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Abstract

The electric field at the output of an optical system is in gen-
eral affected by both aberrations and diffraction. Many sim-
ulation techniques treat the two phenomena separately, using
a geometrical propagator to calculate the effects of aberra-
tions and a wave-optical propagator to simulate the effects of
diffraction. We present a ray-based simulation method that
accounts for both the effects of aberrations and of diffrac-
tion within a single framework. The method is based on the
Huygens-Fresnel principle, is entirely performed using Monte
Carlo ray tracing, and, in contrast to our previously pub-
lished work, is able to calculate the full electromagnetic field.
The method can simulate the effects of multiple diffraction
in systems with a high numerical aperture (NA).

1 Introduction

In the development of optical systems it can be extremely
useful to predict the optical performance of a system by com-
puter simulations. For devices such as head-mounted displays
(HMDs), this requires the consideration of both (multiple)
diffraction and refraction.

Frequently, macroscopic optical systems are simulated us-
ing geometrical optics. Although it is possible to keep track of
the polarization of the electric field during ray tracing [4, 26]
(an option in, e.g., the commercial ray tracers OSLO [18, p.
60–65], ZEMAX [28, p. 216–222], and CODE V [6]), and one
can propagate an electric field using geometrical optical ray

tracing techniques (see, e.g., Wyrowski et al. [27]), geomet-
rical optics as such does not account for diffraction effects
and breaks down in the focal region of a system. Since the
Point Spread Function (PSF), which is the field of a point
object in the focal region, is often very important, several
methods have been developed to simulate this field. Because
the wavelength of light is very small compared to the size of
the optical components (e.g., lenses) this problem is far from
trivial.

One method that includes diffraction effects is the exit
pupil diffraction method. This method uses ray tracing to
calculate the field in the exit pupil, which is the image of the
aperture of the optical system in the image space, and then
uses a diffraction integral to perform the last propagation
step from the exit pupil to the focal plane. Many commer-
cial ray tracers use this method to compute scalar PSFs, and
when combined with polarization ray tracing the exit pupil
diffraction method can also provide the vectorial PSF. The
ray tracing program OSLO has this option [18, p. 365-368].
A limitation of the exit pupil diffraction method is that it
assumes all diffraction to occur at the exit pupil. For sys-
tems with multiple diffracting surfaces (e.g., an HMD with a
diffractive element and an aperture) the exit pupil diffraction
method is insufficient.

One way to deal with such cascaded diffraction is to se-
quentially apply diffraction integrals (e.g., the Fresnel inte-
gral), which can propagate the field through homogeneous
media, and geometrical optical propagators, which are bet-
ter suited for propagating fields through optical interfaces.
Several commercial simulation packages (e.g., VirtualLab by
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LightTrans and ZEMAX) provide this option to the user. To
alternate between the propagation methods, one needs to re-
sample the field which may require a lot of memory [28, p.
628], especially when the local wavefront is strongly curved.

Another approach for cascaded diffraction simulations is
the decomposition of the field into subfields that can be prop-
agated using geometrical optical techniques. The Gaussian
Beam Decomposition (see e.g., Greynolds [11]), which is for
instance used in ASAP, or the Beam Synthesis Propagation of
CODE V [5] are two commercially available examples. They
depend on resampling whenever diffraction occurs and a sub-
sequent propagation of the subfields using geometrical optics
would cause inaccuracies.

There exists a range of other ray-based diffraction simu-
lations that initiate additional rays at diffracting surfaces.
The geometrical theory of diffraction proposed by Keller [15]
initiates ’diffracted rays’ from the edges of apertures (or
other diffracting surfaces) (see [13] for an overview of the
method). Heisenberg uncertainty ray bending initiates sec-
ondary rays near the edge of an aperture, but a distribution
of the secondary rays over the radiation cones that consis-
tently gives correct results could not be determined conclu-
sively [10, 22, 9]. A method called stable aggregate of flexible
elements [8] provides accurate results, but is limited to two-
dimensional configurations.

Initially ray-based diffraction methods using the Huygens-
Fresnel principle [7, 19, 20, 21] were also limited to two spatial
dimension or to problems which were invariant in one of the
three spatial dimensions. In [17] we proposed a ray-based
diffraction method based on the Huygens-Fresnel principle
and derived from the Rayleigh-Sommerfeld diffraction inte-
gral, that was capable of simulating the diffraction in a three-
dimensional optical system. We showed results for the prop-
agation of a coherent scalar field through an optical system
with aberrations and multiple diffracting surfaces. Mahan
et al. [16] recently presented a similar method for the sim-
ulation of diffraction at a single aperture in free-space and
convincingly validated the model using experimental data.

The current paper is an extension of our previously pub-
lished method [17], known as Huygens-Fresnel path integra-
tion (HFPI), to vectorial optics. As such, it inherits many
of the properties of HFPI. It can be used to simulate macro-
scopic optical systems, and accounts for all geometrical aber-
rations and for the diffraction effects (e.g., introduced by mul-
tiple apertures in the system). Like scalar HFPI, vectorial
HFPI is robust but computationally intensive. It bears some

conceptual resemblance to the vectorial ray-based diffraction
integral (VRBDI) introduced by Andreas et al. [2], but its
implementation and intended domain of application differ.
While VRBDI was developed to simulate the propagation of a
diffracting beam (i.e., a laser beam) through a non-diffracting
optical system for interferometry, HFPI is developed for the
simulation of multiple diffraction in optical systems like the
before mentioned HMDs. To simplify the simulation of mul-
tiple diffraction, the Monte Carlo approach of HFPI (in con-
trast to the grid sampling of VRBDI) does not require an
explicit resampling at diffracting surfaces.

The working principle of HFPI is to use geometrical optics
in the subparts of the system where it is valid. At surfaces
where the geometrical optical approximations break down,
secondary sources are initiated according to the Huygens-
Fresnel principle. These secondary sources can again be
propagated using geometrical optics. Multiple diffraction is
accounted for by applying the Huygens-Fresnel principle in
multiple planes. The electromagnetic field is calculated by
coherently summing the subfields of the secondary sources.

The main contribution of this paper is the extension from
scalar HFPI to vectorial HFPI. Since light is a vectorial phe-
nomenon, this extension also offers the possibility of a more
fundamental derivation of the method. In Section 2 this
derivation is provided. In Section 3 the implementation is
described and in Section 4 the results of HFPI simulations
are presented. These results also demonstrate the importance
of taking cascaded diffraction into account. In Section 5 we
evaluate the properties of HFPI before drawing the final con-
clusions in Section 6.

2 Theory

The core idea of our method is to successively propagate the
kernel of the m-theory diffraction integrals using geometri-
cal optics. We first present the m-theory diffraction integrals
in Section 2.1. In the following Section 2.2 it will be shown
that these diffraction integrals can be interpreted as a de-
composition of the electric field into magnetic dipoles. These
elementary fields are of such a form that they can be propa-
gated using geometrical optics. In Section 2.3 we will apply
this diffraction integral multiple times, to arrive at a cascaded
diffraction integral for multiple diffraction in an optical sys-
tem. The topic of Section 2.4 is the propagation of the electric
field by a Monte Carlo ray tracer, since this will be the propa-
gator of choice for HFPI. Note that throughout this paper we

2



use the negative time convention, ~̃E(~r, t) = ~E(~r) exp(−iωt),

with ~̃E(~r, t) the vectorial electric field in the point ~r at time
t, and ω the frequency of the light. Since we are interested in
steady state solutions, the factor exp(−iωt) will be omitted.

2.1 The m-theory diffraction integral

A diffraction integral expresses the electric field, ~E, in a point
of interest, ~r1, as an integral over field quantities over a sur-
face and/or in a volume. In this paper we will apply the
m-theory diffraction integral, derived by, e.g., Severin [23],

which expresses ~E(~r1) as a function of the electric field in a
plane

~E(~r1) =
−ik

2π

¨
exp (ikρ)

ρ
ρ̂×

(
n̂0 × ~E

)
dS0, (1)

where k is the wavenumber of the light, ~ρ is a vector (with
length ρ and normalized direction ρ̂) from the point of in-
tegration ~r0 to the point of interest ~r1, S0 is the plane of
integration and n̂0 is the normal of this plane that points
towards the half space containing ~r1. All the vectors are in-
dicated by an arrow and normalized vectors have a hat (e.g.,
n̂0). By taking the curl with respect to ~r1, one can obtain
the diffraction integral for the magnetic field

~H(~r1) =
−ik2

2πωµ

¨
exp (ikρ)

ρ
ρ̂×

[
ρ̂×

(
n̂0 × ~E

)]
dS0, (2)

with µ the magnetic permeability of the medium, which we
will assume to be equal to the permeability of free-space.

In deriving Eqs. (1, 2) one must assume that the surface
of integration is an infinitely extending flat plane and that
the field in the point of interest only depends on the field in
this plane. Furthermore, one must assume that the point of
interest is many wavelengths away from the plane of integra-
tion.

2.2 Geometrical propagation of the integral
kernel

The integrals of the m-theory, Eqs. (1) and (2), are only valid
within a homogeneous medium. Since optical systems are
only piecewise homogeneous, these diffraction integrals can-
not describe the propagation through an entire system. Ap-
plying separate diffraction integrals for every homogeneous

region (e.g., a lens or free space) is numerically challeng-
ing and requires the solution of boundary value problems
at every interface (e.g., between glass and air) to determine
transmission losses. Furthermore, Eqs. (1) and (2) require
a flat plane, whereas interfaces are frequently curved. To
simulate optical system comprised of multiple optical media
we therefore choose a different approach based on a physical
interpretation of these diffraction integrals.

Equations (1, 2) are integrations over the following two
quantities

~E(m)(~r0, ~r1, ~E(~r0)) ≡ −2ikGH ρ̂×
(
n̂0 × ~E(~r0)

)
, (3)

~H(m)(~r0, ~r1, ~E(~r0)) ≡ −2ik2

ωµ
GH ρ̂×[

ρ̂×
(
n̂0 × ~E(~r0)

)]
, (4)

where

GH(ρ) =
exp(ikρ)

4πρ
(5)

is a Green’s function of the Helmholtz equation. These are
equal to the magnetic and electric far field of a magnetic
dipole ~m in ~r0 (which is why the name m-theory was intro-
duced by Karczewski and Wolf [14])

~E(md)(~r0, ~r1, ~m(~r0)) = −k2

√
µ

ε
GH ρ̂× ~m, (6)

~H(md)(~r0, ~r1, ~m(~r0)) = −k2GH ρ̂× (ρ̂× ~m) (7)

(see, e.g., Jackson [12]), with dipole moment

~m(~r0) =
2i

k

√
ε

µ
n̂0 × ~E(~r0). (8)

The field predicted by the m-theory, Eq. (1), is therefore the
same as the field of infinitely many magnetic dipoles, located
in the integration plane S0

~E(~r1) =

¨
~E(md)(~r0, ~r1, ~m(~r0)) dS0 (9)

where the strength and direction of the dipoles are given by
Eq. (8).

The diffraction integrals of the m-theory can be seen as
a twofold process. First the decomposition of the field in
S0 into magnetic dipoles according to Eq. (8) and then the
propagation of these dipole fields through a homogeneous
medium to the point ~r1 using Eq. (6) or (7).
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Since these subfields are equivalent to the fields of magnetic
dipoles, they have the properties of physical electromagnetic
fields (e.g., being divergence free). Although this can help
in physically understanding the diffraction integral, the de-
composition is primarily useful if the subfields are easier to
propagate than the original field. It turns out that the ele-
mentary fields of the m-theory integrals can be propagated
through a series of homogeneous media (i.e., an optical sys-
tem) using geometrical optics. To show this, we must first
briefly introduce geometrical optics.

In geometrical optics, fields are propagated along paths
that are perpendicular to surfaces of equal phase. These
paths, known as rays, are straight in homogeneous media and
change direction at optical interfaces according to Snell’s law

n1 sin(θ1) = n2 sin(θ2), (10)

where n is the refractive index of the medium, θ the angle
between the surface normal and the direction of propagation,
and the indices indicate the quantities at the two sides of
the interface. Geometrical optics can be derived by using
the following ansatz for the electric field (see, e.g., Born and
Wolf [3, p. 117–127])

~E(~r) = ~E′(~r) exp(ik0s(~r)), (11)

where ~E′ can be complex, k0 is the wavenumber in free-space,
and s is a real function that determines the phase propaga-
tion. The direction of the rays are related to Eq. (11) through

ρ̂ =
∇s
n
, (12)

with ρ̂ the ray directions. From the electric field carried by
a ray, Eq. (11), one can derive the corresponding magnetic
field by taking the curl

~H ≈
√
ε

µ
ρ̂× ~E. (13)

Note that Eq. (13) also relates the electric to the magnetic
field of a plane wave (see, e.g., Jackson [12, p. 299]), which
is why geometrical optical rays are often said to carry local
plane waves. To obtain Eq. (13) we make the approximation

that ~E′ is slowly varying with respect to the wavelength λ.
This is the core approximation of geometrical optics, which
is also needed to obtain the time-averaged Poynting’s vector
in a source-free homogeneous medium

~S ≈
√

ε

4µ

∣∣∣ ~E∣∣∣2 ρ̂, (14)

where
∣∣∣ ~E∣∣∣ is the amplitude of the field. The Poynting’s vector

is the vector describing the energy transport. By integrating
the Poynting’s vector over a tube of rays, so that we have
one surface (S1) where all the rays enter the volume, one
surface (S2) where all the rays exit the volume and the other
sides of the surfaces are along the paths followed by the rays
(see Figure 1) we can derive the intensity law of geometrical

Figure 1: A ray tube.

optics

I1 dS1 = I2 dS2, (15)

where the intensity is defined by

I ≡ |n̂ · ~S|, (16)

with n̂ the surface normal. The intensity of the field is there-
fore inversely proportional to the area spanned by the ray
tube. By combining Eq. (16) with Eq. (14) and assuming
the material to be non-magnetic, one can obtain

I = n̂ · ρ̂n
√

ε0
4µ0
| ~E|2. (17)

The amplitude of the electric field is therefore

| ~E| =
√

2I
√
µ0

n̂ · ρ̂n√ε0
(18)

and through its dependence on I, it is a function of the area
spanned by the ray tube. In a ray tracer, these areas can for
instance be calculated by tracing several very close rays (i.e.,
neighbouring rays). At optical interfaces, part of the field can
be reflected, leading to a decrease of the amplitude by a factor
given by the Fresnel equations (see, e.g., Born and Wolf [3, p.
42]). The attenuation is different for the component of the
electric field in the plane spanned by the surface normal and
the propagation direction of the field (the p-component) and
for the component in the direction perpendicular to this plane
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(the s-component). The amplitude transmission through the
interface is given by

T ′
s =

√
cos(θ2)

cos(θ1)

2n1 cos(θ1)

n1 cos(θ1) + n2 cos(θ2)
, (19)

T ′
p =

√
cos(θ2)

cos(θ1)

2n1 cos(θ1)

n2 cos(θ1) + n1 cos(θ2)
. (20)

These equations are slightly different from the familiar ver-
sions of the Fresnel equations to account for the fact that the
change in surface of a ray tube due to the refraction is already
affecting the amplitude of the field through the intensity law
of geometrical optics.

In summary, to perform geometrical optical simulations
using ray tracing, one starts by specifying the ray distri-
bution at the initial surface and the starting power, phase,
and polarization of the rays. The rays are then transported
through the optical system, where their paths are determined
by Snell’s law, Eq. (10), their phases by the optical path
lengths, and their amplitudes by the (adjusted) Fresnel equa-
tions, Eqs. (19) and (20), and the intensity law of geometrical
optics, Eq. (15). This is an accurate way to propagate the
complex, vectorial electromagnetic field, provided that the
amplitude of the field does not vary significantly over the
length scale of a wavelength.

Returning to the fields of a magnetic dipole, Eqs. (6, 7),
we find that the their phases are determined by the phase
of the Green’s function (exp(ikρ)). The surfaces of constant
phase are therefore spheres around the point ~r0. The phase
changes fastest along the gradient of the phase φ,

∇φ = kρ̂, (21)

which defines vectors perpendicular to the surfaces of con-
stant phase and with a magnitude equal to the wave number.
This is consistent with the concept of a ray in geometrical
optics. The second useful property is that both ~E(md) and
~H(md) are perpendicular to ρ̂, the direction of phase propa-
gation. Furthermore, the local electric and magnetic field are
related through Eq. (13). We thus conclude that the fields
of a magnetic dipole, Eqs. (6, 7), and thereby those of the
kernel of the m-theory, Eqs. (3, 4), can be calculated using a
geometrical optics propagator G̃. Using this propagator, the
electric field of Eq. (6) can be written as

~E(md)(~r0, ~r1, ~m(~r0)) = G̃

[−k2

4π

√
µ

ε
~m(~r0), ~r0, ~r1

]
. (22)

In free-space this propagator has the simple form

G̃
[
~A, ~r0, ~r1

]
= ρ̂× ~A

exp(ikρ)

ρ
, (23)

which reduces Eq. (22) to Eq. (6). The advantage of prop-
agating the magnetic dipole field by a geometrical optical
operator is that the propagation is no longer restricted to
a single homogeneous medium. Where Eq. (6) was limited
to free-space propagation, Eq. (22) can propagate the field
through a series of optical components (e.g., lenses).

Since we are not so much interested in propagating dipole
fields as we are in the m-theory diffraction integral, we use
Eq. (22) to write the diffraction integrals of Eqs. (1, 2) as

~E(~r1) =

¨
S0

G̃

[−ik

2π
n̂0 × ~E(~r0), ~r0, ~r1

]
dS0, (24)

~H(~r1) =

¨
S0

√
ε

µ
ρ̂× G̃

[−ik

2π
n̂0 × ~E(~r0), ~r0, ~r1

]
dS0. (25)

Again, the advantage of using Eq. (24) over the integral of
Eq. (1) is the ability to propagate the field through an opti-
cal system with multiple lenses. Since Eq. (24) is based on
the free-space integral of Eq. (1), the implicit assumption is
that the field in the medium after the plane of integration
can be calculated as if the medium were to continue to in-
finity. At optical interfaces (i.e., lenses) we neglect the part
of the field that is reflected and only consider the forward
propagating field (with an amplitude adjusted by the Fres-
nel equations). Although the Fresnel equations provide the
reflected fields and these could in principle be propagated
using our method, their influence is typically small whereas
the associated computational cost would be substantial. We
therefore only consider the direct path, neglecting (multiple)
reflections. Under this minor assumption, the geometrical
propagation of the integral kernel allows us to propagate a
polarized field at the input surface S0, through a (sub)system.

2.3 Cascaded diffraction integral

By combining the diffraction integral with a geometrical op-
tics propagator we can calculate the field after a set of lenses
and account for the diffraction caused by the initial field (e.g.,
if the initial field is a top hat or a diffracting laser beam).
One can accurately describe the propagation through a se-
ries of elements, as long as the amplitude of the field is slowly
varying. At for instance apertures (or lenses that are small
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compared to the beam of light) this condition is violated,
requiring another approach. In such a plane one needs to
perform another decomposition into secondary sources and
propagate them using geometrical optics. Labelling the ini-
tial plane by S0 and the second diffracting plane by S1, we
can summarize this mathematically by

~E(~r2) =

¨
S1

¨
S0

G̃

[−ik

2π
n̂1×

G̃

[−ik

2π
n̂0 × ~E(~r0), ~r0, ~r1

]
, ~r1, ~r2

]
dS0dS1. (26)

Any further planes where the geometrical optical propagator
breaks down, can be treated in a similar manner. The mag-
netic field can be obtained by changing the final propagator
to the one defined by Eq. (25)

~H(~r2) =

¨
S1

¨
S0

√
ε2
µ
ρ̂× G̃

[−ik

2π
n̂1×

G̃

[−ik

2π
n̂0 × ~E(~r0), ~r0, ~r1

]
, ~r1, ~r2

]
dS0dS1. (27)

The result is a cascaded diffraction integral that fully ac-
counts for the diffraction introduced at multiple surfaces.

2.4 Monte Carlo ray tracing propagator

We have seen that a diffraction simulation can be stated as a
decomposition of the field in magnetic dipoles followed by a
geometrical optical propagation of the field of every magnetic
dipole, and the superposition of the resulting fields. Since
HFPI is implemented in a Monte Carlo ray tracer, this section
will compare the Monte Carlo ray tracing propagator to the
standard propagator of geometrical optics. We will see that
the main difference lies in the method used to account for
the conservation of energy.

A Monte Carlo ray tracer initiates random rays from a pre-
defined source set and traces each ray independently through
the optical system. Upon passing through a pixel, the ray
weight is added to the pixel value.

Mathematically, a Monte Carlo ray tracer relies on the
central limit theorem. This theorem states that the aver-
aged sum of the function values w(~xi) evaluated at (two-
dimensional) positions ~xi sampled from a random variable
X with probability distribution function p(~x),

wN =
1

N

N∑
i=1

w(~xi), (28)

converges in the limit ofN →∞ to the analytical expectation
value

〈w(X)〉 =

¨
w(~x)p(~x)d2~x. (29)

For Monte Carlo ray tracing, the sample points ~xi are the
intersection points of rays and a final plane. The probability
of sampling a certain ray is proportional to the local density
of rays

p(~x) = lim
∆S→0, N→∞

∆N(~x,N)

∆S(~x)N
, (30)

with ∆N the number of rays, ∆S a surface area, and N the
total number of rays.

By choosing

w(~x) =
I(~x)

p(~x)
, (31)

and limiting the domain of integration of Eq. (29) to the
area of a pixel Sp, Eq. (29) evaluates the power incident on
that pixel. Since generally the intensity distribution in the
pixel plane I(~x) is not known, one can use the ray tracer to
calculate it from the intensity distribution in another plane
I0( ~x0). Rewriting Eq. (15)

I(~x) = I0( ~x0)
∆S0( ~x0)

∆S(~x)
, (32)

where ∆S0 and ∆S are infinitesimally small surface areas
connected by a tube of rays and the mapping between ~x and
~x0 is defined by the same ray tube. Combining Eqs. (30),
(31), and (32), we obtain

w(~x) = lim
∆S0→0, N→∞

I0( ~x0)
∆S0( ~x0)N

∆N0( ~x0, N)
=
I0( ~x0)

p0( ~x0)
, (33)

where we have used that ∆N0( ~x0, N) = ∆N(~x,N) if ~x and
~x0 are connected by a ray (tube). The expectation value of
a Monte Carlo ray tracer will thus be the power incident on
a plane, if each ray carries a power defined by Eq. (33).

Since for HFPI we are interested in calculating the am-
plitude of the field, the weight of the rays must be adjusted
accordingly. From Eq. (18) we see that by choosing

w′(~x) = lim
∆S→0, N→∞

√
2I0∆S0N

∆N n̂ · ρ̂n

(
µ0

ε0

)1/4
√

∆SN

∆N
, (34)
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the expectation value of w′( ~X) is

〈
w′( ~X)

〉
=

¨
Sp

lim
∆S0→0, N→∞

√
2I0∆S0N

∆N n̂ · ρ̂n(
µ0

ε0

)1/4
√

∆N

∆SN
d2~x

=

¨
Sp

√
2I(~x)

n̂ · ρ̂n

(
µ0

ε0

)1/4

d2~x

=

¨
Sp

| ~E(~x)|d2~x. (35)

In a simulation, different factors of the ray weight defined by
Eq. (34) are implemented at different parts of the simulation.
At the starting surface, every ray is assigned a weight pro-
portional to the square root of the intensity divided by the
local ray density

ws =

√
2I0∆S0N

∆N0

(
µ0

ε0

)1/4

. (36)

For an HFPI simulation one has access to the electric field
instead of the intensity, so one should rewrite this using
Eq. (17) as

ws =

√
∆S0N

∆N0

√
n0| ~E0|, (37)

with n0 the refractive index at S0. At the final surface, upon
incidence on the pixel, the weight is adjusted using the cosine
of the angle between the ray direction and the surface normal,
n̂ · ρ̂, and the local refractive index n

wi =

√
1

n̂ · ρ̂n . (38)

Furthermore, the reciprocal of the local ray density is needed

wp =

√
∆SN

∆N
. (39)

As stated in Section 2.2, this can be obtained by tracing
neighbouring rays. So far we have assumed that the power
carried by a ray remains constant, but the effect of trans-
mission losses can easily be incorporated into an additional
weight wf , depending on the adjusted Fresnel equations,
Eqs. (19, 20).

Since we are not only interested in the amplitude, but also
in the phase of the electric field, we must also include the

phase function exp[ik0s(x, y)] into the ray weight w′. If the
local wavefront and the pixel are not parallel, the phase will
vary quickly over the pixel. We are not interested in the
complex integral over the pixel, but in approximating the
field at the centre of the pixel. Therefore we will approximate
the field of the ray by a local plane wave and calculate its

θ -d
xp

x

Figure 2: Local plane wave approximation of a ray at a pixel.

contribution to the field in the centre of the pixel, (xp, yp),
using the adjusted phase function

exp [iφp] ≈ exp [ik0 (s± dn sin(θ)] (40)

where θ is the angle between the incident ray and the local
surface normal (see Figure 2) and

d =
√

(x− xp)2 + (y − yp)2 (41)

is the distance between the centre of the pixel and the inter-
section point of the ray with the pixel, and the sign depends
on the position of (x, y) with respect to (xp, yp). Using the
final ray weight

w′ = wswiwpwf exp [iφp] , (42)

we can approximate the complex electric field at the centre
of a pixel by averaging the electric fields of all rays properly
weighted, which arrive at the pixel and dividing by the area
of the pixel.

Like the geometrical optical propagator, this adjusted
Monte Carlo ray tracing propagator is thus able to propagate
the complex electric field and thereby evaluate the cascaded
diffraction integral of Eq. (26).

3 Implementation in a Monte Carlo
ray tracer

In Section 2 we derived a method to compute a cascaded
diffraction integral that simulates the effects of diffraction
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and aberrations. In this section we will present the individual
steps of a vectorial HFPI simulation with a Monte Carlo ray
tracer.

As a pre-step to any simulation one must define the optical
system and the initial electric field. Furthermore, one should
define at which planes diffraction should be taken into ac-
count (e.g., at an aperture), and at which planes one wants
to calculate the electric field.

The first step of the actual simulation consists of generat-
ing random rays at the initial surface. If the input field can be
propagated using geometrical optics, the set of possible ini-
tial rays is defined by the type of field. For a plane wave for
instance, the Monte Carlo algorithm chooses random starting
positions for the rays, but the initial propagation and polari-
sation directions are determined by the corresponding direc-
tions of the plane wave. If the input field does not propagate
according to the laws of geometrical optics (e.g., a Gaussian
beam in its waist) the diffraction integral of Eq. (24) should
be applied. The initiated rays have random starting positions
and directions, and carry a field according to

~Eray =
√

∆S0Nn0
ik

2π
ρ̂×

(
n̂0 × ~E(~r0)

)
(43)

where ~E(~r0) is the field in the starting point of the ray, n̂0

the normal of the starting plane and ρ̂ the normalized ray
direction.

After initiating the rays, they are propagated through the
system using standard ray tracing procedures. At optical
interfaces, the transmission coefficients are determined using
the adapted Fresnel equations for ray tracing, Eqs. (19) and
(20), and the weight of the rays are adapted accordingly.

At a diffracting surface, a ray is terminated and its com-
plex contribution to the local electric field is determined by
adjusting the ray weight with the factors wi (Eq. (38)) and
wp (Eq. (39)). Since wp is an amplitude factor related to the
intensity law of geometrical optics, one needs a procedure
like tracing neighbouring rays to determine wp. This is not
implemented in our Monte Carlo ray tracer, so we have to
neglect this term, leading to an error in the amplitude of the
field. In Section 4 the effect of this error is quantified for a
microscope with an NA of 0.7. After determining the local
E-field, the diffraction integral of Eq. (24) is applied. Due
to the linearity of optics, one does not first have to calculate
the total electric field, but can directly apply the integral on
the local field contribution of a single ray. In practice we do
this by changing the direction of the ray randomly, but one

could achieve faster convergence by initiating a set of new
rays with random directions at the point of intersection of
the ray and the diffracting surface. The weight of the new
ray is adjusted according to Eq. (43), where ~E(~r0) is the pre-
viously calculated contribution of the terminated ray to the
local electric field.

These secondary rays are propagated further through the
optical system. Any additional diffracting surface is treated
identical to the first one, terminating the current rays and
generating new rays instead. Finally, at the last (or any
intermediate) surface, the field is determined by having every
ray contribute to the pixel it intersects. The weight of each
ray is again adjusted using the factors wi (Eq. (38)) and wp

(Eq. (39)). Furthermore, since we are now approximating
the field at the centre of the pixel, the phase of each ray is
shifted using the local plane wave approximation of Eq. (40).

Following this procedure, a Monte Carlo ray tracer can
propagate an electric field through an optical system and
include the aberrations introduced by the system and the
diffraction introduced at specific planes of the system.

4 Results

We compare results obtained using vectorial HFPI with those
of two other simulation methods. The first method is the vec-
torial ray-based diffraction integral (VRBDI) of Andreas et
al. [2] for which the authors have published their MATLAB
code online [1]. The second reference method is beam syn-
thesis propagation (BSP) in the commercial software package
CODE V [5]. The first simulated system is a low NA con-
figuration, with diffraction of the input field, whereas the
second and third system have higher NAs and demonstrate
the effects of single and multiple diffraction respectively.

The first system is one of the example systems of the
VRBDI MATLAB code [1] and consists of a singlet with
in its front focal plane a ring aperture illuminated by an
x-polarised plane wave with a wavelength of 632.8 nm. A
schematic representation of the system is shown in Figure 3
and its parameters are listed in Table 1. This system can
be modelled using HFPI by placing secondary sources in the
ring aperture. The results of HFPI and the absolute differ-
ence between the HFPI results and those using the MATLAB
code by Birk Andreas [1] are shown in Figure 4. Note that
these results and the other results presented in this section
are normalized with respect to the squared amplitude. The
statistical nature of HFPI can be clearly seen in the difference
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Figure 3: A schematic representation of the ring aperture
and singlet. The parameters are listed in Table 1, the results
of an HFPI simulation of the system are shown in Figure 4.

plots. The absolute difference between the methods is around
2% of the maximum amplitude for all three electrical com-
ponents, even though the y-component of the field is around
six orders of magnitude smaller than the x-component. The
L2-difference between the two methods is defined as

L2-dif =

√∑Np

p=1

∑
i=x,y,z

∣∣∣E(2)
i,p − E

(1)
i,p

∣∣∣2√∑Np

p=1

∑
i=x,y,z

∣∣∣E(1)
i,p

∣∣∣2 (44)

where the superscript (1) indicates the results of the reference
method, the superscript (2) those of HFPI, the subscript p
runs over all Np pixels, and the subscript i runs over the three
Cartesian components of the field. An overall phase differ-
ence (i.e., a piston phase term) between the two methods is
corrected before calculating Eq. (44). For this example, the
L2-difference between the results of HFPI and those of the
MATLAB code by Birk Andreas is 2.4 %. The simulation
times and the number of rays drawn for this simulation and
the other simulations presented in this section are listed in
Table 2.

In the previous example almost all the energy was concen-
trated in the main polarisation direction because the system
had a very low effective numerical aperture of 0.004. We
now consider the results for a microscope with an NA above
0.7 for which the effects of polarisation become more pro-
nounced. The system corresponds roughly to the example
microscope system of CODE V which is based on a patent
by Tojyo [25]. It is depicted in Figure 5 and its parameters
are listed in Table 3. The system is in reversed order com-
pared to the original design and the normal usage of micro-

Table 1: System parameters of the singlet with a ring aper-
ture [1] (see Figure 3).

Quantity Value

Ring aperture radius 1.25 mm
Ring aperture width 0.01 mm

Distance aperture to lens (front focal length) 300 mm
Thickness lens 3 mm

Refractive index lens 1.5155
Radius of curvature first surface 308.5 mm

Radius of curvature second surface -308.5 mm
Distance lens to output plane 100 mm

Wavelength 632.8 nm
Numerical aperture 0.004

Table 2: The number of paths and simulation times for the
HFPI simulations. The simulations were performed on mul-
tiple (6-8) computers using a total of 36 to 48 cores simulta-
neously. Every path was traced from object to image plane.

System Number Core
name of paths hours

ring aperture 109 12
microscope 109 23

microscope corrected HFPI 1.36 · 109 45
cascaded diffraction 1010 306

scopes. Such a reversed configuration can be beneficial in the
design process [24, p. 257–258] and, more important for the
current paper, makes the polarisation effects clearly visible.
As explained in Sections 2 and 3, an error is introduced by
propagating the amplitude of the field using a Monte Carlo
ray tracer designed for propagating intensities. This means
that the factor wp in Eq. (39) is assumed to be 1. For the
first system wp does not vary significantly for different rays
and this error has little effect. For the current system, the
neglected term does vary noticeably and as a result one can
see some systematic differences between the results of HFPI
and BSP in Figure 6. To verify that these difference are in-
deed mainly due to neglecting wp, which is a function of the
ray density, we adjust the system such that we can compen-
sate for this error. This is done by letting the diffraction
occur in the exit pupil, which is the image of the aperture
in image space, instead of at the aperture itself. The two
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Figure 4: The results from HFPI for a plane wave illuminating a ring aperture, followed by a singlet (see Figure 3 and Table 1
for the system description). The amplitudes of the electric field according to the HFPI simulation are shown in the top row, and
the difference between these results and those of the model of Andreas et al. in the bottom row. The L2-difference (Eq. (44))
between the methods is 2.4 %.

wp factors of a ray (one for the propagation to the diffract-
ing surface and one for the following propagation step to the
image plane) are now both functions of the position of the
ray in the exit pupil only. In such cases, our implementation
enables us to account for wp, by adjusting the amplitudes of
the rays that pass through the exit pupil using a thin element
with a spatially varying absorption. The bottom row of Fig-
ure 6 shows that the differences between the BSP simulation
and the HFPI simulation with correct wp are significantly
lower than for the HFPI simulation that assumes wp to be
1. This may appear to suggest that assuming wp to be con-
stant is insufficient for simulating high NA systems but, as
the cross plots in Figure 7 demonstrate, the errors due to
this approximation are mainly in the secondary polarisation
directions and might be acceptable for a wide range of appli-
cations. Furthermore, as mentioned before, the method can
be adapted to account for wp by tracing closely neighbouring

rays and tracking the area spanned between these rays.

In the last example, diffraction is introduced in multiple
planes. Moreover, the field in the second diffracting plane
is affected by the diffraction in the first plane, i.e., cascaded
diffraction occurs. The system consists of a pinhole placed in
the focal plane of a singlet (see Table 4 and Figure 8) followed
by the previously described reversed microscope. The light
passing through the singlet generates a PSF in the plane of
the pinhole. There, the semi-circular pinhole with a radius
of 40 µm, completely blocks the lower half of the PSF. The
pinhole is then imaged by the reversed microscope of the
previous example (see Table 3). Both the object NA of the
microscope and the image NA of the singlet are 0.018. The
system has three diffracting planes: the aperture of the sin-
glet, the semi-circular pinhole, and the physical aperture of
the microscope. If we apply the cascaded diffraction integral
presented in Section 2.3 to this problem, we need to perform
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Figure 5: A schematic representation of the microscope. The
exit pupil and the rays at the exit pupil are depicted using
dashed lines.

three consecutive integrals. This means that the fields are
first decomposed into secondary sources at the aperture of
the singlet, then decomposed again at the pinhole, and for a
finally time at the aperture of the microscope. This is imple-
mented in the Monte-Carlo ray tracer by randomly chang-
ing the direction of every ray, and adjusting its field using
Eq. (43), in each of the before mentioned diffracting planes.
The results of HFPI and the difference with a simulation with
BSP are depicted in Figure 9. Simulating the triple diffrac-
tion is computationally more demanding than the previous
simulations which is why one can observe stronger statisti-
cal noise (due to the Monte Carlo nature of the method).
This noise can be reduced at the cost of a longer simulation
time by sampling more rays. The cascaded diffraction simula-
tion shows similar differences between our implementation of
HFPI and BSP as the simulation of the microscope did (Fig-
ure 6), which suggests that the remaining differences are at
least partly due to taking wp constant. A simulation method
that cannot describe cascaded diffraction would produces re-
sults very different from the ones shown in Figure 9. For the
exit pupil diffraction method for instance, the current system
is nearly identical to the microscope of Figure 5 since the ge-
ometrical optical rays are only blocked by a single aperture.
It would therefore produce the results shown in Figure 6 for
both the microscope and the current system. A comparison
between Figure 9 and 6 (which have an L2-difference in abso-
lute amplitude of 50%) thus shows the effect of (neglecting)
cascaded diffraction.

Table 3: System parameters of the microscope. The aperture
is indicated by ∗ and has a radius of 4.1 mm. The simulations
were performed at a wavelength of 546.1 nm.

Surface Radius Distance Refractive
number [mm] [mm] index

(j) (j to j+1) (after j)

0 ∞ 156.466582 1
1 -4.893054 1.235052 1.6164
2 331.759004 3.773815 1.7546
3 -7.999296 12.115041 1
4* ∞ 0.000000 1
5 ∞ 4.439448 1
6 17.811462 2.602460 1.4984
7 -6.811396 1.000946 1.7918
8 65.868865 0.140215 1
9 11.474481 3.940087 1.4984
10 -6.105357 1.470398 1.5236
11 -14.404937 0.100095 1
12 7.120780 2.202081 1.4984
13 14.369366 0.100095 1
14 4.017020 4.660603 1.7919
15 2.431637 0.672514 1
16 ∞ 0.170000 1.5246
17 ∞

5 Discussion

By keeping track of the phase of optical paths and initi-
ating secondary sources at diffracting surfaces (e.g., aper-
tures) both diffraction and aberrations can be simulated us-
ing a Monte Carlo ray tracer. The method presented here
is an extension to vectorial optics of our previously pub-
lished work [17]. The scalar version of HFPI can be ob-
tained from the method described here by using scalar ray-
tracing and initiating secondary sources according to the ker-
nel of the Rayleigh-Sommerfeld diffraction integral of the first
kind. As a result the secondary sources in scalar HFPI are
point sources (with a cosine-attenuation) instead of magnetic
dipoles. A similar model for diffraction at an aperture in
free-space was recently presented by Mahan et al. [16]. The
excellent agreement between their Monte-Carlo model and
experimental results demonstrates the potential of Monte-
Carlo ray-based diffraction methods.

Huygens-Fresnel path integration is a Monte Carlo method
and therefore does not require an explicit sampling grid.
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(g) Absolute difference in |Ex| for
corrected system
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corrected system
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corrected system
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Figure 6: A magnetic dipole (see Eq. (6)) imaged by the microscope with the parameters listed in Table 3. The top row shows
the amplitudes of the three components of the electric field in the focal plane, as predicted by HFPI. The middle row shows
the absolute differences between these results and those of a BSP simulation. For the bottom row the amplitude factor wp,
which is usually neglected in our implementation of HFPI, was accounted for. The plots show the differences between the HFPI
and BSP simulation. The L2-differences between HFPI and BSP are 7.3% and 3.3% for respectively the uncorrected and the
corrected HFPI.

Since every ray that arrives in an aperture generates a new
source, one does not need to explicitly calculate the field in
an aperture. As a result, HFPI can calculate the field in the
focal plane of a system, even when the field in the aperture
cannot be resolved because the curvature of the local wave
front requires an unrealistically dense sampling. This is a

considerable advantage over methods that rely on intermedi-
ate resampling.

The Monte Carlo implementation without explicit resam-
pling has several other benefits. First, it aids the user by
reducing the input required for the simulation. Apart from
a system and source definition, the user only needs to de-
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Figure 7: Cross sections of the amplitude of the field components at the focal plane of the microscope. In order to include the
peak amplitudes, the cross section of the x-component is at x = 2.5µm and the other components are shown at x = 0. The
plots show the results from the BSP simulation as well as the results from the standard HFPI simulation, which neglects an
amplitude factor wp (Eq. (39)), and the results from the HFPI simulation that accounted for wp (corrected HFPI). It can be
seen that, in comparison to the other simulations, the peak amplitudes of HFPI are a bit lower for the x- and z-polarisation and
the PSF is slightly wider.

fine the diffracting surfaces where new sources are generated.
The second benefit of the Monte Carlo implementation is
that it lends itself to parallel computing since every ray can
be propagated completely independent of all other rays and
only little memory is required. For the results shown here,
the simulations were performed on six to eight computers
using a total of 36 to 48 cores simultaneously. The perfect
scalability of HFPI is particularly relevant in view of increas-
ing availability of cloud computing services, which provide
large number of cores at very low effort and cost and could
significantly reduce real world computation times.

The simulation times also depend strongly on the numeri-
cal implementation. We expect that the computational load
can be reduced by allowing every ray to initiate multiple (as
opposed to a single) new rays in diffracting surfaces (i.e.,
by ray splitting), and by optimizing the code for the use of
graphics processing units (GPUs). Other methods to increase
the convergence are to trace a grid of rays and interpolate the
field between them or to sum multiple subfields at an aper-
ture before initiating the secondary sources. These last two

methods may increase the convergence, but come at the cost
of increased complexity in the implementation. This would
compromise one of the main advantages of HFPI, the rela-
tive ease with which it can be implemented in an existing
polarization ray tracer.

Using distributed or parallel computing is desired since the
computational demand of HFPI is high (see Table 2). By
running on multiple cores simultaneously, all the presented
simulations were performed in under an hour, with the excep-
tion of the cascaded diffraction system. The simulation times
can be further reduced by calculating the results on a coarser
grid. A too large pixel size would likely reduce the accuracy
of the results, as was reported for a related method [16], but
this issue was not observed for the systems presented in this
paper. Another effective way to decrease simulation times is
by sampling fewer paths. In contrast to many other simula-
tion methods, such a reduction of the sampling rate does not
cause aliasing but only increases the noise. The error of HFPI
is inversely proportional to the square root of the number of
rays [17], so decreasing the number of rays (thereby decreas-
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Table 4: System parameters for the first part of the system
showing cascaded diffraction. The second part of the system
is the microscope with the parameters listed in Table 3. The
aperture is indicated by ∗ and has a radius of 4.1 mm. The
simulation is performed at a wavelength of 546.1 nm.

Surface Radius Distance Refractive
number [mm] [mm] index

(j) (j to j+1) (after j)

0 ∞ 0.000000 1
1 244.210307 5.000000 1.5187
2 -244.210307 0.500000 1
3* ∞ 0.000000 1
4 ∞ 234.000000 1
5 ∞ 0.000000 1

ing computational load) by two or three orders of magnitude
increases the L2-error by roughly a factor 10 or 32. As an ex-
ample we present such results for the ring aperture (Table 1)
in Figure 10. The plots are noisy but may suffice for many
practical applications.

6 Conclusion

We present the theory for a ray-based vectorial diffraction
simulation method based on a physical interpretation of the
m-theory diffraction integrals and compare its results to those
of other methods. Huygens-Fresnel path integration is a ro-
bust method to simulate the effects of aberrations, (multiple)
diffraction, and polarization.

In the derivation of HFPI several assumptions are made.
The distances between optical interfaces are assumed to be
much larger than the wavelength, light reflected at opti-
cal interfaces is not further propagated and all apertures
are treated using the Kirchhoff boundary conditions, which
means that the light outside of the aperture is assumed to be
completely blocked. Note that most of the methods listed in
Section 1 operate under the same assumptions, and many of
those methods need additional assumptions. The exit pupil
diffraction integral for instance only allows a single diffracting
surface and the Fresnel integral assumes all lenses to be thin
lenses. The assumptions of HFPI allow for the simulation of
many practical systems, such as head-mounted displays, that
are excluded by these additional assumptions.

microscope

Figure 8: A schematic representation of the system with cas-
caded diffraction. The semi-circular aperture (shown at the
top) is placed in the focal plane of the singlet and followed
by the microscope (represented by the blue box) which is de-
picted in Figure 5. The parameters of the singlet and the
microscope are listed in Tables 4 and 3.

HFPI can be used to simulate the propagation of coherent
fields (e.g., laser beams) through optical systems for which
aberrations and polarization effects cannot be neglected and
where diffraction is introduced at one or more surfaces. The
method is implemented by making some small adjustments
to an existing Monte Carlo ray tracing engine, thereby hugely
extending its domain of application with relatively little pro-
gramming effort. Its main disadvantage is its computational
demand, but this drawback is strongly reduced by distributed
computing. The absence of explicit resampling in HFPI not
only makes the method relatively easy to implement but also
makes it robust and fairly easy to use.
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Figure 9: The amplitudes of the field components in the focal plane of the system demonstrating cascaded diffraction (top row)
and the absolute differences with the results from the BSP simulations (bottom row). The L2-difference between the methods
is 13.2%.
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