e.g., CA strategies and 
timing) are captured in performance nodes (Ps), which influence Ts via 
updated beliefs (Bs). Throughout the process, observer evaluations of 
System Competence (SC) and Situational Safety (SS) are integrated into 
final trust judgments. These two dimensions are critical to linking spe
cific system performance to comprehensive trust evaluations at the final 
stage. This framework highlights the interplay of system performance, 
real-time beliefs, stage trust, and trust-related factors assessment in trust 
formation. Given the uniformity of vessel performance and the 

controlled nature of the experimental scenarios, performance variability 
was minimal. As such, the model excludes explicit performance nodes, 
focusing instead on Strategy and Timing as key situational factors of 
trust.

Parameter setting and model training
The constructed trust Bayesian network is shown in Fig. 10, where 

InitialTrust serves as the baseline trust level influenced by demographic 
factors, including age and vessel type, which were derived from mari
time industry reports,1.2 For example, age distributions (below 30: 16 %, 
30–40: 29 %, above 40: 55 %) and vessel type (General: 63 %, Tanker: 
13 %, and Special-purpose ships: 25 %). For factors lacking statistical 
support, such as Strategy and Timing, prior probabilities were estimated 
based on domain expertise. For instance, left-turns (25 %) and right- 
turns (75 %) were assigned probabilities reflecting standard maritime 
practices under COLREGs, while collision-avoidance timing was set as 
standard (70 %), early (15 %) and imminent (15 %). Additionally, 
System Competence and Situational Safety were discretised into low, 
medium, and high categories using tertile thresholds (0.33 and 0.66) 
derived from factor analysis scores, while trust ratings (1–7) were 
similarly classified into low (1–2), medium (3–5), and high (6–7). The 
prior probabilities of other nodes and conditional probabilities were 
calculated by using the trust data collected from our survey through the 
Genie software.

Application

Following the construction of the TBN model, its utility was evalu
ated through targeted applications. These included diagnostic analysis 
informed by sensitivity insights and predictive reasoning. Diagnostic 
analysis, built on sensitivity analysis methods, aims to identify the most 
influential factors contributing to a specific observed outcome.. Pre
dictive inference estimates future trust levels based on current condi
tions, aiding in proactive management.

Diagnostic analysis
To evaluate the robustness and identify critical determinants of the 

trust model, we conducted a diagnostic analysis informed by sensitivity 
insights targeting the Trust5 = high outcome. A 30 % parameter spread, 
reflecting realistic variability in parameters, was implemented to 
simulate realistic uncertainties, visualising results using a tornado dia
gram (see Fig. 11), where the top ten bars represent the factors 
contributing most significantly to the variability of the outcome.

As shown in Fig. 11, the tornado diagram highlights the diagnostic 

Fig. 9. Development of a human trust model with Bayesian Networks for MASS operation.

1 https://www.statista.com/statistics/264024/number-of-merchant-ships 
-worldwide-by-type/.

2 https://www.gov.uk/government/statistical-data-sets/seafarer-statistics 
-sfr#certificated-officers-and-trainees-sfr02.
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results of Trust5 = high to variations in key parameters, demonstrating 
how trust outcomes respond to changes in the TBN. Competence = high 
exhibits the most significant positive influence, aligning with its direct 
pathway to FinalTrust and underscoring its central role in trust forma
tion. Sequential trust stages, such as Trust4 = high | Trust3 = high, 
reveal cascading effects, emphasising the importance of consistent trust- 
building across stages. Together, the insights emphasise the interplay 
between System Competence and sequential trust evolution, offering 
actionable guidance for enhancing user trust in autonomous navigation 
systems.

In TBN, Trust 3 represents a critical stage where trust is influenced by 
the prior trust level, that is, TrustPreCA, and situational factors (e.g., 
Strategies, Timings). This node is important to explore because it indi
rectly impacts FinalTrust, as identified in Fig. 11 (The second most 
important impact factor: Trust4 = high|Trust3 = high). In addition, it is 
the key stage in the whole process at which the Strategy and Timing 
were imposed. Thus, the diagnostic analysis for Trust3 = high was 
conducted further, as shown in Fig. 12. Specifically, the analysis reveals 
that Trust2 = medium, conditional on Trust1 = medium, exerts the 
strongest influence, with a steep negative derivative (− 0.207), indi
cating that small changes in Trust2 greatly impact Trust3. Similarly, the 
interaction between Timing=Standard and Strategy = TurnRight dem
onstrates a marked influence on Trust3 = medium, evidenced by its 
contribution and derivative (− 0.133). Notably, the direct influence of 
Timing=Standard (ranked 5th) compared to its interaction with Strat
egy (ranked 2nd and 3rd) highlights the compounding effect of navi
gation strategies on trust. This aligns with the finding that Strategy =

TurnRight combined with a higher trust level in Trust2 contributes 
positively to Trust3 = high (derivative: +0.276). Furthermore, while 
other factors also show the impact on Trust3, such as vessel type =
General, their effects are weaker, underscoring the dominance of 
imminent variables such as situational factors over demographics.

Similarly, a diagnostic analysis on Trust1 = high was also conducted, 
as shown in Fig. 13. The results reveal that Vessel Type exhibits the 

Fig. 10. Trust model design for autonomous decision-making of MASS in CA scenarios.

Fig. 11. Diagnostic analysis visualisation results for Trust5(Final Trust) = high.
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strongest influence on Trust1, particularly for general vessels showing a 
negative relationship (derivative: − 0.170) and tanker vessels with a 
positive influence (derivative: +0.206), indicating a higher trust de
pendency on vessel types. Other demographic factors such as Experience 
and Age demonstrate moderate but substantial effects, with experienced 
participants (rated as “good”) and those aged 30–40 exhibiting negative 
impacts on Trust1 = high. Conversely, specific combinations of de
mographic features (e.g., good experience and vessel type “tanker”) 
highlight positive influence, reflecting that senior, experienced 

personnel on takers enhance InitialTrust. This analysis underscores the 
importance of tailoring strategies to specific observer profiles to foster 
trust in autonomous systems from the outset.

Predictive reasoning
Following the diagnostic analysis, we conducted predictive 

reasoning to estimate the trust dynamics under the variations in Stra
tegies and Timings, particularly focusing on critical trust nodes, such as 
FinalTrust and TrustEvasion, see Fig. 14. As shown in Fig. 14 (a), medium 
trust consistently dominates, with the Right & Early strategy achieving 
the highest proportion (60 %). High trust levels are, although relatively 
low, peak in Right & Standard (28 %), indicating its effectiveness in 
maintaining trust during the evasive stage. Conversely, low trust is most 
prevalent in Left & Standard (33 %), suggesting its potential drawbacks 
in trust-sensitive scenarios. Similarly, the FinalTrust subplot, as shown 
in Fig. 14 (b), shows medium trust as the dominant outcome across all 
strategies, with Right & Early achieving the highest proportion (64 %) 
and Left & Standard again exhibiting higher low trust levels (27 %).

These findings underscore the diagnostic finding of trust outcomes to 
operational strategies, highlighting Right & Standard, Right & Early, 
and Right & Imminent as favourable strategy combinations for sus
taining trust during the entire CA process.

Discussion

Interpretation of results

Trust was measured using post-scenario evaluations collected via 
Qualtrics, where participants rated their trust after observing specific 
collision avoidance manoeuvres. The use of simulated navigation videos 
embedded within Qualtrics ensured that participants evaluated the 
autonomous system’s performance in controlled, consistent scenarios, 
capturing trust fluctuations across distinct navigation stages. Further
more, the analysis, conducted using LMM, uncovered trust dynamics 
across navigation stages.

Aligned with H1: Firstly, consistent with H1, trust in the MASS 
fluctuated throughout the CA process. Participants’ trust varies signifi
cantly across several stages (e.g., TrustPreCA vs TrustStrategy) but 
partially recovered during the final stage, see Fig. 4. This fluctuation 
reflects increased scrutiny during high-stakes manoeuvres and a gradual 
convergence towards a calibrated level of trust as participants gained a 
deeper understanding of the system. However, the final trust levels did 
not return to their initial levels, suggesting residual caution or incom
plete trust recovery even after successful task completion. Secondly, 
trust levels exhibit slight increases during the early stages (Trust1 to 

Fig. 12. Diagnostic analysis visualisation results for Trust3(TrustStrategy) 
= high.

Fig. 13. Diagnostic analysis visualisation results for Trust1(InitialTrust) 
= high.

Fig. 14. Predictive reasoning on trust evasion and final trust under different CA Strategies.
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Trust2), reflecting trust accumulation, but a shapely decrease in Trust3 
and Trust4, underscoring the asymmetric nature of trust formation 
versus erosion, followed by partial recovery at the final stage (Trust5). 
The initial slight increase may result from the system’s adherence to 
stable navigation practices and predictable behaviour. The abrupt 
decline likely corresponds to participants’ heightened scrutiny during 
strategies/timings selection and execution stages, where system limita
tions or perceived inefficiencies become more evident. Trust recovery at 
the final stage suggests an accumulation effect, where the overall per
formance in earlier stages is synthesised into a final trust judgment. This 
pattern aligns with trust accumulation, typically requiring consistent 
system performance over time, while dissipation can occur rapidly due 
to a single negative event.

Aligned with H2: Furthermore, trust in the Right&Standard sce
nario differs significantly from the Left & Standard scenario, as shown in 
Fig. 5, suggesting participants’ preference for manoeuvres that align 
more closely with COLREGs. This result, aligning with H2, may turn out 
that in CA scenarios, where a vessel is approaching from her starboard 
side, right-turn strategies may have been perceived as more consistent 
with standard maritime practices to accumulate trust, while left-turn 
strategies might have been interpreted as riskier or less conventional 
to dissipate trust.

Aligned with H3: Finally, aligning with H3, while proactive re
sponses aligned with standard timings were associated with higher trust 
levels, actions that were “too early” or “too late” demonstrated subop
timal outcomes, see Fig. 5. The findings imply that MASS systems must 
balance evasion strategies and proper timings, avoiding evasions that 
are either too proactive or overly reactive.

Overall, these two factors reveal that observers differentiate between 
general System Competence and Situational Safety when forming trust 
in autonomous navigation systems. This insight emphasises the need for 
MASS designs to address both Competence and Safety to ensure reli
ability and promote trust in dynamic navigational environments.

In terms of demographic factors consideration, the inclusion of 
participants with diverse professional backgrounds aimed to ensure the 
representativeness of trust dynamics across various groups. Thiis di
versity allowed to identify overall trend in trust evoluation while also 
capturing the variability that emerges when demographic factors 
interact with other factors. The results indicate while the main effects 
analysis revealed that trust dynamics were primarily influenced by 
navigational stages and conditions, interaction effects highlighted subtle 
differences based on experience level, vessel type, and age during spe
cific CA stages, as shown in Fig. 6. These differences were not the pri
mary focus of this study but provide supplemetary insights into how 
trust responses may vary in certain CA scenarios. Such insights highlight 
the need for context-specific considerations when evaluating trust in 
MASS navigation in CA scenarios.

Regarding the dimensional structure of trust, trust was found to 
encompass two overarching dimensions: System Competence and Situ
ational Safety. The linkage between System Competence and Situational 
Safety and FinalTrust demonstrates the multidimensional nature of trust. 
This finding highlights that observers evaluate trust both as a compre
hensive judgment of the system’s competence and as a context-specific 
assessment of safety. Additionally, System competence exhibited moder
ate positive correlations with trust scores across various stages (ranging 
from 0.51 to 0.64), underscoring the consistent influence of perceived 
competence on participants’ trust. This result suggests that observers’ 
perceptions of the MASS’s navigational reliability, human likeness, and 
forward-looking beliefs contribute continuously to their trust across all 
stages, indicating their foundational role in trust formation. In contrast, 
situational safety was primarily linked to InitialTrust. Its influence on 
subsequent trust stages was limited. This may reflect the controlled 
nature of the experimental design, in which participants were implicitly 
assured of the system’s safety. In other words, in this context, Safety 
might become a “given” in participants’ minds, leading them to assume 
that the MASS will handle high-risk scenarios adequately. As a result, 

Safety ratings might remain stable across different conditions, especially 
if no unexpected behaviours challenge this expectation. However, this 
does not imply that situational safety is irrelevant in real-world appli
cations. Instead, it suggests that observers’ perceptions of safety are 
formed early and remain stable unless disrupted by unexpected system 
failures or high-risk scenarios.

With respect to TBN, this model captures the staged progression of 
trust in MASS, integrating temporal dynamics, demographics, and 
situational factors. This structured approach is essential for under
standing how trust evolves and identifying the determinants of trust- 
building at different stages of the CA process. Firstly, the sequential 
trust nodes represent a staged process of trust evaluation from Initial
Trust to FinalTrust. The Markov property simplifies the model by 
assuming that each stage depends primarily on the previous one, which 
is consistent with the exploratory analysis showing strong correlations 
between consecutive trust ratings, see Fig. 8. Secondly, baselined trust 
levels (InitialTrust) are influenced by demographic variables, such as 
vessel type, age, and experience (see Fig. 13 and Fig. 6(a)).

Focusing on the results of diagnostic analysis informed by sensitivity 
insights, two aspects of insights can be drawn. (1) The tornado diagram 
for Trust5 = high (Fig. 11) indicates that System Competence exerts the 
most significant positive influence on FinalTrust. It underscores that 
perceptions of dependability, predictability, human likeness, and 
forward-looking beliefs of the autonomous system in the entire CA 
process are critical for building overall trust. (2) The cascading influence 
of earlier trust stages on later outcomes (e.g., Trust4 = high | Trust3 =
high) emphasises the cumulative nature of trust (Fig. 11). The significant 
impact of TrustStrategy (Trust3) on FinalTrust highlights the critical role 
of decision-making strategies and timings in the trust pathway. 
Furthermore, TrustStrategy (Trust3) was found to be influenced not only 
by situational factors (e.g., strategy and timing) but also by the trust 
level in the preceding stage (TrustPreCA). This sequential dependency 
supports the hypothesis that trust evolves progressively, with earlier 
stages laying the foundation for subsequent evaluations. The findings 
support the need for consistent trust-building throughout all stages of 
interaction.

Finally, the following key takeaways can be derived regarding the 
results of predictive reasoning: (1) strategies involving Right & Early, 
Right & Imminent, and Right & Standard manoeuvres consistently 
achieve higher levels of trust compared to Left strategies, as shown in 
Fig. 14, also aligning with the hypothesis of H3. (2) Despite variations 
during evasive actions, trust partially stabilises at the FinalTrust stage. 
This indicates that the system’s overall performance, which affects the 
system competence of the autonomous system, can mitigate earlier 
fluctuations, reinforcing the importance of holistic trust-building efforts.

Implications of findings

Overall, the results have the following two aspects of implications for 
the design and operation of autonomous navigation systems. 

(1) Prioritising competence in system design: System Competence 
was underscored, comprising reliability, predictability, anthro
pomorphism, and forward-looking decision-making, as the most 
critical factor influencing observer overall trust in the entire CA 
process. MASS systems should prioritise performance consistency 
and predictability, especially in CA scenarios. To achieve this, 
developers must enhance the transparency of system behaviour 
by incorporating real-time feedback mechanisms that clarify de
cision rationales, particularly during unconventional manoeuvres 
such as left-turn strategies. Additionally, to maintain trust 
consistently, MASS systems must focus on early-stage perfor
mance to prevent dissipation that could propagate through later 
evaluations.

(2) Optimising evasion strategies and timing: The study highlights 
the importance of proper evasive strategy and timing. While 
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proactive responses are generally associated with higher trust 
levels, actions that are too early or too delayed can dissipate 
observer trust. To address this, MASS systems should incorporate 
adaptive algorithms that optimise the timing of evasive ma
noeuvres with compliance with regulations like COLREGs. 
Furthermore, autonomous systems should focus on transparency, 
particularly in explaining the decision logic in scenarios where 
deviations from observer expectations (e.g., delayed or uncon
ventional manoeuvres) occur. As suggested by (Song et al., 
2024a), observer trust in autonomous navigational decisions can 
be strengthened when the regulations are involved in the 
decision-making mechanism, which can improve the system’s 
transparency.

In terms of comparison with prior research, the findings align with 
previous studies on trust in automation, particularly the dynamic nature 
of trust, accumulation and dissipation (Alhaji et al., 2023), and its 
dependence on system performance (Xu and Dudek 2015a). In the 
maritime domain, this study, which is different from (Poornikoo et al., 
2024), investigates observer trust in the autonomous decision-making 
system of MASS across several stages in a CA process instead of real- 
time measurement. However, this study expands the understanding of 
trust in autonomous systems by introducing the dual dimensions of 
competence and situational safety, providing an in-depth understanding 
of trust in the autonomous system of MASS in an MWTS.

Limitations

Despite its contributions, this study has several limitations that 
warrant further investigation. The use of a simulator-based experi
mental setup, while providing a controlled and realistic maritime 
environment through the ship manoeuvring simulator, cannot fully 
replicate the complexity of real-world MASS navigation. Factors such as 
variable sea states, multi-ship encounters, and communication delays in 
actual operations were not incorporated, which may affect ecological 
validity.

Additionally, the sample size (N = 26), although diverse in maritime 
experience, limits the generalisability of findings across the broader 
seafaring population. The participant pool did not specific ally include 
officers with experience on passenger-carrying vessels, whose height
ened safety responsibilities might influence trust perceptions differently. 
Future studies should aim to include this demographic to broaden the 
applicability of the findings.

Furthermore, this study focuses solely on observational aspects of 
human supervision in MASS operations. While this mirrors real-world 
RCC scenarios, it does not capture trust dynamics involving direct 
human intervention, which may need further investigation.

The TBN model relies on Markovian assumptions, simplifying trust 
progression to local dependencies and potentially overlooking long-term 
influences. Moreover, trust was assessed post-scenario, which may not 
fully capture real-time fluctuations during critical events. Furthermore, 
participants’ relatively stable evaluations of situational safety may 
reflect the controlled nature of the experiment, where baseline expec
tations shaped their perceptions.

Conclusions & future research

This study investigated the dynamics of observer trust in MASS 
during CA scenarios, combining quantitative trust measurement, 
exploratory analysis using LMM, and predictive reasoning via the pro
posed TBN model.

Trust was measured through post-scenario evaluations collected via 
Qualtrics, allowing participants to rate their trust in MASS after 
observing simulated navigation videos. These measurements captured 
stage-specific fluctuations, which were analysed using LMM to identify 
key patterns: slight and gradual trust accumulation during routine 

navigation and sharp dissipation during the CA strategies and timings 
selection and execution stages. Trust at the final stage, that is, overall 
trust, is partially recovered, underscoring the cumulative influence of 
prior stages. Trust dynamics varied significantly by demographic fac
tors, such as experience and vessel type. Moreover, left-turn strategies 
were associated with lower trust compared to right-turn strategies, 
reflecting observer preferences for COLREGs-compliant evasion strate
gies. Factor analysis identified two trust dimensions, including System 
Competence and Situational Safety, with System Competence strongly 
correlating with trust across all stages. The Markov-like stage correla
tions further supported the sequential nature of trust evolution.

Building on these findings, the TBN model quantified trust dynamics, 
highlighting the dominant role of System Competence in shaping final 
trust and the cascading influence of intermediate stages. Diagnostic 
analysis informed by sensitivity analysis emphasised the critical 
importance of decision-making strategies and timely actions, while 
predictive reasoning demonstrated the positive impact of proactive 
right-turn manoeuvres. These insights provide actionable guidance for 
designing MASS systems that align with observer expectations, improve 
transparency, and optimise CA strategies.

Future research should validate these findings in real-world mari
time contexts and extend trust modelling to encompass variable envi
ronmental conditions. Moreover, integrating physiological data and 
real-time monitoring tools could offer deeper insights into trust fluctu
ations during dynamic navigation tasks. Expanding participant di
versity, particularly involving officers with experience on passenger- 
carrying vessels and including both observational and intervention- 
based supervision, will further enhance the validity and applicability 
of trust models in MASS operations. These efforts will contribute to 
developing autonomous navigation systems that are not only technically 
robust but also aligned with human supervisory expectations in complex 
maritime environments.
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