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Abstract
The potential of in-line digital holography to locate and measure the size and position of
filaments, i.e. thin wire-like objects, distributed throughout a thick volume has been
investigated. In this paper two approaches are introduced to study filaments of varying
diameter. (1) It is shown analytically and experimentally that for a gradual variation of
filament diameter, one-dimensional Fraunhofer diffraction theory can be applied with an
accuracy of 5% to filaments with a diameter of 60–100 μm; the x and z positions of filaments
in a bundle can be determined with 0.1 mm and 0.3 mm accuracy respectively. (2) The
out-of-focus plane approach has been modified and applied to a simple bundle of filaments for
the case when their diffraction patterns can no longer be distinguished individually on the
hologram. An accuracy of 20% in measuring diameter and 0.3 mm to detect the position is
reported. Limitations as well as suggestions to further improve the technique are discussed.

Keywords: digital holography, in-line digital holography, filaments size analysis,
measurement of size and location

(Some figures in this article are in colour only in the electronic version)

1. Introduction

Holography enables the recording of a three-dimensional
(3D) optical field pattern on a two-dimensional (2D) detector
[1]. A typical hologram represents an interference pattern of
object and reference waves. When the hologram is simply
illuminated with a coherent wave, an image of the object
appears in space [2]. With the advent of electronic image
sensors and powerful computers, it became possible to do the
reconstruction numerically. Also, the development of image
sensors (such as CCDs) enabled direct capture of holograms
on a PC without involving wet chemical processing, so that
nowadays acquisition and analysis of holograms can be done
within a short time [3–5].

Historically one of the first practical applications of
holography was in the area of particle size analysis [6]. Particle
size and position measurements are important in many fields
and in a variety of industries, e.g. the manufacturing of metallic
powders, and the production of pharmaceuticals. Most laser-

based particle analyzer techniques generally determine the
distribution of the equivalent spherical particle size [7], while
holography has potential to determine both the object size and
location.

In this work, we apply digital holography (DH) to measure
the diameter and the location of filaments in volumes of
substantial depth, with the ability to distinguish individual
filaments. By filaments we designate wire-like objects with
varying diameter. This is of relevance, for example, in the
measurement of filament thickness in the spinning process,
shown schematically in figure 1. To inspect the uniformity
of the filament diameters for newly developed spinnerets, the
need exists for a simple measuring technique, that is able to
determine individual filament diameters (typically 40–70 μm)
in a volume of roughly 1 cm3. Moreover, a relatively large
working distance of several centimeters is required because
the liquid filaments are composed of a toxic acid solution. To
avoid interruption of the spinning process it is desirable to
perform non-intrusive inspection. The reason to apply DH
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Figure 1. Left: schematic representation of the Twaron spinning
process. A solution of aramid polymer in sulfuric acid (1) is pressed
through a system of orifices, the spinneret (2). In this way, liquid
filaments are formed with a diameter of 40–70 μm and a spacing of
1–2 mm (3). These filaments are stretched and subsequently
dragged through a water bath (4), where they solidify. After passing
through the water bath, the yarn is washed, dried and wound onto
bobbins (5). Right: picture of liquid filaments in a small-scale
spinning experiment. The arrow indicates the direction of motion.

to the problem is because the information of interest cannot
be obtained with conventional imaging. There are several
situations where microscopy is not suitable for imaging small
objects. For instance, improving the lateral resolution of a
microscope by increasing its magnification leads to quadratic
decrease of the field-of-view and depth-of-field, and decreases
the working distance. The depth-of-field of an optical system
with 5 μm resolution would be about 50 μm only [8].

Our approach is somewhat based on existing methods
for particle sizing. As we will show below, the particle size
analysis with the help of holography has seen substantial
progress in recent years. However, it strongly relies on the
assumption of a spherical shape. The main challenge of
this work is to overcome the poor resolution of in-line DH
nowadays. In particle sizing it is less crucial because of
the spherical shape of the particles. If their concentration is
getting high, such that they start to obscure each other and their
diffraction patterns partly overlap, the existing approaches will
still work due to spherical symmetry of the particles. There is
only one parameter for the shape, i.e. particle radius, and one
just needs to choose carefully a proper place to measure it on
a reconstructed plane where there is no overlap. This is not
the case for filaments. When there are two vertical filaments
close to each other they will appear as one filament of double
size due to lack of spatial resolution. Thus, direct use of most
methods for particle sizing to filament sizing is not possible.

Tyler et al [9] suggested the use of far-field holograms for
particle size analysis. They considered the analytical process
of hologram formation and reconstruction for an in-line setup
for spherical particles and fibers of constant diameter. Good
agreement with experiments was obtained for the diameter
range of 90–160 μm placed 150 mm from a detector. The
finite aperture caused degradation of the reconstructed image
quality due to edge-ringing, which could be avoided by
using partly incoherent illumination during reconstruction.
Vikram [10] reported another way to obtain better precision
in size measurements of small particles from holograms. The
reconstructed image of a hologram was viewed using a TV
camera and a monitor system with an effective magnification of
around 100. This was sufficiently accurate for the size analysis

of large particles, but yields significant errors for particle
diameters of tens of microns. It was found that the pattern
size at non-focus planes was much larger than the pattern size
at the focus plane. A simple relationship between the particle
size measured at a non-focus plane and the displacement from
the focus plane enabled an improvement of the accuracy. A
20 μm particle recorded at a distance of 6 cm from the camera
represented a 2 mm dot on a monitor with a magnification of
100. At a distance of 900 μm from the focus plane the particle
image diameter was already 20 mm and the measured particle
diameter was 19.87 μm.

Fournier et al [11] adapted numerical reconstruction of
particle holograms by taking into account the diffraction
envelope. This approach was aimed at improving the accuracy
of the depth localization of the particles. Since the approach
took into account the finite particles size, diameter extraction
was also possible in principle. Denis et al [12] proposed a
method to extract the mean size of particles from a digital
hologram. They used a self-correlation of a particle field
hologram. It was shown that the result did not depend on
the distance at which the particles were located and that the
slope of the correlation peak at the origin was proportional
to the mean diameter of the particles. The validity of
the technique was demonstrated in a cloud of 80–110 μm

diameter water droplets with a precision of about 10%. Soulez
et al [13, 14] and Gire et al [15] established the potential of
in-line digital holography to locate and measure the size of
particles distributed throughout a volume. They suggested an
‘inverse problem’ approach to improve the axial positioning
accuracy, which gives particle diameters with sub-micrometer
accuracy, eliminates border effects and increases the size of
the measurement volume. The problem of particle detection
becomes a global optimization problem, which determines the
optimal set of parameters that minimizes the given penalty
function. This penalty function represents the error between
a model hologram and a captured hologram. Rather sparse
particle distributions were used, so that individual diffraction
patterns can be distinguished. An iterative algorithm finds the
minimum of the penalty function and thereby determines the
location and size of the particles recorded in the hologram.
The validity of the technique was demonstrated for water
droplets of 90 μm diameter, located at a distance of 250 mm
from a detector. The standard deviation of the diameter
estimation was reported to be 0.4 μm.

In this paper, we apply lensless in-line DH to reconstruct
3D volumes with depth-of-field of 1–10 mm and a field-of-
view of 10 × 10 mm2, containing filaments of 60–80 μm
diameter. We demonstrate the efficacy of DH as a measuring
technique. Its main advantages are that the technique is non-
intrusive and applicable to measurements at relatively large
distances from objects under investigation with an adequate
depth of the measurement volume.

The paper is divided into three major parts. In section 2
we introduce two different approaches to measure the filament
diameter from holograms: the ‘inverse problem’ approach
and the out-of-focus approach. In section 3 experimental
results are presented. Section 4 contains a summary and
the conclusions, and discusses the possibilities for further
improvements of the technique.
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2. Theory

2.1. ‘Inverse problem’ approach

The first idea of how to measure a filament diameter from
its hologram is to do something similar to measuring the
diameter from an image of the filament under a microscope,
i.e. line by line scan through the hologram and to determine
the diameter in every cross section according to a given theory
that predicts the intensity distribution. Tyler et al [9] derived
the analytical expression of the intensity distribution resulting
from the Fraunhofer diffraction by a cylinder, aligned along
the y axis:

I (x) = 1 − 2D√
λz

cos

(
πx2

λz
− π

4

)
sinc

(
Dx

λz

)

+
D2

λz
sinc2

(
Dx

λz

)
, (1)

where D is the cylinder diameter, z is the distance between
the cylinder and the observation plane (x, y), λ is the light
wavelength. Expression (1) is valid under the condition⎧⎪⎪⎨
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λ

D
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According to (1), the spacing between the fringes is a
function of the product λ · z only in the term cos

(
πx2

λz
− π

4

)
,

whereas the envelope of the diffraction pattern sinc
(

Dx
λz

)
is

determined by the ratio D/z. Consequently, the filament
position can be determined from the hologram. Once this
is done, one can first determine the ratio D/z, and then the
filament diameter D.

This approach implies fitting of the analytical function
to the experimental data. In essence, the precision of the
diameter measurements is related to the number of fringes
between envelope zeros, where the relative error is the inverse
of the fringe count. This is true when the fringe count is not
too small, say around 10 or more. One can expect that placing
a filament at a distance about 30 cm from the CCD sensor
would result in 30–40 fringes for a filament with a width of
40–60 μm. Thus, a precision of approximately 2–3 μm per
fringe can be achieved.

This approach was first suggested by Tyler [9] for 1D
wires. However, a question remains on the applicability of
the approach to 2D objects, i.e. where the filament diameter
varies along its length. To be specific, if at the object plane
(ξ, η) there is a filament with a diameter D = D(η) that varies
monotonically from D0 to D0 + �D over a length of δ:

D(η) =

⎧⎪⎪⎨
⎪⎪⎩

D0, η < −δ/2,

D0 +
�D

2
+

�D

δ
η, −δ/2 � η � δ/2,

D0 + �D, η > δ/2,

(3)

what would be the error when using (1) due to two
dimensionality. Our goal is to theoretically estimate the
allowed minimum transition distance δ and relative diameter
change �D/D over δ, so that the error in the measured
diameter would be negligibly small.

If the object distribution is represented by A(ξ, η), and it
is illuminated by a collimated plane wave of amplitude B and
wavelength λ, then the light intensity at the recording plane
(x, y) at the distance z from the object plane (ξ, η) follows
from the Huygens–Fresnel principle [16]:

I (x, y) = B2(1 − J − J ∗ + JJ ∗), (4)

where

J (x, y) = e−i π
2

λz

∫ +∞

−∞

∫ +∞

−∞
A(ξ, η) ei π

λz
[(x−ξ)2+(y−η)2] dξ dη.

(5)

For a filament with the diameter distribution given in (3), we
have

A(ξ, η) = rect

(
ξ

D(η)

)
, (6)

where

rect(x) =
{

1, |x| � 1
2 ,

0, otherwise.
(7)

In the far-field approximation (ξ 2/λz � 1) the method
of stationary phase [17] can be applied to evaluate the integral
(5) with the assumption δ2/λz � 1:
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2 ]
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where Im is the imaginary part of a complex variable, and
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The integral I1 is a product of two terms. The first one,
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is the exact solution for a 1D filament of diameter D0 + �D
2

[9]. The second multiplier of the integral I1,
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as well as the integrals I2 and I3 account for the effect of
filament diameter variation. If we require the phase of (13)
to be small, i.e. π
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→ ∞. Thus, the diffraction pattern of
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(a)

(b) (c)

(d )

Figure 2. Illustration of the out-of-focus approach working principle: (a) the side view and top view of the reconstruction process;
(b) irradiance distribution at the plane z; (c) irradiance distribution at the plane z′ = z + �z.

where δ∗ ≡ √
λz. Relationship (14) means that the distance

over which a substantial change in diameter takes place should
be larger than some characteristic length scale δ∗, and the
relative change in the diameter �D/D should be sufficiently
small. In this case correction terms for two dimensionality
(10), (11) and (13) can be neglected.

In our experiments, λ = 0.634 μm, z = 150 cm and
D ∼ 100 μm. For these values δ∗ ∼ 300 μm; thus, the
maximum allowed relative change of diameter �D/D should
not exceed D/δ∗ ∼ 30%.

2.2. Out-of-focus plane approach

Figure 2 explains the working principle of the out-of-focus
plane approach to measure the filament diameter from its
hologram. After a hologram is captured on a CCD sensor,
digital reconstruction of the field can be done on a PC.
Figure 2 shows the side view and top view of the process.
Light rays emanating from the hologram form a focus at the
plane z. The field pattern in this plane (figure 2(b)) corresponds
to the original object, which was used to record the hologram.
One can measure the filament diameter D from the pattern as
illustrated in figure 2(b). However, it is difficult to obtain a
satisfactory result, since the resolution of the measurements
is limited by the pixel dimensions of the CCD sensor. A
60 μm diameter filament would occupy about 10 pixels in the
focal plane, and due to edge ringing in the reconstruction the
uncertainty would be at best 2–3 pixels, or 20–30%. For some
applications this may be too coarse.

The further propagation of light rays shows a certain
diverging pattern with clear maxima and minima. At the out-
of-focus plane z′ = z + �z the width between first symmetric
minima L (which we could refer as the out-of-focus diameter)
is much larger than D, i.e. about 300 μm or 30 pixels
(figure 2(c)). Consequently, a 2–3 pixel uncertainty in
measuring L is only 5–10%. If we can try to relate the
displacement of the out-of-focus plane from the image plane
�z, measured distance between symmetric minima at the out-
of-focus plane L with the diameter of the filament D, then the
latter can also be determined with a better accuracy. It was
done first by Vikram [10] for spherical particles, whereas here
we present a derivation for the case of a cylinder.

The Huygens–Fresnel principle can again be applied to
determine the reconstructed field in a plane (u, v) at a distance
z′ from the hologram. If a plane wave of amplitude C at the
same wavelength is used to illuminate the hologram normally,
the field is

�(u, v) = − iC

λz′ eikz′
∫ ∫ +∞

−∞
I (x, y) eik (x−u)2+(y−v)2

2z′ dx dy.

(15)

Our goal is to determine the field at a slightly different plane
z′ = z + �z, where �z is the distance from the primary
focus plane. If the object distribution at the object plane is
one dimensional, then substituting (4) in (15) in the far-field
condition ξ 2/λz � 1 and applying the method of stationary
phase to evaluate the integral, leads to the intensity at the
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Figure 3. Schematic of the experimental setup: (1) laser; (2) half-wave plate; (3) polarized beam splitter; (4) beam dump; (5) lenses;
(6) collimated laser beam; (7) specimen; (8) CCD camera.

observation plane (u, v):

I (u, v) = �(u, v)|2 ∝
∣∣∣∣∣1 − ei[ ku2
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For |�z| � z and z � D2/λ, the last two terms of (16) can
be neglected and result in
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Ã∗
(

− u

λ�z

)∣∣∣∣∣
2

. (17)

For a 1D object, like a thin filament with

A(ξ) = rect
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ξ

D

)
, (18)

it is found that
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)
= Dsinc
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This results in
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× sinc
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)
. (20)

It is no coincidence that (20) is very similar to (1). The reason
for this is that when reconstructing the hologram, we observe
at the focal plane a real image of the original object, i.e. a
1D filament. Further propagation of light waves is described
again by the Huygens–Fresnel principle. Consequently, under
the far-field approximation at a non-image plane we observe
Fraunhofer diffraction from a real image of a filament.

Our basic goal is to measure at large distances, compared
to the filament diameter, i.e. u � D. With this assumption
and �z � D2/λ, the second term on the rhs of (20) can be
neglected due to the high-frequency term cos

[
iku2

2�z

]
, that is

beyond the resolution of the CCD sensor.
Thus, under the physical conditions stated above, we have

as a first-order approximation

I (u, v) ∝ 1 +
D2

λ�z
sinc2

(
Du

λ�z

)
. (21)

Detecting the maxima or minima of the pattern at out-of-focus
planes allows the calculation of the diameter of the filament at
the image plane:

D = 2k
λ�z

Lk

, k = 0, 1, 2, . . . , (22)

where Lk is the measured distance between the corresponding
minima of k orders at the out-of-focus plane.

3. Experimental details

3.1. Experimental setup

The experimental setup is presented in figure 3. An essential
requirement is a collimated uniform laser beam profile. For
this purpose, a pair of good quality lenses is necessary (5 in
figure 3) to expand and collimate the beam. The combination
of a half-wave plate and a polarized beam splitter (2 and 3
in figure 3) was used to manually control the intensity. This
achieves an optimal signal-to-noise ratio and optimal use of
the dynamic range of the CCD sensor.

3.2. Validation of the 2D filament approach

To validate the theoretical results from section 2.1 a glass
needle of varying diameter was used (figure 4(a)). A reference
measurement of the needle tip was carried out with the help
of a profile projector. It turned out that over a length of about
10 mm the needle tip diameter varies monotonically from
about 20 μm up to 270 μm, which was measured with an
uncertainty of the order of 2.5 μm (1 in figure 4(d)). The
needle was placed about 15 cm from the CCD sensor. The
value of δ∗ was 300 μm or 46 pixels. According to the theory,
it would be enough to examine only cross sections located
46 pixels from each other to determine the needle size. To
improve the accuracy the results are averaged over seven
lines.

The processing was as follows. First, the hologram of the
needle was captured. In order to remove noise, a background
image without the specimen was recorded and then subtracted
from original data (figure 4(b)). Then the hologram was
digitally reconstructed (figure 4(c)) at a distance of 15 cm
and binarized with a threshold of 10% to determine the y
coordinate of the needle and, with the classical approach to
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(a) (b)

(c)

(d ) (e)

Figure 4. ‘Inverse problem’ approach results for the glass needle: (a) a glass needle that was used to demonstrate the validity of the
technique; (b) a hologram of the needle after background subtraction; (c) a reconstructed image at a distance z = 15 cm; (d) dashed-dotted
line is the direct estimate for the needle diameter in (a); the solid line is the final approximation of the needle diameter after the fitting
procedure; (e) relative error of diameter measurements (D − D0)/D0 versus relative diameter change �D0/D0 every δ = 3 mm.

analyze holograms [16], to get a first estimate for the needle
diameter.

The next step is to fit the analytical formula (1), using
a penalty function, to the experimental data at selected cross
sections. The initial guess for the location of the needle was
150 mm, while after fitting it was refined to 142.5 mm. In
figure 4(d) two results are plotted: the (red) dashed-dotted
line corresponds to the direct needle diameter measurements
with the help of the profile projector; the (blue) solid line is
the final approximation of the needle diameter after the fitting
procedure.

Finally, figure 4(e) represents the relative error of the
diameter measurements (D−D0)/D0 versus relative diameter
change �D0/D0, where D0 is the reference measurement of
the diameter with the profile projector (red dashed-dotted line
in figure 4(d)), D is the diameter value obtained with the fitting
approach (blue solid line in figure 4(d)). The diameter change
�D is taken every δ = 3 mm to satisfy the requirement (14):
δ � δ∗ = 0.3 mm. In the interval 0 � x � 3 mm the relative
diameter changes almost 70% and the error is 24%. In the
interval 6 � x � 9 mm the relative diameter change is not so
large, i.e. 45%, and the relative error drops to less than 5%.
This is in good agreement with our estimate in section 2.1.

3.3. Test object with three filaments

Subsequently we applied the method to multiple filaments. In
the right picture of figure 1 the liquid filaments emerge from
50 holes, organized in 5 rows by 10 orifices in each. In each

row orifices have a 1 mm spacing, with the rows being located
1–3 mm from each other. Consequently, the depth of field for
the volume of interest is about 4–10 mm. To model this case
in the laboratory we used human hair as a substitute for liquid
filaments. Human hair has a diameter of 60–100 μm, which is
comparable to the filament diameter size range of 40–70 μm.
The hairs were attached to a frame in such a way that it could
rotate approximately around the middle hair. In two data sets
the hairs were placed 3 and 5 mm from each other (figure 5).
The angle of rotation varied from 0◦ (a plane parallel to the
CCD sensor) to 80◦ (a plane almost perpendicular to the CCD
sensor).

3.4. ‘Inverse problem’ approach

In figure 6(a) a post-processed hologram for the case of
three filaments placed about 18 cm from the CCD sensor is
presented. The indices 1–3 identify the filaments from left to
right. The frame with the filaments is rotated 45◦ around the
z axis. The goal is to determine the diameter and position.
In figure 6(b) the comparison between the experimental data
and the final fit is shown for a line at y = 4 mm. The two
plots do not seem to coincide completely. The point is that
the scaling in y does not play any role at all. The data that are
being fitted are in fact the coordinates where the diffraction
envelope intersects y = 1. Information on the diameter is
encoded in the number of fringes between the middle of the
diffraction pattern and the first zero of the envelope function.
The difference in fringes scaling between experimental data

6
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Figure 5. Test target with three filaments (human hair). Front: (1) frame with three hairs; (2) hair. Top: (2) hair; (3) laser beam; (4) CCD
sensor.

(a) (b)

(c) (d )

Figure 6. ‘Inverse problem’ approach results for a small bundle of filaments: (a) a post-processed hologram for the case of three filaments
placed about 18 cm from the CCD sensor; the indices 1–3 identify the filaments; (b) a comparison between the experimental data and the
final fit at y = 4 mm; (c) filament diameter as a function of the y coordinate; (d) filaments’ x and z coordinates.

and the fitting curve for the second filament indicates that the
filament was undergoing rapid changes in diameter around this
location.

Fitting enables us to extract the filament diameter and
location, presented in figures 6(c) and (d) respectively. From
figure 6(d) it can be inferred that the angle between the frame
with filaments and the x axis was roughly 50◦.

3.5. Limitations of the ‘inverse problem’ approach

The main limitation of the approach is the assumption
that individual diffraction patterns can be recognized in the
hologram, or, in other words, that the total irradiance is the
sum of individual irradiances. This is only the case when
the filaments are not too close to each other. The minimum
allowable distance is determined by the size L of the diffraction
envelope, that is, approximately by

L = λz

d
. (23)

Assuming λ = 0.632 μm, z = 15 cm, d = 50 μm, gives
L = 2 mm. For the results presented in figure 6 the spacing
between the filaments is about 5 mm.

3.6. Out-of-focus approach

To overcome the limitation of the ‘inverse problem’ approach
we consider the out-of-focus plane approach. Figure 7(a) is
a hologram of three filaments, placed initially 3 mm from
each other. The frame with the filaments was rotated about
60◦ around the z axis. Thus, effectively, the observed spacing
in the hologram is about 1.7 mm. Figure 7(b) shows a cross
section of the hologram for y = 0.8 mm. It is clear that for this
case individual diffraction patterns interfere significantly, and
the ‘inverse problem’ approach can no longer be used.

Figure 7(c) shows a cross section of 200 reconstructed
planes, located between 175 mm and 230 mm from the
hologram in figure 7(a). The position of the filaments can
be determined at places where light rays form a focus (circles
in figure 7(a)). The indices 1–3 in figure 7(c) identify the
filaments from left to right in figure 7(a). The dashed line
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(a) (b)

(c) (d )

(e) (f )

(g) (h)

Figure 7. Out-of-focus plane approach results: (a) hologram of three hairs, placed initially 3 mm from each other; the indices 1–3 identify
the filaments. The frame with the filaments is rotated about 60◦ around the z axis. (b) Cross section of the hologram for y = 0.8 mm;
(c) cross section of 200 reconstructed planes, located between 175 mm and 230 mm from the hologram in (a); (d) irradiance distribution at
z = 200 mm; (e) magnification of area 1 in (c); (f ) magnification of the area in (d) for 1.6 � x � 2.6 mm; (g) the x and z position of the
filaments; (h) diameter of the filaments versus distance in far fields (LF ) from the focal plane.

in figure 7(d) is an irradiance distribution at z = 200 mm in
figure 7(c). Rectangles indicate parts of the curve described by
(21). Figure 7(e) shows a magnified part of figure 7(c) near the
location of filament 1. To determine the filament diameter, we
first find its z position (z in figure 7(c)). This can be done with
a precision of 0.3 mm. After that at an out-of-focus plane that
is located �z = 20 mm or roughly one far-field distance from
the image plane (z′ in figure 7(e)), the width L between first
minima of the irradiance plot is measured. Once this is done,
we can calculate the diameter of the filament D at the focus
plane z according to (22). Figure 7(f ) is a magnified section of
figure 7(d) within the area located between 1.6 � x � 2.6 mm.
The solid line in figure 7(f ) is (21) plotted for the obtained
values of �z and D. The same procedure was repeated to
determine the diameters of filaments 2 and 3 respectively.
Figure 7(g) shows the extracted location of the filaments with
an uncertainty of 0.3 mm. Finally, in figure 7(h) the diameter
of the filaments measured at different positions from the focal
plane is presented. The distance is normalized with the far-

field distance LF for a filament of 100 μm diameter, given
by

LF = D2/λ, (24)

which is about 15 mm for the present case.
There is a weak dependence of measured diameters on the

distance from the focal plane for 1–2 × LF . With increasing
distance the error increases to 30%. This can be explained
because the further we go from the focal plane the more crude
the approximation �z � z becomes.

Although there is clearly an error of 10–15% in the
measured diameter of filaments, with decreasing D, the error
also decreases, since the conditions leading to (21) become
more favorable. We can expect that for filaments of 40–60 μm
in diameter the error can be reduced to 5%.

3.7. Limitations

The theory is in principle one dimensional. However, the
same arguments can be applied in this case to show that under
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assumptions (14), the error due to two dimensionality will be
insignificant.

Secondly, the approximation (21) is valid if the
observation plane is several times the distance LF away from
the focal plane. On the other hand, the intensity decreases
as �z increases, i.e. the signal-to-noise ratio gets worse.
Preferably, �z should be as small as possible. To satisfy
both conditions, �z would preferably be �z ∼ LF .

Meanwhile, �z should remain much smaller than z.
For D = 100 μm we already have LF = 15 mm.
Consequently, the smaller the filament the better the approach
will work provided that the Fraunhofer approximation remains
valid.

4. Discussion and conclusion

A study was done on the application of digital holography
to micrometer filament size analysis in a volume with a large
depth. Two different approaches have been proposed to extract
the dimension and position of filaments that occur in a bundle.

It has been shown analytically and experimentally that
for gradual variations of filament diameter over length (�D/

D < 30%), one-dimensional Fraunhofer diffraction theory
can be applied, which yields results with an accuracy of 5%
for filaments with a diameter of 60–100 μm. The in-plane (x)
and out-of-plane (z) positions of filaments in a simple bundle
can be determined with a precision of 0.1 mm and 0.3 mm
respectively.

The out-of-focus plane approach has been modified and
applied to a simple bundle of filaments for the case when their
diffraction patterns can no longer be distinguished separately
on the hologram. An accuracy of 20% in measuring the
diameter and of 0.3 mm to detect the position has been
obtained.

We suggest two ways to further improve the technique.
First, to utilize two or more cameras to capture holograms of
a bundle of filaments from different views. This will help in
improving the measurements of the position of the filaments
[8]. Second is to premagnify the field before recording the
hologram [18]. This will increase effective resolution of the
system. As a result, reconstruction of the holograms can be
done with better accuracy and the out-of-focus approach will
perform better as well.

In order to apply the method to the bundle of filaments
shown in figure 1, one can capture the hologram of the bundle
at a slight angle with the z axis, so that the filaments are
not blocked by each other. The big bundle of filaments can be
considered as a row comprising several small bundles with five
filaments in a line. Then each small bundle can be investigated
further with the approaches suggested in this paper.
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