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A Dimensionality Reduction Approach in Helicopter Hover
Performance Flight Testing

Ilan Arush∗ Marilena D. Pavel Max Mulder
Chief of RW Performance & Flying Qualities Academics Associate Professor Head of Control & Simulation

National Test Pilot School, Mojave, CA Faculty of Aerospace Engineering, Delft University of Technology
Delft, The Netherlands

The power required to hover a helicopter is fundamental to any new or modified performance flight-testing effort. The
conventional method of relating two nondimensional variables (coefficients of power and weight) is overly simplified and
neglects compressibility effects in the power required to hover under a wide range of gross weights and atmospheric condi-
tions. An alternative flight-test method for assessing hover performance while addressing this deficiency of the conventional
method is proposed. The method uses an original list of 15 corrected variables derived from fundamental dimensional
analysis, which is further reduced by means of dimensionality reduction to include only the most essential and effective
predictors. The method is demonstrated using data of a Bell Jet-Ranger and shows that at the 95% confidence level; the
averaged prediction error is only 0.9 hp (0.3% of the maximum continuous power). Using the same data, the conventional
method yields a much larger averaged prediction error of 1.7 hp.

Nomenclature

Ad main rotor disk area, m2

b number of blades
�b column vector, measured power to hover, hp
C̄ average chord (main rotor blades), m
Cd0 zero-lift drag coefficient (main rotor blades)
CP = P

ρAd (ωR)3 coefficient of power (entire helicopter)

CPM/R
= PM/R

ρAd (ωR)3 coefficient of power (main rotor only)

CW = W

ρAd (ωR)2 coefficient of weight

�Er |i power prediction error vector for model (i), hp
Mtip = ωR√

γRairTa
tip Mach number (main rotor blades)

P power required to hover (entire helicopter), hp
PM/R power required to hover (main rotor only), hp
Pa ambient air static pressure, pa
Po standard sea level static air pressure (101325 pa), pa
R main rotor disk radius, m
Rair air gas constant ( = 287), J/(kg·K)
Si standard deviation of prediction errors, model (i), hp
Ta ambient air static temperature, K
T0 standard sea-level static air temperature (288.15), K
ti test statistics for the prediction errors of model (i)
U left singular vectors matrix of Z

V right singular vectors matrix of Z

W helicopter total gross weight, N, lb
Z normalized corrected variables matrix

∗Corresponding author; email: iarush@ntps.edu.
Manuscript received July 2021; accepted February 2022.

α, β generic polynomial coefficients vector
γ heat capacity ratio for air (1.4)
δ = Pa/Po ambient air pressure ratio
θ = Ta/To ambient air temperature ratio
μi mean value of prediction errors, model (i), hp
πi generic nondimensional variable
π∗

i generic corrected variable (ND for a specific
helicopter type)

ρa ambient air density, kg/m3


 singular values matrix of Z

σi singular values of matrix Z (elements along the
diagonal of 
)

σR = bc̄
πR

main-rotor solidity ratio
ω main-rotor angular speed, rad/s

Subscripts

i,j indices
j model number index

Introduction

The most distinguishing characteristic of a helicopter is its abil-
ity to steadily hover at any phase of its mission given it has a suffi-
cient power margin (Refs. 1,2). Knowing the power required to hover
is fundamental to any new or modified helicopter flight-test effort.
The conventional flight-test method for hover performance is based
on the combined blade-element momentum theory and is overly sim-
plified. This simplification often yields empirical models that fail to
accurately and consistently predict the total power required to hover
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under a wide range of helicopter gross weight and atmospheric con-
ditions. Bousman (Ref. 3) demonstrates this drawback by using out-
of-ground effect (OGE) hover performance testing of five different
flight-test programs and reporting inconsistency in OGE hover per-
formance of up to 5% of which the source of the error could not be
explained.

A major disadvantage of the conventional OGE hover flight-test
method is that it does not address main rotor blade compressibility effects
as those are often assumed to have a negligible effect on the hover perfor-
mance. An example of this frequently taken assumption can be found in
the study on uncertainty quantification in helicopter performance by Siva
et al. (Ref. 4). The ability to account for compressibility effects, mostly
related to blade tip Mach number and shape, is essential for accurate
hover performance predictions. This relation is well illustrated by com-
putational fluid dynamic (CFD) simulations used to predict the hover
performance of rotor systems. Jacobson and Smith (Ref. 5) present a
hover performance comparison between predictions from a hybrid CFD
methodology and measured hover performance of a rotor with three dif-
ferent blade tip configurations at three different tip Mach numbers (0.55,
0.6, and 0.65). They state that future work is needed to understand why
CFD models do not predict the same impact of the tip shape as measured
in the experiment. Moreover, one of Ref. 5 conclusions states that hover
performance predictions from the hybrid methodology CFD improve as
tip Mach numbers reduce. This conclusion solidifies the significance
compressibility effects have on hover performance. Garcia and Barakos
(Ref. 6) provide another example to show compressibility effects should
not be neglected from hover performance predictions. Their work, which
focused on accurate rotor hover performance predictions using modern
CFD methods with modest computer resources, shows the significance
the tip shape and Mach number have on the hover performance of a rotor
system.

Measuring compressibility effects in flight-testing of a full-scale heli-
copter and not just a rotor system requires the hover trials to be performed
in high altitude and low air temperatures. Whereas in the past, these
kinds of high altitude hover trials were challenging since they required
high-ground reference points, recent technological developments show
potential to make these trials more practical in the future. Matayoshi et
al. (Ref. 7) presented results from a flight-test evaluation of a helicopter
airborne lidar system. This system can measure accurately three-axis
true airspeed which is crucial for high-altitude hover performance trials.
Boirun (Ref. 8) attempted to rectify the disadvantage of the conventional
hover flight-test method by including compressibility effects into the em-
pirical performance model of the helicopter. However, his approach did
not determine a definitive single empirical model to include compress-
ibility effects. Instead, various curves for different values of main-rotor
tip speeds were presented.

Obtaining an accurate single empirical model to predict the hover
performance is highly beneficial since it could also be used for real-
time applications. A single empirical hovering model can be used in
conjunction with existing algorithms that predict the gross weight of the
helicopter for real-time hovering performance. Abraham and Costello
(Ref. 9) presented such a practical algorithm to estimate the gross weight
and center of mass of a helicopter in flight and reported the algorithm
works well in hover.

The authors (Ref. 10,11) presented an alternative and more accurate
approach to helicopter performance flight-testing, using multivariable
polynomials as empirical models. This approach was proven more ac-
curate (in excess of 300%) in the prediction of the available power of a
helicopter under a wide range of atmospheric conditions as compared to
the conventional single-variable flight-test method (Ref. 10). Reference
11 provides a systematic method for screening between candidate mul-
tivariable predictors. This multivariable polynomial approach is applied

to the power required to sustain a helicopter in an OGE hover, without
taking any lenient assumptions such as negligible compressibility effects.

An alternative flight-test analysis method to determine the OGE hover
performance of a helicopter was derived and is presented herein. After a
short introduction, the conventional single-variable method is explained
and demonstrated using flight-test data of a Bell Jet-Ranger helicopter.
Flight-test data from three sorties totaling 56 data points are used to
find an empirical model to estimate the power required to hover OGE.
This conventional empirical model is then used to predict 20 hover points,
measured on the same helicopter but obtained during a different flight-test
sortie. This process is used so that the prediction accuracy of the model
can be evaluated. In the third section, an alternative analysis method re-
ferred to as the “corrected-variables screening using dimensionality re-
duction” (CVSDR) is proposed. Starting with fundamental dimensional
analysis, a list of 15 corrected variables are generated, which act as the
candidate predictors for the OGE hover performance problem. This list
of predictors is then refined by executing concepts of dimensionality re-
duction. The singular-value decomposition (SVD) is exercised to reduce
the number of candidate predictors to only four bare-essential and effec-
tive corrected variables. The proposed CVSDR method is demonstrated
by using the same flight-test data of the Bell Jet-Ranger helicopter. The
fourth section compares the different levels of accuracy achieved from
the two methods, the conventional and the proposed CVSDR and also
provides possible reasoning as to why this difference exists. Finally,
conclusions complete the paper.

The Conventional Flight-Test Method for Helicopter Hover
Performance

The conventional flight-test method for determining the power a heli-
copter requires for a hovering flight is based on finding the linear relation
between the coefficient of power (CP ) and the coefficient of weight raised
to the 1.5 power (C1.5

w ). This method is thoroughly explained in the litera-
ture (Refs. 12–16) and is briefly discussed in this section. Demonstrations
of this conventional method are shown in numerous papers, which deal
with helicopter hover performance (Refs. 17–20). The main rotor is the
primary power consumer in a conventional configuration hovering heli-
copter (i.e., a helicopter which has a single main rotor and a single tail
rotor) since it uses about 85% of the total power in an OGE hover. This
amount of power directed to the main rotor varies as per different types
of helicopters, external configurations, and the different atmospheric
conditions.

Since the amount of power delivered to the main rotor is so significant,
the mathematical model to represent the hover performance is mainly
dictated by the main rotor. This power is comprised of two main terms
(Eq. (1)). The first term is referred to as the induced power (or the ideal
power) and is derived from the momentum concept. It represents the
amount of power required to create the lift (or thrust). The second term
in Eq. (1) is referred to as the profile power and is the amount of power
required to overcome the viscous effects between the main rotor blades
and the surrounding air. The second term was derived using principles of
the blade element theory. One should comprehend that Eq. (1) is based
on few simplifications such as a uniform distribution of induced velocity
across the main-rotor disk, a constant zero-lift drag coefficient (Cd0), and
a constant chord length of the main-rotor blades.

Next, Eq. (1) is normalized by using the term (ρA(�R)3 ) to yield
a nondimensional (ND) equation (Eq. (2)) that uses the coefficient of
power (CP ) and coefficient of weight (CW ). The conventional method
for hover performance flight-testing is to enforce this main-rotor power
theory onto the helicopter as a whole. The flight-tester task is to relate
between the measured coefficient of power (CP ) and the coefficient
of weight (CW ) under a wide range of gross weights and atmospheric

032010-2
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Table 1. Summary of OGE hover conditions

Sortie W (lb.) CW (× 10−3) Pressure Altitude (ft) Ta (◦C) M tip

1 2900–3000 3.298–4.032 2200–6600 11–18 0.59–0.62
2 2850–2960 2.986–4.046 3100–6100 10–15 0.59–0.61
3 2850–2980 3.161–3.739 700–6350 −2 to 3 0.61–0.64
4 2700–3060 3.043–4.062 425–6800 20–26 0.59–0.61

Fig. 1. Nondimensional OGE hover performance of a Bell Jet-Ranger helicopter (four distinct sorties).

conditions. This task is presented mathematically as Eq. (3) for which the
flight-tester needs to define the two coefficients (α1, α2) for a particular
type of helicopter:

PM/R =
√

W 3

2ρaAd

+ 1

8
Cd0σRρaAd (ωR)3

(Induced) (Profile) (1)

CPM/R
=

√
1

2
(CW )1.5 + 1

8
Cd0σR ∴

CPM/R
= PM/R

ρaAd (ωR)3 ∴ CW = W

ρaAd (ωR)2 (2)

CP = α1(CW )1.5 + α2 ∴ CP = P

ρaAd (ωR)3 ∴ CW = W

ρaAd (ωR)2 (3)

Next, this conventional method is demonstrated using OGE hovering
flight-test data obtained from four distinct sorties of a Bell Jet-Ranger
helicopter under different atmospheric and gross-weight conditions, as
summarized in Table 1. Figure 1 presents the total of 76 matching pairs
of coefficient of power (Cp) and coefficient of weight raised to the 1.5
power (C1.5

w ) measured in all four sorties. All 76 OGE hover points
were obtained using the free-flight (untethered) flight-test technique.

Specialty flight-test instrumentation (FTI), which was calibrated for the
test, sampled relevant parameters at a rate of 10 cycles per second. The
helicopter was stabilized at each hover point for a duration of at least
20 s, and sampled data were averaged over this period of time postflight.
The power required to hover was reduced from the engine output torque
and the free-turbine speed which were both sampled by the FTI. The
gross weight of the helicopter was calculated by subtracting the fuel
used from the takeoff all up weight. All hover points were conducted
under the restriction of the relative wind to be less than 3 kt. For ground-
referenced hover points the wind was measured using a ground-based
anemometer and for high altitude hover points, an independent helicopter
with an independent low airspeed indicator was used as a hover reference
for the tested Jet Ranger.

The level of accuracy achieved using the conventional method was
assessed by taking the following approach: flight-test data from the first
three sorties were used for the derivation of an empirical OGE hover
model, obtained from a linear regression. Then, the accuracy and effec-
tiveness of this empirical model were evaluated by comparing its predic-
tions with the actual flight-test data gathered in Sortie 4. The reason for
this specific partition of predicting the performance of Sortie 4 by using
data obtained from the first three sorties was to challenge the method to
the fullest extent possible. It is evident from Table 1 that Sortie 4 was
executed under a wider range of gross weights and pressure altitudes, not
covered by the first three sorties. By applying this specific partition, the
empirical hovering model is challenged with an extrapolation task.

032010-3
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Fig. 2. Nondimensional OGE hover performance of a Bell Jet-Ranger (Sorties 1–3).

Linear regression was executed in order to describe the relationship
between the coefficient of power (CP ) and the coefficient of weight
raised to the 1.5 power (C1.5

w ). The 56 flight-test hover points of Sorties
1–3 were substituted in Eq. (3) yielding a linear system of 56 equations
with only two unknowns (the coefficients α1, α2). This set of equations
is compactly represented as Eq. (4):

[A] {α} = �b (4)

The matrix A is of size (56, 2) and contains the numeral values of the
coefficient of weight (Cw) raised to the 1.5 power as the first column and a
unity vector as the second column. The column vector α is of a size (2, 1)
and contains the linear coefficients (α1, α2). The column vector b is of
size (56,1) and contains the numerical values of the measured coefficient
of power (CP ) for all of the hover points. The explicit representation of
Eq. (4) is presented as Eq. (5).

The system of equations represented as Eq. (5) is overdetermined
and does not have an exact solution. However, one can look for the
“closest” solution of this system, that is, the “best-fit” solution denoted
as α̂ (Ref. 21). The matrix constructed from [AT A]−1AT is defined as
the projection matrix, and when multiplied by the vector b provides
the best-fit solution or the “closest” solution one can look for (Eq. (6)).
Although this specific example solves for only two coefficients (α1, α2),
this method is applicable for an overdetermined system with any arbitrary
number of coefficients.⎡

⎢⎢⎢⎢⎢⎢⎢⎣

C1.5
w1

1

C1.5
w2

1
· ·
· ·
· ·

C1.5
w56

1

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

[
α1

α2

]
=

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

CP1

CP2

·
·
·

CP56

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

(5)

{α̂} = [AT A]−1AT �b (6)

For the example considered in this paper, the regressed OGE hover
empirical model of the Bell Jet-Ranger is presented as Eq. (7). Figure 2
presents all 56 data points from the first three sorties and the “best-fit”
solution (Eq. (7)). The errors between the measured and the predicted
OGE hovering power for Sortie 4 were calculated in accordance with

Eq. (8) and are presented in Fig. 3. The prediction errors ranged up to an
absolute maximum value of 11.7 hp, a mean of −3.7 hp, and variance
of 18.1 hp2. For the type of helicopter tested, a power deviation of more
than 1.6 hp (absolute value) is already clearly evident to the aircrew. The
averaged prediction error of −3.7 hp (overestimate) with a variance of
18.1 hp2 is therefore considered substantial.

The conventional approach in flight-testing for assessing “how accu-
rate” does a model predict the actual performance is based on hypothesis
testing. This approach which follows from the central-limit theorem is
thoroughly discussed in the literature (Refs. 22, 23). In a nutshell, a
hypothesis is set (the “null hypothesis”) and by using the test statis-
tic (Eq. (9)) the validity of the null hypothesis is assessed against the
alternative hypothesis. For the specific case presented, the null hypoth-
esis assigned is that on average the power-to-hover predicted by the
empirical model obtained (Eq. (7)) does not differ from the true mea-
sured power by more than ±1.6 hp (deviation mismatch noticeable to
the Jet-Ranger aircrew). This null hypothesis is tested against the alter-
native that on average the power to hover from Eq. (7) shows an absolute
prediction error of more than 1.6 hp.

CP |(S1−3) = 1.175(CW )1.5 + 4.118 × 10−5 (Base model) (7)

�Er |base = (
Cpi

− (
1.175

(
CWi

)1.5 + 4.118 × 10−5
))

ρai
Ad (ωiR)3 ∴

i = 1, 2, ..., 20 (8)

tbase = |Ēr |base
| − μ0

Sbase/
√

n
∴ μ0 = 1.6 hp : n = 20 (9)

The relevant test statistic for this hypothesis testing is calculated per
Eq. (9). The symbol n represents the number of measured test points of
Sortie 4 (n = 20), and S stands for the standard deviation of the predic-
tion errors of the empirical hover model (Eq. (7)), which are presented
in Fig. 3. The calculated value for the test statistic (Eq. (9)) was found to
be 2.18. Inferential statistical analysis based on the sampled data from
Sortie 4 shows the probability for making a type I error by rejecting the
null hypothesis to be only 4.2%. This low probability for a type I error is
below the 5% significance level accustomed in helicopter performance
flight-testing. The practical meaning of this test is that there is significant
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Fig. 3. Power to hover prediction errors for Sortie 4 (base model).

statistical evidence at the 95% confidence level to reject the null hypoth-
esis and adopt the alternative hypothesis instead. It can be concluded that
on average and at the 95% confidence level, the power required to hover
predictions (Eq. (7)) deviates by more than 1.6 hp from the actual mea-
sured power. Complementary statistical analysis shows that on average
and at the 95% confidence level, the hover power predictions based on
Eq. (7) deviate by up to 1.7 hp from the actual measured power.

This noticeable prediction error of the conventional hovering model
is to be expected. One should doubt the linear relation between the
coefficient of power and the coefficient of weight raised to the 1.5 power
(Cp,C1.5

w ). Merely by observing Fig. 2, one should doubt if the relation is
actually linear and whether there are some other latent factors that affect
the relation between the data points.

Concluding, the conventional flight-test method for assessing the
OGE power required to hover can result in substantial estimation er-
rors as demonstrated for the prediction of Sortie 4. Statistical analysis
at the 95% confidence level shows that on average the hover power
predictions based on Eq. (7) deviate by up to 1.7 hp from the actual
measured power. In the next section, an alternative analysis method with
an improved prediction accuracy is proposed.

Corrected Variables Screening Using Dimensional
Reduction Method

An alternative analysis method for the power required to hover is
proposed, referred to as the CVSDR. The method requires no variation

to the manner flight-test sorties are carried out; only the analysis method
is modified. The method involves three phases. In phase one, an orig-
inal list of corrected variables is generated for a multivariable analysis
approach. In phase two, this list of corrected variables is refined based
on concepts of dimensionality reduction. Phase three starts once the bare
essential list of corrected variables is acquired, and an empirical multi-
variable model is fitted to the flight-test data. The entire derivation process
is demonstrated hereafter using flight-test data from a Bell Jet-Ranger
helicopter.

Phase One: Original list of corrected variables to represent
hover performance

Beginning by suggesting the dimensional variables that affect the
physical problem of the amount of power required to hover a helicopter.
These are the ambient static pressure, Pa , the ambient static temperature,
Ta , the helicopter gross weight, W , the main-rotor disk area, Ad , the main
rotor angular speed, ω, and the main-rotor height above the ground, h.
The power required to hover, P , can be represented mathematically as
Eq. (10) and Eq. (11) in an implicit form. The dimensions involved are
presented in Table 2, where M represents mass, L represents length, and
T represents time.

P = f (Pa, Ta,W,Ad, ω, h) (10)

f̂ (P,Pa, Ta,W,Ad, ω, h) = 0 (11)
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Table 2. Summary of all variables and dimensions involved

# Physical Variable Notation Dimension

1 Power required to hover P [M ][L ]2[T]−3

2 Ambient static pressure Pa [M ][L ]−1[T]−2

3 Ambient static temperature Ta [L ]2[T]−2

4 Helicopter gross weight W [M ][L ][T]−2

5 Main-rotor disk area Ad [L ]2

6 Main-rotor angular speed ω [T]−1

7 Main-rotor height above ground h [L ]

The problem has seven variables involved with three dimensions
(L, M, T ). According to the Buckingham pi theorem (Ref. 24), the
complexity of the problem can be reduced from the seven-dimensional
variables dependent on only four ND variables. These four ND variables
are next defined as products of the dimensional variables. The four ND
variables are denoted by πi. Since there are seven-dimensional variables
to construct four ND variables, three-dimensional variables were used
as repeating variables in the ND products (πi). There are 35 different
options to choose three variables out of seven for the case where the
order does not matter (combinations). This sets a fairly tedious task of
screening between 35 different options, defining the best appropriate
manner to describe the ND helicopter hover performance. The derivation
is demonstrated for only one of the 35 options available. The follow-
ing example involves setting the main-rotor disk area, the ambient static
pressure, and the ambient static temperature as repeating variables. The
four ND products are defined in Eq. (12):

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

π1 = (Ad )a(Pa)b(Ta)c (P )

π2 = (Ad )d (Pa)e(Ta)f (W )

π3 = (Ad )g(Pa)h(Ta)i (ω)

π4 = (Ad )j (Pa)k(Ta)m (h)

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

(12)

Next, the dimensional analysis procedure requires to replace each
of the dimensional variables with its dimensions and to enforce each
one of the four πi parameters to be nondimensional. This process is
demonstrated as per Eq. (13). Each one of the π products yields three
equations with three unknowns, which are the exponents. Solving for
the exponents of π1 is demonstrated in Eq. (14). The same process is
repeated for each one of the other ND variables, π2,π3, and π4:

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

[π1] =[
L2

]a[ M
LT 2

]b[
L2

T 2

]c [
ML2

T 3

]
=Mb+1L2a−b+2c+2T −2b−2c−3=M0L0T 0

[π2] =[
L2

]d[
M

LT 2

]e[
L2

T 2

]f [
ML
T 2

]
=Me+1L2d−e+2f +1T −2e−2f −2=M0L0T 0

[π3] =[
L2

]g[
M

LT 2

]h[
L2

T 2

]i [ 1
T

] =MhL2g−h+2iT −2h−2i−1=M0L0T 0

[π4] =[
L2

]j [ M
LT 2

]k[
L2

T 2

]m
[L] =MkL2j−k+2m+1T −2k−2m=M0L0T 0

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(13)

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

[M] : b + 1 = 0

[L] : 2a − b + 2c + 2 = 0

[T ] : −2b − 2c − 3 = 0

⎫⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭

⇒
⎡
⎣0 1 0

2 −1 2
0 −2 −2

⎤
⎦

⎧⎨
⎩

a

b

c

⎫⎬
⎭ =

⎧⎨
⎩

−1
−2
3

⎫⎬
⎭

⇒
⎧⎨
⎩

a

b

c

⎫⎬
⎭ =

⎧⎨
⎩

−1
−1
− 1

2

⎫⎬
⎭ (14)

Based on Eq. (14), the first ND variable, π1, can be written as Eq. (15):

π1 = P

Ad · Pa

√
Ta

(15)

The interest is in developing a method to gather hover performance for
a specific helicopter and not in drawing a comparison between different
types of helicopters. Therefore, the ND variable (Eq. (15)) can be further
simplified. The main-rotor disk area (Ad ) is constant, and the static
pressure (Pa) and temperature (Ta) of the ambient air can be expressed
as per their ratio to the standard sea-level values (Eq. (16)). This gives
a simplified expression for π1 (Eq. (17)) defined as π∗

1 . Since this term
has dimensions and is not a pure ND, it is better defined as a “corrected”
variable to describe the hover performance of a specific helicopter. It can
be used to facilitate the forthcoming analysis:

Pa = P0 · δ ∴ Ta = T0 · θ (16)

π1 = P

AdPa

√
Ta

= P

AdP0δ
√

T0θ
= P(

AdP0
√

T0

)
δ
√

θ

= 1

AdP0
√

T0

P

δ
√

θ
= Const · P

δ
√

θ
⇒ π∗

1 = P

δ
√

θ
(17)

Similar analysis that was performed for π2, π3, and π4 yielded the
other three corrected variables (π∗

2 , π∗
3 , and π∗

4 ). The hover performance
of a specific helicopter can now be simplified as presented as Eq. (18).
One should be reminded that π4 is a true ND variable, which represents
the ND height of the main rotor above the ground. This ND variable
is beneficial only if the hover performance deals with in-ground-effect.
This paper is limited to the OGE only and does not address the ground
effect on hover performance.

π∗
2 = W

δ
∴ π∗

3 = ω√
θ

∴ π4 = h√
Ad

(18)

Identical dimensional analysis was repeated to evaluate all other 34
possibilities of choosing three-dimensional variables out of the seven.
Ten options were found to not have a unique solution, and few other
options returned repeated ND variables. Overall, the analysis yielded
15 different corrected variables which can be used for the specific hover
performance analysis. Table 3 summarizes all 15 corrected variables in an
array form to indicate which of the three-dimensional variables (power,
weight, and main-rotor angular speed) is used in the specific corrected
variable. Three of the corrected variables (π∗

13, π
∗
14, π

∗
15) are based on all

three-dimensional variables.

Phase Two: Screening for the essential corrected variables using
dimensionality reduction

Phase two of the proposed CVSDR method is to refine the list of 15
corrected variables (Table 3) generated from fundamental dimensional
analysis and to select only the essentials for the task of acquiring an em-
pirical model to represent the OGE hover performance of a helicopter.
A power-based corrected variable needs to be expressed as a function of
few other corrected variables. It is immediately evident that the three cor-
rected variables (π∗

13, π
∗
14, π

∗
15) cannot serve as effective predictors since

each one of them simultaneously involves all three major variables of
power, weight, and angular speed of the main rotor. Even prior to imple-
menting dimensionality reduction tools, the list of candidate corrected
variables is reduced to 12 candidate predictors.

The singular value decomposition theorem. The dimensionality reduc-
tion proposed is based on the linear algebra concept known as the SVD.
According to this concept, which is thoroughly explained in the literature
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Table 3. Corrected Variables to represent the OGE hover performance

Power Weight Main-Rotor and Power, Weight, and
Based Based Angular-Speed Based Main-Rotor Angular Speed Based

Power based π∗
1 = P

δ
√

θ
π∗

6 = P
W

√
θ

π∗
4 = P

δω
π∗

13 = P
Wω

π∗
5 = P

δ2θ
π∗

8 = P4

W5δ
π∗

10 = Pω2
√

θ3

δ
π∗

14 = P
√

δ

ω
√

W3

π∗
9 = P

√
θ

W2 π∗
12 = Pω2

δ
√

θ3
π∗

15 = P
√

δ
Wω

Weight based π∗
2 = W

δ
π∗

11 = Wω2

δ·θ

Main-rotor angular π∗
3 = ω√

θ

speed based π∗
7 = ω√

δ

(Ref. 25), any matrix with real entries can be uniquely decomposed into
a set of three matrices as given in Eq. (19). Consider a real matrix Z to
be of size ‘m’ by ‘n’ (notation (m, n)) and rank ‘r’. Matrix Z can be
expressed as a product of the following three unique matrices:

1) Matrix U called the “left-singular vectors” (LSV) is an orthonormal
matrix of size (m, r). The columns of this matrix are unity-norm vectors,
which are orthogonal to each other. This set of vectors serves as a basis
for the column space of matrix Z.

2) Matrix 
 is a diagonal matrix (size (r, r)) which holds the singular
values of Z as entries along its diagonal. The singular values are nonneg-
ative real numbers that can be arranged along the diagonal in descending
order.

3) Matrix V called the “right-singular vectors” (RSV) is an orthonor-
mal matrix of size (n, r). The columns of this matrix (or the rows of V T )
are unity-norm vectors, which are orthogonal to each other. The set of
these vectors serves as a basis for the row space of matrix Z.

One should consider this decomposition as a way of finding conve-
nient orthogonal bases for both the column space and the row space of
an arbitrary real matrix:

Z = U
V T =

⎡
⎢⎢⎢⎢⎣

u1,1 u1,2 · u1,r

u2,1 u2,2 · u2,r

· · · ·
· · · ·

um,1 um,2 · um,r

⎤
⎥⎥⎥⎥⎦

⎡
⎢⎢⎣

σ1

σ2

·
σr

⎤
⎥⎥⎦

⎡
⎢⎢⎣

v1,1 v2,1 · vn,1

v1,2 v2,2 · vn,2

· · · ·
v1,r v2,r · vn,r

⎤
⎥⎥⎦

σ1 > σ2 > · · · > σr ≥ 0 (19)

The SVD of a real matrix can alternatively be regarded as in Eq. (20),
which is a combination of r rank-one matrices. This complementary way
to look at the SVD is referred to as a spectral decomposition of the matrix
Z. With this approach, any real matrix Z of rank r can be approximated
as a lower than rank r matrix. This reduction in the rank of the matrix is
the essence of the dimensionality reduction of matrix Z:

Z = σ1

⎡
⎢⎢⎢⎣

u1,1

u2,1

··
um,1

⎤
⎥⎥⎥⎦ [ v1,1 v2,1 · vn,1 ] + σ2

⎡
⎢⎢⎢⎣

u1,2

u2,2

··
um,2

⎤
⎥⎥⎥⎦ [ v1,2 v2,2 · vn,2 ]

+ · · · + σr

⎡
⎢⎢⎢⎣

u1,r

u2,r

··
um,r

⎤
⎥⎥⎥⎦ [ v1,r v2,r · vn,r ]

σ1 > σ2 > · · · > σr ≥ 0 (20)

SVD implementation for corrected variables screening. The SVD the-
orem can be implemented for refining the corrected variable list and to
identify those which stand out from the group of 12 as the most effec-
tive predictors for the OGE hover empirical model. A similar approach
was performed in the process of gas-turbine empirical models screen-
ing in Ref. (11). For this, matrix Z is filled with numeral entries of the
12 corrected variables as evaluated for the first three flight-test sorties
of the Bell Jet-Ranger helicopter. Matrix Z becomes of size (56,12).
Each column of the 12 represents a different corrected value (π∗

1 to
π∗

12), and each row represents a distinct single hover point. Next is to
normalize the columns of Z to have a mean of zero and a variance
of 1. For this, each entry along the column of Z is normalized as per
Eq. (21).

Matrix Z is then decomposed into its unique three matrices as per
Eq. (19). As expected, the rank of Z is 12 representing the dimensionality
of the flight-test data. The OGE hover performance problem as appears
in matrix Z can be represented by using all 12 corrected variables (π∗

1

to π∗
12). However, not all corrected variables have the same level of

significance in representing the variance in the flight-test data held by
matrix Z. The singular values (σi), which are arranged along the main
diagonal of matrix 
 in descending order, are key to understanding the
level of importance each corrected variable (i) holds. The conceptual
interpretation of the SVD of Z for the specific problem of OGE hover
performance is illustrated in Fig. 4 and is further explained herein.

The 12 singular values of the diagonal matrix 
 are normalized as
per Eq. (22). The normalized singular values are presented in Fig. 5
along with a cumulative-sum plot of all normalized singular values. The
main conclusion one can draw from Fig. 5 is that the dimensionality
of the general OGE hover problem can be practically reduced from 12
(the general case) to only five for the specific OGE hover analyzed. The
empirical model representing the general OGE hover performance can
be substantially simplified for the specific case analyzed, to include only
five corrected variables, instead of the original 12. The cumulative sum
plot presented in Fig. 5 indicates that 98% of the variance in the flight-test
data stored in matrix Z can be captured by using only the first five most
significant corrected variables. Also from Fig. 5, it can be observed that
the most significant dimension of the problem is responsible for 52% of
the variance in the flight-test data, the second dimension explains 19%
of the variance in the data, and the third, fourth, and fifth can explain
13%, 8%, and 6%, respectively.

The next question one might ask is “which are the most significant
corrected variables?” This can be answered by evaluating the absolute
values of the entries of the RSV matrix. As illustrated in Fig. 4, each row
of the RSV indicates the level of correspondence to a specific singular
value or a dimension of the problem. For example, the first row of the
RSV specifies the level of correspondence each one of the 12 corrected

032010-7



I. ARUSH JOURNAL OF THE AMERICAN HELICOPTER SOCIETY

Fig. 4. The conceptual interpretation of the SVD of matrix Z.

variables has to the first (and most significant) singular value. The second
row of the RSV indicates the correspondence between all 12 corrected
variables to the second most significant dimension of the problem and so
on. Since the dimensionality of the problem was reduced from 12 to 5,
it is required to evaluate the first five rows of the RSV matrix in order to
expose the most significant corrected variables of the OGE hover prob-
lem. Figure 6 presents the significance of each corrected variable to each
one of the five substantial dimensions of the OGE hover performance
problem by indicating the normalized values (as per Eq. (23)) of the
entries along the first five rows of the RSV matrix.

The LSV matrix has no major role in the type of analysis addressed in
this paper since it only indicates the level of correspondence between each
one of the 56 OGE hover points and the singular values of Z. This type
of correspondence between particular hover test points and the various
dimensions of the OGE hover performance was deemed irrelevant to the
topic analyzed.

The following conclusions are drawn from Figs. 5 and 6: (1) the first
and most significant dimension of the OGE hover problem, which holds
for 52% of the variance in the data, is best represented by π∗

12. (2) The
second most significant dimension of the OGE hover problem, which
holds for 19% of the variance in the data, is best represented by π∗

11.
(3) The third dimension of the OGE hover problem, which holds for
13% of the variance in the data, is best described by π∗

2 . (4) The fourth
dimension of the problem, which holds for 8% of the variance in the
data, is best represented by π∗

12. (5) The least significant dimension in
the truncated list of five dimensions holds for only 6% of the variance
in the data and is best represented by π∗

9 , followed by π∗
7 . Since only

one power-based predictor is required for the empirical model in the

quest and the previous conclusions suggest two (π∗
12 and π∗

9 ), it was
decided to use the one that shows the highest correspondence with the
first dimension which is π∗

12. Furthermore, π∗
9 was replaced with π∗

7 as
the predictor which best represents the fifth dimension of the OGE hover
problem.

Finally, a conceptual empirical model to represent the OGE hover
performance of the example helicopter can be stated as Eq. (24). This
conceptual relationship is next pursued with a first-order linear model as
described in Eq. (25).

The multiple steps performed for dimensionality reduction in phase
two are presented as a flow chart in Fig. 7 for further simplification:

π ′
i = π∗

i − μπ∗
i

Sπ∗
i

, i = 1, 2, ..., 11, 12 (21)

σ̂i = σi∑12
k=1 σk

, i = 1, 2, 3, ..., 11, 12 (22)

V̂ (i, j ) = |V (i, j )|∑12
j=1 |V (i, j )| , i = 1, 2, 3, 4, 5 (23)

π∗
12 = f1(π∗

11, π
∗
2 , π∗

7 ) ∴ Pω2

δ
√

θ3
= f1

(
Wω2

δ · θ
,
W

δ
,

ω√
δ

)
(24)

Pω2

δ
√

θ3
= β1

(
Wω2

δ · θ

)
+ β2

(
W

δ

)
+ β3

(
ω√
δ

)
+ β4 (25)
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Fig. 5. The singular values of matrix Z (hover performance dimensions).

Fig. 6. Correspondence between corrected variables and the hover performance dimensions.

Phase Three: Deriving a practical empirical model

The proposed model (Eq. (25)) was fitted with the 56 flight-test OGE
hover points from the first three sorties. This regression process was based
on the “least-squares” method as previously explained in the second
section. The refined OGE hover model, based on the CVSDR method
and the flight-test data from the first three sorties, is presented as Eq. (26).
This empirical model is addressed hereinafter as Model number 1 and
denoted as M1.

Next is to use this refined OGE hover Model 1 (Eq. (26)) in order to
predict the power required to OGE hover for the conditions of Sortie 4.
The errors between the predicted power and the actual measured power
were calculated in accordance with Eq. (27) and are presented in Fig. 8.
Prediction errors ranged up to a maximum absolute deviation of 8.5 hp.
The mean of the prediction errors for the 20 hover points of Sortie 4 was
calculated to be −2.3 hp with a variance of 9.7 hp2.

Similar statistical analysis as explained in the second section for the
base model was performed in order to evaluate the level of accuracy to
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Fig. 7. Steps required for dimensionality reduction in phase two.

be expected from the refined OGE hover model (Model 1). The applica-
ble test statistics for the relevant hypothesis testing were calculated per
Eq. (28). The symbol n represents the number of measured test points
of Sortie 4 (n = 20) and SM1 stands for the standard deviation of the
prediction errors of Model 1 (the standard deviation of the data presented
in Fig. 8. The test statistic was found to be 1.06. Inferential statistical
analysis based on the sampled data from Sortie 4 shows a significant prob-
ability of 30.1% for making a type-I error by rejecting the null hypothesis.
This probability for a type-I error is well above the 5% significance level
accustomed in helicopter performance flight-testing. Practically, there is
no significant statistical evidence at the 95% confidence level to reject the
null hypothesis; therefore, it has to be accepted. Complimentary statisti-
cal analysis shows that at the 95% confidence-level Model 1 (Eq. (26))
predictions deviate on average by up to 0.9 hp from the actual measured
power to hover. This value of 0.9 hp is well below the deviation threshold
of 1.6 hp noticeable to the Bell Jet-Ranger aircrew.

Pω2

δ
√

θ3
= β1

(
Wω2

δ · θ

)
+ β2

(
W

δ

)
+ β3

(
ω√
δ

)
+ β4,⎧⎪⎪⎨

⎪⎪⎩
β1

β2

β3

β4

⎫⎪⎪⎬
⎪⎪⎭ =

⎧⎪⎪⎨
⎪⎪⎩

0.134
−7.99
926.5

−2 × 105

⎫⎪⎪⎬
⎪⎪⎭ (Model 1) (26)

�ErM1 = Pi −
(

β1

(
Wω2

δ · θ

)
i

+ β2

(
W

δ

)
i

+ β3

(
ω√
δ

)
i

+ β4

) δi

√
θ3
i

ω2
i

, i = 1, 2, ..., 20 (27)

tM1 =
∣∣ĒrM1

∣∣ − μ0

SM1

/√
n

, μ0 = 1.6 hp, n = 20 (28)

Proposed CVSDR and Conventional Methods Comparison

As previously noted, the OGE hover flight-test data obtained using
a Bell-Jet Ranger helicopter in a course of four different sorties were
divided into two groups. The first, which consisted of data from the first
three sorties, was used to develop an empirical model to represent the
power for OGE hover. This model was evaluated for accuracy while
used to predict hover points of Sortie 4. Two different models were used,
the base model, which relies on the conventional hover flight-testing
method (the CP to C1.5

w method), and another original multivariable
empirical model, which is based on the proposed CVSDR method. The
proposed multivariable empirical model was based on three corrected
variables or predictors ( Wω2

δ·θ , W
δ
, ω√

δ
), proposed by the CVSDR method.

Figure 9 presents a comparison between the prediction errors of the two
OGE hover models: the conventional method (Eq. (7)) and the proposed
multivariable Model 1 (Eq. (26)).

The conventional model predicts the hover points of Sortie 4 with an
average error of –3.7 hp and variance of 18.1 hp2. The proposed Model 1
yielded better predictions with an average error of –2.3 hp and a smaller
variance of 9.7 hp2. Hypothesis testing aimed at projecting from the
particular case of Sortie 4 to the general case shows that at the accustomed
95% confidence level Model 1 predictions deviate on average by only
0.9 hp. Power predictions of the conventional model deviate, on average,
by a significant 1.7 hp, which is noticeable to the Jet-Ranger helicopter
aircrew. This power deviation of 1.7 hp can be translated to a gross weight
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Fig. 8. Power to OGE hover prediction errors of Model 1 (Sortie 4).

difference of about 15 lb under the conditions tested (Sorties 1–4). The
power to hover prediction of the proposed CVSDR method was found
to be substantially more accurate than the conventional method as its
deviation from the actual power was 1.9 times less than the conventional
method.

One might question why is it that Model 1 predicts the hover power
much better than the conventional model? First and foremost, the CVSDR
method does not assume beforehand which predictors should be used in
the empirical model. Instead, the list of the potential 15 predictors is
reduced to the most essential and effective ones based on the specific
flight-test data analyzed. This approach by itself provides more flexibil-
ity which allows for more accurate modeling. Specifically and as em-
phasized in the introduction, compressibility effects have a substantial
influence on the hover performance of rotors as reported by the cur-
rent CFD analysis. The conventional model neglects compressibility and
drag-divergence effects, whereas the multivariable Model 1 employs a
predictor to represent the blade tip Mach-number (π∗

11 = Wω2

δ·θ ), therefore
capable of including compressibility and drag-divergence effects. The
inherent assumption of the conventional OGE hover flight-test method
for a constant zero-lift drag coefficient (Cd0) cannot be held valid for a
wide range of Mach numbers and high values of main rotor disk load-
ing. Hovering at low ambient temperatures (high Mach tip numbers) and
high gross weights might be responsible for some sections of the main
rotor disk to be under drag-divergence conditions. The two predictors
(π∗

7 , π∗
11) used in Model 1 can provide the extra degree of freedom in

modeling compressibility effects, which are absent in the conventional
model (the CP to C1.5

w method).

Conclusions

The proposed CVSDR hover performance flight-testing method re-
quires no modification to the manner helicopter hover performance flight-
test sorties are carried out. The change is to the procedure of the data
analysis. An original list of 15 corrected variables (predictors) to repre-
sent the general hover performance of a helicopter was formulated by
means of dimensional analysis. This list was further reduced to include
only four essential corrected variables by applying concepts of dimen-
sionality reduction on a specific flight-test data measured on a Bell-Jet
Ranger helicopter. Using those four essential corrected variables, which
represented 98% of the variance in the specific hover performance data,
an empirical hover performance model of the helicopter was derived.

The CVSDR method showed great potential as it was used success-
fully with hover flight-test data of a Bell-Jet Ranger helicopter. The
power predictions of the proposed CVSDR method were compared to
those of the conventional method and were found to be 1.9 times more
accurate. At the 95% confidence level, the CVSDR method deviated by
an average of only 0.9 hp from the actual power to hover, whereas the
conventional method deviated by an average of 1.7 hp.

Although demonstrated in this paper using flight-test data of a Bell Jet-
Ranger helicopter, the CVSDR method is applicable and can be used for
OGE hover flight-testing of any other types of conventional helicopters,
which employ a single main rotor and a single tail rotor.

The CVSDR method, at its core, is using dimensionality reduction
concepts to screen out the most effective and essential predictors of any
physically meaningful problem. This capability of the CVSDR method
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Fig. 9. The conventional and CVSDR methods comparison (Sortie 4 predictions).

can also be applied to other types of helicopter performance flight-testing,
which seek to relate ND variables such as level-flight performance.

Future research will include further evaluation of the CVSDR method
using hover performance of other helicopter types along with focusing
on the suitability and efficiency of employing the CVSDR method to
analyze helicopter level-flight performance flight-testing.
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