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 A B S T R A C T

Vulnerable road user safety is paramount for increasing shares of active travel modes and introducing 
automated vehicles. Microscopic traffic simulation is a prevalent method in research and practice with 
a growing focus on safety and cyclists. Its practical benefits make it an essential tool for developing 
safe future transportation. We review the methodology of simulation studies and the validation of their 
microscopic models to evaluate cycling safety assessment in microscopic simulations. We find that current work 
relies predominantly on the lane-based models of established traffic flow simulation packages that separate 
longitudinal and lateral dynamics. These models do not sufficiently capture diverse behaviors and conflict 
causality to predict cycling safety. In contrast, new models with successful calibrations and validations advance 
simulated interactions towards capturing conflict causality. Of 42 reviewed studies, six calibrate, and three 
validate models for safety prediction. Other studies disregard calibration and validation, posing a threat of 
unfounded safety predictions and unsafe design recommendations. We present a methodological framework 
conceptualizing best practices for reliable assessment. It calls for the identification of safety-relevant behaviors 
of cyclists and other road users in conflicts. Specialized behavioral models must be developed, calibrated, and 
validated. The selected safety indicators must enable capturing the expected unsafe events. To create these 
tools, improved models of cycling behavior must be transferred to established simulation packages. Following 
the framework, researchers and practitioners can use simulation as a practical and ethical means to assess the 
cycling safety impact of innovations ranging from infrastructure to automation and connectivity.
1. Introduction

Urban cycling is integral to sustainable transportation futures like 
the E-bike City (Ballo et al., 2023). Globally, bicycle traffic in urban 
areas is increasing (Pucher and Buehler, 2021). Crucially, though, 
cyclists carry a high burden regarding traffic safety. In the Netherlands 
in 2021, cyclists sustained 71% of all serious traffic injuries (Aarts et al., 
2022). Bicycle-oriented traffic systems and infrastructure designs can 
improve cycling safety and thus are central to recent transport policies. 
At the same time, Automated Vehicles (AVs) promise increased traffic 
safety but are especially challenged by interactions with cyclists and 
other vulnerable road users.

Microscopic traffic simulation is a prevalent tool in traffic engi-
neering and research. It recreates time-varying traffic phenomena by 
simulating individual agents in a virtual environment. Waiting for 
accidents to occur in real traffic takes long observation periods and 
can be considered unethical (Essa and Sayed, 2015; Laureshyn et al., 
2017). In contrast, the ability to test innovations in accelerated virtual 
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environments, without physical implementation, and without exposing 
subjects to harm, makes simulation an ethical and practical tool for 
early development stages. Researchers use it to assess infrastructure, 
traffic control, and emerging technologies like AVs or intelligent trans-
port systems. Additionally, it serves as a training environment for 
learning- and optimization-based algorithms. Especially AV research 
relies on integrated simulation environments to develop vehicle-level 
algorithms or logistics applications and predict their safety impact. 
However, simulation results inherit the uncertainties of underlying 
model assumptions (Sohrabi et al., 2021). An accurate representation 
of cyclist behavior is required to ensure that the innovations developed, 
trained, and tested with micro-simulation are robust, reliable, and 
guarantee bicycle-friendly traffic design.

Microscopic simulations are designed to model operational char-
acteristics like vehicle flow, delay, trip duration, and congestion. For 
simplification, they are mostly collision-free and omit crash causality. 
Still, the simulated trajectories technically enable the calculation of 
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surrogate safety measures based on the nearness of Road Users (RUs) in 
conflicts, regardless of simulated collisions. Arun et al. (2021) review 
crash surrogacy and report that a definitive validation of the crash-
conflict relationship is missing, even for natural traffic observations. 
For simulation, they point out the insufficiency of existing behavioral 
models to describe unsafe interactions. While Young et al. (2014) also 
observe model limitations, they highlight the successful correlation of 
simulated and observed conflicts in specific automobile traffic scenarios 
achieved by various calibration studies (Huang et al., 2013; Gettman 
et al., 2008; Guo et al., 2019). Despite the good overall fit, though, Guo 
et al. (2019) also observe a poor correlation of simulated and observed 
conflict locations. Tarko (2018) suggests that exposure alone may cause 
the good overall fit.

Cycling behavior differs from the disciplined lane-based behavior 
of cars. Cyclists exploit the flexibility of their mobile vehicles to use 
infrastructure in various, sometimes unintended ways. For example, 
cyclists cross intersections with direct and indirect left turns, ride 
against traffic, and use car or pedestrian facilities (Twaddle and Busch, 
2019). Discontinuities in dedicated cycling infrastructure lead to riding 
outside the intended infrastructure (Nabavi Niaki et al., 2018). Bicycle 
boxes, two-directional lanes, or protected intersections may require 
maneuvers that do not have an equivalent in car traffic. Cyclists exhibit 
riding in groups (Grigoropoulos et al., 2021) and queuing patterns 
at traffic lights (Gavriilidou et al., 2019a) that distinguish them from 
cars. Interactions with AVs create new cycling behaviors ranging from 
caution and consideration to exploitation (Bjørnskau et al., 2023). 
Despite these complex and unique behaviors, many current simulation 
environments reuse car models with different parameter values to 
represent cycling. Researchers have raised concerns if these models can 
create valid assessments of real-world situations (Twaddle et al., 2014). 
This is especially critical for safety, which, after Tarko (2018), is deter-
mined by individual behaviors and interactions rather than aggregated 
measures. Johnsson et al. (2018) review surrogate safety assessment for 
vulnerable RUs and conclude that the suitability of indicators depends 
on their ability to capture the safety-relevant interactions. With rising 
interest in cycling, simulation-based safety research articles, case stud-
ies, and government-issued reports are increasingly being published. To 
analyze cycling safety on varying infrastructure (intersections, roads, 
dedicated paths, Intelligent Transport System (ITS) scenarios) and with 
varying interaction partners (cyclists, pedestrians, conventional and 
automated cars), the corresponding models must describe complex 
behaviors. However, legitimate concerns exist about the capability of 
micro-simulation to accurately model cycling behavior and safety. This 
literature review analyzes the methods of existing simulation-based 
cycling safety studies. We compare these with best practices from 
the micro-simulation domain and highlight differences regarding cy-
cling. We track where researchers observe shortcomings that limit their 
simulation results. To this end, we address the subsequent research 
questions:

RQ1: Can micro-simulation model the safety-relevant behavior and 
riding dynamics of cyclists?

RQ2: Can micro-simulation models be calibrated and validated to 
predict traffic conflicts involving cyclists?

RQ3: Can cycling safety be evaluated based on micro-simulation?

Assuming that actual traffic safety is a product of RU behaviors and 
interactions, we review the elements relevant for creating, executing, 
and assessing simulated interactions. Based on the three dimensions of 
human–vehicle interaction simulations (Janssen et al., 2020), these are 
the simulation software package defining the environment, the cyclist 
models defining the agents’ behaviors, and the scenarios defining the 
interactions. We add the calibration and validation procedures that 
ensure reliability and the safety quantification techniques.
2 
Based on the review results, we present a framework that thor-
oughly discusses requirements for reliable study results on top of 
existing guidelines for simulation-based operational traffic assessment 
and highlights research gaps. Our contributions are two-fold. Firstly, 
our framework provides researchers and practitioners with high-level 
methodological best practices to avoid unreliable results. Secondly, 
we identify the current limitations and highlight research needs to 
elevate micro-simulation to a tool that fully integrates bicycle traffic 
and adequately captures safety aspects.

Section 2 describes the review method. Section 3 overviews the 
included studies and analyzes their simulated cycling safety assessment 
methods. Section 4 derives a methodological framework, discusses 
requirements for a robust assessment, and proposes a research agenda. 
Finally, Section 5 provides concluding remarks and an outlook on 
future work.

2. Literature review method

We conduct a systematic literature review of micro-simulation stud-
ies that assess cycling safety and analyze the methods of these publi-
cations regarding our predefined selection of aspects that govern sim-
ulated interactions. If necessary, we complement results with insights 
from the general domain (Fig.  1).

The subsequent criteria delimit the review scope.

Microscopic Traffic Simulation: Design and application of traffic
simulation by modeling individual RUs. We only include studies 
with predictive behavioral models. This focuses on fully virtual 
agents with high fidelity in the framework of Janssen et al. 
(2020). It excludes human-in-the-loop simulations and static 
trajectory models based on field or driving simulator data.

Quantification of Safety: Assessment of actual traffic safety related 
to incident or injury risk using quantifiable criteria. We do not 
consider perceived safety.

Cycling: Inclusion of two-wheelers that require pedaling as propul-
sion. While we include pedal support (e-bikes), we exclude 
motorized two-wheelers and motorcycles that do not require 
pedaling due to their different dynamic characteristics. If a clear 
definition is absent, we rely on basic terminology like ‘‘cyclist’’ 
or ‘‘bicycle’’ in the papers.

We search titles, abstracts, and keywords in Scopus, IEEE Xplore, 
Web of Science, and TRID. Our search phrases consist of synonyms of 
the inclusion criteria microscopic traffic simulation (micro-simulation, 
microscopic simulation, traffic simulation, agent-based simulation, sim-
ulating traffic), cycling (bicycle, bike, bicyclist, cyclist, pedelec, tri-
cycle, trike), and quantification of safety (safety, conflict, crash, ac-
cident, collision, injury). We combine synonyms with Boolean AND, 
aspects with Boolean OR, and use wildcard and proximity operators. 
Due to syntax requirements, the actual search queries differ between 
databases.

We limit the search results to journals, conference proceedings, and 
research/technical reports and eliminate duplicates. Then, we filter 
by title, abstract, and full text. We search the internet, use library 
services, and contact the authors to obtain full-text access. If necessary, 
we machine-translate articles into English. We exclude articles as soon 
as it becomes clear that the inclusion criteria above are not satisfied. 
Finally, we add articles previously known to the authors and perform 
snowballing with Google Scholar for all included papers. Our search 
cut-off is December 08, 2023.

3. Literature review results

This section presents an overview of the included studies (Sec-
tion 3.1) and the individual results for each dimension of simulated 
cycling safety assessment.
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Fig. 1. Overview of the review method with systematic and unstructured search (blue, top) generating the results (black, center) categorized by the dimensions 
of simulated cycling safety assessment. Discussion of the results leads to the outcome (red, bottom).
(a) Structured literature search method and result numbers.

 
(b) Research question topic categories.

  
(c) Publication years.

  
(d) Study locations.

 

Fig. 2. Overview of the search results.
3.1. Overview of included studies

After screening all search results and performing snowballing, we 
include 42 studies (Fig.  2a). Table  1 summarizes the included studies. 
We identified six topic categories (Fig.  2b). ‘‘Mod. & sim. research’’ 
describes publications that focus on developing, calibrating, and val-
idating simulation models. Among these, most develop new cyclist 
models outside or linked to existing simulation packages (hereafter 
called ‘‘new external models’’). All other studies apply existing models 
to answer safety-related research questions (hereafter called ‘‘appli-
cation studies’’) and are categorized based on their focus on traffic 
control, trip planning, infrastructure elements, AV & ITS research, and 
specific behaviors.

Publication numbers increased in recent years, highlighting the 
relevance of the topic (Fig.  2c). As the traffic characteristics vary 
3 
globally, Fig.  2d lists the study location. While eleven countries allow us 
to observe some regional context, the results do not provide a complete 
global picture. Ten studies simulate a generic scenario without a corre-
sponding real-world location and data-driven calibration or validation. 
Only six calibrate, and only three validate their models in terms of 
safety.

3.2. Microscopic traffic simulation packages

The simulation environment is defined by the fundamental imple-
mentation of its traffic network elements. Over half of the reviewed 
studies use the software packages SUMO (8 of 42) and VISSIM (20 of 
42). Both are traffic flow simulators focusing on the accurate repre-
sentation of operational characteristics. They provide the fundamental 
functionalities to include cyclists, albeit with limitations in their mod-
els. The next biggest category (6 of 42) comprises studies with custom 
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Table 1
Reviewed studies using micro-simulation to assess cycling safety through exposure, simulated collisions, or surrogate safety assessment (SSA). The interaction 
opponents considered for safety analysis are bicyclists (B), e-bicyclists (EB), human-driven heavy vehicles (HV), human-driven cars (HC), automated cars (AC), 
pedestrians (P), and other (O). (*) indicates not clearly defined cases. 
 Reference Category Package Interaction opponent Scenario Safety 

method
Predictive 
validation

Study objective  

 B EB HV HC AC P O  
Traffic Analysis Applications

 Denk et al. (2022) AV & ITS Custom x x Right-hook conflict at 
protected bike lanes, 
Germany

collisions Assessment of V2X functions to 
avoid conflicts in right-hook 
scenarios.

 

 Jiang et al. (2022) AV & ITS SUMO x Major intersection with 
bicycle lanes

SSA Train AVs driving policies based 
on simulated traffic evaluating a 
distance-based safety cost.

 

 Karkhanis et al. 
(2020)

AV & ITS SUMO x Unsignalized minor 
intersection, 
Netherlands

collisions Analyze an ITS warning system at 
a bicycle path and bus road 
crossing.

 

 Pauwels et al. 
(2022)

AV & ITS SUMO x x Large urban area, 
Netherlands

SSA Analyze different AV driving 
characteristics and connectivity 
levels for VRU safety.

 

 Pechinger et al. 
(2021)

AV & ITS AIMSUN x Intersection with 
protected bike lanes, 
Germany

collisions Analyze conflicts and collisions 
created by a Hardware-in-the-loop 
simulation of AV systems.

 

 Pechinger et al. 
(2023)

AV & ITS AIMSUN x Intersection with 
protected bike lanes 
and parking, Germany

collisions Analyze conflicts and collisions 
created by a Hardware-in-the-loop 
simulation of AV systems and 
infrastructure based perception.

 

 Qian et al. (2022) AV & ITS SUMO x x Crossing and right-hook 
conflicts

SSA Analyze various C-ITS 
applications for cyclist and 
pedestrian safety.

 

 Ren et al. (2023) AV & ITS SUMO x Major intersection with 
bike lanes

collisions Train and assess adversarial 
policies for AV control on 
simulation output in terms of 
safety.

 

 Ren et al. (2022) AV & ITS SUMO x Major intersection with 
bike lanes

SSA Train and assess environment 
encoding for AV control on 
simulation output in terms of 
safety.

 

 Tafidis et al. (2019) AV & ITS VISSIM x x Neighborhood with 
shared roads, Belgium

SSA Assess AV driving characteristics 
for cycling safety.

 

 Thompson et al. 
(2020)

AV & ITS Netlogo x x Abstract grid-based 
road network

collisions Simulate the safety effect of 
behavioral adaptation to perfect 
AVs.

 

 Bahmankhah et al. 
(2019b)

Behaviors VISSIM x Multi-lane roundabouts, 
Portugal

SSA Analyze impact of driving 
volatility.

 

 Li et al. (2011) Behaviors Custom x Minor road with bike 
lanes

SSA Analyze impact of cyclists using 
vehicle lanes to overtake.

 

 Ren et al. (2016) Behaviors Custom x x Through-going bike 
lanes at major 
intersections, China

SSA Analyze cyclist dispersion effect 
while crossing intersections.

 

 Thompson et al. 
(2015)

Behaviors Netlogo x Abstract grid-based 
road network

exposure Simulate behavioral adaptation to 
exposure to explain the 
safety-in-numbers effect.

 

 Thompson et al. 
(2016)

Behaviors Netlogo x Abstract grid-based 
road network

collisions Simulate behavioral adaptation to 
local density to explain the 
safety-in-numbers effect.

 

 Wallentin and Loidl 
(2016)

Behaviors Netlogo x Large urban area, 
Austria

exposure operational Analyze how exposure explains 
accident statistics.

 

 Bahmankhah et al. 
(2019a)

Infrastructure VISSIM x Major intersection and 
roundabout, Portugal

SSA Compare safety of different 
roundabout layouts.

 

 Campisi et al. 
(2020)

Infrastructure VISSIM x x Turbo roundabouts SSA Analyze the relationship between 
operational performance and 
safety of turbo roundabouts.

 

 Dijkstra (2012) Infrastructure S-PARAMICS x Bike path crossing, 
Netherlands

SSA Analyze impact of traffic 
redirection.

 

 Guhathakurta et al. 
(2023)

Infrastructure VISSIM x x* Large urban area, USA SSA Analyze a cycling network design 
algorithm.

 

 Joo et al. (2012) Infrastructure VISSIM x x* x Major intersection with 
bicycle left-turn lanes, 
bicycle boxes and 
shared roads, South 
Korea

SSA Analyze performance of different 
left-turn cycling infrastructures.

 

 (continued on next page)
implementations. This section summarizes the two most popular en-
vironments and briefly reviews their cyclist and safety assessment 
support.
4 
Most researchers use the commercial software PTV VISSIM (PTV 
Group, 2023). Fellendorf and Vortisch (2011) describe its lane-based 
longitudinal and lateral continuous movement model. Along these 
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Table 1 (continued).
 Kodupuganti and 
Pulugurtha (2022)

Infrastructure VISSIM x x x x Arterial road with 
bicycle lanes and light 
rail, USA

SSA Analyze impact of a proposed 
light-rail system.

 

 Monsere et al. 
(2019)

Infrastructure VISSIM x x Intersections with 
various shared turning 
facilities, USA

SSA Analyze relationship between load 
and safety of existing cycling 
infrastructure.

 

 Preston and 
Pulugurtha (2021)

Infrastructure VISSIM x x x Protected intersection 
design, USA

SSA Predict safety gains of protected 
intersection designs.

 

 Russo et al. (2022) Infrastructure VISSIM x Intersections with 
various shared and 
mixed turning facilities, 
USA

SSA Assess different shared and 
separated cyclist crossing facilities 
under varying RU volumes.

 

 Silva et al. (2023) Infrastructure VISSIM x x x x Major intersection with 
shared and dedicated 
lanes, Peru

SSA Assess alternative cyclist crossing 
facility and adaptive traffic 
control at existing intersection.

 

 Thompson et al. 
(2017)

Infrastructure Netlogo x Abstract grid-based 
network with dedicated 
roads

exposure Simulate the safety effect of 
behavioral adaptation to 
separated cycling infrastructure.

 

 Alecsandru et al. 
(2010)

Traffic 
control

VISSIM x Arterial road with 
bicycle lanes, Canada

exposure Optimize signal control for 
cycling safety.

 

 Ledezma-Navarro 
et al. (2018)

Traffic 
control

VISSIM x x Variations of bike lanes 
at major intersections, 
Canada

SSA Compare different control 
strategies.

 

 Lu and He (2019) Traffic 
control

VISSIM x* x* x Neighborhood with 
shared and dedicated 
infrastructure, China

SSA Analyze proposed treatment to 
traffic control in a school 
environment.

 

 Wu et al. (2014) Traffic 
control

VISSIM x Major intersection with 
bike lanes, China

exposure Analyze cyclist volume adaptive 
signal control.

 

 Bahmankhah and 
Coelho (2017)

Trip planning VISSIM x Neighborhood with 
shared roads, Portugal

SSA Determine optimal cycling routes 
with multiple objectives.

 

 Hübner et al. (2017) Trip planning SUMO Large urban area, 
Germany

exposure Introduce and test cycling routing 
application.

 

Modeling and Simulation Research
 Langer et al. (2023) Mod. & sim. SUMO x Large urban area, 

Germany
collisions Introduce perception and crash 

severity models and calibrate to 
statistics from injury and crash 
databases.

 

 Lemcke et al. 
(2021)

Mod. & sim. VISSIM x x Right-hook conflict at 
turning lanes, USA

SSA Investigate model parameter 
sensitivity and performance for 
cycling safety.

 

 Li et al. (2020) Mod. & sim. Custom x x x* Major road with bike 
lanes, China

SSA Introduce and test cellular 
automata overtaking model.

 

 Liu et al. (2020) Mod. & sim. TESS x* Major road with bike 
lanes, China

SSA safety,
behaviors,
operational

Introduce and test lane-based 
overtaking model.

 

 Ni et al. (2023) Mod. & sim. Custom x x x Major road with bike 
lanes, China

SSA behaviors,
operational

Introduce and test social-force 
interaction model with Bayesian 
decision network.

 

 Sun et al. (2019) Mod. & sim. Custom,
VISSIM,
TransMod.

x x x x Minor road with shared 
lanes and bus stops, 
China

SSA Introduce state-machine 
overtaking model and compare to 
VISSIM and TransModeler.

 

 Sun et al. (2020) Mod. & sim. VISSIM x* Major intersection with 
bike lanes, China

SSA safety Introduce deep learning vehicle 
left-turn model, train on VISSIM 
simulations, and validate on field 
observations.

 

 Xu et al. (2023) Mod. & sim. VISSIM x x Major intersection and 
roundabout with shared 
facilities, Australia

SSA safety,
behaviors,
operational

Introduce and compare VR 
human-in-the-loop simulation 
with pure VISSIM.

 

lanes, car-following models govern longitudinal motion. Laterally, vehi-
cles optimize their continuous on-lane position for maximum Time-To-
Collision (TTC). A lane-change model governs the decision to transition 
into an adjacent lane to achieve free driving. At intersections, RUs 
respect priority rules. Bicycles and cars use the same models with dif-
ferent parameter values, but bicycles have a diamond-shaped footprint 
to improve queuing. The COWI (2012) report identified VISSIM settings 
that best approximate field-measured cyclist capacity, travel time, and 
delay over various mixed-traffic and dedicated infrastructures. The 
derived COWI (2013) report provides the standard guideline for cycling 
simulation with VISSIM. The proposed settings are not validated for 
safety assessment. Still, VISSIM technically supports trajectory export 
for automated safety assessment with the Surrogate Safety Assessment 
Model (SSAM) by Gettman et al. (2008).
5 
The open-source framework SUMO (Lopez et al., 2018) models 
continuous longitudinal and discrete lateral dynamics along fixed lanes. 
A sublane model for continuous lateral dynamics (Semrau et al., 2016) 
and multiple car-following models are available. At intersections, ve-
hicles consider routes, traffic laws, and collision avoidance. SUMO’s 
support for cycling simulation is under development. Currently, bicy-
cles reuse car-following models with adapted parameter values. SUMO 
supports cyclist-specific infrastructure and priority rules. While the 
model is designed to be collision-free, behavioral parameters tuned 
to unsafe driving may provoke collisions (German Aerospace Center, 
2023b). A workshop of SUMO developers, users, and researchers dur-
ing the SUMO User Conference 2022 (Roosta et al., 2023) discussed 
SUMO’s cyclist models and concluded that the included car-following 
models, particularly the Intelligent Driver model (Kesting et al., 2010), 
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can sufficiently represent cyclist following behaviors for current (typi-
cally not safety-related) applications. However, it was observed that the 
models should be more rigorously calibrated and expanded to include 
cycling-specific behaviors like side-by-side riding. Further conclusions 
suggest that the lateral behavior and the treatment of conflict areas 
lack the variability of real cycling. Cyclists strictly adhere to (sub)lanes 
and do not enter conflict areas if occupied by other road users. Fi-
nally, SUMO developers highlighted during the workshop that they 
did not validate SUMO’s current cyclist simulation framework against 
data. Still, virtual logging devices enable to record surrogate safety 
indicators (German Aerospace Center, 2023c).

3.3. Cyclist models

Cyclist models describe the dynamics and behaviors of simulated 
agents. The reviewed application studies generally rely on the models 
included in existing software packages. Frequently, they adapt model 
parameters to create the desired behaviors in specific conditions.

Longitudinal behavior
Both SUMO and VISSIM reuse lane-based car-following models 

like the Wiedemann-74 (W74) (Wiedemann, 1974), Wiedemann-99 
(W99), Krauss (Krauß, 1998), or Intelligent Driver (Kesting et al., 
2010) models for the longitudinal behavior of bicycles. Among the 
reviewed studies, Tafidis et al. (2019) select W99 over W74, referencing 
increased flexibility in the larger number of parameters. Based on 
field observations, they create two parameter sets for leading cars 
and leading bicycles. Their adjustments aim to recreate the distances, 
cautiousness on shared roads, and sensitive driving reactions from 
Belgian cities. Xu et al. (2023) calibrate W99 for cycling on intersec-
tions and roundabouts. In their integrated simulation environment with 
additional behavioral sub-models, they highlight the importance of 
car-following for the overall performance and observe similar distance-
vs.-time trajectories in simulation and reality. Other researchers select 
W74 car-following to recreate cycling at intersections in the United 
States (Russo et al., 2022; Lemcke et al., 2021) or cycling on inter-
sections and roundabouts in Portugal (Bahmankhah et al., 2019b,a). In 
a comparison of field-measured and simulated conflicts, Lemcke et al. 
(2021) determine several sensitive W74 parameters, with the average 
standstill distance having the most significant impact on simulated 
safety.

Additionally, researchers adjust speed and acceleration to influence 
longitudinal dynamics. VISSIM enables definitions of speed distribu-
tions per road section and per vehicle type. Studies define different 
distributions for road sections and intersections (Monsere et al., 2019) 
and road sections and turns (Tafidis et al., 2019). Only Bahmankhah 
et al. (2019b) set the maximum deceleration to field observations. 
Although Grigoropoulos et al. (2022) observe that the acceleration 
from a stop at an intersection directly determines how long cyclists 
are present in safety-critical conflict zones, no study based on existing 
models adapts the default acceleration profiles.

Lateral behavior
SUMO and VISSIM model lateral behavior separately from longitu-

dinal behavior. Where movements between lanes are significant, like 
for cycling on two-lane roundabouts (Bahmankhah et al., 2019a,b), 
researchers tune lane-change parameters. For on-lane behavior in VIS-
SIM, Tafidis et al. (2019) adapt the preferred position on the lane, 
diamond-shaped footprints, the minimum lateral distance, observation 
of adjacent lanes, and collision time gain. In a VISSIM calibration 
study, Kaths et al. (2021) suggest that models for lateral behavior 
are more important for achieving realistic cycling than longitudinal 
behavior.
6 
Human variance and error
Microscopic models are typically stochastic to recreate the inherent 

variability of road traffic. To introduce the increased variability of 
human errors, some reviewed studies modify traffic-rule adherence, 
cyclist attention, and perception. For example, Langer et al. (2023) 
introduce a perception error model which describes probabilities of 
RUs’ failures to recognize a conflict and give priority. They calibrate 
a large-scale SUMO simulation to reproduce real-world crash and in-
jury statistics. Additionally, they configure varying reaction times. 
They limit evasive maneuvers to braking and maintain SUMO’s lane-
based dynamics. While the simulation achieves good scores for car-car 
crash distributions, higher residuals remain for car-bicycle crashes. See 
Section 3.6 for details on simulated collisions.

Within the parameter space offered by existing simulation packages, 
researchers configure road users to ignore a set of traffic rules to 
simulate reckless or inattentive riding (Xu et al., 2023; Karkhanis et al., 
2020). Other VISSIM studies adapt the temporary lack of attention, 
preferred safety distances, gap acceptance, and visibility distances to 
create unsafe behaviors (Lemcke et al., 2021; Bahmankhah et al., 
2019b).

Models outside existing software packages.
Next to the standard lane-based models in existing software pack-

ages, researchers use and develop new individual or external models.
Thompson et al. (2015, 2016, 2017, 2020) and Wallentin and 

Loidl (2016) reduce cycling dynamics to longitudinal movement with 
minimal local interactions. Instead, they focus on software agents with 
independent intelligence and accurate exposure modeling to analyze 
exposure-accident relationships. Similarly, Denk et al. (2022) simulate 
and overlay undisturbed trajectories to create initial conditions for 
stochastic models of the encounter outcome. A related approach outside 
the scope of our review is the simulation of cyclists following fixed 
field-measured trajectories (Ma et al., 2017; Ni et al., 2019). This 
guarantees accurate, undisturbed trajectories, but the simulated cyclists 
cannot react to their environment. While it enables the counterfactual 
analysis of vehicle functions (e.g., Zhou and Wang, 2022) when the re-
actions of the cyclists are not relevant, longer, complex RU interactions 
cannot be simulated.

In contrast, other researchers extend the lane-based dynamics of 
popular simulation packages. A fundamental assumption of lane-based 
models in existing simulation packages is that RUs follow a domi-
nant direction of travel. This generally holds on road segments, but 
is inadequate with unordered traffic at intersections. There, cyclists 
show varying behaviors regarding left turns, the direction of travel, or 
the response to signals (Twaddle and Busch, 2019). For automobiles, 
researchers show that the lane-based architecture constrains the lateral 
movement diversity so that varying turning trajectories, specifically in 
interactions with cyclists, are insufficiently captured (Ni et al., 2019; 
Ma et al., 2017). Among the reviewed studies, Xu et al. (2023) create a 
VISSIM-Unity co-simulation to improve the lateral behavior of cyclists 
in VISSIM with Unity’s velocity-obstacle path-finding algorithm. A 3D 
environment also enables them to simulate weather effects that change 
the vehicle dynamics. Next, studies use social force models to achieve 
spatially fully continuous two-dimensional interactions (Li et al., 2011; 
Ni et al., 2023). This model class describes cyclists as particles moved 
by imaginary forces exerted by the environment, intentions, and other 
road users. In our previous work (Schmidt et al., 2024), a two-wheeler 
dynamics model based on social forces is proposed that can respect 
the motion constraints imposed by a bicycle and rider. It uniquely 
introduces explicit steer, yaw, and roll dynamics for micro-simulated 
cyclists, making only physically feasible maneuvers possible. The model 
shows promising performance for cyclist interaction examples but has 
not yet been validated. Finally, the cellular automata used by Ren 
et al. (2016) and Li et al. (2020) also enable extended movements in 
the lateral dimension. Other than the social force approach, they are 
spatially discrete.
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Another issue is the prediction of consistent maneuver decisions 
over varying time horizons. Here, reviewed studies propose Bayesian 
models (Liu et al., 2020; Ni et al., 2023), finite state machines (Sun 
et al., 2020), and other rule-based approaches (Ren et al., 2016; Li 
et al., 2020). For car behavior in conflicts with cyclists, Sun et al. 
(2020) create a deep-learning-based path planning model. Outside our 
reviewed studies, researchers overlay social-force-based models with 
rule-based models (Rinke et al., 2017) to describe perception and 
decision-making. Kaths (2023) model the tactical choice between direct 
and indirect left turns by creating trajectory guidelines from observed 
data. Other research focuses on behavioral models beyond discrete 
choice. Gavriilidou et al. (2019b) introduce a game-theoretical model 
describing cyclists as utility optimizers regarding physical exertion, 
path deviation, and collision nearness. Hoogendoorn et al. (2021) add 
risky and cooperative riding to this framework. For automobile drivers, 
researchers push behavioral models to consider endogenous cognitive 
processes. van Lint and Calvert (2018) model a driver’s situational 
awareness and capacity to handle an aggregation of mental demand 
to describe driver distraction. Siebke et al. (2023) model the gaze and 
cognitive map that drivers build their decisions on and apply this model 
to virtual conflicts with cyclists. This shows how human perception and 
behavior modeling can help to simulate unsafe situations.

3.4. Calibration

Calibration finds model parameter values so that the output matches 
data gathered from the desired scenario. This section reviews how the 
included studies perform calibration and compares this to established 
frameworks.

Importantly, model quantities set directly to a desired value and 
iteratively tuning model parameters so that a resulting model quan-
tity produces the desired values must be distinguished. In the first 
category, VISSIM allows directly configuring the vehicle flow per 
link (PTV Group, 2023). Researchers choose values to match observed 
field data  (e.g., Monsere et al., 2019), assumptions about future 
traffic (e.g., Campisi et al., 2020), or theoretical capacity (e.g., Joo 
et al., 2012). With the exception of Xu et al. (2023), verification that 
the simulation achieves the desired output is omitted. Other parameters 
frequently set in this fashion are speed and acceleration profiles. 
Studies often describe these steps as calibration, but the missing tuning 
procedures and goodness-of-fit measurements do not satisfy established 
definitions as given by Buisson et al. (2014). Rather, these properties 
can be considered the model input.

Many properties cannot be set directly. In that case, researchers 
tune parameters so that an output property, or measure of performance, 
satisfies a goodness-of-fit criterion. To aggregate statistics, researchers 
repeat simulation runs with different random seeds. Table  2 shows an 
overview of the parameters and performance measures found in our 
review. Among these, six tune the behavioral parameters of existing 
software packages considering safety measures. Bahmankhah et al. 
(2019b) adjust a conflict threshold to replicate conflict counts observed 
by a trained professional and report mean absolute percentage errors 
< 15%. Lemcke et al. (2021) extensively analyze result sensitivity 
towards behavioral parameters and conflict thresholds in VISSIM and 
demonstrate how calibration improves conflict number predictions (de-
fault: 8; calibrated: 14.4; field-observed: 25). However, their best result 
still significantly underestimates field observations, and they observe a 
significant dependency on the random seed. Russo et al. (2022) tune the 
same parameters, and while three study locations produce good results, 
six locations are rejected due to unsuccessful calibration. Monsere et al. 
(2019) manually tune yielding behavior to match field-observed con-
flict frequencies. Simulated and real conflicts show similar trends, but 
the overall conflict numbers are small with significant relative errors. 
Finally, Wu et al. (2014) report a relative error of < 12% between the 
simulated and video-observed conflicts without providing details on the 
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calibration procedure. Alecsandru et al. (2010) and Tafidis et al. (2019) 
report qualitative calibration of the RU behavior by visual inspection.

Regarding new external models, researchers use extensive step-by-
step procedures with rich data sources. For example, Langer et al. 
(2023) present a scheme for calibration based on crash and injury 
databases. After linking cyclist injuries with crashes through a crash 
severity model, they calibrate vehicle speeds and a human error model 
to recreate crash statistics. Several works (e.g., Liu et al., 2020; Ni 
et al., 2023) extensively calibrate the individual components of their 
overtaking and turning models by comparing them to real video-
captured trajectories and observed maneuver types. While this does 
not directly tune safety, it controls the interactions responsible for 
safety. Xu et al. (2023) propose a unique approach where simulated 
trajectories are compared to trajectories generated by human riders 
tasked with the simulated scene in a virtual reality cycling simulator.

All reviewed studies attempt to quantify safety, but only the above 
consider safety during calibration. Others omit calibration or only cali-
brate travel times, queue lengths, traffic volumes, and trip delays. This 
does not comply with the standard framework for micro-simulation 
studies introduced by Buisson et al. (2014). They question the pre-
dictive quality of uncalibrated models and deduce that all evaluated 
performance measures must be calibrated according to measured data. 
On the other hand, Guo et al. (2019) explicitly analyze calibration 
for micro-simulated safety and conclude that tuning operational per-
formance measures has a larger influence on the safety results than 
RU behavior. However, this analysis is limited to vehicular traffic 
and does not consider the complicated irregular cycling behaviors. 
For cycling, Lemcke et al. (2021) show that behavioral parameters 
significantly impact conflicts. Similar sensitivity has been observed 
by Pauwels et al. (2022) for interactions between cyclists and AVs.

3.5. Validation

Validation examines the predictive quality of the calibrated model. 
This section reviews validation methods from the included studies 
and compares them to established frameworks. Twelve studies report 
validation of their models, with seven validating a safety measure using 
two approaches.

Three studies feed a different input dataset to their calibrated 
model and test a safety measure. Liu et al. (2020) validate based on 
demand data from another road with different characteristics. Their 
overtaking model achieves an error of < 31% in predicting over-taking 
conflicts. Xu et al. (2023) extensively analyze if the conflicts created 
by their VISSIM-Unity co-simulation correspond to the results produced 
by human cyclists tasked with the same situations in a virtual reality 
cycling simulator. They observe that humans create more conflicts, but 
the differences are not statistically significant (p = 0.278). The same 
conclusion holds for crashes predicted based on the observed conflicts. 
Finally, Sun et al. (2020) test their VISSIM-trained DNN model for right-
turning cars for a small sample of field-observed conflicts with cyclists 
and obtain a reasonable good conflict severity fit (2.56 s field-observed 
average PET vs. 2.79 s simulated average PET). Not directly considering 
safety, Ni et al. (2023) validate their maneuver prediction models and 
scores up to 91.76% accuracy. The other four studies report validation 
as the evaluation of performance measures other than the calibration 
measures, but maintain the same input data.

Sargent describes validation as ‘‘determining whether the simula-
tion [. . . ] has the accuracy required for the model’s intended purpose 
over the domain of the model’s intended applicability’’ (Sargent, 2010, 
p. 174). The purpose of most reviewed studies is to examine the 
traffic effects of a scenario change. After Buisson et al. (2014), this re-
quires testing the calibrated model’s capability to approximate a dataset 
not used for calibration (predictive validation) with the performance 
measures of the desired analysis. It ensures the predictive quality in 
response to input changes. Regarding safety, the validations of Liu 
et al. (2020), Xu et al. (2023), and Sun et al. (2020) conform to this 
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Table 2
Parameters and performance measures of the tuning-based calibration procedures in the reviewed studies. This does not show quantities set directly to desired 
values (i.e., input parameters).
 Reference Parameters Performance measures Tuning Goodness of Fit  
 Operational Behavioral Safety  
 Bahmankhah and 
Coelho (2017)

– saturation flow* – GEH, MAPE, R2  
 Bahmankhah et al. 
(2019a)

car-following*, 
lane-change*, 
lateral behavior*, 
max. deceleration*, 
visibility range, 
safety gaps, 
TTC threshold

saturation flow* – GEH, MAPE, R2  

 Bahmankhah et al. 
(2019b)

W74 car-following*, 
lane-change*, 
lateral behavior*, 
max. deceleration*, 
visibility range*, 
safety distances*

saturation flowc,b , 
travel timec,b

conflictsc-b sensitivity analysis GEH, MAPE, R2  

 Guhathakurta et al. 
(2023)

– travel time speed, – absolute comparison  
 Li et al. (2020) lane-change rulesc maneuver typeb linear regression,

logistic regression
Likelihood-ratio test,
Wald-test, R2

 
 Liu et al. (2020) sublane width,

sublane choicec,b ,
overtaking motivationb ,
gap acceptanceb ,
car-followingb

travel timeb lateral positionb , 
gap acceptanceb

genetic algorithm, 
maximum likelihood

MAE,
likelihood

 

 Langer et al. (2023) perception errorsc,b , 
reaction timec,b , 
desired speedc

speedc crash ratesc-c, c-b genetic algorithm,
iterative proportional
fitting

KS  

 Lemcke et al. (2021) W74 car-followingc,b , 
lack of attentionc,b , 
safety distancesc,b

delay*, 
platoon ratio*

conflicts* manual numerical absolute 
comparison

 

 Monsere et al. (2019) desired speedc,b , 
priority rulesc,b

conflictsc-c, c-b manual graphical absolute 
comparison

 
 Ni et al. (2023) Comfort zone modelb , 

Bayesian decision networkb , 
Social force modelb , 
car-followingb

comfort zone sizeb , 
maneuver typeb , 
speedb

regression analysis, 
K2-Algorithm, 
EM-algorithm, 
genetic algorithm

SSE, F-Test, RE, RMSPE  

 Preston and Pulugurtha 
(2021)

W74 car-followingc ,
lane-changec ,
speed distributionsc

number of vehiclesc , 
queue length*

approach speedsb,c manual RE, visual inspection  

 Ren et al. (2016) cellular automatab clearance timeb – RE  
 Russo et al. (2022) W74 car-following*,

safety distances*
queue lengths* conflictsb-c – numerical absolute 

comparison
 

 Silva et al. (2023) W74 car-followingc crossing timeb,c – t-test  
 Sun et al. (2020) DNN trajectory generatorc trajectoryc backpropagation MSE  
 Wu et al. (2014) – delayb,c conflictsb,c – RE  
 Xu et al. (2023) W99 car-followingb ,

Unity path-findingb
lateral positionb ,
speedb

regression analysis, 
manual tuning

R2 , visual comparison of 
trajectories

 

(*) traffic mode of the tuned parameters or analyzed performance measure not reported.
(c) heavy vehicle or (automated) car model parameters and performance measures.
(b) bicycle model parameters and performance measures.
(–) no information.
Initialisms: Deep Neural Network (DNN), Geoffrey E. Havers Statistic (GEH), Kolmogorov–Smirnov test (KS), Mean Absolute Error (MAE), Mean Absolute Percentage Error
(MAPE), Mean Squared Error (MSE), Relative Error (RE), Root Mean Squared Percentage Error (RMSE), regression coefficient of determination (R2), Sum of Squared Errors (SSE).
definition. Without input variation, the other reviewed studies do not 
explore how the model predicts traffic performance under different 
conditions. In some cases, prediction may not be the purpose of a 
study. For example, Lemcke et al. (2021) investigate the relationship 
between simulated and field-observed conflicts on one intersection. The 
model input does not vary between calibration and experimentation. 
After Sargent (2010), close examination and comparison of the model 
behavior constitutes operational validation. It analyses the calibration 
outcome by means ranging from different performance measures to 
sensitivity analysis. To prevent confusion with predictive validation, 
we call this process verification from now on. Verification does not 
build confidence into a typical micro-simulation’s primary purpose 
to generalize over varying conditions. For example, Preston and Pu-
lugurtha (2021) experiment with different intersection layouts. Their 
verification considers queue lengths on an existing layout but does not 
show the model’s predictive quality regarding the alternative layout. 
This issue is inherent in studies simulating future scenarios where data 
collection is impossible.

3.6. Safety assessment

This section reviews how the included studies quantify cycling 
safety and compares this to the general traffic safety domain. We 
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identified three categories of safety assessment. Most studies (28 of 42) 
are based on crash surrogacy. Eight studies report simulated collisions. 
Six studies measure safety through exposure to risk factors.

Risk exposure
Hübner et al. (2017) use field data to identify high-risk areas in 

Berlin. They measure the safety of simulated routes by time spent in 
these areas and their count. Alecsandru et al. (2010) and Wu et al. 
(2014) define conflict zones in intersecting traffic streams. The number 
of RUs in the zone describes exposure used to evaluate signal control 
strategies. Similarly, Thompson et al. (2015, 2017) count potential 
collisions based on RUs simultaneously present on the same network 
node. Wallentin and Loidl (2016) successfully fit a linear regression 
model linking simulated encounters with accident reports.

In these studies, safety is not estimated based on interactions and 
event causality but by exposure alone. Vanparijs et al. (2015) highlight 
the significance of exposure on quantitative cycling safety analysis. 
Only controlling for exposure allows meaningful comparison. However, 
the outcome of an event is also influenced by additional factors. Hence, 
measuring exposure alone can give safety indications but not the whole 
picture.
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Fig. 3. Typology of surrogate safety indicators used in the reviewed studies.
Conflicts as collision surrogates
Surrogate safety assessment analyses individual RU interactions. 

Its theoretical foundation is the relationship between high-frequency 
zero-risk interactions and low-frequency crashes postulated by Hydén 
(1987). In between are traffic conflicts with an increasing severity 
or closeness to a collision. Observing frequently occurring conflicts 
enables estimating rare collisions. The nature of the crash-conflict rela-
tionship is debated, making it difficult to predict incident risk numbers 
conclusively (Arun et al., 2021). Surrogate Measures of Safety (SMoS) 
characterize RU interactions to identify conflicts.

Two SMoS dominate our review. Eighteen studies calculate the Post-
Encroachment Time (PET) to identify conflicts and describe severity. It 
measures the time between a RU leaving a conflict area and a second 
one entering it (Allen et al., 1978). Similarly, twenty studies use the 
TTC. It describes the remaining time to a collision for RUs on a collision 
path assuming constant speed and heading (Hayward, 1972).

Fig.  3 shows a typology of safety indicators in our review that 
combines event severity and event dimension. The event dimension 
introduced by Arun et al. (2021) distinguishes indicators that quantify 
nearness to a collision (conflict severity after Hydén, 1987) and indi-
cators that quantify the injury risk of a hypothetical collision resulting 
from the conflict (crash severity). Johnsson et al. (2018) propose to 
sort SMoS by event causality. In the causal conflict model by Davis 
et al. (2011), initial conditions and evasive actions define the outcome 
of an event. TTC and PET are indicators of the severity of a conflict 
outcome. An example of an indicator for the initial conflict condition 
severity is the Time-To-Accident, the TTC at the start of an evasive 
maneuver (Hydén, 1987), used by Pauwels et al. (2022). The instan-
taneous deceleration used by Li et al. (2011) is the only indicator of 
evasive action severity in our review. For crash severity, researchers 
report, among others, the Maximum Speed or Speed Difference. Finally, 
combined indicators measure the severity of the conflict outcome and 
the crash severity. Pauwels et al. (2022) use the Crash Index, which 
fuses a TTC-based measure with speed. To detect conflicts with these 
indicators, researchers apply thresholds. If an interaction exceeds the 
threshold, a conflict is registered. The magnitude of the SMoS describes 
its severity. Gettman et al. (2008) automate the detection and evalua-
tion with their SSAM, which 16 of 20 VISSIM studies employ. In our 
review, only Xu et al. (2023) use an extreme value theory approach to 
predict concrete crash risk based on the observed conflicts.

Several reviewed studies report issues with surrogate safety as-
sessment. Some authors encounter virtual crashes when the model’s 
behavior parameters are tuned to resemble realistic cycling. The treat-
ments of these collisions vary. Monsere et al. (2019) include collisions 
in their assessment but do not report the severity based on TTC or PET 
as they consider them unreliable. Tafidis et al. (2019) ignore collisions 
by applying a lower TTC threshold. Bahmankhah et al. (2019b) re-
calibrate until collisions account for less than 10 % of all conflicts. 
The creators of SSAM acknowledge this problem (Gettman et al., 2008). 
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As most microscopic simulations are intended to be collision-free, they 
conclude that these events do not constitute inaccurate measurements 
but shortcomings in the simulation models. Until models can be im-
proved, they recommend recalibration or spatial filters that limit safety 
assessment to areas with accurate behavior. Huang et al. (2013) show 
that many collisions at intersections can be resolved through small 
changes to the road topology. While this issue was already present 
for cars, the difficulty of tuning lane-based models to complicated 
cyclist maneuvers could exacerbate its severity. Additionally, Russo 
et al. (2022) observe that SSAM does not detect conflicts for some 
perpendicular interactions, although they were realistically simulated 
based on visual assessment. They did not investigate this error fur-
ther. A potential explanation is that SSAM only detects conflicts that 
simultaneously satisfy TTC and PET thresholds. Correspondingly, the 
SSAM validation study (Gettman et al., 2008) observes scenarios where 
conflicts are missed because a vehicle brakes abruptly for a crossing 
RU. These situations lead to small TTCs, but waiting before continuing 
to drive can create large PETs and conflicts are not registered. The 
resulting bias could be especially severe for cycling due to complex and 
diverse interactions.

In their validation of TTC and PET based on real-world conflicts be-
tween cyclists and motor vehicles, Johnsson et al. (2021) establish a sig-
nificant correlation between conflict frequency and recorded crashes. 
However, this was weaker than the correlation between crashes and 
exposure. Corrected for exposure, PET does not correctly rank the safety 
over multiple locations. Furthermore, TTC results in many false posi-
tives, where visual examination did not confirm the conflict severity 
indicated by the temporal proximity. They conclude that speed-based 
indicators should supplement indicators based on temporal proximity.

Simulated collisions
Eight studies simulate collisions and count their frequencies.

In Thompson et al. (2016, 2020), a collision occurs based on a proba-
bilistic model of RUs association with each other. Denk et al. (2022) 
sample collisions from parallel stochastic models of avoidance mea-
sures. Ren et al. (2023) and Pechinger et al. (2021, 2023) count the 
collisions that their AV control algorithms create. Karkhanis et al. 
(2020) deactivate yielding and count events where RUs go below a 
distance threshold as collisions. Langer et al. (2023) introduce per-
ception errors to recreate real-world injury and incident statistics. A 
high-level database provides police-reported injuries from four years 
at the study location. A low-level database lists incidents from two 
other cities with detailed crash types. They map crash types to sim-
ilar locations on intersections in the study location and calibrate the 
simulation to reproduce the crash statistics on both levels. While they 
report promising results for high traffic volumes, small volumes do not 
produce significant numbers. This highlights that crashes are inherently 
rare, and observing them in simulation and naturalistic data requires 
long observation periods. In Langer et al. (2023), the model reproduces 
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the real-world statistics of four years in 60 simulated days, meaning 
simulated interactions are riskier than in real life. To overcome the 
limitation of long runtimes for long simulation periods but still enable 
large sample numbers, Denk et al. (2022) propose a sampling-based 
approach. For right-hook conflicts, they first generate undisturbed 
trajectories. Random sampling and overlapping undisturbed trajectories 
creates initial conditions for encounters, where the number of gen-
erated encounters is based on the expected exposure. Sampling from 
parallel stochastic models of driver perception, cyclist behavior, and a 
V2X automated emergency braking system determines if an encounter 
results in a collision. While this approach captures some aspects of 
crash causality, the simplifications made in the stochastic models do not 
fully capture the interaction process and consequently underestimate 
real collision frequencies.

Event causality in simulated conflicts and collisions
For meaningful simulated collisions, the causal chain of events 

needs to be realistically represented. Following Davis et al. (2011), this 
includes the initial conditions, evasive actions, and the event outcome. 
The capability of current models to describe exposure and some aspects 
of human error may create initial conditions that precede unsafe events, 
but lane-based models constrain possible evasive actions. Hence, the 
outcome may not sufficiently correlate with reality. The prevalence of 
event outcome indicators may lead to unrealistic results, even if studies 
measure conflicts as collision surrogates. Johnsson et al. (2018) propose 
to use multiple indicators that represent all categories of the typology 
(Fig.  3) and to limit measurements to initial conditions if the other steps 
are insufficiently modeled. However, in light of complex and diverse 
cycling behaviors, the existing simulation packages often already have 
cycling-specific shortcomings regarding the initial conditions.

3.7. Scenarios and interactions

The included studies differ in the spatial extent of their sce-
nario. While some studies simulate metropolitan areas (e.g., Hübner 
et al., 2017), others focus on limited neighborhoods (e.g., Tafidis 
et al., 2019), intersections (e.g., Russo et al., 2022) or road segments 
(e.g., Liu et al., 2020). 

Safety is a result of individual interactions, so scenario-specific 
interaction types significantly affect the results. However, among the 
studies using existing models, most do not report their results on the 
interaction level and only analyze aggregated measurements. Below, 
we summarize available comments on model performance for specific 
interactions with cars and between cyclists.

Crossing interactions
A frequent type is the encroachment of turning vehicles on straight-

going cyclists. Fundamentally, the intersection models in existing soft-
ware packages can simulate priority rules for encroaching traffic. Lem-
cke et al. (2021) find VISSIM settings that qualitatively enable the 
correct behavior of motorists crossing a cycling path to access their 
turn-lane. Similarly, Russo et al. (2022) qualitatively observe the ex-
pected conflict types in right-turn scenarios. Quantitatively, conflict 
counts do not match field observations in both cases. Monsere et al. 
(2019) confirm this by counting unrealistically many car-bicycle con-
flicts in a protected intersection design. While they suspect issues in 
managing isolated traffic streams, they also choose aggressive behav-
ioral VISSIM settings to prevent defensive yielding. For SUMO, the 
documentation warns about unrealistic yielding of cyclists because 
they use the same safety gaps as cars (German Aerospace Center, 
2023a). Grigoropoulos et al. (2022) successfully calibrate VISSIM to 
field-observed cyclist queue discharge times and automobile waiting 
times in right-hook conflicts, showing that VISSIM successfully models 
important operational characteristics on a group level. Considering the 
issues with interaction-level behavior reported above, this does not 
guarantee acceptable safety performance.
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Outside the included studies, Ma et al. (2017) show that VISSIM-
generated trajectories of left-turning automobiles only capture a small 
fraction of the spatial diversity of field observations and thus cannot 
represent realistic interaction behaviors. They develop a spatially con-
tinuous 2D model that better predicts the variety of car maneuvers 
in left-turning conflicts with cyclists. After calibration, their model 
achieves a good fit between average simulated (3.94 s) and field-
observed (3.99 s) PET. Other new models for the same scenario show 
similar performance (Ni et al., 2019; Sun et al., 2020).

Interactions on shared lanes
In scenarios with shared infrastructure, RUs interact longitudinally 

while following and laterally while overtaking, changing lanes, or 
mixing in open spaces. The default lane-based models (see Section 3.3) 
offer parameters to adapt longitudinal dynamics to real-world obser-
vations. Authors generally do not report issues regarding longitudi-
nal dynamics. For lateral interactions, Monsere et al. (2019) analyze 
bicycle-vehicle conflicts in a shared right-turn lane and observe that 
the VISSIM lane-based model does not sufficiently use the lateral space. 
In contrast, Russo et al. (2022) achieve credible conflict numbers for 
their shared right-turn lane. Additionally, Sun et al. (2019) analyze the 
VISSIM overtaking model on two-lane two-way roads with cyclists and 
observe unrealistically weak reactions of overtaking RUs to oncoming 
traffic.

Authors develop new models outside existing simulation packages 
to improve interactions in shared lanes and spaces. In turning conflicts, 
more complex rule-based decision-making increases the plausibility of 
interactions with oncoming traffic (Sun et al., 2019). Still, calibration 
attempts reveal too little diversity of the simulated travel times and 
spatial trajectory distributions compared to field observations. Other 
studies create models for overtaking cyclists on one-way roads that 
intrude into vehicle lanes. The sub-lane model of Liu et al. (2020) 
achieves realistic travel times but underestimates overtaking events due 
to the limited sub-lane resolution. Additionally, their lateral position 
model does not generalize well for different calibration and validation 
site characteristics. For the same scenario, the residual overtaking 
maneuver prediction error of the cellular automata approach of Li et al. 
(2020) after calibration ranges between 3.5% and 13%. The social-force 
approach of Ni et al. (2023) correctly predicts > 91% of overtaking 
events in the calibration dataset and shows promising results for lateral 
distance, trajectory distribution, travel time and safety. However, the 
latter two studies did not perform a full predictive validation.  Ren 
et al. (2016) specifically address the lateral dispersion effect of straight-
going cyclists on intersections with a cellular automata approach. For 
roundabouts, trajectories created by the VISSIM-Unity co-simulation 
of Xu et al. (2023) graphically fit human trajectories well. Still, the 
simulation produces a smaller headway than human riders, creating 
fewer conflicts and crashes. Additionally, they observe differences in 
lateral placement on the lane without influence on conflict occurrence.

Specialized cycling infrastructure
Researchers simulate specialized bicycle infrastructure like bike 

boxes. As simulation packages often lack native support, researchers 
attempt workarounds. In VISSIM, Russo et al. (2022) extend a single 
lane into the intersection as a ‘‘bike box’’. They do not measure realistic 
conflicts. In contrast, Joo et al. (2012) implement a bike box through 
adjacent narrow lanes with bicycle priority and do not report issues. 
For SUMO, Grigoropoulos et al. (2019) guide how to model advisory 
bicycle lanes, bicycle boxes, and indirect left turns within the package 
limitations. In a later study, Grigoropoulos et al. (2022) conclude that 
simulated cyclist behavior around bike-boxes qualitatively aligns well 
with naturalistic traffic observations, but results were not numerically 
validated.
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Variability in road user behavior
Monsere et al. (2019) and Russo et al. (2022) attempt to calibrate a 

single parameter set for multiple intersections and observe that not all 
local phenomena could be captured. This may be caused by the single 
parameter set, the lane-based model, or the behavioral rule set. Even 
for single scenarios, Lemcke et al. (2021) report that their calibrated 
model still underestimates field-observed conflicts, pointing to model 
shortcomings for safety-relevant behaviors. More positive reports of 
bicycle model performance, like the COWI manual (COWI, 2013) or 
the W99 calibration efforts for cyclists by Kaths et al. (2021), target 
operational characteristics without analyzing safety-critical behavior. 
But even here, Kaths et al. (2021) identify lacking options to assign 
distributions to car-following parameters as a limiting factor and high-
light the significance of lateral motion to realistic cyclist behavior. For 
simulated and observed pedestrian-automobile crosswalk conflicts, Wu 
et al. (2018) show that illegal behaviors contribute significantly to 
the residual. Guhathakurta et al. (2023) expect an underestimation 
of cycling conflicts due to the same effect but argue that a delta 
comparison limited to the modeled factors is possible. Qualitatively, 
more researchers from our review find the models in existing packages 
insufficient to represent complex cycling behavior (Ledezma-Navarro 
et al., 2018; Xu et al., 2023). Thompson et al. (2020) point out missing 
knowledge of incident causality as a critical shortcoming.

These insights make it impossible to single out (un-)suitable sce-
narios. Current simulation packages fundamentally enable the creation 
of many infrastructure layouts and interaction types. However, the 
summarized issues highlight a lack of robustness to unsuitable config-
urations and a lack of validation for specific scenarios. Unfortunately, 
many studies in our review analyze safety based on microscopic inter-
actions simulated by the existing software packages but do not validate, 
verify, or comment on whether the simulation functions correctly. As a 
result, a simulation might seem plausible macroscopically but produce 
unrealistic microscopic interactions. Improved external cyclist models 
can provide solutions for the shortcomings of the default models but 
are scenario-specific and mostly yet to be comprehensively validated.

4. Framework for simulated cycling safety assessment

After reviewing existing studies, we present a methodological frame-
work for simulated cycling safety assessment (Fig.  4). The framework 
inherits building blocks from the Barceló (2010) conceptual framework 
of micro-simulation models and the calibration guidelines of Buisson 
et al. (2014). Many fundamental aspects outlined in the guidelines 
for microscopic simulation by the US Federal Highway Administration 
Traffic Analysis Toolbox Volume III (TAT) for assessing operational 
characteristics (Wunderlich et al., 2019) also apply to cycling safety. 
We reiterate those only where related issues became apparent in the 
reviewed application studies. Instead, we focus on the additional cy-
cling and safety assessment requirements and highlight differences. 
We take up the suggestion of virtual Randomized Controlled Trials 
(vRCTs) proposed by Brunner et al. (2019) and used by Denk et al. 
(2022). They apply the structured and established procedure of ran-
domized controlled trials in medicine to simulated interventions in 
traffic systems, arguing that the considerable overall complexity of a 
traffic system requires similar statistical tests as investigations of the 
human body. This may help to systematically address the stochasticity 
of traffic simulation and create robust results.

Our review raises further concerns regarding the capability of cur-
rent micro-simulation packages to simulate cycling safety. Calibration 
attempts have high residuals, and no application study comprehen-
sively validates their model for cycling safety. Those studies looking 
at individual interactions report limitations of the default lane-based 
models to capture the diversity of movement patterns. While perception 
errors and rule noncompliance can be simulated to create conflicts, the 
RU behavior in critical conflict situations is usually not addressed. Con-
sequently, conflict causality is not sufficiently reflected in the existing 
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models. Automated conflict-based assessment may miss unsafe situa-
tions due to unsuitable indicator combinations. In summary, we do not 
find sufficient evidence that the currently available simulation packages 
enable cycling safety assessment with the same predictive quality as 
the operational characteristics of car traffic. Hence, researchers may 
not rely on current tools as validated out-of-the-box solutions. In-
stead, one must carefully analyze the requirements of study conditions, 
individually develop, calibrate, and validate model components and 
communicate underlying assumptions and limitations. Examples of this 
process can be found in the reviewed studies that create new individual 
models. Our framework aids this process by listing necessary steps and 
highlighting methodological requirements.

We discuss the building blocks of the framework and their method-
ological requirements in the following subsection. Then, we discuss the 
framework’s application potential and summarize the research gaps.

4.1. Methodological requirements

In our framework, every step defines requirements for the building 
blocks of the following steps.

Problem definition
During problem definition, researchers must describe the study 

scenario. Following Buisson et al. (2014), the factors influencing the 
traffic scenario and cycling safety must be identified based on field 
observations or related literature. Researchers may limit the selection 
of factors to those relevant to the research questions. The suitability 
of micro-simulation to answer a research question depends on the 
validated capability of the model to describe the relevant factors. With 
safety being a characteristic of RU interactions, researchers must pay 
special attention to behavioral patterns. Simulations of a real-world 
scenario are most suitable as the characteristics of the specific locations 
may be observed and used to design, calibrate, and validate the model. 
Generic and predictive scenarios without an immediate real-world 
counterpart are especially valuable for research questions on future 
traffic developments but require research into new models with proven 
intrinsic validity. For statistical testing with vRCT after Denk et al. 
(2022), the formulation of research hypotheses, as well as a baseline 
(i.e., ‘‘control group’’) without the proposed intervention, is required.

Environment selection
Based on the critical factors of cycling safety defined in the previous 

step, researchers have to select the building blocks of the simulation. 
Specifically, the simulation environment and its bicycle models need 
to be capable of modeling the RU behavior, relevant infrastructure 
elements and their geometry, as well as traffic characteristics like travel 
speeds, queuing patterns, and stop waves.

Our reviewed studies successfully model bicycle flow and traffic 
control using established tools (e.g., Russo et al., 2022; Xu et al., 2023; 
Bahmankhah and Coelho, 2017). However, our review reveals sig-
nificant shortcomings of the default lane-based models for cycling 
safety. In scenarios with one dominant direction of travel and without 
excessive lateral dynamics, studies may continue the work of Lemcke 
et al. (2021) to explore the validity of the lane-based approach further. 
For more complex irregular interactions, this review points towards the 
unsuitability of the default lane-based approach. Extending the TAT, 
this puts a focus on selecting and modifying or newly developing a 
traffic model that can describe the specific required behaviors and 
interactions. Our review includes several examples of new models 
for specific scenarios that significantly improve simulated road user 
behavior (e.g., Ni et al., 2023; Xu et al., 2023). Similarly, infrastructure 
models must be able to accommodate cycling behaviors. While the 
main elements are available in most environments, restrictions apply 
for special cycling infrastructure (e.g., bicycle boxes).

As exposure is a prerequisite for (un)safe interactions, performance 
measures should both test operational and safety performance. This 
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Fig. 4. Methodical framework for cycling safety assessment with micro-simulation. Green ticks indicate model components ready for use in cycling studies. Yellow 
dots indicate components that require further scenario-specific research.
extends the TAT requirements for a local and a global operational 
measure by at least one safety performance measure that must be 
chosen to answer the research question and reliably detect the expected 
unsafe situations. For interaction level assessments, SMoS measure 
different varieties of hazardous situations and are not necessarily inter-
changeable. Johnsson et al. (2018) provide three recommendations for 
choosing SMoS for cycling: Firstly, a combination of multiple indicators 
is necessary to detect unsafe cycling. This should include indicators 
for initial conditions, evasive actions, and conflict outcomes, provided 
the RU models describe all parts. Secondly, indicators solely based 
on temporal proximity may overestimate conflict frequency, and a 
combination with speed-based measures should be evaluated. Thirdly, 
crash severity is essential for cyclists because of their high vulnerability 
compared to car passengers.

SSAM should be used with caution. Firstly, it only measures the con-
flict outcome, and secondly, the conflict detection based on combined 
TTC and PET thresholds can miss dangerous situations. Cycling creates 
complex dynamic behaviors that may be especially hard to capture 
correctly. This much increases the requirement for visual inspection 
of the simulation outcome compared to the TAT, not only for veri-
fication of the simulation but also to understand what situations the 
safety indicators detect. During our review, building confidence in the 
simulation quality was frequently limited by the lack of dissemination 
of spatiotemporal results. To overcome this, researchers should more 
often show example trajectories, trajectory distributions, or animations 
of their simulations.

If safety assessment is based on risk exposure measures alone, this 
requires prior knowledge of the associated risk and neglects crash 
causality. Thus, it may provide an incomplete picture. Still, as exposure 
is a prerequisite to crashes, Wallentin and Loidl (2016) show that 
it reveals a fundamental insight into safety. With existing models 
providing realistic traffic flows, exposure measurements are possible 
if developing an improved model is out of scope. On the other end 
of the spectrum, simulated crashes must consider event causality and, 
hence, are only a viable measure if this can be simulated sufficiently. 
In all cases, predicting a concrete crash risk is currently limited to 
particular scenarios with realistic models throughout the simulated 
causality chain.
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Lastly, calibration and validation data must be collected. It must 
showcase the relevant factors influencing cycling safety and enable the 
extraction of the performance measures.

Model development
Based on the selected environment, the traffic model must be devel-

oped. In addition to the conventional setup of road geometry, traffic 
control, and demand, necessary external behavioral models must be 
integrated. New models, complex behavior depending on local context, 
and the limited capabilities of established models increase the focus on 
model calibration and, compared to the TAT, require validation.

Calibration and validation must target the specific requirements 
of the study objective, as defined by the environment and research 
questions. After Buisson et al. (2014), it must test all performance 
measures intended for experimentation. If the experiment includes 
model input changes (e.g., different road layouts, traffic volumes, or 
mode share), the model’s capability to predict the safety outcome of 
these changes must be validated. If previous works have calibrated and 
validated sub-models in comparable conditions, researchers may rely 
on this validity (Buisson et al., 2014). However, our review reveals the 
scarcity of successful cyclist model validations for micro-simulation and 
highlights their instability under different scenarios. Hence, researchers 
must perform their own calibration and validation in most cases. 
Without it, the simulation results might not be informative about real-
world performance. In future scenarios like mixed traffic of cyclists and 
AVs, data-driven validation may be impossible. Here, further dissemi-
nation of the underlying processes may create sub-models that can be 
validated with data, are based on physical principles, or enable strong 
assumptions. When validation is impossible, studies must communicate 
their hypothetical character and underlying assumptions.

To ease the calibration complexity, researchers typically apply 
multi-stage pipelines that first tune operational characteristics and then 
focus on safety (Huang et al., 2013; Guo et al., 2019). For the cali-
bration of operational performance, the TAT does not require multiple 
runs, assuming little dependency on stochastic behaviors. In contrast, 
microscopic RU interactions depend significantly on the distribution of 
behavioral parameters. Hence, safety calibration and validation require 
multiple runs with different random seeds.
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Experimentation
During experimentation, researchers run the simulation and record 

performance measures. The traffic model defines the requirements for 
the experimental procedure. A simulation run is characterized by its run 
time, the sampling rate, and a warm-up period to populate the network. 
The sampling rate must allow sufficient temporal resolution to generate 
realistic interactions. As traffic simulations include random processes, a 
simulation has to be run multiple times. Reviewed studies report results 
significantly depending on the random seed of a simulation run (Lem-
cke et al., 2021; Russo et al., 2022). Large fluctuations between runs 
indicate that a model contains much randomness and that experiments 
require more runs to explore the parameter space. Hollander and Liu 
(2008) describe how a sufficient number of runs may be derived 
to estimate the mean of a performance measure reliably. The TAT 
recommends four runs for this initial estimation. For safety, Denk et al. 
(2022) highlight that critical situations may arise from rare behaviors 
at the tails of parameter distributions. More than four runs may be 
necessary to observe these for the first mean and standard deviation 
estimation. The vRCT framework calculates the required number of 
encounters based on the desired statistical significance level, effect size, 
and statistical power.

Evaluation
Measurements of a random variable in the experimentation step 

require researchers to report measurement statistics. If scenarios are 
compared, the comparison must be analyzed for statistical significance. 
Here, our review did not identify unique aspects of cycling safety.

4.2. Applications and outlook

We intend our framework to be a study guideline for researchers and 
practitioners. However, the shortcomings of current cycling simulations 
are significant, and the framework formulates very high requirements. 
These can be met with reasonable effort for limited research questions 
relying on risk exposure or scenarios with a dominant direction of 
motion. In many cases, however, the need for behavioral research, 
development of new traffic models, data collection, and calibration/val-
idation might exceed the scope of an application study. Analyzing the 
requirements for a specific study with our framework will, however, 
reveal research opportunities that might lead to the development of 
more comprehensive simulations.

The various applications we observed, including emerging chal-
lenges of our future transport systems, represent a clear need for 
integrated simulation environments. Creating cycling-friendly transport 
systems and introducing AVs, potentially at the same time, raises a 
multitude of safety-related research questions regarding infrastructure, 
operations, and logistics applications. Elevating microscopic simula-
tion to a tool that comprehensively answers these questions could 
help development and boost safe real-world implementations. Further 
disseminating the underlying behavioral and mechanical processes to 
create sub-microscopic models is a promising approach. For example, 
models of driver distraction (van Lint and Calvert, 2018) may simi-
larly apply to cyclist-driver interactions. The agent-based approach of 
modeling every RU with autonomous intelligence can put a focus on 
individual behaviors and motivations (Nguyen et al., 2021). For vehicle 
dynamics, Pechinger et al. (2021, 2023) couple micro-simulations with 
existing vehicle dynamics models and Schmidt et al. (2024) show that 
this may also be applied to bicycles. More research needs to focus 
on cycling to create integrated simulation environments for reliable 
predictions on multiple levels of abstraction.
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4.3. Research agenda

Our framework highlights that significant research is required to 
unlock micro-simulation as a cycling safety tool and create integrated 
traffic simulations of future transportation.
Cyclist Behavior: To develop and calibrate micro-simulation models, 

cyclists’ typical behavior in conflicts must be known. While 
research into this is active, many specific scenarios are insuf-
ficiently investigated. Specifically, developing predictive safety 
models needs information on RU behavior in severe conflict 
situations at the final stages of crash causality. Research on a 
global level is necessary to understand diverse traffic conditions 
around the world.

Conflict Causality Models: To make simulated conflicts meaningful, 
sub-models for the underlying processes of cycling behavior are 
needed. Research may build on existing frameworks like the 
social force concept, task-demand models, or human learning to 
focus on weakly disciplined non-lane-based behavior and human 
factors. Integrating these sub-models into a single framework 
would enable safety analysis on the interaction and system 
levels.

Validation of Existing Models: Comprehensive model validations
considering cycling safety are scarce. Determining under which 
conditions existing and new approaches produce realistic re-
sults would help researchers and practitioners identify appro-
priate models for a specific scenario. Here, research into model 
transferability and generalizability is needed.

Cycling Field Data: With data availability limiting model develop-
ment and validations across scenarios, more research should 
make their data available to others. To this end, creating a 
comprehensive repository of cycling data would greatly benefit 
the collective effort to create better models and more reliable 
application studies.

5. Conclusions

Due to its practical benefits, researchers apply microscopic traffic 
simulation to assess cycling safety in current and future traffic scenar-
ios. However, previous research has voiced concerns about whether the 
underlying models can predict safety-relevant behavior. We analyzed 
the methodology of 42 studies quantifying micro-simulated cycling 
safety to answer the following questions.
RQ1: Can micro-simulation model the safety-relevant behavior and riding 
dynamics of cyclists? Studies predominantly tune the lane-based mod-
els of existing simulation packages for automobile traffic to resemble 
cycling. Parameters affecting gap acceptance, visibility, and attention 
are set to create unsafe situations between cars and bicycles. However, 
detailed calibration attempts show that the simulation underestimates 
field-observed conflicts (Lemcke et al., 2021). Additionally, researchers 
observe shortcomings regarding dedicated cycling infrastructure and 
report difficulties finding broadly applicable model parameters (Mon-
sere et al., 2019; Russo et al., 2022). Cyclists and conflicting cars 
overly stick to lanes instead of showing variable trajectories (Ma et al., 
2017; Roosta et al., 2023), indicating that simulations may miss safety-
relevant situations. Our review does not find definitive, successful 
validations of existing default models regarding the safety of simulated 
behaviors and interactions. Hence, studies must carefully develop and 
validate scenario-specific models to achieve reliable results. Research 
on overtaking models (Ni et al., 2023), perception models (Langer 
et al., 2023), and turning models (Sun et al., 2020) achieves promis-
ing results. It demonstrates how modeling the underlying interaction 
processes among cyclists and with cars may enable the simulation of 
the whole chain of conflict causality. In the general domain, spatially 
fully continuous models (Kaths, 2023) and cognitive models (van Lint 
and Calvert, 2018) are promising directions to increase simulated event 
causality further.
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RQ2: Can micro-simulation models be calibrated and validated to predict 
traffic conflicts involving cyclists? Researchers generally calibrate and 
validate the existing simulation packages for operational characteristics 
like flow, queue lengths, or trip duration. No application study in our 
review calibrates and validates safety performance. Further, they do 
not comment on whether the simulation environment creates realistic 
behaviors and interactions. This conflicts with established simulation 
literature demanding that the calibrated and validated performance 
measures must be identical with experimentation and that distinct 
datasets must be used for a model to prove its predictive power (Buisson 
et al., 2014). With a lack of successful validation studies concerning 
simulated cycling safety, studies may not rely on the general validity 
of currently available tools. New external models in our review are 
usually extensively calibrated and show promising performance, but 
predictive safety validations are scarce. Xu et al. (2023) propose a 
promising approach for calibration and validation based on human-
in-the-loop simulations that needs further analysis for the validity of 
human behavior in virtual reality.
RQ3: Can cycling safety be evaluated based on micro-simulation? Most 
studies employ crash surrogacy for safety assessment, mainly using 
SSAM. This leads to concerns about the completeness of safety results, 
as SSAM may miss unsafe situations due to serial PET and TTC thresh-
olds. The proposal of Johnsson et al. (2018) to choose safety indicators 
that cover all relevant parts of conflict causality in the scenario may 
help to overcome this. However, current traffic models generally do not 
simulate realistic cycling behaviors through the full conflict process. As 
a consequence, researchers typically filter simulated collisions. Future 
models must consider the processes leading to conflicts and behavior 
in conflicts to make simulated collisions meaningful. In the mean-
time, Wallentin and Loidl (2016) show that exposure measurements 
may give limited insights into simulated safety. Reliable conclusions 
must consider the model stochasticity and employ statistical tools to 
derive a procedure for experimentation, evaluation and reporting of the 
results. Denk et al. (2022) demonstrate how the medical gold standard 
for randomized controlled trials can be applied to simulated traffic 
assessment.

In summary, current default micro-simulations are not ready for 
cycling safety assessment. Instead, many building blocks are active 
research topics. Improved models already exist, but more comprehen-
sive validations are necessary to promote their transfer into micro-
simulation applications. Additionally, the application studies of our re-
view often do not follow established best practices. To achieve reliabil-
ity, researchers and practitioners must carefully determine the factors 
and behaviors influencing cycling safety specific to the scenario. Then, 
they must select or create models that can simulate these phenomena 
and perform calibration and validation regarding safety measures. We 
present a methodological framework to guide this process.

The framework places high requirements on application and case 
studies. Traffic simulation is no shortcut to quick results on cycling 
safety. Overcoming its inherent limitations requires rigor and detailed 
analysis. The reward is the possibility of making predictions without 
the technological and ethical limitations of real-world studies. Several 
reviewed works focus on safety-critical AV functions or connected 
systems. However, predictions on transportation futures based on mod-
els with unclear reliability become weak at best and dangerous at 
worst. Insufficiently founded safety claims for vulnerable RUs might 
incentivize developments and policies that eventually create hostile 
environments and endanger real people.

This review could draw only limited insights from some of the 
included studies because of insufficient documentation of the method, 
not beyond high-level facts about the adopted simulation package, the 
study location, or selected settings. This further highlights the need for 
a rigorous methodological framework.

Future work must develop comprehensive micro-simulations to aid 
the design and implementation of safe technological, operational, and 
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logistical innovations for future transportation systems. Especially for 
AVs, mixed traffic with cyclists is a bottleneck for large-scale adoption. 
To alleviate the burdens on case studies, research must focus on an 
improved representation of cycling behaviors and RU interactions. Ex-
isting approaches like the social force concept or models of perception, 
attention, and workload may help to model the processes leading to 
conflicts and thus enable in-depth analyses and justifiable predictions 
leading to safety. Incorporated into existing microscopic frameworks, 
this could answer some of the most pressing future mobility and 
transportation questions.
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