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Aircraft Mass and Thrust Estimation Using
Recursive Bayesian Method

Junzi Sun!, Henk A.P. Blom!2, Joost Ellerbroek!, and Jacco M. Hoekstra!

! Faculty of Aerospace Engineering, Delft University of Technology, the Netherlands
% Air Transport Safety Institute, National Aerospace Laboratory, the Netherlands

Abstract—This paper focuses on estimating aircraft mass and
thrust setting using a recursive Bayesian method called particle
filtering. The method is based on a nonlinear state-space system
derived from aircraft point-mass performance models. Using solely
ADS-B and Mode-S data, flight states such as position, velocity,
and wind speed are collected and used for the estimation. An
important aspect of particle filtering is noise modeling. Four noise
models are proposed in this paper based on the native ADS-B
Navigation Accuracy Category (NAC) parameters. Simulations,
experiments, and validation, based on a number of flights are
carried out to test the theory. As a result, convergence of the
estimation can usually be obtained within 30 seconds for any
climbing flight. The method proposed in this paper not only
provides final estimates, but also defines the limits of noise above
which estimation of mass and thrust becomes impossible. When
validated with a dataset consisting of the measured true mass and
thrust of 50 Cessna Citation II flights, the stochastic recursive
Bayesian approach proposed in this paper yields a mean absolute
error of 4.6%.

Keywords - aircraft, state estimation, point-mass model, measure-
ment noise, particle filter, Bayesian estimation

I. INTRODUCTION

Estimating aircraft mass based on observed flight trajectory
data has long been a topic of interest in ATM research.
Aircraft mass acts as not only as an important parameter for
many different studies of aircraft performance, but is also a
desired piece of knowledge for air traffic controllers in practice.
Airlines, however, treat this data as confidential, and access is
rarely given to either researchers or air traffic controllers. In
practice, this means this data is not accessible nor actively used
by the research community.

Earlier studies that addressed this problem were commonly
focused on deterministic methods based on the aircraft total
energy model (TEM), which is also the core of the BADA
performance calculation [1]. Alligier et al. presented a least-
squares method [2] and a follow-on machine learning method
[3]. Around the same time, Schultz et al. implemented an
adaptive estimation method to estimate the aircraft mass [4].
These methods used accurate radar data for estimation.

In our previous studies, we also proposed two different
approaches based on ADS-B data. The first study made use
of the data from the takeoff phase [5]. The second method
used Bayesian inference to construct a posteriori estimation by
combining masses computed from different flight phases [6].

From all these studies, a strong link between aircraft mass
and thrust setting is evident, and it is not possible to estimate
one of the two parameters without some knowledge of the other.
Most of the aforementioned studies essentially addressed the
estimation process as an optimization problem. Their solutions
are obtained using a form of least-squares fitting. Aircraft mass
estimated under these conditions is often unrealistic and even
outside plausible physical boundaries. This is often due to the
uncertainty in the trajectory data, as well as the uncertainty
in the system equations. Although the effect of noise is an
important aspect in the entire inference process, its relation to
mass estimation has not yet been studied comprehensively by
previous studies. It is therefore one of the main contributions
of this paper.

The problem of mass estimation by a (ground-based) ob-
server can be considered as having to solve an inversed non-
linear multi-state system using noisy observation data. To tackle
this complex system, we constructed a detailed point-mass
flight performance model with ten system states and eight
observables in this paper. Then, a tailored, Sample Importance
Re-sampling (SIR) particle filter, is introduced to solve these
system equations. In addition, four different levels of observa-
tion noise models are constructed, based on ADS-B navigation
accuracy standards, which are used in the particle filtering.

Both simulated and real flights are used to test the model
and method. After that, a set of actual flight data with known
initial mass are used for validation. Finally, the paper also
offers conclusions on the relationships between estimation and
uncertainties based on our model and method.

The remainder of the paper is structured as follows. Section
two describes the fundamentals of recursive Bayesian theory,
particle filtering, the point-mass flight dynamic system equa-
tions, noise models, and the detailed algorithm. Section three
presents our experiments using simulated and real flight data.
Section four offers the validation results based on real flight
data. Finally, a discussion and conclusions are presented in
sections five and six.

II. RECURSIVE BAYESIAN ESTIMATION AND ITS
APPLICATION TO AIRCRAFT STATE ESTIMATION

Aircraft flight dynamics are complex, non-linear, and mul-
tivariate. Estimation of parameters such as mass depends on
solving this fairly complex inversed flight dynamic system. Due
to the high non-linearity and number of system states, deriving
the estimation of mass under noisy measurements (and thrust
setting when possible) is the main goal of this section.

To this end, we will first give a fundamental introduction
to the use of the recursive Bayesian method for generic
system state estimation. The Sample Importance Re-sampling
(SIR) particle filtering method is introduced for the estimation
purposes. Then, the specific system of aircraft flight dynamic
equations will be addressed. Combining with the SIR, the
solution for the system will be given. A detailed algorithm
implementation will also be provided. This section will end
with the definition of the observation noise models and other
stochastic elements of the SIR.

Recursive Bayesian estimation is a probabilistic method for
system states filtering, prediction, and estimation. One of the
most widely used applications is the Particle Filter, which is
technically known as the Sequential Monte Carlo Method.

Starting for a set of initial state conditions, the recursive
Bayesian determines the values for the next set of states based
on the joint posterior probability of all previous states’ measure-
ments. Commonly, for non-linear system with a large number
of states, the computation of a closed-form joint posterior
probability is not practical.

For this reason, the Monte Carlo method is introduced.
It utilizes a very large number of weighted particles to ap-
proximate the true probability density functions, where each
particle represents a possible set of state values. Through a
stochastic update and sampling processes, the original challenge



of updating a high-dimensional joint posterior probability is
then transformed to adapting the weights of particles.

A. Recursive Bayesian estimation

First, it is crucial to explain the basics of how recursive
Bayesian theory is used for system state estimation.

Denoting x; as the system states and y, as observables
at time ¢ ( ¢ € N ), the evolution of the discrete-time state
model and observation model of a system can be generalized
as follows:

x¢ = f(Xe—1, Ve—1)

Y = h(xt; nt) (1)

where f and h represent the state transition function and
observation function, v; is the process noise, and n; is the
observation noise. v; and m, are assumed to be mutually
independent sequence of independent and identically distributed
variables.

Equation 1 represents the general case of the system and
observation function for recursive Bayesian methods. In the
particular case of this paper, we assume an additive Gaussian
model for both process noise and observation noise. We further
assume the noises extends linearly and equation 1 is rewritten
as

x¢ = f(Xe—1) + Vi1
yi = h(x:) + n

Regardless of the form of system and observation functions,
the goal of filtering is to compute the probability of system
states at any time ¢ based on the observation from time 1 to
time ¢, denoted as p(X¢|y;.;)-

2)

Py |xe)p(Xe|y e —1)
p(xely1) = 3)
it P(Yelyie-1)
where the first part p(y,|x;) is the measuring probability
that can be computed based on observation noise n. Due to
Equation 2, x; is a first order Markov process, hence the second
part p(x¢|y;.,_;) becomes:

p(xely1.0-1) = /p(xt|Xt—1)p(Xt—1\Y1;t—1) dxi—1 4

where the first term p(x:|x;—1) is the state transition proba-
bility. It can be computed by the system transaction equation
based on the process noise model v. Combining the above two
equations, the recursive form becomes:

_ Py |xe)p(xe]x: 1)
plxelys) = / P(Yely14-1)

p(xe-1ly1.0-1) dX¢—1

)
where the denominator of the fraction is a normalizing factor
which does not need to be computed explicitly. The difficulty is
to compute the measuring probability and transition probability.
In most cases an analyticity solution is not possible. That’s
where Sequential Monte Carlo (SMC) simulation comes to
work.

B. Farticle filtering

A particle filter is a recursive Bayesian estimator based on
importance sampling that computes the posterior density in a
Monte Carlo fashion. It approximates the target distribution
p(zx) using a large number of samples (particles), drawn from
an proposal distribution ¢(x) and updates it recursively.

To describe the SMC process, at time t, let {x: wi}¥,
be state particles that can represent the posterior density
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p(x¢]y1..), where {xi} is the set of states with weights {w?}.
Henceforth, the posterior density is approximated with the
empirical probability density:

N
pxely ) & Y wid(x}) 6)
=1

where §(-) is a Dirac delta function centered at x} and w’
is the normalized weight of a particle which satisfies w* =
p(x")/q(z"). The most important part of particle filtering is
the measurement updating. Sequentially, the particle weight w;
is updated in a recursive form. The solution is presented in
Equation 7, as derived in [7] :

Xi ~ Q(X“Xi—la Vi)

T ply|xi)p(xi|xi_y)

W, X _ - -
U (ki yi) 9
wp = =N -
Zi:l Wy

At each iteration, the sum of all weights is normalized to one
as shown in the last equation. The posterior filtered density
is approximated using Equation 6. We can also compute the
expected value of the states at each time step using the particle
weights:

N
Elx] = Z X)W ®)
i=1

There are different ways to choose the proposal distribution.
A specific particle filter - Sample Importance Re-sampling
(SIR) - is used for solving the problem of this paper. The SIR
particle filter uses the state transition distribution p(x;|x}_;) as
the proposal distribution ¢(x¢|x}_;,y},). Therefore, the particle
update equations in Equation 7 can be simplified as:

x; ~ p(xi[x;_1)
wi o p(yelx;)
For a SIR particle filter, an additional re-sampling process at
each iteration is included. The re-sampling step generates a new
set of particles based on the approximated p(x%|x%_,). Weights
of all particles are also assigned to 1/N after the re-sampling.
This step is essentially a redistribution of particles, which
replaces low-weight particles with high-weight particles. The
standard re-sampling algorithm is called residual re-sampling,
which was proposed by Liu et al. in 1998 [8]. Other forms of
re-sampling such as systematic re-sampling and stratified re-
sampling are summarized by Douc and Cappe in 2005 [9]. In
this paper, residual re-sampling is used.

9

III. SYSTEM OF POINT-MASS AIRCRAFT PERFORMANCE
MODEL

A. Aircraft state

In previous section, the general form of the state system and
solution using particle filter were given. In this section, the spe-
cific system equations based on point-mass aircraft performance
are proposed. To illustrate, Figure 1 shows the observable states
in all three axes. The left figure shows a horizontal projection of
a trajectory, and the right figure a vertical projection. For ease of
computation, latitudes, longitudes, and altitudes are converted
to a reference Cartesian coordinate system.

Denoting aircraft mass as m, thrust setting coefficient as 7,
distance flown as 5, altitude as z, ground speed as %y, true
airspeed as v, (in horizontal projection), vertical rate as (v,),
and wind speed as ,,, the system state x vector is:
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Fig. 1: Observed states in the flight dynamic system

(10)

X = (mﬂ?, S,2,Vg, Va, ’Uzva)

The vector variables in corresponding x and y axes components
are:

§=(z,y)
Uy = (vga, Vgy) (11)
Ug = (Ua:mvay)
Uw = (vwmava)

Additional angular parameters in Figure 1 are flight path angle
v, ground track Yy, aircraft heading 1, and wind direction ¢.
The measurement vector y is represented as:

—

y= (;275976275w) (12)

B. State evolution

Since the goal is to model the system as accurately as
possible and shift the uncertainty to the observation noise
model, when possible we assume zero process noise for my,
¢, 5S¢, 2¢, and ¥, ;. For states that the perfect process model
cannot establish accurately (or are unknown), we use an auto-
regressive model to describe their process equations. These
states are the vertical rate v, and wind ¥,,. The complete state
process equations can be described as follows:

my = M1 (13)
N = M- (14)
5 = 81+ (Vap—1+ Upe—1) dt (15)
2t = Z—1+ Uy dt (16)

Ugt = Ugp—1+ a1 dt 7

Uzt = QuzUzi—1+ Euz (18)

Ut = OQyulwi—1+Ew (19)

where @, is the horizontal acceleration. State updates for v, and
Uy, are expressed using two autoregressive (AR) models with
lag p = 1. Parameters «v,,, €4, €4, and &, are estimated using
the least-squares method. The detailed process and results are
shown in Section III-D.

To compute the acceleration (@;) at each time step, we need
to consider the forces acting on the aircraft. The equations used
at each time step are listed as follows:

d} = (at7 wt) (20)
1 Vz
@ = —(mTy—Dy)—g—* @D
m Ut
¢y = arctans(Vest, Vay,t) 22)
1
. = <1 — —2z+ C3Zt2) (23)
C2
1 L \?
D _ = 2 k Tt 24
¢ QPUtS Cao + (;pva) 1 e
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Ly = (25)

(26)

myg

v = \fit (v2)?
where L, and D are lift and drag force, and p and S are
the air density and the aircraft wing surface. From the BADA
model [1], T is the maximum thrust profile defined by three
coefficients. Cyo and k are coefficients for zero drag and
induced drag respectively.

During real flights, not all thrust settings can be used for
any aircraft mass. The reduction of thrust has a lower limit
depending on actual aircraft mass. In the particle filter, such
constrains are introduced as the initialization of the particles.
The following Equation 27 is adapted from BADA [1] and is
used to constrain the relation of mass and thrust setting.

1N € [Mmin, 1]

Nin = 1 —0.20 - @7

Mmax — M
Mmaz — Mmin
C. Modeling the aircraft measurement noise

Measurement noise is closely related to sensor errors. For
example, GPS errors affect position measurements (related to
state T) and altimeter errors affect altitude measurements (Z2).
Besides sensor errors, the truncation of values in downlinked
data (such as latitude, longitude, and altitude in ADS-B position
messages) also contributes to the measurement error. ADS-B
transponders operate under regulations that define the minimum
accuracy of sensors [10]. Different categories of uncertainty
indicators are transmitted through ADS-B. In this paper, the
Navigation Accuracy Categories (NAC) are considered for the
construction of observation noise models.

In Table I, the Navigation Accuracy Category - velocity
(NACv) defines the level of accuracy in terms of horizontal
and vertical speed. The NACv indicator is broadcast within the
airborne velocity message (Type Code 18). HFOM and VFOM,
short for horizontal and vertical figure of merit, indicate the
95% confidence interval which is translated as twice of standard
deviation in the observation noise model. They define the ogg,
o2,, and o2,

va’

TABLE I: Navigation Accuracy Category / Velocity

NACv HFOM VFOM
4 <0.3 m/s <0.46 m/s
3 <1 m/s <1.52 m/s
2 <3 m/s <4.57 m/s
1 <10 m/s <15.24 m/s
0 >10 m/s or unkown | >15.24 m/s or unkown

Similarly, in Table II, the Navigation Accuracy Category
- position (NACp) defines the level of accuracy in terms of
horizontal and vertical position. For each NACp level, an Esti-
mated Position Error (EPU) and a Vertical Estimated Position
Error (VEPU) are defined. Similarly, they indicate the 95%
confidence interval of the horizontal and vertical bounds. From
these values, o2, o2 and o2, of the observation noise can be

- x> Yy z
obtained.

TABLE II: Navigation Integrity Category

NACp EPU VEPU
11 <3 m <4 m
10 <10 m <15m
9 <30 m <45 m
8 <0.05 NM n/a

7 -0 | notused in this paper

Four sets of observation noise models are proposed based on
ADS-B specifications, with each corresponding to a difference
combination of NACp and NACv, see Table III. These four



TABLE III: Noise models

Noise model | NACp | NACv
3n1 11 4
32 10 3
303 9 2
3na 8 1

models are also the foundation for the experiments in Section
V.

The exact values for all four noise models are shown as
follows:

= diag(1.5%,1.5%,2%,0.15%,0.15%,0.23%,0.25%,0.25%)
3,0 = diag(5?,5%,7.5%,0.5%,0.5%,0.762,0.75%,0.75%)
3,3 = diag(15%,15%,22.5%,1.5%1.52, 2.28%,2.25%2.25?)
3,4 = diag (482,482,682, 5%,52,7.62%,7.52,7.5%) o8

D. First order autoregressive model for v,, and v,

As previously described in Equations 18 and 19, wind
and vertical rate along the climbing flight are modeled as
two autoregressive (AR) models, since the underlying process
model is unknown and these two time series do exhibit strong
correlation between consecutive data points. For simplification,
we are using a first-order AR model (AR1). In general the AR1
model (without bias) can be expressed in the following form:

Xt = axt—1+¢€
e~ N(0,0%)

where « is the model parameter and € is a white noise with
variance of o? Usmg real flight data, these parameters can
be estimated. For a given flight, o and o can be estimated in
Equation 30 using least-squares.

(29)

Z?ﬂ Xt—1Xt
Z?:l Xt271

o? = Var(x; — axi_1)

o =
(30)

The reason that wind can be modeled in this way is that
locally it tends to be homogeneously distributed with some
degree of variance. There is often a gradual increase of wind
magnitude with increasing altitude. The model shall expect the
« to remain close to 1.

On the other hand, using AR for the vertical rate offers a
different perspective. The vertical rate is often a controlled
variable in point mass flight models. Without more information
from the aircraft, only an AR model can capture the change of
vertical rate from the observer’s point of view.

Using the autoregressive models, these state updates can be
expressed using system difference equations that are similar
to other states in Equation 13. To determine representative
values for o and o2, ADS-B and Mode-S data was collected for
climbing flights in a period of one month (410, 000 flights). o
and o2 were computed for each flight, and the mode (the most
frequently occurring value) of each parameter is used for the
AR models. Table IV summarizes these values for v, and 7,
(used in Equation 18, 19, and 29).

TABLE IV: Parameter summary for AR1 models

«a o

Uy 0.9989 | 0.3687
vwe | 1.0005 | 0.2004
vwy | 1.0009 | 0.2084
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E. The observation equations

The observables are distance and speed in horizontal and ver-
tical direction, denoted as y. Recall the measurement function
from Equation 2 with additive Gaussian observation noise:

yv: =h(x)) +ny; ng ~N(0,%,)

The observation function can be written in detail as follows:

€1y

5 = S+ Tes 32)
Zv = Zpt+mnag (33)
8g,t = Ta,t + Vw,t + Mg, (34)
Vst = Vst + Moz (35)
%fw,t = Uyt + Myw,e (36)

where the state and measurement vectors at time ¢ are:

Xt [mtvntvstaztvva tvvz tan t]

= [m Mt (xtv yt) Ztv (Uam,tv 'Uay,t)7 Uzt (me,tv 'Uwy,t)]
yi =[5t Zt,Ug,uUz tﬂ)w t]

= (@6, 90), 21, (Vg 15 Ogy.t), Uzt (Dwa,t Dy 1)]

(37)
and diagonal covariance matrix 33,, for noise models:
2 2 2 2 2 2 2
En - dlag(cr va 0z 01)9? O—vg) Oz Ovws gmu) (38)

Since the noise follows a multivariate normal distribution, the
associated importance weight p(y,|x}) can be conveniently
computed as follows:

w' = p(y,lx;)
1 1T — i
o (= by = b)) 2 [y, - () )
Thus we have the closed form of the particle filter approxima-

tion of the conditional probability function of p(y,|x}), which
can easily be calculated.

(39)

IV. DEDICATED PARTICLE FILTER
A. Stochastic kernel

Compared to conventional SIR, in this paper, a modified the
SIR particle filter is used. Stochastic kernel noise is applied
to the states of interests (m and eta), as well as a hidden
state, aircraft heading (i)). A stochastic kernel is essentially
a very small random Gaussian noise added to the the desired
state variables of all particles after re-sampling. The stochastic
kernels bring tiny variations in these state variables.

For m and 7, the kernel helps to prevent the degeneration
of particles and maintain a local diversity of values. In the
case of aircraft heading 1, it is essential for the functioning
of the particle filter. This is because the current point-mass
aircraft performance model lacks a process equation for heading
changes. The small kernel allows the particle filter to keep
trackling the small change of aircraft heading in some trajecto-
ries

m ™ N(O7U§,m)
ky ~ N (0, 0,37”)

(40)

'Hence experiments in this paper use only the forward parts of climbing
flights.



In this paper, the choice of oy, ., and oy, are chosen to be
0.4% of the maximum m range (0.004 X (Mynt0w — Moew)) and
maximum eta range (0.004 x 0.15). The choice of oy, is 1
degree.

B. The algorithm

Combining the previously defined system and observation
parameters, the complete steps of the modified SIR particle
filter is summarized in Algorithm 1 (adapted from the original
generic SIR method in [11]).

Algorithm 1 The SIR particle filter: p(x¢—1]y;_1) — p(Xt|y:)

I: lett:=0 o > initial time step
2: initialize set of particles {xy,wp; ¢=1,---,N}

3: let %o := h™(y,)

4: let X,, be observation noise covariance

5: for i=1 to N do

6: draw mg ~ U{Mocw; Mmtow } _

7: compute 7,55, 1= 1 — 0.2(Mimtow — M0)/(Mmtow — Mocw)
8: draw 1o ~ U{Nmin, 1}

9: draw (8, 20, Uao, V20, Vo) ~ N{Xo, Bn}

10: X6 = (m677767§%)726717207U207%0)

11: wy = 1/N

12: for i=1 to N do _ > SIR update
13: wi = wz,lp(yt|x;)

14: wii=w;/ Zf;l wy

15: for i=1 to N do > re-sampling
16:  draw Xj ~ 3 Wid(x — x})

17: wi:=1/N

18: for i=1 to N do

19: draw v, ~ N (0, %)
20: Xiy1 = f(Xi) + v
21: for i=1 to N do > apply kernel
22: draw dm’ ~ N(0, 07 ,,,) as kernel noise for m

23: mi = mi + dm?

24: draw dn® ~ N(0, Uz’n) as kernel noise for n

25: ni = ni +dn’

26: draw dyp* ~ N{0, Ji’w} as kernel noise for heading

27: compute d’ from di)"

28: Vgt i= TUg, + dUq

29: let t :=1¢+ 1, repeat 12

> state evolution

V. EXPERIMENTS AND RESULTS

In this section, three different types of experiments are
designed. First, a simulated flight is generated with a known
mass and thrust setting. Four rounds of estimations are carried
out under four different noise models. The simulation is to
ensure the validity of the particle filter based on the proposed
system equations. Second, a real flight is chosen and the
estimation is undertaken with the same four noise models. This
is to ensure the results from on real flight is in-line with the
simulation. Finally, a large number simulation experiment is
designed to study the uncertainty of the estimation. For all
experiments, the number of particles are set to one million.
This choice is a balance between accuracy and computational
speed.

A. Simulation of a Boeing B737-700 flight

In this experiment, the aircraft mass m is set to be 60000
kg and the thrust setting 7 is set to be 0.96. The actual
measurement noise for the simulated trajectory is X,2. A zero
wind with a constant climb rate for the flight is assumed.
Particle filters with four distinct noise models are applied to
the trajectory for estimating the mass and thrust settings.

In Figure 2, the convergence of particles under assumed
observation noise 3,5 is illustrated as an example. In each
convergence plot, the green line represents the true state value,
the black dots are simulated observations, and the gray area is
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bounded by the minimum and maximum state values at each
iteration. With the same assumed noise as the true noise, the
mass and thrust settings nicely converge to their true values.

€ 60000
£ 40p00
<
0.8
< 1000
L0
- L1000
900
N L 200
3 . : ég
N g 155
. » . >15
N s — — < 10
x [ . .25
S — - 22 5 0.25
- 25
D b — R 0.0
> L=2.5
0 5 10 15 20 25
time

Fig. 2: Particle filter convergence (noise model 3,,2)

In Figure 3, all four final distributions of m and 7 along
with their corresponding observation noise levels are shown.
In each plot, the left hand side red distribution corresponds
to mass, and the right hand side blue distribution represents
the thrust setting. It is apparent that with increasing (assumed)
observation noise, the uncertainty of the final results increases.
The figure also shows that the estimates can become trapped in

m (kg) n ()

I Zn

40000 50000 60000 70000 0.85 0.90 0.95 1.00
m (kg) n ()

I Zn2

40000 50000 60000 70000 0.85 0.90 0.95 1.00
m (kg) n ()

3 Z53

40000 50000 60000 70000 0.85 0.90 0.95 1.00
m (kg) n(-)

Zn4 o

40000 50000 60000 70000 0.85 0.90 0.95 1.00

Fig. 3: Final distribution of m and n under different observation noise

a local optimum when the assumed noise is lower than actual
noise (in the first plot). When the assumed noise level is much
higher than the actual noise, the uncertainty in the final estimate
become quite large (in the last plot). These observations are
consistent with the fundamental concepts of the particle filter.

B. A real Boeing B737-700 flight example

In this second experiment, one real climbing flight of a
Boeing 737-700 is used to demonstrate the SIR particle filter’s
application on real flights. The trajectory data are gathered from
ADS-B and decoded using pyModeS [12]. The wind data are
computed as the combination of ADS-B and Enhanced Mode-S
data using a gas particle model as detailed in [13].



The trajectory and convergence of the particles when using
noise model 3,3 are shown in Figure 4. Similar to the previ-
ously simulated case, the black dots represent actual observed
data, while the solid lines represent weighted average state
values of particles at each iteration. In these plots, not only
the mass and thrust setting exhibit convergence, but also the
changes in airspeed, vertical rate, and wind are tracked closely
by the particle filter with this noise level.

c 60000
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< | —1000
+ 500
>
o
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N + 400
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. e e s e s = o o o o o 4 o 0]
;- L T — )
>
T T T T T T T -20
00 25 50 7.5 10.0 125 15.0 17.5 20.0
time

Fig. 4: Convergence of particle filter (noise model 3,3)

Final distributions of estimated m and 7 under different noise
models are shown in Figure 5. The same trend of increasing
uncertainty is displayed when compared to the simulated cases.
It is also noticeable that the variances in the result from real
trajectory is smaller than simulated trajectory. This could be
due to the fact that some states are not modeled. In turn, they
pose an penalizing effect on the weights of particles.
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Fig. 5: Final distribution of m and n under different observation noise

Using the simulated and real flights, the applicability of
the SIR particle filter for mass and thrust setting estimation
is demonstrated. However, previous experiments are based on
single sequence of filtering under each noise level. It is not
sufficient to study the general uncertainty under these noise
models. As such, a large number of filtering rounds will be
conducted in the following part of the experiments for this

purpose.
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C. Accuracy and variation of the particle filter

To examine the accuracy and uncertainty of the particle filter,
500 rounds of estimation under each defined noise model are
performed for the simulated flight. The simulated Boeing B737-
700 flight is generated with a mass of 60000 kg, a thrust setting
of 0.96, and a small simulation noise of X,,;/4 2,

In Figure 6, the final distribution results grouped by obser-
vation noise are shown, which consist of the average of m and
1 from all rounds. On the left hand side of the figure, results of
m are indicated, with the Y-axis ranging from meq 10 M tow-
The horizontal black line indicates the actual mass used in
the simulations. On the right hand side, the thrust settings are
plotted in the same fashion. We can see the particle filter yields
an high level of accuracy with the simulated trajectory.
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Fig. 6: Estimated mass and thrust setting

By computing the standard deviations of the mass and thrust
values from all particles at the end of each run, we are able
to understand how results vary under different noise models.
In other words, it measures the degree of spreading of particle
state values. On the left-hand side of the Figure 7, distributions
of particle mass standard deviation are shown. With increasing
observation noise, the uncertainty also increases. The right-
hand side of the plot does indicate the same trends for the
thrust setting but with less severity than the mass. There is an
underlying reason for this phenomenon, which is discussed in
detail in Section VII-A.
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Fig. 7: Standard deviation of particles

To quantify the uncertainty under different noise models,
95% of the confidence range, twice the mean standard devi-
ation, is used as an indicator. This is then translated in the
percentage of the aircraft maximum takeoff mass and thrust
settings, which are shown in Table V.

TABLE V: Uncertainties related to observation noise

Noise 204, % of Mmtow 2047 %

Ynl 2512 kg 3.18% 0.0413 | 4.13%
Yn2 2840 kg 3.59% 0.0425 | 4.25%
Yn3 4077 kg 5.16% 0.0435 | 4.35%
Yna 7427 kg 9.40% 0.0474 | 4.74%

2This small actual noise ensures all observation noise models are able to
track the variations in trajectory.



These results are obtained based on one aircraft type. How-
ever, the percentage values from this table can still be an impor-
tant indicator to quantify the uncertainties of estimations. It can
even be used as indicator for the missing uncertainty component
for other estimation methods, which were mentioned in the
introduction of this paper.

VI. VALIDATION

In this section, a set of 50 real flights with known mass are
used to validate the proposed system model and the particle
filter. These flights were carried out by a Cessna Citation II
aircraft that is operated by TU Delft for student practicals. The
mass is obtained accurately by weighing all passengers and
measuring the exact amount of fuel on-board prior to the start
of each flight.

Although accurate FMS trajectory data is available, ADS-
B data was collected and used for the estimation. This is to
completely validate our model and method in real use cases.
Wind information is derived as the combination of ground
speed from ADS-B and airspeed from Mode-S data. In addition,
actual NACp amd NACYv values are decoded from raw ADS-B
data to automatically select the best observation noise model.
All these data are also obtained using the open-source pyModeS
[12] library.

To obtain a stable estimation, each trajectory is executed
with the particle filter for 30 times 3. The absolute errors
(|Am|/myrye) are computed and illustrated in Figure 8. As
a result, the mean absolute error (MAE) is found to be 4.6%,
while the median of the absolute error is 3.0%.

0% 2% 4% 6% 8% 10% 12% 14%

0% 2% 4% 6% 8% 10% 12% 14%

Fig. 8: Distributions of absolute errors

VII. DISCUSSION

In this discussion section, we are going to elaborate on
some of the fundamental aspects that concern the aircraft
mass estimation. In addition, recommendations on choosing a
noise model and practical particle filtering will be explained.
Several limitations of the current performance model will also
be weighed.

A. The influence of variation in m and eta

From previous experiments, it is noticeable that the thrust
ratio (1) does not always converge. But the same trend does
not apply to the convergence of mass until a larger noise is
used. To understand the reason for this, variation of these two
parameters and their influence on the true flight trajectory are
studied. In line with this goal, two sets of simple simulations
are conducted.

In the first set of simulations, the aircraft mass is fixed at
(Moew + Mmiow)/2 and the thrust setting varies from 0.85 to
1. Results are shown on the left two plots of Figure 9. In the

3This is similar to using 30 million particles in one round. The implication
of this method will be discussed later on.

ICRAT 2018

second set of simulations, the thrust setting is kept at 0.9 and
aircraft mass varies from Mmgey, t0 Moptow. Results are shown
on the right-hand side of Figure 9. Only the horizontal flight
distances and speed profiles are illustrated.
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Fig. 9: Varying n versus varying m

The influence of different thrust settings on the flight tra-
jectory is much smaller than the influence of differences in
mass. This is shown in both distance traveled and the speed
profile. We can intuitively conclude that only under small noise
levels, the thrust settings can be estimated. While on the other
hand, the estimation of the mass state may tolerate a higher
level of noise. Next, noises are added to the simulation. For
simplification, only the resulting speed profiles are shown in
Figure 10.
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Fig. 10: Simulated speeds with different noise model

The difference in the influence of varying mass and thrust
setting becomes quite apparent when noise are present. From
the particle filter point of view, in Figure 11, the resulting
distributions of m and their 7 are shown. Here, we’ve separated
the mass in small bins and plotted the distribution of their
corresponding thrust settings with the same colors.

From Figure 11, we can observe that the thrust setting 7
can only be separated from the corresponding mass when the
observation noise is smaller than or equal to 3,,5. With a larger
noise, the convergence of thrust settings becomes impossible.
Furthermore, mass can only be estimated confidently when
noise is smaller than 3,4. These constrains are not specific
to the particle filter method presented in this paper; they are
also applicable to any other estimation method.

B. Computation complexity

The particle filter utilizes one million particles in the exper-
iments. However, with ten states, the number of independent
particles per state is fairly low, which counts around four
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Fig. 11: Resulting distributions (thrust per mass)

particles per state (1-10° ~ 419). Using such a low number of
particles entails that we cannot sample the entire spectrum of
all state dimensions effectively. Ideally, 1000'° (1-103°) would
be a more appropriate number of particles. This is, however,
not computationally possible with current computing power.
Moreover it is often not necessary. In this paper, we used the
SIR particle filter, which performs an additional re-sampling
step at each iteration to keep only the particles with higher
importance (weight). This step allows us to significantly reduce
the number of particles required.

C. Limitations and recommendations

Although the point-mass model used in this paper is rel-
atively comprehensive, there are limitations which can be
improved in future studies.

1) In the current model, the bank angle is left out of the
equations. This is an intermediate approach to simplify the
system. The consequence is that we are only able to use forward
flight segments for the estimations. Introducing this additional
parameter could empower the model to cope with the estimation
using data from turning trajectories.

2) Similarly, the aerodynamic properties are simplified using
the drag polar provided by BADA, with the quasi-constant lift
assumption (L = mg). A future model could also include the
angle of attack to better compute the lift and drag.

3) Currently, a naive form of the observation noise is
assumed. That is, noise for different observables are assumed to
be uncorrelated. Using the previously mentioned VAR method
could lead to a better defined covariance matrix in the future.

4) The noise models that are defined in this paper correspond
to Version 1 and Version 2 of the ADS-B implementation.
For ADS-B Version 0 transponders (equipped on older aircraft
types), the noise should be defined based on its Navigation
uncertainty Categories (NUC). However, these are less refined
than NAC in Version 1 and 2.

5)As a rule of thumb, when it is uncertain, the noise
models of X5 or X,,3 are generally good starting points. This
conclusion is based on our observation that the majority of the
ADS-B messages meet the accuracy levels of NACp 9/10 and
NACv 3/2.

6) The ISA assumption is used in this paper to compute the
maximum thrust. The effect of positive temperature deviation
(commonly larger than 10 C°) from ISA generally reduces
the maximum thrust of turbofan engines. This may, in turn,
impact the estimations. However, for the validation flight used
in this paper, the effect of deviation can be safely neglected.
This is because the actual temperatures in the month of these
flights (March of 2017) are generally similar or lower than ISA
temperatures.
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VIII. CONCLUSIONS

In this paper, steps are taken to construct a comprehensive
model and estimation method to derive aircraft mass and thrust
setting solely using ADS-B and Mode-S observations.

The complexity of such a problem was discussed at the start
of this paper. In summary, the difficulty of such estimations
lies in solving an inversed non-linear system that consists of ten
states. Together with an unknown noise in the observation data,
it was a challenge to make accurate estimations and provide
uncertainty quantifications.

Unlike most previous optimization based methods, this paper
proposed a recursive Bayesian approach. A specific form of
particle filter was designed to tackle this particular estimation
challenge. The recursive Bayesian approach not only provides
estimates, but also allows for quantifying uncertainties under
different noise levels. It was demonstrated in this paper that
estimations are possible only under certain noise levels.

By linking the ADS-B native uncertainty reporting system
with the observation noise, we were able to construct realistic
observation noise models. At the same time, we were able to
automatically select the appropriate noise model for each flight
using ADS-B data.

With the convincing observation noise models and the air-
craft system model, our particle filter was able to estimate
aircraft mass and thrust setting when noise constrains were
satisfied. Simulated, real, and validation flights were used to test
the method proposed in this paper. They were used to approve
the method, define the uncertainty, and validate the accuracy of
the method. Despite the limitations addressed in the discussion
section, our model and method yielded a mean absolute error of
4.6% (median absolute error of 3.0%) of the true mass on the
validation dataset. Finally, the convergence speeds were swift.
In most of the cases, estimations could be obtained within 30
seconds.

REFERENCES

[11 A. Nuic, “User manual for the base of aircraft data (bada) revision 3.12,”
Atmosphere, vol. 2014, 2014.

[2] R. Alligier, D. Gianazza, and N. Durand, “Learning the aircraft mass
and thrust to improve the ground-based trajectory prediction of climbing
flights,” Transportation Research Part C: Emerging Technologies, vol. 36,
pp. 45-60, nov 2013.

[3]1 R. Alligier, D. Gianazza, and N. Durand, “Machine learning and mass

estimation methods for ground-based aircraft climb prediction,” IEEE

Transactions on Intelligent Transportation Systems, vol. 16, no. 6,

pp. 3138-3149, 2015.

C. Schultz, D. Thipphavong, and H. Erzberger, “Adaptive trajectory

prediction algorithm for climbing flights,” in ATJAA Guidance, Navigation,

and Control (GNC) Conference, p. 2, 2012.

J. Sun, J. Ellerbroek, and J. Hoekstra, “Modeling and inferring aircraft

takeoff mass from runway ads-b data,” in 7th International Conference

on Research in Air Transportation, 2016.

J. Sun, J. Ellerbroek, and J. M. Hoekstra, “Aircraft initial mass estimation

using bayesian inference method,” Transportation Research Part C:

Emerging Technologies, vol. 90, pp. 59-73, 2018.

[71 M. S. Arulampalam, S. Maskell, N. Gordon, and T. Clapp, “A tutorial on
particle filters for online nonlinear/non-gaussian bayesian tracking,” IEEE
Transactions on signal processing, vol. 50, no. 2, pp. 174-188, 2002.

[8] J. S. Liu and R. Chen, “Sequential monte carlo methods for dynamic
systems,” Journal of the American statistical association, vol. 93, no. 443,
pp. 1032-1044, 1998.

[9] R. Douc and O. Cappé, “Comparison of resampling schemes for particle

filtering,” in Image and Signal Processing and Analysis, 2005. ISPA 2005.

Proceedings of the 4th International Symposium on, pp. 64-69, 1EEE,

2005.

RTCA, “Minimum operational performance standards for 1090mhz ex-

tended squitter automatic dependent surveillance-broadcast (ads-b) and

traffic information services-broadcast (tis-b)[j],” RTCA DO-260B with

Corrigendum, vol. 1, no. 1, pp. 1365-1372, 2011.

H. A. P. Blom and E. A. Bloem, “Exact bayesian and particle filtering

of stochastic hybrid systems,” IEEE Transactions on Aerospace and

Electronic Systems, vol. 43, no. 1, 2007.

J. Sun, H. V1, J. Ellerbroek, J. Hoekstra, K. von Hornbostel, T. Robitaille,

R. Nobrega, and J. Watterson, “junzis/pymodes v1.2.1,” Sept. 2017.

[13] J. Sun, H. V4, J. Ellerbroek, and J. Hoekstra, “Ground-based wind field

construction from mode-s and ads-b data with a novel gas particle model,”
in Seventh SESAR Innovation Days, SESAR, 2017.

[4

[inar)

[5

—_

[6

—_

[10]

[11]

[12]



