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ABSTRACT

Vulnerable road user safety is paramount for increasing shares of active travel modes and introducing
automated vehicles. Microscopic traffic simulation is a prevalent method in research and practice with
a growing focus on safety and cyclists. Its practical benefits make it an essential tool for developing
safe future transportation. We review the methodology of simulation studies and the validation of their
microscopic models to evaluate cycling safety assessment in microscopic simulations. We find that current work
relies predominantly on the lane-based models of established traffic flow simulation packages that separate
longitudinal and lateral dynamics. These models do not sufficiently capture diverse behaviors and conflict
causality to predict cycling safety. In contrast, new models with successful calibrations and validations advance
simulated interactions towards capturing conflict causality. Of 42 reviewed studies, six calibrate, and three
validate models for safety prediction. Other studies disregard calibration and validation, posing a threat of
unfounded safety predictions and unsafe design recommendations. We present a methodological framework
conceptualizing best practices for reliable assessment. It calls for the identification of safety-relevant behaviors
of cyclists and other road users in conflicts. Specialized behavioral models must be developed, calibrated, and
validated. The selected safety indicators must enable capturing the expected unsafe events. To create these
tools, improved models of cycling behavior must be transferred to established simulation packages. Following
the framework, researchers and practitioners can use simulation as a practical and ethical means to assess the
cycling safety impact of innovations ranging from infrastructure to automation and connectivity.

1. Introduction

environments, without physical implementation, and without exposing
subjects to harm, makes simulation an ethical and practical tool for

Urban cycling is integral to sustainable transportation futures like
the E-bike City (Ballo et al., 2023). Globally, bicycle traffic in urban
areas is increasing (Pucher and Buehler, 2021). Crucially, though,
cyclists carry a high burden regarding traffic safety. In the Netherlands
in 2021, cyclists sustained 71% of all serious traffic injuries (Aarts et al.,
2022). Bicycle-oriented traffic systems and infrastructure designs can
improve cycling safety and thus are central to recent transport policies.
At the same time, Automated Vehicles (AVs) promise increased traffic
safety but are especially challenged by interactions with cyclists and
other vulnerable road users.

Microscopic traffic simulation is a prevalent tool in traffic engi-
neering and research. It recreates time-varying traffic phenomena by
simulating individual agents in a virtual environment. Waiting for
accidents to occur in real traffic takes long observation periods and
can be considered unethical (Essa and Sayed, 2015; Laureshyn et al.,
2017). In contrast, the ability to test innovations in accelerated virtual
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early development stages. Researchers use it to assess infrastructure,
traffic control, and emerging technologies like AVs or intelligent trans-
port systems. Additionally, it serves as a training environment for
learning- and optimization-based algorithms. Especially AV research
relies on integrated simulation environments to develop vehicle-level
algorithms or logistics applications and predict their safety impact.
However, simulation results inherit the uncertainties of underlying
model assumptions (Sohrabi et al., 2021). An accurate representation
of cyclist behavior is required to ensure that the innovations developed,
trained, and tested with micro-simulation are robust, reliable, and
guarantee bicycle-friendly traffic design.

Microscopic simulations are designed to model operational char-
acteristics like vehicle flow, delay, trip duration, and congestion. For
simplification, they are mostly collision-free and omit crash causality.
Still, the simulated trajectories technically enable the calculation of
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surrogate safety measures based on the nearness of Road Users (RUs) in
conflicts, regardless of simulated collisions. Arun et al. (2021) review
crash surrogacy and report that a definitive validation of the crash-
conflict relationship is missing, even for natural traffic observations.
For simulation, they point out the insufficiency of existing behavioral
models to describe unsafe interactions. While Young et al. (2014) also
observe model limitations, they highlight the successful correlation of
simulated and observed conflicts in specific automobile traffic scenarios
achieved by various calibration studies (Huang et al., 2013; Gettman
et al., 2008; Guo et al., 2019). Despite the good overall fit, though, Guo
et al. (2019) also observe a poor correlation of simulated and observed
conflict locations. Tarko (2018) suggests that exposure alone may cause
the good overall fit.

Cycling behavior differs from the disciplined lane-based behavior
of cars. Cyclists exploit the flexibility of their mobile vehicles to use
infrastructure in various, sometimes unintended ways. For example,
cyclists cross intersections with direct and indirect left turns, ride
against traffic, and use car or pedestrian facilities (Twaddle and Busch,
2019). Discontinuities in dedicated cycling infrastructure lead to riding
outside the intended infrastructure (Nabavi Niaki et al., 2018). Bicycle
boxes, two-directional lanes, or protected intersections may require
maneuvers that do not have an equivalent in car traffic. Cyclists exhibit
riding in groups (Grigoropoulos et al., 2021) and queuing patterns
at traffic lights (Gavriilidou et al., 2019a) that distinguish them from
cars. Interactions with AVs create new cycling behaviors ranging from
caution and consideration to exploitation (Bjgrnskau et al., 2023).
Despite these complex and unique behaviors, many current simulation
environments reuse car models with different parameter values to
represent cycling. Researchers have raised concerns if these models can
create valid assessments of real-world situations (Twaddle et al., 2014).
This is especially critical for safety, which, after Tarko (2018), is deter-
mined by individual behaviors and interactions rather than aggregated
measures. Johnsson et al. (2018) review surrogate safety assessment for
vulnerable RUs and conclude that the suitability of indicators depends
on their ability to capture the safety-relevant interactions. With rising
interest in cycling, simulation-based safety research articles, case stud-
ies, and government-issued reports are increasingly being published. To
analyze cycling safety on varying infrastructure (intersections, roads,
dedicated paths, Intelligent Transport System (ITS) scenarios) and with
varying interaction partners (cyclists, pedestrians, conventional and
automated cars), the corresponding models must describe complex
behaviors. However, legitimate concerns exist about the capability of
micro-simulation to accurately model cycling behavior and safety. This
literature review analyzes the methods of existing simulation-based
cycling safety studies. We compare these with best practices from
the micro-simulation domain and highlight differences regarding cy-
cling. We track where researchers observe shortcomings that limit their
simulation results. To this end, we address the subsequent research
questions:

RQ1: Can micro-simulation model the safety-relevant behavior and
riding dynamics of cyclists?

RQ2: Can micro-simulation models be calibrated and validated to
predict traffic conflicts involving cyclists?

RQ3: Can cycling safety be evaluated based on micro-simulation?

Assuming that actual traffic safety is a product of RU behaviors and
interactions, we review the elements relevant for creating, executing,
and assessing simulated interactions. Based on the three dimensions of
human-vehicle interaction simulations (Janssen et al., 2020), these are
the simulation software package defining the environment, the cyclist
models defining the agents’ behaviors, and the scenarios defining the
interactions. We add the calibration and validation procedures that
ensure reliability and the safety quantification techniques.
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Based on the review results, we present a framework that thor-
oughly discusses requirements for reliable study results on top of
existing guidelines for simulation-based operational traffic assessment
and highlights research gaps. Our contributions are two-fold. Firstly,
our framework provides researchers and practitioners with high-level
methodological best practices to avoid unreliable results. Secondly,
we identify the current limitations and highlight research needs to
elevate micro-simulation to a tool that fully integrates bicycle traffic
and adequately captures safety aspects.

Section 2 describes the review method. Section 3 overviews the
included studies and analyzes their simulated cycling safety assessment
methods. Section 4 derives a methodological framework, discusses
requirements for a robust assessment, and proposes a research agenda.
Finally, Section 5 provides concluding remarks and an outlook on
future work.

2. Literature review method

We conduct a systematic literature review of micro-simulation stud-
ies that assess cycling safety and analyze the methods of these publi-
cations regarding our predefined selection of aspects that govern sim-
ulated interactions. If necessary, we complement results with insights
from the general domain (Fig. 1).

The subsequent criteria delimit the review scope.

Microscopic Traffic Simulation: Design and application of traffic
simulation by modeling individual RUs. We only include studies
with predictive behavioral models. This focuses on fully virtual
agents with high fidelity in the framework of Janssen et al.
(2020). It excludes human-in-the-loop simulations and static
trajectory models based on field or driving simulator data.

Quantification of Safety: Assessment of actual traffic safety related
to incident or injury risk using quantifiable criteria. We do not
consider perceived safety.

Cycling: Inclusion of two-wheelers that require pedaling as propul-
sion. While we include pedal support (e-bikes), we exclude
motorized two-wheelers and motorcycles that do not require
pedaling due to their different dynamic characteristics. If a clear
definition is absent, we rely on basic terminology like “cyclist”
or “bicycle” in the papers.

We search titles, abstracts, and keywords in Scopus, IEEE Xplore,
Web of Science, and TRID. Our search phrases consist of synonyms of
the inclusion criteria microscopic traffic simulation (micro-simulation,
microscopic simulation, traffic simulation, agent-based simulation, sim-
ulating traffic), cycling (bicycle, bike, bicyclist, cyclist, pedelec, tri-
cycle, trike), and quantification of safety (safety, conflict, crash, ac-
cident, collision, injury). We combine synonyms with Boolean AND,
aspects with Boolean OR, and use wildcard and proximity operators.
Due to syntax requirements, the actual search queries differ between
databases.

We limit the search results to journals, conference proceedings, and
research/technical reports and eliminate duplicates. Then, we filter
by title, abstract, and full text. We search the internet, use library
services, and contact the authors to obtain full-text access. If necessary,
we machine-translate articles into English. We exclude articles as soon
as it becomes clear that the inclusion criteria above are not satisfied.
Finally, we add articles previously known to the authors and perform
snowballing with Google Scholar for all included papers. Our search
cut-off is December 08, 2023.

3. Literature review results
This section presents an overview of the included studies (Sec-

tion 3.1) and the individual results for each dimension of simulated
cycling safety assessment.
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Fig. 1. Overview of the review method with systematic and unstructured search (blue, top) generating the results (black, center) categorized by the dimensions
of simulated cycling safety assessment. Discussion of the results leads to the outcome (red, bottom).
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Fig. 2. Overview of the search results.

3.1. Overview of included studies

After screening all search results and performing snowballing, we
include 42 studies (Fig. 2a). Table 1 summarizes the included studies.
We identified six topic categories (Fig. 2b). “Mod. & sim. research”
describes publications that focus on developing, calibrating, and val-
idating simulation models. Among these, most develop new cyclist
models outside or linked to existing simulation packages (hereafter
called “new external models”). All other studies apply existing models
to answer safety-related research questions (hereafter called “appli-
cation studies”) and are categorized based on their focus on traffic
control, trip planning, infrastructure elements, AV & ITS research, and
specific behaviors.

Publication numbers increased in recent years, highlighting the
relevance of the topic (Fig. 2c). As the traffic characteristics vary

globally, Fig. 2d lists the study location. While eleven countries allow us
to observe some regional context, the results do not provide a complete
global picture. Ten studies simulate a generic scenario without a corre-
sponding real-world location and data-driven calibration or validation.
Only six calibrate, and only three validate their models in terms of
safety.

3.2. Microscopic traffic simulation packages

The simulation environment is defined by the fundamental imple-
mentation of its traffic network elements. Over half of the reviewed
studies use the software packages SUMO (8 of 42) and VISSIM (20 of
42). Both are traffic flow simulators focusing on the accurate repre-
sentation of operational characteristics. They provide the fundamental
functionalities to include cyclists, albeit with limitations in their mod-
els. The next biggest category (6 of 42) comprises studies with custom
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Table 1
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Reviewed studies using micro-simulation to assess cycling safety through exposure, simulated collisions, or surrogate safety assessment (SSA). The interaction
opponents considered for safety analysis are bicyclists (B), e-bicyclists (EB), human-driven heavy vehicles (HV), human-driven cars (HC), automated cars (AC),
pedestrians (P), and other (O). (*) indicates not clearly defined cases.

Reference Category Package Interaction opponent Scenario Safety Predictive Study objective

method validation
B EB HV HC AC P O
Traffic Analysis Applications

Denk et al. (2022) AV & ITS Custom X X Right-hook conflict at  collisions Assessment of V2X functions to
protected bike lanes, avoid conflicts in right-hook
Germany scenarios.

Jiang et al. (2022) AV & ITS SUMO X Major intersection with SSA Train AVs driving policies based
bicycle lanes on simulated traffic evaluating a

distance-based safety cost.

Karkhanis et al. AV & ITS SUMO X Unsignalized minor collisions Analyze an ITS warning system at

(2020) intersection, a bicycle path and bus road
Netherlands crossing.

Pauwels et al. AV & ITS SUMO X X Large urban area, SSA Analyze different AV driving

(2022) Netherlands characteristics and connectivity

levels for VRU safety.

Pechinger et al. AV & ITS AIMSUN X Intersection with collisions Analyze conflicts and collisions

(2021) protected bike lanes, created by a Hardware-in-the-loop
Germany simulation of AV systems.

Pechinger et al. AV & ITS AIMSUN X Intersection with collisions Analyze conflicts and collisions

(2023) protected bike lanes created by a Hardware-in-the-loop
and parking, Germany simulation of AV systems and

infrastructure based perception.

Qian et al. (2022) AV & ITS SUMO X X Crossing and right-hook SSA Analyze various C-ITS
conflicts applications for cyclist and

pedestrian safety.

Ren et al. (2023) AV & ITS SUMO X Major intersection with collisions Train and assess adversarial
bike lanes policies for AV control on

simulation output in terms of
safety.

Ren et al. (2022) AV & ITS SUMO X Major intersection with SSA Train and assess environment
bike lanes encoding for AV control on

simulation output in terms of
safety.

Tafidis et al. (2019) AV & ITS VISSIM X X Neighborhood with SSA Assess AV driving characteristics
shared roads, Belgium for cycling safety.

Thompson et al. AV & ITS Netlogo X X Abstract grid-based collisions Simulate the safety effect of

(2020) road network behavioral adaptation to perfect

AVs.

Bahmankhah et al.  Behaviors VISSIM X Multi-lane roundabouts, SSA Analyze impact of driving

(2019b) Portugal volatility.

Li et al. (2011) Behaviors Custom X Minor road with bike ~ SSA Analyze impact of cyclists using
lanes vehicle lanes to overtake.

Ren et al. (2016) Behaviors Custom X X Through-going bike SSA Analyze cyclist dispersion effect
lanes at major while crossing intersections.
intersections, China

Thompson et al. Behaviors Netlogo X Abstract grid-based exposure Simulate behavioral adaptation to

(2015) road network exposure to explain the

safety-in-numbers effect.

Thompson et al. Behaviors Netlogo X Abstract grid-based collisions Simulate behavioral adaptation to

(2016) road network local density to explain the

safety-in-numbers effect.

Wallentin and Loidl Behaviors Netlogo X Large urban area, exposure operational Analyze how exposure explains

(2016) Austria accident statistics.

Bahmankhah et al.  Infrastructure VISSIM X Major intersection and SSA Compare safety of different

(2019a) roundabout, Portugal roundabout layouts.

Campisi et al. Infrastructure VISSIM X X Turbo roundabouts SSA Analyze the relationship between

(2020) operational performance and

safety of turbo roundabouts.

Dijkstra (2012) Infrastructure S-PARAMICS X Bike path crossing, SSA Analyze impact of traffic
Netherlands redirection.

Guhathakurta et al. Infrastructure VISSIM X X* Large urban area, USA SSA Analyze a cycling network design

(2023) algorithm.

Joo et al. (2012) Infrastructure VISSIM X X* X Major intersection with SSA Analyze performance of different

bicycle left-turn lanes,
bicycle boxes and
shared roads, South
Korea

left-turn cycling infrastructures.

(continued on next page)

Most researchers use the commercial software PTV VISSIM (PTV
Group, 2023). Fellendorf and Vortisch (2011) describe its lane-based
longitudinal and lateral continuous movement model. Along these

implementations. This section summarizes the two most popular en-
vironments and briefly reviews their cyclist and safety assessment
support.
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Table 1 (continued).
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Kodupuganti and Infrastructure ~ VISSIM X Arterial road with SSA Analyze impact of a proposed

Pulugurtha (2022) bicycle lanes and light light-rail system.
rail, USA

Monsere et al. Infrastructure ~ VISSIM X Intersections with SSA Analyze relationship between load

(2019) various shared turning and safety of existing cycling
facilities, USA infrastructure.

Preston and Infrastructure ~ VISSIM X Protected intersection SSA Predict safety gains of protected

Pulugurtha (2021) design, USA intersection designs.

Russo et al. (2022)  Infrastructure  VISSIM X Intersections with SSA Assess different shared and
various shared and separated cyclist crossing facilities
mixed turning facilities, under varying RU volumes.

USA

Silva et al. (2023) Infrastructure ~ VISSIM X Major intersection with ~ SSA Assess alternative cyclist crossing
shared and dedicated facility and adaptive traffic
lanes, Peru control at existing intersection.

Thompson et al. Infrastructure  Netlogo X Abstract grid-based exposure Simulate the safety effect of

(2017) network with dedicated behavioral adaptation to
roads separated cycling infrastructure.

Alecsandru et al. Traffic VISSIM X Arterial road with exposure Optimize signal control for

(2010) control bicycle lanes, Canada cycling safety.

Ledezma-Navarro Traffic VISSIM X Variations of bike lanes SSA Compare different control

et al. (2018) control at major intersections, strategies.

Canada
Lu and He (2019) Traffic VISSIM X* Neighborhood with SSA Analyze proposed treatment to
control shared and dedicated traffic control in a school
infrastructure, China environment.

Wu et al. (2014) Traffic VISSIM X Major intersection with  exposure Analyze cyclist volume adaptive

control bike lanes, China signal control.

Bahmankhah and Trip planning VISSIM X Neighborhood with SSA Determine optimal cycling routes

Coelho (2017) shared roads, Portugal with multiple objectives.

Hiibner et al. (2017) Trip planning SUMO Large urban area, exposure Introduce and test cycling routing
Germany application.

Modeling and Simulation Research

Langer et al. (2023) Mod. & sim. SUMO X Large urban area, collisions Introduce perception and crash

Germany severity models and calibrate to
statistics from injury and crash
databases.

Lemcke et al. Mod. & sim.  VISSIM X Right-hook conflict at SSA Investigate model parameter

(2021) turning lanes, USA sensitivity and performance for

cycling safety.

Li et al. (2020) Mod. & sim. Custom X* Major road with bike SSA Introduce and test cellular
lanes, China automata overtaking model.

Liu et al. (2020) Mod. & sim.  TESS X* Major road with bike SSA safety, Introduce and test lane-based
lanes, China behaviors, overtaking model.

operational

Ni et al. (2023) Mod. & sim. Custom X Major road with bike SSA behaviors, Introduce and test social-force
lanes, China operational interaction model with Bayesian

decision network.

Sun et al. (2019) Mod. & sim. Custom, X Minor road with shared SSA Introduce state-machine

VISSIM, lanes and bus stops, overtaking model and compare to
TransMod. China VISSIM and TransModeler.

Sun et al. (2020) Mod. & sim.  VISSIM x* Major intersection with ~ SSA safety Introduce deep learning vehicle

bike lanes, China left-turn model, train on VISSIM
simulations, and validate on field
observations.

Xu et al. (2023) Mod. & sim.  VISSIM X Major intersection and  SSA safety, Introduce and compare VR
roundabout with shared behaviors, human-in-the-loop simulation
facilities, Australia operational with pure VISSIM.

lanes, car-following models govern longitudinal motion. Laterally, vehi-
cles optimize their continuous on-lane position for maximum Time-To-
Collision (TTC). A lane-change model governs the decision to transition
into an adjacent lane to achieve free driving. At intersections, RUs
respect priority rules. Bicycles and cars use the same models with dif-
ferent parameter values, but bicycles have a diamond-shaped footprint
to improve queuing. The COWI (2012) report identified VISSIM settings
that best approximate field-measured cyclist capacity, travel time, and
delay over various mixed-traffic and dedicated infrastructures. The
derived COWI (2013) report provides the standard guideline for cycling
simulation with VISSIM. The proposed settings are not validated for
safety assessment. Still, VISSIM technically supports trajectory export
for automated safety assessment with the Surrogate Safety Assessment
Model (SSAM) by Gettman et al. (2008).

The open-source framework SUMO (Lopez et al., 2018) models
continuous longitudinal and discrete lateral dynamics along fixed lanes.
A sublane model for continuous lateral dynamics (Semrau et al., 2016)
and multiple car-following models are available. At intersections, ve-
hicles consider routes, traffic laws, and collision avoidance. SUMO’s
support for cycling simulation is under development. Currently, bicy-
cles reuse car-following models with adapted parameter values. SUMO
supports cyclist-specific infrastructure and priority rules. While the
model is designed to be collision-free, behavioral parameters tuned
to unsafe driving may provoke collisions (German Aerospace Center,
2023b). A workshop of SUMO developers, users, and researchers dur-
ing the SUMO User Conference 2022 (Roosta et al., 2023) discussed
SUMO?’s cyclist models and concluded that the included car-following
models, particularly the Intelligent Driver model (Kesting et al., 2010),
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can sufficiently represent cyclist following behaviors for current (typi-
cally not safety-related) applications. However, it was observed that the
models should be more rigorously calibrated and expanded to include
cycling-specific behaviors like side-by-side riding. Further conclusions
suggest that the lateral behavior and the treatment of conflict areas
lack the variability of real cycling. Cyclists strictly adhere to (sub)lanes
and do not enter conflict areas if occupied by other road users. Fi-
nally, SUMO developers highlighted during the workshop that they
did not validate SUMO’s current cyclist simulation framework against
data. Still, virtual logging devices enable to record surrogate safety
indicators (German Aerospace Center, 2023c).

3.3. Cyclist models

Cyclist models describe the dynamics and behaviors of simulated
agents. The reviewed application studies generally rely on the models
included in existing software packages. Frequently, they adapt model
parameters to create the desired behaviors in specific conditions.

Longitudinal behavior

Both SUMO and VISSIM reuse lane-based car-following models
like the Wiedemann-74 (W74) (Wiedemann, 1974), Wiedemann-99
(W99), Krauss (Kraul3, 1998), or Intelligent Driver (Kesting et al.,
2010) models for the longitudinal behavior of bicycles. Among the
reviewed studies, Tafidis et al. (2019) select W99 over W74, referencing
increased flexibility in the larger number of parameters. Based on
field observations, they create two parameter sets for leading cars
and leading bicycles. Their adjustments aim to recreate the distances,
cautiousness on shared roads, and sensitive driving reactions from
Belgian cities. Xu et al. (2023) calibrate W99 for cycling on intersec-
tions and roundabouts. In their integrated simulation environment with
additional behavioral sub-models, they highlight the importance of
car-following for the overall performance and observe similar distance-
vs.-time trajectories in simulation and reality. Other researchers select
W74 car-following to recreate cycling at intersections in the United
States (Russo et al., 2022; Lemcke et al., 2021) or cycling on inter-
sections and roundabouts in Portugal (Bahmankhah et al., 2019b,a). In
a comparison of field-measured and simulated conflicts, Lemcke et al.
(2021) determine several sensitive W74 parameters, with the average
standstill distance having the most significant impact on simulated
safety.

Additionally, researchers adjust speed and acceleration to influence
longitudinal dynamics. VISSIM enables definitions of speed distribu-
tions per road section and per vehicle type. Studies define different
distributions for road sections and intersections (Monsere et al., 2019)
and road sections and turns (Tafidis et al., 2019). Only Bahmankhah
et al. (2019b) set the maximum deceleration to field observations.
Although Grigoropoulos et al. (2022) observe that the acceleration
from a stop at an intersection directly determines how long cyclists
are present in safety-critical conflict zones, no study based on existing
models adapts the default acceleration profiles.

Lateral behavior

SUMO and VISSIM model lateral behavior separately from longitu-
dinal behavior. Where movements between lanes are significant, like
for cycling on two-lane roundabouts (Bahmankhah et al., 2019a,b),
researchers tune lane-change parameters. For on-lane behavior in VIS-
SIM, Tafidis et al. (2019) adapt the preferred position on the lane,
diamond-shaped footprints, the minimum lateral distance, observation
of adjacent lanes, and collision time gain. In a VISSIM calibration
study, Kaths et al. (2021) suggest that models for lateral behavior
are more important for achieving realistic cycling than longitudinal
behavior.

Transportation Research Interdisciplinary Perspectives 34 (2025) 101734

Human variance and error

Microscopic models are typically stochastic to recreate the inherent
variability of road traffic. To introduce the increased variability of
human errors, some reviewed studies modify traffic-rule adherence,
cyclist attention, and perception. For example, Langer et al. (2023)
introduce a perception error model which describes probabilities of
RUs’ failures to recognize a conflict and give priority. They calibrate
a large-scale SUMO simulation to reproduce real-world crash and in-
jury statistics. Additionally, they configure varying reaction times.
They limit evasive maneuvers to braking and maintain SUMO’s lane-
based dynamics. While the simulation achieves good scores for car-car
crash distributions, higher residuals remain for car-bicycle crashes. See
Section 3.6 for details on simulated collisions.

Within the parameter space offered by existing simulation packages,
researchers configure road users to ignore a set of traffic rules to
simulate reckless or inattentive riding (Xu et al., 2023; Karkhanis et al.,
2020). Other VISSIM studies adapt the temporary lack of attention,
preferred safety distances, gap acceptance, and visibility distances to
create unsafe behaviors (Lemcke et al., 2021; Bahmankhah et al.,
2019b).

Models outside existing software packages.

Next to the standard lane-based models in existing software pack-
ages, researchers use and develop new individual or external models.

Thompson et al. (2015, 2016, 2017, 2020) and Wallentin and
Loidl (2016) reduce cycling dynamics to longitudinal movement with
minimal local interactions. Instead, they focus on software agents with
independent intelligence and accurate exposure modeling to analyze
exposure-accident relationships. Similarly, Denk et al. (2022) simulate
and overlay undisturbed trajectories to create initial conditions for
stochastic models of the encounter outcome. A related approach outside
the scope of our review is the simulation of cyclists following fixed
field-measured trajectories (Ma et al., 2017; Ni et al., 2019). This
guarantees accurate, undisturbed trajectories, but the simulated cyclists
cannot react to their environment. While it enables the counterfactual
analysis of vehicle functions (e.g., Zhou and Wang, 2022) when the re-
actions of the cyclists are not relevant, longer, complex RU interactions
cannot be simulated.

In contrast, other researchers extend the lane-based dynamics of
popular simulation packages. A fundamental assumption of lane-based
models in existing simulation packages is that RUs follow a domi-
nant direction of travel. This generally holds on road segments, but
is inadequate with unordered traffic at intersections. There, cyclists
show varying behaviors regarding left turns, the direction of travel, or
the response to signals (Twaddle and Busch, 2019). For automobiles,
researchers show that the lane-based architecture constrains the lateral
movement diversity so that varying turning trajectories, specifically in
interactions with cyclists, are insufficiently captured (Ni et al., 2019;
Ma et al., 2017). Among the reviewed studies, Xu et al. (2023) create a
VISSIM-Unity co-simulation to improve the lateral behavior of cyclists
in VISSIM with Unity’s velocity-obstacle path-finding algorithm. A 3D
environment also enables them to simulate weather effects that change
the vehicle dynamics. Next, studies use social force models to achieve
spatially fully continuous two-dimensional interactions (Li et al., 2011;
Ni et al., 2023). This model class describes cyclists as particles moved
by imaginary forces exerted by the environment, intentions, and other
road users. In our previous work (Schmidt et al., 2024), a two-wheeler
dynamics model based on social forces is proposed that can respect
the motion constraints imposed by a bicycle and rider. It uniquely
introduces explicit steer, yaw, and roll dynamics for micro-simulated
cyclists, making only physically feasible maneuvers possible. The model
shows promising performance for cyclist interaction examples but has
not yet been validated. Finally, the cellular automata used by Ren
et al. (2016) and Li et al. (2020) also enable extended movements in
the lateral dimension. Other than the social force approach, they are
spatially discrete.
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Another issue is the prediction of consistent maneuver decisions
over varying time horizons. Here, reviewed studies propose Bayesian
models (Liu et al., 2020; Ni et al., 2023), finite state machines (Sun
et al.,, 2020), and other rule-based approaches (Ren et al., 2016; Li
et al., 2020). For car behavior in conflicts with cyclists, Sun et al.
(2020) create a deep-learning-based path planning model. Outside our
reviewed studies, researchers overlay social-force-based models with
rule-based models (Rinke et al., 2017) to describe perception and
decision-making. Kaths (2023) model the tactical choice between direct
and indirect left turns by creating trajectory guidelines from observed
data. Other research focuses on behavioral models beyond discrete
choice. Gavriilidou et al. (2019b) introduce a game-theoretical model
describing cyclists as utility optimizers regarding physical exertion,
path deviation, and collision nearness. Hoogendoorn et al. (2021) add
risky and cooperative riding to this framework. For automobile drivers,
researchers push behavioral models to consider endogenous cognitive
processes. van Lint and Calvert (2018) model a driver’s situational
awareness and capacity to handle an aggregation of mental demand
to describe driver distraction. Siebke et al. (2023) model the gaze and
cognitive map that drivers build their decisions on and apply this model
to virtual conflicts with cyclists. This shows how human perception and
behavior modeling can help to simulate unsafe situations.

3.4. Calibration

Calibration finds model parameter values so that the output matches
data gathered from the desired scenario. This section reviews how the
included studies perform calibration and compares this to established
frameworks.

Importantly, model quantities set directly to a desired value and
iteratively tuning model parameters so that a resulting model quan-
tity produces the desired values must be distinguished. In the first
category, VISSIM allows directly configuring the vehicle flow per
link (PTV Group, 2023). Researchers choose values to match observed
field data (e.g., Monsere et al., 2019), assumptions about future
traffic (e.g., Campisi et al., 2020), or theoretical capacity (e.g., Joo
et al., 2012). With the exception of Xu et al. (2023), verification that
the simulation achieves the desired output is omitted. Other parameters
frequently set in this fashion are speed and acceleration profiles.
Studies often describe these steps as calibration, but the missing tuning
procedures and goodness-of-fit measurements do not satisfy established
definitions as given by Buisson et al. (2014). Rather, these properties
can be considered the model input.

Many properties cannot be set directly. In that case, researchers
tune parameters so that an output property, or measure of performance,
satisfies a goodness-of-fit criterion. To aggregate statistics, researchers
repeat simulation runs with different random seeds. Table 2 shows an
overview of the parameters and performance measures found in our
review. Among these, six tune the behavioral parameters of existing
software packages considering safety measures. Bahmankhah et al.
(2019b) adjust a conflict threshold to replicate conflict counts observed
by a trained professional and report mean absolute percentage errors
< 15%. Lemcke et al. (2021) extensively analyze result sensitivity
towards behavioral parameters and conflict thresholds in VISSIM and
demonstrate how calibration improves conflict number predictions (de-
fault: 8; calibrated: 14.4; field-observed: 25). However, their best result
still significantly underestimates field observations, and they observe a
significant dependency on the random seed. Russo et al. (2022) tune the
same parameters, and while three study locations produce good results,
six locations are rejected due to unsuccessful calibration. Monsere et al.
(2019) manually tune yielding behavior to match field-observed con-
flict frequencies. Simulated and real conflicts show similar trends, but
the overall conflict numbers are small with significant relative errors.
Finally, Wu et al. (2014) report a relative error of < 12% between the
simulated and video-observed conflicts without providing details on the
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calibration procedure. Alecsandru et al. (2010) and Tafidis et al. (2019)
report qualitative calibration of the RU behavior by visual inspection.

Regarding new external models, researchers use extensive step-by-
step procedures with rich data sources. For example, Langer et al.
(2023) present a scheme for calibration based on crash and injury
databases. After linking cyclist injuries with crashes through a crash
severity model, they calibrate vehicle speeds and a human error model
to recreate crash statistics. Several works (e.g., Liu et al., 2020; Ni
et al., 2023) extensively calibrate the individual components of their
overtaking and turning models by comparing them to real video-
captured trajectories and observed maneuver types. While this does
not directly tune safety, it controls the interactions responsible for
safety. Xu et al. (2023) propose a unique approach where simulated
trajectories are compared to trajectories generated by human riders
tasked with the simulated scene in a virtual reality cycling simulator.

All reviewed studies attempt to quantify safety, but only the above
consider safety during calibration. Others omit calibration or only cali-
brate travel times, queue lengths, traffic volumes, and trip delays. This
does not comply with the standard framework for micro-simulation
studies introduced by Buisson et al. (2014). They question the pre-
dictive quality of uncalibrated models and deduce that all evaluated
performance measures must be calibrated according to measured data.
On the other hand, Guo et al. (2019) explicitly analyze calibration
for micro-simulated safety and conclude that tuning operational per-
formance measures has a larger influence on the safety results than
RU behavior. However, this analysis is limited to vehicular traffic
and does not consider the complicated irregular cycling behaviors.
For cycling, Lemcke et al. (2021) show that behavioral parameters
significantly impact conflicts. Similar sensitivity has been observed
by Pauwels et al. (2022) for interactions between cyclists and AVs.

3.5. Validation

Validation examines the predictive quality of the calibrated model.
This section reviews validation methods from the included studies
and compares them to established frameworks. Twelve studies report
validation of their models, with seven validating a safety measure using
two approaches.

Three studies feed a different input dataset to their calibrated
model and test a safety measure. Liu et al. (2020) validate based on
demand data from another road with different characteristics. Their
overtaking model achieves an error of < 31% in predicting over-taking
conflicts. Xu et al. (2023) extensively analyze if the conflicts created
by their VISSIM-Unity co-simulation correspond to the results produced
by human cyclists tasked with the same situations in a virtual reality
cycling simulator. They observe that humans create more conflicts, but
the differences are not statistically significant (p = 0.278). The same
conclusion holds for crashes predicted based on the observed conflicts.
Finally, Sun et al. (2020) test their VISSIM-trained DNN model for right-
turning cars for a small sample of field-observed conflicts with cyclists
and obtain a reasonable good conflict severity fit (2.56 s field-observed
average PET vs. 2.79 s simulated average PET). Not directly considering
safety, Ni et al. (2023) validate their maneuver prediction models and
scores up to 91.76% accuracy. The other four studies report validation
as the evaluation of performance measures other than the calibration
measures, but maintain the same input data.

Sargent describes validation as ‘“‘determining whether the simula-
tion [...] has the accuracy required for the model’s intended purpose
over the domain of the model’s intended applicability” (Sargent, 2010,
p.- 174). The purpose of most reviewed studies is to examine the
traffic effects of a scenario change. After Buisson et al. (2014), this re-
quires testing the calibrated model’s capability to approximate a dataset
not used for calibration (predictive validation) with the performance
measures of the desired analysis. It ensures the predictive quality in
response to input changes. Regarding safety, the validations of Liu
et al. (2020), Xu et al. (2023), and Sun et al. (2020) conform to this
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Table 2
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Parameters and performance measures of the tuning-based calibration procedures in the reviewed studies. This does not show quantities set directly to desired
values (i.e., input parameters).

Reference Parameters Performance measures Tuning Goodness of Fit
Operational Behavioral Safety

Bahmankhah and - saturation flow* - GEH, MAPE, R?
Coelho (2017)
Bahmankhah et al. car-following*, saturation flow* - GEH, MAPE, R?
(2019a) lane-change*,

lateral behavior*,

max. deceleration®,

visibility range,

safety gaps,

TTC threshold
Bahmankhah et al. W74 car-following*, saturation flow®?, conflictse® sensitivity analysis GEH, MAPE, R?
(2019b) lane-change*, travel time®P

lateral behavior*,

max. deceleration*,

visibility range*,

safety distances*
Guhathakurta et al. - travel time speed, - absolute comparison

(2023)
Li et al. (2020)

Liu et al. (2020)

Langer et al. (2023)

Lemcke et al. (2021)

Monsere et al. (2019)

Ni et al. (2023)

Preston and Pulugurtha

lane-change rules®

sublane width,
sublane choice®?,
overtaking motivation®,
gap acceptanceb,
car-following®
perception errors®?,
reaction time®P,
desired speed®

W74 car-following®?,
lack of attention®b,
safety distances®?

desired speed“P,

priority rules®?

Comfort zone modelP,
Bayesian decision network®,
Social force modelP,
car-following®

W74 car-following®,

maneuver type®

travel time®

delay*,
platoon ratio*

number of vehicles®,

lateral position®,
gap acceptanc&rb

speed®

comfort zone sizeP,
maneuver typeP,
speed®

approach speeds™c

crash rates®® <P

conflicts*

conflicts™® <P

linear regression,
logistic regression
genetic algorithm,
maximum likelihood

genetic algorithm,
iterative proportional
fitting

manual

manual

regression analysis,
K2-Algorithm,
EM-algorithm,
genetic algorithm
manual

Likelihood-ratio test,
Wald-test, R?

MAE,

likelihood

numerical absolute
comparison

graphical absolute
comparison
SSE, F-Test, RE, RMSPE

RE, visual inspection

(2021) lane-change®,
speed distributions®
cellular automata®
W74 car-following*,
safety distances*
Silva et al. (2023) W74 car-following®
Sun et al. (2020) DNN trajectory generator®
Wu et al. (2014) - delay>c
Xu et al. (2023) W99 car-following®,

Unity path-finding®

queue length*

clearance time®
queue lengths*

Ren et al. (2016)
Russo et al. (2022)

crossing timeP©

trajectory®

lateral position®,

- RE
conflicts®* - numerical absolute
comparison
- t-test
backpropagation MSE
conflicts® - RE

R2, visual comparison of
trajectories

regression analysis,
manual tuning

(*) traffic mode of the tuned parameters or analyzed performance measure not reported.
(¢) heavy vehicle or (automated) car model parameters and performance measures.

(*) bicycle model parameters and performance measures.

(=) no information.

Initialisms: Deep Neural Network (DNN), Geoffrey E. Havers Statistic (GEH), Kolmogorov-Smirnov test (KS), Mean Absolute Error (MAE), Mean Absolute Percentage Error
(MAPE), Mean Squared Error (MSE), Relative Error (RE), Root Mean Squared Percentage Error (RMSE), regression coefficient of determination (R?), Sum of Squared Errors (SSE).

definition. Without input variation, the other reviewed studies do not
explore how the model predicts traffic performance under different
conditions. In some cases, prediction may not be the purpose of a
study. For example, Lemcke et al. (2021) investigate the relationship
between simulated and field-observed conflicts on one intersection. The
model input does not vary between calibration and experimentation.
After Sargent (2010), close examination and comparison of the model
behavior constitutes operational validation. It analyses the calibration
outcome by means ranging from different performance measures to
sensitivity analysis. To prevent confusion with predictive validation,
we call this process verification from now on. Verification does not
build confidence into a typical micro-simulation’s primary purpose
to generalize over varying conditions. For example, Preston and Pu-
lugurtha (2021) experiment with different intersection layouts. Their
verification considers queue lengths on an existing layout but does not
show the model’s predictive quality regarding the alternative layout.
This issue is inherent in studies simulating future scenarios where data
collection is impossible.

3.6. Safety assessment

This section reviews how the included studies quantify cycling
safety and compares this to the general traffic safety domain. We

identified three categories of safety assessment. Most studies (28 of 42)
are based on crash surrogacy. Eight studies report simulated collisions.
Six studies measure safety through exposure to risk factors.

Risk exposure

Hiibner et al. (2017) use field data to identify high-risk areas in
Berlin. They measure the safety of simulated routes by time spent in
these areas and their count. Alecsandru et al. (2010) and Wu et al.
(2014) define conflict zones in intersecting traffic streams. The number
of RUs in the zone describes exposure used to evaluate signal control
strategies. Similarly, Thompson et al. (2015, 2017) count potential
collisions based on RUs simultaneously present on the same network
node. Wallentin and Loidl (2016) successfully fit a linear regression
model linking simulated encounters with accident reports.

In these studies, safety is not estimated based on interactions and
event causality but by exposure alone. Vanparijs et al. (2015) highlight
the significance of exposure on quantitative cycling safety analysis.
Only controlling for exposure allows meaningful comparison. However,
the outcome of an event is also influenced by additional factors. Hence,
measuring exposure alone can give safety indications but not the whole
picture.
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Fig. 3. Typology of surrogate safety indicators used in the reviewed studies.

Conflicts as collision surrogates

Surrogate safety assessment analyses individual RU interactions.
Its theoretical foundation is the relationship between high-frequency
zero-risk interactions and low-frequency crashes postulated by Hydén
(1987). In between are traffic conflicts with an increasing severity
or closeness to a collision. Observing frequently occurring conflicts
enables estimating rare collisions. The nature of the crash-conflict rela-
tionship is debated, making it difficult to predict incident risk numbers
conclusively (Arun et al., 2021). Surrogate Measures of Safety (SMoS)
characterize RU interactions to identify conflicts.

Two SMoS dominate our review. Eighteen studies calculate the Post-
Encroachment Time (PET) to identify conflicts and describe severity. It
measures the time between a RU leaving a conflict area and a second
one entering it (Allen et al., 1978). Similarly, twenty studies use the
TTC. It describes the remaining time to a collision for RUs on a collision
path assuming constant speed and heading (Hayward, 1972).

Fig. 3 shows a typology of safety indicators in our review that
combines event severity and event dimension. The event dimension
introduced by Arun et al. (2021) distinguishes indicators that quantify
nearness to a collision (conflict severity after Hydén, 1987) and indi-
cators that quantify the injury risk of a hypothetical collision resulting
from the conflict (crash severity). Johnsson et al. (2018) propose to
sort SMoS by event causality. In the causal conflict model by Davis
et al. (2011), initial conditions and evasive actions define the outcome
of an event. TTC and PET are indicators of the severity of a conflict
outcome. An example of an indicator for the initial conflict condition
severity is the Time-To-Accident, the TTC at the start of an evasive
maneuver (Hydén, 1987), used by Pauwels et al. (2022). The instan-
taneous deceleration used by Li et al. (2011) is the only indicator of
evasive action severity in our review. For crash severity, researchers
report, among others, the Maximum Speed or Speed Difference. Finally,
combined indicators measure the severity of the conflict outcome and
the crash severity. Pauwels et al. (2022) use the Crash Index, which
fuses a TTC-based measure with speed. To detect conflicts with these
indicators, researchers apply thresholds. If an interaction exceeds the
threshold, a conflict is registered. The magnitude of the SMoS describes
its severity. Gettman et al. (2008) automate the detection and evalua-
tion with their SSAM, which 16 of 20 VISSIM studies employ. In our
review, only Xu et al. (2023) use an extreme value theory approach to
predict concrete crash risk based on the observed conflicts.

Several reviewed studies report issues with surrogate safety as-
sessment. Some authors encounter virtual crashes when the model’s
behavior parameters are tuned to resemble realistic cycling. The treat-
ments of these collisions vary. Monsere et al. (2019) include collisions
in their assessment but do not report the severity based on TTC or PET
as they consider them unreliable. Tafidis et al. (2019) ignore collisions
by applying a lower TTC threshold. Bahmankhah et al. (2019b) re-
calibrate until collisions account for less than 10 % of all conflicts.
The creators of SSAM acknowledge this problem (Gettman et al., 2008).

As most microscopic simulations are intended to be collision-free, they
conclude that these events do not constitute inaccurate measurements
but shortcomings in the simulation models. Until models can be im-
proved, they recommend recalibration or spatial filters that limit safety
assessment to areas with accurate behavior. Huang et al. (2013) show
that many collisions at intersections can be resolved through small
changes to the road topology. While this issue was already present
for cars, the difficulty of tuning lane-based models to complicated
cyclist maneuvers could exacerbate its severity. Additionally, Russo
et al. (2022) observe that SSAM does not detect conflicts for some
perpendicular interactions, although they were realistically simulated
based on visual assessment. They did not investigate this error fur-
ther. A potential explanation is that SSAM only detects conflicts that
simultaneously satisfy TTC and PET thresholds. Correspondingly, the
SSAM validation study (Gettman et al., 2008) observes scenarios where
conflicts are missed because a vehicle brakes abruptly for a crossing
RU. These situations lead to small TTCs, but waiting before continuing
to drive can create large PETs and conflicts are not registered. The
resulting bias could be especially severe for cycling due to complex and
diverse interactions.

In their validation of TTC and PET based on real-world conflicts be-
tween cyclists and motor vehicles, Johnsson et al. (2021) establish a sig-
nificant correlation between conflict frequency and recorded crashes.
However, this was weaker than the correlation between crashes and
exposure. Corrected for exposure, PET does not correctly rank the safety
over multiple locations. Furthermore, TTC results in many false posi-
tives, where visual examination did not confirm the conflict severity
indicated by the temporal proximity. They conclude that speed-based
indicators should supplement indicators based on temporal proximity.

Simulated collisions

Eight studies simulate collisions and count their frequencies.
In Thompson et al. (2016, 2020), a collision occurs based on a proba-
bilistic model of RUs association with each other. Denk et al. (2022)
sample collisions from parallel stochastic models of avoidance mea-
sures. Ren et al. (2023) and Pechinger et al. (2021, 2023) count the
collisions that their AV control algorithms create. Karkhanis et al.
(2020) deactivate yielding and count events where RUs go below a
distance threshold as collisions. Langer et al. (2023) introduce per-
ception errors to recreate real-world injury and incident statistics. A
high-level database provides police-reported injuries from four years
at the study location. A low-level database lists incidents from two
other cities with detailed crash types. They map crash types to sim-
ilar locations on intersections in the study location and calibrate the
simulation to reproduce the crash statistics on both levels. While they
report promising results for high traffic volumes, small volumes do not
produce significant numbers. This highlights that crashes are inherently
rare, and observing them in simulation and naturalistic data requires
long observation periods. In Langer et al. (2023), the model reproduces
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the real-world statistics of four years in 60 simulated days, meaning
simulated interactions are riskier than in real life. To overcome the
limitation of long runtimes for long simulation periods but still enable
large sample numbers, Denk et al. (2022) propose a sampling-based
approach. For right-hook conflicts, they first generate undisturbed
trajectories. Random sampling and overlapping undisturbed trajectories
creates initial conditions for encounters, where the number of gen-
erated encounters is based on the expected exposure. Sampling from
parallel stochastic models of driver perception, cyclist behavior, and a
V2X automated emergency braking system determines if an encounter
results in a collision. While this approach captures some aspects of
crash causality, the simplifications made in the stochastic models do not
fully capture the interaction process and consequently underestimate
real collision frequencies.

Event causality in simulated conflicts and collisions

For meaningful simulated collisions, the causal chain of events
needs to be realistically represented. Following Davis et al. (2011), this
includes the initial conditions, evasive actions, and the event outcome.
The capability of current models to describe exposure and some aspects
of human error may create initial conditions that precede unsafe events,
but lane-based models constrain possible evasive actions. Hence, the
outcome may not sufficiently correlate with reality. The prevalence of
event outcome indicators may lead to unrealistic results, even if studies
measure conflicts as collision surrogates. Johnsson et al. (2018) propose
to use multiple indicators that represent all categories of the typology
(Fig. 3) and to limit measurements to initial conditions if the other steps
are insufficiently modeled. However, in light of complex and diverse
cycling behaviors, the existing simulation packages often already have
cycling-specific shortcomings regarding the initial conditions.

3.7. Scenarios and interactions

The included studies differ in the spatial extent of their sce-
nario. While some studies simulate metropolitan areas (e.g., Hiibner
et al,, 2017), others focus on limited neighborhoods (e.g., Tafidis
et al., 2019), intersections (e.g., Russo et al., 2022) or road segments
(e.g., Liu et al., 2020).

Safety is a result of individual interactions, so scenario-specific
interaction types significantly affect the results. However, among the
studies using existing models, most do not report their results on the
interaction level and only analyze aggregated measurements. Below,
we summarize available comments on model performance for specific
interactions with cars and between cyclists.

Crossing interactions

A frequent type is the encroachment of turning vehicles on straight-
going cyclists. Fundamentally, the intersection models in existing soft-
ware packages can simulate priority rules for encroaching traffic. Lem-
cke et al. (2021) find VISSIM settings that qualitatively enable the
correct behavior of motorists crossing a cycling path to access their
turn-lane. Similarly, Russo et al. (2022) qualitatively observe the ex-
pected conflict types in right-turn scenarios. Quantitatively, conflict
counts do not match field observations in both cases. Monsere et al.
(2019) confirm this by counting unrealistically many car-bicycle con-
flicts in a protected intersection design. While they suspect issues in
managing isolated traffic streams, they also choose aggressive behav-
ioral VISSIM settings to prevent defensive yielding. For SUMO, the
documentation warns about unrealistic yielding of cyclists because
they use the same safety gaps as cars (German Aerospace Center,
2023a). Grigoropoulos et al. (2022) successfully calibrate VISSIM to
field-observed cyclist queue discharge times and automobile waiting
times in right-hook conflicts, showing that VISSIM successfully models
important operational characteristics on a group level. Considering the
issues with interaction-level behavior reported above, this does not
guarantee acceptable safety performance.
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Outside the included studies, Ma et al. (2017) show that VISSIM-
generated trajectories of left-turning automobiles only capture a small
fraction of the spatial diversity of field observations and thus cannot
represent realistic interaction behaviors. They develop a spatially con-
tinuous 2D model that better predicts the variety of car maneuvers
in left-turning conflicts with cyclists. After calibration, their model
achieves a good fit between average simulated (3.94 s) and field-
observed (3.99 s) PET. Other new models for the same scenario show
similar performance (Ni et al., 2019; Sun et al., 2020).

Interactions on shared lanes

In scenarios with shared infrastructure, RUs interact longitudinally
while following and laterally while overtaking, changing lanes, or
mixing in open spaces. The default lane-based models (see Section 3.3)
offer parameters to adapt longitudinal dynamics to real-world obser-
vations. Authors generally do not report issues regarding longitudi-
nal dynamics. For lateral interactions, Monsere et al. (2019) analyze
bicycle-vehicle conflicts in a shared right-turn lane and observe that
the VISSIM lane-based model does not sufficiently use the lateral space.
In contrast, Russo et al. (2022) achieve credible conflict numbers for
their shared right-turn lane. Additionally, Sun et al. (2019) analyze the
VISSIM overtaking model on two-lane two-way roads with cyclists and
observe unrealistically weak reactions of overtaking RUs to oncoming
traffic.

Authors develop new models outside existing simulation packages
to improve interactions in shared lanes and spaces. In turning conflicts,
more complex rule-based decision-making increases the plausibility of
interactions with oncoming traffic (Sun et al., 2019). Still, calibration
attempts reveal too little diversity of the simulated travel times and
spatial trajectory distributions compared to field observations. Other
studies create models for overtaking cyclists on one-way roads that
intrude into vehicle lanes. The sub-lane model of Liu et al. (2020)
achieves realistic travel times but underestimates overtaking events due
to the limited sub-lane resolution. Additionally, their lateral position
model does not generalize well for different calibration and validation
site characteristics. For the same scenario, the residual overtaking
maneuver prediction error of the cellular automata approach of Li et al.
(2020) after calibration ranges between 3.5% and 13%. The social-force
approach of Ni et al. (2023) correctly predicts > 91% of overtaking
events in the calibration dataset and shows promising results for lateral
distance, trajectory distribution, travel time and safety. However, the
latter two studies did not perform a full predictive validation. Ren
et al. (2016) specifically address the lateral dispersion effect of straight-
going cyclists on intersections with a cellular automata approach. For
roundabouts, trajectories created by the VISSIM-Unity co-simulation
of Xu et al. (2023) graphically fit human trajectories well. Still, the
simulation produces a smaller headway than human riders, creating
fewer conflicts and crashes. Additionally, they observe differences in
lateral placement on the lane without influence on conflict occurrence.

Specialized cycling infrastructure

Researchers simulate specialized bicycle infrastructure like bike
boxes. As simulation packages often lack native support, researchers
attempt workarounds. In VISSIM, Russo et al. (2022) extend a single
lane into the intersection as a “bike box”. They do not measure realistic
conflicts. In contrast, Joo et al. (2012) implement a bike box through
adjacent narrow lanes with bicycle priority and do not report issues.
For SUMO, Grigoropoulos et al. (2019) guide how to model advisory
bicycle lanes, bicycle boxes, and indirect left turns within the package
limitations. In a later study, Grigoropoulos et al. (2022) conclude that
simulated cyclist behavior around bike-boxes qualitatively aligns well
with naturalistic traffic observations, but results were not numerically
validated.
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Variability in road user behavior

Monsere et al. (2019) and Russo et al. (2022) attempt to calibrate a
single parameter set for multiple intersections and observe that not all
local phenomena could be captured. This may be caused by the single
parameter set, the lane-based model, or the behavioral rule set. Even
for single scenarios, Lemcke et al. (2021) report that their calibrated
model still underestimates field-observed conflicts, pointing to model
shortcomings for safety-relevant behaviors. More positive reports of
bicycle model performance, like the COWI manual (COWI, 2013) or
the W99 calibration efforts for cyclists by Kaths et al. (2021), target
operational characteristics without analyzing safety-critical behavior.
But even here, Kaths et al. (2021) identify lacking options to assign
distributions to car-following parameters as a limiting factor and high-
light the significance of lateral motion to realistic cyclist behavior. For
simulated and observed pedestrian-automobile crosswalk conflicts, Wu
et al. (2018) show that illegal behaviors contribute significantly to
the residual. Guhathakurta et al. (2023) expect an underestimation
of cycling conflicts due to the same effect but argue that a delta
comparison limited to the modeled factors is possible. Qualitatively,
more researchers from our review find the models in existing packages
insufficient to represent complex cycling behavior (Ledezma-Navarro
et al., 2018; Xu et al., 2023). Thompson et al. (2020) point out missing
knowledge of incident causality as a critical shortcoming.

These insights make it impossible to single out (un-)suitable sce-
narios. Current simulation packages fundamentally enable the creation
of many infrastructure layouts and interaction types. However, the
summarized issues highlight a lack of robustness to unsuitable config-
urations and a lack of validation for specific scenarios. Unfortunately,
many studies in our review analyze safety based on microscopic inter-
actions simulated by the existing software packages but do not validate,
verify, or comment on whether the simulation functions correctly. As a
result, a simulation might seem plausible macroscopically but produce
unrealistic microscopic interactions. Improved external cyclist models
can provide solutions for the shortcomings of the default models but
are scenario-specific and mostly yet to be comprehensively validated.

4. Framework for simulated cycling safety assessment

After reviewing existing studies, we present a methodological frame-
work for simulated cycling safety assessment (Fig. 4). The framework
inherits building blocks from the Barcel6 (2010) conceptual framework
of micro-simulation models and the calibration guidelines of Buisson
et al. (2014). Many fundamental aspects outlined in the guidelines
for microscopic simulation by the US Federal Highway Administration
Traffic Analysis Toolbox Volume III (TAT) for assessing operational
characteristics (Wunderlich et al., 2019) also apply to cycling safety.
We reiterate those only where related issues became apparent in the
reviewed application studies. Instead, we focus on the additional cy-
cling and safety assessment requirements and highlight differences.
We take up the suggestion of virtual Randomized Controlled Trials
(VRCTs) proposed by Brunner et al. (2019) and used by Denk et al.
(2022). They apply the structured and established procedure of ran-
domized controlled trials in medicine to simulated interventions in
traffic systems, arguing that the considerable overall complexity of a
traffic system requires similar statistical tests as investigations of the
human body. This may help to systematically address the stochasticity
of traffic simulation and create robust results.

Our review raises further concerns regarding the capability of cur-
rent micro-simulation packages to simulate cycling safety. Calibration
attempts have high residuals, and no application study comprehen-
sively validates their model for cycling safety. Those studies looking
at individual interactions report limitations of the default lane-based
models to capture the diversity of movement patterns. While perception
errors and rule noncompliance can be simulated to create conflicts, the
RU behavior in critical conflict situations is usually not addressed. Con-
sequently, conflict causality is not sufficiently reflected in the existing
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models. Automated conflict-based assessment may miss unsafe situa-
tions due to unsuitable indicator combinations. In summary, we do not
find sufficient evidence that the currently available simulation packages
enable cycling safety assessment with the same predictive quality as
the operational characteristics of car traffic. Hence, researchers may
not rely on current tools as validated out-of-the-box solutions. In-
stead, one must carefully analyze the requirements of study conditions,
individually develop, calibrate, and validate model components and
communicate underlying assumptions and limitations. Examples of this
process can be found in the reviewed studies that create new individual
models. Our framework aids this process by listing necessary steps and
highlighting methodological requirements.

We discuss the building blocks of the framework and their method-
ological requirements in the following subsection. Then, we discuss the
framework’s application potential and summarize the research gaps.

4.1. Methodological requirements

In our framework, every step defines requirements for the building
blocks of the following steps.

Problem definition

During problem definition, researchers must describe the study
scenario. Following Buisson et al. (2014), the factors influencing the
traffic scenario and cycling safety must be identified based on field
observations or related literature. Researchers may limit the selection
of factors to those relevant to the research questions. The suitability
of micro-simulation to answer a research question depends on the
validated capability of the model to describe the relevant factors. With
safety being a characteristic of RU interactions, researchers must pay
special attention to behavioral patterns. Simulations of a real-world
scenario are most suitable as the characteristics of the specific locations
may be observed and used to design, calibrate, and validate the model.
Generic and predictive scenarios without an immediate real-world
counterpart are especially valuable for research questions on future
traffic developments but require research into new models with proven
intrinsic validity. For statistical testing with VRCT after Denk et al.
(2022), the formulation of research hypotheses, as well as a baseline
(i.e., “control group”) without the proposed intervention, is required.

Environment selection

Based on the critical factors of cycling safety defined in the previous
step, researchers have to select the building blocks of the simulation.
Specifically, the simulation environment and its bicycle models need
to be capable of modeling the RU behavior, relevant infrastructure
elements and their geometry, as well as traffic characteristics like travel
speeds, queuing patterns, and stop waves.

Our reviewed studies successfully model bicycle flow and traffic
control using established tools (e.g., Russo et al., 2022; Xu et al., 2023;
Bahmankhah and Coelho, 2017). However, our review reveals sig-
nificant shortcomings of the default lane-based models for cycling
safety. In scenarios with one dominant direction of travel and without
excessive lateral dynamics, studies may continue the work of Lemcke
et al. (2021) to explore the validity of the lane-based approach further.
For more complex irregular interactions, this review points towards the
unsuitability of the default lane-based approach. Extending the TAT,
this puts a focus on selecting and modifying or newly developing a
traffic model that can describe the specific required behaviors and
interactions. Our review includes several examples of new models
for specific scenarios that significantly improve simulated road user
behavior (e.g., Ni et al., 2023; Xu et al., 2023). Similarly, infrastructure
models must be able to accommodate cycling behaviors. While the
main elements are available in most environments, restrictions apply
for special cycling infrastructure (e.g., bicycle boxes).

As exposure is a prerequisite for (un)safe interactions, performance
measures should both test operational and safety performance. This
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Fig. 4. Methodical framework for cycling safety assessment with micro-simulation. Green ticks indicate model components ready for use in cycling studies. Yellow

dots indicate components that require further scenario-specific research.

extends the TAT requirements for a local and a global operational
measure by at least one safety performance measure that must be
chosen to answer the research question and reliably detect the expected
unsafe situations. For interaction level assessments, SMoS measure
different varieties of hazardous situations and are not necessarily inter-
changeable. Johnsson et al. (2018) provide three recommendations for
choosing SMoS for cycling: Firstly, a combination of multiple indicators
is necessary to detect unsafe cycling. This should include indicators
for initial conditions, evasive actions, and conflict outcomes, provided
the RU models describe all parts. Secondly, indicators solely based
on temporal proximity may overestimate conflict frequency, and a
combination with speed-based measures should be evaluated. Thirdly,
crash severity is essential for cyclists because of their high vulnerability
compared to car passengers.

SSAM should be used with caution. Firstly, it only measures the con-
flict outcome, and secondly, the conflict detection based on combined
TTC and PET thresholds can miss dangerous situations. Cycling creates
complex dynamic behaviors that may be especially hard to capture
correctly. This much increases the requirement for visual inspection
of the simulation outcome compared to the TAT, not only for veri-
fication of the simulation but also to understand what situations the
safety indicators detect. During our review, building confidence in the
simulation quality was frequently limited by the lack of dissemination
of spatiotemporal results. To overcome this, researchers should more
often show example trajectories, trajectory distributions, or animations
of their simulations.

If safety assessment is based on risk exposure measures alone, this
requires prior knowledge of the associated risk and neglects crash
causality. Thus, it may provide an incomplete picture. Still, as exposure
is a prerequisite to crashes, Wallentin and Loidl (2016) show that
it reveals a fundamental insight into safety. With existing models
providing realistic traffic flows, exposure measurements are possible
if developing an improved model is out of scope. On the other end
of the spectrum, simulated crashes must consider event causality and,
hence, are only a viable measure if this can be simulated sufficiently.
In all cases, predicting a concrete crash risk is currently limited to
particular scenarios with realistic models throughout the simulated
causality chain.
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Lastly, calibration and validation data must be collected. It must
showcase the relevant factors influencing cycling safety and enable the
extraction of the performance measures.

Model development

Based on the selected environment, the traffic model must be devel-
oped. In addition to the conventional setup of road geometry, traffic
control, and demand, necessary external behavioral models must be
integrated. New models, complex behavior depending on local context,
and the limited capabilities of established models increase the focus on
model calibration and, compared to the TAT, require validation.

Calibration and validation must target the specific requirements
of the study objective, as defined by the environment and research
questions. After Buisson et al. (2014), it must test all performance
measures intended for experimentation. If the experiment includes
model input changes (e.g., different road layouts, traffic volumes, or
mode share), the model’s capability to predict the safety outcome of
these changes must be validated. If previous works have calibrated and
validated sub-models in comparable conditions, researchers may rely
on this validity (Buisson et al., 2014). However, our review reveals the
scarcity of successful cyclist model validations for micro-simulation and
highlights their instability under different scenarios. Hence, researchers
must perform their own calibration and validation in most cases.
Without it, the simulation results might not be informative about real-
world performance. In future scenarios like mixed traffic of cyclists and
AVs, data-driven validation may be impossible. Here, further dissemi-
nation of the underlying processes may create sub-models that can be
validated with data, are based on physical principles, or enable strong
assumptions. When validation is impossible, studies must communicate
their hypothetical character and underlying assumptions.

To ease the calibration complexity, researchers typically apply
multi-stage pipelines that first tune operational characteristics and then
focus on safety (Huang et al., 2013; Guo et al., 2019). For the cali-
bration of operational performance, the TAT does not require multiple
runs, assuming little dependency on stochastic behaviors. In contrast,
microscopic RU interactions depend significantly on the distribution of
behavioral parameters. Hence, safety calibration and validation require
multiple runs with different random seeds.
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Experimentation

During experimentation, researchers run the simulation and record
performance measures. The traffic model defines the requirements for
the experimental procedure. A simulation run is characterized by its run
time, the sampling rate, and a warm-up period to populate the network.
The sampling rate must allow sufficient temporal resolution to generate
realistic interactions. As traffic simulations include random processes, a
simulation has to be run multiple times. Reviewed studies report results
significantly depending on the random seed of a simulation run (Lem-
cke et al., 2021; Russo et al., 2022). Large fluctuations between runs
indicate that a model contains much randomness and that experiments
require more runs to explore the parameter space. Hollander and Liu
(2008) describe how a sufficient number of runs may be derived
to estimate the mean of a performance measure reliably. The TAT
recommends four runs for this initial estimation. For safety, Denk et al.
(2022) highlight that critical situations may arise from rare behaviors
at the tails of parameter distributions. More than four runs may be
necessary to observe these for the first mean and standard deviation
estimation. The vRCT framework calculates the required number of
encounters based on the desired statistical significance level, effect size,
and statistical power.

Evaluation

Measurements of a random variable in the experimentation step
require researchers to report measurement statistics. If scenarios are
compared, the comparison must be analyzed for statistical significance.
Here, our review did not identify unique aspects of cycling safety.

4.2. Applications and outlook

We intend our framework to be a study guideline for researchers and
practitioners. However, the shortcomings of current cycling simulations
are significant, and the framework formulates very high requirements.
These can be met with reasonable effort for limited research questions
relying on risk exposure or scenarios with a dominant direction of
motion. In many cases, however, the need for behavioral research,
development of new traffic models, data collection, and calibration/val-
idation might exceed the scope of an application study. Analyzing the
requirements for a specific study with our framework will, however,
reveal research opportunities that might lead to the development of
more comprehensive simulations.

The various applications we observed, including emerging chal-
lenges of our future transport systems, represent a clear need for
integrated simulation environments. Creating cycling-friendly transport
systems and introducing AVs, potentially at the same time, raises a
multitude of safety-related research questions regarding infrastructure,
operations, and logistics applications. Elevating microscopic simula-
tion to a tool that comprehensively answers these questions could
help development and boost safe real-world implementations. Further
disseminating the underlying behavioral and mechanical processes to
create sub-microscopic models is a promising approach. For example,
models of driver distraction (van Lint and Calvert, 2018) may simi-
larly apply to cyclist-driver interactions. The agent-based approach of
modeling every RU with autonomous intelligence can put a focus on
individual behaviors and motivations (Nguyen et al., 2021). For vehicle
dynamics, Pechinger et al. (2021, 2023) couple micro-simulations with
existing vehicle dynamics models and Schmidt et al. (2024) show that
this may also be applied to bicycles. More research needs to focus
on cycling to create integrated simulation environments for reliable
predictions on multiple levels of abstraction.
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4.3. Research agenda

Our framework highlights that significant research is required to
unlock micro-simulation as a cycling safety tool and create integrated
traffic simulations of future transportation.

Cyclist Behavior: To develop and calibrate micro-simulation models,
cyclists’ typical behavior in conflicts must be known. While
research into this is active, many specific scenarios are insuf-
ficiently investigated. Specifically, developing predictive safety
models needs information on RU behavior in severe conflict
situations at the final stages of crash causality. Research on a
global level is necessary to understand diverse traffic conditions
around the world.

Conflict Causality Models: To make simulated conflicts meaningful,
sub-models for the underlying processes of cycling behavior are
needed. Research may build on existing frameworks like the
social force concept, task-demand models, or human learning to
focus on weakly disciplined non-lane-based behavior and human
factors. Integrating these sub-models into a single framework
would enable safety analysis on the interaction and system
levels.

Validation of Existing Models: Comprehensive model validations
considering cycling safety are scarce. Determining under which
conditions existing and new approaches produce realistic re-
sults would help researchers and practitioners identify appro-
priate models for a specific scenario. Here, research into model
transferability and generalizability is needed.

Cycling Field Data: With data availability limiting model develop-
ment and validations across scenarios, more research should
make their data available to others. To this end, creating a
comprehensive repository of cycling data would greatly benefit
the collective effort to create better models and more reliable
application studies.

5. Conclusions

Due to its practical benefits, researchers apply microscopic traffic
simulation to assess cycling safety in current and future traffic scenar-
ios. However, previous research has voiced concerns about whether the
underlying models can predict safety-relevant behavior. We analyzed
the methodology of 42 studies quantifying micro-simulated cycling
safety to answer the following questions.

RQ1: Can micro-simulation model the safety-relevant behavior and riding
dynamics of cyclists? Studies predominantly tune the lane-based mod-
els of existing simulation packages for automobile traffic to resemble
cycling. Parameters affecting gap acceptance, visibility, and attention
are set to create unsafe situations between cars and bicycles. However,
detailed calibration attempts show that the simulation underestimates
field-observed conflicts (Lemcke et al., 2021). Additionally, researchers
observe shortcomings regarding dedicated cycling infrastructure and
report difficulties finding broadly applicable model parameters (Mon-
sere et al., 2019; Russo et al., 2022). Cyclists and conflicting cars
overly stick to lanes instead of showing variable trajectories (Ma et al.,
2017; Roosta et al., 2023), indicating that simulations may miss safety-
relevant situations. Our review does not find definitive, successful
validations of existing default models regarding the safety of simulated
behaviors and interactions. Hence, studies must carefully develop and
validate scenario-specific models to achieve reliable results. Research
on overtaking models (Ni et al., 2023), perception models (Langer
et al., 2023), and turning models (Sun et al., 2020) achieves promis-
ing results. It demonstrates how modeling the underlying interaction
processes among cyclists and with cars may enable the simulation of
the whole chain of conflict causality. In the general domain, spatially
fully continuous models (Kaths, 2023) and cognitive models (van Lint
and Calvert, 2018) are promising directions to increase simulated event
causality further.
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RQ2: Can micro-simulation models be calibrated and validated to predict
traffic conflicts involving cyclists? Researchers generally calibrate and
validate the existing simulation packages for operational characteristics
like flow, queue lengths, or trip duration. No application study in our
review calibrates and validates safety performance. Further, they do
not comment on whether the simulation environment creates realistic
behaviors and interactions. This conflicts with established simulation
literature demanding that the calibrated and validated performance
measures must be identical with experimentation and that distinct
datasets must be used for a model to prove its predictive power (Buisson
et al.,, 2014). With a lack of successful validation studies concerning
simulated cycling safety, studies may not rely on the general validity
of currently available tools. New external models in our review are
usually extensively calibrated and show promising performance, but
predictive safety validations are scarce. Xu et al. (2023) propose a
promising approach for calibration and validation based on human-
in-the-loop simulations that needs further analysis for the validity of
human behavior in virtual reality.

RQ3: Can cycling safety be evaluated based on micro-simulation? Most
studies employ crash surrogacy for safety assessment, mainly using
SSAM. This leads to concerns about the completeness of safety results,
as SSAM may miss unsafe situations due to serial PET and TTC thresh-
olds. The proposal of Johnsson et al. (2018) to choose safety indicators
that cover all relevant parts of conflict causality in the scenario may
help to overcome this. However, current traffic models generally do not
simulate realistic cycling behaviors through the full conflict process. As
a consequence, researchers typically filter simulated collisions. Future
models must consider the processes leading to conflicts and behavior
in conflicts to make simulated collisions meaningful. In the mean-
time, Wallentin and Loidl (2016) show that exposure measurements
may give limited insights into simulated safety. Reliable conclusions
must consider the model stochasticity and employ statistical tools to
derive a procedure for experimentation, evaluation and reporting of the
results. Denk et al. (2022) demonstrate how the medical gold standard
for randomized controlled trials can be applied to simulated traffic
assessment.

In summary, current default micro-simulations are not ready for
cycling safety assessment. Instead, many building blocks are active
research topics. Improved models already exist, but more comprehen-
sive validations are necessary to promote their transfer into micro-
simulation applications. Additionally, the application studies of our re-
view often do not follow established best practices. To achieve reliabil-
ity, researchers and practitioners must carefully determine the factors
and behaviors influencing cycling safety specific to the scenario. Then,
they must select or create models that can simulate these phenomena
and perform calibration and validation regarding safety measures. We
present a methodological framework to guide this process.

The framework places high requirements on application and case
studies. Traffic simulation is no shortcut to quick results on cycling
safety. Overcoming its inherent limitations requires rigor and detailed
analysis. The reward is the possibility of making predictions without
the technological and ethical limitations of real-world studies. Several
reviewed works focus on safety-critical AV functions or connected
systems. However, predictions on transportation futures based on mod-
els with unclear reliability become weak at best and dangerous at
worst. Insufficiently founded safety claims for vulnerable RUs might
incentivize developments and policies that eventually create hostile
environments and endanger real people.

This review could draw only limited insights from some of the
included studies because of insufficient documentation of the method,
not beyond high-level facts about the adopted simulation package, the
study location, or selected settings. This further highlights the need for
a rigorous methodological framework.

Future work must develop comprehensive micro-simulations to aid
the design and implementation of safe technological, operational, and
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logistical innovations for future transportation systems. Especially for
AVs, mixed traffic with cyclists is a bottleneck for large-scale adoption.
To alleviate the burdens on case studies, research must focus on an
improved representation of cycling behaviors and RU interactions. Ex-
isting approaches like the social force concept or models of perception,
attention, and workload may help to model the processes leading to
conflicts and thus enable in-depth analyses and justifiable predictions
leading to safety. Incorporated into existing microscopic frameworks,
this could answer some of the most pressing future mobility and
transportation questions.
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