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Abstract
Auxetic metamaterials are engineered structures that exhibit a negative Poisson’s ratio, resulting in

transversal expansion when subjected to a lateral stretch. This volumetric deformation has numerous po-
tential applications in fields such as robotics, healthcare, and structural engineering. With advancements in
manufacturing techniques in recent years, research into these materials has grown significantly.

However, there is currently no systematic overview of the existing research, leading to repeated exami-
nation of the same structures without fully exploring the potential range of mechanical properties.

This literature review proposes an analysis of the existing 3D auxetic metamaterials and a categorization
for 3D auxetic metamaterials. The unit cells are categorized based on their base topology, modifications
to this topology, and spatial configuration. This includes the order of symmetry and whether the unit
cell is inherently 3D or a 2D cell projected onto a curved plane or utilizing a coupling mechanism. This
categorization highlights current research trends, particularly the prevalence of cubic structures derived
from ’Honeycomb’ or ’Connected stars’ bases. Finally, this overview serves as a foundation for inspiring new
structures, with examples provided in the paper.

1 Introduction
Metamaterials are artificially engineered materials designed to exhibit properties not typically found in nature.
By designing the internal geometry rather than modifying the material composition, researchers can tailor
unique properties, including mechanical [1], acoustic [2], thermal [3], and electromagnetic [4] characteristics.

One particularly intriguing classification of metamaterials is characterized by their Poisson’s ratio, which
describes the relationship between axial and lateral strain. According to the theory of linear elasticity, isotropic
materials have Poisson’s ratios in the range from -1 to 0.5. However, metamaterials are not bound by these
constraints and can be categorized into three groups: meotic (positive Poisson’s ratio above 0.5) [5], anepirretic
(zero Poisson’s ratio) [6], and auxetic (negative Poisson’s ratio) [7]. Auxetic materials exhibit an unusual
mechanical response, expanding laterally when stretched rather than contracting, as conventional materials do.

Some structures exhibit full or ’perfect’ auxeticity [8], meaning they expand in all lateral directions when
stretched in one direction, while others display partial auxeticity, where this effect occurs only in certain di-
rections. The kinematics of 3D metamaterials are typically defined by input-output relations along three
independent axes, resulting in three possible strain relationships, two of which are independent. A structure is
considered auxetic when at least one of these independent relationships results in a negative Poisson’s ratio. A
partially auxetic structure has one negative strain relation [9], while a fully auxetic structure has two [10].

In recent years, auxetic metamaterials have gained significant attention due to their novel mechanical prop-
erties and potential applications. They have been explored for impact absorption [11], energy dissipation [12],
tunable stiffness [13], and enhanced fracture resistance [14], making them highly relevant for industries such as
aerospace [15], the medical field [16], and protective equipment [17].

However, while extensive research has been conducted, there is no clear systematic categorization of 3D
auxetic metamaterials. This lack of structure makes it difficult to assess the full scope of existing research and
identify areas that remain underexplored. As a result, studies tend to focus on a limited number of well-known
structures [18], leaving many other possible configurations overlooked.

To address this gap, this study introduces a systematic classification of the current literature on 3D auxetic
metamaterials. By categorizing existing 3D auxetic structures, the study aims to provide an overview of the
field, identify research trends, and inspire the exploration of new and innovative topologies. Firstly, we focus our
classification on structural topology. Secondly, we distinguish between topology and embodiment. Embodiment
refers to how the topology is shaped, and the same topology can be embodied in various ways, such as through
a single-material or multi-material configuration. This distinction will be further discussed in Section 2.2.3.
Additionally, we propose structural modifications that can be applied to the topology. Lastly, we propose using
this classification to inspire future designs, as illustrated through the development of two novel 3D auxetic unit
cells.

2 Methodology
In this section we introduce the literature search based on peer reviewed articles and the classification criteria
using base topologies, spacial configuration and modifications.

2.1 Literature search
To ensure a systematic and comprehensive review of the literature, a structured approach was used to identify
relevant papers on the topic of 3D auxetic metamaterials. The literature search was conducted using the Scopus

1



database, chosen for its comprehensive collection of peer-reviewed scientific articles and its ability to refine
searches based on keywords in specific fields such as titles, abstracts, and author-defined keywords. The search
was limited to articles published in English, while no restrictions were applied to the publication date, as the
earliest relevant article was published in 2012.

To focus the search on the topic of interest, specific search terms were used, as described in Table 1. The
search terms were categorized into three main groups: keywords related to mechanical metamaterials, auxetic
structures, and the concept of three-dimensionality. It is important to note that ’three-dimensional’ yields the
same search results as ’three dimensional’. These terms were combined using the AND operator, ensuring that
the retrieved articles addressed all three aspects of the topic.

Search field Search terms
Keyword "mechanical metamaterials" OR metamaterial
Keyword auxetic OR auxeticity OR "auxetic structure" OR "negative poisson’s ratio"

Title, abstract and keyword "three dimensional" OR 3d

Table 1: Search queries in Scopus combined using an AND operator.

The search, conducted on November 25, 2024, yielded an initial set of 165 articles.
The inclusion of the term ’three dimensional’ and its variations in the search query often retrieved papers

in which the fabrication method—3D printing—was mentioned in the abstract or keywords, even when the
structures themselves were 2D. Redefining the search terms to exclude ’3D printing’ was deemed unsuitable to
filter out these unintentional 2D structures, as it would also remove articles on actual 3D auxetic structures.

To refine the dataset, a manual screening process was implemented. After filtering out the 2D structures,
the papers were further narrowed down. Selecting papers that focus on topology design, while papers centered
around mathematical models, material characterization, or medical applications were excluded, as they fell
outside the scope of this review. Additionally, articles that were not accessible through institutional subscriptions
were excluded from the final dataset. Following this rigorous screening process, the dataset was refined to 64
papers.

2.2 Classifications
In this section, we introduce a systematic framework to categorize these unit cells based on their base topology,
spatial configuration, and modifications. The following sections elaborate on each class in detail.

2.2.1 Base topology

The base topology for the metamaterial unit cells is derived from the work of Roberjot and Herder [19]. Their
study introduces a design method based on a planar three-beam minimal unit (Figure 1a), which serves as a
foundation for systematically generating various structures. This approach results in six distinct categories,
each representing a unique base topology explored in this study: ’Connected stars’ (Cs), ’Puzzle tiles’ (Pt),
’Rotating triangles’ (Rt), ’Honeycomb’ (Hc), ’Missing rib’ (Mr), and ’Closed geometry’ (Cg). These topologies
are illustrated in Figure 1.
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Figure 1: Representation of the planar base auxetic families from [19]: (a) Minimal base, (b) ’Connected stars’,
(c) ’Puzzle tiles’, (d) ’Rotating triangles’, (e) ’Honeycomb’, (f) ’Missing rib’, (g) ’Closed geometry’.

An example of the ’Connected stars’ topology from the selected literature is shown in Figure 2a, where
this topology is used to construct a 3D unit cell and metamaterial [20]. Lan [21] utilizes a variation of the
’Puzzle tile’ topology, specifically a specialized case known as the arrowhead configuration, which involves a
slight rotation of the symmetry axis. A notable example of the ’Honeycomb’ structure includes a configuration
where the length of the outer beams is reduced to zero, effectively transforming them into hinge points rather
than structural beams, as shown in Han’s study [22] (Figure 2c). Li [23] employs the ’Missing rib’ topology to
construct a unit cell (Figure 2d). However, the selection mentioned in Section 2.1 contains no examples of the
’Rotating triangle’ and ’Closed geometry’ topologies.

While most structures can be classified into one of the six base topologies, some configurations deviate from
these standard categories. These outliers are categorized under the class ’Other’ topology. The inclusion of
this class allows us to assess whether the six primary topologies sufficiently cover the majority of structures in
the selected literature. Examples of this class include origami-inspired structures [24] and bio-inspired designs
[25], as they cannot be described by copy rotating any of the base topologies. Another example of an ’Other’
topology is the sliding structure studied by Pan [26]. This design incorporates a non-monolithic structure where
elements move relative to each other, as shown in Figure 2e. It uses a spring mechanism to maintain its ’open’
position. When loaded from the top, the gray component remains stationary while the blue elements slide
within it due to their relative geometry, leading to a contraction in both the x- and y-directions.
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(a) (b)

(c) (d)

(e)

Figure 2: Examples of base topologies from the selected literature (a) Connected stars [20], (b) Puzzle tile [21],
(c) Honeycomb [22], (d) Missing rib [23], and (e) ’Other’ base [26].

2.2.2 Spatial configuration

The fundamental structures discussed in the previous section are 2D, serving as a basis rather than a complete
unit cells. To generate 3D unit cells, these base structures must be replicated along one or more symmetry axes,
which can exist within or beyond the original topology, resulting in diverse structural configurations.

To categorize these structures effectively, we identify two primary classification criteria:

1. The way in which the auxetic unit cell occupies 3D space

2. The symmetry characteristics of the unit cell

These criteria have been chosen because they highlight significant differences in mechanical behavior and
with that, potential applications. It captures the topology differences rather than the embodiment. Moreover,
almost all of the structures from the selected literature can be captured in this distinction.

Volume expansion
One of the key aspects that distinguishes different 3D auxetic unit cells is how they fill a 3D volume. This

can occur in three distinct ways:

• 2D auxetic cells with a coupling mechanism to the third dimension:

Some structures extend an initially 2D auxetic unit cell into the third dimension by incorporating a coupling
mechanism. This approach preserves the auxetic properties of the original 2D pattern while enabling deformation
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in 3D space. For instance, as illustrated in Figure 3a, a ’Connected stars’ base with curved beams is linked
to the next layer through crossing beams. This coupling mechanism establishes a negative correlation between
strain in the z-direction and the x- and y-directions. However, the coupling itself does not necessarily need to be
auxetic; in many cases, it results in a partially auxetic structure, where only certain deformation modes exhibit
auxetic behavior.

• 2D unit cells mapped onto a curved surface:

In this category, auxetic structures conform to a curved plane rather than occupying a traditional 3D volume.
These structures maintain their auxetic behavior while adapting to non-planar geometries. Unlike the previous
category, they do not require a coupling mechanism, as the curvature of the plane itself causes the overall
structure to extend into 3D space while the unit cell remains fundamentally 2D. An example of this can be
seen in Figure 2c or Figure 3b, where a ’Honeycomb’-based structure forms a tubular shell while preserving the
auxetic properties of the original 2D unit cell.

• Intrinsic 3D auxetic unit cells:

Unlike the previous two approaches, these truly 3D structures exhibit a volumetric auxetic response, meaning
that the auxetic effect is inherently 3D rather than derived from a 2D configuration. Teng [18] demonstrates
this by presenting multiple configurations for transforming a ’Connected stars’ base into a volumetric unit cell,
as shown in Figure 3c.

(a) (b)

(c)

Figure 3: Examples of space-filling possibilities from the selected literature: (a) a 2D unit cell with a coupling
mechanism [27], (b) a 2D unit cell on a curved plane [28], and (c) an inherent 3D unit cell [18].

Order of symmetry Another critical aspect for the classification of 3D auxetic unit cells is their symmetry.
The order of symmetry of a structure influences its mechanical response, determining properties such as di-
rectional stiffness, deformation behavior, and energy absorption, which in turn affect its suitability for specific
applications. This classification is based on the n-fold symmetry of the unit cell, which defines the number
of symmetry axes or planes within the structure. The number of symmetry axes can lead to fundamentally
different auxetic behaviors, whereas the shape of the unit cell primarily serves as a design choice and does not
inherently determine its mechanical properties.

Low-symmetry structures have fewer symmetry elements, such as those based on orthogonal axes, and
typically exhibit directionally dependent mechanical properties. High-symmetry structures include unit cells
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with hexagonal, or other highly symmetric configurations, which tend to exhibit more uniform mechanical
behavior in multiple directions. The number of symmetry folds defines distinct topological configurations, while
the specific geometric realization—such as whether the structure adopts the shape of a cube or a hexagonal
prism—is a matter of design embodiment. Examples of different symmetrical structures are provided below to
illustrate their variations and implications.

The study by Teng [18], as shown in Figure 3c, presents a four-fold structure in a cubic configuration. In
contrast, Figure 4 depicts a unit cell designed by Peng and Bargmann [29], featuring a 6-fold structure derived
from the same ’Connected stars’ base. Despite both unit cells sharing the same base topology and embodying
a cuboid shape, they exhibit inherently different structural characteristics. This highlights the significance
of symmetry as a classification criterion, demonstrating that variations in the order of symmetry can lead to
fundamentally distinct auxetic behavior.

Figure 4: A 6-fold unit cell with a cuboid embodiment from [29], demonstrating that the order of symmetry
does not necessarily correspond to the shape of the unit cell.

2.2.3 Modifications

The third classification, ’modification’, is defined in our work as a change in the base structure that results in a
significant alteration of its mechanical response relative to the original configuration. Although these modified
structures are still based on the fundamental topologies introduced in Section 2.2.1 and generally retain similar
mechanical properties, they exhibit notable differences that set them apart from their unmodified forms. Here,
’mechanical response’ includes not only Poisson’s ratio but also other structural properties—such as load-bearing
capacity, stiffness along multiple axes, and thermal behavior—that are critical for most practical applications.

For example, a mechanism that preserves the original topology while not being monolithic—such as the
design presented in [30] Figure 5a—is not considered a modification. Instead, it is classified as an embodiment
variation resulting from manufacturing choices. In contrast, Figure 5b depicts a true topological modification,
where the introduction of curved beams fundamentally alters the structure’s mechanical response, including its
stiffness characteristics. This design is characterized as a four-fold planar structure with a coupling mechanism
to the third dimension. Specifically, the blue curved beams function as the "arms of the ’Honeycomb’," with
the coupling mechanism integrated into the "belly of the ’Honeycomb’ ". Furthermore, the light blue cross and
purple curved beams replace the conventional flat square, thereby enabling coupling into the third dimension.

It is important to note that the presence of curved beams does not necessarily indicate a topological mod-
ification. In the study by Zhang [31], a four-fold ’Honeycomb’ structure is examined, featuring a central ring
(Figure 5c). While Zhang refers to this region as a ring, its circular shape inherently implies the presence of
curved beams instead of the straight beams that would otherwise form a cubic geometry. However, this central
region is designed to rotate rather than deform, meaning that its specific shape does not significantly affect
the mechanical behavior. As a result, this design is classified as an embodiment variation rather than a true
topological modification.
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(a) (b)

(c)

Figure 5: Examples of the differentiation between embodiment and modification: (a) Non-monolithic structure,
where the embodiment choice does not significantly affect the mechanical response [30]. (b) Modified unit cell,
where the mechanical response is altered due to the curved beams [32]. (c) Structure with curved beams that
does not qualify as modified, as the curved beams do not deform [31].

The literature presents several modifications to base structures; the three most relevant modifications will
be highlighted in this section.

• Curved beams

The first modification discussed is the use of curved beams, previously shown. This modification can be beneficial
for multiple reasons, such as achieving desired stiffness curves or establishing specific kinematic relationships.
Curved beams also help mitigate stress concentrations by eliminating sharp corners, leading to more uniform
stress distribution.

• Hierarchical structure

Another useful modification is the implementation of a hierarchical structure. In such a design, an element
of the unit cell—such as a beam or a square—functions as a mechanism itself. This internal mechanism
can be auxetic, enhancing the negative Poisson’s ratio, or it can serve a different mechanical function. By
incorporating hierarchical structuring, designers can embed specific functionalities within the auxetic design to
tailor its mechanical response. In our classification, if a unit cell exhibits multiple hierarchical mechanisms, it
is categorized according to the mechanism with the highest order.

For example, Dudek [33] utilizes a combination of rotating auxetic and non-auxetic structures to achieve the
desired deformation pattern, as illustrated in Figure 6a.

• Meotic structure
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(a) (b)

Figure 6: Examples of modifications from the selected literature (a) A hierarchical structure to achieve control-
lable deformation [33] (b) A meotic structure [34].

Finally, another modification observed in the selected literature is the use of a structure with a positive Poisson’s
ratio, known as a meotic structure. In this approach, the angles of the auxetic base are adjusted to yield a
positive Poisson’s ratio in specific directions. For instance, in the unit cell presented by Wang [34] (Figure 6b),
this configuration is applied to define the relationship between the x- and y-directions, as well as between the
x- and z-directions. As a result, these two positive correlations induce a negative relationship between the z-
and y-directions, forming one of the input–output relationships and making the structure partially auxetic, as
defined in the introduction. Wang’s design is based on a ’Connected star’ topology and incorporates curved
beams.

3 Results
The table below organizes the literature selected for this study based on the classifications proposed in Section
2.2. The unit cells described in each study are assigned to their corresponding categories. Some references
appear in multiple categories, as these studies explore multiple unit cell designs. Furthermore, not all proposed
designs have undergone experimental validation. The structures in the table, which serve primarily as conceptual
suggestions rather than fully developed designs, are written in bold.

The proposed classification is considered comprehensive along both dimensions. The base topology categories
are derived from the families outlined in Roberjot’s paper [19] and are supplemented by an ’others’ category,
as well as a modified version for each base topology. Eighty percent of the structures found in the selected
literature can be described by the defined base topologies and their modifications, demonstrating that Roberjot’s
classification is sufficient for the purpose of this study. This allows us to draw relevant conclusions about the
research trends. The y-axis represents the space-filling possibilities, with ’volume’ corresponding to the highest
order for three-dimensional structures. By definition, a one-dimensional structure—such as a line—exhibits
movement in only one direction; therefore, it does not couple movements along multiple axes and cannot be
characterized by a Poisson’s ratio. This inherently excludes the possibility of a one-dimensional auxetic material.
Although a curved line could theoretically be used to form a plane, which—when combined with a coupling
mechanism—might serve as the basis for a three-dimensional metamaterial, such configurations have not been
observed in the literature and currently do not offer any practical advantages; consequently, they are not included
in this overview.

8



Base Structures
Plane Curved Plane Volume

Total

2F Plane 4F Plane Other
Plane

2F Curved
Plane

4F Curved
Plane

Other
Closed
Plane

4F Volume 6F Volume Other
Volume

Connected stars, CS [35],[36],[37]

[38],[39],[40],
[41],[42],[43],
[44],[20],[45],
[46],[18],[47],
[48]

[38],[29] 18

Connected stars (modified) [27],[49],[50] [51],[52] [53],[54],[55],
[34],[56],[57] [58] 12

Puzzle tiles, PT [59],[30],[21] [60]
(inf.F) 4

Puzzle tiles (modified) [61] [61]
[61](3F),
[61](8F),
[61](10F)

5

Rotating triangles, RT 0

Rotating triangles (modified) 0

Honeycomb, HC [62],[63],[18] [64](6F) [22],[28],[65],
[66],[31] [67],[68],[52] [67] 13

Honeycomb (modified) [32] [28] [33],[69],[70],
[55],[71],[72] 8

Missing rib, MR [23],[73] 2

Missing rib (modified) [74] 1

Closed geometry, CG 0

Closed geometry (modified) 0

Other [26], [75]
[26](6F),
[26](10F),
[75] (3F)

[76] [76](6F) [77],[24],[78],
[76],[79],[80] [46] [76](3F),

[25](2F) 16

Total 3 6 4 5 7 1 41 6 6 79

Table 2: This table presents the unit cells from the reviewed literature, categorized according to their spatial
configuration and base topology. Some references describe multiple unit cells, which are included in all corre-
sponding cells of the table. Structures that have not been experimentally validated are highlighted in bold. The
notation (#F) represents the order of symmetry, indicating the n-fold structure. The green and purple cells
indicate regions where structures will be introduced later in this section.

This table aims to serve two primary purposes. First, it provides insight into which structures are most
frequently explored in the selected literature. Second, the table serves as a tool for inspiring new structures by
exploring possible combinations of existing unit cells. This process is illustrated below.

For example, the row corresponding to the ’Puzzle tile’ topology contains several entries, but remains
relatively sparse. Specifically, while there are three examples of 4-fold volumetric structures, such as in the
study of Lan [21], the 6-fold volumetric category remains empty, as highlighted in green in Table 2. To generate
a 6-fold ’Puzzle tile’ structure, one approach is to combine an existing 4-fold ’Puzzle tile’ reference with a 6-fold
structure from another base topology. A relevant example of this can be found in the work of Bückmann [38],
where both 4-fold and 6-fold ’Connected stars’ structures are demonstrated. Using a similar methodology, a
new 6-fold ’Puzzle tile’ structure has been developed and is presented in Figure 7.
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(a) (b)

(c)

Figure 7: A six-fold ’Puzzle tile’ structure that can be created by combining references to fill the green cell in
Table 2, formed by combining [21] and [38]: (a)’Puzzle tile’ to arrowhead from Roberjot [19], (b) 6-fold ’Puzzle
tile’ unit cell, (c) tessellation of the 6-fold ’Puzzle tile’.

A missing entry in the table can be filled by identifying compatible references within the same row and
column and exploring their combination. Additionally, modifications applied to one base topology can often be
extended to others, further expanding the design space.

Even when a cell lacks a directly compatible reference in the same row or column—or in both—it remains
possible to propose a solution, although additional input from the designer may be required. For instance, the
’Closed geometry’ category has no examples in this literature set. In this paper, the 3-fold ’Closed geometry’
from Roberjot [19] is combined with the ’Missing rib’ structure from Li [23] (see Figure 2d). In this case, the
conventional 4-fold cubic structure is effectively translated into a 3-fold structure, namely the tetrahedron. The
resulting structure can be seen in Figure 8.

Overall, there is no evidence to suggest that any cell in the table is inherently impossible to fill. The examples
provided illustrate how missing entries can be addressed, whether through the use of compatible references or
through creative design. In this way, the classification not only reflects current research trends but also serves
as an inspiration for future innovations.
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(a) (b)

Figure 8: A newly created ’Closed geometry’ 3-fold structure to fill the purple cell in Table 2: (a) Flattened
representation of the structure, (b) isometric view of the unit cell.

4 Discussion

4.1 Current research trends
Table 2 clearly indicates that research efforts have not been evenly distributed across all configurations.

First, regarding the base topologies; the ’Connected stars’ and its modifications account for 30 out of the 79
unit cells, and the ’Honeycomb’ contributes another 21. Together, these two categories represent nearly 80% of
the 63 unit cells derived from the base topologies identified by Roberjot [19], highlighting their dominance in the
literature. The ’Puzzle tile’ and ’Missing rib’ topologies are also represented, although they are less common.
However, the ’Rotating Triangles’ and ’Closed geometry’ topologies are entirely absent from this selection.

The ’Other’ category, which includes structures that do not fit neatly into one of the defined base topologies,
is largely composed of designs that lack experimental validation. The only exception is the 4-fold volumetric
category, where most structures have undergone experimental validation. Moreover, this category appears to
suggest that one-fifth of the structures cannot be classified under the established base topologies. However, this
presents a somewhat distorted perspective. For example, the study by Ma [76] contributes four structures within
this category, none of which have been experimentally validated. Some of these structures in this category could
still be traced back to an existing base topology, but their classification is not immediately apparent.

Examining the table by columns; the volumetric unit cells constitute the largest category, comprising 53
of the 79 structures. Additionally, within each classification, 4-fold symmetric structures consistently have the
highest representation. More than half of all unit cells fall under the 4-fold volumetric category, indicating a
strong preference for cubic unit cells. This preference is especially evident in unit cells based on the (mod-
ified) ’Connected stars’ topology, which is the most frequently encountered configuration for 3D mechanical
metamaterial unit cells.

Non-cubic volumetric unit cells, on the other hand, are rarely experimentally validated. For instance, Rogers’
study [61] presents multiple designs for non-cubic volumetric unit cells. However, the authors ultimately select
a cubic unit cell for testing, stating: "The cubic unit cell was selected because the tessellation and visual
calculation of the Poisson’s ratio for this cell is mathematically simple." This illustrates a potential reason for
the dominance of cubic cells: experimental testing equipment is often designed to measure mechanical responses
along two or three perpendicular axes, which aligns well with the symmetry of cubic structures. In contrast,
structures with a higher number of symmetry folds typically exhibit dependent axes of movement, complicating
mechanical testing and characterization. Another factor contributing to the prevalence of cubic unit cells is
the conventional definition of Poisson’s ratio, which relies on the relationship between strain in the x-, y-, and
z-directions. This makes it straightforward to apply to cubic unit cells but less convenient for structures with
different-order symmetries. However, an alternative approach could mitigate this issue: using compressibility
instead of Poisson’s ratio. Compressibility measures the overall change in volume, independent of direction,
making it a more suitable parameter for comparing all 3D unit cells, regardless of their symmetry or auxetic
behavior [81].
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4.2 Developing new 3D auxetic metamaterials
The second primary objective of this study was to inspire the exploration of new topologies. The examples
presented in the previous section demonstrate that this goal has been achieved. The current organization of the
literature reveals clear research gaps, and the relevant references to address these gaps are easily accessible, thus
minimizing the time and effort required to create new structures. However, within each category, significant
design variation can still occur due to modifications and the choice of symmetry axes. The table proves successful
in assisting the identification of a broader range of potential structures.

4.3 Limitations and future recommendations
The classification table presented in this study provides a structured overview of 3D auxetic unit cells, effectively
highlighting the most extensively explored topologies and modifications, and offering valuable insights into
current research trends. Additionally, it serves as an inspiration for new designs by identifying gaps in the
existing literature. However, while the table is a useful tool, there are certain limitations that also present
opportunities for future research.

Not all three-dimensional structures can be fully captured within this classification, as it is based on a
two-dimensional base topology. For example, the structure presented by Lai [70], shown in Figure 9, bears
resemblance to a honeycomb configuration. However, it cannot be generated by simply replicating a 2D hon-
eycomb around a single point or axis. In this study, it is categorized as a ’modified’ structure, but introducing
a classification based on a truly three-dimensional base could provide a more precise representation of such
cases. This would not only provide a more accurate representation of the existing literature, but also open up
possibilities for a wider range of structures, potentially leading to a greater variety of mechanical properties.
However, the development of a 3D base structure design method is still lacking, and creating one was beyond
the scope of this study. The current classification method, while limited in this regard, effectively serves its
purpose in identifying and categorizing the most extensively researched auxetic structures.

Figure 9: Modified ’Honeycomb’ unit cell [70]. A three dimensional base topology would be needed to describe
this structure accurately.

Section 2.2.3 highlights the most commonly used and relevant modifications that can be applied across
multiple base topologies. The goal of this section is to inspire future research to incorporate these modifications
into the design processes. However, these are not the only modifications observed in the literature selected for
this study. For example, the out-of-plane base structure shown in Figure 9 also represents a notable variation.

The classification of ’modified’ includes a broad range of structural changes, meaning that the exact geometry
and mechanical behavior of a unit cell cannot be directly determined from Table 2 if the structure is modified.
A possible solution could be; creating a extensive modification selection menu which would indicate the nature
of the modification. However, the selection of modifications presented in this study is not exhaustive. It is
based on the literature set analyzed in this work, but there may well be additional modifications that have yet
to be explored.

As previously discussed, most research has focused on cubic unit cells, which have the limitation of aligning
their load-bearing capacities with the principal planes of the structure. Exploring higher-order symmetry
structures could be valuable, as they offer more principal planes, potentially enhancing their robustness and
improving their mechanical stability. However, increasing the number of structural elements typically leads
to greater material usage and, consequently, higher weight. The optimal structure ultimately depends on the
specific application requirements. Nonetheless, further investigation into non-cubic structures would provide
deeper insights into their mechanical performance, enabling more informed decisions when selecting the most
suitable configuration for a given application.
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5 Conclusion
In this paper, we have proposed a systematic categorization of the current literature on 3D auxetic metamaterials
to provide insight into which topologies are most frequently explored. Our framework clarifies the prevailing
base topologies and spatial configurations within the field. Furthermore, the chosen categories are designed to
inspire new designs: they are specific enough to leave portions of the classification table unfilled—thus inviting
the development of novel unit cells, such as the new structure we have developed as an example. Yet, this
approach is broad enough to cover a complete view of current research. Overall, this categorization not only
highlights current trends but also lays a solid foundation for future innovations in the design of 3D auxetic
metamaterials.
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Abstract

Auxetic metamaterials are engineered structures commonly characterised by their negative Poisson’s
ratio, which indicates transverse expansion when the structure is stretched axially. However, Poisson’s ratio
becomes increasingly difficult to apply and interpret for non-cubic unit cells with higher-order symmetry or
complex geometries. This limitation contributes to the strong focus on cubic unit cells in current research,
despite their limited robustness due to a restricted number of symmetry axes. This study proposes volumetric
strain as an alternative and geometry-independent measure of auxeticity. The approach is demonstrated
through a case study on non-cubic polygon-prism unit cells generated by in-plane copy rotation. The
mechanical behaviour of 2-, 4-, 6-, and 8-fold configurations is analysed using an analytical rigid-body
replacement model, finite element simulations, and experimental testing. A Hoberman ring is introduced as
an intermediary mechanism to enable uniform multi-directional actuation using a one-dimensional tensile
tester. The results show that volumetric strain provides a consistent and robust description of auxetic
behaviour across all configurations and modelling approaches. In contrast, Poisson’s ratio exhibits strong
sensitivity to small deviations near zero strain and leads to inconsistencies between analytical, numerical,
and experimental results. The experimental force–displacement response confirms a linear scaling with the
number of bases, while the volumetric strain remains independent of the initial polygonal shape of the unit
cell. These findings demonstrate that volumetric strain is a reliable measure of auxeticity for non-cubic unit
cells and offers clear advantages for the analysis and experimental validation of complex auxetic geometries.
The proposed framework provides a foundation for extending auxetic metamaterial design towards more
intricate structures, including spatially copy-rotated unit cells and honeycombs based on Archimedean solids.

1 Introduction
Auxetic metamaterials are a class of engineered materials that exhibit a negative Poisson’s ratio, meaning
they expand laterally when subjected to axial tension. This counterintuitive behaviour does not arise from
the intrinsic properties of the base material but from the geometry of the internal structure. As such, auxetic
metamaterials are a subset of mechanical metamaterials, whose effective properties are primarily governed by
the architecture rather than the composition. In addition to mechanical properties, other characteristics such
as acoustic [1], thermal [2], and electromagnetic [3] properties can also be tailored through geometric design.
These periodic structures are typically described in terms of a unit cell, the smallest repeating geometric entity
whose deformation behaviour defines the macroscopic response of the material. By tessellating the unit cell in
two or three dimensions, complex mechanical behaviour can emerge from relatively simple local mechanisms.
An auxetic unit cell is often composed of beams, hinges, or compliant segments, and is enclosed by a polygon or
polyhedron known as the honeycomb. The honeycomb, however, is not a physical entity but rather a conceptual
framework that defines how unit cells should tessellate to form a space-filling structure, ensuring the proper
alignment and connectivity of adjacent cells. To organise this design space, Roberjot [4] defined six planar
base families. These six base topologies can be transformed through operations such as mirroring about one or
more axes and in-plane copy rotation, enabling the generation of a wide variety of auxetic unit cells. In recent
years, auxetic metamaterials have garnered significant attention due to their unique mechanical properties
and potential applications. They have been explored for impact absorption [5], energy dissipation [6], tunable
stiffness [7], and enhanced fracture resistance [8], making them relevant for industries such as aerospace [9],
medical applications [10], and protective equipment [11]. Advancements in digital fabrication, particularly 3D
printing, have greatly accelerated research in this field by enabling the rapid prototyping of increasingly complex
geometric designs. However, despite this progress, their practical implementation in engineering applications
remains limited.

One of the key limitations is their lack of robustness. Many existing beam-based auxetic unit cells can only
effectively carry loads along one of their symmetry axes, which is typically aligned with the beam geometry.
Most designs found in the literature are cubic ([12–22]), which means they possess only three symmetry axes.
Increasing the number of symmetry axes could improve the structural robustness and thus bring auxetic meta-
materials closer to practical applications. However, the dominance of cubic designs persists because both the
calculation of Poisson’s ratio and experimental testing procedures become more complex as unit cells deviate
from cubic symmetry [23]. Consequently, the current reliance on cubic unit cells limits the development of more
robust auxetic structures.

This paper therefore proposes the use of volumetric strain as a measure of auxeticity. Unlike Poisson’s ratio,
the calculation of volumetric strain is independent of the geometric complexity of the unit cell. To experimentally
test non-cubic unit cells, we introduce the use of Hoberman mechanisms to transform a linear actuator into
a multi-directional actuation system. These experiments are compared with two models, an analytical model
and finite element simulations, which allows us to identify the advantages and limitations of both measures of
auxeticity. By validating the theory for copy rotation about a single axis, this study provides a foundation for
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future extensions to spatial copy rotations around the centre of the unit cell, thereby lowering the barrier for
exploring non-cubic auxetic metamaterials and inspiring further research into their potential applications.

In the following sections, a theoretical background on the measures of auxeticity is provided, illustrated
through an example structure. This structure is analysed using three approaches: an analytical model and a
finite element model for n-fold copy rotations around the z-axis, and an experimental model to test the 2-, 4-,
6- and 8-fold configurations. Each model evaluates the force–displacement curve, lateral deflection, and both
measures of auxeticity. The results from these three methods are compared to assess the accuracy and validity of
the models, followed by a discussion on the comparison between Poisson’s ratio and volumetric strain. Finally,
the extension of these methods to Archimedean solids is explored, and recommendations for future research are
presented.

2 Methodology

2.1 Measure of auxeticity
Auxetic behaviour is traditionally characterised by the Poisson’s ratio, which describes the relation between
axial and lateral strain, with a negative value indicating auxeticity. In 2D, a single Poisson’s ratio exists,
relating deformation in the x- and y-directions. In 3D, two independent Poisson’s ratios are required, as the
third is inherently dependent on the first two. The definition is

ν = −εlateral

εaxial
, (1)

where ε denotes the strain, defined as

ε =
L− L0

L0
=

∆L

L0
. (2)

Poisson’s ratio is widely used to characterise auxetic behaviour by relating axial and lateral strain, thereby
describing deformation along predefined directions. In contrast, auxeticity can also be quantified using area
strain in 2D or volumetric strain in 3D. These measures describe the relative change in size of a structure as a
whole and are therefore independent of any specific deformation direction. These quantities are defined as:

εarea =
A−A0

A0
, (3)

εvolume =
V − V0

V0
. (4)

Because the macroscopic behaviour of the metamaterial equals that of its unit cell, both Poisson’s ratio and
volumetric strain can be computed at the unit-cell scale. In this work, volumetric strain is computed using the
enclosing polygon prism of the unit cell, as this prism forms the tessellating element of the metamaterial. For
a regular n-sided polygon with circumscribed radius r, the area is

A = n r2 tan

(
180◦

n

)
, (5)

and the corresponding prism volume is

V = z n r2 tan

(
180◦

n

)
, (6)

with z the out-of-plane depth. This formulation makes it possible to evaluate the volumetric strain of any n-fold
copy-rotated unit cell in a consistent and geometry-independent manner.

Although both Poisson’s ratio and volumetric strain can be used to quantify auxeticity, they differ funda-
mentally in the type of deformation they describe and in their applicability to complex geometries. Poisson’s
ratio captures direction-dependent behaviour and is straightforward to evaluate for cubic, orthogonal unit cells.
However, for non-cubic or higher-order symmetric structures, identifying uniquely defined axial and lateral
directions becomes ambiguous, which complicates both the calculation and interpretation of Poisson’s ratio.
Volumetric strain, by contrast, depends only on global geometric change and therefore remains equally simple
and robust to compute for all symmetry orders, at the cost of losing directional information.
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2.2 Validation
The proposed use of volumetric strain as a measure for auxeticity will be verified through analytical modelling,
finite-element simulations, and experimental testing. To enable a consistent comparison across structures, this
study examines a set of unit cells that share the same planar auxetic base topology, referred to hereafter as the
’base’, but differ in their rotational symmetry. Although the theoretical framework developed in this work can
be extended to spatial copy-rotations around the centre of the unit cell, the present study focuses exclusively
on copy-rotations around the z-axis. The underlying geometry of all investigated unit cells is derived from the
Connected Stars base family defined by Roberjot and Herder [4]. This topology is converted into a compliant
mechanism by replacing its rotational joints with flexures. The detailed embodiment process is provided in
Appendix A. Using this compliant version of the base, three polygon-prism unit cells are constructed by applying
4-, 6-, and 8-fold in-plane copy-rotations. Together, these structures span a representative range of rotational
symmetry orders.

Each unit cell is characterised by both its Poisson’s ratio and its volumetric strain, allowing a direct com-
parison between the two measures of auxeticity. To ensure robust validation, every structure is examined using
the three complementary approaches. The analytical model provides an initial order-of-magnitude estimate,
while the finite element model offers a more accurate prediction of the force–displacement behaviour. The
experimental results then serve to verify whether the FEM simulations accurately capture the actual structural
response, enabling the FEM to be used with confidence for further design exploration.

2.2.1 Analytical analysis

The analytical model applied in this study is the Rigid Body Replacement Method (RBRM) [24], a model
well-suited for a compliant design with small flexure lengths that experience small rotations. The flexures
that serve as the revolute joints in the system are represented by notches. These notches can be effectively
modelled as rotational springs with specific stiffness, as discussed by Farhadi Machekposhti et al. [24]. The
joint configuration utilized in this study is a Right-Circular Corner-Filleted (RCCF) flexure hinge, as described
by Chen et al. [25]. The defining relation for this hinge is expressed as follows: Let R represent half the length
of the flexure, r the radius of the fillet corner, and t the thickness of the flexure. Additionally, E is the Young’s
modulus, b is the width of the flexure and θ is the deformation angle. The applied moment M divided by the
angle θ is:

θ

M
=

12

Eb

(
γ1
R2

+
R− r

t3
+

γ2
r2

)
(7)

where:

γ1 =
s31(6s

2
1 + 4s1 + 1)

(2s1 + 1)(4s1 + 1)2
+

6s41(2s1 + 1)

(4s1 + 1)5/2
arctan

(√
4s1 + 1

)
(8)

and

γ2 =
s32(6s

2
2 + 4s2 + 1)

(s2 + 1)(4s2 + 1)2
+

6s42(2s2 + 1)

(4s2 + 1)5/2
arctan

(√
4s2 + 1

)
(9)

Here, s1 = R/t and s2 = r/t. Equation 7 can be re-arranged to describe the relation of M with respect to u

M(u) = θ(u)(
12

Eb

(
γ1
R2

+
R− r

t3
+

γ2
r2

)
)−1 (10)

Figure 1 shows the free body diagram of one base. The moments indicated in green are counteracted when
the unit cell is tessellated. The two remaining moments M are intrinsic to the structure and arise from the
rotational stiffness of the flexure joints. The sum of all moments must to be zero, which results in the force F
as a function of the displacement u, given by:

ΣM = 0

2M =
1

2
F l sin(α)

(11)

F (u) =
4M(u)

z(u)
(12)
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Figure 1: (a) Connected stars base from [4] (b) Free Body Diagram (FBD) of a single base (c) Simplified FBD
for half of the base, where the moments shown in green are counteracted upon tessellation.

where l is the length of the arm and α(u) is the angle if rotation as a function of the displacement, as can be
seen in Figure 1. The orthogonal component, as discussed previously, can be used to calculate Poisson’s ratio
between the z- and x-directions, as well as for volumetric strain. In this case, the z-value is given by:

z(u) = l sin(α(u)) (13)

and for the x-direction;
x(u) = x0 + u (14)

where l is the length of the beam and α is the angle of the beam relative to the x-axis. The strain in x- and
z-direction can now be calculated using α0 for z0 and x0.

Using these values, both the Poisson’s ratio of a single base (Equation 1) and the volumetric strain of the
unit cell can be evaluated. The volumetric strain is defined as the relative change in volume, where the volume
is given by the product of the polygon area A and the out-of-plane dimension z (Equations 4 and 3). Since
z(u) does not depend on n, the influence of the polygon geometry is fully captured by the area strain. The
polygon area A and its initial value A0 are given by Equation 5. Substituting these expressions into the area
strain definition (Equation 3) yields:

A0 = nr20 tan

(
180◦

n

)
(15)

ϵA =
nr2 · tan

(
180
n

)
− nr20 · tan

(
180
n

)
nr20 · tan

(
180
n

) (16)

which simplifies to

ϵA =
r2 − r20

r20
(17)

This expression shows that the area strain, and therefore the volumetric strain of the polygon-prism unit cell,
is independent of the polygon order n.

The force–displacement relation for a single ’Connected stars’ base, as described above, lies in the x-z plane.
This base will be copy-rotated around the z-axis to create a prism polygon unit cell. Since each base is identical,
the same amount of force is required to deform each one. The force is aligned with the direction of the base,
and the total force required to deform an n-fold unit cell is:

Ftotal = nFbase (18)

The displacement of the bases, like the force, is aligned with the direction of the base, and since all the bases
exhibit identical mechanical behaviour, their displacement is uniform. To calculate the Poisson’s ratio in the
x-y plane, this displacement must be split across the orthogonal axes, x and y. The largest displacement values
along each axis will be used to determine the Poisson’s ratio. All three configurations have a Poisson’s ratio of
-1. This is due to the fact that Poisson’s ratio uses strain rather than nominal displacement.

To establish the force–displacement relationship within all models, the Young’s modulus of the material
used for the prints is required. The material is PET-G; however, due to the influence of 3D printing on the
Young’s modulus and the inherent material variability, it is unreliable to use the typical material value. The
compliant joints in the unit cells will predominantly deform in bending, making a tensile-based test inaccurate.
Thus, the effective Young’s modulus will be experimentally determined using cantilevers. A specially designed
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Figure 2: Cantilever plus dimensions

test specimen, consisting of sixteen identical cantilevers organised in four flexure pairs, is used for this purpose,
as shown in Figure 2. This configuration offers two main advantages. First, the total displacement is amplified
due to the parallel behaviour of the cantilevers, which reduces measurement inaccuracies. Second, errors due
to random variations in the printing process are averaged over the sixteen cantilevers, improving the overall
accuracy of the test. The test specimen is loaded in a linear tensile tester. Each cantilever deforms in bending,
with effective length L, width h, and thickness b, as indicated in Figure 2. The Young’s modulus is derived
using the classical Euler–Bernoulli relation for a cantilever beam under a point load:

E =
F L3

3u I
(19)

where the moment of inertia is:

I =
tw3

12
(20)

Although the specimen contains sixteen cantilevers in total, these elements do not act independently. The
cantilevers are paired to form eight flexural hinges, of which four are connected in series along the loading
direction. For elements connected in series, the transmitted force is identical in each segment. Consequently,
the total measured force is shared by the four flexural segments, yielding

Fcl =
Ft

4
(21)

The measured displacement is then normalised to the displacement of a single cantilever, as two flexures, and
therefore four cantilevers, are aligned in series to contribute to the total horizontal displacement, resulting in:

ucl =
ut

4
(22)

The experimentally determined Young’s modulus is subsequently used as a material parameter in both the
analytical model and finite element simulations, enabling a comparison of the force–displacement curves from
the analytical and numerical models with the experimental results.

2.2.2 Computer models

The computer models are developed using SolidWorks (version 2025), a widely used CAD software, to represent
the geometries of the auxetic unit cells. The 4-, 6-, and 8-fold Connected Stars (CS) unit cells are modelled
using the same parameters as those in the analytical model. The finite element analysis was carried out using
COMSOL Multiphysics 6.2 (Classkit License). A stationary model was used with solid mechanics physics to
simulate the deformation of the unit cells under applied displacements. A stationary model is sufficient for this
analysis, as the experiments are conducted slowly, minimizing dynamic effects. For the FEM setup, a finer mesh
was applied, consisting of 118,436 tetrahedral elements. The prescribed displacement, u, was applied to each
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base in the direction of the base. To model the complete movement, an auxiliary sweep was used, ranging from
-0.0075 m to 0.0125 m, with steps of 0.0025 m.

The applied displacement was prescribed at the end of each base, while the z-movement was constrained to
zero, simulating the fixed support at the base of the unit cell. Probes were used to capture the relevant data.
The first is a boundary probe, which generates the z-displacement using the expression solid.disp to capture
the displacement at the top of the unit cell. Since the absolute value of the displacement is obtained from
this expression, the compression was manually adjusted to a negative value during post-processing. The second
probe measures the force required to deform the base in response to the prescribed displacement, using a surface
integration probe with the expression solid.RFx. The resulting data from the simulations is exported to Excel,
where it is processed and then imported into Python to generate the required figures and graphs for further
analysis.

2.2.3 Experimental set up

All experiments are conducted in a linear tensile tester, which applies a controlled displacement to the unit cells.
However, when the tensile tester is used directly on the unit cell, the structure is actuated only along a single
axis. As a result, the the increased number of bases of the 4-, 6-, and 8-fold unit cells would not manifest in
their deformation behaviour. To ensure uniform multi-directional actuation, a Hoberman ring is introduced as
an intermediary mechanism. The Hoberman ring expands uniformly in its own plane and exhibits a Poisson’s
ratio of −1 over its full range of motion, making it ideally suited for the actuation of rotationally symmetric
auxetic structures. Its motion is defined by scissor mechanisms arranged in a circle. Each scissor pair contains
a central angle defined as:

β =
360◦

n
, (23)

where n is the number of scissor pairs in the ring. The ring used in this study consists of 24 scissor pairs,
enabling compatibility with the 4-, 6-, and 8-fold unit cells. The individual beams therefore subtend an angle
of 15°.

The primary design objective of the Hoberman ring is to minimise friction so that the measured response
reflects the behaviour of the unit cell, rather than artefacts of the actuation mechanism. To achieve this, each
joint is constructed as a three-layer sandwich configuration, where all right-bending beams are duplicated and
enclose the left-bending beam. This arrangement prevents out-of-plane moments at the joints, which would
otherwise increase friction during expansion. The rotational joints are implemented using printed holes in the
beams, through which thin solder-wire pins are inserted. These rods are glued into the lower layer during
assembly and subsequently bonded to the upper layer after alignment. The inner joints contain orthogonal rods
that support the unit cell, with the rods on the upper layer intentionally being shorter than those on the lower
layer to facilitate assembly and disassembly. Two opposing mid-joints contain additional rods that allow the
entire ring–unit cell system to be suspended within the tensile tester. Finally, all rods are manually sanded
to reduce surface roughness after printing, ensuring that the beams of the ring can rotate freely relative to
the joints. The Hoberman ring is fabricated out of PLA, a material chosen for its stiffness and low friction
coefficient, making it well-suited for use in printed mechanisms where rigidity is required. In contrast, the bases
of the unit cells are 3D printed from PET-G, which is ideal for compliant mechanisms due to its flexibility,
durability, and ability to bend without failure. To ensure precise alignment of the bases, circular connection
plates are 3D printed from PLA to maintain the correct angular spacing between the bases at both the top and
bottom of the structure. These plates are then clamped together, locking the bases in place and preventing
any rotational movement during testing. This mechanical locking mechanism ensures that the bases remain
stationary in their desired orientation, contributing to the consistency and reliability of the experimental results.
Figure 3 illustrates the test setup used in this study, with numbered labels indicating the key components of
the suspension system and the arrangement of the Hoberman ring.

The tensile tester used in this study operates in an upright configuration. A horizontal setup was avoided
because the large span of the Hoberman ring could cause sagging due to its self-weight, which would interfere
with the uniform in-plane motion of the structure. The Hoberman ring is mounted inside the vertical tensile
tester using suspension supports. These supports are clamped into the tensile tester and feature extended beams
to ensure that the clamping mechanism does not interfere with the movement of the Hoberman ring. At the end
of these extended beams, holes are placed where the rods from the ring fit in, allowing for secure attachment.
The beams are further supported by angled beams at the base to maintain stability during operation.
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Figure 3: Test setup showing (a) the side view and (b) the top view. The numbered elements indicate (1) the
Hoberman ring, (2) the connection between the unit cell and the Hoberman ring, and (3) the connection plates.

To evaluate the influence of the Hoberman ring on the force–displacement response, a series of tests is
conducted. A 2-fold (2F) unit cell is used as a reference configuration, as it is inherently planar and can
therefore be tested both with and without the Hoberman ring. Comparing these two sets of measurements
allows the additional force contribution of the ring to be quantified. In addition, the Hoberman ring is tested
without a unit cell to obtain a force–displacement curve over a larger range than in the experimental setup.
This provides insight into the inherent resistance of the mechanism and its overall effectiveness as an actuation
system. However, the behaviour of the ring can depend on how it is loaded. When actuated in isolation, its
deformation pattern differs from the loading condition imposed when a unit cell is attached. For this reason,
the 2F reference configuration provides a more reliable estimate of the ring-induced force contribution than the
ring-only test. The 4-, 6-, and 8-fold unit cells are subsequently tested following the same procedure. For each
configuration, the first test run is discarded, as the structure requires one full actuation cycle to settle into its
deformation pattern. After this settling cycle, three consecutive tests are performed to assess the mechanical
response and its repeatability. All tests are conducted at a low actuation speed to minimise the influence of
hysteresis. Finally, the cantilever specimen described in Section 2.2.1, used for the experimental determination
of the Young’s modulus, is also tested. Similar to the unit-cell tests, the first run is disregarded, and at least
two additional runs are conducted to ensure the results are consistent and reproducible.

The tensile tester records the force–displacement data during each experiment. To capture the displacement
corresponding to the z-value used in the analytical and numerical models, which aligns with the global horizontal
direction in the vertical test set-up, additional visual data is collected through video tracking. A red marker
is placed on both the top and bottom clamping plates of the unit cell, allowing their relative movement to
be tracked using the video analysis software Kinovea. The visual recordings are obtained using a OnePlus
7T Pro smartphone equipped with a 48-megapixel camera. The smartphone is mounted on a fixed tripod,
and its position remains unchanged throughout all experiments to ensure consistent camera perspective and
measurement conditions.

To enable the comparison across all three models, several post-processing steps are required for the experi-
mental results. The force–displacement data from the experiments is processed in four stages:

1. The average of the three repeated tests is taken to reduce the influence of random fluctuations and to
obtain a representative force–displacement curve.

2. If the Hoberman ring not only contributes friction but also stiffness, this stiffness will be subtracted from
the measurements. This will be determined using the results from the empty ring and the 2F reference
configuration.

3. The displacement applied at the middle joint, where the ring is suspended from the linear actuator, is
converted to the displacement at the inner joint of the ring, where the unit cell is fixed. This conversion
allows for the correct measurement of the unit cell’s displacement.

4. Normalization per base: the corrected total force is divided by the number of bases of the unit cell, yielding
a force–displacement curve for a single base. The converted displacement is then divided by two, resulting
in the displacement corresponding to a single base.
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The displacement in z-direction is obtained from the video recordings through motion tracking in Kinovea
(version 2024.1.1). In Kinovea, two tracking points are placed on the red markers located on the top and
bottom plates of the unit cell. The software provides linear kinematic outputs, including horizontal and vertical
displacement. In the vertical test set-up, the horizontal displacement corresponds to the model’s z-value. To
ensure accurate output, Kinovea requires the definition of a reference length. This calibration is performed using
an object positioned at the same depth relative to the camera to avoid distortion caused by depth differences.
The only available feature at this depth is the width of the circular connection plate (indicated as 5 in Figure
6), which is 4 mm. This short reference length is sensitive to calibration errors, as it is of the same order
of magnitude as the measured displacements. Any inaccuracy in defining the length on the calibration line
directly and proportionally affects all recorded displacement values. To verify the reliability of the calibration,
the vertical displacement extracted from Kinovea is compared with the displacement imposed by the tensile
tester. For each test, the tracking is repeated if the deviation exceeds 5%. The resolution and step size of the
software introduce a degree of measurement noise. For each test, the data is taken from the starting position,
through compression, then extension, and back to zero. To process the data, the first and last portions (from
and to zero) are disregarded, and only the data between the two extremes is considered. This data is then
normalised to the extremes of the displacement in x direction to ensure consistency. Finally this data will be
approximated using a second order polynomial regression, to filterout the measurement noise. In addition, to
minimise random error, the average is taken from both sides of the displacement and across all three runs per
configuration, resulting in an average of six curves per configuration.

Once the z-value is established, the Poisson’s ratios and volumetric strain are computed in Excel and Python
using Equations 1, 6 and 4. To ensure an equal comparison between all three models, the analytical and FE
models are both approximated with a second-order polynomial also.

3 Results

3.1 Young’s modulus
The Young’s modulus is determined from the test results shown in Figure 4, using Equations 19 and 20. Data
points at 0.5 mm and 9.5 mm of displacement are selected to avoid any artefacts associated with the initial
settling phase and the reversal of the load. The difference in force between these two points, combined with the
corresponding difference in displacement, yields a Young’s modulus of E = 1.84GPa. This value is of the same
order of magnitude as the material properties provided by the manufacturer of the PET-G filament. Although
a full loading–unloading cycle was recorded, no visible hysteresis is observed in the force–displacement curve.
This behaviour is likely the result of the very low testing rate of 20 mm/min, which was selected to minimise
hysteresis effects.

Figure 4: Force–displacement results of the cantilever specimen over two full loading–unloading cycles.
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(a) (b)

Figure 5: Force–displacement results of (a) the Hoberman ring without a unit cell and (b) the 2-fold reference
test with and without the Hoberman ring.

3.2 Hoberman ring
The Hoberman ring was first tested without a unit cell to characterise its inherent force–displacement behaviour.
The results, shown in Figure 5a, indicate that the measured force is slightly higher within the first 40 mm of
displacement. In this region, the mechanism is in its collapsed state, meaning that the angle between the
right-bending and left-bending beams is very small and the contact area around the joints is large. This results
in a slightly larger separation between the extension and compression paths of the curve. Beyond this initial
phase, the ring transitions into the mid-range of its total expansion span, where the regions of overlap become
smaller. As the maximum expansion of the ring exceeds 350 mm, the displacement range used in all unit-
cell experiments (60–80 mm) lies well within this stable mid-range region. Here, the frictional resistance is
consistent, and the force–displacement response becomes nearly flat. This behaviour confirms that the ring
itself does not introduce measurable stiffness, which could have occurred if there were alignment issues. Across
this stable operating range, the friction associated with the actuation mechanism remains very low, requiring
less than 0.6 N to expand the entire ring.

Figure 5b shows the comparison between the 2-fold configuration tested with and without the Hoberman
ring. The curve obtained with the ring displays a slightly larger deformation range due to the post-processing
conversion described in Section 2.2.3. A noteworthy and unexpected observation is that the test with the ring
requires less force to deform than the test without the ring, and the amplitude between the load and unload
curves appears to be smaller in the test with the ring. Since the Hoberman ring introduces friction, one would
expect it to increase the amplitude between these curves in the test with the ring. However, these discrepancies
are likely due to differences between the bases used in the two tests. Small variations can arise from random
printing imperfections or from the accumulated wear of bases that have been tested previously, which could
also affect the hysteresis behaviour of the bases. As the trend in all three measurements is consistent and the
test with the empty ring shows a flat force–displacement curve, it can be concluded that the Hoberman ring
does not contribute any significant stiffness to the system. For this reason, no correction for the ring force will
be applied in the subsequent analyses, as the additional contribution of the Hoberman mechanism is negligible
compared to the variability between the printed bases.

3.3 Force displacement curves
The force–displacement curves for each configuration are shown in Figure 7, while an overview of the exper-
imental test setup is provided in Figure 6. In all four cases, the curves for the three runs align so closely
that it is barely noticeable that multiple tests are plotted, indicating a highly repeatable mechanical response.
However, small irregularities appear in the curves, most notably near zero force. These irregularities arise from
slight play in the suspension, which caused minor perturbations when the linear tensile tester transitioned from
compression to expansion.
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Figure 6: Test setup with
(1) attachment of the linear
tensile tester, (2) suspen-
sion system, (3) Hoberman
ring, (4) connection of the
unit cell to the Hoberman
ring, (5) connection plate,
and (6) tracking marker.

Figure 7: Force–displacement results for 2-, 4-, 6-, and 8-fold unit cells, showing
three full loading–unloading cycles per configuration.

In Figure 8, the force–displacement curves obtained from the three modelling approaches are compared. All
models show a similar overall shape, with a steeper response in compression than in extension. Although the
qualitative behaviour is comparable, the analytical and finite element models predict force levels that are more
than twice those measured experimentally. This behaviour is primarily due to the inherent geometry of the
structure, where α governs the mechanical response. Notably, the experimental displacement range extends
from -7.78 mm to 13.1 mm, in contrast to the -7.5 mm to 12.5 mm range observed for the other two models.
This difference is attributable to the radius conversion discussed in Section 2.2.3. The normalized data from
the experiments is shown in Figure 8, where all four configurations yield highly comparable results. The 2F
configuration shows a somewhat larger deviation. This is likely due to the previously discussed variation in
stiffness between individual bases. In higher-order copy rotations, this random variation is distributed over
a greater number of bases, resulting in a more uniform response. Furthermore, although the effect of the
Hoberman ring could not be reliably isolated using the 2F reference test, this does not imply that the influence
is absent. Any residual contribution from the ring may still play a minor role in the small discrepancies observed
between the unit cells of different rotational symmetry orders, as this contribution is also divided by the number
of bases.

3.4 Orthogonal displacement
In Kinovea, the accuracy of the calibration was verified using the vertical displacement and, if necessary,
the tracking was repeated, as described in Section 2.2.3. In practice, it was never necessary to repeat the
tracking. The software allows for a ten-fold zoom, enabling the calibration line to be placed with high precision.
Furthermore, the calibration remains consistent when new videos are processed, meaning that all tracking was
performed using the same calibration settings. This ensures full consistency across the twelve tests (three runs
for each of the four configurations). Figure 9 shows an example of the raw displacement data obtained from
the visual tracking. A step-like noise pattern is clearly visible in the measurements. Additionally, some of the
graphs exhibit a slight drift towards the end of the recording, where the displacement returns to approximately
0.5 mm instead of zero. This drift effect is inversely proportional to the displacement measurement on each
side. This drift effect is mitigated by averaging the data from both the left and right sides of each measurement.
These effects highlight the importance of using the mean of six data sets per configuration (two sides, three
runs) to minimise random error. To reduce measurement noise, a second-order polynomial function is fitted to
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Figure 8: Force-displacement results of the analytical, computer and experimental models.

each tracking curve during the post-processing stage. Despite these small artefacts, the overall displacement
trend is accurately captured.

The outcome of the processed data is shown in Figure 10. The fitted lines should ideally pass through
the origin, as there should be no displacement in the z-direction when no displacement is imposed along the
x-direction. All of the curves are very close to this point, indicating that there is no significant systematic
error. This suggests that the chosen method of post-processing the experimental data is valid and reliable.
Both the analytical model and the finite element model are fitted with a second-order polynomial to ensure

Figure 9: Raw displacement data obtained from motion tracking for the 2-fold configuration (test 1).

that the results are as comparable as possible. The results of all models are shown in Figure 10 with a dashed
line that indicates the approximation. The deviations between the polynomial fits and the models are minimal.
The results from the FEM and experimental tests are very similar. However, the analytical model exhibits
deflections nearly twice the size of those observed in the FEM and experimental results, despite having the
same overall shape. This discrepancy arises from the definition of the analytical model, particularly the length
of the beam.
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Figure 10: Z displacement and 2nd order polynomial approximation of the analytical, computer and experi-
mental models.

3.5 Poisson’s ratio
The polynomial approximation does not perfectly pass through the origin, resulting in pronounced peaks in
the displacement data near zero deflection, as shown in Figure 11. This issue arises from the calculation of
Poisson’s ratio (Equation 1), which involves dividing two strain components. Even small nominal differences
between these strains can lead to disproportionately large discrepancies, as the strains can differ by an order
of magnitude near zero. To mitigate the impact of these distortions, data points near zero displacement are
excluded during post-processing. For the 6F and 8F configurations, more extensive exclusion of data points is
required, whereas the 4F configuration shows a particularly clean response. In terms of displacement values,
the analytical model predicts a relatively large z-displacement for the same input, which aligns with the higher
Poisson’s ratio observed in the experimental results.

Figure 11: Poisson’s ratios from the analytical, finite element, and experimental models.
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3.6 Volumetric strain
Figure 12 shows that the results from all three models follow the same trend, and the values do not differ
significantly. However, the analytical model yields slightly higher results, which accurately capture the behaviour
in the z-displacement. The experimental results also show a high degree of consistency. In this case, no artifacts
are observed, as the approximations do not need to pass through the origin perfectly.

Figure 12: Volumetric strain from the analytical, finite element, and experimental models.

4 Discussion
One of the key motivations for this study was the lack of research into non-cubic unit cells, primarily due
to the difficulty in calculating their behaviour and the challenges of testing such structures. The Hoberman
ring has proven to be an effective tool for testing unit cells with polygon prism honeycombs, enabling a 1D
actuator to apply multi-directional deformation reliably. The results show that the Hoberman ring performs
well under the test conditions, accurately capturing the mechanical response without significant interference.
This consistent performance underscores the potential of the Hoberman ring for experimental setups in testing
auxetic structures.

As expected, the total force required for deformation increases linearly with the addition of each base. The
experiments show a clear linear relationship between the number of bases and the total force. However, the 2F
configuration shows a slight deviation from this trend. This discrepancy is likely due to a stiffer base, which
could result from random printing errors or an increase in stiffness due to prior testing. Although this variation
was minimal and did not significantly impact the overall results, it highlights the importance of consistent
manufacturing techniques when performing such tests.

The analytical and finite element models predict force levels that are more than twice those obtained from
the experiments. The origin of this discrepancy could not be determined within the scope of the present study.
Possible contributing factors include variations introduced during the 3D printing process, such as geometric
inaccuracies or local differences in material behaviour, as well as the potential onset of plastic deformation during
repeated testing. These effects were not examined in detail in this work. Further investigation is therefore
required to identify the dominant mechanisms and to improve the accuracy of the predicted force–displacement
response.

The approximated values for Poisson’s ratio show discrepancies between the models, as well as inconsistencies
between the experimental results themselves. While the analytical model is expected to yield larger values due
to the increased z-displacement, this aligns with the expectation that a larger displacement should result in a
higher Poisson’s ratio. However, even though the finite element model and experimental results show very similar
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z-displacements, a notable difference in Poisson’s ratio remains. This, along with the discrepancies observed near
zero displacement, suggests that Poisson’s ratio is highly sensitive to small measurement differences, making it
an unreliable indicator of auxeticity in certain cases.

In contrast, the volumetric strain method produced three curves with similar overall shapes, as observed
in the other results of this study. The variations in the values for volumetric strain also correspond well with
the observed z-displacement values. As expected, the analytical model yields the highest value, with the finite
element model and experimental results closely matching each other. This demonstrates that volumetric strain
accurately captures the behaviour of the unit cells, providing a more robust and consistent measure of auxeticity
than Poisson’s ratio.

The calculations for these configurations are of similar complexity, as the copy rotations occur around a
single axis. However, as the structure becomes more intricate with spatial copy rotations around the centre,
or a combination of different bases, calculating Poisson’s ratio becomes more challenging. This arises from the
need to project the contribution of each base onto the spatial axes, complicating the calculation. In contrast,
the formula for volumetric strain remains simple, as it is based on the volume of the unit cell, which depends
on just one or two variables. These variables are the input and output displacements, both of which are known
or measurable. No additional calculation steps are required, even when the unit cell becomes more complex.

This simplicity makes volumetric strain ideal for auxetic unit cells with the shapes of Archimedean solids.
Archimedean solids are a group of 13 convex polyhedra, where each face is a regular polygon and each vertex is
surrounded by the same set of polygons. These solids are particularly interesting because they can be arranged
to fill space in various configurations, known as tessellations. There are several space-filling configurations
possible with Archimedean solids, as described in Appendix C. An auxetic metamaterial based on one of these
configurations could be more robust, as it has more symmetry planes. For example, number 5 of Appendix C a
combination of the Great Rhombcuboctahedron, the Truncated Tetrahedron, and the Truncated Cube provides
13 symmetry axes, compared to the 3 of a cubic structure. Thus, volumetric strain offers a more straightforward
and reliable measure of auxeticity in these cases, making it a valuable tool for further research into non-cubic
unit cells and, consequently, more robust metamaterials.

However, volumetric strain is a single parameter, whereas Poisson’s ratio involves two independent ratios.
Therefore, some directional information is inherently lost when using volumetric strain alone. To compensate
for this loss of directionality, the kinematic behaviour of one base should be studied. Combined with the shape
of the unit cell and the volumetric strain, this approach provides a more comprehensive understanding of the
directionality of deformation than Poisson’s ratio alone.

The z-displacement results indicate that the analytical model deviates from the numerical and experimental
models. This deviation is mainly related to the simplifying assumptions required to obtain a tractable analytical
description. In the analytical formulation, the structure is idealised as a system of rigid beams connected
by rotational springs, which does not fully capture the geometric details of the physical configuration. A
contributing factor to this deviation is the definition of the effective beam lengths used in the analytical model.
The initial formulation approximates the geometry as z-shaped mechanism, which results in an overestimation
of the vertical displacement. To address this, the analytical geometry was refined by shortening the inclined
beam segments and introducing two vertical segments to maintain the overall height of the structure. This
adjustment provides a closer representation of the deformation path while preserving the analytical framework.
The refined analytical model is described in Appendix C, where a schematic representation is shown in Figure
16. The corresponding z-displacement results are presented again in Figure 17. Although the revised model
reduces the discrepancy, the analytical predictions still overestimate the observed response.

The analytical model can be extended to different base families as defined by Roberjot [4], providing a simple
and effective first step in analysing a broader range of auxetic structures. By adjusting the characteristics of
the base and the definition of the symmetry lines, which may vary depending on the configuration, the model
can be easily adapted to different setups, allowing for quick variations in parameters to achieve the desired
results. This approach offers valuable insight into the mechanical behaviour of the system, as demonstrated in
this study. The simplicity of the analytical model means that researchers can avoid the need for complex 3D
CAD models in the early stages of design, making it a practical tool for obtaining a preliminary understanding
of how the system will behave.

The analytical model can be extended to different base families as defined by Roberjot [4], providing a
simple and effective first step in analysing a broader range of auxetic structures. The free body diagrams
and corresponding force–moment relations for these base families are summarised in Appendix B, where the
mechanical formulation of each topology is presented explicitly. By adjusting the characteristics of the base and
the definition of the symmetry lines, which may vary depending on the configuration, the model can be readily
adapted to different setups. This enables rapid parameter variation to explore the mechanical response without
the need for full three-dimensional modelling. As demonstrated in this study, this approach provides valuable
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insight into the mechanical behaviour of the system at an early design stage. The simplicity of the analytical
model allows researchers to avoid complex 3D CAD and finite element models during initial exploration, making
it a practical and efficient tool for preliminary design assessment.

Lastly, transitioning from planar bases to spatial bases would also be of significant interest. This transition
opens up a wider range of possible configurations as the base topology shifts from planar to spatial, an example
of which is illustrated in Appendix D. With multiple-order copy rotations, both within a single base and
between bases around the centre of the unit cell, volumetric strain becomes an increasingly convenient measure
for describing these structures, as the calculation of Poisson’s ratio becomes highly complex. Such a shift
could significantly impact the performance and deformation of the unit cells, particularly in hierarchical auxetic
structures.

5 Conclusion
In this study, volumetric strain is proposed as an alternative measure of auxeticity to the commonly used
Poisson’s ratio. It is shown that volumetric strain is particularly well suited for describing experimental results
and approximations of real-world systems, as it does not require all deformation components to reach zero
exactly at the same instance. This makes it less sensitive to small deviations that are inherent to experimental
measurements and numerical approximations.

Furthermore, this study demonstrates that a Connected Stars–based unit cell, copy-rotated n times about the
z-axis, can be accurately described using both an analytical model and a finite element model. Experimental
testing of the 4-, 6-, and 8-fold configurations using a Hoberman ring further supports the validity of these
models. The 2-fold reference experiments confirm that the Hoberman ring provides an effective means of
converting a one-dimensional imposed displacement into a uniform multi-directional actuation. In addition,
the ring introduces only minimal stiffness and friction, ensuring that the measured force–displacement relations
accurately reflect the mechanical response of the unit cells.

Both the concept of volumetric strain and the experimental assessment using Hoberman mechanisms can
be extended to more intricate structures, including unit cells with spatial rather than planar bases, as well
as configurations based on Archimedean solids instead of polygon prisms. Variations in base geometry and
stiffness can be incorporated without increasing the complexity of the volumetric strain formulation. In these
cases, volumetric strain becomes increasingly advantageous, as the complexity of its calculation increases much
less significantly than that of Poisson’s ratio, particularly when the base lengths differ or when the bases
directions do not align with the axes of a Cartesian coordinate system. This approach lays the foundation for a
substantial expansion the design space of auxetic materials. In particular, honeycombs based on Archimedean
solids offer a larger number of symmetry axes, which may enhance structural robustness and bring auxetic
metamaterials closer to practical engineering applications
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A Appendix A
The geometric parameters of the compliant unit cell were determined experimentally. Rather than targeting
a specific stiffness, the primary design objective was to identify a parameter set that ensured reliable elastic
behaviour of the flexures. Specifically, the flexures needed to be sufficiently thick and short to prevent cracking
caused by excessive local strains, while remaining slender enough to avoid plastic deformation during repeated
actuation.

Initial test prints were performed on a single two-dimensional unit cell to evaluate suitable flexure dimensions.
Three variants were produced: a baseline configuration with a flexure thickness of 1.0 mm and a length of 3.1
mm, a slender configuration with the same thickness but an increased flexure length of 4.6 mm, and a stiffer
configuration with an increased thickness of 1.5 mm and a flexure length of 3.1 mm. These initial tests revealed
that variations introduced by the 3D printing process had a significant influence on the mechanical response,
making it difficult to reliably assess the flexure behaviour in isolation.

To reduce the influence of local printing artefacts, the test geometry was expanded to a 2×2 tessellation
of the unit cell. This configuration provides a more representative deformation pattern and averages out local
stiffness variations. To minimize the effects of the boundary conditions due to the suspension, a pair of leaf
flexures was added on both sides of the suspension system. This system connects the tessellated structure to
the linear actuator and acts as a linear slider mechanism. The resulting test setup is shown in Figure 13.

Among the tested configurations, the least stiff flexure design exhibited the most favourable behaviour. It
remained fully elastic throughout the deformation range, showed no signs of plastic deformation, and allowed
for smooth, repeatable motion. Based on these observations, the final geometric parameters adopted in this
study are:

• flexure thickness: 1.0 mm,

• inner flexure length: 4.6 mm,

• inner arc radius: 0.25 mm.

In contrast, the beams connecting the flexures were designed to be significantly stiffer than the compliant
joints, such that they could be considered rigid in comparison. This condition was successfully achieved by
making the beams 6 mm thick, ensuring that the deformation of the unit cell is dominated by flexural rotation
at the joints, consistent with the assumptions made in the analytical and numerical models.

Figure 13: Two by two tessellation to asses the functionality of the parameters

17



B Appendix B: Analytical FBD for Auxetic Base Families

Configuration Full cell Free Body Diagram Relations

Connected Stars

Puzzle Tile

Rotating Triangles

Honey Comb

Missing Rib

Closed Geometry

Table 1: Free body diagrams, where the moments shown in green are counteracted upon tessellation, and the
corresponding force–moment relations for the base families defined by Roberjot [4].
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C Appendix C: Overview of Archimedean solids and uniform 3D
tessellations

Grünbaum [26] presented a comprehensive classification of uniform tilings of three-dimensional Euclidean
space. These tilings are constructed from uniform polyhedra, including infinite families of prisms and
antiprisms, the five Platonic solids, and the thirteen Archimedean solids. Archimedean solids are characterised
by faces that are regular polygons, with identical vertex configurations throughout the polyhedron. These
polyhedra are illustrated in Figure 14.
In total, Grünbaum identified 28 uniform space-filling tilings composed of such polyhedra. A subset of these
tilings can be interpreted as stacks of planar slab-like tessellations, denoted by S1–S14. Of these, eleven slabs
are directly derived from the eleven uniform two-dimensional tilings through prism extrusion, while slabs
S12–S14 represent distinct, non-prismatic layer constructions.
The complete list of the 28 uniform tilings, together with their polyhedral compositions, slab classifications,
and ratios of constituent solids, is reproduced below following Grünbaum’s original notation.

Figure 14: Overview of the Archimedean solids from Wolfram [27]

#1: ratio 1 : 2. Tetrahedra and octahedra; stacks of S12, with tetrahedra and octahedra meeting at
boundaries of slabs.
#2: ratio 1 : 2. Reflected layers of octahedra and tetrahedra; stacks of S12, with tetrahedra meeting
tetrahedra and octahedra meeting octahedra at boundaries of slabs.
#3: ratio 2 : 1 : 3. Alternating layers of 3-sided prisms and layers of tetrahedra and octahedra; slabs S12 (as
in #1) intercalated by slabs of S1.
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#4: ratio 2 : 1 : 3. Alternating layers of 3-sided prisms and reflected layers of octahedra and tetrahedra; slabs
S12 (as in #2) intercalated by slabs of S1.
#5: ratio 2 : 1 : 1. Tetrahedra, rhombicuboctahedra and cubes.
#6: ratio 1 : 1. Tetrahedra and truncated tetrahedra; stacks of slabs S13.
#7: ratio 1 : 1. Octahedra and cuboctahedra.
#8: ration 1 : 1. Octahedra and truncated cubes.
#9: ratio 1 : 1 : 3. Cuboctahedra, rhombicuboctahedra and cubes.
#10: ratio 1 : 2 : 1. Cuboctahedra, truncated tetrahedra and truncated octahedra.
#11. Layers of three-sided prisms; stacks of S1.
#12. Square-faced layers of three-sided prisms, rotated 90°; stacks of slabs S14.
#13: ratio 2 : 1. Layers of prisms over (3.3.3.4.4); stacks of S2.
#14: ratio 2 : 1. Layers of prisms over (3.3.4.3.4); stacks of S3.
#15: ratio 2 : 1. Alternating layers of square-faced layers of three-sided prisms and cubes; the layers of prisms
related by rotations; slabs S14 (as in #12) intercalated by slabs of S8.
#16: ratio 2 : 3 : 1. Layers of prisms over (3.4.6.4); stacks of S4.
#17: ratio 8 : 1. Layers of prisms over (3.3.3.3.6); stacks of S5.
#18: ratio 2 : 1. Layers of prisms over (3.6.3.6); stacks of S6.
#19: ratio 2 : 1. Layers of prisms over (3.12.12); stacks of S7.
#20: ratio 1 : 1 : 3 : 3. Rhombicuboctahedra, truncated cubes, cubes and octagonal prisms.
#21: ratio 2 : 1 : 1. Truncated tetrahedra, truncated cubes and truncated cuboctahedra.
#22: Cubes; stacks of S8.
#23: ratio 3 : 2 : 1. Layers of prisms over (4.6.12); stacks of S9.
#24: ratio 1 : 1. Layers of prisms over (4.8.8); stacks of S10.
#25: ratio 3 : 1 : 1. Cubes, truncated octahedra and truncated cuboctahedra.
#26. Layers of hexagonal prisms; stacks of S11.
#27: ratio 3 : 1. Octagonal prisms and truncated cuboctahedra.
#28: Truncated octahedra.

D Appendix D: Conceptual Extension to Archimedean Solid
Honeycombs

This appendix presents an exploratory unit cell design to illustrate a potential direction for future research..
This unit cell is based on a great rhombicuboctahedron honeycomb (see Figure 14) and employs spatial, rather
than planar, bases. Each base connects to adjacent bases at the vertices of a conceptual inner great
rhombicuboctahedron. The bases themselves are based on the Connected Stars (CS) topology and incorporate
a number of in-plane copy rotations equal to the number of vertices of the corresponding face. The outer
honeycomb, defined by the great rhombicuboctahedron, provides attachment points at the centre of each face.
Initial sketches of this conceptual structure are shown below. These sketches do not represent a complete unit
cell, but rather provide a partial and illustrative visualisation of the proposed geometric concept. In the
illustrations, red denotes octagonal faces, blue denotes hexagonal faces, and grey denotes square faces. The
drawings are intended purely to convey the underlying geometric idea and the potential of combining spatial
bases with Archimedean solid honeycombs, rather than to depict a finalised or optimised design.
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Figure 15: Upper and side views of a conceptual great rhombicuboctahedron-based unit cell, showing the
proposed spatial base arrangement.

E Appendix E: An improved analytical model
In the initial analytical model, the characteristic length L was defined as

L =
H

sin(α0)
.

This definition implicitly includes the flexural segments as well as half of the beam height at both the top and
bottom of the printed connected-star base. In the refined analytical model, the beam length is instead defined
as the length of the inclined beam segment present in the printed geometry. As a consequence, the difference
between the two definitions is represented by two vertical segments of length l = 4.42mm each, which together
account for the excluded beam height while preserving the overall structural height.
A schematic representation of the improved analytical model is shown in Figure 16. The corresponding
z-displacement results, including those of the revised analytical model, are compared with the numerical and
experimental results in Figure 17.

Figure 16: Improved analytical model
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Figure 17: An overview of the z displacement of each model, including the new analytical model
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