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Preface

Delft, 9 January 2023

Dear reader,

Before you lies the the product of one-and-a-half years of research. However, as many have
experienced and said before me, it is even more so the product of hard work, perseverance,
patience, but also of being adventurous and diving into everything you find in the process.

The thesis is a result of hard work because of the sheer amount of time and effort that are
needed to finish the project. It is a result of perseverance because your code will never do
what you expect it to do, as at least once per day you will see your efforts of the day before
go up into nothing as you find that it will only result in an additional error to the ones you
already had. Then, you have no choice but to take a deep breath, once in a while scream at
your computer, and get back into it. It is also a result of patience as you find that you lack
the skill of efficient programming, and to get your full results your code needs to run 24/7 for
at least three weeks on 14 CPUs (thank you Harold, mom and dad, and solar power). But
it is also the result of being adventurous, as you not only venture into a previously unknown
field, but also have to take in and dive into all the unknown things you find in the meter-deep
rabbit holes. Only to find yourself stuck in a tight passage and having to get your supervisors
to pull you back up to the above-ground. In some way I guess you also need to be somewhat
courageous -or is it naive?- to graduate at Aerospace Engineering.

Talking about my supervisors, I would like to thank Daan en Coen for their help and expertise
throughout the entire project. As mentioned, I could sometimes be prone to getting lost in
the vast amount of features that may warrant at least some investigation. Luckily, both Daan
and Coen could help me to re-focus on the bigger picture and to guide me towards what were
in their eyes the more valuable findings. I am happy to say that I also learned from this, as I
think this initiative slowly but steadily moved more towards myself. Next for this guidance, I
am also thankful for their enthusiasm about my research. I like the fact that they seem to be
genuinely interested in what I found and did, and that is a great motivator. I think the drive
of Daan to get us flying in the PH-LAB is a great example of this. Last, I want to thank
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them for their humour, lightheartedness and availability through their open-door policy. This
made working with them not only useful, but also fun.

Also my fellow thesis students in NB2.56 made graduating more fun. Having a place where
everyone is in the same (sometimes it seems, sinking) boat creates a feeling of camaraderie.
Or, it could also be that what binds us is a common enemy: MATLAB and Python errors.
The more errors we encountered the more we had fun. It made the choice to persevere and
continue with your work all the more possible. Free coffee also helps. The rat race for a nice
desk and computer screen does not.

But I also want to thank my parents, Jan and Thea, for their unconditional support through
this entire process and my studies as a whole. Not everything during this time, and I think
this applies to the rest of life, too, was straightforward, nor was it easy. Sometimes life
manages to throw a curveball at you and it hits you in the face. It is then that you really
learn to value the people supporting you, the people that keep helping you to see clearly what
you do it all for. To keep working on your dreams and your goals, and to -eventually- be given
the title of "ingenieur", which to carry for the rest of your life to work in the cockpit (but, as
I have also learned throughout my studies: don’t hope). Maybe once I will be trained on a
simulator model whose development was partly based on my own analyses. A stepping stone
towards my childhood dreams.

This thesis consists of four main parts. First, you will find the final scientific paper describing
the most important findings of my research. This is followed by a more elaborate description
of all background research performed in order to make possible the writing of the scientific
paper. This preliminary thesis report includes both a literature review and an investigation
into four different research topics that were an option for this thesis. The third part contains
an appendix to the preliminary report, an overview of all flight test data gathered in the
PH-LAB research aircraft for stall model identification. The last part are the two appendices
to the scientific paper, containing all compared and individual parameter behaviour plots that
were analysed to come to the final conclusions in the scientific paper.

I am inexplicably proud that it all has resulted in what you are reading now, the crown on
my 7.5 years of study, my MSc thesis. I wish you a lot of pleasure in reading it.

Yours faithfully,
Patrick Brill

P.A.R. Brill Master of Science Thesis
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Improving Stall Model Accuracy through Optimal Data Slicing
by Analyzing Kirchhoff Stall Parameter Estimate Behaviour

Pieter A.R. (Patrick) Brill*
Faculty of Aerospace Engineering, Delft University of Technology, Delft, Zuid-Holland, 2629HS, the Netherlands

To improve the safety of commercial air transport, pilots are required to train on simulators
to recognize the characteristics of an impeding stall and subsequently correctly recover from it.
To prevent negative training, it is important that the accuracy of the used simulation models is
high. A manner to model the nonlinear, unsteady aerodynamic effects during the stall is by
using Kirchhoff’s theory of flow separation. However, widespread difficulties exist in correctly
estimating the stall-related parameters in these models. It is not always possible to simply gather
more flight data to solve this problem. Therefore, the research in this paper aims to increase
model accuracy by making optimal use of already existing flight data via introduction of the
slice-based modeling method. This is done by analyzing the change in the parameter estimate
values when applying the system identification procedure to sliced partitions of simulated flight
data. These partitions incrementally increase in size with time from the stall. The simulation
data is generated to be representative of the available flight test data. The change in parameter
estimates was analyzed for both the pre-stall and post-stall phase. The estimated value for each
partition was compared to the actual parameter value setting in the simulation model used to
create the data. Manually, an optimal window was found for each parameter for which the
estimated value and actual value were equal. For the stall-related parameters this window is
often not more than 10 s wider than the stall. For the linear stability and control derivatives it
is found that using more data generally results in a better estimate. These window sizes were
used in the estimation for each separate parameter on the real flight test data. Even though this
method represents a prototype, in more than half of the validation cases a decrease in M SE of
10 % to 35 % could be achieved. This shows that the new slice-based modeling method is able
to improve the accuracy of nonlinear stall models without the need to gather more flight data.
Additionally, the parameter estimate behaviour analysis technique and slice-based modeling
method may have applications that reach beyond the realm of stall modeling.

Nomenclature
Roman symbols No = total number of outputs
ai = stall abruptness parameter N, = total number of parameters
Ax = longitudinal acceleration 0 = quartile
A, = vertical acceleration R = noise covariance matrix
c = chord length RRMS = relative root mean squared error
Cp = drag coeflicient S = wing surface area
Cr = lift coefficient S(k) = output sensitivity matrix
C Z’ = nonlinear unsteady Cy, at high angles of attack Vras = true airspeed
Cx = longitudinal force coefficient t = time
Cz = vertical force coefficient X = airfoil flow separation point
D = dispersion matrix X = nonlinear regressor
J = nonlinear estimation objective function y = measurement signal
k = timestamp b = model output
M = Fisher information matrix
m = aircraft mass Greek symbols
MSE = mean squared error a = angle of attack

*MSc Student, Department of Control & Simulation, patrickbrill @outlook.com.



a* = angle of attack for which X = 0.5 o = air density

Oa = aileron deflection loa = standard deviation

Oc = elevator deflection o? = variance

oy = rudder deflection T = angle of attack rate effect time constant
0 = parameter () = stall hysteresis time constant

0 = estimated parameter

I. Introduction

THE most significant cause of fatal accidents in commercial air transport is loss of control in-flight [1]. Loss of control

in-flight occurs when the pilots of an aircraft cannot recover the aircraft from an adverse flight condition outside
its normal operational envelope [2]. An example of this is aerodynamic stall, which is defined as "an aerodynamic
loss of lift caused by exceeding the critical angle of attack" [3]. To train pilots to handle these situations properly, the
International Civil Aviation Organisation has urged member states to implement upset prevention and recovery training
in their regulations [3]. In response to this, the European Aviation Safety Agency has updated its legislation on flight
simulation training devices [4], stating that these must accurately model the aircraft behaviour in the stall to train pilots
effectively in recognizing and handling the aircraft stall characteristics [5, 6].

Aerodynamic models valid in nominal flight phases are not immediately valid near the stall, where nonlinear and
unsteady effects are present [7]. Therefore, the model needs to be extended with nonlinear terms, but this is not trivial.
Often, the conventional stability and control derivatives are then estimated separately for the nominal flight phases and
for near the stall and scheduling is required, e.g. as in [8, 9].

An elegant yet powerful method to model some of the characteristic behaviours of an aircraft in the stall without the
need for scheduling is via Kirchhoff’s theory of flow separation [10]. This can be used to identify aircraft stall models
from flight data for both the longitudinal and lateral motions of the aircraft [11-13]. However, in practice, difficulties
still arise in estimating and validating some of the stall model parameters with significant reliability [14, 15]. This issue
is usually accounted to a lack of dynamic excitation present in the available flight data in combination with the short
duration of the stall event.

Kirchhoff’s theory is also used in stall modeling research at the Faculty of Aerospace Engineering of the Delft
University of Technology. This research is centered around the Delft University Aircraft Simulation Model and analysis
Tool (DASMAT) [16] which models the faculty-owned Cessna Citation II aircraft PH-LAB. Multiple research efforts
have improved and extended this model from the normal flight envelope to the stall [17-20]. It has been shown that this
model, in combination with the incorporated buffet model [21], provides aircraft stall behaviour in a full flight simulator
which is strongly comparable to that of the stall in the actual aircraft [21, 22]. However, here too, difficulties exist in
correctly estimating the parameters describing the nonlinear and unsteady effects. Again, additional flight testing is
recommended.

Sufficient dynamic excitations in flight testing is important as this increases the amount of information that is present
in the data for the to-be-estimated parameters. This is usually achieved by applying specific control inputs throughout
flight test runs. These may be conventional inputs applied by the pilots of the aircraft [23, 24] or may be optimal inputs
that are specifically tailored to increase the amount of information for a certain model parameter [25-27]. But this
approach is only possible if a priori information about that parameter is available. The optimal-input approach is based
on the concept of Fisher information [23, 28]. However, introducing this approach also requires additional flight testing.
However, a drawback is that simply gathering more flight test data is often not an option due to high costs, lack of time,
or both.

The research in [8, 9] makes use of a second, distinctively different method with the same goal of increasing stall
model accuracy, but without the need for additional flight tests. This is the practice of partitioning data, introduced in
[29]. This can result in an improved stall model, but requires scheduling according to the associated angle of attack of
the partition on which the estimation was applied. Apart form the model accuracy increase, this research also showed
that different partitions associated with different angles of attack will deliver different estimates for the same parameter.
However, it is has never been demonstrated whether the slicing of data also has a positive effect on any model that also
involves nonlinear parameters.

Summarized, on one hand there is a problem: often, research efforts have difficulties identifying the nonlinear
parameters with the limited data available. E.g. as is the case for models using Kirchhoff’s theory of flow separation.
In these efforts, as much data as is available is used in the estimation procedure. No attention is paid towards which
parts of the data may be valuable to the nonlinear Kirchhoff stall parameters and which parts may be valuable to the



linear stability and control derivatives. This may cause nonlinear stall parameters to model parts of the linear nominal
behaviour in the data and vice versa, which is not in line with their intrinsic purpose. On the other hand, there is
proof that different parts of already available flight test data deliver different estimates, as seen in [29]. This raises
the question: can model accuracy be improved by choosing specific parts of data to which to apply the estimation
of a specific parameter, in contrary to the usual practice of simply using all data for all parameters regardless of the
circumstances under which the data were gathered?

The main contribution of this paper is to improve stall model accuracy through optimal data slicing by analyzing
Kirchhoft stall parameter estimate behaviour. A new slice-based modeling method is introduced. Simulation data is
generated from a simulation with the model structure of [19] with known parameter values set. The simulated flight
trajectory is designed to closely resemble the available real flight data and given inputs. Via data slicing, partitioning
and Fisher information analysis, it is for the first time possible to directly observe which part of the simulated data
causes a change in the value of a parameter estimate. This is named "parameter estimate behaviour" for the remainder of
this paper. However not part of the modeling method, this analysis can also be performed on flight test data for more
insights that can validate the method. By comparing the parameter estimate behaviour of the simulation data to the
actual simulation model value, an optimal time window can be found for all input types given during the stall, for the
pre-stall and post-stall phases, and for every separate parameter. The optimal window sizes are subsequently applied
to the estimation of every parameter using the flight test data. The accuracy achieved with the slice-based method is
compared to that achieved when the normal modeling method is applied where simply all available data is used.

This paper is structured as follows. In section II, the research methodology is explained extensively. In section III,
the results of this method are presented, after which they are analyzed and discussed in section IV. This paper concludes
with section V.

I1. Methodology

A. Aerodynamic Stall Model

Before discussing the full slice-based modeling method, the assumed aerodynamic stall model must be introduced.
In order to capture the unsteady and nonlinear behaviour in the stall, Kirchhoff’s theory of flow separation is used
[10, 11]. It states that the nonlinear and unsteady behaviour of the lift coefficient at high angles of attack C Zl isa
function of angle of attack « and flow separation point X:
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C(a,X)=Cp,

The movement of flow separation point X along the chord of the wing is itself also a function of the angle of attack
a and the angle of attack rate &, such that X = X(«a, &). It can be described by an ordinary differential equation [11]:

dX 1
TIE—X:E{l—tanh[al(a/—‘rzd/—a*)]} 2)

The value of X is 1 when the flow is fully attached (separation point at trailing edge) and 0 when it is fully separated
(separation point at leading edge). The parameters a;, @*, 71 and 7, are the nonlinear stall parameters. Parameter a;
controls the abruptness of the stall, @* is the angle of attack where X = 0.5, 7| influences the relaxation of the flow
separation and 7, models the hysteresis effect. The value of these parameters depend on aircraft type and are ultimately
the parameters that need to be estimated correctly to result in highest stall model accuracy.

The stall model investigated in this paper is the model as defined in [19]. The equation for the lift coefficient Cy, of
this model is given in Eq. (3). It was identified from flight test data by use of orthogonal function modeling [30]. Only
the C, model is considered in this paper as it was found in preliminary research that this contains most information on
the stall parameters.

2
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In which (a — 6°)2 is a spline function active only when a > 6°. The stability and control derivatives Cr,, Cr,, and
CL, are the linear parameters of the model. The parameter values estimated by [19] and the absolute lower and upper



bounds of the search space applied during estimation for these parameters are given in Table 1. These settings are used
as main reference in this paper.

Table 1 Estimated parameter values and used search space bounds for estimation of the parameters, as in [19].

Bounds
0; Value  Lower Upper
ai, — 27.6711 15 40
a*, rad  0.2084 0.1 0.35
T1, S 0.2547  0.001 0.8
T, S 0.0176 0 0.5
Cry» — 0.1758 0.1 0.4
Cr,, 4.6605 2 6
Cr,, — 10.7753 0 20

B. Overview of the Slice-based Modeling Method

The sliced-based modeling method introduced in this paper is a further development of the method introduced in
[19]. The modeling method used there, in the remainder of this paper called the "normal modeling method", is depicted
in Figure 1. In the normal method, the gathered flight data is directly passed to the flight path reconstruction. From the
reconstructed states, the lift coefficient Cy, is calculated. This Cr, is passed to the model structure selection containing
the orthogonal function modeling, together with any other reconstructed state that may be needed as a regressor x. In
this paper, the model structure selection is not performed, but the final model structure of Eq. (3) is always used. This
makes it possible to perform an analysis on a distinct set of known parameters, including calculation of the Fisher

information. A nonlinear and linear estimation are performed, resulting in the final parameter estimate vector 6. This
finalizes the stall model.

Flight Model
path recon- strueture
struction Selection

Flight states
test data -

Cr, X model|  Parameter
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D

Nonlinear
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Linear
estimation

Stall model

Y

Fig.1 Overview of the normal modeling method, as in [19]. The model structure selection that takes place in
[19] has not been incorporated in the research described in this paper.

The slice-based modeling method is an extended version of the normal method described above. It is depicted in
Figure 2. The slice-based method contains all but one of steps from the normal estimation procedure, represented by
the boxes "Flight test data", "Flight path reconstruction”, a slightly different parameter estimation called "Slice-based
parameter estimation", and finally the estimated "Stall model". As mentioned, the model structure selection is not
included, as the model structure is set a priori. The main addition of the new slice-based method is that the parameter
estimation now uses an optimal time window for each separate parameter, indicated by the optimal slice number nsj;ce,,),, -
Finding this optimal window starts with generating a simulation data set. The parameter estimate behaviour that results
from this simulation data is used as a substitute for the expected, but unknown, parameter estimate behaviour that may
result from flight test data. The simulated data is also passed through flight path reconstruction. This data is then sliced
and partitioned in three different manners. The nonlinear parameters Onontin and the linear parameters 0} in the model
are then estimated for all three slicing types and every partition within these types. This makes it possible to analyze

the behaviour of the parameter estimates in time by use of the median of the parameter estimates 8, the quartiles Q of



their distribution and the associated Fisher information content M. From this behaviour, the sought-after optimal slice
number ngice,,, can be selected for each separate parameter for each type of stall present in the flight test data, both for
pre-stall and post-stall phases. In the following subsections, all of the above steps are discussed more extensively.
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Fig.2 Overview of the slice-based modeling method, as introduced in this paper.

C. Data Sets

In the research described in this paper two types of data are used: simulated flight data and real test flight data. This
is different from existing stall modelling research, in which only real flight data is used. The use of simulated flight data
creates the possibility to directly compare the estimated parameters with their actual, known values, rather than only
model output validation. This can deliver direct insight into the performance of the parameter estimation procedure.
Especially, because the simulation data is generated to mimic the available real flight test data. After the analysis of the
simulated data, the real flight data can then be used for final parameter estimation and validation. The two types of data
sets in this paper are discussed below.

1. Flight Test Data

Real flight data was gathered in two stall test flights by the TU Delft Cessna Citation II research aircraft in 2018 [19]
and 2019 (not connected to a specific research paper). Three different types of stalls are chosen that differ from each
other by the control input given within the stall. These are the following

* No inputs. To provide a baseline for this research, the most straightforward type of stall was chosen: the symmetric
stall with no inputs. There are three such stalls in the data of 2018.

» Inputs —6, 3-2-1-1 and -6, 3-2-1-1. The 3-2-1-1 stalls were chosen to investigate the usability of this widely-
applied input in stall modeling. The combination of the two surfaces was chosen as there are no stalls in the data
with solely a ¢, input. There are thirteen such stalls in the data of 2019.

* Inputs —6, wiggle and -6, wiggle. The wiggle input was specifically developed in [24] and used in [19] as a
pilot-applied input for use in stall flight modeling, to apply large deflections without leaving the desired stall
state of the aircraft. This type with two control surfaces is chosen to be able to compare the parameter estimate
behaviour in this stall type to the behaviour of the 3-2-1-1 stall type. There are six such stalls in the data of 2018.

To make the terminology for the real flight data consistent with the simulated flight data, for a certain stall run of a

certain input type the term "realization" is used. Thus, there are three, thirteen and six realizations per the different
input types in the flight test data. The aim of the simulation data is to mimic the data gathered in the real flight tests,
with the three input types present therein, but within a controlled environment.



2. Simulation Data

The simulated flight data was created by use of DASMAT [16], containing the model of the PH-LAB Cessna
Citation II research aircraft. The aerodynamic model is as developed by [19] and also contains the buffet model as
developed by [18]. Stall runs are simulated using the "stall autopilot" as developed in [21, 22].

The simulated flight data starts with the aircraft trimmed in steady, straight, symmetric flight. To improve the
unscented Kalman filter’s convergence in the flight path reconstruction, successive excitations are introduced. A 3-2-1-1
input followed by return to symmetric flight is given successively for the aileron, elevator and rudder. This introduces
excitations in all six degrees of freedom.

After this begins the "stall run", which is used in the parameter estimation procedure. First, steady straight symmetric
flight is maintained for 120 s. A wings-level hold controller is active during this time to prevent the aircraft form
entering its unstable spiral eigenmode. Hereafter, the stall autopilot is engaged to perform a symmetric stall. The stall
entry and recovery procedure are discussed in detail in [21]. The stall autopilot is turned off when the original altitude is
almost reacquired. Then, the aircraft is steered back to steady straight symmetric flight, which is retained for 120 s by
use of an altitude hold and a roll attitude hold controller.

An overview of the simulated flight and the definition of the different phases contained therein is given in Table 2
and this is visualized in Figure 3. Phase 7 to phase 12 and their importance are discussed further in subsection IL.E.

Table 2 Phases in the simulated flight data.

Phase fpegin, S fend, s Description

0 0 30 steady straight symmetric flight
1 30 50 —0q 3-2-1-1 (tinpur =40's)

2 50 90 —04 3-2-1-1 recovery

3 90 110 =6, 3-2-1-1 (tinpur = 100 s)

4 110 150 -0, 3-2-1-1 recovery

5 150 170 46, 3-2-1-1 (tinpur = 160 5)

6 170 210 40, 3-2-1-1 recovery

7 210 330 steady straight symmetric flight
8 330 369 stall entry

9 369 382 stall (buffet activated)

10 382 440 stall recovery

11 440 500  return to trimmed flight

12 500 560 steady straight symmetric flight

Three different stall types were simulated to mimic the real flight data. These three input types in the simulation data
are shown in Figure 4. The first stall type has no distinct inputs and is the standard stall as flown by the stall autopilot.
This is the baseline to which the other types can be compared. The second type has a 3-2-1-1 input on both the elevator
and the aileron. To achieve the desired high angles of attack, a constant ¢, input of —0.11 rad was set at the start of
the stall, and to it was applied a 0.02 rad 3-2-1-1 input. For the §,, a 0.04 rad 3-2-1-1 input was applied to the trim
deflection. The last type is the wiggle input, also on the elevator and aileron. A MATLAB sawtooth()-signal was
used to manually tweak the inputs to imitate the inputs from the test flight data as closely as possible. Important to note
is the different "frequency" for the §, and . inputs.

Last, arandom noise signal with the same standard deviation as in the unscented Kalman filter noise and measurements
covariance matrices in the flight path reconstruction is added to all states and measurements. Also, a known bias is
added to the input signals (linear accelerations and angular velocities). In reality, the @ and 8 are measured by the air
data boom installed on the nose of the aircraft. Therefore, the @ and S signals are passed through the formula for the air
data boom corrections [31], such that the final signals behave as if they were measured by the vanes on the air data
boom. The simulation run is performed 30 times to acquire 30 differently seeded realizations in order to reach the
central limit theorem’s minimum sample size.
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Fig.3 Overview of the phases from Table 2 in the simulated data.

D. Flight Path Reconstruction

The flight path reconstruction is performed to filter out noise and bias from the measured aircraft states and
measurements such that reliable data is available for the parameter estimation. It is needed for both the simulation data
as well as the flight test data. Flight path reconstruction is performed by use of the unscented Kalman filter (UKF)
[32, 33]. It has been shown that the UKF achieves higher reliability in estimation of the states of nonlinear systems
when compared to the extended Kalman filter, although at the cost of higher computational cost [34-36]. As the Kalman
filter procedure only has to be performed once per dataset of a flight, the higher expected reliability is chosen over the
computational cost, as in earlier TU Delft stall modeling research [17-19]. It is shown in [36] that the UKF is also
usable when applying sensor fusion techniques, which is also required in this research. The kinematic and measurement
model applied in the UKF are taken directly from [19].

Then, using the reconstructed states, the longitudinal force coeflicient Cx and vertical force coefficient C in the
aircraft reference frame are calculated via:

mA
Cx= ot @
3PVTasS
mA
T ®
3PVTasS
In which m is the aircraft mass calculated from the available mass model. A, and A, are the reconstructed
accelerations of the aircraft center of gravity in longitudinal and vertical direction, respectively. The calculated air
density at the reconstructed altitude is denoted by p and the reconstructed true airspeed by Vras. S is the aircraft wing

surface. Thereafter, the lift coefficient C, is calculated via:

Cp =Cxsina — Czcosa (6)

This Cy, can then be used in the nonlinear and linear parameter estimation, in combination with the reconstructed
states for the angle-of-attack « and its derivative in time & as regressors x. However, in the case of the simulated data,
slicing and partitioning takes place first.

E. Slicing and Partitioning Data

With data slicing, the simulation data is partitioned in time into partitions of different widths. For this, phase 7 to
phase 12 from Table 2 are of importance as they are the basis of the different slicing types considered in this paper.
Phase 7 is the start of the steady straight symmetric flight foregoing the stall. Phase 8 is the start of the deceleration into
the stall. Phase 9 is the stall, whose entry is defined by the beginning of the stall buffet. The start of phase 10, the stall
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Fig. 4 Overview of the three simulated input types within the stall (phase 9), showing the angle of attack «
and flow separation X, as well as the inputs 6., 6. and 6,. Note the non-zero aileron and rudder deflections in
trimmed flight, caused by the non-zero C,, and C,, coefficients as found by [19] present in the simulation model.

recovery, is when the angle of attack has reached its maximum value and airspeed begins to increase again. The stall
buffet may still be active at that point. The recovery ends and phase 11 starts when the original altitude is reacquired.
Phase 11 and 12 together contain 120 s of (quasi) steady straight symmetric flight. All phases 7 ti 12 together contain
350 s of data.

These 350 s of data are divided into 350 "slices", each containing 1 s of data. Combinations of multiple slices are
called a "partition", which in this paper are constructed from the slices in three different manners. These three manners
are called the "slicing types". In a later step, the parameters can be estimated for every partition which is the core of the
parameter estimate behaviour analysis. Whenever from this analysis an optimal pre-stall and post-stall partition are
chosen with a starting time and end time expressed in a corresponding slice number n4;;.., they comprise a "window".

The three different slicing types considered in this research are indicated in Figure 5. This figure indicates the
direction and numbering of the slices ny;;.. and the respective times ¢ they are located at. The vertical lines in the figure
indicated by "Window Ref. [18, 19]" correspond approximately to the data window used in [18, 19] to perform the
estimation procedure of each stall. In these research efforts, the cutoff points were usually arbitrarily chosen to be
around the beginning of the stall entry and somewhere during stall recovery. It is worthwhile to investigate later if this
may have influenced the estimated stall parameters, which is discussed in section III.

Slicing type 1 contains partitions that start with the last second of data in the stall and that increase in size towards
the pre-stall phases. Slicing type 2 contains partitions that start with the first second of data in the stall and that increase
in size towards the post-stall phases. For slice types 1 and 2, the first partition contains 1 s of data and the last 172 s
and 191 s, respectively. The first partition of slicing type 3 contains all slices that make up the stall and the partitions
increase in size towards both sides of the stall (each increment adds 2 slices of 1 s). For slice type 3, the first partition
contains 13 s of data and the last 331 s.

In the slice-based modeling method, the parameter estimate behaviour analysis is not performed for the real flight
test data. This has no added value as there is no actual parameter value that the estimates can be compared with, in
contrast to the simulation data where the values in the model are set to a known value. However, as part of the proof of
concept, the parameter estimate behaviour of the real flight data is discussed in the results of section III. It is discussed
to what extent the simulation data is representative of the real flight test data. In the case of the flight test data, the
phases as in Table 2 can also be identified by closely examining the behaviour of the aircraft in time and assigning parts
around the stall to a certain stall phase. Note that some phases before stall entry and after stall recovery may be of
variable length or may not be present at all.
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(c) Slicing type 3, pre-stall and post-stall.

Fig.5 Overview of the three slicing types.

F. Parameter Estimate Behaviour Analysis
The parameter estimate behaviour analysis of the simulation data consists of two main parts. The first part is the
parameter estimation for all partitions of the three slicing types. The second part is visualizing the parameter estimate

behaviour by use of metrics § and Q describing the median and distribution of the parameter estimates of the 30
realizations and by calculating the Fisher information M.

1. Nonlinear and Linear Estimation

The parameter estimation procedure is based on that presented in [19] and consists of a nonlinear estimation of the
stall parameters, followed by a linear estimation of the stability and control derivatives.

The nonlinear estimation is performed by use of the fmincon() function of MATLAB. The parameter estimates

are found by minimizing the objective function J (5, x), which is the mean squared error MSE of the lift coefficient.
Mathematically given as:

A
3

q I T
6 = argminJ (8.x),  with J(8,x) = - (CL(e,x) - CL) (CL(e,x) - CL) 7
6 n

With x the nonlinear regressors @ and & and with Cp the lift coefficient, all calculated from the flight path
reconstruction. The total number of data points is denoted by n. The parameter vector 6 is defined as:

- T
6= ag a* T ) CLO CLQ CL(,Z] (8)

Last, Cp (6, x) is the model output for the lift coeflicient, calculated with the parameter estimates currently regarded
in the optimization routine. It is calculated by numerically solving Eq. (2) with the currently regarded parameter
estimates, resulting in X. This is then used in Eq. (3) to calculate Cy..



The nonlinear optimization routine of fmincon() makes use of the gradient % of the cost function surface

J (5, x). Calculating this is not trivial, as is discussed in [19]. This calculation is related to that of the Fisher information
matrix, as discussed in Appendix A.

The optimization is performed for 500 initial conditions, with each initial condition consisting of seven parameter
estimates randomly generated from a uniform distribution with upper and lower bounds as given in Table 1. The global
optimum is regarded as the median of all optima found that come within 5 % of the lowest found final cost function value.
The stall parameters following from the nonlinear optimization are set constant for the following linear estimation.

2
The linear estimation is a straightforward ordinary least squares estimation with [(%Y) a | regarded as an extra

regressor. It is calculated by numerically solving Eq. (2) with the found nonlinear parameter estimates. From the linear
estimation the final estimates of Cr,, Cr,, and Cy , are found.

2. Parameter Estimate Behaviour: Optima Distribution Metrics

The optima distribution metrics can be calculated for any individual parameter, or they can be compared by their
normalized metrics.

The individual parameter behaviour of any set of realizations can be visualised in boxplots. This shows the median

0, the inter-quartile range Q> 3 (consisting of quartiles 2 and 3) and the full range of optima excluding outliers Q14
(consisting of all quartiles 1 to 4). Outliers are defined as being more than 1.5 times the inter-quartile range away from
the inter-quartile range. These three metrics are calculated for every partition of the three slicing types, such that a
boxplot can be drawn at every slice number 7j;... This individual behaviour can be analyzed for both the simulation
data and the test flight data.

In order to be able to compare the behaviour of the parameter estimates to each other, these metrics can also be
normalised with respect to the actual parameter value. This can only be done for the simulated flight data where the
actual value is known. The normalised bias of the parameter estimates can be calculated by:

6, — 6,

L

x 100% )

In which @; is the median of the sample of all estimated parameters of the 30 realizations and 6; is the actual value
setting in the simulation from Table 1.

Also the behaviour of the mean squared error M SE can be plotted, in the same manner as for the parameters. The
median of the MSE of all realizations is denoted by MSE. The same quartile ranges Q5 3 and Q14 exist for the M SE.

3. Parameter Estimate Behaviour: Fisher Information

Information content in a signal can be quantified via a description of the sensitivity of a model’s output y to changes
in a parameter ;. This is given by the (partial) derivative %. For multiple-input-multiple-output models with N,
number of parameters gathered in a parameter vector g, and N, the number of system outputs, the information content
is given by the N, X N, Fisher information matrix M, defined as [23]:

N
M = Z S(k)TR™'S(k) (10)
k=1

With £ = 1,2, ..., N the discrete sample number of the data signal. R is a N, X N,, diagonal matrix of which the
elements introduce a scaling to the output sensitivities according to the measurement noise related to that output, i.e. the
noise covariance. For this research, R is set to 1 as there is only one output. The output sensitivities themselves are
captured in the N, X N, output sensitivity matrix S(k), which is given by [23]:

Iy (k) oy (k) . oy (k)
00, 06, 00Np
o) om®) . anl
0 0 o
Sty =| " ’ ”” (1)
Oyny (k) Oyny (k) Oyn, (k)
96, 96, 90N,
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The sensitivity matrix S(k) can usually be calculated analytically, derived from the dynamic equations of the
to-be-estimated model [23]. E.g. for linear systems with one output, the matrix S(k) is equal to the kth row of the
regression matrix of this system.

The inverse of the Fisher information M is the dispersion matrix D. The diagonal entries of the matrix D are the
theoretical lower limit for the estimated covariances of the parameters, i.e. the Cramér-Rao Lower Bound:

D =M" < Cov[d] (12)

And thus, the Cramér-Rao Lower Bound for the parameter standard deviations oy, are the square-root of the diagonal
elements of D, i.e.:

oo, =+Dij, withi=j=12,...,N, (13)

An advantage of the use of the Fisher Information when analyzing signals is that it is related to the theoretical
lower limit of the parameter covariances. Therefore, it is unrelated to the algorithm used in the actual estimation of the
parameters. It purely describes the added value of the signal to estimate a certain parameter.

The Fisher information is parametric, which means that it differs for different given model structures. The derivation
of the analytical definition of the Fisher information for the model given by Eq. (3) is described in Appendix A. This
definition is used to calculate the information content of the Cy, signal from flight path reconstruction.

More interesting than the total Fisher information in a signal is the derivative of the Fisher information in time. This
can say something about the value of a certain part of a data signal to a certain parameter. This is compared directly to

the parameter estimates’ median 6 and distribution shape 05 3 and Q_4. For every 1 s slice, the Fisher information can
be calculated for a specific parameter via:

AM k"_sli('e()y,d
— = T Sig e (TR S, (K), withig = jg, =1,2,...,7 (14)
Angiice k=k o e

Nglice .
“‘l""begzn

AMo,
As the total Fisher information is a sum via Eq. (10), the Fisher information of one slice A is in fact the
derivative per second. In this equation, k, and k , are the indices of the beginning and endlng of a slice

“I’Céhegin Nslice,,,

and iy, and jg, are the row and column number, respectively, for parameter 6; in the matrix S(k).

G. Slice-based Parameter Estimation

The final goal of this paper is to prove that using different time windows of data for estimation of a certain parameter
can increase model accuracy. This concept is applied in the slice-based parameter estimation step.

The input to the slice-based parameter estimation is an optimal time window, found by analyzing the parameter
estimate behaviour in the simulation data as explained above. The begin and end of this time window are identified by
the optimal pre-stall and post-stall slice number Asliceop s for every individual parameter, for every of the three stall
input types. This ngiice,,, is found manually and is the point in time where the median of the parameter optima of the
30 realizations is equal to the actual parameter value used in the simulation.How this works in practice is explained in
the results of section III.

The actual parameter estimation consists of a new manner of estimating the parameters on the real flight test data.
The realizations of the flight test data are randomly divided into fifteen training realizations and seven validation
realizations. This is from a ratio of roughly 2-to-1 within each stall input type (i.e. 2-to-1 for no input, 9-to-4 for 3-2-1-1,
4-to-2 for wiggle). First, the nonlinear estimation is performed on the optimal window for the first parameter, a;. This
value is then saved. Then, the optimal window for o™ is chosen and the estimation is performed again. During this,
the parameter a; can be varied again to give full freedom to the nonlinear optimization algorithm. This is then also
performed for 71, 7, and the stability and control derivatives. At this point, X is calculated for the full data such that it
can be used as a regressor in the linear estimation, in which the final values for Cr,, Cr_, and C L, are calculated. Apart
from using optimal windows, the optimization routine is the same as explained for the parameter estimate behaviour
analysis in subsubsection IL.F.1.

To compare the increase in accuracy of the slice-based modeling method to the normal modeling method, both
procedures as depicted in FigureA 1 and Figure 2 are applied to the flight test training data. This results in two different

final parameter estimate vectors 6. For both, the model outputs yc, are calculated based on the reconstructed states from
the validation flight test data and these are compared to the measured yc, by means of the MSE and RRM S metrics.
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III1. Results

A. Parameter Estimate Behaviour Analysis
The parameter estimate behaviour analysis is performed by use of the three introduced metrics. The first are the
medians § and MSE of the parameter optima and MSE, respectively. Second is the associated distribution of these
optima and M SE, which can be described by visualizing the inter-quartile range Q5 3 (quartiles 2 and 3) and the full
razlge of optima excluding outliers Q_4 (all quartiles 1 to 4). Last is the derivative of the Fisher information per slice
M

Angjice
These metrics can be visualized in a comparative and individual manner. Both types appear below. These types

of graphs were constructed for all stall input types, slicing types and different parameters. For conciseness, only a
selected number of these graphs are shown. They represent parameter estimate behavioural characteristics that are
present throughout all these different graphs.

Important to note is that the plots for & and X when regarding simulated data are those of realization 1. With the
naked eye, these are not distinguishable between the realizations. For real data, « for all different realizations is shown

and for X and A,fll\’,[ the average of all realizations is depicted. Note that for flight test data this is purely indicative
AM

as the actual X and >*— are not known, due to the actual parameter values being unknown. Therefore, they are
calculated with the a prié}i known values in Table 1.

For slicing type 1, the steady, straight, symmetric flight part before and after the stall was 120 s long. No significant
findings could be made in the first and last 60 s of this data. To decrease computational time for slicing type 2 and 3,
these first and last 60 s of data were removed from the analysis. This means that for these slicing types the graphs are
shorter than for slicing type 1.

1. Behaviour of the Mean Squared Error and Interaction between Parameter Estimates

In Figure 6 the behaviour of the M SE is shown for a wiggle input in flight test data. Throughout the stall, the M SE
increases and thereafter it decreases. This behaviour exists in all stall types, both in simulation data as in flight test data.
The only difference between the simulated data and the flight test data is that in the simulated data the distribution of
MSEs is very narrow.

ob 0
g %107
MSE
6 k- Q2,3
‘» Q1—4
=~ 5L
0 ‘ ! ‘ ‘ |
1 20 40 60 80 90

Neslice; —

Fig. 6 Behaviour of the M SE. Flight test data, wiggle input, post-stall. The upper plot shows the angle of attack
a and average flow separation point X. In the lower plot, MSE is the median of all six realizations, Q, 3 is the
inter-quartile range, Q_4 is the full range excluding outliers. As the plots show the post-stall, the time runs same
to the slicing numbers, i.e. from left to right.

The normalized biases of the parameter estimates in Figure 7 are a clear example of the suspected cause of the
increase and then decrease in the M SE. The interaction between the X-parameter estimates and the normal stability and
control derivatives can be observed. This interaction is present in all different stall types. Changes in the X-parameter
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estimates are present only immediately before and after the stall. All X-parameters have moved to their final estimate
before ngjice = 10. This is different for the stability and control derivatives. They differ significantly from their actual
values right before and after the stall, with the estimates of Cr,, and Cy, , being even more than 100 % lower than their
actual values. Erratic changes in all stability and control derivative estimates can be observed as changes occur in the
X-parameters close to the stall. Only after ng;.. = 10 is it that the stability and control derivatives start to move steadily
to their final values, which are all within 50 % of the actual values.

The described behaviour of the parameter estimates can explain the changes in M SE in Figure 6. In the stall,
unsteady flight conditions exist and the X parameter estimates are adjusted by the optimization routine to keep the rise
in MSE as small as possible. The changes in X parameter estimates are accommodated by changes in the stability
and control derivatives, evident by the large differences Cr,, and C, L, attain from their actual value before ng;c.. = 10.
After the stall this effect occurs too, but with the parameters switched. Here, changes of the X-parameters accommodate
the changes in stability and control parameter estimates. As the stability and control derivatives get close to their actual
values, the model becomes better at describing the steady flight conditions that become a larger part of each partition.
This causes the decrease in M SE after the stall. An adverse effect of this is that the model becomes worse at modeling
the aircraft in the stall. This is evident by the large differences of the estimates of 7| and 7, to their actual value in
Figure 7 after ng;ce = 5. These differences become more than 200 %o.

It is for this reason that many of the X parameter optimal slice numbers in Table 3 contain no more than 5 s of data
before or after the stall. On the contrary, for the stability and control derivatives it is observed that the more data is used
the better their estimates become.
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Fig. 7 Compared behaviour of all parameters. Simulation data, wiggle input, both pre-stall and post-stall
(slicing type 3). The upper plot shows the angle of attack « and the flow separation point X. In the two lower

plots, each line is the normalized bias é,-g;’@- for each parameter. The left triangle < indicates the pre-stall data,
where times runs from right to left and the right triangle > indicates the post-stall data where times runs from
left to right. Each slice ny;;.. contains 1 s of the pre-stall and 1 s of the post-stall data.

13



2. Behaviour of a* in Different Stall Input Types

The behaviour of a parameter estimate is strongly influenced by the type of input given during the stall. In Figure 8
an example of this is shown, in this case for the parameter a*. The subfigures show the parameter estimate behaviour for
simulation data with a no-input stall and a stall with 3-2-1-1 inputs.
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(a) Simulation data, no input, pre-stall.
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(b) Simulation data, 3-2-1-1 input, pre-stall.

Fig. 8 Individual behaviour of parameter o*. The upper plot of each subfigure shows the angle of attack «

and flow separation point X. In the lower plots, ; is the median of the parameter optima of all 30 realizations,
0,3 is the inter-quartile range, O_,4 is the full range excluding outliers. 6; is the actual parameter value in
the simulation and AA,Z:’L‘:( is the Fisher information derivative related to the parameter. As the plots show the
pre-stall, the time runs opposite to the slicing numbers, i.e. from right to left.

Two main features can be observed. First, the 3-2-1-1 inputs induce a constant error in the estimate of the o*
parameter, where this error is near zero for the no-input stall. Second, the Fisher information related to a™ is higher for
the no-input stall. These observations are affiliated. The 3-2-1-1 input causes a very sudden stall entry and subsequent
periodic motion in the angle of attack, resulting in four separate peaks in the Fisher information. The no-input stall is
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more gradual. Because of this, the total Fisher information is higher for the gradual stall, i.e. the area under the shown
Fisher derivative is larger. This means that a no-input stall generates more information for the a* parameter, which can
in part explain the smaller error.

Why the Fisher information is higher for the no-input stall can physically be explained as follows. For this stall type,
the angle of attack is slowly increased through the point where X = 0.5. This is also the point where the derivative of
the Fisher information is highest. This is logical, as the parameter o™ dictates this point. It can therefore be estimated
more accurately. For a stall where inputs are given resulting in a rapidly changing angle of attack, such as the 3-2-1-1
or wiggle, the angle of attack where X = 0.5 cannot be estimated accurately due to significant transient effects being
present. Also, the amount of time in which the separation point is in the vicinity of 0.5 is only brief. For this reason, it
was chosen that only the no-input stall is used for estimation of the @* parameter, as indicated in Table 3.

3. Behaviour of T, in Different Stall Input Types

Next to the a* parameter, the 1, parameter is also sensitive to different input types. In Figure 9, the parameter
estimate behaviour of 7, is shown for both the no-input stall and the stall with wiggle inputs in simulation data.

For the no-input stall, a strong tendency of the 7, estimate exists to go to the lower bound and only moves away from
the bound after ng;;.. = 80. This tendency is also observed for the stall with the wiggle input, however the 7, estimate
does not remain at the lower bound as long as for the no-input stall and attains its final value of roughly 0.3 s between
nsice = 15 and ngice = 25. This "lower-bound tendency" is also present in the flight test data in varying severity, but
may also not be present at all. This means that parameter estimate behaviour of simulation data shows resemblance with
the flight test data, although sometimes they can also differ.

Analogous to the case of parameter a*, the Fisher information related to parameter 7, can also explain the behaviour
of the estimate of 7,. For the no-input case, the Fisher information is zero everywhere, except for the stall recovery. This
is also when the lower-bound tendency begins. All the information that is available for estimation of parameter 75 is thus
concentrated in only a narrow timeframe of roughly 12 < ng;c. < 14. For the wiggle inputs, the Fisher information
contains multiple peaks distributed over the timespan of the entire stall, summing to a higher total information content
in the signal. Physically, this makes sense. Parameter 7, describes the hysteresis effect, which only occurs if large and
quick changes in the angle of attack, and thus movement of the flow separation point, are present. In the no-input stall
this is only the case during stall recovery, but the wiggle inputs induce more of these movements throughout the stall.

Nevertheless, in both cases it is clear that the 7, parameter estimate benefits from data that is only very close to the
stall. Otherwise, it may be estimated to the lower bound as in the no-input case or it may be wrongly estimated as for the
wiggle inputs after ng;.. = 15. This confirms the importance of the research in this paper: simply slicing in the manner
of [18, 19] would in both cases result in different parameter estimates than the actual parameter value. This is indicated
by the vertical line in the graph, which is approximately the cutoff point for data in the research of [18, 19].

4. Behaviour of Ty in Simulation Data versus Flight Test Data

In the slice-based modeling method, parameter estimate behaviour that results from simulation data is used as a
substitute for the expected, but unknown, parameter estimate behaviour resulting from flight test data. Therefore, the
similarity of the parameter behaviour resulting from both data types must be compared. In Figure 10, the behaviour of
the estimate 7} is shown, following from a stall with 3-2-1-1 inputs in both simulation data and flight test data.

From the simulation data it becomes clear that the 7 estimate also has the lower-bound tendency that was observed
for 7, although in lesser extent. As soon as the Fisher information derivative shows has the first peak, the estimate
moves to the lower bound. The lower-bound tendency in this case is interesting, as the actual parameter value of 0.2547 s
is not near the lower bound. This may be the reason that the estimate of 7 moves away from this bound very suddenly
around n;c. = 18, in contrary to 7, in Figure 9b where this movement is more gradual, in the range 15 < ngjice < 25.

In the flight test data, the lower-bound tendency can also be observed. Until ngj;c. = 8, the estimate for 7; moves to
the lower bound, before very suddenly moving to the upper bound after this. Thus, it seems that analyzing the parameter
estimate behaviour of simulation data is representative of the parameter estimate behaviour that follows from the flight
test data. However, for the test flight data, the distribution of the optima is significantly broader. The same is generally
observed for all input and slicing types. Thus, parameter estimate behaviour is less predictable for test flight data than
for simulation data, even though significant trends in the behaviour in flight test data can generally be predicted by use
of simulation data.
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(b) Simulation data, wiggle input, post-stall.

Fig. 9 Individual behaviour of parameter 7,. The upper plot of each subfigure shows the angle of attack «

and flow separation point X. In the lower plots, 6; is the median of the parameter optima of all 30 realizations,
0>, 3 is the inter-quartile range, Q_,4 is the full range excluding outliers. 6; is the actual parameter value in

the simulation and % is the Fisher information derivative related to the parameter. As the plots show the
post-stall, the time runs same to the slicing numbers, i.e. from left to right.

From the parameter estimate behaviour in the simulation data, another observation can be made. A moment in time
where the distribution of optima is narrow, i.e. where the optima seem to be more certain, does not necessarily represent
a timespan where that estimate is correct. In Figure 10a, the reliability is highest around ng;c. = 35, but this does not
deliver a correct estimate. However, in other cases this similarity does seem present, for example in Figure 9b in the
range 8 < ngjice < 15. The same contrary evidence can be found for multiple input and slicing types and also other
parameters than 7; and 1.

Finally, Figure 10a again shows the important finding also made earlier for 7,: just choosing all available data, as in
the research of [18, 19], can result in incorrect estimates for a certain parameter. In this case made evident for parameter
71. Using the window of [18, 19] would result in an estimate value of roughly 0.8 s, instead of the correct 0.2547 s.
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(b) Flight test data, 3-2-1-1 input, pre-stall.

Fig. 10 Individual behaviour of parameter 7,. The upper plot of each subfigure shows the angle of attack « and
flow separation point X (X is the average of all realizations for flight test data). In the lower plots, §; is the median
of the parameter optima of all realizations, O, 3 is the inter-quartile range, Q;_4 is the full range excluding

. . . . . AMy.
outliers. ¢; is the actual parameter value in the simulation and I_”'
S

to the parameter ( AAnZZ; is the average of all realizations for flight test data). As the plots shows the pre-stall, the

time runs opposite to the slicing numbers, i.e. from right to left.

is the Fisher information derivative related

B. Slice-based Estimation Procedure

The slice-based estimation procedure is based on performing the parameter estimation on an optimal time window
for each parameter. In the parameter estimate behaviour analysis, the pre-stall and post-stall slice number nyice,,, for
each optimal time window is chosen manually. This is done by comparing the parameter estimates with the actual
parameter value in the simulation. The optimal slice number is chosen as the point where the parameter estimate and the
actual parameter value are equal, also taking into account any behavioural features that have been observed as discussed
in the foregoing subsection IIl.A. The selected optimal slice numbers ngj;ce,,, are presented in Table 3. An entry with
"n/a" means not applicable, because data from that stall type is not used for estimation of that parameter. E.g. the
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parameter estimate of a* is only based on training data from the flight test data where no additional inputs were given by
the pilots. When an "all" is indicated for a parameter, it means that for that stall type all available data should be used in
the estimation.

Important to note is that the values in Table 3 are the numbers ny;c. associated with the slicing types 1 and 2.
However, to select the window of the flight test data used in the slice-based parameter estimation, it is easier to convert
the slice numbers to time in seconds before stall entry and after stall recovery, respectively. E.g. for parameter a;, the
no input, pre-stall optimal slice number ngj;ce,,, = 30. This means that the partition for the training flight test data
is begun at 30 — 13 = 17 s before the stall, as the stall in the simulation data is 13 s long. This time is indicated in
parentheses in Table 3.

Table 3 Optimal slicing numbers Nsliceyp, AS found for the simulated stall runs. The depicted slice number for
the pre-stall is the slice number corresponding to slicing type 1 and the slice number for the post-stall is the slice
number corresponding to slicing type 2. The corresponding time before stall entry (in pre-stall columns) and
after stall recovery (in post-stall columns) used to slice the training flight test data is indicated in parentheses.

Nsliceopr> —
No input 3-2-1-1 Wiggle
0; Pre Post Pre Post Pre Post
ap, — 30 (17 s) all 13 (0 s) 70 (57 s) 19 (65) 20 (7 s)
o, rad all all n/a n/a n/a n/a
TI, S 30 (17 s) 17 (4 s) 18 (5s) 13 (0s) 16 (3 s) 16 (3 s)
T, S 30 (17 s) 14 (1s) 15 (2s) 14 (1 s) 18 (5) 14 (1)
€{CryCr,.CL}s — all all all all all all

C. Accuracy of the Slice-based Modeling Method

To evaluate the increase in accuracy of the slice-based modeling method as depicted in Figure 2 it is compared to
the normal modeling method as depicted in Figure 1 (excluding model structure selection). Both methods were applied
to the same flight test data set for direct comparison. The normal modeling method is applied to the training flight
test data by simply performing the full estimation on the entire realization. The slice-based modeling method uses the
selected optimal time window from Table 3 for each parameter. The resulting parameter estimates for both methods are
given in Table 4.

Table 4 Parameter estimate comparison of the normal modeling method and slice-based modeling method
applied to flight test data.

Normal Slice-based
0; modeling method modeling method
ai, — 31.8630 34.1856
a”, rad 0.2289 0.2202
71, S 0.3541 0.4595
T2, S 0.1297 0.2182
Cry» — 0.1944 0.2065
Cr,, 4.5172 4.4192
Cr,, — 5.3935 5.1026

All parameters except 7; and 7, are roughly equal to each other, which are both significantly higher with the
slice-based modeling method than with the normal modeling method. This is expected, as for the parameter estimate
behaviour of 71 and 1, in subsection III. A it was found that specifically these are most inclined to change when using
data outside of the stall region. This incline was also found for a;, however less severe, also resulting is a slightly
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different estimate in Table 4. For the other parameters, the parameters only slightly differ: @* can in both cases be
estimated accurately and for C;,,, Cr,, and CLQ2 the same amount of data is used.

To investigate the effect that these differences in parameter estimates have on model accuracy, the parameter estimates
from both methods are applied in Eq. (3) to calculate output yc, for seven validation data sets. Table 5 shows the M SE
and RRM S values for both methods for the seven validation data sets. The M SE and RRM S are in the same order of
magnitude for both methods, but differences are present nonetheless. In four of the seven validation cases, the new
method achieves better accuracy in the range of roughly AMSE = —10 % to AMSE = —35 %. However, in three cases
a worse accuracy is achieved. On average the new method shows an increase in performance with AMSE = —6.24 %.

Table 5 MSE and RRMS values for the validation datasets.

Normal modeling method Slice-based modeling method
Input Realization MSE, — RRMS, Y% MSE, — RRMS, % AMSE, %
No input 3 9.4366 - 1074 3.8914 6.0021 - 1074 3.1035 -36.4
3-2-1-1 1 1.4391-107* 1.9242 1.9270 - 1074 2.2266 +33.9
3-2-1-1 2 1.4938 - 107* 1.9654 3.2383-107* 2.8937 +116
3-2-1-1 7 3.1524- 1074 3.1063 2.8571- 1074 2.9572 -9.37
3-2-1-1 10 7.0719 - 107* 3.6531 6.0736- 1074 3.3854 -14.1
Wiggle 1 8.2055 - 107 4.1256 5.2208 - 1074 2.4903 -36.4
Wiggle 6 2.2765 - 1073 5.3092 2.4903 - 1073 5.5528 +9.39
Mean 7.6522 - 1074 3.4250 7.1746 - 1074 3.2299 -6.24

The outputs of the models estimated with the normal modeling method and the slice-based modeling method can
also be compared visually. In Figure 11a, for each stall input type the validation case with the best increase of the
slice-based method relative to the normal method is shown. It shows both the model outputs y¢, and the validation
measurement yc, . In the figure, two main improvements with the slice-based modeling method relative to the normal
modeling method can be observed. One is visible before the stall and one is visible within the stall. Before the stall, the
normal modeling method shows a constant error in Cr, of roughly +0.04. In the new modeling method this error is
significantly smaller, between 0 and +0.025. The second improvement exists in the stall, where the slice-based method
is better at modeling the nonlinear effects. The normal method shows less sudden changes in Cy, during the stall, which
are more pronounced with the slice-based method. This is visible in Figure 11b, showing both model outputs y¢,
ice-base and the validation measurement yc, from Figure 11a, but focused on the stall. The above two findings
show that the slice-based modeling method is able to improve model fit not only in the stall, but also outside of the stall.

IV. Discussion

A. Interpretation of the Results

This paper has introduced a new slice-based modeling method. It is shown that this new method can improve stall
model accuracy through optimal data slicing by analyzing Kirchhoff stall parameter estimate behaviour. A simulation
data set representative of available flight test data was created and then sliced and partitioned. By applying a nonlinear
and linear estimation to each partition, the parameter estimate behaviour of the Kirchhoff stall model parameters and
stability and control derivatives could be analyzed. This resulted in an optimal slice number and corresponding optimal
window size of data on which to perform the final slice-based parameter estimation. A number of important findings
can be made from the results. These are discussed below.

First of all, applying the new slice-based modeling method results in a stall model which has increased accuracy
over the model found via the normal estimation method. A decrease in M SE of about 10 % to 35 % can be achieved for
the largest share of the validation datasets, as summarized in Table 5. This is significant, as the slice-based estimation
method uses the exact same data as the normal estimation method. This answers the primary question of the research
discussed by this paper: model accuracy can be improved by choosing specific parts of data to which to apply the
estimation of a specific parameter.

The application of this new modeling method is made possible by the novel analysis introduced in this paper, i.e. by
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Fig. 11 Comparison of the normal modeling method and the slice-based modeling method, showing the
validation stall runs where the best improvement is achieved (no input realization 3, 3-2-1-1 realization 10, wiggle
realization 1). The model outputs are denoted y, and the validation data measurement is denoted yc, .

explicitly considering parameter estimate behaviour through data slicing and partitioning. Through this method it is for
the first time possible to identify directly the effect of certain windows of data on the estimate of a parameter. Formerly,
only the Fisher information could be used for this purpose. From the results it becomes clear that the Fisher information
is especially useful to quickly identify which type of input given during the stall may result in more useful data for
estimation of a specific parameter. An example of this was discussed for the parameter o*, based on findings in Figure 8.
Here, the parameter was estimated with no error relative to the actual parameter value for the simulation that contained
the no-input stall. This type of stall contained a higher Fisher information than the stall with the 3-2-1-1 inputs. The
latter resulted in an erroneous estimate for a*. However, the results show that there is not always a direct link between
the Fisher information and the correctness of a certain parameter. The Fisher information can thus not be used as a sole
indicator to find the optimal slice number Rsliceop - A high Fisher information derivative often coincides with large
changes in the parameter estimate, as for the movement toward the lower bound before ;. = 13 in Figure 9. However,
it does not explain all movements, as for example in Figure 10a for the sudden movement at n5;.. = 18. Therefore, it is
suggested to use the Fisher information in combination with the introduced method of parameter estimate behaviour
analysis.

Using these two concepts in conjunction provides a reliable basis to manually select optimal time windows for each
parameter, as summarized in Table 3. Mainly, it becomes clear that better model accuracy is achieved when only data
close to the stall is used for estimation of the stall parameters, and as much data as is available is used for the stability
and control derivatives. Here, "close to the stall" generally means a window that roughly starts no more than 5 s before
stall entry and ends no more than 5 s after stall recovery.
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Depending on the type of stall, differences to this general rule can exist. For example, for a; the optimal time before
and after the stall may vary from O s of data before the stall to using all available data after stall recovery. For estimation
of a*, it is recommended to only use data that contains very gradual stall entries without any control inputs and use all
data available within these data sets. This is substantiated by analysis of the Fisher information related to o™ in these stall
types. The estimates of parameters 7; and 7, are the most sensitive to the used data window. Very sudden changes in
parameter estimates occur for slice numbers soon before or after the stall that may decrease their power in modeling the
behaviour of the aircraft in the stall. The optimization algorithm primarily changes the estimates to lower the M SE in
the regions before and after the stall. This is expected, as 71 and 7, describe nonlinear effects that only take place when
dynamic excitations exist around the stall angle of attack. Therefore, the recommended time to include before or after
the stall for estimation of these parameters is never more than 17 s and usually even less than 5 s. Next to this, it is found
that no-input stalls are not effective for estimating 7; and 7,. These stall types were used in the slice-based parameter
estimation in this paper, but it may be an option to not use these stall types at all. Lastly, this paper recommends to use
as much data as available for the estimation of the stability and control derivatives Cr,, Cr,, and Cy, ,.

An important feature of the slice-based modeling method is that simulation data is used as a substitute for real flight
data. It is assumed that the parameter estimate behaviour for the simulation data can be used to predict the parameter
estimate behaviour for flight test data. As a means of validation, the parameter estimate behaviour for both types of
data were compared. From this, it becomes evident that simulation data does in part represent flight test data, although
not fully. This is because for flight test data large differences exist between realizations of the same stall type. The
realizations of the simulation data differ only through an artificially added white noise signal to the simulation output
before applying flight path reconstruction. Some inputs or conditions that are present in the flight test data are simply
too complex to recreate in a simulation. However, some distinct features in parameter estimate behaviour are consistent
between both data types. These are for example the lower-bound tendencies of the 7| and 1, parameters, but also the
very predictable behaviour of o*. Both also contain the behaviour of the M SE to increase during the stall and decrease
outside of it. Related to this, the general parameter estimate behaviour where in the stall the stability and control
derivatives are changed by the optimization routine to accommodate for changes in the stall parameters and vice-versa
outside of the stall is present in both simulation data as well as flight test data. Thus, despite some differences between
simulation data and flight test data, the roughly comparable behaviour does provide a solid basis for the slice-based
modeling method.

Examining the parameter estimate behaviour that results from test flight data can also shed new light on related
research, as it may explain the reason why some estimate has been found for a certain parameter. An example of this is a
conclusion drawn in [19] about parameter 7,. There it is suggested that the estimate of T, could simply be set to 0,
because its estimate of 0.0176 s is very close to 0. Also, only a small difference in M SE to validation data was found
when the estimate of 7, was actually set to 0. However, the parameter estimate behaviour analysis in this paper may give
an explanation for this. First, in this paper it was found that there is a significant interaction between the estimates of the
stall parameters and the estimates of the stability and control derivatives. The small change in M SE reported in [19]
could come from the fact that the stability and control derivatives estimates reduce part of the M SE by compensating
for the lack of 7. A second explanation is that for the research in [19], only flight test data containing wiggle inputs was
used. It was found in this paper that the 7, parameter often has a lower-bound tendency when wiggle inputs are applied.
This was not found for the 3-2-1-1 inputs in the parameter estimate behaviour analysis. Also including the data with
3-2-1-1 inputs may explain why a significantly higher estimates for 7, than that in [19] of 0.0176 s are found, namely
0.1297 s for the normal estimation method and 0.2182 s for the slice-based estimation method. Because also a higher
model accuracy is achieved, it is argued that setting 7, to 0 should not be done and for every new data set a parameter
estimation behaviour analysis is warranted to make a decision on whether such an assumption is valid.

The parameter estimate behaviour analysis is the main addition of the slice-based modeling method. However, this
addition does add significant computational load relative to the normal estimation method. For the full analysis of data,
for every slice, in every slicetype, for every realization of every stall input type from both simulation data and flight test
data, a full nonlinear estimation of 500 initial conditions had to be performed. This results in a total of over 14.5 million
optimizations and an accompanying calculation time of three weeks, for 24 hours per day*. Here it should be noted that
the optimizations are independent, and therefore the problem can be readily partitioned and solved in parallel on large
scale parallel computing hardware. For example, in this paper use was made of MATLAB’s parallel programming
toolbox. In future analyses computational load may also be decreased by varying the resolution of ;. to larger than
1 s at moments in time where less activity in parameter estimate behaviour is expected.

*1x PC with 6x Intel Core i7-8700 @3.20GHz (16GB RAM) and 2x PC with 4x Intel Xeon E5-1620 v3 @3.50GHz (16GB RAM)
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It is demonstrated in this paper that performing a parameter estimate behaviour analysis can deliver new fundamental
insights into how parameter estimates change in reaction to specific parts of data that are available for estimation. It is
shown that it is possible to increase the accuracy of nonlinear stall models without the need for gathering more flight
data by introducing the slice-based modeling method including the parameter estimate behaviour analysis. Additionally,
the possibilities of the method extend beyond the realm of stall modeling for fixed wing aircraft. In fact, any system
identification procedure that contains a parameter estimation based on measurement data can benefit from the slice-based
modeling method. In every parameter estimation problem, certain parts of data are more valuable to some parameters
than to other parameters. Tailoring the optimal time window used in the parameter estimation to each individual
parameter may increase the accuracy of any model found through system identification.

B. Recommendations

Even though the results show the applicability of the parameter estimate behaviour analysis method and its usefulness
to improve model performance with the slice-based modeling method, it leaves room for improvement. Several
recommendations can be made.

The current slicing method only makes use of three types of slicing in time, i.e. the pre-stall phase, post-stall phase
and both the pre-stall and post-stall phases. These types were defined such that every additional slice adds to the size
of a partition. A problem with this is that the resulting parameter estimate behaviour from adding that slice is less
pronounced because the partitions contain increasingly more foregoing data. A solution to this could be to create a
moving window of some sort, that analyzes each part more specifically. This window size could then also be varied.
Another recommendation comparable to this is that the slicing and partitioning could be based not only on time, but on
independent variables such as « and &. However, this would introduce problems with the estimation of the X parameter,
as well as all partitions having variable sizes. This would make comparison between the partitions more difficult, unless
a solution is found to retain the same amount of data points in each partition.

Also, the current method only adds a white noise signal to the simulation output causing very similar realizations.
Therefore, a certain dependency on any initial setting is not fully made undone. This applies to the trimmed initial
condition, the size and timing of the inputs given, but also to more integral features, such as the actual stall parameter
setting in the simulation. For future research a method is recommended that may evaluate the sensitivity of the parameter
behaviours to these settings. Also, this creates more differences between the realizations, which can resemble better the
differences that exist between the realizations of the real flight data.

Related to this is the inclusion of orthogonal function modeling (OFM). As a starting point for this research, the
model as found in [19] was used. However, this eliminated the effect of OFM in the estimation procedure. For a full
evaluation of the slicing selection method as introduced in this paper, it is recommended that an analysis is performed as
to what changes occur in the chosen regressors of the OFM as the slicing type progresses in time. This may add certain
knowledge on "regressor behaviour analysis" to the parameter estimate behaviour analysis performed in this research.

The last recommendation applies to the new modeling method itself. The current method represents a prototype, as
the optimal time windows were chosen manually by investigation of the parameter estimate behaviour plots. While this
provides a strong argument for using data slicing and selection for stall parameter analysis in the first place, a more
thorough optimization method, for example by changing the time windows of each parameter separately and assessing
the model performance increase, may be desirable.

V. Conclusion

In this paper it is proven that the accuracy of aerodynamic stall models using Kirchhoff’s theory of flow separation
can be improved by use of the newly introduced slice-based modeling method. When applied to validation flight test
data the new method can decrease the M SE in more than half of the validation cases by 10 % to 35 %. On average, a
decrease of 6 % was achieved.

The slice-based modeling method is based on a parameter estimate behaviour analysis. In this analysis, simulation
data is generated that represents real flight test data that is available. This simulation data is sliced and combined into
different partitions that include different time windows of this data. By applying a parameter estimation procedure
to these partitions, it can be identified which parts of the data cause a change in the estimate of a specific parameter.
By identifying where the parameter estimates attain the same value as the actual parameter value in the simulation
an optimal time window can be identified for every parameter, for every type of stall. This window is then applied in
a final parameter estimation on flight test data, resulting in a model with increased accuracy relative to the normally
used method. Similarities can be found between the parameter estimate behaviour in simulation data and the estimate
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behaviour in flight test data that the simulation data is aimed to represent.

Every parameter in the Kirchhoff based stall model has a accompanying optimal time window. For the stall
parameters a;, @, 7| and 7, this window generally starts no more than roughly 5 s before the stall and no more than 5 s
after the stall, even though differences exist between the parameters depending on which control inputs are given during
the stall. For the stability and control derivatives Cr,, Cr,, and Cr,_, in the model applies that all available data should
be used in the estimation for better model accuracy. ’

Next to the parameter estimate behaviour analysis, the Fisher information is a strong indicator which region of data
is beneficial to use in the estimation of a certain parameter. A connection exists between the Fisher information and the
parameter estimate behaviour. In parts of the data where the Fisher information is high also changes of the parameter
estimate can be observed. However the Fisher information is not a direct indicator for finding optimal window size, it
is very valuable in aiding to make a quick decision on whether a certain stall type or type of input in a flight test is
beneficial to a certain parameter or not.

In conclusion, this paper shows that the slice-based modeling method can be used for improving stall models without
the need for additional flight tests by making smarter use of data that is readily available. This not only makes it possible
to improve existing models, but also creates the possibility to make future research flight test data even more efficient
and valuable. Furthermore, the slice-based modeling method can be applied to any system identification problem
that includes a parameter estimation. This means that the new method can also have a large impact outside the realm
of stall modeling. All-in-all, it is clear that the slice-based modeling method can enable researchers to create more
representative flight simulation models, resulting in better pilot training, contributing to safer commercial air transport.

Appendices

A. Analytical Definition of Fisher Information for the Aerodynamic Stall Model
Recall the C;, model as given by Eq. (3):

2
a+Cp,(a- 6°)?

1+vX
CL:CL0+CLQ 2\/_

The parameter vector of this model is given by Eq. (8):

N T
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There is only one output, the measurement yc, . The sensitivity matrix S(k) then contains all derivatives of yc,
relative to the parameters in 6. The resulting matrix S(k) is the result of applying the chain rule via:
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Finding the derivatives when 6; € {C,,Cp_, CL(,z} is straightforward. These are:

1 when 6; = CLO

dye, (k VI )’
el _ ('H—f (k)) (k) when6; = Cr, (16

max(0, (k) — 6°)> when 6; = CL,,
The value of X (k) over the entire interval k = 1,2, ..., N can be found by numerically integrating Eq. (2).

The derivatives when 6; € {a;,a", 11, 72} are more difficult to find, but can be obtained via the procedure as
explained for the nonlinear cost function derivatives associated with X in [19]. These are:
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Then, the result for ag—éik) = § (do not confuse S with S(k)!) can be found by numerically integrating the ordinary
differential equation % = %S + ag—éik) over the interval kK = 1,2, ..., N. Note that in this case it is thus not only

important that the model structure is known, but also an a priori estimate of the parameters in 6 is needed as these are
present in the derivative equations.
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Chapter 1

Introduction

An immense part of the operation of airlines is the licensing and training of flight crew.
Not only is the training of flight crew heavily regulated, it is also an inherent driver for
airlines to uphold proficiency of flight crews to increase their own safety standards. Nowadays,
flight crews may and can be fully trained on Flight Simulation Training Devices. These
simulators are built according to very specific requirements in order to increase the fidelity
of the simulators such that pilots behave as if they are in an actual aircraft of that type. An
important part of the fidelity of the simulators depends on the quality of the flight model
of the aircraft. This determines the movements of the simulated aircraft which need to be
mimicked as close to reality as possible. Usually this involves very complex and complicated
models.

Additional complexity of these models has been introduced recently, since the European
Aviation Safety Agency has required airlines to train their flight crew in Upset Prevention
and Recovery on their simulators. Upsets of an aircraft occur when, due to whatever reason,
the aircraft is placed outside its normal flight envelope. One of the most regularly occurring
types of upsets is the stall, when the airflow over the wing of the aircraft has separated and
lift is lost as a result. Normally this occurs because of too high angles of attack of the wing.
The behaviour of the aircraft in this region is often highly nonlinear, which further increases
the model complexity of flight simulators.

The Citation Stall Modeling Group of the Faculty of Aerospace Engineering at the Delft
University of Technology aims to create an accurate, yet simpler, aircraft model for simulation
purposes of the PH-LAB Cessna Citation II aircraft that captures the nonlinear behaviour of
the aircraft in the stall. Already numerous research has been performed on different aspects
of this model, such as its behaviour in the normal envelope, its longitudinal and lateral
stall behaviour, its stall buffet, and the subjective experience that the model gives, which
ultimately is the goal of this model.

The aim of this thesis is to further this research. In this preliminary part of the thesis a
literature survey is performed to find the research gap of the state of the art in stall modeling
of aeroplanes and to perform a preliminary research based on this literature. The final yield
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44 Introduction

of the preliminary research presented here is a research objective and research question based
on literature and a proof of applicability of this objective through demonstration by some
preliminary results.

In order to achieve this, the preliminary part of this thesis is structured as follows. In chap-
ter 2 the background of this research is discussed and an introduction is given to the core of
the Citation Stall Modeling Group’s stall model: Kirchoff’s Theory of Flow Separation. In
chapter 3 an overview is given the PH-LAB aircraft and gathered data on its behaviour in
the stall. Also a literature review is performed on the design of flight test experiments. Next,
in chapter 4 flight path reconstruction is performed in order to filter the flight data and make
it usable in the aerodynamic modeling of the aircraft. The actual modeling technique used is
then discussed in chapter 5. A possible research direction is investigated in chapter 6. Penul-
timate, in chapter 7, some preliminary results are presented on the most promising possible
research direction and the final research objective and research questioned are proposed. This
preliminary thesis concludes with chapter 8.
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Chapter 2

Background

In this chapter the an introduction is given into the aim of the stall modeling of aircraft. First,
the regulatory background and direct need for stall modeling research is discussed. Then,
Kirchoff’s theory of flow separation is introduced which is a model that aims to accurately
approximate the nonlinear and unsteady effects that exist for an aircraft in or close to stall.
A literature review is performed on the application of this model in research of the TU Delft
Citation Stall Modeling Group. Last, other stall modeling research that utilizes Kirchoff’s
theory is introduced and a conclusion is drawn with regard to the main recommendations
done by the literature treated in this chapter.

2-1 Upset Prevention and Recovery Training

The most significant cause of fatal accidents in commercial air transport is Loss of Control
In-Flight (LOC-I) [23]. LOC-I occurs when the aircraft deviates from the intended flight path
or an adverse flight condition places the aircraft outside of its normal flight envelope. The
main cause of these LOC-I accidents is often a failure to prevent or recover from a stall or
upset during flight.

Because of the significance and high fatality rate of this type of accidents, in recent years in-
creasingly more focus in airline pilot training has been put on Upset Prevention and Recovery
Training (UPRT). For this reason, the International Civil Aviation Organisation (ICAO) has
urged member states to implement UPRT in their regulations such that it becomes standard
in pilot training [24]. This ICAO Doc 10011 provides a large number of recommendations on
the implementation of UPRT in pilot training, such as an overview of the proposed training
programmes, the contents of this training, instruction types, and required regulatory over-
sight. However, more significant for the research presented in this paper is that this document
also provides fidelity requirements for Flight Simulation Training Devices (FSTDs). Effective
and safe pilot training calls for a "good" fidelity of the FSTD. Because if the FSTD does
not satisfactorily model the airplane’s behaviour during a stall, the training beyond critical
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angle of attack can introduce misperceptions about recognition of the upset and the recovery
experience [19].

Therefore, [24] calls for an FSTD’s simulation responses at or beyond the stall angle of
attack to be similar to that of the actual aircraft in flight. The dynamics of the aircraft are,
however, often different from the rest of the envelope. This can be trained in some aircraft,
but a significant problem is that in current training pilots are often only limitedly exposed to
aircraft-specific stall characteristics of their aircraft type -if they are at all- [19]. In order to
provide pilots with effective training, flight models of certain types should thus be updated
with stall characteristics specific to that aircraft.

The European Union has, in response to ICAO, updated its legislation and certification
specification for FSTDs [14]. For stall model dynamics, AMC10 FSTD(A).300.d.3 prescribes
a more profound set of stall characteristics that should be included in simulator models than
already given as an example in [24] above. These are:

o degradation of the static/dynamic lateral-directional stability;

o degradation in control response (pitch, roll, and yaw);

o uncommanded roll acceleration or roll-off requiring significant control deflection to
counter;

o apparent randomness or non-repeatability;

e changes in pitch stability;

o stall hysteresis;

e Mach effects;

« stall buffet; and

o angle of attack rate effects.

These are important stall characteristics as also defined by the International Committee for
Aviation Training in Extended Envelopes (ICATEE) in [18]. This paper finds that the aug-
mentation of a type-representative flight model by addition of these characteristics produces
a significant subjective fidelity in the stall and post-stall regime. Overmore, apart from some
pilots voicing personal preference, statistically the evaluating pilots could tell no difference
between the type-representative model and the type-specific model as developed by the man-
ufacturer. This confirms the importance of the above listed characteristics for stall modeling.
Therefore, for the further investigation into aircraft stall behaviour, these characteristics will
serve as a basis.

2-2 Kirchoff’s Theory of Flow Separation

The stall itself is defined as the "an aerodynamic loss of lift caused by exceeding the critical
angle of attack" [24], where the critical angle of attack is defined as the point where the
aircraft lift coefficient reaches its maximum before decreasing with further increasing angle
of attack. However this point is not trivial and also the characteristics as mentioned above
are not universally applicable to every aircraft type or even flight condition. Therefore it can
be very valuable to define a general description of the behaviour of an aircraft around the
stall critical angle of attack. A mathematical description that incorporates a number of the
characteristics above is known as Kirchoffs’s theory of flow separation.
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2-2-1 Mathematical Description of Kirchoff’s Theory of Flow Separation

The application of Kirchoff’s theory to the mathematical model of an aircraft has been de-
scribed by [20]. It describes the lift coefficient’s (C1) nonlinear and unsteady behaviour
(denoted by superscript nl) at high angles of attack by means of the following equation:

Cplo, X) =S (1+ Vx)’ (2-1)

Where the theoretical steady behaviour (denoted by superscript st) can be described by:

C3t(a) = O (a, Xo), with: Xo = Xo(a) (2-2)

With Xy being a function of « describing the position of the separation point of the flow
over the airfoil with the aircraft in stationary flight. However, when not in stationary flight
condition, i.e. & > 0, the progression of the separation point is affected due to unsteady
effects. To be precise, the separation is delayed until higher angles of attack. This behaviour
can be described by means of an first order differential equation:

X
TldaTt + X = Xo(la—ma), st X=X(a,a&) (2-3)

Where 7 is a time constant related to the relaxation of the flow separation point and 79
is a time constant related to the time delay of the separation or reattachment of the flow
(hysteresis). These constants and the function Xy may be found via experimental data. As
X is a function of both a and &, it can be concluded that in non-stationary conditions the
unsteady behaviour of the lift curve is a function of angle of attack and angle of attack rate
and angle of attack prehistory via the flow separation behaviour, i.e.: C¥(a, X (a, &)).

The application of the above theory to identify a stall model from flight test data has first
been performed in [15], which rewrites Equation (2-1) in generic form:

2
M) a (2-4)

CL:CLQ( 5

In which the aircraft-specific Cr, has been inserted over the generic thin-airfoil theory’s
27 /rad used in Equation (2-1). Also an alternative approximation of Xy is used to make
Equation (2-3) more suitable for identification from flight data. This is given by:

1
Xo = 5{1 — tanh [a; (o — a™)]} (2-5)
Implementing this result into Equation (2-3) results in:

dX 1
T1E+X: 5{1—tanh [a1 (a0 — T2 — a™)]} (2-6)
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Where the additional parameter a; is related to the abruptness of the flow separation, and
o is the angle of attack where the flow separation point is halfway down the chord (i.e.

X =0.5).

The four parameters a1, a*, 7 and 7 are at the core of the model for the separation point X
and are called the "Kirchoff parameters" or simply the "X parameters". Their influence on the
behaviour of the flow separation point around the stall angle of attack is given in Figure 2-1.

The effect of each of the parameters is shortly described below.

o Stall abruptness parameter a; [-]. The parameter a; controls the abruptness of the stall
as can be seen in Figure 2-1a. It controls the window in which the separation point X
moves forward and as a result also has an effect on the maximum stall coefficient.

o Separation delay parameter o [rad] or [deg]. The parameter o is the angle of attack
where the flow separation point is halfway down the chord and has a direct effect on
the stall angle of attack and maximum lift coefficient, as can be seen in Figure 2-1b.
Note that o™ is higher than the critical angle of attack.

o Transient effects parameter 11 [s]. Parameter 7 is a multiplication on the derivative
% and therefore directly influences the slope, and thus the relaxation, of the flow

separation point and in turn the lift coefficient. See Figure 2-1c.

o Stall hysteresis parameter T [s]. The last parameter is 7o which governs the hysteresis
behaviour of the aircraft in stall as depicted in Figure 2-1d. It governs the separation
and reattachment of the flow an the difference between the angles of attack at which
these happen, i.e. how "inclined" the air is to separate and reattach to the airfoil.

In this manner the Kirchoff model directly models two important characteristics of the stall:
angle of attack rate effects and the stall hysteresis. However it may affect more of the char-
acteristics via the X parameter. For example, it might be the case that degradation in
stability and control effectiveness [58] or the stall buffet [57] are related to the X parameter.
What is certain is that the Kirchoff model models nonlinear behaviour and in unsteady flight
conditions, which make it a very powerful tool in stall modeling.

2-2-2 Unsteady and Nonlinear Behaviour of an Aircraft around the Stall Angle
of Attack

With the defined Kirchoff model, there are three methods to model the C-curve: 1) purely
linearly, 2) nonlinearly, but in steady/stationary conditions (& = 0 deg/s) and 3) nonlinearly
and in unsteady & > 0 [deg/s] flight conditions. To study the effect of Kirchoff’s theory of
flow separation and the increase in fidelity it can provide to a model of an aircraft in stall a
simulation can be performed. The Figure 2-2 shows four cases with increasing fidelity of the
C'r-calculation of Equation (2-4) based on the three mentioned methods. An overview of the
cases has been given in Table 2-1. The time constants and parameters have been arbitrarily
chosen.

Case 1 shows an arbitrary separation progression, where the point of flow separation starts
at @ = 10 deg and progresses towards the leading edge linearly until o = 15 deg. The
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Figure 2-1: Effect of the Kirchoff parameters on the lift coefficient C, and separation point X
[57].
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Table 2-1: Overview of the Kirchoff cases.

# Case Equation Added parameters Description

1  Stationary flight, Equation (2-2) Cp, =2« Xo manually defined,
linear separation & =0 deg/s

2 Stationary flight, Equation (2-5) a1 =50, o* =12.5 deg X calculated,
tanh-approximation & =0 deg/s

3 Unsteady flight, Equation (2-6) 71 =0.5s,72=0.01s Fort=0-20s: &= +1 deg/s
full X(a, &)-ODE

4 Unsteady flight, Equation (2-6) - Fort=0—15s: & =41 deg/s,
stall recovery for t =15 —-20s: & = —1 deg/s

dashed lines in the figure are, from top to bottom, the lines corresponding to X = 1, 0.8,
0.6, 0.4, 0.2 and 0. It can be observed that this results in an expected, but unnatural curve.
The normal linear model (method "1)" above) is only valid until @ = 10 deg in such cases.
Implementing the tanh-approximation for Xy in case 2 results in a more continuous curve,
describing nonlinear, but steady effects (method "2)"). When implementing the full ODE for
X in case 3, it can indeed be seen that the angle of attack rate influences the curve. Not
only can higher Cp-values be reached, the separation is also delayed until higher angles of
attack. This captures the unsteady effects as a result of angle of attack rate as they exist in
the high angle of attack region. The last case 4 is the same as case 3, but at & = 15 deg the
stall is recovered, showing that the recovery follows another "path" in the curve as stall entry,
satisfying nonlinear, unsteady effects (method "3)").

From this it can be concluded that Kirchoff’s theory correctly models the key characteristics
of stall hysteresis (from case 4) and angle of attack rate effects (case 3). This behaviour is
indeed also confirmed in [20]. This makes it possible to expand the linear models that can
model the normal flight envelope to the edges of the envelope where high angles of attack
introduce nonlinear effects.

2-2-3 Application of Kirchoff’s Theory in Aircraft Stall Models

With the application of Kirchoff’s theory being a viable option to model the nonlinear be-
haviour of the aircraft in the stall region, several papers attempted to incorporate this into the
aircraft aerodynamic model for both the symmetric and asymmetric motions of the aircraft.

The initial longitudinal model was given in the same paper of [15], by use of a conventional
2-point model modeling both the wing and tail. This can be described by the equation:

S
CrL=Cru,+ gtCL,t =

1+vVX
=CLy +Cry wb (

2

2 qc ac oC
Lt
) a+Cr,uwb v + CrLgwb v +Cp, tap + 3.

56 (2'7)

With:
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Figure 2-2: Overview of the behaviour of Kirchoff’s theory of flow separation with increasing
model fidelity.

Oét:Oé—f—it—&t-f—adyn:

:a—l—it—(ga (t—At)+@{1— (t—At)}>+adyn (2-8)

Where i; is the tail trim angle, €, is the downwash angle at the tail, in which At is the lag
of the downwash formulated as At = V and gy, is the dynamic angle of attack formulated
as tanfl(%). Here r; is the distance between aircraft c.g. and tail neutral point and r; the
distance between the wing and tail neutral points.

The drag force can be defined as:
oCp

O+ G- X) (2-9)

Last, the pitching moment can be computed from the above equations around the c.g., re-
sulting in (in simplified form):

Cp =Cp, + A
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Cm :C’mo—i-Cmaoz—l—%(l—X) (2-10)
0X

Applying the above model to simulations and validating this longitudinal model, [15] indeed
found considerable improvements of this unsteady nonlinear model over the usual linear model
or nonlinear steady modeling methods, especially for the region of @ > 10 deg. The related
time constants and parameters could all be identified satisfactorily. Any stall model iden-
tification routine performed should thus include the identification of these parameters and
inclusion of Kirchoff’s flow theory in the model equations.

Where [15] was the first to implement Kirchoff’s theory to an aircraft stall model, it only did
so for the longitudinal motions. A method was coined in [47] to expand the same method to
also the lateral-directional motions. The proposed model was defined with the equations for
rolling and yawing moment:

. b
Cp = Cyy + Cpy B+ Cop* + Cos, 60 + Cyy 6 + §(CN,1eft — ON right ) Ay (2-11)
b
Cn = Cno + Cngﬁ + Cnpp* + Cnga 5(1 + Cn(gr 57‘ + §(Cc,left - Cc,right)Ay (2'12)

With the normal force coefficient C'y and chord force coefficient C, defined as:

ON eftright = CL left,right €08 & + CD Jeft right Sih &

2-13)
[ o (
C’c,left,lright = C’LOL Xleft,right s o

This model has a good ability to model also the aircraft asymmetric motions during a stall.
It also provides in the significant asymmetric behaviour of aircraft in quasi-steady stall (un-
commanded roll-off). Cross-coupling of derivatives may even further improve the model’s
behaviour. While it can also accurately describe dynamic stalls, not one parameter identifi-
cation seems to be able to capture the behaviour in both types of stalls.

The complete model of both symmetric and asymmetric motions as described above is vali-
dated in [16] by use of wind tunnel data, and the effect of the model parameters for hysteresis
and transient effects is investigated by use of flight data identification. The paper finds that for
the longitudinal motions a distinction can be made between quasi-steady stalls and dynamic
stalls, where it finds that quasi-steady stalls can be accurately modeled by only including the
angle of attack rate and hysteresis effect, as defined by only the right side of Equation (2-3)
with parameters a1, a® and 7. Dynamic stalls introduce strong transient effects into the stall
behaviour and as such, this must be modeled by the full ODE of Equation (2-3) also including
parameter 71. Also a review is done of the lateral motions. For these three cases the model
accurately simulates the aircraft motion when compared to flight data.

2-3 TU Delft Citation Stall Modeling

The department of Control & Simulation of the Faculty of Aerospace Engineering of the Delft
University of Technology makes use of the Delft University Aircraft Simulation Model and
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Analysis Tool (DASMAT) for research into modeling and simulation of flight mechanics of the
Faculty-owned Cessna Citation IT aircraft [55]. The baseline model of the tool is the Citation
500 aircraft, but the tool is designed such that it can be made applicable to any type of aircraft
or flight condition and over the course of time the model’s fidelity was further increased to
match that of the Citation II. Furthermore, the model allows further development of itself,
for example extending the envelope of the model into the stall region. Together with the
updated legislation by EASA as discussed above, this started the research of stall modeling
from flight test data at the T'U Delft.

The first research on this topic was performed in [54]. The goal of this research was to
implement a new method to improve the fidelity of the normal-envelope DASMAT model
for the Cessna Citation II aircraft, such that further research into the stall and post-stall
region has a solid basis. This was done by using an Unscented Kalman Filter (UKF) for
flight path reconstruction and using linear regression techniques in combination with a model
structure selecting technique making use of Orthogonal Function Modeling (OFM). This
structure selection procedure is further discussed in [37]. Results from [54] show that the
UKF provides good reconstructions of flight data and the identified model structure and
estimated parameters show significantly improved behaviour when compared to the original
DASMAT model.

Building on the above research, the first research into the stall region was performed by [57].
This paper investigated how much of the stall model can be identified from only quasi-steady
stall flight data. FPR was performed by UKF which showed reliable results. Unfortunately,
due to the lack of an angle of sideslip-vane this could only be estimated via a "pseudo-
beta" calculated from other states. Based on the flight data, nonlinear-parameter estimation
methods were used to identify the longitudinal motion equations for lift, drag and pitching
moment with inclusion of the Kirchoff coefficients and parameters as introduced above. All
parameters could be estimated well, except for the transient 7 effect due to having no dynamic
stalls in the dataset. For this, the paper also developed a stall buffet model not only for the
sake of including this important behaviour, but is was also shown that this buffet model could
be used to estimate the transient behaviour as well. This buffet model is based on a white
noise signal passed through a second-order filter, activated based on the flow separation point
from the Kirchoff model. Due to the lack of angle of sideslip-measurements no estimates could
be made for the lateral motions. Also, no pitch rate coefficients could be estimated due to the
data, again, only containing quasi-steady stall data and no excitations in the lower angle of
attack region. Though, the model did prove reliable in the longitudinal motions in the stall
region and could be implemented in the Citation IT DASMAT stall model.

Based on the recommendations of [57], the stall model was further developed in [58]. This
paper made use of orthogonal function modelling as was also performed by [54], but now
applied to stall flight data and including Kirchoff’s X parameter and variations thereof as
possible regressors for the model structure selection. As the new flight data also included
angle of sideslip-measurements the lateral motions could also be modeled. The identification
methodology consisted of a nonlinear estimation for the X-parameters (o, a1, 71, 72) from
the calculated total lift coefficient Cp,, after which X can be used as a possible regressor
in the model structure selection. Iterating this process for all data sets and evaluating the
frequency of selected regressors, a model structure was chosen whose parameters could then
be estimated by making use of standard linear least-squares estimation. The paper found
an effect of X for the lift and pitching moment models. The complete model showed high

Master of Science Thesis P.A.R. Brill



54 Background

correspondence with validation flight data compared to the existing models of [54] and [57].
Challenges that remain are that no pitch rate-related parameters were chosen in the structure
selection, no effect of degraded rudder en aileron effectiveness or uncommanded roll-off could
be incorporated in the model -even though these are important ICATEE stall characteristics,
and also the yaw moment model showed lesser reliability. More flight test with more dynamic
excitations before the stall could help improve the model further.

An attempt to improve on these shortcomings related to the lateral modeling of the Cessna
Citation in stall was done in [11]. The model structure selection for the Cessna Citation was
extended to make possible the choice of regressors for the left and right wing separately for
the asymmetric model equations. The possible extension was of the 2. X-type, which included
a separate X value for each wing, but one shared coefficient parameter associated with them.

2
I.e. for the lift a <1+\/@>

with the same constant Cr,,. This was compared to the "normal" 1X model with the original
regressors with only one X for both wings. It was found that, even though the differences were
moderate, the 2X model consistently scored better than the 1X model. Also an investigation
was performed into the reduced control effectiveness and uncommanded roll acceleration as
it was an important stall characteristic as defined by the regulator. However, no conclusive
results could be found (yet) on this effect.

Qef,right term for both the left and right wing, but multiplied

An important part of flight model development as performed in [57] and [58] is their applica~
bility to actual use in flight simulators and flight training. Therefore not only the objective
model behaviour is of importance, but also the subjective behaviour of the model as expe-
rienced in flight simulation by actual pilots. In [48], the model developed by [55], [57] and
[58] has been used in the TU Delft Simona Research Simulator to determine Just Noticable
Difference (JND) thresholds in aircraft behaviour as a result of varying key parameters in the
model. This has been performed for the stall model with the Kirchoff parameters for 71 and
a; based on the baseline values as found by [58]. It was found that the JND upper and lower
thresholds for a; were +15% and -7% from the baseline value, respectively, and for 7, this
was found to be as small as +31% and -25%, even while 71 has only limited objective effect on
the model characteristics. This paper thus especially proves the importance of accurate and
precise parameter estimation for stall models in order to provide a high-fidelity experience in
the simulator.

Similar research has been performed by [25] in the Simona Research Simulator, but this time
with the JND thresholds for the stall buffet model parameters as found by [57]. Both the stall
buffet frequency and the threshold expressed in the separation point X;p,.s were investigated.
Especially this last one does have a connection with stall modeling as a high-fidelity stall buffet
model is thus dependent on a high-fidelity modeling of X. The JND threshold did not exceed
20% from the baseline value. Additionally, it was found that the differences in the X, for
the buffet onset were even felt earlier than the +2 [deg] according to regulations. This puts
even more emphasis on a good estimation of the X model parameters, as pilots are susceptible
to even small differences and wrong estimates thus may easily induce mismatched feelings for
pilots.

Remaining research of the TU Delft Citation Stall Modeling Group is performed on the
Fokker 100 aircraft. In [31] a stall buffet model is developed for the aircraft and in [5] the
Kirchoff model and Orthogonal Function Modeling is used to estimate an asymmetric stall
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model. These papers were not further investigated, however the fact that the application of
the methods used for the Citation are also used for modeling with the Fokker 100 reinforces
the mandate of their use.

2-4 Conclusion on Stall Modeling Research using Kirchoff’s Theory
of Flow Separation

One of the main recommendations as provided in the research on the TU Delft’s Cessna
Citation II laboratory aircraft is the lack of dynamic excitations in the flight data before the
stall. It is assumed the lack hereof plays a role in the unexpected lack of g-related regressors
in the model as this is almost 0 during the stall, difficulties in modeling the expected -but
not identified- degradation of control effectiveness towards the stall and the overall difficulty
of identifying yawing behaviour.

In [12] an investigation has been performed into the effect of directly including dynamic ma-
noeuvres before the stall. By making use of an elevator and rudder doublet in approach to the
stall, the yawing effects on the longitudinal motions could be incorporated more pronounced in
the model, as well as improvement of the pitch rate and angle of attack rate effects. However,
correlation between the pitch rate and angle of attack rate remained present such that the
new model does still not reproduce an exact quasi-steady stall manoeuvre for the longitudinal
motions.

Whatever the conclusion or main focus of research papers into stall modeling using Kirchoff’s
theory of flow separation may be, very frequently a recurring recommendation is that more
flight tests should be performed including different types of stalls, more excitations leading up
to the stall in the different regressors, differently or more specifically designed control inputs,
etc [54, 58, 11, 12]. However one could argue this may not be an efficient solution. Even in
[5] the conclusion was drawn that the Fokker 100 database is not sufficient to estimate high
performance stall models with the accuracy needed for pilot training. Even though the data
base used here contained a incredible amount of stalls (already more than 200 stalls that also
had to include notable bank angles in the data, of which 79 were usable), but lacked excitation
in the control surfaces, creating unreliable estimates, yet again advocating for further flight
testing. However, flight testing is an expensive practise and the many recommendations prove
that performing yet more flight tests may still not yield the desired results. One could draw
the conclusion that just the design of more flight test methods is thus not sustainable, and
a more robust method, or as a start maybe just a better insight into it, must be found that
aims to increase the value of already ezisting data in order to exploit it to its full potential.
More discussion on flight testing and flight test data follows in chapter 3.
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Chapter 3

Flight Test Data

In this chapter the test aircraft and its measurement system and the practice of gathering
useful data by means of flight testing are discussed. First, a description is given of the Cessna
Citation II test aircraft and its Flight Test Instrumentation System (FTIS) is given. Next,
an overview of the flights and data that are used in this theses is given and the applicability
throughout the flight envelope is investigated. Last, a literature review is done on flight test
practices, input design and data information content, as this has may have an impact on the
aerodynamic model estimation of the aircraft.

3-1 Test Aircraft and Flight Test Instrumentation System

The test aircraft used for the stall modeling at the TU Delft Citation Stall Modeling Group
is a Cessna 550 Citation II aircraft with registration PH-LAB. It is a twin-engine turbofan
aircraft built in 1993. A schematic overview of the aircraft is given in Figure 3-1 and a number
of important dimensions and weights are given in Table 3-1.

Table 3-1: Properties of the PH-LAB Cessna Citation Il aircraft.

Variable Value Unit

c 2.09 m
b 15.9 m
S 30.0 m?

MBEW 4157.2 kg

Loz ppw 12392 kgm?
Lyypow 31501  kg-m?
) S 41908  kg-m?
Loysiw 2252.2  kg'm?

The fuselage frame F is used to establish the location of aircraft equipment, payload and
fuel aboard the aircraft and the location of the c.g.. The origin (or "datum") of the fuselage
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Figure 3-1: Schematic view of the Cessna Citation Il PH-LAB, including the aircraft body frame
Fy, and fuselage frame F.

frame is fixed with respect to the airframe and is roughly 19 inch before and 91 inch below
the nose of the aircraft.

The PH-LAB is equipped with a Flight Test Instrumentation System that is able to collect
all data that is gathered during operation of the aircraft. An overview of the FTIS compo-
nents aboard the aircraft is given in Figure 3-2. The FTIS gathers data on many different
parameters, from aircraft orientation to activated autopilot modes. Not all data is relevant
to this thesis. Details of all important sensors and data to this thesis that are incorporated
in the FTIS are given in Table 3-2.

The different types of sources of measurements on board the FTIS are:

e Analog: Analog measurement data;

o AHRS: Attitude & Heading Reference System (Inertial Measurement Unit);
e« DADC: Digital Air Data Computer;

e GPS: Global Positioning System;

e Synchro: Angle measurement data;

e Interval: Digital measurement data.

All different sensors have different sample rates and noise characteristics. The N1 measure-
ments are variable in sample rate and variance, as the raw signal is a sinusoid of which the
frequency changes with N1 and its value is calculated based on the period of the sinusoid at
that moment. Thus its sample rate and variance vary as N1 varies. The different sample
rates of all the different data sources may have an effect of the usability of the data when they
are combined in analysis or modeling. Also the noise variance values say something about
the reliability of the data. Both these factors need to be taken into account when performing
the Flight Path Reconstruction in chapter 4.

A mass model has been developed of the PH-LAB which models all mass-related parameters
of the aircraft and how these change during the flight like its mass, moments of inertia and
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Figure 3-2: Overview of the FTIS components on board the PH-LAB.

center of gravity position. This is based on modeled components like taken fuel, payload and
fuel flow during flight and their position and contribution to the total moment of inertia. It
required an initialization based on specific start fuel and payload and passenger weights. If
this is not available it assumes a standard initialization, which is very general. Therefore care
should be taken to initialize the massmodel with the actual values that were present during
the flight if this information is available.

3-2 Overview of Citation Flight Test Data

The PH-LAB is used extensively by the TU Delft and the Royal Netherlands Aerospace
Centre NLR. Flights are performed for a large variety of different purposes in different parts
of the flight envelope and with different types of (combinations of) measurement equipment.
For example, the angle of attack and angle of sideslip vanes on the air data boom are not
always installed on the aircraft. Also some flight may include manoeuvres that are not useful
for the intended purpose of the modeling.

For the research in this thesis it is of importance that the data contains a significant number
of stalls and sufficient excitation to be able to model the aerodynamic model accurately.
It was decided that only flights are chosen that have available measurements from the air
data boom and that were specifically flown for the purpose of stall modeling. There was
also data available from other flights that included stalls, but the latter being not the main
purpose of the flight. Also the air data boom is not available on some of these flights. To
be able to model the lateral behaviour of the aircraft correctly air data boom measurements
are critical [57, 58, 11] and thus only flights are chosen that include these measurements.
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Table 3-2: Overview of measurement equipment available on the PH-LAB and relevant data
variables with sample rates and measurement noise variances.

Source Rate [Hz] | Variable Description Noise 0? Unit
Analog 1000 Oty Angle-of-attack nose vane 4.4-107% rad
AHRS 52.1 % Roll angle 2.8-107% rad
0 Pitch angle 4.5-1077 rad
P Yaw angle 1.9-107% rad
D Roll rate around Xp 9.1-107% rad/s
q Pitch rate around Yp 1.5-107* rad/s
T Yaw rate around Zp 5.4-107° rad/s
A, Specific force along Xp 3.9-107° m/s2
Ay Specific force along Yp 3.8-107* m/s?
A, Specific force along Zp 2.7-107% m/s?
DADC  16.0 Vras True airspeed 2.5-1072 m/s
GPS 1.0 T Position in Xg 1.1-107F m
y Position in Yp 1.1-1079 m
z Position in Zp 221072 m
z Velocity along Xg 2.3-107° m/s
v Velocity along Yg 2.4-107° m/s
Z Velocity along Zg 1.0-107%* m/s
Synchro  100.0 0q Aileron deflection 1.4-107° rad
e Elevator deflection 1.4-107% rad
O Rudder deflection 4.0-107° rad
Qap Angle-of-attack boom vane  4.4-10"* rad
B Angle-of-sideslip boom vane 2.1-10"* rad
Interval  variable N1, Left engine (#1) fan speed  variable %
N1, Right engine (#2) fan speed variable %

Though, a general investigation of the effect of the lack of air data boom measurements on
flight path reconstruction has been performed in chapter 4. Also, only flights were chosen
that were purposefully performed for stall modeling as it is deemed that data from such a
"quasi'-controlled environment provides the best basis to perform this research on.

The flights from which data is taken are listed in Table 3-3. The part of the flight envelope
for which data is available from these flights is visualised in Figure 3-3. For an overview of all
experiment runs in these flights and the plotted aircraft trajectory during these flights, see
Appendix A.

In Figure 3-3 the three graphs contain all points in the Citation flight envelope where mea-
surements are available from the four stall flights. The color of the data points show the
associated angle of attack of that data point. Please note that this figure shows all data
available from the flights, but that in practice usually only a specific selection is used in mod-
elling that is most applicable to the intended model purpose and contains the most useful
information.

In Figure 3-3a clearly the stall runs can be seen, with the increasing angle of attack as the
Mach number decreases to the left. The main altitudes at which stall data has been collected
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Table 3-3: List of stall flight tests.

Flight # Date From Description

1 11-11-2016  [58] Stall flights 2016 1 of 2
2 11-11-2016  [58] Stall flights 2016 2 of 2
3 07-02-2018 - Stall flight 2018

4 30-10-2019 - Stall flight 2019

can easily be identified: at roughly 5700, 5000 and 4500 m for flight 1 and 2, at 2700 m for
flight 3 and at 3200 m for flight 4. This delivers a dataset over a wide range of angle of attack
and sideslip as is visible in Figure 3-3b, even for high angles of attack significant angles of
sideslip could be achieved. The anomaly that is visible in this figure where the lowest o and
B are achieved is the result of a significant wing dip during stall run 32.

Last, in Figure 3-3c the "load diagram" of the data is plotted but with the vibration in pitch
rate instead of load factor (the steady state load factor cannot be calculated as the lift force is
not known yet). But this figure also delivers important information: it can be observed that
with decreasing equivalent air speed where the highest angles of attack are achieved, large
variations and excitation in pitch rate begin to occur. The definition in [13] of a ’stall’ is: "a
loss of lift caused by exceeding the aeroplane’s critical angle of attack, (...) which may be
recognised by continuous stall warning activation accompanied by at least one of the following:
a) buffeting (...)". However the critical angle of attack is not known as it based on the Cp,, ,
and there is no data on Cp, for the flights as it is yet to be estimated. When investigating
the time series of the flight data as in Appendix A, one of the clearest indications of the stall
was thus not in the angle of attack, but more clearly the presence of the stall buffet which is
-indeed- best visible in the pitch rate ¢q. This is substantiated by Figure 3-3c where the high
pitch rates are common at the low speeds. Because of this, in this thesis, the definition of the
beginning of the stall is defined as the point where the stall buffet begins to occur in the data
of ¢ and the beginning of the stall recovery is when the buffet last occurs for that stall run.

3-3 Flight Data Information Content

As was concluded in chapter 2 the performed flight maneuvers present in the data signals
are of high importance to acquire the desired usability of the data in regard to the correct
estimation of the aerodynamic model. As found the most important requirement to the data
seems to be that there exists sufficient dynamic excitation before the stall. The positive
effect of this was for example proven in [12], even though for some model regressors there still
remained difficulty in achieving the desired model quality. The findings in this case apply to
the stall region modeling of aircraft, but the same requirement of sufficient excitation also
applies to normal aircraft identification problems: there needs to be sufficient excitation in
the data for the intended purpose of the desired model. A description of what the "amount
of excitation" in data is, is given in this section.

Master of Science Thesis P.A.R. Brill



62 Flight Test Data

7000 -

0.6 - 0.5
6000 |- 05
.5 - e —
/ \ 0.4
5000 + 0.4+ //’ \\\
/ N 0.3
0.3 /
4000 y
= 02t - 02 —
£ E A E
= 3000 | o1 & -
& .1+ 1 > 01 3
] 34
H 3
2000 | ot } ;- )
,01 L
1000 j o
,02 L
= i ] 0.3 . . . . . . . . -0.2
0 0.05 0.1 0.5 -0.4 -0.3 -0.2 -0.1 0 0.1 0.2 0.3 0.4
B [rad]
(a) Flight data within the flight envelope. (b) Flight data for a and §3.
0.3
02}
0.1+
=
<
= Or
M
2
£ 01t
<
=
-0.2
0.3}
04 ‘ ‘ |
0 50 100 150

VEAS [m/s}

(c) Flight data for pitch rate g.

Figure 3-3: Overview of the gathered data within the flight envelope of the PH-LAB.

3-3-1 Information Content of Data

In [28] an introduction is given into flight test manoeuvre design. There are two main types
of inputs: one are general inputs that excite the system over a broad frequency which is
applicable to systems of which no or little a priori knowledge is known. Other are inputs that
are designed with the system in mind because there is a priori knowledge, one of which are
so-called "optimal inputs'. Next to choosing the flight condition at which data is desired there
are three main specifications that need to be defined for the input. These are the maneuver
time length, which control surface to excite and the input form. These choices must be made
with a common goal which is to maximize the information content in the data.

Nonparametric Descriptions of Information Content
The first general manner in which the information content can be quantified is via the signal-

to-noise ratio. In fact, Flight Path Reconstruction as discussed in chapter 4 aims to achieve
exactly this: an increase in signal to noise ratio of the data. A second quantification of
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information content is in the frequency domain via the signal coherence I, between an input
signal u(t) and output signal y(t), as defined in [41]:

_ Sz (w) . |Suy(w)|2
Puy(w> a \/Syy(w) B \/Suu(w)syy(w) (3_1)

With S the power spectral density of the subscripted signal. The coherence is a measure of
describing how much of a systems output y is contributed by the system response z under
the influence of input u, as compared to the contribution of a noise signal n, the output is
defined as:

y(t) = z(t) + n(t), with x(t) = u(t) * h(t) (3-2)

The coherence is 1 for full coherence (all output dictated by system response z) and 0 for
no coherence. If u and y are uncorrelated, Sy, = 0 and thus so is their coherence. For two
uncorrelated signals counts:

E{zy} = E{z} - E{y} (3-3)

Two signals are not only uncorrelated but also orthogonal if:

E{zy} =0 (3-4)

Both the signal-to-noise ratio and coherence are nonparametric and therefore apply to any
model type.

Parametric Descriptions of Information Content

As aerodynamic models are parametric, other information content descriptions can be useful
[28]. For a single-input-single-output model with one parameter, one can quantify information
content by the sensitivity of the model output to changes in the parameter 6, which is given
by the derivative %. The best input for such an experiment to estimate the parameter of that
system maximizes the squared output sensitivity over the test time 7. This is mathematically
given by:

=y [0 = [8‘13(9@]2}_1 )

= k=1

Where u* is the scalar optimal input waveform over the specified test time [0,7], U is the
set of all admissible inputs and the summation over N time points approximates a time-
integral where T' = N At with the sampling interval At. In practise the equation governs that
the sensitivity of the output to changes in the model parameter (the derivative %) must be
maximized with an optimal input. High output sensitivity thus means: a small change in the

parameter 6 results in a large change in output y, which enables an estimation routine to find
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accurately the parameter value that results in the best fit between output y and the available
measurement.

For multiple-input-multiple-output models with N, number of parameters gathered in a pa-
rameter vector § and N, the number of system outputs, the information content is given by
the N, x N, information matrix M. Here the sensitivity is captured in the N, x NN, output
sensitivity matrix S(k), which is given by:

9y (k) op(k) . Oyi(k)
20, 005 0N,
Ay2 (k) Oya(k) . Oya(k)
S(k’) _ 6.91 3‘92 . 89.Np (3_6)
dyno (k) Oun,()) . Ouna(R)
90, 005 0,

Then, the information matrix M is defined as:

M = ZN: S(k)YTR™1S(k) (3-7)
k=1

Where R is a diagonal matrix of which the elements introduce a scaling to the output sensi-
tivities according to the measurement noise related to that output, i.e. the noise covariance
matrix. The information matrix M is also called the "Fisher Information". The Fisher In-
formation is a very important concept in experiment design for model estimation as it is a
measure of the information content of the data from an experiment. The sensitivity matrix
S(k) can be calculated by using finite differences on the dynamic equations of the to-be-
estimated model, if this a priori knowledge of the model parameters is available.

o Asan example the Fisher Information is calculated here for the C, model of Equation (5-
43). This equation consists of seven to-be-estimated parameters collected in vector 6,
as given by Equation (5-58):

- T
02{@1 o 1 m C, Cr, CLa2i|

There is only one the one output measurement: yc,. The sensitivity matrix S(k) then
contains all derivatives of yc, relative to the parameters in 6. The resulting matrix
S(k) is the result of applying the chain rule via:

S(k) — Oycp (k) Oycp (k) Oycp(k) Oycp (k) Oyc, (k) 0Oyc (k) Oyc, (k)
( )_ dai da* or 019 BC’LO BC’LQ 8CL(¥2

B [6ycL(k) axX(k) Oycp (k) ox(k) Oyc, (k) oX(k) Ovey (k) 9x(k) Oyo, (k)  yo (k) BycL(k)]
= |9X(k) da; OX(k) da* OX(k) On OX(k) Om aCr, oCr, 90,
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The derivatives in this matrix have been extensively discussed in chapter 5, resulting in
the derivatives of Equation (5-66), Equation (5-68), Equation (5-69) and Equation (5-
70). Altering these equations for use in the matrix S(k) for the timestamp k, the
derivatives when 6, € {Cr,,CrL,,,C LQQ} become:

1 when 60; = Cp,

ye, (k ’
Vo) (W) a(k)  when 6; = Cp, (3-9)

max(0, a(k) — 6°)?  when 6; = Cr,

And the derivatives required when 6; € {a1,a*, 71,72} become:

) -S4 i)

 3{1—tanh® [a1 (a(k)—T2é(k > Hak)—raa(k)—a*}
 L{1—tanh?® [as ((k)—rad(H)—a*)]H{—a1)} when ; = o*

= 7—naa—T71'd —a®)]}t— 3-12
96, = | _ A{i—tanh o (a(b)-ra(k)—a") - X (k) I

when 6; = a1

T2
_ 3{1-tanh? [al(a(k)ifza( k)—aM)H{-a1a(k)}
I

when 9@ = T2

After which, just as in chapter 5, (k) =S (do not confuse S with S(k)!) is the value

dS OG(k
£ 4 = 595 1 g

Note that in this case it is thus not only important that the model structure is known,
but also an a priori estimate of the parameters in 6 is needed as these are present in
the derivative equations.

found when numerically integrating the OD

The inverse of the Fisher information M is the dispersion matrix D. The diagonal entries of
the matrix D are shown in [28] to be the theoretical lower limit for the estimated parameters’
covariances, i.e. the Cramér-Rao Lower Bound (CRLB). Mathematically:

—

D =M< Covl[f (3-13)

And thus, the Cramér-Rao Lower Bound for the parameter standard deviations oy, are the
square-root of the diagonal elements of D, i.e.:

09, = \/Dij, withi=j=1,2,...,N, (3-14)

A significant advantage of the use of the Fisher Information in input design is that it gives
the theoretical lower limit of the parameter covariances and is thus unrelated to the algorithm
used in the actual estimation of the parameters. Therefore, the design of specific inputs or
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the selection of what data to be used in the estimation of parameters can be performed before
the estimation itself is done.

With the above knowledge, it can be concluded that the final goal of input design or data
selection for aerodynamic estimation is to minimize the theoretical lower bound of parameter
variances such that the certainty of the parameters that can be estimated is increased. And,
as the contributions of each of the inputs (which are the regressors) to the information content
are known via the derivatives in S(k), it should be possible for one to actively and directly
influence -or maybe even "tailor'- the certainty of the individual final estimated parameters
by either using a specific control input or selecting specific data with a desired type of content.

3-3-2 A General Description of Stochastic Variables and Fisher Information

One peculiarity associated with the calculation of the Fisher Information above is that is is
directly related to the model structure for which a priori knowledge is required. It may be
worthwhile to also have a more general definition of the Fisher Information available that is
more broadly applicable, even though its quality may be less.

Within the subject of the fundamentals of parameter estimation it is crucial to see the es-
timated parameter not as deterministic, but as a stochastic variable, i.e. its value depends
on random circumstances. But within the randomness of all values possible for a stochastic
variable, some values are more likely to occur than others. This behaviour can be expressed
by the probability distribution function Fz for the stochastic variable Z (the bar declaring the
variable as stochastic) as a function of the deterministic quantity x. This is expressed as [41]:

Fi(x) =Pr{z <z} (3-15)

The probability of an event is always between 0 and 1 and is monotonously increasing, such
that:

The derivative of the probability distribution function F% is the probability density function
(pdf) fz, which is defined as [41]:

dF3(z) . Pr{z<az+ Az} —Pr{z <z} . Pr{iz<z<z+ Az}
_ - — = % >
o) = =g = A% Ar AT A Mheek®=0
(3-17)
Such that follows:
+oo
/ z(z)dr = Fz(4+00) — Fz(—00) =1-0=1
/ (@)dx = Fa(a) — Fs(—o0) = Fi(a) (3-18)

P.A.R. Brill Master of Science Thesis



3-3 Flight Data Information Content 67

Often the exact probability distribution or pdfs cannot be determined explicitly. Some other
quantities can be introduced that still say something about these functions, even though they
are itself unknown. For example, the expectancy of z is E{Z} which is the average value of
the stochastic variable when infinite samples are taken. It is defined as the first order moment
my of the pdf [41]:

my = B{z) /_ :o o fa(w)da (3-19)

Which is the called the mean value puz. Also a "central" moment can be taken which is the
moment of the pdf relative to the mean. For example the first order central moment m/] is
defined as [41]:

mi =E{(Z — pz)} = / — uz) fa(2)dx
- /+OO fe(x)de — pz - /+Oo fz(z)dz (3-20)

—0o0 —0o0

=pz—pz =0

Saying basically that the expected deviation of T from the mean pz is zero. The second order
central moment is given as [41]:

= B{@ — e = [ @ e (o) (3-21)

Which is called the variance o2 of the parameter x. Its square-root is then the standard
deviation oz.

The fundamental description of the stochastic variables above are needed for the general
description of the Fisher Information in [30]. In a practical sense related to parameter es-
timation, a pdf can describe the probability that one observes a certain outcome z; of a
stochastic variable X; given a known deterministic value of a parameter 6. The collection of
all possible outcomes of X; is denoted X. The mathematical notation for this pdf is:

po(xi) = f(i|0) (3-22)

The Fisher Information Ix(6) is then a measure to quantify the amount of information about
the parameter § embedded in the random variable X and is defined as [30]:

2
Jx (d% log f(x]G)) po(x)dz  if X is continuous

()= d R,
>eex (@ log f(a:\ﬁ)) po(x) if X is discrete

(3-23)

In this equation the derivative 4 4p log f(x]0) is called the score function, which is a function of
x describing how sensitive the model f is to changes in 6 at a particular #. Note the similarity
of the Fisher Information definition to Equation (3-21). And indeed, the Fisher Information
is actually the variance of the score function.
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Also note that Equation (3-23) and Equation (3-7) are indeed the same. The term S(k)T S(k)
2
of the sensitivity matrices is equivalent to the score function term (d% log f (ac|l9)> and the

noise matrix R~! is equivalent to the pdf py(x) which fundamentally includes the "spread" of
stochastic variable X which is included more explicitly in R. As Equation (3-7) is discrete
rather than continuous it is a sum rather than an integral.

3-4 Flight Test Design

Where the last sections discussed how the amount of information in data can be quantified,
it is also important to investigate how this information can be introduced into the data in
practical terms. I.e. what types of manoeuvres are used in flight testing and how to select
this data. There are multiple methods in which flight data can be gathered and stored.
Even though the methods differ in approach, all aim to acquire the same goal: increasing the
information content of the data about the to-be-estimated parameters in regions of interest.

3-4-1 Data Partitioning

As mentioned in chapter 2 the main challenge in the estimation of the stability and control
derivatives at high angles of attack are the nonlinearities that exist in these regions. The
Kirchoff Model is a method to incorporate these in a relatively simple model. However, when
flight data is gathered over large variations of angle of attack or sideslip, it may be that the
parameter estimates found are not "tailored" enough to the region of focus.

In [3] a method is discussed that aims to partition the available data by dividing a manoeuvre
that covers a large range of some variable into several portions each of which spans a smaller
range of that variable. Partitioning is then performed by eliminating the dependence of y(t)
on one of the variables x;(t) by redefining y(¢) on subsets of the variables {x1,zo,...,2z3}.
For example, for the yawing moment coefficient C), it is expected that at high angles of attack
(e.g. 20° < ar < 30°) flow separation affects the yaw in a nonlinear manner. In that case the
dependency of (', on its variables, i.e.:

C"n, = Cn(a7 Bv b7, 6) (3_24)
Can be partitioned into separate groups:

Cpn(a=21°) = Cy(B,p,r,6), for 20° < o < 22°
Cn(a =23 =C,(B,p,r,9d), for22° <a<24°

(3-25)

Cn(a=29°) =C,(B,p,1,9), for28° < a < 30°
All available data of the outputs and inputs is then partitioned into the group where that
certain angle of attack a was present. Every partition may in itself be partitioned further if

necessary (i.e. the group 22° < a < 24° may be further subdivided into 22° < a < 23° and
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23° < a < 24° or even smaller sections). Each partitions may have more or less data time
present in it, depending on which manoeuvre was flown.

The paper of [3] also uses modified stepwise regression methods which can be used to find the
best applicable model structure for each subdivision in the data. The final model will thus
be more or less "scheduled" throughout all subdivisions not only in the parameter estimates,
but may even differ for each subdivision in model structure itself.

The partitioning method delivered a richer set of points available to model nonlinearities at
high angles of attack. However a drawback remains that as the subsets are partitioned, some
may include no to little control surface deflections at all, which deteriorates the estimates
of the control derivatives. A consideration should thus be made between the increase of
quality of some some parameters due to partitioning as they capture nonlinearities better,
while it may deteriorate for other derivatives as the data contains less information for those
parameters.

3-4-2 Conventional Manoeuvres

Flight test manoeuvres can usually be divided into two groups: manoeuvres flown by conven-
tional inputs and manoeuvres flown by optimal inputs. Conventional inputs are less tailored
to the identification goal, but do not require any a priori information on the modeling or esti-
mation technique, and are therefore still broadly applicable and widely used in flight testing
(even though some can be tailored partly to some specific region of interest). They all have
the aim to have some type of balanced perturbation around the trimming conditions, such
that there is excitation, but the aircraft does not depart far from the desired flight condition.

A number of conventional inputs are listed below [28]. An overview of the time series and
power spectrum of these inputs can be found in Figure 3-4. These are the experimental power
spectra calculated from the signal via the Matlab pspectrum()-function. For square wave
and pulse function the experimental spectra deliver incorrect results so also the analytical
spectrum is plotted.

o Impulse and double impulse. The most rudimentary inputs are impulses. The double
impulse consists of two impulse immediately following each other, which aims to keep
the aircraft close to the initial condition. From the power spectrum it can be seen the
impulse had a broad frequency range, but very low power. Because of the latter it is not
very suitable for extensive aircraft identification purposes, but it can be used to excite
some fundamental behaviour of the aircraft that make it useful in validation.

o Frequency sweep. The frequency sweep input is a sinusoid with changing frequency as
the input is applied. It is performed to gain information on the aircraft responses over
a broader frequency range. The application of the sinusoid’s frequency can change over
time in two manners, either linearly or logarithmicly. From the spectra it can be seen
that for the linear case the information is more focused on the higher frequencies as
the frequency is increased quicker than power can be accumulated for the lower-energy
lower frequencies. A solution is to increase the frequency logarithmicly which gives more
focus about the lower frequencies and therefore has a broader band in which the input
accumulates power.
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e Multisine. A multisine input is a sum of sinusoids with various frequencies and ampli-

tudes superimposed on each other. The frequencies can be chosen such that informa-
tion is gathered over a specific frequency band and the amplitudes can be chosen to
accumulate a certain power over a specific frequency region. An often-used input are
harmonically summed sinusoids, mathematically given by:

u(t) = Z Ay, cos (27;“ + ¢k) (3-26)

keK

Where £ is the k-th harmonic and is an integer in the set K of K; frequencies of interest,
whith which different combination can be made. Ay is the amplitude of sinusoid k, and
T is the application time of the input. The same phase can be added to all harmonics
to make sure that the input starts and ends at 0 input. The phase shifts ¢, can be
optimized individually to reduce the crest factor of the signal. A common manner to
do this is via:

Ak = 1/P/Ki

%o =10 (3-27)

k2
Op = Pp—1 — K,

With P a chosen power level for that harmonic. In Figure 3-4e the power for increasing
frequency is 1, 2 and then 3 for harmonics k = 6, £k = 12 and k = 24 for T" = 18 s.
Note that the actual power are sole impulses on the three selected frequencies. This is
the reason that sinusoisal inputs must always be a combination of multiple sinusoids as
otherwise the bandwidth becomes too narrow.

More different and elaborate optimization techniques exist for making effective com-
binations of multisines and have for example been applied in [21], based on the same
input type of Equation (3-26).

Pulse, doublet, 3-2-1-1 and 2-1-1. Step-like input forms are very common conventional
inputs, as they are very easy to apply manually, and by changing the time and amplitude
of the inputs significant broadband excitation can be achieved. The basis of these inputs
is the fundamental rectangular pulse function II(¢). As the pulse function itself often
causes significant departures from the desired flight condition, the most basic input is
the doublet, as shown in Figure 3-4g.

The doublet analytical spectrum is centered around one dominant frequency, which
can be changed by increasing or decreasing the application time of the two pulses. An
application of the doublet is to be able to focus on a certain response at a certain
frequency, but being more generally applicable than one sine wave input for which
the exact frequency is needed to be known that excites the particular motion one is
interested in. It can be especially interesting to use multiple doublets at different center
frequencies to manually increase the broadband of the input.

The 3-2-1-1 input is the somewhat "manual" or rudimentary version of the frequency
sweep. The long pulse followed by the shortened pulses imitates the increasing frequency
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of the frequency sweep. Looking at the analytical spectrum the bandwidth of the 3-
2-1-1 is rather wide and somewhat constant over that width. This relatively constant
bandwidth over a wider range, combined with the ease at which this input can be flown
(frequency sweep often requires more advanced automation) make it a very widely used
input for identification purposes. The 3-2-1-1 manoeuvre is also extensively used in the
flight of Table A-3.

The last conventional pulse-like manoeuvre used in aircraft identification is the 2-1-1,
which is related to the 3-2-1-1 but with the added benefit the aircraft departs less from
the intended flight condition, for example when very specific measurements at that
condition are needed. However this comes at the cost of a lesser bandwidth.

o Wiggle. A last input type was introduced by [39] and was especially designed for pilot
application, but where the 3-2-1-1 was not suitable. This is the "wiggle" which is a
quasi-random noise introduced by manual inputs of the pilot. Especially during stall
flight tests these can be useful as they do not make the aircraft deviate significantly from
the desired stall entry trajectory and are simple for the pilot to apply. This input is
modeled in Figure 3-4j as white noise passed trough lowpass filter with cutoff frequency
of 5 Hz via Matlab’s lowpass ()-function. The resulting time series was also compared
to the actual inputs given in the flights of Table A-1, Table A-2 and Table A-4 and they
showed very similar behaviour. It can be seen that also the spectrum is rather wide
and excites many different frequencies. A drawback is that on some control surfaces
the quick movements may be hindered through control forces and the cutoff frequency
decreases, such that the quasi-random signal approaches more and more that of a sine-
wave, which was also observed in the mentioned flights for the J. deflections.

The advantage of conventional inputs is that they -depending on how much tailoring is
required- can be applied by either the automation on board the aircraft or just manually
by the pilot. Even manual inputs deliver reliable data with a good information content. This
makes conventional inputs, despite their simplicity, still very applicable in aerodynamic model
identification today.

3-4-3 Optimal Input Manoeuvres

Even though the conventional manoeuvres often deliver data that is already very useful, they
remain general. As such, if some a priori knowledge about the to-be-modeled aircraft and to-
be-modeled parameters is known, it should be possible to maximize the information content
of the data by optimizing the inputs. These are called "optimal inputs'. Optimal inputs
consist of conventional inputs as the pulse-like inputs or multisines, but are optimized for
their amplitude and application time or amplitude, frequency and phase, respectively. All
input optimization techniques require maximization of the information in the data, and use
some form of the information matrix as defined by Equation (3-7).

One of the earliest attempts at optimizing inputs for aerodynamic model identification was
performed by [40], focusing on optimization of orthonormal sine functions by optimizing a
cost function based on the trace of the inverse of the Fisher information, i.e. J = tr[M~1].
The optimized orthonormal sine function (called the "DUT" method) inputs were compared to
other input types, among which the conventional doublet and 3-2-1-1 inputs. In sample mean
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Figure 3-4: (1/2) Timeseries and power spectra of conventional flight test inputs.

of the stability and control derivatives the DUT method had a bias better than the doublet
input, but not better than the 3-2-1-1 manoeuvre. The mean itself generally was close to the
3-2-1-1 manoeuvre, but not always. The same conclusion holds for the standard deviations.
It was concluded that the optimized inputs should be able to reach at least the same accuracy
as the conventional methods, even though in the experiment itself the conventional 3-2-1-1
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Figure 3-4: (continued, 2/2) Timeseries and power spectra of conventional flight test inputs.

manoeuvre had very good performance that the optimized signal could not yet match.

Just as [40] compared its own optimization technique to the conventional doublet and 3-2-
1-1 manoeuvres, the same was done in [35]. The same choice was made on cost function
for the optimal inputs, being the trace of the dispersion matrix . Rather than using sine
functions, the aim was to construct an optimal square-wave input signal based on pulses.
Via dynamic programming including a number of constraints, optimal control inputs for the
different control surfaces were found and applied to a F-18 aircraft. In the lateral case, the
estimated parameter standard deviation were on average 20% smaller with the optimal inputs.
For longitudinal motions this was as high as 72%. In the longitudinal case estimated standard
deviation were also 64% better than the doublet estimates. This research in this paper showed
what [40] could not yet achieve: surpassing the conventional inputs’ estimation performance.

A comparable optimization was performed by [46], but extended the optimization of optimal
input design via dynamic programming for a single flight test to that of an entire protocol:
multiple flight tests with multiple experiments during testing of commercial airliners at Air-
bus. The paper proves the possible far-reaching impact that optimal input design can have
on flight testing: entire protocols can, theoretically, be created that are the most efficient in
information maximization of the data. This could save not only money and costs, but more-
over removes the rather large heuristics that are present in flight test design. Unfortunately
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the designed method was not further validated.

In [36] the optimal input design is applied to orthogonal multisines in the form of Equation (3-
26), to optimize the inputs on all three control surfaces concurrently on a hypersonic vehicle.
The goal of the multisine was optimization of the phase-shift ¢, for all harmonics with as a
goal minimizing the crest factor. After each experiment run using the multisine inputs a con-
ventional 2-1-1 manoeuvre was applied for validation and comparison. The multisine inputs
delivered results that were comparable to that of the 2-1-1 data, proving the applicability of
the multisines. The same optimization technique was applied to a scale model of a commer-
cial airliner in [38]. Also here the results show the applicability of optimized multisines as
inputs for flight model identification. However, the input signals are significantly complex,
such that it was concluded that manually applying these inputs is not possible. It should
thus be assessed if an aircraft has enough advanced automation capable of performing these
manoeuvres when looking to apply this method to full-scale commercial flight testing.

3-5 Conclusion on Flight Test Manoeuvres and Flight Test Data
Selection

From the above analysis, one thing has become clear: for aerodynamic model identification
purposes not only the quantity, but also the quality of the gathered data is of great importance
to be able to construct reliable models. The former could be seen as the amount of absolute
information available, and the latter as the density of information within signals that is
applicable to a specific model structure. But evidently from chapter 2 it remains clear that
even when more and more data is gathered, the same problems seem to re-occur: the data
does more than often appear to not be entirely suitable to find very reliable estimates for some
of the parameters in the models. Often the recommendation is made for more data quantity:
more flight tests should be performed. Quality of the data can then only be increased by
increasing said quantity.

This thesis argues that there are more methods to increase the quality of the data, especially
with regards to stall modeling, based on the findings in the current chapter. One starting
point is that current research of the TU Delft Citation Stall Modeling Group already provides
a robust and substantiated model structure via [58]: this means that a priori information is
available about the model. The second starting point is that the method of partitioning
learns that depending on how data is sliced, it can deliver different estimates for the model
parameters than if it were not sliced: there exists a relationship between the data slicing and
model performance.

Two methods to increase model quality via increase of data quality (i.e. the information
content) are deemed possible because of these the above two prerequisites: 1) using optimal
flight manoeuvre modeling techniques via the Fisher information to increase the data quality
with respect to stall manoeuvres that cannot be attained via the conventional methods, or
2) using partitioning or specific timeseries slicing to increase the quality of the data to use
data that is more applicable to the stall modeling and leave out data that may affect the
estimates toward more neutral flight conditions, also via the Fisher information. The Fisher
information may be a very powerful tool in this as the a priori known model structure gives
an opportunity to recurrently assess the information content specific to this model.
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Some advantages and disadvantages arise for both methods. For the first, it is another
manner of creating more data quantity, which costs time and money. Also, a more practical
concern is that it is not yet known if the PH-LAB is available in planning terms, or if any
of the hardware and automation aboard the aircraft is sufficiently advanced to precisely
execute optimal inputs correctly. Tough, no literature has been found that directly implements
optimal input methods to a full-scale commercial aircraft.

For the second, significantly less resources are required. A disadvantage may be though that
information content is defined by a sum: is more data not always better, even if it is sliced
very specifically to increase quality with respect to a desired model structure? On the other
hand, there is no literature on any slicing methods, both with respect to stall modeling nor
any other aerodynamic modeling focus region. Already between [57] and [58] exist large
differences: about 8 s per stall versus 50 s, respectively, but no specific reasoning has been
given for the choice. Furthermore, if a method can be developed that relates slicing of data
via the Fisher information and the quality of the estimated model exists, this is something
that could be widely applied and creates a concrete protocol for any future research on stall
modeling.
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Chapter 4

Flight Path Reconstruction

The first step in processing the gathered data to to perform Flight Path Reconstruction
(FPR). The data signals as described in chapter 3 contain an unknown noise and bias as the
sensors are not perfect. Furthermore, there is a difference in sampling rate of the numerous
signals. This causes the problem that the only available data is not only "wrong" (because of
the noise and bias) but also that the data cannot be used for modeling "as is". For example,
a signal with a 52.1 Hz sampling rate cannot be used to explain dynamics observed in a 1 Hz
signal.

This means that, in order to be able to use the data for modeling, the noises and biases must
be filtered as well as a estimation must be made of the signals that would have been measured
if all variables were measured by the same sampling rate. This process is called FPR and can
be performed by applying a Kalman Filter (KF).

For this thesis an Unscented KF (UKF) is used. As there are many types of Kalman Filters
with each their own characteristics and applicability, the reasoning behind this choice is
discussed first. Second, the mathematical workings of the UKF is discussed. Thereafter, the
specific kinematic and measurement model which is applied to the data is explained, this
includes the two different models for both data with measurements of the air data boom and
without. Then, the required pre- and post-processing steps of the data are discussed. The
chapter concludes with a tuning of the UKF and testing its performance on actual flight data.

4-1 Considerations on Kalman Filter Type

The original KF is an optimal filter with a guaranteed convergence, which makes it an in-
credibly powerful tool in state estimation procedures. However, it is only applicable to purely
linear system dynamics. In order to deal with nonlinear systems -as is the problem of FPR in
this thesis- the KF can be extended with a integration step to obtain the state prediction and
linearization step to use the steps from the normal KF: the Extended Kalman Filter (EKF).
Or, when including an iterative inner loop in the procedure, the Iterated Extended Kalman
Filter (IEKF) for improved convergence behaviour. An even further extension is the UKF in
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which linearization is not needed, aiming for further improved estimation for highly nonlinear
models.

All previous TU Delft Citation models have been developed from flight data filtered by the
UKF [54, 57, 58], which showed reliable results. In [57] an elaborate investigation has been
performed into the performance of the IEKF, the Unscented Kalman Filter and different types
of smoother algorithms. It was found that the IEKF and UKF had the best performance.
They were comparable in their performance, even though the computational time of the IEKF
was significantly shorter. However, as the filtering on the data only needs to be performed
once and then can be saved for further use, computation time is not a dealbreaker. But
additionally, it was also found that for the UKF the choice of noise covariances matrices
was less crucial, and as it also omits linearization which theoretically should provide superior
reliability.

In external research of [4] the use of the EKF has been compared to the UKF for an online,
recursive FPR practise with real flight data. Even though the research of this thesis is not
a recursive but rather an offline FPR problem, the main conclusions of this paper are still
applicable as the fundamentals of the state estimation work the same. The paper finds that
there is no significant improvement when using the UKF over the EKF. Both provide reliable
results. Even though the UKF has a slightly higher reliability of the estimated parameters
and faster convergence, it comes at a higher computational power. The EKF does still provide
reliable results. In further research in [49] the performance of the EKF, IEKF and UKF are
compared in relation to purely the FPR. It is found here that, even though all again provide
reliable results, the UKF provides the highest reliability in relation to noise levels, tuning of
the noise covariance matrix and estimation of IMU bias terms. The estimation of the IMU
bias terms in combination with GPS measurements is a form of "sensor fusion" which is also
incorporated in the FPR of [54, 57, 58]. A further analysis on the effect of KF choice in the
case of sensor fusion has been researched in [22]. Comparable, reliable results are obtained
from both the EKF as UKF when sensor fusion is incorporated in the FPR procedure. Further
improvements may even be found for the EKF when some states are modeled not as a constant
but as random walk (as also implemented for wind estimation in [57]).

Because the preferred method for the TU Delft Citation stall modeling group is the use
of the UKF, external research confirms the reliability and applicability of the UKF, and
computational time is not a stringent factor, the UKF was chosen to perform the FPR in this
research.

There also exist different versions of the UKF. One that was considered for use in the FPR is
the Square-Root UKF as presented by [56]. The aim of the Square-Root UKF to improve the
numerical stability of the filter by making use of direct propagation of the sigma points via
QR decomposition, Cholesky factor updating and efficient least-squares, instead of updating
a new set of sigma points as in Step 1 described below. The paper finds that the square-root
UKF has no lesser performance that the normal UKF, but has lower computational cost and
the desired higher numerical stability. However the specific structure of the kinematic and
measurement equations in the FPR problem of this thesis with the use of sensor fusion and
noise within the input signal makes the Square-Root UKF unfeasible. Also, when testing the
normal UKF desirable results were already obtained, thus the normal UKF was chosen.
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4-2 The Unscented Kalman Filter

In this section a description is given of the UKF'. Regard a system whose behaviour is described
by a set of nonlinear ordinary differential equations as a function of states: f(Z). As often
not all states are directly measurable, also regard a set of measurement equations relating
the measurement signals to the states: h(Z). Next to being a function of the states, both
equations can also be affected by a certain input «# and noises @ and ¢. Of course, these
variables may all be a function of time ¢, as well as the equations themselves. This results in
a system of equations for state derivatives # and measurements 7, defined as:

(4-1)

In practise for Z, the actual measured signal (denoted by subscript ",,") is not continuous, but
discrete at times t;. As discussed later in this chapter, for input # also a discrete, measured
signal is used. This results in the system description:

)

(1) = f(ﬂ:ﬁi(t) m (1), w(t),t | (4.2)
z ti),ti), fori=1,2,...

Zm(ts) = W(Z(t:), Um(t:), V(L

For the purposes of FPR, it is assumed that the process noises W are introduced into the
system via noise present in the input signal and thus related to ,, while the sensor noise ¥
is introduced via noise in the measurement signals due to imperfection of the sensors aboard
the aircraft and thus related to Z,,. It is assumed all noises have a constant zero mean and a
certain constant variance, but are mutually uncorrelated. Expressed in terms of matrices Q
and R relating the variance to the input and measurement signals this is:

E{ui(t)} =0
(02, 0 0
ul
0 o2, 0
E{a(t)d" (1)} = Q = "
L0 0 .
E{v(t:)} =0 (4-3)
C 0
0 ng 0
E{7(t;)7" (t;)} = R = .2
0 0 oy,

The variances in the @ and R matrices are usually known from the sensor characteristics as
in Table 3-2. However, while testing the UKF it was found using these values directly do not
result in the required UKF performance, thus the values as in Table 4-5 were used.
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When using the UKF it is regarded that the states & are stochastic variables with a certain
mean/expectancy and variance. When denoting the actual, correct, state as & and its mean
as I, its mean and covariance matrix are given by:

E{z} =1
o2 0 - 0
. . 0 o2 -+ 0 4-4
E{@-0)@E-0Ty=P=|. 7 . -y
0 0 oz,

The fundamentals of the UKF were developed in [26] by introducing the Unscented Transform
(UT). Practical application of the UKF for system identification purposes based on this UT
has been introduced in [59]. The main advantage of the UKF, as has been mentioned, is that
no linearization is needed for propagation of the state estimate statistics. This means that
it is able to capture up to third order nonlinearities, compared to only the first order (due
to linearization) in the EKF. This may improve convergence of the UKF in cases where the
EKF may be sub-optimal or even divergent. The description of the UKF below is based on
these two papers and the described algorithms.

Below, the fundamentals of the UKF and UT are described first. Thereafter, the UKF
procedure is discussed step by step, as depicted in Figure 4-1. Last, the tuning of the ) and
R matrices is discussed for use in the UKF.

4-2-1 Fundamentals of the UKF

Rather than using the linearized dynamics in form of the Jacobians to propagate the statistics
of the state variables as with the IEKF, the UKF makes use of the Unscented Transform
that directly propagates the statistics. To achieve this the UT propagates a set of "sigma
points" X chosen such that their sample means and sample covariances are 7 = E{Z} and
P = B{(&— 2)(Z—Z)T}, respectively, and propagates these through the nonlinear function
of the system dynamics, yielding a cloud of transformed points with the statistics gj’ and PYY.

The sigma points are grouped in a matrix that consists of 2L + 1 sigma vectors 22;, with L
the number of state variables. These vectors are given by:

P _ 3
2?»:53+( L+A)Pm), fori=1,...,L
i V( i (4-5)
;?izg%—( (L+A)Pm) , fori=L+1,...,2L

i—L

Resulting in the complete L-rows-by-(2L + 1)-columns sigma point matrix X', given by:

X = [??0 X o X X o Xy (4-6)
In which each vector has its respective weight:
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Figure 4-1: Overview of the Unscented Kalman Filter procedure.
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W™ = A/(L+ )
WS = M(L+2) + (1 — a2+ B) (47)
I/Vi(m) _ Wi(C) =1/[2(L+)\)], fori=1,...,2L

In which A is a scaling parameter defined as:

A=ao*(L+k)—L (4-8)

In which « is a constant determining the spread of the sigma points around & of a certain
state and usually a small positive value (i.e. 1.0 -1073), k a secondary scaling parameter
usually set to 0, and ( is used to incorporate knowledge about the distribution of the state
x, which for a Gaussian distribution g = 2 is optimal. These three parameters can be used

to tune the UKF, performed later in this chapter. Last, ( (L+ )\)Pm)A is the 7th column
(]
of the matrix square root of (L + \)P**.

With the sigma points defined, the transformation procedure can be performed on the sigma
point matrix, which is mathematically described by:

1. Propagate each point through the function to yield the set of transformed sigma points:

Vi=f(X), fori=0,...,2L (4-9)

2. Calculate the mean of the transformed state vector:

<>

2L o
=S wimy; (4-10)
=0

3. Calculate the covariance of the transformed state vector:

2L
P =S W - - (4-11)
=0

4-2-2 Mathematical Description of the UKF

The above steps comprise the UT, which is at the core of the UKF procedure as explained
below. All steps below are performed for every timestep tr, k = 1,2,... of the data.

Initialization: Augment State Vector and Covariance Matrix

A preliminary step to be able to apply the UKF is to restructure the state vector, covariance
matrix and process and observation models (with superscript ¢ for "augmented"). The esti-
mate of the state vector and its coviariance matrix are concatenated with the process and
measurement noise terms, via:
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5?%,1@ - im/ﬁk = Uifk = 6
£ U, 0 (4-12)
[Prt BRYOPE Por By PPh Pyr 0 0

Pee= Py P Bkl =|Fiw Q@ Py|l=1]0 @ 0
Prr Bk By v Prr B 0 0 R

Such that the augmented model description becomes a function of the augmented state vector:
T(t) = f(@(H), T (1), T(1), 1) (4-13)

Step 1: Define Sigma Points

The first step is to define the sigma points making use of the augmented model and the
procedure described in Equation (4-5), where the mean value Z for the state is now the
current state estimate #. Also take into account now that L equals the number of states plus
number of input noises and number of measurement noises. In matrix form this is given by:

2L41
Tk
Xk = Xigp = Xou\jk,k X2wL|k,k
Xé)\k,k X2vL|k,k

i=1,...,L i=L+1,...2L
— . = . 4-14
Ty Thpt (\/ (L+)\)Pk,k> Ty — (\/(L+)\)Pk,k> (14)
i i—L

Step 2: One Step Ahead Prediction
With the set of sigma points defined, the transformation to the prediction of the next timestep
can be performed by using the actual, nonlinear system function on each column of X via the

procedure of Equation (4-9), by integrating to the next timestamp. Note that we only need
to calculate the update for states of the original Z, i.e. with superscript *.

—

S S trt1 S )
k

For the integration the classical Runge-Kutta method is applied (from ¢ to ¢;41 in one step
h = At), which is described in [27]. Applying this method to Equation (4-15) gives:

—» = 1
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With:
ky=h- f(‘)?iTk,ka i, fﬁukk’ tk)
= ki o = h
k’g = h . f(X’lTkvk + 5, Uk, Xi’liuk,k’tk + 5)
A L (4-17)
— 2 —
ks =h- f(X], + o Uk Xifpe o b + 5)
ka =D [0 4 ks, i, Xy gt + 1)
From /'?Z‘Tk 41 the one step ahead prediction of the state vector can be calculated according

to Equation (4-10):
A 2L )
=y W, 41k (4-18)
=0

Step 3: Covariance Matrix of State Prediction Error

As linearization and discretization is not needed in the UKF one can continue immediately
with the update of the covariance matrix, which is calculated via the procedure of Equation (4-
11):

2L
¥4 o 7 o T
Py =Y WXy — 00 0) (B — TE1) (4-19)
1=0

Step 4: Calculate Prediction of the Measurement Equation
Now, the prediction of the measurement using the state prediction can be calculated. This is
analogous to the calculation of the state prediction, however now the measurement equation

is used and the state prediction sigma points. First the sigma points are transformed via:

—

Z’le‘—‘rl,k‘ - h(XlTk)+1,k7 fL_[k, quljk,k’ t), fOI‘ /l/ = 0, ey 2L (4‘20)
Next, the prediction of the measurement at the next timestamp can be calculated via:
2L

Ferih =D Wi(m)gi\k+1,k (4-21)
1=0

Step 5: Kalman Gain Calculation

The next step is to calculate the Kalman gain. For the UKF, it is needed to calculate the
innovation covariance P** and cross covariance P%%:
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oL
Piie=> VVi(C)(Zi\k—O—Lk — Zi 1) (Zifer 1k — Zha1 ) (4-22)
=0
L
c > jaN > jaN
Piie = 2 Wi (X ik — Trrrn) (Zippare — Zerik)” (4-23)
=0

After which the Kalman Gain can be calculated via:
-1
K1 = Py pBif e (4-24)

Step 6: Measurement Update and Update State Estimate

Using the calculated Kalman gain, calculated predicted measurement and actual measurement
at time k + 1, the state estimate can be updated by using:

Tt k1 = Thtk + K1 (Zh1 — Zer1k) (4-25)

Step 7: Covariance Matrix of State Estimation Error

The last step is to update the covariance matrix of the state estimation error via:

Pyitpi1 = Prgap — Ko PR K (4-26)

With all eight steps performed at this timestamp tz, the final values %k+1,k+1 and Pyi1 k41
are set to @y and Py j for the next timestamp t;41 and all steps are repeated.

4-3 Aircraft Kinematic Model and Measurement Model

The Kalman filter makes use of the system f and measurement h equations to perform its
state estimation. In this section these are discussed.

4-3-1 Kinematic Model

The equations of the kinematic model are governed by a number of general equations for the
motion of the aircraft in the Fg-frame. These include a description of the aircraft’s velocity
in the Fp-frame (&, g, 2), accelerations along the aircraft body axes (1, 0, w) and rotation
rates (¢, 0, 1)). In matrix form this is given by:
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[[ucos@ + (vsin g + wcos @) sin f] cos ) — (vcos — wsin ) siny + W, |
[ucosf + (vsin ¢ + w cos @) sin B sin ) + (v cos p — wsin ) cos P + Wy,
—usinf + (vsin g + wcos @) cosb + Wy,

Ay —gsind + rv — qw
= Ay + gcoslsinp 4 pw — ru
A, 4+ gcosfBcosp+ qu — pv
P+ gsinptan @ 4 r cos ¢ tan 6

qcosp —rsine
sin ¢ cos ¢
Qcos 6 + T cosO

&
|

.6 B oo ]

(4-27)

The inputs to this system are the actual specific accelerations A;, A, and A, and the rota-
tional rates p, ¢ and r. For practical application in the FPR one can use the measured signals.
However, as discussed in chapter 3, the AHRS measurements are susceptible to a certain bias
A and measurement noise w (with variance o2) and thus do not directly reflect the actual
acceleration. To include these bias and noise terms one can write for the actual accelerations
and rotations:

Ay = Al‘AHRs —Ag — Wy
Ay = Ayrprs — Ay — Wy
A, = AZAHRS — A —w;

(4-28)
P = PAHRS — )\p — Wy

q = JAHRS — /\q — Wq
T = TAHRS — Ar — Wy

Where the subscript aprs means "measured by the AHRS". Implementing this, the system
becomes:

[ucosf + (vsin ¢ + w cos @) sin B cos1p — (vcosp — wsin ) siny + Wx,,
[ucos B 4 (vsin ¢ + w cos ) sin f] sin ) + (v cos p — wsin ) cosp + Wy,
—usinf + (vsinp + wcos ) cos + Wy,
(Azspyps — Az — Wg) — gsin @ + (ragrs — Ar — W)V — (GAHRS — A\g — Wq)W
= | (Ayaurs — Ay — wy) + gcosfsing + (paAHRS — Ap — Wp)w — (TAHRS — Ar — Wy )U
(Azanrs — Az — wz) + gcostcos @ + (qaHrRs — Ag — We)u — (PAHRS — Ap — Wp)v
(pAHRS — Ap — Wp) + (gAHRS — Ag — Wq) sinp tan 6 + (raAxRS — Ar — W;) COS @ tan O
(qanRS — Aq — wq) cos ¢ — (raHRS — Ar — wy) sinp

(qaHRS — Mg — Wq) 2% + (ramms — Ar — wy) 225

8-
Il

€. 6 8 e S e 8

(4-29)

In this system the bias and wind terms remain unknown. For that reason, they should be
included as states in the model such that they can be estimated too. For the bias terms, it is
known these are constants and as such they can be modeled as:

P.A.R. Brill Master of Science Thesis




4-3 Aircraft Kinematic Model and Measurement Model 87

Ay =

Ay =0

A, =0

. (4-30)
A =0

= 0

A =0

The wind terms are not constant, such that an assumption on their behaviour has to be made.
As mentioned before by findings of [22], random walk may be applicable to model relatively
-but not entirely- constant states to improve convergence. In [57, 58] this has been applied
to the wind equations via:

Wx, = 0.01wyan
Wy, = 0.01wyalk (4-31)
W2z, = 0.01wyan

With wyak a random-walk white noise signal with zero mean and standard deviation o = 1.
This is incorporated into the kinematic model equation by randomly selecting a value every
time this function is evaluated in the program code.

Last, a correction has to be implemented due to the angle-of-attack and angle-of-sideslip
measurements of the boom [6]. Rather than measuring the actual o and 8 and velocities u,
v and w, these instruments measure the local boom angle-of-attack and angle-of-sideslip ay
and fBp, and velocities uy, vp and wyp. This is due to three main reasons. The first are upwash
and sidewash components at the boom vane locations due to the fuselage’s shape. The second
are rotational effects which occur due to the fact that the boom is mounted on the nose of
the aircraft -significantly far before the c.g.- such that rotations of the aircraft influence the
measurement of the vanes as these start measuring their own movement relative to the air.
The last are wind components in the upwash and sidewash. The approximations of the local
boom angle of attack and angle of sideslip due to these three effects have also been given by
[57, 58]:

Wy
ap = arctan — =~
Up

(QAHRS - )\q - wq)

Vu? + 02 4 w?

~ (1 + Cq,,) arctan % + (zp, — Tcyg.) +Coy (4-32)

Ub
By = arctan ————— =

/.2 2
uy + wy

(raAHRS — Ar — W;) (PAHRS — Ap — wp)

~ (1+Cg,,,. ) arctan

v
Vu? 4+ w? (@5, =) Vu? +v? + w? (2, —7eq.) Vu? + 02 + w?
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In which the z and z locations of the vanes are known constants in the vehicle reference
frame and are given in Table 4-1, and the location of the c.g. is known from the massmodel
data. The terms C,,,, and Cpg_,, model the upwash and sidewash effects and Cy, and Cpg, are
coefficients to model wind components which must all be estimated. In the papers [57, 58]
it was found that these can be introduced in the kinematics as random walk for the upwash
and sidewash coeflicients as these have been found to vary over time. The wind bias terms
can assumed to be constant. Such that:

. ™
Caup = 0.01wwa]km
. ™
C/Bside = O'Olwwalkm (4_34)
Cop =0
Cpo =0

Table 4-1: Assumed boom vane and AOA vane locations in the aircraft fuselage (datum 19 inch
before and 91 inch under the aircraft nose).

Measurement | Variable Distance from datum [inch]

Tp,, 19 -36.5 = —27.5
Boom Ty, 19 —35.3 = —16.3
2y 91 + 37.5 = 128.5
AOA vane Loy, 19+ 157.4(=4m) = 176.4

This results in the full time-invariant kinematic model given by:

F = (. 10) =
- :1; -
?Z.J r [u cos 0+ (v sin p+w cos @) sin 6] cos Y— (v cos p—wsin p) sin P+Wix
U [u cos 0+(v sin p+w cos ) sin 6] sin Y+ (v cos p—w sin ¢) cos P+Wyp
111:)) —usin 6+(vsin p+w cos p) cos 0+ Wz
® (Az A grg —Ae—wz)—gsin O+(raprs —Ar —wr)v—(gAHRS —Ag—Wq)W
3.} (Aypprs —Ay—Wy)+g cos O sin p+(paHRS —Ap—wp)w—(TAHRS —Ar —Wr)u
N Az pgrs — Az —Wz)+g cos 0 cos p+(gaAHRS —Ag—Wq)u—(PAHRS —Ap—Wp)V
/.\I (PAHRS —Ap—wWp)+(gAHRS —Ag—Wq) sin ¢ tan 0+(rapgrs —Ar —wr) cos @ tan 0
).\y (gaHRS —Ag—wg) cos p—(rAnRrs —Ar—wr) sin @
Nz ( A — )sin<p+(r A —w )cosap
GdAHRS w 3 AHRS )
— %\p — q 9/ cos 6 0 T 7/ cos 0 (4_35)
Aq 8
Ar 0
Wx 8
Wyg 8~8%wwalk
i VlWwalk
Wag 0.01Wyallc
Coup 0.01Wwalk 125
e 0.01Walk o5
Cag I 0 |
L Cgy

With state vector:
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T=[zyzuvwed e dy Xz \p Ag A Wxy Wy Wz Cayy Cp iy Cop Cpy ]T (4-36)

With (measured) input vector:

T
Um = [AxAHRS AyAHRS AZAHRS PAHRS Y¢AHRS TAHRS} (4_37)

And process noise vector:
. T
W= {wm wy W, Wy Wy wr] (4-38)

4-3-2 Measurement Model

Now the measurement model must be defined. This is done by defining the available mea-
surement signals in terms of the state, input and measurement noise vector. The required
measurement model includes a description of aircraft position in the Fg-frame (z, y, z), ve-
locity in the Fg-frame (&, y, ) attitude angles (¢, 0, ¥) and airdata measurements (Vrag,

Qp, Bb)

The first nine states and true airspeed are governed by general equations. The angle-of-attack
and angle-of-sideslip must be related via the defined relations as given in Equation (4-32) and
Equation (4-33). However, note that the process noise terms (wp, wq, w,) are dropped from
the equation as via the definition of Equation (4-1) the measurement model cannot cannot
contain process noise terms. Rather, it is implicitly assumed that these noises are incorporated
in the measurement noises v, and vg.

All these measured signals contain a certain measurement noise v which is an assumed white
noise signal with variances as given in Table 3-2. This results in the full time-invariant
measurement model with measurement vector z,:

r x+vg T
Y+vy
r ZTGPS 7 z+v,
Zggg [t cos 0+ (v sin p+w cos ) sin 0] cos 1— (v cos p—w sin ) sin P+Wx  +vi
EGPS [u cos 0+ (v sin p+w cos ) sin 6] sin ¢+ (v cos p—w sin ¢) cos Y+Wyp +vy
ZSE: —usin 6+(v sin p+w cos p) cos 0+Wz , +v:
— PAHRS — ptvep
OAHRS 0+vg
P AHRS Pty
Vraspapc Va2 ol twl oy
bsynchro w (aAHRS —Ag)
B 14+-C arctan *+(xp, —Te.g.) =L+ Cy,+v
i Bbsynchro i ( aup) u ( bj c.g ) }\/@ a?p o .
v _ {TAHRS — A1) — \PAHRS —2p)
i (1+Cpg_, . ) arctan - (:ch Te.g.) 2ol il +(Zb5 Ze.g.) 2 et u? +Cp,+vg |
(4-39)
With measurement noise vector:
_ T
U= [vz Vy Uy Vi Uy Uz Up Uy Uy VY Vg ’UB} (4-40)
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4-3-3 Kinematic and Measurement Model with Pseudo-§

There are many flights from Citation flights that were performed without the air data boom
installed. In [58], it was concluded that the omission of the air data boom was detrimental
in the aerodynamic modeling of the lateral equations and could not be used at all in this
case. For the longitudinal modeling it was found if data was taken from a lateral motion,
also the estimate of o from the UKF showed errors relative to the data from the boom. It
was concluded that the question remained open whether the inclusion of the no-boom flights
delivered more data that was valuable enough even though its lower expected accuracy. In
the end it was decided to not use this data.

However, data from flights that have the boom included performed measurements at largely
only one altitude. As global modeling is at the core of this research, data at more altitudes
from more flights become of higher value than in the former research, which might warrant
a different conclusion as to the inclusion of the no-boom data. Furthermore, no effect on the
actual X parameters was investigated. Therefore, this investigation is performed here.

For data that does not include air data boom measurements the kinematic and measurement
above does not apply. The only available data comes from the a-vane installed on the fuselage.
However this vane, and as such its data, comes with a number of considerations. First, body
induced velocities are present in the vane measurement, however this is also the case for the
boom. Second, there is significant damping in the alpha vane, whilst the boom contains higher
frequency components. Third and last, the damping of the vane also introduces a lag in its
measurement. To incorporate this behaviour [57] altered the kinematic and measurement
model for the a-vane, that makes use of a the following relation for the a measurement
(analogous to Equation (4-32)):

1 A —
Gy = — ((1 + Cy,,) arctan v + (Tv, — Teg.) (9aHRS g~ W)

Ty u vu? +v? + w?  Cloo - av) (44

With the AOA vane location given in Table 4-1. The parameter 7, is the vane lag time
constant. This is added because the AOA vane mechanics cause a lag relative to the actual
angle of attack. The value for 7, = 0.2 s. This results in the following kinematic model:
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xr = f(f,um,df) =
roa@ [u cos 0+ (v sin p+w cos @) sin 6] cos Yp— (v cos p—w sin ) sin P+Wx 7
ZZZ’ [u cos 0+(v sin p+w cos ) sin 6] sin Y+ (v cos p—w sin ¢) cos P+Wyp
U —usin 6+(vsin p+w cos p) cos 0+ Wz
5; (AQCAHRS —Az—wWg)—g sin 04+(rAHRS —Ar —wr)V—(gAHRS —Ag —Wq )W
® (Ayamrs —Ay—Wy)+g cos Osin p+(paHRS —Ap—Wp)w—(rAHRS —Ar —Wr)u
9 (Azpprs — Az —wz)+g cos b cos p+(gaHRS —Ag—Wq)U—(PAHRS —Ap—Wp)V
1} (PAHRS —Ap—wWp)+(gAHRS —Ag—Wq) sin ¢ tan 0+(raprs —Ar —wr) cos ¢ tan 0
N (qaHRS —Ag—wq) €08 p—(rAHRS —Ar—wy) sin
)-\y (qAHRS —Aq—wq) ToZ +(TAHRS = Ar—wr) oo
= ] = 0 (4—42)
Ap 8
5 ’
A 0
WXE 0.0].’wwa]k
W 0-01wwalk
VB 0.0 wyal
Wzp 0.01Wyalk 155
Coup 0.01Wywalk 125
C 1 (4AHRS —Aq—wq)
I dfzo | I i ((1+Caup) arctan ¥ +(zvq 710'9'>Wiw2q+0a0 —ay |

Due to the lack of the boom there are no measurements of 5 at all. It was found that
this impairs the convergence of the state estimates. However, one can include a so-called
"pseudo-3". The artificial pseudo-8 noise measurement was added to the flight data in the
pre-processing as described below. In practise, it is a meaningless zero mean white noise
signal with variance vg and thus adds no significant information on lateral FPR. However,
it does improve the performance of the UKF related to the other states and therefore it is
included.

This results in the measurement equation as given by:

r T+Ug ]
r f/GPS T Yty
GPS z+vz
;ggz [u cos 0+ (v sin p+w cos @) sin 6] cos p—(v cos p—w sin ¢) sin P+Wx , +vs
JGPS [u cos O+ (v sin p+w cos ) sin 8] sin P+ (v cos p—w sin @) cos Y+Wyp +uy
ZGPS —u sin 6+ (v sin 4w cos @) cos 0+v;
= | #anrs | = ( ;0+% 2 - (4-43)
OAHRS 0-+vp
YAHRS
VrASpapc *w—i_%
OZvanalog u? +’U2 +w2 +ov
ﬁ a Oy +go¢
pseudo | arctan ——tvg
L Va2 t+w? i

4-3-4 Model Observability and Convergence
A condition for proper convergence (however not a guarantee) is that all states of the model
are observable. The observability can be calculated analytically. But in order to evaluate if a

model can actually be used its convergence also needs to be checked experimentally.
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An analytical method for observability that makes use of Lie derivatives and an observability
matrix is implemented by [6]. The observability matrix is defined as:

duh ] 9(h)
8. (LyLh) 00 (02 (0 { N} f][)

O=|%(LsLiLh) | with Lih=0,(h)f, st. O=| 02(0:[0:40:(h)f}11S)

Ou(Ly- Ly h) 0p(Oul:+ {0u(h) £} 1)
- - . (4-44)

In which n is the number of states in the system. The states are observable if the observability
matrix is of full rank, meaning:

rank O =n (4-45)

By using MATLAB and its symbolic variables one can build the observability matrix and
calculate its rank. The noise v and w terms are removed from the models for this as they do
not add anything to the dynamics, only introduce noise. The matrix is calculated row-by-row

as immediately calculating the full O-matrix is an expensive operation. It was found that all
Ozh

states are already observable when O = [ BZU(th) )], and as such no changes are needed to
du(LyLysh

the model.

The second method to explore the system’s convergence is experimentally and is implemented
by [57] and [58]. By investigating the behaviour of the KF estimates the best convergence
was found by deleting the following states from the system. The vertical wind Wz, was
deleted as it is usually rather small, but influences the estimate of the two lateral wind
estimates. Coefficient C,, was deleted as it is strongly correlated to Cy,,, and using both
hinders convergence of either coefficient. Last, Cj3_,, and Cg, were both deleted as they led
to large deviations in the estimate of u, v and w, and because of that in the reconstructed f.

The UKF of this thesis was tested and it was found that applying these exact same tech-
niques also considerably improved the UKF’s estimates. Therefore the same changes were
implemented one-to-one. An advantage of knowing this is that the separately built UKF of
this thesis is as such already partly verified to work correctly. This results in the final UKF
model as explained below.

4-3-5 Final UKF Model

Deleting the states as explained above results in the final kinematic model given by:
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F = f(# i, ) =
i z T [u cos 6+(v sin p-+w cos ) sin 8] cos 1h— (v cos p—wsin @) sin Y+ W T
Z [u cos 6+(v sin p+w cos ) sin 8] sin Y+ (v cos p—w sin ¢) cos P+Wyp
;“-}L —u sin 0+ (v sin p+w cos ) cos 0
w (Az pgrs —Ae—Wz)—gsin 0+ (rAHRS —Ar —Wr)v—(gAHRS —Ag—Wq)W
‘g (Ayprs —Ay—Wy)+g cos 0 sin p+(paHRS —Ap —wp)w—(TAHRS —Ar —wWr)u
b (Azpgrs — Az —wz)+g cos 0 cos p+(gAHRS —Ag—Wq)u—(PAHRS —Ap—Wp)v
bW (PAHRS —Ap—Wp)+(qAHRS —Ag—Wq) sin p tan O+ (rAgrs —Ar —wy) cos @ tan 0
=135 | = (gaHRS —Aq—wq) cos p—(ranrRs —Ar—wy) sin (4-46)
AL (QAHRS*)\q*wq)%‘(’]’(TAHRS*)\T*’LUT) oL
b 0
A 0
Py 0
Wxp 001wy
WyE 0.01wyalk
. ™
L Caup . L O-OIwwalkm 1

And the final measurement model becomes:

—

Zm = h(Z, U, V) =

r T+vg 7]
+v
- TGPs T z+vz
gggg [t cos O+ (v sin p+w cos ) sin ] cos Y— (v cos p—w sin ¢) sin P+ Wx  +vs
ZGPs [u cos 0+ (v sin 4w cos @) sin 0] sin 1+ (v cos p—w sin ) cos Y+Wyp vy
gg;: —wu sin 6+ (v sin 4w cos p) cos O+vz
— @AHRS — ptve (4-47)
OAHRS O+vg
AHRS Pty
Vraspapc Vul+v2+w 4oy
Pbsynel (dAHRS —Ag)
ﬁbsyncl’:lro (1+Caup)arctan Tu:+($ba _xCAg')\/TTu?Z—‘FUa
L synchro
v _ (rAHRS —Ar) _ (PAHRS —2p)
L arctan AY u2fw? (zbﬁ 1c.gA) AY4 w2402 4w? +(Zb6 zCAgA) vV w2 4v24w? +UB i

The same model structure is applicable to the model with the pseudo-3, but with the added
ay, as state and the ay,, ... and Bpseudo in the measurement model as in Equation (4-42) and
Equation (4-43).

4-4 UKF Data Pre-Processing and Post-Processing

The raw data as gathered by the aircraft’s sensors cannot directly be used in the UKF
but needs to be processed first for effective state estimation. Furthermore, after the UKF
procedure, the estimated states can be used to calculate a number of additional parameters.

Pre-Processing 1: Adjust Data to Correct Reference Frame

First, the IMU acceleration measurement A, .. is defined positive upwards in the Fj-frame
while it should be downwards. The same applies to the GPS velocity measurement Zgpg but
then in the Fp-frame. Mathematically:
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A —_A (4-48)

ZAHRS, Fy,,+g ZAHRS,measured

7;GPS - ZGPS,FE = _éGPS,measured (4_49)

Furthermore, in the UKF it is assumed that the signals of Ay ., .ns as they appear in the
kinematic model are the specific accelerations in the body frame, thus including a compo-
nent of the gravitational acceleration. For this reason the terms —gsin#, +¢gcos#sin ¢ and
+g cosf cos ¢ are included in the kinematic model for state derivatives @, ¢ and w, where the
gravity influence is subtracted such that the body acceleration remains.

However, the acceleration data in the Zy axis Az, has been corrected in the IMU itself
by simply adding the gravitational constant 9.80665 m/s to the signal, which is a too crude
and wrong assumption. Therefore in this preprocessing step this constant is subtracted again,
such that in level flight the signal measures a negative acceleration of 9.80665 m/s, such that
this corresponds to the kinematic relation. Mathematically this is:

A = Aepunsry 1y — 9-80665 (4-50)

ZAHRS,F},

The accelerations in the X; and Y} axes are in fact already the specific acceleration and as
such do not require any further pre-processing.

Pre-Processing 2: Data Prefiltering

Before use in the UKF it is needed to prefilter a number of signals as these contain vibrations
measured due to the stall buffet of the aircraft when entering the stall. The focus of the
research described in this thesis is on the dynamics of the aircraft itself and lesser on the stall
buffet. But, the stall buffet does affect the measurements and thus the FPR and modeling.
Therefore it needs to be filtered out before the UKF such that the FPR is not affected by the
buffet signal and only aircraft dynamic features remain in the signal.

The buffet is filtered out by using a 6th order Butterworth filter as this is realistically one
of the closest options to an ideal lowpass filter by minimizing ripple effects. This is done via
the MATLAB butter() and filtfilt () functions on the signals in Table 4-2. In the same
table the filter properties are also given. The sample frequency is always 100 Hz, as the flight
data is based on timesteps of 0.01 s. The signal of the a-vane does not need to be pre-filtered
as the damping in the vane causes a lack of higher frequency features in the signal, as was
discussed earlier.

The passband frequency was chosen manually in a rough manner. In the case that any
significant secondary peak could be observed the passband frequency was chosen to be just
before the beginning of the peak, or if no clear peak could be observed 1 Hz was chosen. The
filters were designed with a cutoff frequency of the desired passband +0.5 Hz margin, to not
filter out frequencies below the desired passband. The —0.01 dB point is just under 0.5 dB
under the chosen cutoff frequency, so therefore this was chosen. The numbers in Table 4-2
include this margin.

An example of the filtered signals in the data of a stall is given in Figure 4-2. One can clearly
see that the high frequencies are filtered out of all the signals. Also one can clearly see the
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Table 4-2: Filter properties for UKF prefiltering.

Signal Sample freq f; [Hz] Passband freq fp.:s [Hz]
AIAHRS,HOSQ’ AyAHRS,nose7 AZAHRS,nose 100 15
PAHRS; AHRS, "TAHRS 100 1.5
Oébsynchro’ ﬂbsynchro 100 55

secondary peak around the frequencies of the stall buffet in the signals of «y, and [,

around 10 — 12 Hz in Figure 4-2c.

synchro synchro

Pre-Processing 3: Calculate Center of Gravity Accelerations

The accelerations and rotations measured by the AHRS are measured in the IMU unit of the
AHRS itself. However, the accelerations and rotations of the state variables are by definition
those in the aircraft center of gravity. These are thus not the same. Therefore an adjustment
should be made to the AHRS measurements via the procedure described by [57]:

Agpins = Avansnose + (Te.g. — TauRS) (@ +7°) — (Yeg. — Yaurs)(pq — 1) — (2c.g. — 2auRS) (P — 4)

(4-51)
AyAHRS = AyAHRs,nose + (yag. - ?JAHRS)(7“2 +p2) - (ZC-g- — 2aHRS)(qr — D) — (5Ec.g. — xAHRS)(qp — 1)

(4-52)
Acvins = Azanrsnone + (Zeg. — 2aHRS) (° + @°) — (Te.g. — auRS) (1P — ) — (Ye.g. — YAHRS) (rq — D)

(4-53)

In which the z, y and z locations of the AHRS are constants assumed from the vehicle
reference frame (see Table 4-3) and the location of the c.g. is known from the massmodel
data. The rotational accelerations are not known from the data but are calculated from the
rotation rates via backwards Newton differentiation.

Table 4-3: Assumed AHRS locations in the aircraft fuselage (datum 19 inch before and 91 inch
under the aircraft nose).

Variable Distance from datum [inch)]
TAHRS 19475 =94

YAHRS 0+3.94(=0.1 m) =3.94
ZAHRS 91+0=91

Pre-Processing 4: Adding Pseudo-j

The last step in pre-processing is to add the pseudo- measurement for the flight data in
which no boom data is available. This is simply done by using MATLAB’s randn () -function
and multiplying by a user-defined variance vg, resulting in a white noise signal with this
specified variance. Usually vg is set to 0.01 deg.
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Figure 4-2: Example of the pre-filtered signals in the dataset of a stall. Blue is non-filtered data

and red is filtered data.
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Post-Processing 1: Input and Measurement Reconstruction

After application of the UKF, the state estimates # can be used to also reconstruct input (ﬁ')
and measurement (2) data such that also an UKF filtered estimate of those is available for
use. For the inputs, the estimated biases are simply subtracted from the input signals:

Ay = ALBAHR,S — Az
Ay - AyAHRS - )\y
A, = AZAHRS — Az

(4-54)

For reconstruction of the measurements, the state estimates can directly be put into the
measurement system of Equation (4-47), except for the angle of attack and the angle of
sideslip. The measurement model contains the boom by nehro and [y and the actual «
and [ are needed. Thus for those the general definition in terms of u, v and w are used. The
result is (for the measurements that are not the same as a state):

synchro

& = [fcos @ + (0sin @ 4 @ cos @) sin ] cos P — (9 cos p — W sin @) sinh + Wy,
3 = [fcos O + (0 sin @ + i cos @) sin 0] sin ¢ + (0 cos ¢ — W sin @) cos ) + Wy,
2= —asind + (9sin G + 1w cos @) cos 0

VTAS = Va2 + 0% + @2 (4-55)

A

R w
& = arctan —
U

ﬁ = arctan =

12 + w2

Post-Processing 2: Add Rotational Accelerations, Air Angle Rates and Thrust Data

Also for further use the rotational accelerations, air angle rates and thrust data from the
engines must be added to the data.

First, the rotational accelerations p, ¢ and 7. As mentioned before when calculating the c.g.
specific accelerations during pre-processing of the data, the rotational accelerations can simply
be found by using backwards Newton differentiation of the reconstructed rotation rates p, ¢
and 7.

For the air angle rates & and 3 also a backwards Newton differentiation is used on the
reconstructed air angles & and £.

The engine thrust data is found by using the engine thrust look-up table of the Cessna
Citation’s JT15 engines. This gives the engine thrust as a function of engine fan speed in
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%N1 and Mach number when using the MATLAB interp2()-function. The Mach number
of the aircraft is found by using the reconstructed true airspeed:

M =

o)<

(4-56)

With & the estimated speed of sound found by the MATLAB atmosisa()-function with the
reconstructed altitude —Z2 as input. This is performed for both the left and right engine with

their respective N1 fan speeds. When adding both together, the final estimated total thrust
T is found.

However, when performing the local estimation in chapter 5 it was found that the model
contained considerate peaks in the model residual. Investigating this behaviour it was found
that the % N1 contained significant outliers in the data where the % N1 suddenly had a very
low reading not physically attainable by the actual engine in such a short time. As this could
not be solved by filtering of the data because of the introduction of resonance peaks around
the outliers, a separate outlier removal has to be performed before filtering the signal. For
this the Matlab filloutliers()-function was used with a moving median with a window
width of 25 and a removed outlier was given the value of the foregoing measurement. This
was found to effectively remove the largest outliers. Some non-outlying measurements were
also removed, but the main signal features were not affected. Also, as the signal is filtered in
the step hereafter, the removal of these tiny peaks should not affect the reconstruction of the
signal. For the effect of the outlier removal see Figure 4-3.

15000 : : 15000
10000 - 1 10000}
& Iz
& 5000 1 & 5000

0 1 1 0 1 1
0 50 100 150 0 50 100 150
t [s] t [s]
(a) Engine thrust with outliers. (b) Engine thrust after outlier removal.

Figure 4-3: Example of the thrust outlier removal.

Post-Processing 3: Data Postfiltering

After reconstructing or adding all needed data, some signals must also be post-filtered. The

rotational accelerations p, ¢ and 7 and air angle rates & and B may have amplified noise in
their signals due to the performed numerical differentiation. Therefore filtering is necessary
to counter this. Also the control surface deflections ¢ and 0, ., must be
filtered as these may still have stall buffet effects in the signal. Last, the measurements of the
%N1 and the subsequent estimate of 7' are very noisy which introduced very noisy errors in
the local model of chapter 5 and thus need to be filtered, too.

QAsynchro ? 5esynchro

Just as for the prefiltering, the filtering here is performed by using the MATLAB butter ()
and filtfilt ()-functions on the signals in Table 4-4. In the same table the filter properties
are also given. The procedure for choosing the passband frequency for the derivatives, of
which the primary peak is relatively wide, the end of the peak plus the 0.5 Hz margin was
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chosen. For the control surface deflections a very slight secondary peak could be observed for
the aileron deflection, so the same passband as for « in pre-filtering was chosen.

Table 4-4: Filter properties for UKF postfiltering.

Signal Sample freq f; [Hz] Passband freq fpqss [Hz]
D, q, T 100 3.5
&, B 100 3.5
q\asynchro » Yesynchro? YTsynchro 100 4.5
T 100 2.5

An example of the post-filtered data around a stall can be found in Figure 4-4.

4-5 Applying the UKF

The Kalman Filter procedure as explained above was developed using a selection of stalls and
flights from the available data to keep the computational cost lower whilst testing, adapting
and tuning the UKF. Data from the flights including the boom was used so that the UKF
could be tested for both the boom and no-boom data and a comparison between the two can
be made. In this section as an example 150 s of data from a dynamic stall is used, to give an
overviewable insight into the UKF behaviour.

First, the tuning of the UKF parameters and initial conditions is discussed. Second, the
performance of the UKF itself is evaluated. Last, the most significant differences for the UKF
performance between the data with and without boom is discussed.

4-5-1 Tuning UKF Parameters

For the UKF there are three main parameters that can be "tuned": the specific UKF param-
eters, the initial conditions of the filter and the () and R matrices.

UKF Parameters

As mentioned before, the UKF can be tuned via the weights of the sigma point matrix. It
was found that the standard setting of the parameters from [58] already provided desirable
results. Therefore no further tuning was performed on these parameters and they were chosen
as: a =03,k =0and § =2.

State Initial Conditions

It was found that the UKF performance increases if particular initial conditions are chosen
that are relatively close to the actual value of the state. Even though the actual state is
unknown, it can be assumed that the available measurements say at least something about
the actual state, or is at least close to it. Therefore the initial conditions a::’o were chosen as:
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Figure 4-4: (1/2) Example of the post-filtered signals in the dataset of a stall. Blue is non-filtered

data and red is filtered data.
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(d) Engine thrust.

Figure 4-4: (continued, 2/2) Example of the post-filtered signals in the dataset of a stall. Blue
is non-filtered data and red is filtered data.
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For the covariance matrix P simply 100 was chosen as the initial condition for each of the
states.

@ and R Matrices

When building the UKF, it was found that the selection of values in the () and R matrices
does greatly influence the performance of the UKF. Using the values of Table 3-2 results in
diverging filter estimates and non-desirable results.

It was considered to perform a small research into the best and optimal values of the Q) and R
matrices, however it quickly became clear that this would take a considerable amount of effort
for only a small expected improvement of the UKF performance relative to the performance
as reported by [57, 58]. Therefore it was decided to not further investigate the optimal @) and
R tuning and directly apply the values as used by [58]. An overview of the difference between
the theoretical values of Table 3-2 and the used values has been given in Table 4-5.

It can be seen that there are significant differences between the measurement equipment
value and the used value in the filter, sometimes even significant differences in the order of
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Table 4-5: Differences between the theoretical variances of Table 3-2 and the used variances in

the UKF.

Variable Noise o2 Unit
Table 3-2 (@ matrix R matrix

A, 39-10° 4-1074 - m /s
A, 3.8-107*  4-1074 - m/s?
A, 2.7-1073%  4-.1074 - m /s>
P 9.1-107% 1-10°6 - rad/s
q 1.5-1074 1-107 - rad/s
r 5.4-107° 1-1076 - rad/s
x 1.1-1071 - 1-100% | m
y 1.1-107° - 1-107% | m
z 2.2-1072 - 1-107° | m
i 2.3-107° - 1-1072 | m/s
Y 2.4.107° - 1-1072 | m/s
z 1.0-1074 - 1-1072 | m/s
© 2.8-1076 - 3.0-107% | rad
9 4.5-1077 - 3.0-1076 | rad
1) 1.9-10°6 - 6.8-1076 | rad
Vras 2.5-1072 - 1-1072 | m/s
ap 4.4-1074 - 3.0-107% | rad
By 2.1-1074 - 3.0-107% | rad
ay 4.4-1078 - 3.0-107% | rad

magnitude. The reason as to why this is has, as mentioned, not been further investigated.

4-5-2 Testing the UKF

With the initial conditions and tuning parameters defined the UKF is ready for use. In this
section it is tested and its performance is assessed.

Filter Innovation

As the actual states are not known (which of course is the reason that the KF is used) the
estimates cannot be compared to what they should be. In order to be able to say something
useful about the UKF performance one can make use of the filter "Innovation" (Inn), which
is defined as the difference between the predicted measurement at time k + 1 Zﬁ'k+1,k and the
actual measurement at time k + 1 2y 1:

Inn[iﬂ = gk—&-l,k - gk—i—l (4—58)
This can then be plotted for each of the measurements. To draw a conclusion about the
proper functioning of the filter one has to calculate whether the innovation behaves according
to the standard deviation from the measurement covariance matrix P??. This means that for
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at least 68.2% (one standard deviation) of the timesteps the innovation needs to be between
the bounds. In that case the performance of the KF is deemed acceptable. The innovation is
also plotted for the example plotted below.

UKF Results

The UKF was run on a dataset of 150 s of a dynamic stall at an altitude of 5700 m (stall run
19 of Table A-2). The results of running the UKF on this dataset are given in Figure 4-5,
Figure 4-6, Figure 4-7 and Figure 4-8.

Looking at the data the UKF performs as desired. The behaviour of the states is as expected.
For the data were a measurement is available there is a significant deviation for the state w0,
but no conclusion may be drawn from this as it is the task of the UKF to reconstruct the
flight path and differences can thus be expected.

Also, the estimate @ is heavily influenced by the air data measurements which are interesting
in itself and might explain partly the behaviour of w. Looking at the reconstructed measure-
ments of & and 3 , one can observe significant differences between the reconstruction and the
actual measurement.

o Angle of attack. The raw measurement of the angle of attack shows constantly a higher
angle of attack than the reconstructed angle of attack. This seems very intuitive due to
the location of boom vanes in the upwash present in front of the aircraft’s nose, which
can be explained by the positive estimate of Cy,,,, as well. This is thus also as expected.

e Angle of sideslip. The raw measurement of the angle of sideslip is also slightly higher
than the estimated angle. For this dataset, the aircraft is in a right turn, resulting a
relatively constant positive yaw rate (see states). According to Equation (4-33) this
results in a higher measurement by the boom than the actual angle of sideslip. This
indeed confirms the observation.

Last, the measurement innovations are investigated as these say the most about the behaviour
of the UKF. It can be observed that the innovations are generally within the 40-60% range,
or higher (except for the vertical acceleration) This is just, but not significantly, below the
68.2% that can be expected for crisp signals of a nonlinear system. As the flight data used
in this thesis contains many disturbances and unknowns (e.g. the noise variances which are
not the theoretical values) it can be expected that the innovations fall slightly below the 1o
bound. As also can be observed, after the stall the innovations tend to return to between the
bounds again, which also speaks for its effectiveness. However, the UKF performance within
the actual stall might be a topic that needs further research. That is however not the topic
of this thesis and it was decided that the desired performance of the UKF is reached in this
case.

Another observation worth noting is the behaviour of the zgps and ygps innovations. It
can be seen that the innovation behaves almost like a "bouncing ball". This is actually
behaviour that reinforces the trust in the UKF behaviour. As known, the sampling rate of
the GPS is 1 Hz, but the UKF reconstructs the flight path in 100 Hz; the reconstruction is
"smoother" than the actual signal. Thus, from the last measurement point of the GPS, the
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Figure 4-5: UKF estimated states.
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Figure 4-7: UKF reconstructed measurements. Blue is the reconstructed measurement and grey
is the raw measurement.
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UKF prediction and measurement start to diverge as the measurement is actually linear to
the next measurement point 100 timesteps later, while the prediction is actually moves only 1
timestep. Thus they diverge until 50 timesteps, and then start to converge again to the next
measurement point, after which a sudden diversion starts again, causing the "bouncing ball"
effect in the innovation. But actually, it can thus be concluded that the UKF does a more
accurate reconstruction than the measurement is able to give.

4-5-3 Comparison of Boom Data and AOA Vane Data

As the kinematic model of the case where the boom is used and where no boom is available
differ significantly, it is interesting to look at the main differences between the two on the
exact same dataset. It may also indicate something about the reliability of the no-boom data.
In this chapter a comparison is made of the filtered data for both cases. For the UKF results
of both cases see Figure 4-9, Figure 4-10, Figure 4-11 and Figure 4-12.

For most of the estimated states the UKF performs comparatively to the UKF with the
boom data, but significant differences exist for ¥ and C’aup. Basically, it becomes clear that
without an angle of sideslip measurement the lateral velocity v cannot be estimated correctly.
It should thus be concluded that one should take the utmost care when no-boom data is
regarded for lateral modeling of the aircraft, or it should simply not be used at all. Another
difference is for the upwash coeflicient, which is significantly lower than that with the boom,
but it shows the same behaviour. The lower value can be explained by the fact that the AOA
vane is further down the fuselage where the effect is less present. As it does show the same
behaviour, it can be regarded as a trustworthy estimate. The biases show the same behaviour,
although more excitations are present in A

The measurements also show comparative behaviour, but extra interesting are the air angles.
For &, the estimate of the no-boom data is significantly good and almost the same as that
of the boom data. More interesting is when the estimate is compared to the AOA vane
measurement. The vane measurement is very different from that of the boom, but still they
result in the same estimate, proving the performance of the UKF. Also note that the slight
vane measurement delay can be seen observed, but due to the modeled time constant this
does not affect the estimate. Another conclusion must be drawn for 3. Due to the lack of
B measurement without the boom the estimate of B is very unreliable. Again, one should
consider not using the no-boom data for lateral modeling.

The last interesting differences can be found in the innovations. A comparison of the 1o-bound
performance is given in Table 4-6.

When looking at the innovation time series, the largest differences can be observed in that of
the aircraft rotation angles, especially 6 and 1 show larger excitation around the stall, even
though the percentage bound is higher for 8, but lower for ¢». Why this excitation is larger
is unknown, but it may be due to the fact that with the boom, more information is available
about u, v and w and as such a better prediction can be made of the rotational velocities when
evaluating f(), which then in return delivers a more trustworthy integration and prediction
of 6 and v, while for the no-boom data this information is not available. For «, the no-boom
UKF also shows good performance. While, as seen, for the performance related to 3, the
no-boom UKF is significantly worse.
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Figure 4-9: (1/2) UKF estimated states comparison. Blue is the estimated state from the boom
data and red is the estimated state from the no-boom data.
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Table 4-6: Comparison of innovation percentages of boom and no-boom data.

Measurement | %mn, YInn,
TGPS 54.0364 54.0431
YGPS 66.2223  63.0825
ZGPS 82.9345 86.8009
TGPS 57.7095 48.2568
YGPs 60.0227 56.1563
ZGPS 23.9051 22.3118
PAHRS 88.5874 83.7211
OAHRS 47.7168 59.1161
YAHRS 45.417  31.2646
VT AShapc 39.2907 41.7505
Osynehro/ Qvananog | D7-2429  51.7366
Bsynehro/ Bpseudo | 50.3633  24.8383

4-6 Conclusion on Flight Path Reconstruction

From the results in the above sections it can be concluded that the UKF performs the FPR
reasonably well for the stall manoeuvre in consideration with the air data boom installed.
It performs as good as may be expected for a reconstruction on real data from a flight
where still some unknown disturbances remain that are not captured in the kinematic or
measurement model. As for the innovations of the UKF, they approach the theoretically
expected performance of 66% , even though some innovations are lower, especially the case
for the vertical velocity, pitch and yaw angle and the true airspeed. However it is deemed that
these innovations are the highest achievable in this case. The obtained results are comparable
to earlier research [57, 58].

Comparing the results with the air data boom measurements the FPR results of the same
flight with the pseudo-/f, it can be seen that comparable results are found and the latter case
also achieves the same reasonably good performance for the longitudinal states. However, it
is evident that the no-boom data cannot be used when regarding the lateral motions of the
aircraft.

Even though the UKF thus has reasonable performance, it should be kept in mind that
there are a significant number of assumption made in the process of building the entire FPR
procedure, which may effect its reliability. This should thus be taken into regard when
assessing the reliability of further results making use of the reconstructed data. Nevertheless,
based on the observed performance it is concluded that the UKF can be used in further
research of this thesis to perform the Flight Path Reconstruction.
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Chapter 5

Local Aerodynamic Modeling and
Parameter Estimation

With the results from the FPR the estimated states and reconstructed measurements are
now "trustworthy"' and, more importantly, accurate enough to be used as variables in the
aerodynamic modeling of the aircraft. This accuracy is required such that any movement of
the aircraft is captured, but also any input or state that caused these movements is known
accurately, such that the inputs, states can be linked to the output accurately, which together
results in a reliable aerodynamic model of the aircraft, which -when used- delivers results that
mimic the actual aircraft as close as possible.

This chapter aims to develop such a model for the Citation in stall. First, the basics of
aircraft modeling are reviewed, along with common model structures. Then, the model is
extended to incorporate specific stall behaviour, making use of Kirchoff’s theory as explained
in chapter 2. This includes the origins of the chosen stall model as designed via Orthogonal
Function Modeling. Next, the procedure to estimate the chosen aircraft aerodynamic stall
model is explained step by step. This starts with nonlinear estimation methods needed for
the estimation of the X parameters in Kirchoff’s theory, as well as the linear regression
methods used to find the parameters of the final aerodynamic model. Last, the found model
is evaluated, verified and validated.

5-1 General Aircraft Aerodynamic Model

In this section the basics of aircraft aerodynamic modeling are discussed. Thereafter it is
discussed how the model has been extended to stall modeling by Kirchoft’s theory of flow
separation via Orthogonal Function Modeling. This model is used in the next section to
perform the parameter estimation.
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5-1-1 Aircraft Reference Frames

A very important part in aircraft modeling is the use of different reference frames, as any
model is usually only applicable to that specifically chosen frame. The aircraft equations of
motion are usually given in a form that define the aircraft flight dynamics in terms of forces,
moments and angles respective to that frame. Two important frames for aircraft modeling
are the aircraft body frame and aircraft vehicle-carried normal Earth reference frame.

The first is the aircraft body-fixed frame which is fixed to the aircraft. The origin is in the
aircraft c.g., with the x-axis pointing forward in the plane of symmetry through the aircraft’s
nose, the z-axis is pointing down in this plane of symmetry and the y-axis is pointed right,
perpendicular to the plane of symmetry. The Figure 5-1 shows the aircraft body-frame Fy.

XB

u

ZB

Zp

(b) Definition of the angle of attack o and sideslip angle
a e six degrees of freedom of a rigid aircraft. .
The six d f freed f a rigid aircrafi B

Figure 5-1: Overview of the aircraft body frame Fj, [42].

The variables in these figures are defined as below:
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Fy @ aircraft body-frame
c.g. : center of gravity
Xp : aircraft body x-axis
Yp : aircraft body y-axis
Zp : aircraft body z-axis
: velocity in direction Xp
: velocity in direction Yp
: velocity in direction Zp
: aerodynamic force in direction of u
: aerodynamic force in direction of v
: aerodynamic force in direction of w
: angular velocity around Xp
: angular velocity around Yp
: angular velocity around Zp
: aerodynamic moment in direction of p

: aerodynamic moment in direction of ¢

S 3 s s NN XE < o2

: aerodynamic moment in direction of r

: angle between V and the X B, Yp-plane

R

B : angle between V and the X B, Zp-plane
dq : aileron deflection (right wing down positive)
J : elevator deflection (down positive)

d, : rudder deflection (left positive)

Furthermore, there are a number of variables used in aircraft modeling that do not come from
the aircraft Fj, frame, but from the aircraft "vehicle-carried normal Earth reference frame" Fg,
also known as the "navigation frame" or "NED"-frame (for North, East, Down) or simply just
"earth-frame". This frame has its origin in the aircraft c.g., with the x-axis pointing North
normal to the Earth’s geoid surface, the y-axis pointing east and z-axis pointing down normal
to the Earth’s geoid surface. See Figure 5-2.

Important variables in this frame are:

Master of Science Thesis P.A.R. Brill



118 Local Aerodynamic Modeling and Parameter Estimation

Zr

Equatorial plane

Vernal equinox [ . Ry
—_

\'Ez

X;

Figure 5-2: Overview of the aircraft vehicle-carried normal Earth reference frame F [42].

Fg : aircraft earth-frame

Xpg : earth frame x-axis, pointing North

Yp : earth frame y-axis, pointing East (90 deg from Xp)

Zp : earth frame z-axis, pointing Down (for flat earth assumption, normal to earth surface)
¢ : velocity in direction Xg
j @ velocity in direction Yg
> : velocity in direction Zg

T
Yy

z

¥ : aircraft yaw angle about Xp (derivative of v is r)

0 : aircraft pitch angle between Xp and the Xpg, Yg-plane (derivative of 6 is q)
¥

: aircraft roll angle about Xp (derivative of ¢ is p)

Both reference frames are used interchangeably in flight simulation models, which is further
elaborated upon below.

5-1-2 Aircraft Equations of Motion for Flight Simulation

Often the final goal of aircraft modeling is to reproduce the aircraft’s motion as realistically
as possible for use in flight simulation. Therefore aerodynamic models of aircraft usually have
a (mathematical) structure that is applicable for this purpose.

The core of any flight simulator is this mathematical model. It comes in two main forms, the
first being the general nonlinear equations of motion that apply in the entire flight envelope,
and the second their derivatives; the so-called small perturbation equations which can be
used to calculate the aircraft behaviour closely around a certain speed and altitude of steady,
trimmed, symmetric flight [2]. To simulate a complete flight from take-off to landing one
needs to make use of the general nonlinear equations.

The general equations of motion in the Fj-frame are given by:
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Fx,=X—Wsin6 =m(u+ quw — 1v) (5-1)
Fy, =Y + Wcosfsinyp = m(v + ru — pw) (5-2)
Fz, = Z+ W cosfcosp =m(w+ pv — qu) (5-3)
Mx, =1L = plag + qr(Ls. — Iyy) — (g +7) Lz. (5-4)
My, = M = qlyy + rp(Lee — L.2) — (p - 7“2)1 (5-5)
Mz, =N = Loz +pq(Lyy — Ina) + (qr = P) Lz (5-6)

Which can be rewritten into six equations for u, ©, w, p, ¢ and 7. Next to these equations
for the body linear and rotational accelerations, it is important to incorporate the relation
between the accelerations in the body frame to the movement of the aircraft in the Fg-frame
and Euler angle rates in the Fg-frame, as given by:

Vx, =& = [ucosf + (vsin g + w cos ¢) sin f] cos ) — (v cos p — wsin ) sin (5-7)
Wy, =9 = [ucos @ + (vsin g + w cos @) sin 0] sin ) + (v cos p — wsin @) cos (5-8)
Vz, =2 = —usinf + (vsin g + w cos ¢) cos O (5-9)
wx, =@ =p+gsinptand + rcos p tan § (5-10)
Wy, =0 = qcosp —rsingp (5-11)
o0 = =0+ o (512

Note the correspondence between the above equations and the FPR navigation equations of
Equation (4-27). With the above equations the entire path and orientation of the aircraft
during the flight can be simulated by calculating the accelerations in the body frame and
then using the relations to the ECEF frame to calculate the aircraft’s trajectory.

However, to calculate the accelerations in the body frame in the first place, one needs to know
the forces and moments Fx,, Fy,, Fz,, Mx,, My, and Mz, in that frame. For this an
additional aerodynamic model is used [2].

5-1-3 Aircraft Aerodynamic Model

The aircraft’s aerodynamic model describes the forces and moments in the body frame as a
function of the aircraft’s current state and any given inputs. Instead of body axes X and
Z often the drag and lift coefficients D and L along and perpendicular to the aircraft speed
vector V are used, but can be converted back to X and Y via « and S for calculation in
the equations of motion (see Equation (5-55) and Equation (5-56)). Rather than using a
dimensional version of the force and moment equations it is customary to use the form of
dimensionless coefficients [2]. This is defined as:

D Y  Lginy L M N

Cp=1rer Or=13c CL=1amk, Ci=1e, Cn=1g, Co=1ogc
Y P P e R A 7)) 1pV256 1pV2Sh
(5-13)
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The most common model structure for the calculation of the force and moment coeflicients
for operation within the largest part of the envelope when using flight test data is given by
[28]:

C; =G (‘V/O,a,ﬁ, %, % % % féa) . fori=D,Y,L,0,m,n (5-14)
Which in practise are the aircraft states V, «, 8, p, ¢ and r and control deflections &, which
can be aileron, elevator and rudder deflections, but also any other control input like flap
or thrust setting. For any force related to the state « the resulting force does not only
relate to the instantaneous state, but also its entire time history that effects the current flow.
However, for practical applications it is generally assumed that the flow is quasi-steady such
that these effects are not present and any a-related coefficient is only affected by its current
state. However as discussed in chapter 2 this cannot be assumed for the stall region, where
the flow is significantly unsteady and time-related effects are significant such that a more
complex model structure is desired. This is discussed later in this chapter.

In order to be able to make practical use of the force and moment coefficients these are often
linearized via a first order Taylor series expansion about a certain trimming point, denoted
by the subscript "g". A first order is chosen as higher order effects are often negligible because
of the only small perturbations. For example, for the lift force the Taylor series expansion

becomes:

V)

CL:CL0+CLV 7

+ Cr.(a — ag) + Cr, (8 — Bo) + - -

(r—rmp)b
+Cr, I +...
(& —ag)c (8 — Bo)b

Vo JrCLB oV + ...

ot CL% (0a — 5a0) + CL(se (e — 560) + CL&T (6, — 5r0) + CLét (6 — 5t0) (5-15)

(¢ —qo)c
%)

(p —po)b

Ot

+CL,

-~~+CL(X

In which (a number of) the stability and control derivatives are defined as:

e e 2y a0y,
OLV—Vb oV 07 CLa_ da 0’ Ly, — b 8]9 07
Vo 0Ct, Vo 0Ct, oCy,
= —_— — L = — — e —1
CLq c aq 0’ Lg c 0a 0’ Ls, a(sa o (5 6)

As these derivatives are only valid for the trimming conditions or small perturbations there-
from and differ for other conditions, a flight simulator model needs a large database containing
the values for these parameters based on the current flight condition [2]. Usually these con-
ditions can be described by current angle of attack aq, velocity Vp, altitude hg and mass and
inertia parameters mgy and Iy. For turns and climbs or descends bank angle ¢g and climb
angle g are also needed, respectively.
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Not all terms in Equation (5-16) have the same influence on the lift coefficient C7,, as is also the
case for the other coefficients. The equations can be simplified by neglecting symmetric forces
on the asymmetric states and vice versa [28]. This leads to the most common expressions for
the aerodynamic model in aircraft simulations. The expression itself can also be simplified
by stating just the state « instead of (aw — o). The result is, for the symmetric motions:

\%4 qc ac

CL = CLO + CLVVO + CLaa + CquO + CLde + CL(;eée + CLétét (5—17)
1% qc ac

Cp = Cp, + C’vao +Cp, o+ CDQV + CDQ*O + Cpg, dc + CD(;t(st (5-18)
\%4 qc ac

Cm = Cny + Cry — 7 + Chn,a+ Cm"Vo + CdeO + Cm565e + Cmétdt (5-19)

And for the asymmetric motions:

B Vv pb rb Bb
Cy = CYO + CYV Vo + Cyﬁﬁ + pr 27, + Cy, 5V, + CYB 2 + Cyéa O + CYér Or (5—20)
Cr=0C C V C C pb C rb C B Cy, 6q+ Cy; 6y 5-21
bt Coy g + 058 + ep2v+ taye T Clagye + Gt 9 + Cl, (5-21)

1% pb b Bb
Cn = O+ Coy 7+ OB+ Oy i+ Oy + g+ G 8o+ Crng 6 (5-22)

In these equations, the terms & and 5 are related to unsteady aerodynamics and might also
be left out when manoeuvres are in the quasi-steady regime. Also, instead of having both
q and ¢ in the equations, often one is chosen as strong correlations between the two make
identification difficult [28]. In general, any terms can be added or removed from the above
model at will (e.g. higher order terms, cross-terms or even spline functions, as discussed later
in this chapter), the only requirement being that a reflection of the real-world and sufficient
model fidelity is still pursued. This last fact is important especially when trying to describe
aircraft behaviour in unsteady conditions (i.e. near stall) where this first-order linearization
based model is often not exact enough.

5-2 Extending the Aircraft Aerodynamic Model to Stalls

A key point in the research of the Citation Stall Modeling Group is to create a model that is
able to capture the nonlinearities and unsteady conditions of the aircraft in the stall regime,
without resorting to overly complicated or complex models. At the core of this method is
Kirchoff’s Theory. It is found by the method of Orthogonal Function Modeling (OFM) in
order to find the most "powerful'" model, meaning: the model that describes the aircraft
behaviour the best, for the least amount of model terms, exactly as is the goal of the Stall
Modeling Group. This method and the final model is explained in this section.
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5-2-1 Ordinary Least Squares Estimation

The basic principle upon which OFM is built is Ordinary Least Squares (OLS) parameter
estimation. OLS is a simple but powerful tool to estimate the parameters when a certain
model structure is known. Therefore it is also the first step of the local estimation performed
for this thesis, as explained later in this chapter. However, as the workings of OLS are needed
to be known for OFM it is already discussed here.

Consider an assumed linear model structure which to model a certain output with. The
standard model structure for OLS problems of order n is given by:

y:a191+a292+...+an9n+€:[al as ... an|| .| +e (5-23)

With y the measurement value, 6 the to-be-estimated parameters, a the known model regres-
sors and € any remaining residual. When regarding a measurement series of k = 1,..., N
measurements, this becomes the vector equation:

G=A0+&= gy @ ... a*n]9+5:
th
Yk=1 a1 k=1 02k=1 ... Onpk=1 0y €k=1
= | = : : : e (5-24)
Yk=N a1 k=N Qa2k=N --. Opk=N 9' Ek=N
n

The goal of the OLS is to find a parameter vector 0 that minimizes the least-squares cost
function:

(7 48)" (5 Ad) = Lz (5-25)

J = 55

N | —

Which can be calculated by:

0= (aT4) ATy (5-26)

With this result, the best estimated output for the model can be calculated via:

y=Af (5-27)

This results in a set of estimated parameters 0 which best approximates the output signal gj’
for the chosen model structure. This model structure must thus be chosen up front by the
user based on insight about what model structure is best applicable to the case. This process
can be very arbitrary. In order to make the model structure selection quasi-objective OFM
can be used.
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5-2-2  Orthogonal Function Modeling

This is indeed the large challenge in the parameter estimation process: often not the parameter
estimation itself, but the step foregoing the parameter estimation. A certain model structure
is assumed, however, it might be the case that this normal polynomial model is not optimal in
itself and contains non-optimal regressors, regardless of the estimated parameters. This may
result in correct global fits of the model, but significant discrepancies locally, especially when
locally non-linearities exist. This problem may be countered by applying OFM and structure
selection.

Parameter Estimation via OFM

By use of OFM, before the parameter estimation is applied, first a procedure is performed that
decouples the OLS, such that any regressor’s ability to improve the OLS fit can be evaluated
independently regardless of which other regressors are already chosen for the model. The
main advantage of this is that the model regressors are chosen such that the final model
structure itself will also add to improving the model fit, and not only the estimation of the
parameters. This method was first applied in combination with the use of flight data in [37].
The used procedure is described below.

For a pair of orthogonal regressors, the following applies:

ala; =0, i#j, 4,j=12...,n (5-28)

Such that follows, from implementing matrix A of Equation (5-24) and the function of Equa-

tion (5-28) into Equation (5-26) for the orthogonal estimated parameters (equivalent to 6):

T —
s 4y
¢ = = (5-29)

And implementing Equation (5-24), Equation (5-28) and Equation (5-29) into Equation (5-
25):

(5-30)

Which is only dependent on the measurement data ¢ and only the specific regressor a;,
meaning that the performance of the regressor on its own to minimize the cost function can
be evaluated.

Continuing, it must be evaluated which model regressors to include or not include in the
model. The metric used for this is the specific regressor’s ability to minimize Predicted
Square Error (PSE), defined by:

~N T A
(g— AH) (gj— AH) .
PSE = b2 M orthogonal 2/ o 1 (5-31)

N max N N mazx N
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In order to practically implement the PSE in an algorithm, it is needed to evaluate for every
orthogonalized regressor its own contribution to the PSE. The regressor with the smallest con-
tribution is then chosen to be an actual regressor in the model. This individual contribution

of the jth regressor is given by [58] and is basically the derivative AZ? E.

2
@) , . 1
+ 0

APSE; = — (5-32)

In these equations o2, is the upper-bound estimate of the squared error between future data

and the current model, governed by:

1 N
2 _ Z 2 :
Omax = N -1 Pt (yl y) (5 33)
And:
1 N
y = — i - 4
y N;:ly (5-34)

Of the orthogonal PSE in Equation (5-31), the left term decreases with additional model
terms and the right term increases with additional terms. This means that the PSE always
has just one single global optimum. This makes it fit for structure selection as it weighs on
one hand gaining a better fit by adding terms, but also keeping the resulting model simple as
a penalty is imposed for adding too many model terms.

Orthogonalizing Regressors

The important assumption of the above procedure is that all the regressors are orthogonal.
As this is usually not the case, they need to be orthogonalized first by the Gram-Schmidt
orthogonalization procedure as also explained in [37].

Normally the first orthogonal regressor is associated with the bias-term and set to 1 as in:
d=b =1 (5-35)
In which the original regressors are denoted by @ and the orthogonalized regressors by b.

Next, any function of the regressor candidates can be chosen next and defined as the next a;
and can be orthogonalized via:

—

j—1
by =a;— > Yhibe, J=2,3,....n (5-36)
k=1

With n; the number of candidate regressors (including the bias term). The scalar 7;; can be
calculated via:
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bl
Vej = e
T by,

k=1,2,...,5—1 (5-37)

As candidate regressors any function of the original regressors can be chosen up to a certain
order. A valuable property of the selection process is that choosing more regressors that may
not be important, or including higher order functions of them does not affect the final selected
orthogonal regressors. The only cost is additional computation time.

The original regressor matrix A is already known, then one can also define the orthogonal
regressor matrix B. This can be done via the matrix GG, which is defined as:

1 v2 m3 - Ying
0 1 3 - 7op

G=10 0 1 - 7, (5-38)
00 0 - 1

These matrices make it possible to calculate and convert between the original and orthogonal
regressor model outputs:

A=BG & B=AG"' st. §=BF < §j=AG"'@ (5-39)

Furthermore this also gives an expression to convert between the orthogonal and original
estimated parameters:

D)
Il
o
Sy
(3
Cp
Il
Q
D)

(5-40)

Use of Spline Functions in OFM

As mentioned before, the challenge in global parameter estimation is to also accommodate
local variations in the model. The sole practise of incorporating the model structure selection
is already a step in this. But additionally, not only functions of regressors but also spline
functions that consist of candidate regressors can be added to the regressor pool. These
splines are mathematically defined as:

(2 — )7 = {0 when x < z; (5-41)
(x — ;)™ when x > ;
Where the variable = can be any other candidate regressor that is already considered. Based
on insights into aircraft behaviour, one can choose the specific regressor that might profit from
being included in a spline as well as the specific point (or "knot") where the spline becomes
turned "on" (or multiple options can be included and the OFM algorithm will choose the most
applicable one).

For example, if one knows that the behaviour of the angle of attack « significantly changes
above 10 degrees, one could include the spline (« — 10)%r as a regressor as well. Based on the
chosen candidates’ orders, also higher orders of the spline can be included (i.e. (o —10)2).
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Conclusion on OFM in Parameter Estimation

The above procedure as described and used in [37] can offer significant increases in model
fidelity. The paper concludes that, even though only data from one flight test is used, the
model produces reasonable predictions of flight behaviour that can be compared to the accu-
racy that is normally achieved in extensive wind tunnel testing. The final model consisted of
regressors and splines that were automatically chosen by the OFM structure selection process.

In the Citation Stall Modeling Group, OFM was used in two previous researches: for the
normal flight envelope in [54] and for stall modeling in [58]. Both these papers made use of
multiple flight tests, in the contrary to [37]. This made it possible to extend the algorithm
with two additional steps. First, if for a certain set the regressors are chosen and the algorithm
ended, each of their contributions to the final model output was checked via their individual

Root Mean Square (RM S = % \/ﬁ) by calculating the RM S with the regressor and without
it. If the difference was less than 0.5% the regressor was still deleted. This to further simplify
the model. Second, as multiple flight tests with test runs were available, the algorithm was
run for each run. Each run may result in different outcomes with different chosen regressors.
To come to a final model that only consisted of regressors that were chosen in at least 50%
of the flight test runs, or when practically a significant reason could be found that increased
model accuracy. This to increase the model global performance.

5-2-3 Final Aerodynamic Stall Model

The final aerodynamic stall model of the Cessna Citation PH-LLAB was found by applying the
algorithm as discussed above by [58]. The candidate regressor pool consisted of the following
regressors and any combination of those up to order 2:

]" a? d? ﬂ? /8.7 p’ q7 ,rl’ 5(17 567 57" CT7 M’
2
m) : maX(l X)

X, (1-X), ( 5 2

In which Cr is the thrust coefficient, which is related to d; and used instead thereof, and is
defined as the total engine thrust made non-dimensional:

T

Cr=-——
%pVZ%ASS

(5-42)

The final aerodynamic stall model that was identified, and which is further used in this thesis,
is:
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CL=0Cr, +CL, (1*—2\/7(> 2 a+Cp,(a— 6°)2 (5-43)
Cp = Cp, + Cp,a+ Cp, 6e + Cpy (1 — X) + Cp,, Cr (5-44)
Cy = Cy, + Cy, B + CYP% + CYT% + Cy;, 0 (5-45)
Cpr=Cyy+ CpyB+ Cep% + CgT% + Cis, 0a (5-46)
Cm = Cmy + Cnpa+ Crys, max(%, X)be + Cme, Cr (5-47)
Cn=Chy +CpyB+ CnT% + Chy, Or (5-48)

In this set of equations one regressor spline term is present that was not included in the
regressor pool. This was added to the model as the coefficient Cr,_, also incorporated the
Kirchoff term X, which significantly reduces the lift as the separation point moves to the
leading edge of the wing. However, Kirchoff’s theory is applicable to airfoils, whilst the
estimation of the Citation models the entire aircraft. It was found that the spline regressor
(a— 60)1 effectively counters the somewhat overestimated lift decrease related to X at higher
angles of attack from 6 deg onwards.

5-3 Estimating the Aerodynamic Stall Model from Flight Data

With the final Citation aerodynamic stall model structure known, it is possible to perform the
parameter estimation on the model. The used procedure for this is discussed in this section.

5-3-1 Calculating Force and Moment Coefficients

The first step to perform parameter estimation of the aerodynamic stall model is to calculate
the actual output 7 that the to-be-estimated model needs to model. These are the coefficients
from Equation (5-43) through Equation (5-48).

The aerodynamic force and moment coefficients can be calculated from the reconstructed
inputs and reconstructed measurements from the FPR and the massmodel data. Note that
in this chapter the FPR estimated values are regarded as the "true" values so that from now
on the superscript """ is dropped for those, while the is now only used for the parameter
estimation estimates. The dimensionless aerodynamic forces in the aircraft body frame can
be calculated and modeled as:

nAmn

X mA,

Cx = = 5-49

X $pV2S  pv28 (5-49)
Y mA

Cy =150~ 1 Qy (5-50)
Z A

Cy = mes (5-51)

V2S5 - $pV28
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The dimensionless aerodynamic moments in the aircraft body frame can be calculated and
modeled as:

L Iaca: Izz -1 - . Ia:z
M 11, I:mv - Izz - 2 — 2 Ixz
5pV=S5c 5pV=5c
N .Izz I _I:m: -7 Ixz
Cn = e = ezt Py — L) & (47— D) (5-54)
1pV2Sh 1pV2Sb

Last, the dimensionless lift and drag coefficients can be calculated from the force coefficients
in the body frame:

Cr =Cxsina — Cyzcosa (5-55)
Cp =—-Cxcosacosf3—Cysinf3 — Czsinacosf (5-56)

Now all ¢ outputs are known and can be used to estimate the parameters in Equation (5-43)
through Equation (5-48).

5-3-2 Nonlinear Estimation

The preferred method to estimate the parameters of Equation (5-43) through Equation (5-
48) is simply via linear regression via OLS. However, this is not possible as the variable X in
equations of Cy, and C,, is governed by an ODE and thus non-linear. A method to be able
to still do this is by first performing a nonlinear parameter estimation to estimate X and its
parameters a1, a*, 7 and 7y before the linear regression. Then, it is possible to regard X as

2
"just" a part of the regressor (%) Q.

Preparing Regressors

The first step in any estimation, be it linear or nonlinear, is to calculate the regressors that
appear in the to-be-estimated model structure. Recall Equation (2-6):

A% 4 x = 1 anh an(e — ma— o))}
dt 2
Which is the to-be-esimated model structure for the nonlinear estimation part. The regressors
that appear in this equation are o and & which van be obtained from the Kalman filtered
flight data. The regressor time series in the nonlinear estimation are denoted by Z, and the
to-be-estimated parameters a1, a*, 71 and 7 by é;wnlm, rather than @, and just 6 of the linear

estimation to distinct them from the linear estimation.

For the final aerodynamic model equations some regressors must be made dimensionless (like
97 ). However, the ODE of X applies to the actual values of o and &, so no further preparation
is needed to these regressors and the nonlinear estimation can be performed directly.
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Nonlinear Estimation Procedure

The basic method of nonlinear estimation is to minimize a specific cost function. For a
nonlinear cost function, the cost function can be regarded as being a surface. In order to find
a minimum on this surface, one starts at a certain point and calculates the gradient in all
directions. The direction with the highest decrease is then chose and a step is taken in that
direction. This is repeated until at some point no further decrease appears in any direction,
which means a minimum is reached. The method to find out if a local or global optimum is
reached is discussed later in this section.

As X is described by a nonlinear ODE a nonlinear estimation procedure is necessary to
solve for its parameters. One can make use of any equation containing X, thus Equation (5-
43) or Equation (5-47). The Equation (5-43) was chosen as the data for Cf, contains most
information related to angle of attack and the airfoil separation point. The accompanying
cost function to find the parameters of X is defined by [58]:

5 R : 7 IS o \T /4 -
0 = argminJ(0,z), with J(0,z)= — (yCL - ycL) (ycL — ycL) (5-57)
7 n

In which 6 is the to-be-estimated nonlinear parameter vector given by:

—

~ T
0= nonl'm:[al ot 1 m C, Cp, CLQQ} (5-58)

Further, = are the regressors, g, are the measurements of Cr, and ﬁCL is the calculated
value of C'f, via the estimated parameters and model structure of Equation (5-43). For clarity
repeated here:

1+ VX

2
5 ) a+C’La2(Oz—60)i

Cr=0Cr,+Cr, (

Last, the derivative of X in time, %, is given by a rewritten version of Equation (2-6):

dX(ZtH, x) _ +{1 — tanh [al(aT Tod — )]} — X (5.59)
1

The nonlinear optimization makes use of the gradient of the cost function surface relative to
the parameters, but this may encounter numerical difﬁgulties when regarding an ODE. The
gradient of J (5, x) with regard to the parameters &Zf"n) depends both on the parameters
that constitute X and those that do not. Through diﬂ%rentiation via the chain rule one then

finds that:

8J 9CL 8X

aJ(é: $) WaiXaT When 01 I~ {QI,OC*,Tl,TQ}
0. ) o/ ocy Z (5-60)
i a¢, 00; when HiE{CLmCLa’CLaz}
All but one of the partial derivatives can be found analytically quite straightforwardly, except
for g—gf. To find this derivative, first one can define:
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dX(t,0,z)
dt

Then one can define for the to-be-found derivative:

= G(X,t,0,z) (5-61)

9X(t,0,z)
0

Then, taking the partial derivative of G with respect to the parameters 6 gives:

= S(t,0,) (5-62)

0dX(t,0,z) O0G(X,t,0,x) O0G(X,t,0,x)0X(t0,z) n 0G(X,t,0,x) (5-63)
00  dt o0 - 0X o0 o0 i

Then substituting S into this equation yields:

dS(t,0,x) 0G(X,t,0,x) 0G(X,t,0,x)
. 0X a0

Both derivatives of G can be derived straightforwardly from Equation (5-59). With this
final equation a second ODE has been obtained which can be solved numerically rather than
analytically. The solution can be substituted into Equation (5-60) to complete the chain rule
and as such being able to calculate the gradients relative to all parameters.

S(t,0,z) + (5-64)

The derivatives when 0; € {CL,, CL,,CL_, } become:

oJ 2 /x .
56, = u on — ) (5-65)
36 1 when 6; = Cp,
2
80L = (%) o when 0, = Cp_ (5-66)

max (0, — 6°)?> when 6; = Cr_,

While the derivatives when 6; € {a1,a*, 71,72} become, via the procedure described above:

oJ 2 /a4 .
92 (5, ) 67
aCp 1 1
9L _ 14 14— 5-68
ox 4 ke? ( - \/7(> >0
oG 1
X n i
_ 1{1—tanh? [‘11(a_72z_a*)]}{a_T2d_a*} when 0; = a1
oG _ 3{1-tanh®[as (a—m2d—a”)]}{-a1} when 0; = o*
oG _ . e ’ 5-70
00; _ 3{l-tanh [al(aT;Tza*a Np-X when 6; = 7, >0
1
_ 3{1-tanh? for (a-ma—a”)H{-a1d} when 6; = 7
T v
(5-71)
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After which g—gi = § is the value found when numerically integrating the ODE % = g—gS —i—g—gj.

In order to perform the nonlinear estimation the MATLAB fmincon ()-function was used, in

which the cost function was defined as Equation (5-57) and the gradient of the cost function
surface was specified by the user as Equation (5-60).

For any dataset (i.e. one stall run) the optimization was run for 500 randomized initial
conditions, uniformly selected within the bounds given by Table 5-1. The bounds were chosen
according to [58]. All initial conditions were normalized by dividing by their own upper bound
before being used as input for the fmincon()-procedure to increase performance.

Table 5-1: Nonlinear estimation parameter initial condition specifications.

Parameter | Lower bound Upper bound Unit
aj 15 40 -

a* 0.1 0.35 rad
T 0.001 0.8 S

T 0 0.5 S

Cr, 0.1 0.4 -

Cr., 2 6 -
Cr_, 0 20 -

By using this method it is never certain if the global optimum is actually reached. However,
the more initial conditions are optimized, the more certain it is that one of them is in fact the
global optimum. A significant number of final estimates were found that came significantly
close to the estimate with the lowest cost function value of J. This is to be expected. First, the
lowest value of .J is not necessarily the ezact global optimum, nor are the found optima that
lay close to it. Due to the calculated gradients, the direction in which these are calculated
and reaching of the initial condition tolerance the algorithm may never reach the singular
point that is the global optimum. Therefore the median of all optima that came within 5% of
the lowest found optimum was regarded to represent the global optimum best and therefore
assumed to be the global optimum from the nonlinear estimation. More details about the
distribution of the found optima is discussed below.

With the found parameters the modeled value of Cr,, ¢, , was calculated for the time series
of the stall run and compared to the "actual" value of C'r, yc, , that was calculated from the
Kalman filtered data. The results hereof are also discussed below.

Results Specific to the Nonlinear Estimation

As an example to discuss the workings and results of the nonlinear estimation it was performed
with 500 initial conditions on the same dataset as with the discussion of the UKF: 150 s of
data from a dynamic stall that includes boom measurements.

The distribution of the 500 optima that are found with the nonlinear estimation procedure
are shown in Figure 5-3. Where Figure 5-3a shows the optima of all 500 initial conditions and
Figure 5-3b shows the selected initial conditions that results in an optimum that is within
5% of the lowest cost function found of all initial conditions. This is the case for 20 initial
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(b) Selected initial conditions (n = 20) with median.

Figure 5-3: Distribution of the parameters and cost function values found by the nonlinear
estimation procedure.
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conditions. Also, the median of the parameters is shown for these 20 optima, which is assumed
to be the actual global optimum of the nonlinear estimation.

From all initial conditions it can be observed that the optima are distributed quite widely
within the upper and lower bounds of the parameters. This may indicate that there are
many local optima on the cost function surface. This does however reinforce the choice for
as many initial conditions as chosen. What is also clear is that all distributions do possess
a concentration in their distribution. Not coincidentally, when looking at the distribution
of the selection of best optima and their median, these do coincide with where the highest
concentrations roughly are. Therefore, even though the spread is quite significant, this does
increase the reliability of the found best optima. In this case, the parameter best estimates are
thus found to be: a; = 32.0864, a* = 0.2039 rad, 71 = 0.1293 s, 72 = 0.0525 s, C'r, = 0.1912,
Cr, = 4.4819 and CLa2 = 13.1858 where the cost function has a value of J = 6.8562 - 10~%.

In order to explain the behaviour and these relatively "spreaded" results of the optima of the
parameters it is useful to investigate the cost function surface and its derivatives at the found
global optimum. See Figure 5-4 and Figure 5-5 for the cost function surface and its derivatives
at the global optimum and Figure 5-6 shows the surface zoomed in on a local optimum.
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(c) Surface w.r.t. 71 and 72. (d) Surface w.r.t. 72 and as.

Figure 5-4: Surface of cost function J at the found global optimum (a; = 32.0864, o* =
0.2039 rad, 71 = 0.1293 s, 72 = 0.0525 s).

The behaviour of the large spread of all 500 found can be expected. It is visible in Figure 5-
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Figure 5-5: Derivatives of cost function J at the found global optimum (a; = 32.0864, o™ =
0.2039 rad, 71 = 0.1293 s, 75 = 0.0525 s).

4c. As 11 and 7y increase some significant roughness appears on the surface in which the
optimization algorithm might find an optimum, even this close to the global optimum. This
roughness was also found by [58]. As an example, in Figure 5-6 the cost function surface at
an optimum for J = 0.0170 at a; = 27.4739, o* = 0.2365 rad, 71 = 0.0119 s and 75 = 0.0874 s
is shown with a higher resolution, and indeed it can be seen the rough cost function surface
creates many local optima, even though at the specified point there is clearly not a global
optimum.

However, also a smaller but still significant spread is present in the selected parameters that
make up the global optimum. This is also not unexpected as it can be seen in Figure 5-4 that
the surface at the global optimum is very "flat". Thus, the optimization algorithm decides
that another step on the surface does not increase the cost function value enough even though
the singular global optimum is not yet reached. That the spread of these final 20 optima is
rather large and may differ significantly from the chosen median is no problem, however. The
flat surface of the cost function namely has as result that a change in this parameter does
not deteriorate the model fit and is still a good representation of the actual data, which is
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Figure 5-6: Surface of cost function J at a local optimum (a1 = 27.4739, a* = 0.2365 rad,
71 = 0.0119 s, 75 = 0.0874 s) where J = 0.0170.

ultimately the only goal of the model.

With the estimated parameters the Cf can be modeled by calculating X and the other
regressors for the entire time series of the data and multiplying with the estimated parameters,
resulting in §c, . A number of metrics are calculated to give an indication of the model fitting
performance (for their explanation see later in this chapter). See Table 5-2.

Indeed the M SE is the same (with a small numerical difference) as was found for the optimum
of J in the nonlinear optimization, verifying that the nonlinear optimization works correctly.
The modeled Cp, differs less than 3% from the measurements, which are low enough values
that prove the nonlinear estimation estimates the model parameter with quite some accuracy.
It might be interesting to see if these values significantly change when the linear estimation
is applied below.

5-3-3 Linear Estimation

Now that for the data set the nonlinear X parameters have been estimated, it is possible
to calculate X throughout the time series of the data and regard it as a regressor that can
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Table 5-2: Performance metrics of the nonlinear parameter estimation.

Model | Metric Value
MSE  6.6661-10~%
RMS  0.0258
RRMS 2.9568%

R? 0.9625

Cr

be utilized in this second part of the parameter estimation, which is the linear estimation
of the stability and control derivatives of the model described by Equation (5-43) through
Equation (5-48).

Preparing Regressors

The first step is to prepare the regressors for use in the parameter estimation. The first step in
this is to calculate X by means of the estimated nonlinear parameters. Recall Equation (5-59):

ax {1 —tanh [a) (o — & — )]} — X

dt e

With this equation X can be calculated for the entire time series by using the Matlab ode45 ()-
function on the equation. The parameters a;, a*, 71 and 7o are taken directly from the
nonlinear estimation, a and & from the UKF data and the initial condition is set to the
steady-state separation point Xy at the first timestamp of the data governed by:

Xy = %{1 _ tanh [a1(a — 72é — a%)]} (5-72)

Next, the regressors are calculated according to how they appear in Equation (5-43) through
Equation (5-48) which also makes the regressors dimensionless for which it is required that
they are dimensionless. Gathering these into the regression matrix A for each of the six force
and moment equations results in:
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r 2
1 (Hﬁ) ar—1 max(0,a —6°)%_,
Aoy = :
2
1 (H%/Y) ar—y max(0,a —6°)7_y
(1 o=t 5ek:1 (1 - X)kil CTk:l
Acp = | : : : :
11 ap=nN 5%:1\7 (1 - X)k=N CTk:N
r b b T
L Br=1 %k:l Whe1  Oar
Acy, = |: : : :
b b
1 Br=n 2pT/k:N When Onx] (5-73)
- ) b .
L Br=1 57]6:1 QLszl Oaj—y
Ac, = |: : :
1 B b Ib B
L k=N 2Vk=N 2Vik=N Yar=n]
1 oy max(%, X)oe,_, Cr_,
Ac,, = | : :
11 ap—n max(%, X)5ek:1v Chien
L Br=1 %kfl 5T’k=1
Ac, = | : : :
_1 Br=N %k:N 5%:1\7

In which C7 is as defined in Equation (5-42). With the regression matrices defined, the linear
estimation procedure can be commenced.

Linear Estimation Procedure

The linear estimation procedure is via OLS and works exactly as described earlier in this
chapter. The linear to-be-estimated parameters 6y;, are given by:

Oc,
Ocp,
o

Oc,

=[cn, C©

r T

Cuy Cr, Cr

r T
Cpy Cp, Cps, Cbpy CDCT}
r T
Oy, Cy, Cy, Oy, Cy ]

; 7 (5-74)
Ci, Cuy Ci, Co Ciy

r T
_Cm() Cm(x CmX(Se CmCT]

ng Cnr O”ér}T

Then applying Equation (5-26) with the A matrices from Equation (5-73) and the parameter

vectors é}m from Equation (5-74) results in the best estimate parameter estimates é}m These
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best estimates can subsequently be used in Equation (5-27) to calculate the best estimated
model OU.tpU.tS gCLa :JCDa :JCya 2'7047 chm and gcn-

Results Specific to the Linear Estimation

The result of the linear estimation constitutes the final model of the Citation in stall. Its
results and performance are discussed in the section hereafter as they are thus not specific to
the linear estimation only.

An interesting feature that should still be discussed here is the difference between the nonlinear

estimates of Cr,, Cr, and CLa2 and its linear estimates. See Table 5-3.

Table 5-3: Differences in the estimates of the Cr,, Cr, and CLa2 parameters between the
nonlinear and linear estimation.

Parameter | 0,o0n1in  Olin

Cr 0.1912  0.1910
C. 44819 4.4832
C’L&2 13.1858 13.6978

As can be seen, no significant differences occur in the linear estimates of the stability and
control derivatives of C'r, even though Cp,_, differs the most. It is also interesting to look at
the difference in performance metrics in Table 5-2 and Table 5-5, where the metrics of the
C1, model performance are slightly lower for the linear than the nonlinear estimation. This
can be attributed to the fact that the nonlinear estimation results in parameters that are the
median of a wider spread of optima. And for CLa2 this spread is the most irregular, as can
be seen in Figure 5-3b, so it can be expected the median of this parameter deviated the most
from the optimal value. The linear estimation does not have this problem as it is calculated
analytically, and therefore the model performance slightly improves. However, as the results
are very close, more than disregarding the nonlinear estimation reliability, it strengthens the
reliability of using both methods consecutively.

All other results of the full estimation that do not relate to differences between the linear and
nonlinear estimation are discussed below.

5-4 Evaluating the Aircraft Local Aerodynamic Model

The local with the two steps from the local aerodynamic modeling performed, its results can
be investigated and its performance evaluated.

5-4-1 Model Validation Methods

Of course, the main model validation method is by plotting the modeled data (g?), comparing
it to the measured data from the UKF () and to identify differences in the model behaviour.
Next to this, in this case two other methods can be applied as well. First there are some
specific OLS validation methods in order to assess if the the OLS delivered reliable results.
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Second, by investigating the model output a lot of information can be obtained, but it is also
worthwhile to extract a quantative measure. The Means Squared Error, Root Mean Square
and Relative Root Mean Square are often used methods for this. They are both explained
below.

OLS Validation
One can investigate the performance of the OLS application as this may indicate something

about the reliability of the estimated model and its parameters. The validation of the linear
regression model can be performed in two manners by use of:

« analysis of model residuals, and;
o analysis of parameter covariances.

Below, the application of both procedures is discussed.

o Analysis of Model Residuals. The performance of the model and its parameters can be
analysed via its residuals. Rewriting the equation for the measurement vector i and
using the best estimated output for the model i, one gets the residual vector &:

-y (5-75)

<>

5:

For a good estimator, the mean £ of all residuals should be very close to 0 (and should
be 0 in theory).

The second condition for estimator performance related to the residuals is that the
residuals should be uncorrelated. That means: to check whether the residuals (as
much as possible) represent white noise. This can be calculated via the auto-correlation
function (1). Also a 95% confidence bound should be included. These are defined as:

N
y(1) = Y eli)e(i+1) (5-76)
i=—N
conf = 1.96/vV'N (5-77)

Where N is the number of measurements. The indication if the residuals have a white
noise character is if the autocorrelation function resembles a Dirac-pulse, meaning v = 1
at [ = 0 and v = 0 anywhere else. As in practise this is never the case, the 95%
confidence bounds are added. Very close to [ = 0 the autocorrelation is allowed to
vaguely exceed the bounds, but broader this should not be the case.

o Analysis of Parameter Covariances. Next to analysing the actual residuals of the mod-
els, one can also perform an analysis on the OLS estimator itself to examine the reli-
ability of its own estimated parameters. This is done by calculating the covariance of
the estimated parameters, given by:
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2 -1 =T
Cov[d] = ¢*P = o? (ATA) ., with: 02 = 6% =

(5-78)

Where N is again the number of measurements and k is the number of regressor terms.
The values on the diagonals of the covariance matrix show the variance that the model
produces for that specific related parameter. The off-diagonal elements show the cor-
relation between the different parameters. If all values in the matrices are significantly
small, one can say that the estimator estimates significantly reliable parameters under
the influence of noise.

Model Performance Metrics

A number of common metrics used are:

o the Mean Squared Error (M SFE), which gives the average squared error of the residuals;

o the Root Mean Square (RM S), which is the root of the M SFE giving the average residual
(but positive);

o the Relative Root Mean Square (RRMS), which is the RMS as a percentage of the
band that the measurements span;

o the coefficient of determination (R?), which gives a measure of how much of the modeled
outcome has been predictable from its parameters on a scale of 0 to 1.

These metrics are mathematically defined as:

1 <N - 1 1
MSE = ~ g — ;) == 2 gz .

S ;(y i) ”;El e € (5-79)

1
RMS =vVMSE = E (5-80)

1 ere
RRMS = % 100% = X 100% (5-81)
\maxy min g n | max § — min 7|

g2
=1- _YimE 5-82
Yici (Wi —9)? (552)

With y the mean of the measurements. All may give some insight into the behaviour of the
model and therefore they are all calculated for the dataset. Especially R? calculates a very
different essence of the model than the first three metrics that are basically a residual analysis
of the models. While the former analyses more the response of the system. Other than the
OLS validation, these metric can also be used to compare model output to an unrelated
validation dataset.
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5-4-2 Results of the Local Aerodynamic Model

In this section the results of the local estimation on the example dataset are discussed and
the performance of the local aerodynamic model is assessed.

The values of the stability and control derivatives found by the linear OLS estimation are
given in Table 5-4. The resulting model output by applying these parameters in the six
aerodynamic force and moment equations is given in Figure 5-7. The performance metrics of
the model are given in Table 5-5.

Table 5-4: Parameter estimates in the
aerodynamic force and moment equations.

Model | Parameter Value
ai 32.0864 Table 5-5: Performance metrics of the full
o 0.2039 rad parameter estimation.
X 1 0.1293 s -
- 0.0525 s Model | Metric Value
. —4
Model | Parameter Value % ]\ifg ggggg -10
C 0.1910 .
Cr Cio 4.4832 C RRMS  2.9512%
« . 2
Cr, 13.6978 R 0.9626 .
o 0.0133 MSE  1.6805- 10
0 }
Cp. 0.1788 o RMS  0.0041
Cp Cp —0.1697 R2RMS 0.9897%
de .
CDX 0.0696 R 0.9904 -
ch _0.6073 MSE 2527110
Cr .
Ce 5.0070 cy RMS  0.0050
’ ' 62
Cy Cy, —0.5637 R 06256
RRMS 0.6444%
Ct —0-0013 R? 0.7207
c ggﬁ :8'?S§Z MSE ~ 4.3408-10°
‘ o 0.0954 o RMS  0.0066
o ' " RRMS 1.4857%
Cia, —0.0968 R 0.8514
g’”“ 0‘835511 A MSE  4.8400- 107
Com . _0.8784 o RMS  6.9570-10*
e ' n RRMS  0.4334%
Cmey —obl R? 0.3473
Cho —9.0476 - 10~*
c, Chyg 0.0572
Ch, 0.0024
Ch,, —-0.0181

Each of the aerodynamic force and moment models are discussed below.
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Figure 5-7: Local aerodynamic model output and residuals for the example dataset. Blue is the

model output ¥ and grey is the measurement 4.
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e Aerodynamic model force Cr,. The values of the stability and control parameters found
are within a standard deviation of the values from all datasets as found in Table 6 of
[58] which supports the findings here. Judging from the metrics the C'r, model performs
rather well, even though when compared to the other force and moment models it is
the worst, with an RRM S of 2.9%. Based on R? it does perform quite well though, but
this can be expected due to the C', having by far the largest variations of all forces and
moments.

The largest differences in the C'r, model are because of two reasons that can be observed
in the plot. First, there appear "almost" steady state residuals during the time of the
dataset, with first a positive, then a negative after the stall and then a positive error
again towards the end of the dataset. Second, during the stall the model performs quite
well in representing the nonlinear behaviour during the stall. Especially note the small
positive peaks after the larger peaks in C. The only problem seems to be however
that the timing and size of these peaks is different than for the measurements, which
also cause the largest peaks in the residual plot. This was also observed in [58], but no
specific reason was found for this.

It can be concluded however, that with the obtained metrics the model still is a satisfying
representation of reality and therefore it is concluded that the model is of sufficient
quality for further use in this thesis.

e Aerodynamic model force Cp. For the Cp all-but-one of the found values are also within
a standard deviation of the values found by [58]. This is however not the case for Cp,, .
In [58], the reconstructed thrust was subtracted from the Cp measurement, but it was
still found that the thrust coefficient needed to be added to the model for Cp and
Cy, as a "fix" for errors in the engine model estimates. But as was argued in [28] via
Equation (5-14) it is not uncommon to include thrust inputs in the aerodynamic model
equations. Thus, as Cr was included in the equations of [58] anyways, it was decided to
not subtract the thrust from the reconstructed Cp or C;, measurement and keep the Cr
derivatives in the equation as full parameters to give the most complete representation
of all effects on Cp and Cy,. Of course, this may not lead to very different estimates
for the other parameters or worse performance parameters of the model.

The metrics of the Cp model are rather good, with an RRM S of 1.0210% and R? of
0.9898. In the plot of the model behaviour it is clear that the residuals are significantly
smaller than for the Cp. The nonlinear effects with the secondary peaks are present
and follow the measurements better than for Cr, even though not perfectly. This can
be expected as the nonlinear effects are indeed known to have the largest effect on Cp,
and as such errors related to this are less pronounced in the Cp.

o Aerodynamic model force Cy. The Cy coefficient model relatively shows the least ac-
curate (but still absolutely accurate) behaviour with a RRM S of 1.7196%. In this case
it cannot be contributed to large nonlinearities that are hard to model as for the Cp,
as there are no X terms in the equation for Cy. Also from the plot is is clear that the
excitations are more frequent than for the C, and Cp, but the model is able to follow
them well. There appear some residuals but these are never large. However the R? is
quite low, but this can be expected as the variance of Cy is neither this large. This may
automatically be the reason of the slightly lower RRMS: the Y force is less excited
during the maneuver which may make identification more difficult. A last observation
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is that the residuals do show some offset, where until the stall the model overestimates
and underestimates thereafter. Looking at the found stability and control derivatives
they are also comparable to those found by [58] and all fall within a standard deviation
found in that paper, except for C'y, which has an unexpected sign.

Aerodynamic model moment Cy. The rolling moment shows a very good fit with an
RRMS of 0.6444%. In the time series there can only be found two main types of
deviations from the measurement, even though these are not very large in magnitude.
The main errors are found during the stall, where the model is not able to reach the
exact same intensity of the peaks that are found in the measurements, and just after
the stall where the model does not timely estimate the rolling behaviour that exists
there, even though the intensity of this roll behaviour is modeled well. Again, looking
at [58] the values found for the stability and control derivatives are within a standard
deviation of the estimates found there. Surprisingly, the yaw rate coefficient Cy, again
has an unexpected sign.

Aerodynamic model moment Cp,. The pitching moment model shows the same be-
haviour as for the lift coefficient. The values are within a standard deviation from the
values found by [58], but again except for the one related to Cp, because of the reason
as discussed above. The sign of this derivative can be expected, though. The engines
are located relatively high on the fuselage above the c.g., such that an increase in thrust
results in a nose down pitching moment. The RRM S value of 1.4857% shows a sufficient
model fit, but is quite high relative to the other model equations. Looking at the data
in time it can be seen that the nonlinearities during the stall are accurately modeled,
but the main error lies mainly in the high angles of attack just before and after the
stall, which may still be attributed to any nonlinear behaviour around the stall angle of
attack. The R? value of 0.8514 is somewhat lower than for the Cf, but again may be
attributed to the lower variance present in the measurement.

Aerodynamic model moment C,,. The last model for the yawing moment C,, shows
metrics that deem the model very reliable with an RRM S of only 0.4334%. The R?
shows less fit of the model with the measurements with a value of only 0.3473. Partly
this can be attributed to the fact that the yawing rate is not very significant in the
maneuver leading to a low variance. But, when investigating the time series it can also
be seen that the model does not very accurately model the measurements. Especially
there is a significant lack of higher frequency, higher amplitude behaviour in the model
relative to the data. This behaviour was also found to be hard to replicate by [58],
primarily thought to occur because of less distinct excitations in this direction during
the flight testing. Also when comparing the found stability and control derivatives with
this paper, there are larger differences amongst them, not falling within one standard
deviation but outside of it, including the yaw rate derivative C,, with, again, a wrong
sign.

For the the last aerodynamic moment and all the yaw-rate derivatives with the wrong sign,
it is expected that other stall runs may provide better data. Because of this, care must be
taken to make a new comparison with [58] when more stall runs have been estimated by
the procedure of this thesis. Additionally, the results of the models with those estimated
parameters should be compared to the outcomes of other, unrelated, validation datasets.
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The full parameter estimation does not only consist of the "top-level" equations as described
above, but the calculation of X can also be seen as sub-model of its own. The values of the X
parameters as found earlier in the nonlinear estimation are given in Table 5-4. The resulting
model output by applying these parameters in the ODE for X and the resulting regressors
containing X is given in Figure 5-8. As there is no measurement of X it is unfortunately not
possible to calculate performance metrics.
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Figure 5-8: Output of the model for X and the effect of the X parameter on the stability and
control derivatives of Cr, Cp and C,,.

The modeling of X is discussed below.

o Separation point model parameter X. First looking at the behaviour of the separation
point as a function of angle of attack, it can be seen that the model properly imitates
the expected behaviour of X. As the angle of attack increases towards the stall angle of
attack the separation point starts to move forward along the wing until the first drop
just before 50 s, after which the increasing of angle of attack after this point lead to a
second stall where the separation point moves significantly to the leading edge of the
wing, after almost reattaching entirely when the angle of attack is lowered again. This
behaviour is repeated a number of times until at 70 s the angle of attack is kept low for
full recovery from the stall and the flow reattaches to the wing for the remainder of the
dataset.

It is worthwhile to investigate the effect of the separation point on the regressors used
in the aerodynamic model and the subsequent value of the stability and control contri-
bution. First for the Cp,, the most visible effect is the aim of the modeling of Kirchoft’s
theory is immediately visible: the "smoothening and flattening" of the peaks in angle of
attack to reduce the lift when the angle of attack is high, but the airflow is significantly
separated. Also here becomes visible what also has been observed in the time series for
the Cr: the introduction of the smaller "secondary peaks", where the angle of attack
is decreased, but the airflow reattaches, such that counterintiutively the lift increases
with decreasing angle of attack.

For the Cp the worth of the X parameter also becomes clearly visible. In normal models
the drag only increases with the angle of attack, but here it can be seen that separated
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flow imposes an enormous penalty on the efficiency of the aircraft. With a forward
moving separation point the drag also increases with it very heavily.

Last, the effect of X is also present in the effectiveness of the elevator. The multiplication
of X with the elevator deflection mimics the effect of degrading control effectiveness
during the stall. For the pitching moment this is mainly due to the elevator being
in the wake of the separated airflow, such that the air is not as efficient anymore in
creating lift at the horizontal stabilizer, as well as that the elevator itself also reaches
higher angles of attack and may experience some separation as well. The max-operator
is present to make sure that the effectiveness of the elevator is never fully degraded with
the wing. This is true as the elevator is designed to always stall later than the wing
and does thus always remains effective even in the stall to make recovery possible.

Last, the performance and efficiency of the linear estimation can be evaluated via the residual
and parameter covariance analysis, as discussed earlier in this chapter. See Figure 5-9 and

Table 5-6.
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Figure 5-9: Local aerodynamic model residual analysis of correlation function and residual mean.
Solid is the correlation function, dashed is the confidence bound.

First looking at the mean of the residuals it becomes clear that the OLS is effective in
minimizing the error over the entire time series with mean values no higher than in the order
of 10716, The second important behaviour related to the residuals is the correlation that they
have along the time series. What already has been observed when analysing the time series
for Cr, Cp and C, is that they have some sort of constant deviation along larger parts of
the data set. This behaviour can directly be observed in the correlation function, where for
these three models there is a significant deviation from the confidence bounds even far from
the 0 lags, with the largest in that of Cp. Normally this would say something about the
model: that the introduced parameters and regressors are not able to converge completely
to the measurement and some additional terms are needed. However, in this case it is still
decided to retain the model as found by [58] as the OFM is expected to come to a model
which for a reason only contains a maximum number of terms to keep model complexity low.
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Table 5-6: Parameter covariances of the OLS in the linear estimation.

=

Model | Cov]d]

0.0000 —0.0000 0.0001
Cr, 107% x {—0.0000 0.0001 —0.0006
0.0001 —0.0006 0.0086
[0.0105 —0.0765 —0.0042 0.0099 —0.0276
—-0.0765 0.7331 0.3443 —0.0809 0.1433
Cp 107° x |—0.0042 0.3443 0.6401 0.0192 —0.0175
0.0099 —0.0809 -0.0036 0.0192 —0.0175
| —0.0276 0.1433 —0.0609 -0.0175 0.1213
[0.0000 —0.0001 0.0003 —0.0013 0.0001 ]
—0.0001 0.0243 —0.0145 —0.0059 0.0005
Cy 1073 x | 0.0003 —0.0145 0.1442 0.0182  0.0096
—0.0013 —0.0059 0.0182 0.4422 0.0050
| 0.0001  0.0005  0.0096  0.0050 0.0057]
[0.0000 —0.0001 0.0001 —0.0006 0.0000 |
—0.0001 0.0111 -0.0066 —0.0027 0.0003
Cy 1074 x | 0.0001 —0.0066 0.0659 0.0083  0.0044
—0.0006 —0.0027 0.0083 0.2022 0.0023
| 0.0000  0.0003  0.0044  0.0023 0.0026 |

0.0015 —0.0071 0.0055 —0.0055
o 104 x —0.0071 0.0596 0.0288  0.0200
0.0055  0.0288 0.1510 —0.0257
—0.0055 0.0200 —0.0257 0.0284
0.0001 0.0002 —0.0017 0.0032
c. 104 x 0.0002  0.0047 —0.0038 0.0063
—0.0017 —0.0038 0.1030 —0.0442
0.0032  0.0063 —0.0442 0.1012

Adding additional terms may increase the model, but only with inefficient incremental steps
such that it might be more worthwhile to keep the model simpler even though absolutely
speaking the error is larger this way.

Last, in the analysis of the parameter covariances no significant variances are found for any
parameter other than Cp,_,. This means that the reliability that this parameter is actually
the best parameter or very close to the best estimate is less than for the other parameters.
This can be expected for this parameter as its associated regressor is of order 2 and it is thus
more sensitive to changes in this regressor value. But still, the value of 0.0086 is not wvery
high, such that it can still be said the OLS delivers overall reliable results.

5-4-3 Application of the Local Aerodynamic Model to a Validation Dataset
The above analysis performed for the local aerodynamic model shows that the parameter
estimation technique works, i.e. the model outcome behaves as expected and estimates the

data it is based on sufficiently well. However, the real power of models is to create outputs
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based on an independent input signal. For this a unrelated validation dataset can be used.
In this case stall run 27 from Table A-2 is chosen. This is a symmetric and different type of
stall with a different control input as the training stall run 19, and thus quite unrelated to
the training run.

The model output compared to the validation run measurement is given in Figure 5-10 and
the performance metrics are given in Table 5-7.

Table 5-7: Performance metrics of the model from training run 19 on validation run 27.

Model | Metric Value
MSE  0.0016
s RMS  0.0399
RRMS 4.5944%
R? 0.9448
MSE  5.3448-107°
Ch RMS  0.0073
RRMS 1.7536%
R? 0.9347
MSE  2.2489-10~%
Cy RMS  0.0150
RRMS 3.0614%
R? 0.6056
MSE  82327-10°
c, RMS  0.0029
RRMS 1.5976%
R? —0.0139
MSE  1.2541-107%
o RMS  0.0112
m RRMS 2.5240%
R? 0.6360
MSE  2.5410-107°
o RMS  0.0050
" RRMS  2.2669%
R? 0.1101

From the time series data in Figure 5-10 it can be seen that the longitudinal motions are
approximated rather well, also in the stall where the nonlinearites can be captured quite
well. For the lateral motions this seems to be less so. The lateral force Cy follows the main
measurement in the stall quite well, although during the stall the nonlinearities are not very
well estimated. The moments Cy and C,, have rather bad estimates.

This behaviour is partly reflected by the metrics in Table 5-7. The RRM S values are still
within a reasonable range for both the longitudinal as the lateral motions, but this could be
expected as during a large part of the validation run there are not that many excitations and
the error is small. Looking at the low R? values for the lateral motions substantiates better
what is also observed in the time series data: the variations in the measurements cannot be
well predicted from the parameters of the model. Normally this would definitely constitute a
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Figure 5-10: Local aerodynamic model output from training run 19 on measurements from
validation run 27. Blue is the model output ¥ of training run 19 and grey is the measurement ¢
from validation run 27.
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"bad" model. However as mentioned, it must be kept in mind that this is based on only one
training run. The bad performance for the lateral motions may very well be attributed to the
unexpected sign of the yaw-rate derivatives, for example. Again, as was concluded above as
well, when more training runs and training data is used this problem might very well solve
itself as better overall parameter estimates are found.

5-5 Conclusion on the Applicability of the Local Aerodynamic Stall
Model

Overall, the estimation of the local aerodynamic model delivers satisfyingly reliable results.
With the complexity of the entire procedure in mind it is concluded that the estimation
procedure as designed is reliable and can be used for the remainder of this thesis. However,
it is at this point still only a 'n = 1" experiment. Other data sets may yield very different
results, or: the model is not proven until further used.

What the main takeaway of the above analysis does provide however is an indication that is
has some degree of reliability that is deemed enough for further use in the thesis. The main
found drawbacks were the lacking accuracy for the very nonlinear behaviour of the stall for
the C model and relatively (but not absolutely!) high RRMS, a non-satisfactory model
for (), during the stall, high correlation of some residuals, especially just before stall entry
and after stall exit and significant correlation for some parameters. However, the first is not
necessarily a problem as it does model the most important nonlinear characteristic, the second
was accepted because of the explicit reasoning that was behind the model structure selection
and the last can be experimentally checked by actually performing the estimation on more
datasets and doing statistical analysis on the spread and means of the found parameters. Of
course, it is actually also interesting if any change in method or selection of time window
which is used for the estimation may even improve any lacking behaviour as found in the
comparison of the model output with the measurements.

In conclusion, this chapter does not prove the entire validity of the model, but does shows
that any shortcomings now can be explained and thus the model is reliable enough to perform
further research with, which will only prove its validity even further.
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Chapter 6

Global Modeling Methods

The local estimated model of chapter 5 is very valuable to the modeling of aircraft as it has
very accurate performance with a Relative Root Mean Square (RRM S) performance of no
higher than 2.9512%, even for the very nonlinear C'f, equation. It is thus represents the actual
aircraft in a significantly accurate manner. However, the local model cannot practically be
used on its own as it is only valid closely around the point where its values are estimated, as
explained in chapter 5 according to [2]. One method to make the model globally applicable
is by estimating the parameters at a large range of points in the flight envelope, and saving
those in a database, then the model basically consists of many separate local models.

Another method is not to create a model that consists of many local models, but one that
consists of only one global model that is valid over the entire envelope and includes variables
as angle of attack aq, velocity Vj, altitude hg and mass and inertia parameters mg and Iy. For
turns and climbs or descends bank angle ¢g and climb angle g are also needed, respectively.
A reason for this method is to decrease model complexity which also introduced the possibility
for higher computational efficiency. Global models differ from local models in two ways. First,
where a local model has limited applicability (e.g. close around a trimming point), a global
model is widely applicable (e.g. in the entire flight envelope). On the other hand, a local
model is often very accurate in its domain, while a global model usually lacks accuracy on
the local level, especially when more detailed, nonlinear maneuvers need to be modeled. A
goal in global modeling is increase the local applicability while still retaining the less complex
model structure.

Normally this is can be done in two ways: via direct estimation with one model structure
(as with simplex splines or neural networks), or via an intermediate step where first many
local models are estimated and these are globally coupled via equations for the stability and
control derivatives (as with OFM or DOE methods) or coupled via more elaborate stitching
techniques (as e.g. in [32] but not further discussed here).

In this chapter, three methods to achieve this are discussed that aim at the global aerodynamic
modeling of aircraft. First, orthogonal function modeling is applied to find powerful regressors
that may be used in global modeling. A problem that often occurs is that global data is
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very scattered which makes identification with some methods difficult. By using design of
experiment methods, a polynomial method is developed that aims to accurately model the
aircraft behaviour with the least needed information. Also, multivariate splines are discussed
that try to increase local applicability even further than polynomials, but may also be used
on scattered data. Last, neural networks for global modeling are discussed and all different
methods are compared.

6-1 Global Modeling via OFM

In chapter 5 orthogonal function modeling was applied to find the most effective local model
structure for the Citation in stall and it was shown that this can be a very powerful tool in
keeping the model as simple as possible, but all the while keeping its modeling performance
up to a high standard. As mentioned, the goal of aerodynamic global is somewhat the same:
creating accurate models which are more simple than a large collection of local models. Nat-
urally, the question follows whether it is possible to also use OFM for global modeling. This
has been investigated by [34].

In this paper, the OFM technique is applied to create an aerodynamic model of an F-16
aircraft from wind tunnel data. As a starting point the equations that govern the wind
tunnel measurements were taken, given by:

Cx = Cx(a,6.) + Cx, (a )2(1‘0/
b rb

Cz =Cz(a,B,6e) +Cz,(a )QQ‘C/

pb rb
Cy = CE(OZ,B) + Cﬁp( )W +C£ ( )2V + Cfga( 6)5a + Cﬁg ( 5)67"
Con = Con(@:62) + Cony (@) + C (0,1 — e

pb rb
Co = Cule, ) + i, (@) 37 + Oy (@) 577 + Cing, (0, 830 + Cny (0, B3y = Oy (2egy = Teg.)

(6-1)

Immediately the difference between the global and local modeling becomes clear in the fact
that the stability and control derivatives are not a constant but a function of parameters
itself. The "old-fashioned" manner to find these values are in the large set of tables but in
this case OFM is used to find a polynomial parametrization for these values, i.e. an actual
function. For every derivative the candidate regressor pool consists of the variables as given in
Equation (6-1), higher order terms of those regressors and combinations of both. The selection
algorithm then lead to 19 further equations. As an example, for derivative Cz(a, 3, ¢ ):

(fo + fia+ foo® + f303f4a4) (1 - 52> + f50e

In this equation the f, are then constants found by performing an OLS procedure, which is
performed for all 19 equations for the derivatives.
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The output of the model when run in nonlinear simulations of the F-16 found that the
polynomial model differed less than 10% from the data found by the original database version
of the model. Regarding the high nonlinearity of the F-16 aerodynamic model this is quite
good, even though 10% is also not of very high quality. Also, this model does not incorporate
any envelope-related regressors like altitude or Mach number, which may be interesting as
they directly say something about the global applicability of a certain stability and control
derivative. Therefore it is interesting to research further methods.

6-2 Global Aerodynamic-Propulsive Modeling via Design of Exper-
iment Methods

A second method that aims to more explicitly introduce flight envelope related regressors
into the model has been developed by [44] which makes use of Design of Experiment (DOE)
methods. First the mathematical global modeling procedure is explained, then the application
of DOE methods to flight envelope testing is considered and last, the model is compared to
the OFM global model.

6-2-1 DOE Mathematical Global Modeling Procedure

The method as designed by [44] has the same structure as for the OFM global model. First
a local model definition is chosen and the force and moment coefficient are estimated at
that particular location in the flight envelope, and is then repeated for a number of other
different locations in the flight envelope. Then every stability and control derivative is modeled

according to the flight envelope regressors altitude h, true airspeed Vpag, aircraft mass m

and center of gravity location (%)C.g.. The final model then has the following structure (in

this case for pitching moment C,,):

u

X X X
Con = Cong (. Vias,m. () )+Con (1 Viasm, (£) +Co, (0 Veasm, (2) ot

c.g. Vras c.g.

c.g.

.ot Cmq(h7 VTAS7 m, (2) ) 1

XT
Cimns (h,Vipas,m, | = de (6-2
cg. 2Vras + Cing, (h, Vras,m <C) o (6-2)

c.g.

For every required DOE measurement point multiple runs are performed (i.e. at one specific
combination of h, V745, m and (%)C.g.). In this case via an optimized orthogonal multisine
input as developed by [36]. Then for the runs at that condition a simple least-squares re-
gression is performed to find the stability and control derivatives. This concludes the local

estimation part of this method.

After having performed the local parameter estimation on each of the tested flight conditions,
phase 2 of the algorithm is performed to find the global model based on the variables describing
the flight condition. A resource- and time-efficient method for this is a DOE (Design of
Experiments) technique, which delivers an approximate model that is still able to describe
the characteristics of the design space including the influence of each factor in the response
behaviour and factor interactions. This approach is discussed below.
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The first step is to define a 2¥ Full Factorial Design (FFD) as a baseline structure for the
model. It includes modeling responses of up to first, second and third order factor interactions
and bias terms (zero order). The general structure is given by:

Yn = f(xz,n) -
k k—1,k k—2,k—1,k
= 70+Z Yi%int Z Vij TinTjn+ Z VijlTinTjnTinten, Wwithn=1,2,... N
i=1 i=1,j=i+1 i=1,j=i+1,l=j+1

(6-3)

In which & is the number of factors (i.e. in this case k = 4: h, Vras, m and (%)c‘g.), n is one
certain flight condition with IV the total number of flight conditions conducted and v are the
coefficients.

If a higher order model is needed to capture any quadratic characteristics, pure quadratic
terms can be added by making used of Central Composite Design (CCD) rather than FFD.
This is by adding a quadratic term in the following manner:

Yn = f(xz,n) -
k k k—1,k k—2,k—1,k

= 70+Z 7¢$¢,n+z %iajin Z VijTinTjnt Z VijlTinTjnTinten, withn=1,2.. N

i=1 i=1 i=1,j=i+1 1=1,j=i+1,l=5+1

Non-dependent which of the two methods is used, the coefficients of the model may be es-
timated via least-squares. In case of the defined model structure using CCD, one can write
Equation (6-4) in matrix form as:

Y1 1 Xin Xun Xigg X | |70 €1
L Y2 1 Xio X2 Xio Xiio| |V €9
Y=X7+e=| .| =|. : ) ) i Vi | + | . (6-5)
. . . . . . ,3/’7/] .
YN 1 Xsn Xun Xin XN St EN
In which:
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. - T
Yi=17" Y2 %}
. - T
Yii = |11 722 'Yk:k}
. - T
Yijg = |12 Y13 Ve Y23 'Y(k—l)lc]
. - T
Yijl = |7123 Y124 - Y12k Y234 V2(k—1)k Y345 7(k:—2)(k—1)k:}
Xi,n = |T1i;n L2n - xk,n}
Xii,n: TinTln T2nT2n - xk,nxk,n}
Xijn = |T1nT2n T1pT3n ° TinThkn T2,T3n - wkq,nxk,n}
Xijl,n = [$1,nx2,n$3,n T nT2nTan *** TInT2nTkn L2nT3nTin *** L2 nTk—1,nTkn T3 nT4nT5mn xk’—Q,nxk—l,nxk,n]

(6-6)

Then one can simply perform the OLS procedure as explained in chapter 5 and calculate the
residuals ¢ and variance o2 via Equation (5-75) and Equation (5-78), respectively. Next, a t
statistic is used to calculate the significance of of each parameter, via:

|V

- > terit, with:m=1,2,...,k (6-7)
(Cov[Y])m,m

tm =

With k the number of regressor terms, i.e. the size of ¥, and (Cov[':y’])mm is the m-th diagonal
entry of the covariance matrix, i.e. the variance related to regressor number m. The t..;; is
the t-test statistic based on the degrees of freedom and a certain level of desired significance.
If this regressor does not meet the required t..;; it may be removed from the global model, for
example via a standard backwards regression procedure via the t-test statistic and analysing
the regressors by means of half-normal probability plots [33]. When all these steps have
been performed a final model remains that describes the flight envelope effects on each of the
stability and control coefficients as a function of the factors defining flight condition.

An example of the global model for the stability and control derivative C,,, that has been
found via the above procedure (with the CCD structure) is:

X

Crn, = —25.8+0.53( ) —0.039h+9.4-10 *Vpag+5.5-10 *m —3-10~* (”f) h—...
c.g. c.g

C Cc

...—38.107° (‘2) Vras +1.8-10°hVpag — 1.3 - 107 Vpasm — 3.9 - 107 V2 4o + . ..
c.g.

£ 171002 1231077 (””) WVpas —1.5-10°4 (“3) m
¢ . c.g.

c.g c
Such an equation exists for every stability and control derivative in Equation (6-1), which in
turn exists for all six force and moment equations. These together comprise the full global

model for this method.
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6-2-2 Application of DOE Methods to Flight Envelope Testing

Whatever the accuracy of the DOE model may be relative to other methods (as discussed
below) there is one main advantage of the DOE methods as FFD and CCD: it is a manner
of collecting data in the most efficient manner. This means: with only limited measurement
points in the experiment design space (in this case the flight envelope) collect as useful data
as possible [33]. In [43], both the FFD and CCD designs have been applied to the same region
of the flight envelope of the F-16 and are compared in their performance.

The principle of the FFD and CCD is practically choosing measurement points such that the
most individual contribution of each of the regressors become clear, i.e. a certain form of
orthogonality. The manner in which this can be achieved becomes clear via Figure 6-1.

[ Full Factorial Points
i Center Point

@ Axial Face Points

Figure 6-1: Overview of the measurement point designs of an 23 FFD and CCD DOE method

[43].
For the FFD, the measurement points consist of the vertices of a 3D "box" and the center
point. Here also the orthogonality becomes clear: at any measurement point, there exists a
measurement point which is at the same location except for one of the factors, thus the effect
due to that sole factor is known. The CCD makes use of the same points as the FFD but
also includes measurements at the middle of the faces, such that any higher order effects can
be modeled better. In the case of the factors h, Vyag, m and (%)C.g_ [43] has 20 measurement
points (16 vertices of the 4D cube and 4 times the center point) and the CCD has these points
and additionally 8 axial face points.

It was found that for the FFD did not provide satisfactory results for the F-16 modeling,
especially because of lacking quadratic curvature modeling when tested at the center points.
Therefore the CCD was chosen. This model is compared to the OFM method further below.

When analysing Figure 6-1 an important feature is that the measurement points together
make a square surface. As known, the flight envelope is not square and as such the question
may come to mind how applicable DOE methods actually are to come to a global model of
the entire flight envelope. In [43] the application of the CCD design to the flight envelope is
visualised in Figure 6-2.

Indeed from this figure, it becomes clear the DOE method may only have a somewhat limited
applicability as a full global model that is valid in the entire flight envelope. Luckily, in
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Figure 6-2: Application of the CCD to the F16 flight envelope [43].

other research by [53] the applicability of the CCD and other extended DOE designs has been
evaluated in a case study of part of the flight envelope of the F16 aircraft to find the effect of
active control of synthetic jets on the buffet caused by the F16’s targeting pod at its ventral
fin. The DOE design types related to the flight envelope and the baseline model used to
compare their performance are given in Figure 6-3.

The following four cases are investigated.

o Baseline experiment (324 test points). The baseline experiment consists of the most
legacy type of flight testing: performing measurements in a grid, consistently spaced
along the edges of and at regular intervals within the flight envelope. This is a very
intensive manner of testing, but delivers the most amount of data.

o Central composite design (54 test points). As already discussed the CCD requires mea-
surements on the vertices but adds the central points. In this case the axial central
points are not exactly placed on an edge to gather more info outside of the square box.
An extra point was added in a particularly interesting region, too, also resulting in a
CCD++1 design. This is a flexibility that the CCD design allows.

o Face-centered central composite design (54 test points). An extended version of the
CCD, the FCD has the benefit that the axial points can be placed even more remotely
from the rest of the design, including additional smaller designs that can be combined
to get measurements from an even wider range within the envelope.

o Embedded face-centered central composite design (108 test points). The embedded design
allows for placing a design within the other that allows for modeling with third order
polynomials, while the CCD and FCD only allow for second order. This may improve
performance of the model even further.

By means of statistical tests it was found that either design would come to the same conclusion
that the synthetic jets did not have a significant effect on the vibrations of the ventral fin.
When investigating the statistical power it was found that the highest power was still achieved
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Figure 6-3: Overview of the application of different DOE types to the F16 flight envelope [53].

by the baseline model. But, the other designs have an enormous lower impact on testing
resources.

Even though the findings by [53] do not give any conclusion on the performance of aerody-
namic models found by DOE methods, it does prove that DOE methods can be made flexible
enough to gather data efficiently throughout larger parts of a flight envelope, ultimately
helping to further any global modeling effort.

6-2-3 Comparison of the DOE Method with the OFM Method

The results of [44] indicate that the DOE approach to flight envelope modeling results in a
feasible model for a significantly large part of the envelope (with the design factor ranges of
Vras = 500 — 1500 ft/s, h = 5000 — 30000 ft, m = 636 — 836 slug, z.; = 20 — 30 %).

The final model is the CCD model from [43] and this model is compared this model to the
F-16 global model from [34] as discussed above for verification. Validation was performed by
using the new model and comparing it to the existing F-16 simulator model that makes use
of the common tabular modeling. The DOE model showed comparable performance to the
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global model by Morelli and both have high qualitative accuracy and can acquire reasonable
quantitative accuracy.

For the CCD method, the found stability and control derivatives differed less than 6% from the
tabular value for one coefficient and less than 2% for all other derivatives. This is reasonable
performance as a model for further use in research models, however not as good for use in
e.g. flight training. The primary finding is that the DOE method s a method that can result
in satisfying global models with significantly less flight testing, where the aircraft behaviour
is described by flight envelope parameters.

6-3 Global Aerodynamic Modeling with Multivariate Splines

The DOE method as described above may thus acquire relatively good fits by using the de-
fined polynomial. However the polynomials have one significant disadvantage which is that
they often provide accurate global approximations but at the same time have difficulties
approximating local features, especially when these features acquire a significant degree of
nonlinearity. Even with the significant complexity that the polynomials possess for the sta-
bility and control derivatives. To counter this one can make use of spline functions which
are piecewise defined polynomials on distinct pieces of a certain factor’s space. This makes it
possible to use simpler polynomials that are able to approximate local nonlinearities very well,
while the combined set of polynomials also acquire great global performance. A specific type
of spline is the multivariate simplex spline, which was applied to perform global modeling of
an F-16 in [8], which is further explained below.

Additionally, multivariate splines have the ability to fit very well to scattered datasets by
forming an applicable triangulation [1] (see further below), making them particularly useful
for flight data as this often is very scattered as it is of course not gathered in a controlled
experiment environment.

6-3-1 Mathematical Description of the Multivariate Simplex B-Spline

A mathematical description of the multivariate simplex spline is given below.

Introduction to Simplex Splines
The individual spline pieces of the simplex spline are defined on simplices. A simplex is

defined as follows. When V' is a set of n + 1 unique, non-degenerate points in n-dimensional
space:

V ={vg,v1,...,0p} € R" (6-8)

The the convex hull of V' is the n-simplex ¢:

t=(V) (6-9)
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Any point z inside and outside the simplex can be defined by the simplex’s own normalized
barycentric coordinate system, which is a weighted vector sum of the simplex vertices. The
barycentric coordinate b(x) = (bg,b1,...,b,) of point x with respect to simplex ¢ are the
weighted vertices:

n

n
=Y bivi = bovo +b1v1 + ...+ byvn,  with Y b =1 (6-10)
=0 =0

The polynomial p() of a simplex spline can be expressed in the so-called B-form. Its derivation
starts with the multimodal theorem as defined by:

p(bo, b1, ... bp) = (bg+by + ...+ by = > ' |Hb"“ (6-11)
kot b 1OV - i
In which k is the "multi-index" defined as:
K= (Ko, K1, .., ky) € N (6-12)
And its 1-norm given by:
k| =ko+ K1 +...+Kp=d, withd>0 (6-13)

When making use of the multi-index form this expression can be simplified. The multi-index
is governed by the maximum number of permutations of x, namely d:

(d+mn)!

d= nld! (6-14)

With these properties it is possible to rewrite Equation (6-11) into a simpler form via:

p(bo, b1, ... bp) = (bo+ b1 + ...+ by)4 = >

K 'I-i
Kotk1+.thin=d OV

. Kp! Hbﬁl
d!

= D e

I |
Ko+ oig=d 0L
d!
= > — bbb
Ko+rK1+.. +f<,n:|f§|:d K (6—15)
-
wl=d "
- 3 Bl
|k|=d

=1
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With BY(b) the basis function of the multivariate simplex spline. After this the B-form of the
multivariate spline becomes:

= > cBLD) (6-16)

|k|=d

In which the ¢, are called the "B-coefficients" of the polynomial, which ultimately are the
coefficients that need to be estimated for locally fitting the simplex polynomial to the data.
The full vector form notation of this expression for a certain simplex ¢; is:

B(b, i Vet
p(b(a)) = | & bu@)er Ve, (6-17)
0 Vadt;
With:
Bd(btj (z)) = {Bg,Qo(btj (z)) 33—1,1,0(btj () - B(C)l,1,d—1(btj (z)) B(C)l,o,d(btj (x))}
— t i t; tj T (6_18)
c’ = {Cdjoo Ci-110 " Cotd-1 COJ,O,d}

When integrating or differentiating B-spline polynomials one can make use of the following
properties:

/t(Bd(bt]. (z))c%)db = Voii n :ld' >
e (6-19)
BT by, () - PAY™ (ag (w)) - €

D (B%(by, (z))d) = d—m)

A important aspect of the B-coefficients is that they locally control the shape of the simplex
polynomial, at their own unique spatial location within the simplex. This depends on the
degree of polynomial used, which gives the total of B-coefficients d for this degree polynomial
d and dimensions n, given by:

(d+n)!

d= nld! (6-20)
The location of the specific B-coefficients in the simplex can then be calculated via:
b(CH)ZE:m0+vp0+m1+vpl+...+1€n+vpn, "f‘:d (6—21)

d d

The locations of the B-coefficients form a structure which is called the "B-net". Effectively,
introducing a higher degree d for a certain simplex polynomial introduces more B-coefficient
location effectively increasing the "resolution" of the B-net, through which better fits of the

'Even though the term "resolution" is cognitively logical for the structure of the B-net with increasing the
degree d, it actually is a false term as the polynomial is continuous and not discrete. "Density" might also be
a term used to describe this phenomenon.
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polynomial to a certain shape can be acquired. A convention for the orientation of the B-net
is agreed upon, in which the B-coefficient with the highest multi-index (i.e. cq0,0) is located
at the vertex with the lowest index (i.e. vp) and vice versa (i.e. ¢4 at vy).

Linear Regression with Simplex Splines on a Single Simplex
A useful property of the simplex splines it that is is possible to perform linear regression to fit

it to some sort of dataset. The regression of a simplex spline consists of eight steps, explained
below.

1. Let one have a set of measurements on the points Z with values . This may be scattered
data. The size of Z is the number of measurements m by the dimension n, and % consists
of m measurements:

FeR™" jeR™! (6-22)

2. Define a set of n + 1 vertices as in Equation (6-8):

V e RHxn (6-23)

3. Define simplex t as the convex hull of V', as in Equation (6-9). A particular choice of V/
is better than the other, however V' may be chosen freely. In mathematical terms:

t= (V) (6-24)
4. Perform a data membership search, i.e. checking which data points z are inside of

simplex t. The MATLAB function tsearchn() is able to perform this and return the
barycentric coordinates of those points. Mathematically one is looking for:

ret (6-25)

5. Transform all point inside ¢ to barycentric coordinates. As mentioned, the MATLAB
function tsearchn() is able to perform this operation. Mathematically:

b= by, (z:) (6-26)

6. Formulate the simplex polynomial structure in B-form. For one simplex this can be
performed by choosing degree d, getting a structure as in Equation (6-17):

p(x) = B (b, (x)) (6-27)

7. Create the sorted B-form regression matrix for all measurements m = 1,2,..., M, as in
Equation (6-18):
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Bioob(1))  Bj i 1001) - Bi . (0(1)  Bfgab(1)
B Bﬁzl,o,o:(b@)) Bg1,1,:o(b(2)) . Bg’Ld;l(b(z)) B(C)I,O,d:(b(z)) (6.28)
Bioob(M)) Bj | 1o(b(M)) --- B, ,(b(M)) B, ,(b(M))

8. Formulate the OLS estimator for the estimated B-coefficients ¢ as described in chapter 5:
N -1
¢=(B"B) By (6-29)

Making use of the quite straightforward OLS estimator one can fit the polynomial of chosen
degree d to the data.

Continuity of Simplex B-Spline Polynomials

Even though it is thus possible to fit one simplex spline polynomial to one simplex’s data,
for large spaces where data is available multiple simplices are needed with each their own
polynomial. In order to smooth their boundaries one has to choose and enforce a certain
continuity order of the different polynomials.

The continuity of simplex B-splines is governed by its continuity equation given by:

xo,mm = Z c no,o K1)y Bl (vs), for0<m<r (6-30)
Ivl=m

With r the desired order of continuity (with r < d), v a multi-index independent of x and v,
the out-of-edge vertex of t9, which is the only vertex of ¢t not on the edge of the two adjacent
simplices. It is further defined that:

ko+m+ kK =d

0-31
(o +d+ K1) + (10 + 71 + 12) = d (631

This equation may not be trivial but can be visualized via the so-called "structure of conti-
nuity" in the B-net. See Figure 6-4.

In the figure, three simplices (¢;, ¢; and t;,) are shown with their B-net coefficients for polyno-
mials of degree d = 3 and continuity order » = 1 (first derivative continuity). In such a B-net
for this degree and continuity structure, the continuity equation states for, e.g. ch,,, that:

Cii1 = 10bo(va) + 1161 (va) + Aapba(va) (6-32)
In practice, a certain desired continuity requires that the value of a certain B-coefficient ¢

equals the sum of all B-coefficients in the adjacent simplex, contained within the mirrored
version of the "sub'-simplex formed from that B-coefficient to the edge of the simplex that is
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Figure 6-4: B-net for third degree (d = 3) basis function on 3 simplices together with first order
(r = 1) continuity structure [8].

adjacent to it. This sum is then multiplied with the barycentric coordinate of the out-of-edge
vertex of that simplex.

The procedure to enforce these continuities is described below, based on the case of Figure 6-4
and Equation (6-32) (d =3 and r = 1).

1. Construct the global B-coefficient vector ¢

7 ti t; t; ti ti ti ti ti ti
= [631,0,0 €210 €201 €120 €111 Co2 €30 €21 €012 €003
T
tj tj tj tj tj tj t]‘ tj tj tj
€300 €210 €01 €120 €111 €02 %30 €21 €12 €,.,,3 (6-33)

2. Write the continuity equation in vector form. First substract the left-hand side of the
equation and then rewrite it to vector form:

= C'%lobﬂ(”a) + C{nbl(va) + 6{2052(%)
0 = 10bo(va) + ]11b1(va) + Elgpb2(va) — iy (6-34)
0=[0 - 0 =1 0 - 0 bo(va) 0 bo(va) bi(va) 0 -+ 0]

3. Compile the complete smoothness matrix H for all of the continuity constraints needed
for the desired continuity. In this example this is a row for the coefficients cby;, ¢ji;
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and c}y; for the first order continuity, but also a row for all the lower order continuities
below 7 = 1, i.e. chyy, Ch1gs Cigg and chgg. Additionally, all rows must be added for all
edges of all simplices in the entire to be modeled domain, and as such H can become
significantly large. Then H is multiplied by ¢ and set it equal to 0:

oL
I
o

H-=10 -+ 0 =1 0 -+ 0 by(va) 0 by(va) bi(vy) 0 --- 0
(6-35)

This matrix equation is solely responsible for enforcing the chosen continuity of the spline
functions, and is used in the parameter estimation of the entire spline function.

Linear Regression with Simplex Splines on an Entire Triangulation Domain

Above the parameter estimation of a single spline polynomial of one simplex has been dis-
cussed. However, the power of the spline function of course lies on an estimation over an
entire domain with a (large) number of simlices including a certain enforced continuity.

One starts with the definition of the (entire) multivariate simplex spline:

sp(x) =B -2 € Sy(Ty) (6-36)
In which s¢ is the simplex spline with degree d and continuity r as a function of a Carte-
sian coordinate x, B the global regression matrix and ¢ the global B-coefficient vector as
described for continuity above. The S%(T7) is defined as the "spline-space’ on a triangulation
T consisting of J simplices.

An additional step needed for splines is to define the triangulation 7'y on which the spline
pieces are defined, as described in [9]. The triangulation 7" is a partitioning of a domain into
J non-overlapping simplices, mathematically:

T:=|J{t; i=0,1,...,J} (6-37)

A spline space is also described in [9] as being the space of all spline functions s of a given
degree d and continuity order r on a given triangulation T'. The spline space is defined as:

SNT) :={ser(T):s|;ecP? VteT} (6-38)

In which P is the space of all polynomials of total degree d. The meaning of this spline space
is that it is the space that consists of all the degree d spline functions with continuity order
r on the triangulation T'. The model structure for the regression is, in fact, the spline space
itself. This means for a certain model the required choices for model structure are the spline
space dimension (which is the dimension of T'), spline polynomial degree d and triangulation
T.
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The global regression matrix B for the spline s¢(x) on triangulation T is defined as:

B, 0 0 0
0 B, 0 0 i
B=|. 7 , e RNxJd (6-39)

0 0 0 By
In which the By, are matrices as defined for one simplex ¢; as in Equation (6-28). The number

N equals the total number of measurements, which is the number of measurements M for
one simplex times the number of simplices J in the triangulation.

In order to perform an parameter estimation that not free but subject to the continuity con-
dition H¢ = 0, one can use Lagrangian multiplication to derive the constraint OLS estimator
as given by [7]:

In which X is the estimated Lagrangian parameter vector. As one is not directly interested in
these parameters, but only in the B-coefficients ¢, it is possible to further simplify Equation (6-

40) into the equivalent:
|G Gyl |BTy

Through which follows that the OLS estimator for the B-coefficients is defined as:

>0 0P

T 717 [pT
|- )1 =

L ap

>

QP

=BTy (6-42)

The OLS estimator statistics for the spline functions are related to Equation (5-78), and for
the spline functions it is given by [7]:

Cov [8} = Cl
A (6-43)
Var H = Diag[C"]

The covariances can then be used to perform an analysis on the reliability of the estimation,
just as has been performed in chapter 5.

Constructing an Applicable Triangulation of Simplices
Before estimation of the spline function the triangulation of simplices needs to be defined.
The process to create a valid triangulation is explained in [9]. The definition of a triangulation

was given in Equation (6-37) as:
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T:=|J{t; i=0,1,...,J}

In a valid triangulation the simplices a defined such that any simplex does is not within the
convex hull of other simplices:

t; N tj S {%0, E}, Vt;, t]’ erT (6—44)

Where ¢ is a k-simplex with 0 < k < n — 1. An often used technique is the Delaunay
triangulation but it was found that when using this on the gathered flight data of the Cessna
Citation this leads to numerical instability in the estimated simplex polynomials. Therefore
a simpler but powerful method has been developed in [6]. This has for now not been further
studied.

6-3-2 Using Simplex Splines for Global Aerodynamic Modeling

The use of multivariate splines for estimating a global model as explained above was performed
for an F-16 in [8]. A modeling by use of multivariate splines versus a polynomial fit this was
performed for the Cx, C'z and C,, coefficients of the F-16 for a number of large-amplitude
manoeuvres.

The model structure for the polynomial (for all three longitudinal aerodynamic coefficients)
was assumed as:

Fy(a, B,0e,011,q) = Co + Coar + Cr2a? + Cpsa® + Cpaa* + Cpsa® + ...
4+ CpB+ Cp2 8% + Cps B> + Cpa ' + Cps 7 + . ..
qc qc

+C
Ty v

+ Cog— + Cs.0e + Cglef 5lef (6-45)

And the structure for the multivariate splines as:

Fy008, 00, Bep, ) = F1(0,8,60) + fa(,B) - Gueg + fol0) - & + fu(a) - &

_ _ T
= [B1 Babiy BsE Bufons||d & @ @l (6-46)

6lef =

After which the regression procedure was applied as explained above. The results showed
significant decreases in RM S values, and thus increase in model quality from the polynomial
model to spline model (Cx: 4.77 vs. 0.43, Cz: 0.89 vs. 0.50 and C,,: 2.30 vs. 0.35),
indicating the superior performance of the multivariate spline in global modeling over the
ordinary polynomial, especially when significant nonlinearities are present.

The same method was also applied to the TU Delft Citation II in [9] and validated in [10].
In [9] actual flight test data gathered by the Citation was used to develop a global model for
the same aircraft. The selected model structures for the aerodynamic coefficient were:
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fx(a,de, M), € S3(Tx)

fz(a 56,M) € S3(Tz)
fml(a,q,60), € S3(Tm) (6-47)
fela, B,p,7m,84), € S3(Ty)

Cn = fala, 8,6,), € S3(Ty)

The model structure selection process was performed by a simple algorithm explained via the
pseudo-code below.

1. Select a set of model dimensions D organized in order of relevance, based on model
insight.

2. From the set D, select an active set to initialize the identification process.
3. Identify a d = 1 model on a triangulation T consisting of a simple simplex.

4. Increase the degree d by one and check if the performance of the modeling has increased.
If not, stop increasing the degree and continue.

5. Increase the resolution of the triangulation 7', then re-perform the previous step of
increasing degree d.

6. If both increasing degree d or resolution of the triangulation does not increase perfor-
mance, additional dimensions should be added to the active set, then repeat the above
two steps. If this does not increase the performance the added dimension is deleted
again.

7. The optimization stops when a desired performance has been achieved or when the
simplices in the triangulation have become so small that the matrix [BEB %T} becomes
singular.

The performance of the model for C, C,, and C; was around 2% RRM S but the performance
for Cx and C),, was slightly lower around 7% and 5%, respectively. It shows the splines
are actually significantly capable in modeling the aircraft global behaviour, and the main
drawbacks are due to inadequate filling of some simplices with data and lack of excitation in
some axes (i.e. for Cp).

The model as developed was validated for the identified spline function of the C,, coefficient,
n [10]. Two validation methods were used, the first by analysing model residuals and the
second by the estimated variances of the B-coefficients.

First the model output was compared to a validation dataset not used for and independent
from the data used for model identification. The error is then given by:

5m(a7 q, 56) = Cm,measured - fm(aa q, 56) (6'48)

Then Chebyshev’s inequality can be employed to calculate the confidence bound of the resid-
uals, which states about the standard deviation for the error &,, of the model that:
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1
Pllem — 1l 2 ko) < (6-49)
For the mean g of the error and with k an integer. For the error the bounds were calculated
with & = 4 for 1300 subregions and then these were modeled by a spline function fpoung of
the same degree as f,,,. This function showed that the model quality was lowest around the
edges of the domain, especially for ¢ < —4 and ¢ > 4.

The second method of analysis comprises the expected variances and coviariances of the
expected parameters, as earlier explained for OLS in chapter 5. These are given by Equa-
tion (6-43). The Cramér-Rao Lower Bound CRLB for the B-coefficients are then given by:

CRLB |¢] > Var ¢ (6-50)

As is known, the B-coefficients have each their own spatial location on the B-net, such that also
the CRLB can be visualised by a function forrp over the domain. This function primarily
shows high bounds for the region bounded by a < —2 and ¢ < —3 and the region bounded
by a > 4 and ¢ > 4, which can be explained by the fact that there are only lower amounts of
data in those regions.

The method explained above also has broader applications outside normal aerodynamic model
identification in control design like nonlinear dynamic inversion controllers. As model qual-
ity is of very high importance for the proper design of these controllers the simplex spline
is a powerful tool in making this possible [51]. Even when aerodynamic uncertainties are
introduced the modeling power of the spline proves its worth also when considering adaptive
control [50].

6-3-3 Comparison of the Simplex Spline Method with the OFM and DOE Meth-
ods

For the simplex spline models two cases were primarily researched: the global modeling of
the F-16 and modeling of the Cessna Citation II. It was found that the RRM S values for
the Cessna Citation II were significantly higher than for the F16 model. The percentages
also seem relatively high when compared to the RRM S values found in chapter 5 for the
stall model, however this is for a very local estimation. Having a global model valid for
significantly larger domains with and RRM S around 2% and not higher than 7% for the
"worst" fit, counterintuitively argues in favor of the spline function.

One should also keep in mind that this model is based on flight data which is inherently
unreliable as it is subject to many uncertainties. It thus makes more sense to compare the
simplex spline’s performance in the case of the F16, even though this is based on wind tunnel
data which is other than the scope of this thesis. Also, it compares more directly with the
OFM and DOE methods which also make use of F16 wind tunnel data. If the spline functions
perform better on this data it can then also be concluded that the other global modeling types
would probably result in an even worse performance than the splines when regarding real flight
data of for example the Cessna Citation II.

Making this comparison the strength of the multivariate simplex spline becomes clear imme-
diately: where the OFM and DOE methods achieve a RRM S of "about lower than 10%" (see
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earlier in this chapter) and the polynomial type in [8] achieves at the lowest quality 5%, the
simplex spline consistently achieves RRM S lower than 1%. This is even with a relatively
simple model structure that is only based on one spline function for an entire aerodynamic
force or moment equation, where the [34] and [44] need elaborate equations for every stability
and control derivative.

6-4 Global Modeling Using Neural Networks

A last manner in which global models can be created is by the use of neural networks. Neural
networks might be very valuable as they can not only perform very global fits, but it is also
able to estimate the measurement data locally, because the neural network estimation is not
necessarily binded to an a-priori model structure that may degrade fit. The neural network
prioritizes fit over form, which might be an advantage that also proves valuable if significant
local nonlinearities must met modeled in a further global model.

The basic working principle of the neural network consists of nodes in an input layer, output
layer and hidden layer(s). Between each of those layers links exists that are each given a
certain weight. These relations can be represented in matrix form. The goal is then to tune
the weights of the links such that the input and outputs of the neural network converge.
Many methods exist to optimize these weights, but the main feature is that the optimization
aims to minimize the difference between the predicted outcome of certain changes in weights
and the available measurements.

As mentioned, many different types of neural network optimization techniques exist. The
most extensively used methods are the feed forward neural network and the recurrent neural
network. The largest difference in the two is that the feed forward approach is a pure "black
box" that gives no insight whatsoever in the structure of the model, whilst the recurrent
approach is able to work partly with explicit parameter estimation [45].

For example, the research by [29] and [60] aim to use the high approximating power of the
feed forward neural network by letting go of any a-priori model structure for the global
modeling of the longitudinal behaviour of the F16 aircraft. E.g. in [60] it was found that the
neural network estimates a model which has high correspondence with the F16 aerodynamic
database, even for angles of attack up to 30 [deg].

The research by [45] uses the recurrent neural networks to estimate actual parameters of a
defined model structure, and is able to find parameters that equates the approximating power
of conventional methods. A drawback is that the recurrent neural network is limited by a
maximum number of neurons that may hinder further approximating power. A solution to this
is given by [17] which uses an extension of the feed forward method but with implemented a-
priori knowledge such that still explicit parameters can be estimated. It also finds comparable
accuracy to conventional methods.

More recent research making use of modeling techniques using neural networks is also focused
on stall conditions and the nonlinearities that occur in that region. And example is [52],
that performs both a feed forward and recurrent neural network global modeling of lift and
drag during stall with different optimization algorithms on data from the entire envelope of
a Level D CRJ700 simulator. Both models are very successful in modeling the nonlinear and
even the stall hysteresis behaviour in the stall with average Mean Absolute Relative Error
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(M ARE) relative to validation data from the simulator of at most 0.53%, which is highly
accurate. However, of course there is no explicit model structure that governs this behaviour
due to the "black box" nature of the models.

Even thought the literature gives an indication that neural networks may be a good method
to perform global modeling, it is decided to not consider it further for this thesis. A large
disadvantage is that the neural network is that if one want to use it to its full potential, it will
be a "black box" that does not give sufficient insight into the analytics of the model. In this
thesis the fundamentals of the nonlinear behaviour and estimates of the parameters are valued
as these give better insights into the behaviour of the aircraft in stall. A more transparent
estimation method gives this valuable information about the manner the parameters are
estimated and is therefore preferred. On the other hand, using neural networks that do
incorporate a-priori knowledge does not seem to significantly improve estimates that can also
be found with conventional methods.

6-5 Conclusion on the Applicability of Global Aerodynamic Mod-
eling Methods to Stall Modeling

As can be concluded from all described methods above it is very much possible to achieve
the goal of global modeling: finding more simple models that globally describe the aircraft
behaviour throughout the entire flight envelope but do not deteriorate on the local domain.

However a question that is not disregardable is the following: how applicable are global
modeling methods to model the stall in "the entire flight envelope"? This depends on two
factors.

The first factor is how applicable the methods are with regard to the independent variables
that are at the basis of the global model and the added value such a global model thus would
have for stall modeling. For the OFM method the main independent variables for the global
part of the model are «, 3, 6, and d.. For the DOE model the variables are h, Vpag, m
and (%)c . Last, for the multivariate splines the global independent variables are a, 3, O,
ba, Or, p, 7 and M. Which of these independent variable are expected to have a significant
effect on the Kirchoff parameters? The most dominant variable would be «, but the stall
angle of attack is given for a certain flight condition which would remove it from the global
model. The same reasoning applies to any variable regarding the velocity of the aircraft and
connected to this its mass and c.g. location. Of the control inputs only the wing control
surfaces d, might have significant effect, but research on this and lateral stall behaviour was
still being performed by [11] during writing this thesis. Then only altitude and maybe the
pitch and yaw rate would remain, but the effect of the latter two could only be reasearched
with data on highly dynamic stalls which is not available for the Cessna Citation. Would
global modeling then have any added value if the only one significant independent variable h
remains? That could constitute a high effort for only a very limited output.

The second factor is twofold. First, research performed in preparation of the research of [58]
included a very simple linear estimation of the Kirchoff parameters estimated for each of the
runs in the data as a function of altitude. Two main conclusion could be drawn from this
data. First, the effects found were not very significant, but secondly and more importantly
the large variance of parameters estimated on roughly the same altitude could only lead to
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the conclusion that such a estimation would not be reliable at all. The only fix that would
be somewhat attainable is by including data from no-boom flights (as discussed in chapter 3)
to have more data on more different altitudes. But this in itself has two quirks: it would not
solve but may only increase the variance of data making the estimates even more unreliable
and as was found in chapter 4 the UKF filtered no-boom data has many issues related to its
own reliability, which would have to be researched which would demand a significantly deeper
study into the UKF than allocated for the scope of this thesis.

In conclusion, the goal to create a form of global model for the Kirchoff-based stall model
might very well turn out to be a very costly effort with use of complex global modeling methods
for an added value that may only include a global model that has contains only one or two
independent variables that make the complexity of the global modeling techniques almost
superfluous. This combined with the expectation that there is a very high risk that there
may not even be a demonstrable, let alone statistically relevant, effect of global independent
variables on the Kirchoff parameters seems to lead to the somewhat unsatisfying conclusion
that global modeling of the Cessna Citation in the stall is not a research topic worth pursuing.
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Chapter 7

Preliminary Results and Research
Proposal

In this chapter the literature and preliminary research as discussed in the previous chapters is
reviewed. Possible research directions that follow from are taken under consideration and one
is chosen. This is done in the first section. Thereafter, some preliminary results are shown
that aim to substantiate the chosen direction. This chapter concludes with the final research
proposal consisting of the research objectives and research question.

7-1 Considerations on Promising Research Directions

From all previous chapters four main possible research directions could be distilled. They are
mentioned and explained below.

e Global modeling of the stall-related X parameters. This has been extensively discussed
in chapter 6. The advantage of a global model would be that a relatively simple model
structure could also approximate the actual aircraft behaviour locally quite well. Dif-
ferent methods of global modeling are possible, each with its own strong points. A
drawback of global modeling techniques is however that the applicability to stall mod-
eling only seems to be very limited. Also from earlier research related to [58] it was
found that the spread of data at specific altitudes places question marks at the reliabil-
ity of this data. Also, global modeling would require a need of significant data points
throughout the flight envelope that, for PH-LAB data, requires the use of no-boom data
of which its reliability is not yet quantified.

o FEwaluation and reliability of the mo-boom data. This immediately brings the second
research option to light, which is an evaluation of the reliability of no-boom data.
Especially as it is more widely available for the PH-LAB than just the stall data.
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However, the question is if this would overcome the expected lesser quality of the no-
boom data. In chapter 4 a preliminary comparison has been done on the boom and no-
boom data and it was found that in longitudinal direction the AOA vane data actually
is comparable to the boom data. For the lateral direction the AOA vane data is almost
useless. A question is whether further significant findings would come up that make
researching it worthwhile, especially if global modeling is not researched further.

e FEwaluation and possible improvement of the Unscented Kalman Filter. During the con-
struction and coding of the UKF as described in chapter 4 it was found that within
it are many assumptions that are only slightly substantiated or assumed without sig-
nificant background information. Also different assumptions are made for example in
the research of [54] relative to [57] and relative to [58]. Also sometimes information is
for example missing from the massmodel and the standard values are used. Primar-
ily research into some of the UKF settings or noise characteristics could possibly also
be improved. However, this would comprise a very significant shift of scope from the
intended advances to the actual modeling, especially when it is known that the UKF
works "well enough" despite its deficiencies.

o Stall modeling time window slicing accuracy. This last option was found when investi-
gating the modeling procedure of both [57] and [58] when deciding what time window
to choose for the testing of the UKF in chapter 4. Both papers use significantly differ-
ent settings for the time window used in modeling, where [57] uses only data from the
actual stall and is normally around 8 seconds long, whereas that of [58] always contains
the approach-to-stall and a time window of about 50 seconds. Both have very different
results for the parameter estimates. This could also be attributed to other factors, but
it might be interesting to see what the effect actually is. A factor to be investigated
is the effect of choosing not only a time window for FPR, but the entire flight -as this
might also provide better FPR results- and thereafter only perform time slicing for the
parameter estimation. Also no further literature was found when searching for any stan-
dardized procedure of time window selection. This, additionally with the conclusions
of chapter 2 and chapter 3 that coin the question if actually enough attention is given
to the quality and information content of already available signals, rather than making
the usual recommendation "that more flight tests should be performed".

The decision was made to focus on the latter of the four research topics. Especially the lack
of supporting literature for data slicing techniques and its possible broad application to any
general research involving stall model identification are motivations for this choice. Also,
with a relatively good and known model structure as developed by [58] it is actually for the
first time possible to perform such research on simulated data which makes verification and
validation possible, which is not the case when only real data is available. This may further
help to find explicit proof for any method that may be applicable to flight data slicing.

7-2 Preliminary Results

In this section a very rudimentary analysis is done on the effect of changing the selected
time window on the estimated parameters of the stall model. It is not meant to present any
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explanation for the behaviour, nor make any judgement of value on which is better, rather
only proof that there exists an effect that can be investigated. The selected time windows are
thus also very extravagant.

The preliminary method to achieve this is by applying the exact same FPR and parameter
estimation method as explained in chapter 4 and chapter 5 to two datasets of the same stall
that only differ in the selected time window of the data. The first estimation is the same as
in Table 5-4 where the time window t,;nd400 = 150 s and the second estimation only contains
the actual stall with t,indow = 19 s. To identify the stall the definition from chapter 3 was
taken: stall entry is where the stall buffet starts and recovery is where the buffet ends.

The output of both models is given in Figure 7-1. The estimated stability and control deriva-
tives and the performance metrics of the models are given in Table 7-1 and Table 7-2, respec-
tively.

A number of top-level observations are discussed here. First, in Table 7-1 there are many
differences between the stability and control derivatives of both cases, although some are
relatively close the each other. However, for now these are not further investigated. Second,
when looking at the performance metrics of the two cases in Table 7-2 one can see that
the comparison model scores significantly worse than the model that used the longer time
for identification. However one has to take into account that these metrics are based on
two different observation times. Third, even though the shorter observation time model
scores lower in performance, when one looks at the time series of the model outputs and
the measurements in Figure 7-1, for all except the C), the comparison model seems to still
perform quite well, capturing the most featuring nonlinearities. Even compared to the model
of the longer observation time, the model output of the shorter observation time does not
show any significantly less behaviour of capturing the nonlinearities during the stall, despite
the significantly shorter amount of available data in the short observation time.

The last observation is the very significant difference in X-parameters in Table 7-1, even
though the models did not perform very differently during the stall. Parameter o* seems
is the least far off for the four parameters. For extra information on the parameters of the
nonlinear estimation, just as in chapter 5 for Figure 5-3, the distribution of the 500 optima
that are found with the nonlinear estimation procedure can be plotted for the comparison
case. This is done in Figure 7-2. Where Figure 7-2a shows the optima of all 500 initial
conditions and Figure 7-2b shows the selected initial conditions that results in an optimum
that is within 5% of the lowest cost function found of all initial conditions and their median.
This is the case for 49 initial conditions.

In this Figure 7-2 maybe there exists an explanation for some of the differences. When
compared to Figure 5-3 only a clear difference can be seen in the parameter distributions of 7
and 7. The other distributions show no particularly striking differences in features. Especially
interesting is the fact that 71 seems to "creep" towards the lower constraint boundary of 0.001.
Interestingly, in [57], the conclusion was drawn that 71 could not be estimated correctly as
most of the stalls in the data for that research were quasi-steady, and as such the stall buffet
was used to estimate 7. But as seen, having a low observation time -as was the case for
slicing the data in [57]- may also lead to a situation where the 7 estimates goes towards the
constraint and becomes somewhat unreliable even for a dynamic stall as was the case for this
data. It may be interesting to investigate this further, too, in the further research for this
thesis, plossibly by use of the Fisher information for this parameter and the data.
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Figure 7-1: Local aerodynamic model output and residuals for the comparison cases. Blue is the
model output y for twindow = 150 s, red the model output y for twindow = 19 s and grey is the
measurement ¢ from the tyindow = 150 s data.
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A last note that should be taken into account is that the worse metrics and different results
for the parameter estimation may also be partly due to a worse reconstruction for the force
and moment measurements. This is because the UKF also performs better over time as it
converges. This should also be taken into account in the further research for the final thesis.

7-3 Research Proposal

Based on the considerations described above and the discussed preliminary results, the fol-
lowing is proposed as final goal and the steps toward that goal for the research for the final
thesis.

The following main research question is proposed.

"What is the optimal manner in which to slice and/or partition flight data such
that the stall related parameter estimates in a model using Kirchoff’s Theory of
Flow Separation acquire the highest possible reliability?"

In order to answer the main research question the following steps are proposed to be taken.

1. Creating simulation data.

(a) Use the model structure and found parameter estimates from [58] to adapt the TU
Delft Citation DASMAT model, if required. This is will be the baseline model.

(b) Use the DASMAT model to create clean, unnoised data using these parameter
estimates.

(¢) Add a known noise and bias to the simulation data.

(d) Perform flight path reconstruction using the Unscented Kalman Filter to accurately
reconstruct the aircraft states, inputs and measurements such that these can be
used in aerodynamic modeling.

(e) Verify the filtered outputs of the noised data with the original clean data.

2. Empirical research.

(a) Define and select time slicing and independent variable partitioning domains to
perform the simulation on, making use of the definition of the stall entry and
recovery start as defined in chapter 3.

(b) Perform parameter estimation on all simulated data runs.

(c) Evaluate the empirical reliability of the stall-related parameters with the changed
data slicing and partitioning by means of statistical methods and tests.

3. Theoretical research.

(a) Find an analytical description for the Fisher information for all six force and mo-
ment equations of the model structure of [58].

(b) Investigate how the Fisher information changes with the slicing and partitioning
of the data.

Master of Science Thesis P.A.R. Brill



178 Preliminary Results and Research Proposal

(c) Evaluate the theoretical reliability of the stall-related parameters with the changed
data slicing and partitioning by means of the Fisher information.

4. Optimization method and verification and validation.

(a) Compare the results from the empirical and theoretical research.

(b) Develop an optimized method for data slicing and partitioning that will result in
the best stall-related parameter estimates, based on both the empirical simulation
and the theoretical Fisher information results, if applicable.

(c) Verify the method by applying it to the simulated flight data.

(d) Validate the method by applying it to the real flight data.

5. Processing real flight data.

(a) Slicing and partitioning the data based on the optimization method.

(b) Perform flight path reconstruction using the Unscented Kalman Filter to accurately
reconstruct the aircraft states, inputs and measurements such that these can be
used in aerodynamic modeling.

(¢) Perform parameter estimation.

(d) Compare with results from the simulated data verification.

In Figure 7-3 the above steps have been visualised by means of a flow diagram.
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Table 7-1: Parameter estimates in the aerodynamic force and moment equations for the com-

parison cases.

Model | Parameter Value tyn400 = 150 s Value tyindow = 19 s
a1 32.0864 24.7044

X a* 0.2039 rad 0.1983 rad
T 0.1293 s 0.0012 s
T 0.0525 s 0.2086 s

Model | Parameter Value 400 = 150 s Value t,indow = 19 s
Cr, 0.1910 0.2614

Cr, Cr., 4.4832 4.4001
Cr_, 13.6978 13.6919
Cb, 0.0133 —0.0127
Cp, 0.1788 0.3899

Ch Cp;, —0.1697 —0.1152
Chy 0.0696 0.0391
CDCT —0.6073 0.6075
Cy, 0.0070 0.0015
Cy, —0.5605 —0.3087

Cy Cy, —0.5637 —0.2838
Cy., —0.9068 0.2001
Cy;, —0.2294 —0.2439
Cy, —0.0013 —0.0016
Ci, —0.0622 —0.0743

Cy Cy, —0.1234 —0.0250
Cy, —0.0954 —0.0275
Cis, —0.0968 —0.0923
Cmo 0.0334 0.0465

c Cm, —0.6014 —0.8307

" Crxs, —0.8784 —0.6672

Cch —0.0511 2.9004
Cho —9.0476 - 10~* —3.3662 - 1077

C Chy 0.0572 0.0494

" Ch, 0.0024 0.0991

Chs, —0.0181 0.0121
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Table 7-2: Performance metrics of the full parameter estimation for the comparison cases.

Model | Metric Value t,;,400 = 150 s  Value t,indow = 19 s
MSE  6.6409-10~4 0.0029
C, RMS  0.0258 0.0540
RRMS 2.9512% 7.5959%
R? 0.9626 0.8497
MSE  1.6805-107° 1.1167-1071
ch RMS  0.0041 0.0106
RRMS 0.9897% 2.5856%
R? 0.9904 0.8654
MSE  2.5271-107° 1.4358 - 104
Cy RMS  0.0050 0.0120
RRMS 1.7196% 2.5942%
R? 0.6256 0.4716
MSE 1.1555-107° 7.9246 - 107
c, RMS  0.0011 0.0028
RRMS 0.6444% 1.7926%
R? 0.7207 0.6784
MSE  4.3408-107° 1.8804 - 104
o RMS  0.0066 0.0137
mn RRMS 1.4857% 3.0707%
R? 0.8514 0.9150
MSE  4.8400-1077 1.1614-107°
o RMS  6.9570-1074 0.0034
" RRMS 0.4334% 1.4225%
R? 0.3473 0.0483
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(b) Selected initial conditions (n = 49) with median.

Figure 7-2: Distribution of the parameters and cost function values found by the nonlinear
estimation procedure for the comparison case where tindow = 19 s.
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Chapter 8

Conclusion

This preliminary report serves as the substantiation of the choice of research direction for
the final thesis. Based on a review of applicable literature and a preliminary research, the
proposed main research question is as follows:

"What is the optimal manner in which to slice and/or partition flight data such
that the stall related parameter estimates in a model using Kirchoff’s Theory of
Flow Separation acquire the highest possible reliability?"

The relevance of this research question stems from regulation requirements for Upset Pre-
vention and Recovery Training for airline flight crew on Flight Simulation Training Devices.
Kirchoff’s Theory of Flow Separation has proven to be an applicable method to model the
nonlinear behaviour of an aircraft in the stall in previous research, even though deficiencies
remain in the models that cannot be solved without more flight tests, according to literature.
However, no literature can be found that recommends looking at the quality of the data,
rather than the quantity by doing more flight testing. It can thus be argued that the data
that is available is not used in an optimal manner. The concept of Fisher information that is
used in flight input design shows promise of also being used in a backwards manner, selecting
the data in a manner that its quality increases with respect to the specific parameters related
to the stall. The comparative case on using 150 s of data of a stall run versus only the data
during the stall of 19 s showed very different results. In between these two timeframes there
may be an optimum where the stall parameters achieve their highest reliability and modeling
power.

Currently existing methods of Flight Path Reconstruction and parameter estimation tech-
niques can be used. The Unscented Kalman Filter for the Flight Path Reconstruction shows
a to-be-expected reliability when used on real flight data, comparative to earlier research.
The quality could be improved, but this would require a more thorough investigation into
a number of assumptions used in the process. The time and effort to perform this research
is expected to be significant and the expected increase in quality of the results only limited.
Therefore, the current method is deemed sufficient and more time can be invested in the
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research on data slicing and partitioning. The combination of the nonlinear and linear pa-
rameter estimation techniques for the identification of the model shows promising results and
it is decided to use this method in the to-be-performed research directly.

Other research topics such as a comparison of the usability of data from flights with and
without the air data boom installed or research into global modeling methods for the stall
parameters are deemed to be of only limited interest. Global modeling techniques are largely
unsuitable due to the non-global appearance of the stall in the flight envelope, rendering the
methods to be too complicated for only limited application. A research into the reliability
of the no-boom data is expected to have a predictably outcome: it is probably significantly
worse than the data with the boom. This can be substantiated by results of the Unscented
Kalman Filter where the no-boom state estimates and reconstructed measurements show
lesser reliability in their innovations than for the data with the boom installed.

All in all, the main research question as proposed should have an interesting, but above all,
impactful answer. An answer that may not only show the effect of slicing and partitioning
of flight data on the reliability of the parameter estimates, but may even be at the basis of a
standardized method of selecting data that does not yet exist in the field of stall modeling.
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194 Overview of Stall Test Flights
Table A-1: List of all stall experiment runs in test flight 1 of Table 3-3.

Stall # ~ tsiart [s] ~h [m] Config Stall type Control input

1 1700 5700 clean symmetric none

2 1780 5700 clean symmetric none

3 1950 5700 clean symmetric none

4 2080 5700 clean symmetric 0q wiggle, 0, wiggle

5 2180 5700 clean symmetric 0o wiggle, d, wiggle

6 2350 5700 clean symmetric 0q wiggle, 0, wiggle

7 2500 5700 clean symmetric dq wiggle, 0. wiggle

8 2630 5700 clean symmetric 0q wiggle, 0. wiggle

9 2820 5700 clean symmetric 0q wiggle, 0. wiggle

10 3000 5700 clean accelerated 1.1g (r) none

11 3080 5700 clean accelerated 1.1g (r) none

12 3200 5700 clean accelerated 1.1g (r) none

13 3300 5700 clean accelerated 1.1g (r) none

14 3400 5700 clean accelerated 1.3g (r) none

15 3500 5700 clean accelerated 1.3g (r) none

16 3600 5700 clean accelerated 1.3g (r) none

17 3800 5700 clean accelerated 1.1g (r) ¢, wiggle, 6. wiggle

18 3950 5700 clean accelerated 1.1g (r) 0, wiggle, o, wiggle

Table A-2: List of all stall experiment runs in test flight 2 of Table 3-3.

Stall # ~tgaert [S] ~h [m] Config Stall type Control input
19 1550 5700 clean accelerated 1.1g (r) 6, wiggle, 6. wiggle
20 1670 5700 clean accelerated 1.1g (r) 0, wiggle, d. wiggle
21 1830 5700 clean accelerated 1.1g (r) 4, wiggle
22 1930 5700 clean accelerated 1.1g (r) 0, wiggle, d. wiggle, 0, wiggle
23 2030 5700 clean accelerated 1.3g (1) 6, wiggle, é. wiggle, J, wiggle
24 2130 5700 clean accelerated 1.3g (r) 6, wiggle, 6. wiggle, J, wiggle
25 2230 5700 clean accelerated 1.3g (r) 0, wiggle, d. wiggle, §, wiggle
26 2330 5700 clean accelerated 1.3g (r) 6, wiggle, 6. wiggle, J, wiggle
27 2460 5000 clean symmetric o, wiggle
28 2560 4800 clean symmetric 0, wiggle
29 2820 4500 clean symmetric 0, wiggle, 0. wiggle, 6, wiggle
30 2920 4500 clean symmetric 0o wiggle, 0, wiggle, 6, wiggle
31 3020 4500 clean symmetric 0q wiggle, 0, wiggle, 6, wiggle
32 3120 4500 clean symmetric 0o wiggle, 0, wiggle, 6, wiggle
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Table A-3: (1/2) List of all stall experiment runs in test flight 3 of Table 3-3.

Stall # ~tsqrt [s] ~h [m] Config Stall type Control input

- 1610 2700 clean none +0, 3-2-1-1

- 1690 2700 clean none -0 3-2-1-1

- 1780 2700 clean none +0, 3-2-1-1

- 1800 2700 clean none +d, 3-2-1-1

- 1840 2700 clean none -0, 3-2-1-1

- 1880 2700 clean none -0 3-2-1-1

- 1920 2600 clean none -0, 3-2-1-1

- 1950 2600 clean none -0 3-2-1-1

33 2200 2600 clean symmetric -6, 3-2-1-1, -9, 3-2-1-1
34 2300 2500 clean symmetric -6, 3-2-1-1, -9, 3-2-1-1
35 2500 2700 clean symmetric -6, 3-2-1-1, -9, 3-2-1-1
36 2550 2700 clean symmetric -, 3-2-1-1, -6, 3-2-1-1
37 2600 2600 clean symmetric -0, 3-2-1-1, -9, 3-2-1-1
38 2670 2600 clean symmetric  -d, 3-2-1-1, -6, 3-2-1-1
39 2800 2600 clean symmetric 494, 3-2-1-1, -6, 3-2-1-1
40 2850 2600 clean symmetric  +d, 3-2-1-1, -6, 3-2-1-1
41 2920 2600 clean symmetric = -6, 3-2-1-1, -9, 3-2-1-1
42 3080 2700 clean symmetric -, 3-2-1-1, -6, 3-2-1-1
43 3150 2600 clean symmetric -0, 3-2-1-1, -9, 3-2-1-1
44 3200 2600 clean symmetric -, 3-2-1-1, -6, 3-2-1-1
45 3300 2700 clean symmetric -6, 3-2-1-1, -9, 3-2-1-1
46 3370 2600 clean symmetric = -0, 3-2-1-1, -9, 3-2-1-1
47 3420 2600 clean symmetric -6, 3-2-1-1, -9, 3-2-1-1
48 3470 2600 clean symmetric -0, 3-2-1-1, +9, 3-2-1-1
49 3550 2700 clean symmetric -0, 3-2-1-1, 49, 3-2-1-1
50 3620 2700 clean symmetric -0, 3-2-1-1, +9, 3-2-1-1
51 3670 2700 clean symmetric -0, 3-2-1-1, +9, 3-2-1-1
51 3750 2700 clean symmetric -0, 3-2-1-1, 49, 3-2-1-1
52 3810 2600 clean symmetric -0, 3-2-1-1, +9, 3-2-1-1
53 3900 2700 clean symmetric  -d. 3-2-1-1, +9, 3-2-1-1
54 3960 2700 clean symmetric -0, 3-2-1-1, +9, 3-2-1-1
55 4000 2700 clean symmetric -0, 3-2-1-1, +9, 3-2-1-1
56 4050 2700 clean symmetric -0, 3-2-1-1, 49, 3-2-1-1
57 4100 2700 clean symmetric -0, 3-2-1-1, +9, 3-2-1-1
58 4150 2600 clean symmetric -0, 3-2-1-1, +9, 3-2-1-1
59 4200 2600 clean symmetric -0, 3-2-1-1, +9, 3-2-1-1
60 4270 2600 clean symmetric  -d, 3-2-1-1, +9, 3-2-1-1
61 4350 2700 clean symmetric -0, 3-2-1-1, +9, 3-2-1-1
62 4420 2700 clean symmetric  -d. 3-2-1-1, +9, 3-2-1-1
63 4480 2700 clean symmetric -0, 3-2-1-1, +9, 3-2-1-1
66 4530 2600 clean symmetric  -d, 3-2-1-1, +9, 3-2-1-1
67 4600 2600 clean symmetric -0, 3-2-1-1, +9, 3-2-1-1
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Table A-3: (continued, 2/2) List of all stall experiment runs in test flight 3 of Table 3-3.
Stall # ~ tsart [s] ~h [m] Config Stall type Control input
68 7110 2600 landing symmetric = -d, 3-2-1-1, -6, 3-2-1-1
69 7140 2600 landing symmetric = -d. 3-2-1-1, -9, 3-2-1-1
69 7180 2500 landing symmetric = -d, 3-2-1-1, -6, 3-2-1-1
70 7280 2700 landing symmetric -6, 3-2-1-1, -6, 3-2-1-1
71 7320 2700 landing symmetric = -d. 3-2-1-1, -9, 3-2-1-1
72 7380 2600 landing symmetric = -d. 3-2-1-1, -9, 3-2-1-1
Table A-4: List of all stall experiment runs in test flight 4 of Table 3-3.

Stall # ~tsiart [S] ~h [m] Config Stall type Control input

73 1920 3200 clean accelerated 1.3g (r) none

74 1980 3200 clean accelerated 1.3g (r) none

75 2040 3200 clean accelerated 1.3g (r) none

76 2120 3100 clean accelerated 1.3g (r) none

7 2260 3200 landing accelerated 1.3g (r) none

78 2340 3200 landing accelerated 1.3g (r) none

79 2460 3200 landing accelerated 1.3g (r) none

80 2560 3200 landing accelerated 1.3g (I) none

81 2670 3200 landing accelerated 1.3g (1) none

82 2730 3200 landing accelerated 1.3g (r) none

83 2800 3300 landing accelerated 1.3g (r) none

84 2880 3300 landing accelerated 1.3g (r) none

85 3020 3300 landing accelerated 1.3g (r) ¢, wiggle, . wiggle

86 3080 3400 landing accelerated 1.3g (r) 4, wiggle, 0. wiggle

87 3160 3400 landing accelerated 1.3g (r) d, wiggle, . wiggle

88 3320 3300 landing accelerated 1.3g (1) ¢, wiggle, d. wiggle

89 3380 3300 landing accelerated 1.3g (1) 4, wiggle, d. wiggle

90 3600 3200 landing accelerated 1.3g (1) ¢, wiggle, d. wiggle

91 3640 3300 landing accelerated 1.3g (r) 4, wiggle, 6. wiggle

92 3730 3300 landing accelerated 1.3g (r) 4, wiggle, 0. wiggle

93 3810 3300 landing accelerated 1.3g (r) d, wiggle, . wiggle

94 3930 3200 landing accelerated 1.3g (r) 4, wiggle, d. wiggle

95 4630 3200 landing accelerated 1.3g (r) 4, wiggle, 0. wiggle

96 4700 3200 landing accelerated 1.3g (r) ¢, wiggle, . wiggle

97 4780 3100 landing accelerated 1.3g (r) 4, wiggle, 0. wiggle
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Figure A-1: Overview of test flight 1 of Table 3-3.
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C-1-2 Flight Test Data
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