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Abstract

An increase in the intelligence of autonomous driving functionalities demands detailed anal-
ysis of the behaviour of traffic participants. This level of analysis requires datasets that
accurately describe the movement of all objects in a specific scene. Recent developments in
small Unmanned Aerial Vehicles (sUAVs) and drones introduce an interesting approach to ex-
tract this type of data: applying object detection and tracking methods to imagery captured
by sUAVs/drones to extract kinematic parameters of traffic participants.

Analysing the behaviour of vehicles in urban traffic has been the topic of research for many
years. However, vehicle detection and tracking pipelines used in the proposed approaches lack
the required accuracy in estimating a vehicle’s orientation and contours. Vehicle detection
methods used in recent approaches detect vehicles as Axis-aligned Bounding Boxes (ABBs)
that contain no information about a vehicle’s orientation and contours. Alternatively, vehicles
could be detected as Oriented Bounding Boxes (OBBs) that do contain this information. For
low-altitude aerial imagery, however, the amount of publicly available data to train methods
using OBB detections is scarce.

To fill the gap in data availability, this thesis introduces the novel ‘Axis-aligned to Oriented
Bounding Boxes’ methodology (A20BB). Based on a non-linear least squares approximation
of the geometrical relationship between an ABB and an OBB, A20BB finds a set of OBB
parameters that fit optimally in all provided ABBs. As such, A20BB can be applied (1) as
an enhancement tool to convert existing ABB annotations to OBBs or (2) as an extension to
existing detection networks that perform detections in ABB format.

This thesis contributes by formulating the novel A20BB methodology and by performing a
detailed analysis on its OBB reconstruction performance. In four experiments, an analysis is
performed investigating the impact of two assumptions made in the proposed methodology
on the reconstruction performance.

The results of the experiments illustrate a sensitivity to: (1) a change in perspective between
the observed vehicle and the camera, (2) a mismatch between the perceived shape of vehicles
and the assumed rectangular shape and (3) the error introduced by the detection network (in
the application of extending ABB detection networks). To reduce the impact of the shape
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mismatch, a correction factor is introduced that significantly improves the reconstruction
performance.

As such, A20BB can be used to reconstruct OBBs from a set of manually annotated ABBs
with a length and width approximation accurate within 5% and 15% of their respective
ground-truths and an optimal orientation with an average error below 2.5°. Overall, manually
annotated ABBs are converted to OBBs with an average Intersection over Union (IoU) of 85%.
Detections resulting from an in-house out-of-the-box implementation of a YOLOv3 network
are reconstructed with a length and width bias of 4.5% and 10% of their respective ground-
truth and with an orientation error below 5° but above 2.5°. Overall, the reconstructed OBBs
for these detected ABBs have an IoU of 77%.

Note that the orientations resulting from A20BB’s reconstructions comprise one of four pos-
sible solutions. A subsequent step is required to find the correct version.
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Chapter 1

Introduction

With an increasing number of autonomous driving functionalities introduced in traffic, low-
level analysis and prediction of traffic participants’ behaviour have both attracted a lot of
attention. Self-driving vehicles must not only be able to plan their own trajectories, but
should be able to anticipate the movement of objects in their environment as well. Therefore,
accurately predicting low-level traffic behaviour is of vital importance for traffic safety in the
future.

Both the analysis and prediction of trajectories of traffic participants require datasets that
describe the dynamic state of vehicles, cyclists, pedestrians and other objects on the road.
Ideally, these dataset should provide an accurate description of the position, orientation and
contours of objects surrounding one specific traffic participant. A conventional method to
obtain this type of data is via the use of an vehicle equipped with LiDAR, RADARs and
camera systems [1, 2, 3].

However, this method has some downsides and limitations. Especially around roundabouts
and intersections, accurately tracking objects proves to be difficult. Both the low manoeuvring
flexibility of vehicles and relatively small range that can be captured limits the effectiveness
and efficiency of this method [4].

Recent developments in small Unmanned Aerial Vehicles (sUAVs) and drone imagery in-
troduce an interesting alternative: using object tracking methods on imagery captured by
sUAVs/drones to extract kinematic data of traffic participants. An illustration of such a
low-altitude aerial image is depicted in figure 1-1. Where early research using sUAV /drone
imagery focused more on robustly detecting traffic participants, both the resolution and sta-
bility of drones are nowadays sufficient to extract an accurate estimate of their position and
velocity as well [5]. In addition, sUAVs/drones are easily manoeuvrable and can capture a
wide area in a naturalistic way for relatively low costs [4]. Therefore, applying drones to
extract kinematic parameters appears to be more beneficial compared to the conventional
method.

Several studies are already devoted to extracting kinematic properties of vehicles in traffic
from low-altitude aerial imagery [6, 7] and one approach is commercially available under the
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2 Introduction

Kinematic properties:

- Position & contours

- Orientation

- Velocity & Acceleration

B

Figure 1-1: An illustration of a roundabout captured in-house by a drone from low-altitude aerial
perspective.

name Flow [8]. While position estimation and robustness of detections are already sufficient
[5], little attention is dedicated to extracting accurate object contours and orientations. As a
consequence, these approaches do not have the accuracy in contour and orientation estimation
of traffic participants that is required for low-level trajectory analysis and prediction.

To improve these existing vehicle tracking pipelines, object detection methods can be used
that are seen in other applications. In most recent detection methods, objects are detected
either in the form of a 2D Axis-aligned Bounding Box (ABB) (e.g. YOLO [9]) or a 2D Oriented
Bounding Box (OBB) (e.g. R3-Net [10]). Both types of bounding boxes are illustrated in
figure 1-2. Detecting objects in ABB format allows for extracting the position of vehicles,
containing no information about its orientation or contours, whereas detections in OBB format
do include an estimation of an object’s orientation. In the application of vehicle detection in
low-altitude aerial imagery, these methods also allow for an accurate estimate of the vehicle’s
contours due to their rectangular shape.

:_ 1= ABB = OBB

Figure 1-2: An illustration of the difference between an Axis-aligned Bounding Box (ABB),
depicted as the green-dotted box, and an Oriented Bounding Box (OBB), depicted in solid red.
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A major issue in applying OBB detection methods, however, is the lack of available data to
train them. For low-altitude imagery, the limited number of public datasets that exist are,
to the authors knowledge, all annotated in ABB format (e.g. the Visdrone dataset [11]).
If these existing datasets could be extended to contain data about a vehicle’s orientation,
essentially converting them to OBBs, it would open a lot of doors for further research in this
field, without having to (re)annotate data manually again.

Interestingly, OBB annotations of higher altitude imagery are in some applications also used
to evaluate ABB detections by converting the OBB ground-truths to ABBs based on geometry
[12]. In this thesis, it is hypothesized that a reverse of this operation can be used to reconstruct
OBBs from existing ABBs, given a set of ABBs describing one vehicle in multiple orientations.

Benefits of this method would be twofold: (1) Existing dataset containing ABB annotations
can be converted to OBB format. (2) The method can be used as a post-processing extension
to existing detection networks, converting results from ABB to OBB format.

For the purpose of investigating this hypothesis, a novel method is introduced called Axis-
aligned to Oriented Bounding Boxes (A20BB). A20BB exploits the difference between ABB
dimensions describing one vehicle in multiple orientations, as depicted in figure 1-3. This
figure illustrates that as the orientation of a specific vehicle with respect to recording device
changes, so do the dimensions of the ABB describing this vehicle. Based on the difference
between ABB dimensions of subsequent observations, a reconstruction can be made of an
OBB for every observation.

Note that the orientation of each reconstruction is one of four possible solutions. Therefore,
a subsequent step is required to find the correct angle. Examples to perform this step are
briefly mentioned, but are not the main focus of this thesis.

Figure 1-3: An illustration of a change in the size and shape of an ABB (orange box) between
multiple observations of the same vehicle in different orientations.

The core principle of A20BB is the assumption that the difference in ABB dimensions is
mainly caused by rotation of the vehicle with respect to the image frame. However, in
practice, other effects will play a role as well reducing the accuracy of the reconstructions.
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4 Introduction

To find out how accurately OBBs can be reconstructed using A20BB in practice, the focus
of this thesis is to answer the following research question:

“Can the geometrical relationship between OBBs and ABBs be used to reconstruct OBBs
from a set of ABBs describing a vehicle in multiple orientations in one scene captured from
a low-altitude aerial perspective?”

An answer to this question is formulated based on a four-step evaluation of the novel A20BB
method, gradually moving from an ideal, theoretic scenario to the method’s intended scenes
of application. To provide a clear structure, each step is focussed on answering a separate
research question with increasing complexity. These questions are as follows:

1. “Can OBBs be reconstructed from ABBs that describe multiple observations of a rect-
angular vehicle with constant dimensions?”

2. “To what extent can OBBs with varying dimensions be reconstructed from a set of
ABBs generated around OBBs using geometry?”

3. “To what extent can OBBs be reconstructed from manually annotated ABBs?”

4. “To what extent can OBBs be reconstructed from ABBs created by a detection net-
work?”

The structure of this report is as follows. Chapter 2 provides information about studies related
to this topic, sketching the general pipeline in which A20BB is intended to operate and stating
the contributions of this thesis. Subsequently, chapter 3 states the novel proposed A20BB
methodology, explaining its mathematical preliminaries, zooming in on the assumptions made
and describing the method’s implementation details. After that, chapter 4 describes the
experiments performed in this thesis to answer the research questions and discusses their
results. Finally, the thesis is concluded in chapter 5.
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Chapter 2

Related Work

The method introduced in this thesis is aimed at enhancing vehicle detection tools applied to
low-altitude aerial imagery for the purpose of behavioural predictions of traffic agents. These
tools are designed to operate in a pipeline that extracts accurate kinematic parameters of all
vehicles in a specific scene. This chapter provides an overview of the relevant literature and
the datasets associated with this topic.

Firstly, this chapter describes the steps that are required to extract kinematic parameters
from aerial imagery. It starts by briefly discussing the general pipeline and then zooms in on
the vehicle detection step. This part is responsible for determining the location and contours
of vehicles and is therefore vital in extracting the vehicle’s location, orientation and contours
accurately. Subsequently, this chapter discusses the datasets that are publicly available for
training vehicle detection networks. After that, the chapter states the main contributions of
this thesis.
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6 Related Work

2-1 Vehicle tracking pipelines

Extracting traffic information from imagery taken at a top-down perspective has been done for
various purposes over the past decades. Some research, for example, is focussed on examining
high level traffic flow on a city scale [13], whereas other types of research focus on examining
individual traffic agents for the purpose of analysing lane following, lane changing and lane
merging behaviour on the highway [14, 15].

Generally, in vehicle detection and tracking pipelines, three core steps can be identified.
Although the terminology and order of these steps might vary per approach, all essentially
perform a form of (1) image processing, (2) vehicle detection and (3) vehicle tracking. A
schematic of this pipeline is illustrated in figure 2-1.

f‘ A
O — S -

Image processing Vehicle Detection Vehicle Tracking

Figure 2-1: A visualization of a standard vehicle detection and tracking pipeline applied to
low-altitude aerial imagery.

The image processing step comprises operations performed on the imagery that compensate
distortions that occur while capturing the imagery, relate pixels to metric coordinates through
Geo-referencing and transfer all imagery to a fixed frame using stabilization filters. The
accuracy of the Geo-referencing step and the ability to compensate imagery for both short-
term and long-term movement of the recording device are vital in acquiring accurate results.
An analysis of these topics is provided in [4] and [5].

The vehicle detection step, as the name suggests, localizes and classifies vehicles that appear
in the imagery. This step is discussed more elaborately in the next section.

Thirdly, the vehicle tracking step traces all detected vehicles throughout the image sequence.
The approach for tracking objects depends on the format in which that object is detected
and the desired level of accuracy in the results. Pipelines seen in literature use four different
approaches: (1) Nearest-Neighbour tracking [16, 17], (2) feature-based tracking [18, 19], (3)
Kalman filters [20] or (4) particle filters [6].
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2-2 Vehicle detection methods 7

2-2 Vehicle detection methods

Detecting vehicles in imagery is a very widely covered subject applied to many different
areas. The literature study of [21] divides the approaches seen in literature elegantly in two
categories: (1) traditional methods and (2) Deep Learning methods.

Traditional methods comprise techniques that have been developed in the earlier stages in
the history of object detection. Due to a lack of effective image representations at that time,
these approaches were built around sophisticated hand-crafted features [21]. Several of these
hand-crafted features are also used as an approach in existing vehicle tracking pipelines, such
as the Viola Jones detector [6] and HOG detectors [18, 22, 23], as well as detectors based on
SIFT features [24, 25].

Recent approaches more often opt for the newer Deep Learning based models. Deep Learning
methods comprise approaches that utilize some form of Convolutional Neural Network (CNN).
This type of network is able to learn robust and high-level feature representations of an image
and therefore is very suitable for object detection. [21]

In Deep Learning, two genres can be identified: the two-stage detectors and the one-stage
detectors, where the former approaches the detection as a coarse-to-fine process while the
later aims perform the detection in a single step [21]. Examples of one-stage detectors that
are used in vehicle detection in aerial imagery are You Only Look Once (YOLO) [9], its
most recent versions, YOLOv3 [26] and YOLOv4 [27] and the Single Shot MultiBox Detector
(SSD)[28]. Examples of Two-stage detectors are the Regional CNN (RCNN) [29], its more
advanced version Faster-RCNN, and the Spatial Pyramid Pooling method (SPP) [30].

The previously mentioned Deep Learning methods generally produce object detections in the
form of an 2D Axis-aligned Bounding Box (ABB). This type of bounding boxes provides a
description of an object’s location, but the contour description is inaccurate and the boxes
contain no information about the object’s orientation. As such, this type of bounding box and
these types of networks are not suitable in an application where the orientation and contour
estimation of objects is vital.

Although the majority of state-of-the-art object detection networks are not specifically de-
signed for oriented objects [12], some adaptions have been researched to perform detections
in the form of an 2D Oriented Bounding Box (OBB). The approach described in [31], for
example, applies a modified version of YOLOv3 by incorporating an additional angular term
during the logistic regression step, the paper of [12] introduces a modified version of the Faster
R-CNN model and the authors of [10] introduce a rotatable region proposal network (R-RPN)
combined with a rotatable detection network (RDN) that makes use of batch averaging ro-
tatable (BAR) anchor boxes.

Note, however, that each of these networks is applied to high-altitude aerial imagery (e.g.
Satellite imagery) and requires a large amount of training data. Unfortunately, the altitude
combined with the movement speed of the recording device introduces a large change in
perspective between subsequent imagery and limits the number of observations that can be
taken from one specific traffic scene. An illustration of the difference in perspective of two
images in the same sequence is depicted in figure 2-2. As a consequence, high-altitude imagery
is less suitable for evaluating traffic for behaviour prediction purposes.
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8 Related Work

Figure 2-2: Two examples of the KIT AIS dataset [32] illustrating the change in perspective
between two images of the same sequence in high-altitude imagery. Not only does the shape of
the scenery change (e.g. the tower of the building circled in green), but shape of vehicles changes
as well (illustrated by the vehicle circled in red).

In addition, vehicles in high-altitude aerial imagery are perceived as relatively small objects
compared to vehicles in low-altitude aerial imagery. Detecting smaller objects requires a
different type of network architecture. As such, detection methods that detect vehicles in OBB
format in high-altitude aerial imagery can not be applied directly to low-altitude imagery [12].

Networks that are designed to detect oriented objects in low-altitude aerial imagery are scarce,
if not non-existent.

2-3 Available datasets

Deep Learning approaches generally require large amounts of training samples. This section
provides a brief description of some datasets that are publicly available. The datasets de-
scribed in this section are divided between high-altitude imagery (satellite/high-altitude UAV
imagery) and low-altitude imagery recorded by sUAVs or drones.

High-altitude imagery has been used for traffic analysis for many years. Therefore, the amount
of data that is available in this field is extensive and supports the development of detection
networks in both ABB and OBB format. Examples of such datasets are the DOTA dataset
[12], the VEDAI dataset [33] and the KIT AIS dataset [32].

For low-altitude aerial imagery, the amount of available training data is much more scarce and
the publicly available datasets are all annotated in ABB format. Examples of such datasets
are the Visdrone dataset [11], the UAV-DT dataset [34] and the AU-AIR dataset [35]. To the
authors knowledge, public datasets that contain annotations in OBB format do not exist.

L.L. Pijnacker Hordijk Master of Science Thesis
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2-4 Axis-aligned to Oriented Bounding Boxes

The fact that low-altitude imagery has not been covered extensively for oriented object detec-
tion could be caused by a lack of publicly available training data annotated in OBB format.
As Deep Learning methods generally require large amounts of training samples, a lack of
available data would demotivate researchers to investigate this field. To fill the gap in data
availability, this thesis proposes the novel method called Axis-aligned to Oriented Bounding
Boxes (A20BB). This method is inspired by how ABB detections are evaluated using the
DOTA dataset [12].

Interestingly, the DOTA dataset only contains OBB annotations, but does support the eval-
uation of ABB detection networks. To evaluate such networks, the annotated OBBs are
converted to ABBs based on the geometrical relationship between an OBB and its surround-
ing ABB. The novel A20BB method aims to revert this operation to create OBBs from ABB.
Note, however, that creating OBBs from ABBs is more complex and requires additional in-
formation and assumptions to the perceived shape of the object described by these bounding
boxes.

The novel proposed A20BB method obtains this additional information by observing multiple
observations of a single vehicle in different orientations. By assuming the perceived size and
shape of the vehicle to be constant in all observations and by assuming a perfect fit of the
ABB annotations, an estimation can be made of an OBB that fits in all annotated ABBs
based on the same geometrical relationship used in the DOTA evaluation.

2-5 Contributions

The contributions of this thesis are threefold. Firstly, this thesis contributes by formulating
the A20BB methodology and by providing proof of the method’s working principle under
the condition that the assumptions made in the methodology are valid. As such, A20BB
can be applied as enhancement tool to convert existing ABB annotations to OBBs or as an
extension to existing detection networks that perform detections in ABB format.

Secondly, a well-structured analysis is performed on the validity of the assumptions that are
made in the proposed method in practice. Based on a four-step evaluation, gradually moving
from an ideal scenario to the method’s intended applications, this analysis provides a good
understanding of how each assumption affects A20BB’s reconstruction performance and how
their impact can be minimized.

Lastly, this thesis proposes a correction factor that accounts for one of the main potential
sources of error and improves the OBB reconstruction performance. In practice, vehicles
observed from aerial perspective are perceived as a rounded rectangle instead of the assumed
regular rectangle. As a consequence, the reconstructed OBB is smaller than the actual shape
of the vehicle. To compensate, a correction factor is formulated based on the theoretical
difference between regular rectangles and rectangles with ellipse-shaped corners.
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10 Related Work

2-6 Conclusion

To summarize, this chapter provides a brief description of vehicle detection and tracking
pipelines applied to aerial imagery for the purpose of extracting kinematic parameters of
vehicles in traffic. It zooms in on the detection methods, describing the different approaches
and types of datasets seen in literature. Most recent approaches opt for the use of Deep
Learning methods, that generally detect objects in ABB format. Some research is devoted to
detecting objects in OBB format, but these are mainly designed for high-altitude imagery.

An absence of approaches devoted to detecting oriented objects in low-altitude aerial imagery
could be caused by a lack of publicly available datasets annotated in OBB format. If existing
ABB datasets could be extended to contain data about a vehicle’s orientation, essentially
converting them to OBBs, this data gap would be filled. It would open a lot of doors for
further research in this field without having to (re)annotate data manually.

That is where the novel A20BB methodology comes in. Based on the geometrical relationship
between ABBs and OBBs, A20BB reconstructs OBBs from a set of ABBs describing a
single vehicle in multiple orientations. As such, A20BB can be applied as enhancement tool
to convert manually annotated or automatically detected ABBs describing vehicles in low-
altitude aerial imagery to annotations in OBB format. This thesis contributes by formulating
the methodology, analysing its performance in practice and by proposing a correction factor
for a main potential source of error.
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Chapter 3

Method

This chapter introduces the novel Axis-aligned to Oriented Bounding Boxes (A20BB) method-
ology. This method is proposed as a post-processing enhancement tool for annotations that
used for detecting vehicles in low-altitude aerial imagery. The goal of the method is to convert
2D Axis-aligned Bounding Box (ABB) annotations to 2D Oriented Bounding Boxes (OBBs).
As such, this method can be used in two different applications: (1) to convert existing ABB
annotations to OBBs and (2) as an extension to existing detection networks that perform
detections in ABB format.

To perform this ABB-to-OBB conversion, the method requires a set of ABB annotations of
that describe multiple observations of one vehicle. These ABBs must describe this vehicle
perceived from aerial perspective and in different orientation. By assuming a constant, rect-
angular shape for the vehicle in all observations, a set of equations can be constructed that
describe the geometrical relationship between that constant shape, described by the length
and width of an OBB, and all the provided ABBs. Finding a set of OBB dimensions that fits
in each of these equations will allow a reconstruction of the OBB for every individual ABB
annotation.

In practice, vehicles will not be perceived with a constant, rectangular shape in all observa-
tions. As a consequence, one unique OBB that fits in all geometrical equations will not exist.
Therefore, the goal of A20BB is to find one OBB that fits best in each of these equations. To
do so, the method formulates a non-linear least squares problem based on the aforementioned
set of geometrical equations. Minimizing the error of this least-squares problem will yield the
optimal set of OBB parameters that fit best in the provided ABB annotations.

This chapter starts off by describing the preliminaries of bounding boxes, introducing the
necessary parameters and the geometrical relations between ABBs and OBBs that are required
to formulate A20BB’s least-squares problem. This section also illustrates how an OBB that
fits in each of the provided ABBs can be found under ideal circumstances.

The second section of this chapter zooms in on the assumptions made when constructing
the set of equations, describing how they hold in practice. This section will provide a brief
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12 Method

theoretical analysis on how violations to both assumptions affect the optimality of the OBB
reconstructions.

After that, the non-linear least squares problem, central to the proposed A20BB method, is
introduced. In this section, a description is provided of A20BB’s implementation, discussing
the problem formulation and the optimizer used for the non-linear least-squares approxi-
mation. This section also introduces a correction factor to the least-squares problem that
compensates for one of the main possible sources of error and mentions the method’s limita-
tion.
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3-1 Preliminaries of bounding boxes

This section introduces the preliminaries of both ABBs and OBB that are required to con-
struct the least-squares problem central to the A20BB methodology. To start off, this section
introduces the main parameters and notations that are used throughout this chapter. After
that, the geometrical relationship between ABBs and OBBs is described and it is demon-
strated how a set of OBBs can be reconstructed given a set of ABBs that describe vehicle
under ideal conditions.

3-1-1 Bounding box parameters and notations

The A20BB methodology exploits the differences between the individual dimensions of ABBs
that describe one vehicle in multiple orientations. Both types of bounding boxes are described
by a set of parameters indicating the location and size of the object in question. The general
concept of the method revolves around the geometrical relationship between the two sets of
parameters for rectangular objects, illustrated in figure 3-1.

WOBBl cos© | —

LOBBl sin© | —

WOBBI sin 0 | LOBBI cos 0 |

= ABB = OBB

Figure 3-1: An illustration of the geometrical relationship between an ABB and an OBB that
describe the same rectangular object. Lagp and Logp describe the length of the ABB and
OBB respectively, whereas Wapp and Wopp describe their width. 6 represents the vehicle's
orientation w.r.t. the image axes.

The location of the object described by the bounding box is generally indicated by an z-, or
y-coordinate in pixel coordinates. For vehicles, the location of both the ABB and OBB are
the same. Converting one to the other will not affect these parameters. As such, the location
of the bounding box is not mentioned in further formulations.

The size of an object is roughly defined by the length and the width of the bounding box, also
quantified in pixel coordinates. In further formulations, the length and width of ABBs are
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denoted as Lapp and Wapp. The length and width of an OBB are illustrated in figure 3-1
as Lopp and Wopp. However, to allow for a convenient formulation of optimization problem
later in this chapter, the length of the bounding box will be expressed in terms of the OBB’s
aspect ratio, R, and Wopgpg:

Lopp = R-Wopn (3-1)

An OBB also contains information of the orientation of the object it describes. The orientation
of the object with respect to the image axes is denoted as 6, quantified in degrees.

3-1-2 Geometrical relationship between ABBs and OBBs

Figure 3-1 suggests that the dimensions of the ABBs, Lagp and Wapp, can be calculated
as a function of the dimensions of the OBBs, Logp and Wpgg, and the vehicle’s orientation
with respect to the image axes, 6. Expressing Lopp using equation 3-1, the geometrical
relationship between OBBs and ABBs for a rectangular object can be formulated as:

Lapp = Wopp(R|cos 6|+ |sin 6]) (3-2)

Wass = Wopp(| cos 0] + R|sin 0))
Under ideal conditions, equations 3-2 can be solved for Wpgg, R and § when the dimensions
of two or more ABBs are available that describe the same object in multiple orientations.
These ideal conditions state that two assumptions should hold for the set of ABBs and the
objects they contain. Firstly, all ABBs describe the same object in multiple orientations and
the perceived size of that object does not change between subsequent observations. Thus,
(1) the dimensions of the OBB in all ABBs, R and Wppp are assumed to be constant. Sec-
ondly, the equations 3-2 describe the ABB-OBB relationship for rectangular objects. A20BB
aims to extract OBBs from vehicle annotations. Therefore, (2) vehicles observed from aerial
perspective are assumed to be rectangular.

To illustrate how these equations can be solved for Wopp, R and 6, the scenario of a single
ABB is initially considered to establish some constraints and alternate formulations of the
ABB-0OBB relationship. These constrains and formulations are subsequently used to find the
OBB parameters for in a situation with two or more ABBs. Note that in each of the derivations
in this section, both the ABBs and OBBs are assumed to adhere to the aforementioned ideal
conditions.

3-1-3 A single ABB

When considering a single ABB, equations 3-2 can be constructed to describe the ABB-OBB
relationship. The number of unknown values (3: Wopp, R and 6) in this set of equations
exceeds the number of available equations (2). Therefore, the amount of available information
is not yet sufficient to solve the equations and find a unique solution. Nonetheless, these
equations, along with the visualisation of the geometrical relationship in figure 3-1 allow for
the definition of three constraints to the unknown values.
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The first two constraints are relatively straightforward. Firstly, by definition, the length of a
vehicle always exceeds its width. Therefore, R will always be larger than 1. Secondly, Wogg
describes the width of the vehicle. This parameter will always be larger than zero, but equal
to or smaller than the smallest value of the ABB dimensions.

A third constraint that can be formulated is that equations 3-2 must contain a solution having
an orientation on the interval [0, 7/2]. To illustrate why this constraint must hold, notice that
equations 3-2 contain the moduli of the cosf and sinf. Both terms are used to calculate the
length of line segments and should therefore always be positive. As a result, equations 3-
2 essentially comprise four different sets of equations, each describing one quadrant of the
possible solutions for §. If a solution to equations 3-2 exists in one of the quadrants, a similar
solution also exists in the other three quadrants. The solutions in the different quadrants are
mutually related as illustrated in figure 3-2.

Figure 3-2: An illustration of the four possible OBBs that result in the same ABB. For every
OBB with an orientation 6*, three alternative solutions exist having orientations of § = §* + m,
0=—60"orf=m—06"

On the one hand, this means that if a certain set of OBB dimensions fits to equations 3-2, four
different orientations will be possible. Finding the true orientation out of these four angles
requires an additional step.

On the other hand, if a solution for # exists, one of these solutions will lie in the first quadrant
of 6 and this solution will be unique. This allows the formulation of the constraint that 6
must lie in the first quadrant on the interval [0,7/2]. Note that restricting the orientation
to lie in the other quadrants will work as well, but the equations that follow will be slightly
different.

Using these constraints, equations 3-2 can be reformulated to:

R>1
L =W, Rcos 0 +sin 0 7
WABB WOBBE 0+ Rsi 0; where: §0 < Wopp < min(Laps, Waps), (3-3)
= Ccos sm
ABB OBB 0<0<m/2
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Furthermore, equations 3-3 can be rewritten to express Wopp and R in terms of the dimen-
sions of the ABB, Ligp and W4ppg, and the orientation 6:

- Lappcost —Wagpsind W _ WaBB )
N Waggcos — Laggsinf’ OBB = Lagpcost —Wappsinb . !
——cos 0 +sin 6
Wappcosl — Lagpsing
R>1,
where: 0 S WOBB S min(LABB,WABB),
0<6<7/2
(3-4)

Given a specific set of ABB dimensions, these equations can be used to calculate all possible
pairs of Wopp and R for orientations on the interval [0,7/2]. Each pair of values represents
a point in the R-Wppp domain. As such, the set of all possible pairs of these dimensions will
be represented as a line illustrated in figure 3-3. This line will represent all possible OBB
dimensions that the given set of ABB dimensions can contain.

20

Figure 3-3: The line illustrated in this figure represents all possible pairs of OBB dimensions
(Wopp and R) that can be contained by a given pair of ABB dimensions (Lapp and Wagpp).
These points are calculated as a function of § using equations 3-4.

3-1-4 Multiple ABBs

For a single ABB, the amount of available information is not sufficient to extract the de-
sired OBB dimensions and orientation. However, in case of two or more ABBs, the amount
of information is sufficient and a unique set of OBB dimensions and orientatations can be
reconstructed.
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Two ABBs

To illustrate how this works, a situation of two ABBs that belong to one OBB in multiple
orientations is considered. For both ABBs, equations 3-3 can be formulated adhering to the
constraints mentioned in the previous section. As such, the following set of equations can be
formulated:

Lapp, = Wopp(Rcos 01 +sin 6;)
Wapp, = Wopp(cos 01 + Rsin 6;)
Lapp, = Wopp(Rcos 0+ sin 0s)
Wagp, = Wopg(cos 02 + Rsin 6s) 0<0; <m/2

R>1,
where: ¢ 0 < Wopp < min(Lapg,, WaBs,),

(3-5)

with a constant set of unknown OBB dimensions R, Wpogp and two different unkown orien-
tations, 61 and 6-.

The system of equations comprises 4 equations containing a total of 4 unknown values. Thus,
the amount of information in this set of equations should be sufficient to find these unknown
values. In fact, these values can be determined numerically by observing all possible pairs of
Wopp and R, given both sets of ABB dimensions. To recall from the previous section, all
possible pairs of OBB dimensions that fit in both sets of ABB dimensions can be represented
as a line in the R-Wopp domain. Two lines for two different sets of ABB dimensions are
depicted in figure 3-4a. Provided that the constraints defined in the previous section are met,
these lines will intersect at only a single point. The values of Wpopp and R at that point
describe the dimensions of the single OBB that fits in both provided ABBs. These dimensions
can subsequently be used to determine orientations 6; and 6,.

20 20

15 A 15 A
\ g

10 - \ g010—

5 1 5 1

Wogs

O T T T 0 T T T
1 2 3 4 5 1 2 3 4 5
R R
(a) Two ABBs (b) Three ABBs

Figure 3-4: An illustration of all possible pairs of Wogg and R in the R-Wopp domain for
multiple sets of ABB dimensions. The left figure depicts the possible pairs for two sets of ABBs,
where the right shows this for three sets of ABBs.

Essentially, for a set of two ABBs that describe the same OBB in two orientations, the
dimensions of that OBB and its orientation in both orientations ABBs can be determined.
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Three or more ABBs
The scenario for two ABBs can be extended to three or more ABBs. To generalise, when

considering N ABBs, a set of 2xN-equations can be constructed to describe the geometrical
relationship between all ABBs and all possible OBBs they can contain:

LA331 = WOBB(RCOS 01 + sin 91)

Wapp, = Wopg(cos 61 + Rsin 6,) R>1,
: where: 0 < WOBB < min(LABBm WABBi)a
Lapey = Wopp(Rcos Oy +sin Oy) 0<6; <m/2

WABBN = WOBB(COS On + Rsin GN)
(3-6)

Under ideal conditions, this set of equations contains a constant set of OBB dimensions (R,
Wopp) in N-different orientations, (01, ..., fx). Similar to the situation with two ABBs, it
can be shown that this set of equations has a unique solution for each of these parameters.

Again, each set of equations can be represented as a line in the R-Wppp domain and these
lines intersect at the point where the ABBs contain an OBB with the same dimensions. A
situation for three different ABBs is depicted in figure 3-4a. Under the ideal conditions state
in the previous section, these lines will all intersect at a single point. Again, the values of
Wopp and R at that point describe the dimensions of the single OBB that fits in all provided
ABBs and these dimensions can be used to determine orientations 61, ..., 0 using equations
3-2.

3-1-5 Conclusion

To summarize, for a given set of ABBs that describe several observations of a rectangular ob-
ject, a set of equations can be constructed that describe the geometrical relationship between
all ABBs and the OBBs they can contain. Provided that the perceived size of this object
remains constant over all observations, this set of equations will have a unique solution for
the length and width of the OBB in all ABBs that can be determined numerically.

These dimensions can subsequently be used to determine the orientation of the object in every
observation. Note, however, that four orientations will be possible for every observation. A
subsequent step is required to find the correct version.

Vehicles observed from low-altitude aerial perspective will not be perfectly rectangular and
their perceived size will vary between consecutive observations. Therefore, the next section
will focus on how the ideal conditions used to formulate this concept will hold in practice.
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3-2 Assumptions and possible error sources

The concept behind the proposed methodology considers a set of ABBs that describe one
vehicle in multiple orientations. Under ideal conditions, defined in section 3-1-2, a unique
solution can be found that allows for the reconstruction of the set of OBBs this set of ABBs
can contain. Essentially, a set of ABBs acquired in ideal conditions should adhere to two
assumptions. This section analyses the extent to which these assumptions hold for vehicles
annotated in low-altitude aerial imagery.

Essentially, this method comprises a non-linear least squares approximation of a set of equa-
tions describing the geometrical relationship between ABBs and OBBs. A unique solution to
these equations can be found, given validity of two assumptions for the set of ABBs. These
assumptions are:

e Assumption 1: “The dimensions of the OBBs that describe the object in the provided
set of ABBs do not change over the set of observations.”

e Assumption 2: “The shape of vehicles described by the ABBs is rectangular.”

The first assumption states that the perceived size of objects should remain constant over the
set of observations. For vehicles, however, the perceived dimensions will slightly differ due to
variations introduced while acquiring the annotations and the imagery. These variations are
mainly caused by:

e lens distortions;
e a change in perspective between the drone and the vehicle;

e annotation errors.

The second assumption states that the objects described by the ABBs should be rectangular.
To be more specific, the set of ABBs should be constructable from a set of OBBs using
equations 3-2. In practice, however, the ABB dimensions can vary due to:

e a mismatch between the rectangular shape estimation and the actual vehicle shape;

e annotation errors.

As a result, the ABB-OBB relationship will be slightly different to equations 3-2.

For each of the above-mentioned aspects, a short description is provided on how they affect the
perceived vehicle size and the geometrical relationship and how their impact on the validity
of the assumptions can be minimized.
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3-2-1 Lens distortions

A first source that induces variations in the perceived vehicle size occurs while acquiring the
imagery. Due to the fact that a camera observes a scene through a specific lens, the observed
scene is deformed based on the shape of the lens. Depending on the shape of the lens, this
deformation takes the form of barrel distortion or pincushion distortion (both illustrated in
figure 3-5). Generally, in aerial imagery the lens induces barrel distortion.

Figure 3-5: An illustration of pincushion distortion (left) and barrel distortion (right).

This type of distortion is widely covered in literature and several methods are suggested to
compensate this effect. A commonly used method to do so is Zhang’s Calibration method
[36]. In current state-of-the art detection methods, compensation for lens distortion is mostly
applied prior to extracting annotations or applying a detection network (e.g. in [6] and [16]).
Therefore, the impact of lens distortions on the perceived vehicle size is assumed to be fully
compensated and will not have an affect on A20BB’s performance.

3-2-2 Change in perspective

A second source of introducing variations in the perceived vehicle size is a change in per-
spective between the vehicle and the recording device. Both the vehicle and the recording
device move as time progresses. As a result, the perspective between both objects changes,
introducing a variation in the perceived vehicle size.

The movement of the recording devices and camera are usually very limited. Most state of
the art drones are equipped with stabilization mechanisms that compensate for short-term
movement and long-term drift of the drone can be corrected via video stabilization filters
[16]. One of such methods is implemented in this study as well. More details on this filter are
discussed in appendix A. As a result of applying this filter, the camera position is assumed
to be fixed.

Nonetheless, the vehicle will still move with respect to the camera. For vehicles moving
away from the image centre, parts of the vehicles side increasingly appear in the image that
would be occluded when observing the vehicle from top-down. These ‘top-down occluded
sides’ deform and increase the perceived vehicle size. An illustration of this effect in 2D is
illustrated in figure 3-6. The figure illustrates that the perceived vehicle length, denoted as
L*, depends on the z-coordinate of the vehicle.
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L'=L+ AL

<+
L AL

Figure 3-6: An illustration of the effect of a difference in perspective on the perceived length of
a vehicle in 2D, denoted as L*.

The position and height of the drone (Hp in the figure 3-6) remain fixed in this scenario.
Therefore, the deformation of the vehicle will depend on two factors: (1) the position (z)
of the vehicle with respect to the image centre and (2) the shape of the ‘top-down occluded
side’ that starts to appear. For the simplified version depicted in figure 3-6, the shape of the
‘top-down occluded side’ mainly depends on the height of the vehicle ( denoted as H,).

For a box-shaped vehicle, where the included backside of the vehicle is perpendicular to the
roof of the vehicle, the change in observed length (AL ) can be calculated as a function of x,
Hp and H, using similar triangles. This relationship is described by the following equation:

H,

AL =
Hp

x (3-7)

In 3D, the magnitude of the deformation is split between the perceived length and width of
the vehicle, depending on the orientation of the vehicle with respect to the vehicle’s displace-
ment from the image centre. A very basic example of how this distribution depends on this
orientation is depicted in figure 3-7a.

In essence, when assuming that the vehicle’s orientation with respect to the image centre
constant, the perspective transformation can be reduced to a 2D problem, illustrated in
figure 3-6 and described by equation 3-7. This equation suggests that for box-shaped vehicles,
AL linearly increases with the vehicle’s distance to the image centre as long as 6; remains
constant. For non-box-shaped vehicles (e.g. a regular passenger vehicle), this relationship
becomes slightly more complex depending on the inclination angle of the sides pointed to and
from the image centre. As illustrated in figure 3-7b, H, will be smaller for these vehicles
and the magnitude of the perspective transformation will be smaller as well. In addition,
the location of the ‘top-down occluded side’ for non-box-shaped vehicles depends on the
inclination angle of the vehicle and the vehicle’s distance to the image centre. However, for
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(a) (b)

Figure 3-7: lllustrations of the perspective transformation. Figure 3-7a illustrates the distribution
of increase in size over the length and width of the vehicle depending on angle 6,4, the angle
between the vehicle orientation and the vehicle's displacement vector with the origin (7.). Figure 3-
7b shows a length intersection for a van (top) and a regular passenger vehicle (bottom), illustrating
the height of the sides that affect the perspective transformation.

the scope of this thesis, both of these additional complexities are neglected and all vehicles
are assumed to be box-shaped.

Neglecting these extra complexities, one could state that for vehicles moving in a direction
aligned with their orientation with respect to the image centre remains constant, an increase
in their perceived size should be linearly dependent on the vehicle’s distance to the image
centre. In addition, knowing that the perspective transformation depends on the distance of
a vehicle with respect to the image centre, only considering observations that are equidistant
from the image centre could reduce the variance in OBB size between different observations.

3-2-3 Mismatch between the assumed and actual vehicle shape

A third source of deviation to the assumptions is caused by a mismatch between the assumed,
rectangular shape of vehicles and their actual, perceived shape. Instead of seen as a regu-
lar rectangle, vehicles observed from an aerial perspective are rather perceived as rounded-
rectangles. Consequently, annotated ABBs will be smaller than the ABB constructed from
the theoretical OBBs using equations 3-2 as illustrated in figure 3-8. For the remainder of the
thesis, this effect is referred to as the ‘rounded-corner effect’. For further reference, an ABB
constructed from an OBB using equations 3-2 is referred to as an AOBB.

The magnitude of the difference between both bounding boxes depends on the orientation of
the vehicle and the shape of the vehicle’s corners. By estimating the shape of the vehicle’s
corners, a prediction can be made of the difference annotated ABB parameters and AOBBs.
For example, if the corners are assumed to be ellipse-shaped, the difference in the length
and width between both bounding boxes, respectively denoted as AL4 and AW 4, can be
expressed in terms of the radii that define the elliptic shape of the corners. The radii of the
ellipse-shaped corner in the direction of the vehicle length and the width are denoted as Ry,
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(a) A visual example. (b) A schematic view.

Figure 3-8: A visual and schematic illustration of the ‘rounded-corner effect’ for a vehicle with
ellipse-shaped corners in an orientation 6. Both figures depict the discrepancy between annotated
ABBs (green box) and the AOBBs (solid red box), generated around the OBB (red-dotted box)
using equations 3-2. The right figure illustrates the difference between the widths of ABBs and
AOBBs (Wapgp and Waopg) in a rough sketch, also showing the radii that define the elliptic
shape of the corners. Ry is the radius along the length of the vehicle, whereas Ry represents
the radius along the vehicle's width.

and Ry and the orientation of the vehicle with respect to the image axes as 6. A derivation
of this expression is included in appendix B.

To summarize the derivation, the ‘rounded- corner effect’ for vehicles with ellipse-shaped
corners can be expressed as:

ALy|  |cosf —sinf| |[ALy, (3-8)
AW4|  |cosf® sinf | |AL A, :
where:
R2R? R? R%, tan?(0)
ALy, =2 LW ALy, =2 3-9
Aat ’\/R%V—I—R%tanQH" Ay = ‘\/ +R2 tan2 6 (3-9)

Note that these formulas describe the effect for a vehicle where all corners are shaped equally
and the vehicle is orientated on the interval [0, 5] In this case, an elliptic shape is chosen
over a circular shape, as it describes the curvature of a vehicle’s corners more accurately.

Equations 3-8 and 3-9 allow for a decent description of the ‘rounded-corner effect’ for objects
with ellipse shaped corners. As such, this information can be used to compensate errors

that are caused by this effect. To do so, section 3-3-2 introduces a correction factor to the
least-squares problem central to the A20BB methodology.

3-2-4 Annotation errors

Lastly, vehicle annotations will differ from the ideal conditions due to annotation errors.
Annotations in general are an approximation of the location and shape of the actual vehicle.
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The fact that annotations are an approximation means that every type of annotation always
contains some degree of error. The magnitude of the error does depend on the type of
annotation. In this application, two types of annotations can be identified: (1) Annotations
performed manually by a human and (2) annotations resulting from an automatic detection
network.

Manual annotations provide the closest approximation of the actual location and contours of
vehicles in imagery. This type of annotation still contain inaccuracies due to human error, but
at this point in time no programmed annotations will yield better results. For that reason and
with a lack of a better alternative, manual annotations are considered as the ground-truth.
Unfortunately, this leaves little to say about the accuracy of this type of annotation. For now,
human annotation errors introduced in manually annotated bounding boxes are considered
to be small.

Detected annotations are annotations that result from an automatic detection network, de-
signed to locate a desired object in an image. Essentially, these networks attempt to detect
objects based on manually annotated examples. Therefore, detected annotations will never
be consistently more accurate than manual annotations. On top of that, detection networks
contain detection errors. The magnitude and shape of the error introduced by the network
depend on the training procedure, the training data and the network architecture.

3-2-5 Conclusion

To summarize, ABBs that describe a vehicle in low-altitude aerial imagery will deviate from
the ideal conditions stated in section 3-1. The perceived size of vehicles will vary between
subsequent observations due to lens-distortions, a change in perspective and annotation errors.
In addition, the ABB-OBB relationship will be slightly different from equations 3-2 as vehicles
are perceived as rounded-rectangles instead of regular rectangles.
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3-3 A20BB: From Axis-aligned to Oriented Bounding Boxes

Section 3-1 poses the idea that under ideal conditions a set of OBB annotations can be recon-
structed based on a set of ABB describing an object in multiple orientations. A20BB applies
this idea in practice, considering a set of ABB annotations describing a vehicle observed from
aerial perspective.

ABB annotations of vehicles will deviate from the ideal conditions as described in section
3-2. As a consequence, slight perturbations are introduced in the set of geometrical equations
describing the ABB-OBB relationship and the resulting equations will not contain a consistent
set of OBB dimensions that will fit to all observations.

Nonetheless, a set of OBB dimensions can be found that closely approximates the dimensions
of the actual OBB in every observation. A20BB aims to find these optimal OBB dimensions
and corresponding orientations by means of formulating and solving a non-linear least-squares
problem. This procedure requires an error function and a set of constraints that define the
problem and a non-linear least-squares solver that can find a solution. This section discusses
each of these aspects.

One of the main possible sources of error comprises the ‘rounded-corner effect’, introduced
by a mismatch between the perceived shape of vehicles and the assumed rectangular shape,
as described in sectin 3-2-3. To compensate for this effect, this section also introduces a
correction factor based on the approximation of this effect for objects with ellipse-shaped
corners.

Lastly, this section mentions the method’s limitations, along with possible follow-up steps to
overcome them.

3-3-1 Error functions and constraints

A20BB’s goal is to find a set of OBB parameters that closely resembles the true OBB in every
ABB. Essentially, a set of OBB dimensions and a set of orientations must be found for each
observation to which the error in equations 3-6 is smallest. These errors can be formulated
for every i-th ABB as:

Er. = Lapp, — Wopp(Rcosb; + sinb;)

. (3-10)
EWZ- = WABBi — WOBB(COS 0; + Rsin 97;)

where Er, and Eyy, represent the error in the ABB length and width calculations respectively.
In addition, based on what is previously discussed in section 3-1-3, a set of constraints can be
defined for the least-squares problem. To recall, the OBB parameters for every ABB comply
to the following constraints:

1. R>1;
2. 0 < Wopp <min(Lapp,, WaBB,);

3.0<0;, <m/2.
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Combining error functions 3-10 for all N-bounding boxes, the following set of equations can
be defined:

[ErL, ] [ LaBB,; | R 1 0 0 71 [cosb
Ew, Wags, 1 R sin 0,
EL2 LABBQ 0 R 1 0 COS 92
Ew, | = | WaBs, | — Woss 1 R sin 0 (3-11)
Epr, LBy 0 0 R 1 cos O
LEwy LWABBy ] L 1 R | |sinfy]

To find an optimal OBB that fits best in every ABB, these errors must be minimized for
all observations. These errors are used to define the non-linear least-squares problem. Note
that as the number of bounding boxes in the set of ABBs increases, equations 3-11 become
increasingly sparse.

3-3-2 Correction factor to the ‘rounded-corner effect’

As mentioned in section 3-2-3, one of the main possible sources of error comprises the
‘rounded-corner effect’ introduced by a mismatch between the perceived shape of vehicles
and the assumed rectangular shape. To allow for a method to reduce the impact of this effect
on the reconstruction performance, this section proposes a correction factor. For every i-th
bounding box observation, two correction factors, denoted as Cr, and Cyy, are formulated as:

R2 R? R? R%, tan? 0,
= 01 LW oo 91 LYW ) B
2 <COS \/R%V + R% tan? 6; St \/R%V + R% tan? 6; t oL
(3—12)
R? R? R? R?, tan?(6;)
Cw, = 0; L in 6; L : B
Wi (COS \/RI%V + R% tan? 6; +sin \/R‘%V + R% tan? 6; tow

The first two terms of these equations represent the ‘rounded-corner effect’ described by
equations 3-8 and 3-9. In addition, to accommodate compensation for a possible bias in the
bounding box annotations, two constants, By, and By, are introduced. The values for each
of these parameters can be approximated based on the size and shape of vehicles that appear
in real-world examples.

Combining the suggested correction factor with error functions 3-10, the error functions that
takes the ‘rounded-corner effect’ into account is formulated as:

Er, = Lapp, —Wopp(Rcosb; +sinb;) + Cr,

3-13
Ew, = Wapp, — Wopp(cosb; + Rsinb;) + Cy, ( )
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3-3-3 Non-linear least squares solver

The next step is to find a suitable solver that can find a solution to the non-linear least squares
problem described by equations 3-11. Note that finding the best solver for this problem is not
the main focus of this thesis. As such, the rate of convergence and the computational effort
required to find a solution are considered to be of lesser importance. Nonetheless, the solver
used in A20BB must at least be able to handle a sparse, bounded non-linear least squares
problem.

Based on these demands, an implementation of the Trust Region Reflective method [37] pro-
vided by the SciPy library [38] is selected. The Trust Region Reflective method iteratively
solves trust-region sub-problems augmented by a special diagonal quadratic term and with
trust-region shapes determined by the distance from the bounds and the direction of the gra-
dient. This method works robustly with a sparse, bound-constrained minimization problem.

The method minimizes the sum of squared residuals calculated by equation 3-11. In total,
the loss function minimized by the Trust Region Reflective method is:

N

L=> (E} +EW) (3-14)
=1

To reduce the amount of computational effort that is required to find an optimal solution,
the least-squares solver is provided with an initial estimate for the width of the OBB defined
as Wopp,. This value is based on lowest value of the ABB parameters:

Wosn, = min(Lapg,;, WaBB;) (3-15)

3-3-4 Limitation

Based on the non-linear least squares problem defined in the previous section, a set of optimal
OBBs can be reconstructed that should closely resemble the true OBBs in every observation.
Note, however, that the method has one main limitation: the orientation of all bounding boxes
™1, Additionally, as briefly

mentioned in section 3-1, this solution will always have a similar solutions in the other three
quadrants as illustrated in figure 3-4. Finding the correct version from these four possible
solution is impossible based on this least-squares solution. Additional post-processing steps
are required.

is constrained to lie in the first quadrant of € on the interval [0,

A20BB is intended to operate in a vehicle tracking pipeline. Therefore, determining the
correct solution could be performed during the tracking procedure. Nonetheless, it is worth
mentioning two methods that are fairly straightforward to implement due to the fact that
the set of ABBs describe a set of consecutive observations in the same scene. Firstly, the
direction of the bounding box displacement can be used as an initial estimate. Given a high
enough frame rate in the imagery, the displacement of the bounding box should be oriented
relatively aligned with the vehicle’s orientation. Picking the solution that is closest to the
bounding box displacement should result in the correct solution. Secondly, the true solution
can be found based on the vehicle’s location in the image. Due to the fact that the scenery
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remains the same for all images, a mask can be created to define what the orientation of every
vehicle roughly should be based on the vehicle’s position. The downside to this method is
that it is not applicable to locations where vehicles can move in multiple directions.

3-3-5 Conclusion

To summarize, A20BB applies the idea that OBBs can be extracted from ABBs describing
a single rectangular object in multiple orientations in practice. Due to annotation errors and
variations in the perceived size of vehicles between consecutive observations, a perfect OBB
that fits in all ABBs can not be found. Therefore, the goal of A20BB is to reconstruct
an optimal set of OBB dimensions and corresponding orientations that fits closest to every
observation.

A20BB finds this optimal set of dimensions by solving a non-linear least-squares problem
based on the ABB-OBB relationship for rectangular objects. To solve this, an out-of-the-box
implementation of the Trust-Region Reflective algorithm is implemented.

A20BB reconstructs all OBBs with an orientation in the first quadrant of # on the interval
[0, g] Note that similar solutions also exist in the remaining three quadrants. A20BB alone

does not provide enough information to find the correct version. However, this can be done
in post-processing steps.
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Chapter 4

Experiments

The newly proposed A20BB is designed to reconstruct a set of OBBs from a set of ABBs
describing a vehicle in multiple orientations. To do so, a least-squares optimization is formu-
lated making two assumptions. The more a given dataset deviates from these assumptions,
the less optimal the reconstructed OBBs will be. In section 3-2, it is argued that the in-
tended input data will indeed deviate from these assumptions. The experiments descibed
in this chapter investigate the impact of a deviation from these assumptions on A20BB’s
reconstruction performance.

A20BB is evaluated in a four-step evaluation, gradually moving from an ideal, theoretic
scenario to the method’s intended scenes of application. The first two steps focus on artificially
created data to provide a basis for analysing the impact of violations to each assumption on
the reconstruction performance. The latter two experiments focus on assessing the method’s
reconstruction performance in its intended applications. Each step consists of an experiment
evaluating the reconstruction performance on a dataset recreating the proper scenario.

The chapter starts by describing the datasets and evaluation metrics used in the experiments.
Subsequently, the setup and results of each evaluation step are explained, formulating an
answer to the research questions stated in chapter 1.
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4-1 Data acquisition and Metrics

This section describes the methods of acquisition and the characteristics of the collected and
created datasets used during the experiments. The first experiment makes use of synthetically
generated data, whereas the other experiments are based on in-house collected data. The
parameters used for generating the synthetic dataset are based on what is seen in the in-
house collected data. To understand the magnitude of the parameters used for the synthetic
dataset, the in-house collected data acquisition and the properties of vehicles seen in the
dataset are discussed first.

The second and third sub question work with manually annotated and synthetically generated
bounding boxes, whereas the fourth question involves the evaluation of detected ABBs. To
obtain the detected ABBs, an out-of-the-box implementation of Yolov3 [26] is used. The
training procedure for this network also briefly described in this section.

Lastly, this section introduces the four metrics used for evaluating the research questions.

4-1-1 In-house collected datasets

For the purpose of evaluating A20BB’s performance on real-world examples, an in-house
collected dataset is created. This dataset consists of imagery recorded by a Mavic 2 Zoom
drone in 4K resolution at an altitude of 100 meters above a roundabout. In total, two
sequences are collected, each counting 400 images at 5 fps. Both sequences cover the same
scene under different weather conditions. The imagery is subsequently processed in a fashion
similar to the general vehicle tracking pipeline described in section 2-1.

Image preprocessing

The imagery is rectified using Zhang’s calibration method [36] to compensate for lens dis-
tortions and the image sequences are compensated using a stabilization filter described in
appendix A. This filter is a modified version of the pipeline described in [39]. As a result, the
imagery is considered to be taken from an fixed position. Geo-referencing is not relevant in
this thesis and is therefore omitted. ‘Vehicle detections’ are in this case created both through
manual annotation and as a result of the in-house trained YOLOv3 network.

Vehicle detection: Manual annotations

The imagery is annotated manually in two formats: ABBs and OBBs. An example of an
annotated image is depicted in figure 4-1. It illustrates an image containing vehicles manually
annotated in ABB (green boxes) and OBB (red boxes) format. The blue circles indicate the
maximum matching radius used in the tracking procedure explained later in this section.

The A20BB methodology assumes the vehicle to be rectangular in shape. Therefore, the
manually annotated datasets only contain rigid-body vehicles. For vehicles with trailers, only
the leading vehicle is annotated.

All 800 images are annotated in ABB format using the OpenLabeling tool [40]. The purpose
of this type of annotation is to serve as input for the method’s evaluation, to serve as source
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Figure 4-1: An example of annotations in OBB (red boxes) and ABB format (green boxes). The
image also depicts a matching radius (blue circle) of 70 pixels around each vehicle for tracking
purposes.

for investigating the validity of the aforementioned assumptions and to serve as training data
for the YOLOv3 detection network. In total, the set of ABB annotations consists of 14.860
vehicle observations, describing the movement of 126 vehicle instances.

In addition, every 4th image of the first image sequence is annotated in OBB format using the
labellmg_OBB tool [41]. These OBBs are used for investigating the assumptions as well and
it serve as ground-truth during the method’s evaluation in the latter two experiments. The
set of OBB annotations describes a total of 2296 vehicle observations in 100 images covering
63 vehicle instances.

Vehicle detection: AOBBs

After obtaining the OBBs, a third dataset is created synthetically by generating axis-aligned
bounding boxes around the OBB annotations using equations 3-2. These bounding boxes are
again referred to as AOBBs.

Vehicle detection: YOLO Detections

A set of detections is created to evaluate A20BB’s performance as an extension to existing
detection networks. Detections are created by an in-house trained out-of-the-box implemen-
tation of the YOLOv3 network [26], performing detections in ABB format.

The detection network is trained in the Darknet neural network framework [42]. For the
training procedure, 350 images, 175 in each sequence, are used to train and evaluate the
network in 10.000 epochs, using a batch size of 64 and a learning rate of 0.001. The optimizer
used in this procedure is the standardly implemented Stochastic Gradient Decent (SGD).
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Vehicle tracking

A20BB works with a sequence of ABBs describing multiple observations. Therefore, to track
annotations through the image sequence, a Nearest-Neighbour tracking algorithm is applied.
The maximum displacement of a vehicle between consecutive image is determined by the
frame rate of the image sequence. The higher the frame rate of the video, the smaller the
distance between consecutive observations of a one vehicle will be.

Given a high enough frame rate, the displacement will be small enough to re-identify a specific
vehicle instance in the next image. For a bounding box belonging to a certain vehicle instance,
the closest bounding box in the next image will belong to the same instance. This procedure
only works when all vehicle observations are annotated. For manually annotated datasets,
this is usually the case. However, for datasets resulting from a detection network, some
observations may be missed or falsely annotated. As a consequence, some vehicle observations
will be assigned to incorrect vehicle instances and some vehicle instances will be divided in
multiple smaller instances.

To minimize the influence of faulty detections, a maximum matching radius is introduced
based on the maximum displacement of a vehicle between consecutive images. Only vehicles
within that radius are considered in the tracking procedure. For example, given a vehicle
travelling at 60 km/h (17 m/s) in imagery with a frame rate of 5 fps, the vehicle displacement
is equal to 3.4m. In the recorded dataset, this translates to a displacement of 68 pixels.
Assuming all observed vehicles to travel at velocities under 60 km/h, which is reasonable
around a roundabout, the maximum displacement of bounding boxes of the same vehicle
instance in consecutive frames must be lower than 68 pixels. Figure 4-1 illustrates a matching
radius of 70 pixels (depicted by the blue circles around each vehicle observation).

Missing observations in vehicle instances will cut that instance in multiple smaller instances
with a fewer observations. As long as the number of observations and the variance in orien-
tation in the resulting set are large enough, this will not introduce any problems.

The tracking procedure is used to obtain vehicle instances for the manually annotated ABBs
and the YOLO detections. For the annotated OBBs, the displacement of vehicles between
subsequent images is too large for the Nearest-Neighbour approach. Therefore, the OBBs are
matched per frame to the ABB vehicle instances.

Dataset characteristics

The dimensions of the observed vehicles, described by the dimensions of the annotated OBBs,
are used to generate a synthetic dataset. The shapes of all vehicle observations are illustrated
in figure 4-2. As previously mentioned, OBB dimensions are usually expressed in width and
height. However, to avoid confusion with vehicle shapes, the OBB dimensions are expressed
in length and width.

Figure 4-2 shows that vehicle instances observed in the OBB dataset are similar in width, but
vary in length. The majority of the pixel values for the width lie between 40 and 60, whereas
the length varies between 65 and 155. The diversity in vehicle shapes can also be identified
when observing the vehicle aspect ratios, ranging from 1.5 to 3.1.
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Vehicle dimensions
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Figure 4-2: An overview of vehicle dimensions in pixel values (top) and vehicle aspect ratios
(bottom). Blue and red describe the OBB length and width respectively and orange depicts the
aspect ratio.

A20BB requires the vehicle to change orientation in the set of ABBs. To ensure this in the
dataset, only vehicle sequences with an angular variance above 5 © are considered. This leaves
a total of 47 vehicle sequences in the OBB annotation set for further evaluation.

4-1-2 Synthetic data generation

To validate the A20BB’s working principle in a scenario where all of its required assumptions
hold, a set of synthetically generated ABBs is created. These assumptions state that a set of
OBBs describing an ideal vehicle should consist of multiple rectangles, each of the same size
but in different orientations. Based on these rectangles, a set of ABBs can be constructed
using equations 3-2.

Recreating this scenario synthetically is done by generating a specific number of rectangles
having a predefined length and width. These rectangles are rotated by an angle taken from
a specific distribution, creating a set of OBBs. Subsequently, for each OBB, its surrounding
ABB is calculated using equations 3-2. Note that the resulting set of bounding boxes is
different to the previously mentioned set of AOBBs.

The dimensions of the rectangles are based on vehicle dimensions seen in the in-house collected
dataset (depicted in figure 4-2). These vehicles vary much in length (65 < L < 160), but less
in width (W =~ 50). For that reason, three different sets of dimensions are used, covering a
varying length (L = 75,L = 100, L = 150) but a constant width (/W = 50). Additionally,
to mimic performance at lower and higher resolutions, these dimensions are also halved and
doubled.

Master of Science Thesis L.L. Pijnacker Hordijk



34 Experiments

Altogether, the following shapes are considered:

e 75 x50 o 37.5x25 e 150 x 100
e 100 x 50 e 50 x 25 e 200 x 100
e 150 x 50 o 75 x 25 e 300 x 100

The number of rectangles in each set is based on the number of observations per vehicle
instance seen in the in-house collected dataset. In the set of manually annotated OBBs,
the number of observations per vehicle vary between 5 and 100. Therefore, to simulate this
synthetically, sets of 5, 25, 50 and 100 rectangles are generated.

The angles that describe the rectangle’s orientation are taken from a distribution that de-
scribes the manoeuvre that is simulated. At the roundabout depicted in figure 4-1, three
types of manoeuvres can be distinguished, assuming a vehicle moving through the scene: a
vehicle making one, two or three turns, changing its orientation for the duration of the turn,
but maintaining its orientation outside.

The hardest of these manoeuvres to reconstruct is a single-turn manoeuvre as it contains the
smallest variation of the vehicle’s orientation. In addition, a two- and three-turn manoeu-
vre essentially comprise multiple single-turn manoeuvres. For that reason, the analysis is
restricted to a single-turn manoeuvre is simulated in this dataset. Also note that the syn-
thetic dataset does not cover stationary vehicles or vehicles moving in a straight line as their
orientation will not change over time.

To simulate a single-turn manoeuvre, an angular distribution is generated comprising an
entering section, a section describing the turn itself, and a departing section. The starting and
departing sections each consist of a fixed value randomly generated over the interval [0, 27],
representing a vehicle in all possible orientations. The turn itself describes an orientation
linearly increasing or decreasing from the entering to the departing orientation.

In total, the synthetic dataset covers 36 different scenarios. Each of these scenarios is ran
1000 times.

4-1-3 Metrics

This section describes the four metrics used to evaluate A20BB’s reconstruction performance.
These metrics differ from performance metrics conventionally used for object detection net-
works. Object detection networks are commonly evaluated using methods that assess cor-
rectness of detection rather than observing their accuracy. However, in the scope of A20BB,
these detections are already provided, rendering the testing of the correctness of detections ir-
relevant. Instead, this research reverts to more elementary metrics that describe the accuracy
of the reconstructed OBBs in more detail.

The first three metrics are based on three parameters that define an OBB in 2D. In general,
an OBB in 2D is defined by five parameters: the bounding box location, defined by its centre
coordinates (x,y), its length and width (L, W) and its orientation (¢). However, as described
in section 3-1-1, the location of a bounding box remains unchanged by A20BB. Thus, the
accuracy of the location of the reconstructed OBBs depends fully on the accuracy of the
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location of the ABBs. For that reason, only the latter three parameters (L, W and 6) are
considered. For all three parameters, the error of the predicted dimensions with respect to
the ground-truth is considered. To allow for a comparison of vehicles of multiple sizes, the
length and width are evaluated relative to the value of the ground truth.

Due to a deviation from conventionally used performance metrics, benchmarking the proposed
methodology proves to be difficult. To still allow for a basic comparison, the Intersection over
Union (IoU) is also evaluated. This metric describes the ratio of the intersection between
the reconstructed OBB (OBBpg) with its ground-truth (OBBgr) over their union, calculated
using the the following equation:

. OBBrNOBBgr

ToU =
°Y = OBBRrUOBBar

(4-1)

Note that section 3-3-4 mentions the limitation of A20BB to find one of 4 possible angles.
Selecting the correct angle from these options is not part of this approach. Therefore, for the
evaluation of the IoU and the angle, the solution resulting in the best IoU and the smallest
angular error is taken from the four possible options.

Lastly,

For every evaluation metric, the value is taken as an average over all observations belonging
to one vehicle instance.

Summarized, the metrics used for the evaluation are:

o E;, Ey: the average relative error in the OBB length and width to evaluate the vehicle
dimension reconstruction;

e Fjy: the average error of the vehicle orientation to evaluate the orientation reconstruc-
tion;

e JoU: the average Intersection over Union of the vehicle with its ground-truth to evaluate
the contour reconstruction.
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4-2 Experiment 1: Performance in the ideal case

This section describes the setup and results of the first experiment. In this experiment,
A20BB’s performance is evaluated on a dataset recreating a scenario where the assumptions
made in the method hold. To create this scenario, synthetic ABBs are generated using the
procedure described in 4-1-2.

The main goal of this question is to answer the following research question:

“Can OBBs be reconstructed from ABBs that describe multiple observations of a rectangular
vehicle with constant dimensions?”

As suggested in section 3-1, for a set of ABBs that describe a rectangular vehicle with constant
dimensions, a set of equations can be constructed that describe the geometrical relationship.
This set of equations will have a unique solution given that the orientation of all OBBs lies
on the interval [0, g] and an aspect ratio for which R > 1. Approximating this reconstruction

using a non-linear least squares optimization should be able to find the correct solution for
every set of bounding boxes containing two or more observations. For that reason, the errors
for are expected to be negligible for each scenario covered in the synthetic dataset and all IoU
values are expected to be equal to 1.

Results using 5 observations of vehicle: 75.0x25.0
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Figure 4-3: An example of a reconstructed bounding box based on synthetically generated data.
This dataset mimics a vehicle of size 75x25, observed five times. The red line shows the original
OBB, green depicts the constructed ABB and the blue-dotted line illustrates the reconstructed
OBB.

L.L. Pijnacker Hordijk Master of Science Thesis



4-2 Experiment 1: Performance in the ideal case 37

Vehicle size: 75x25
Observations ‘ Average Ey, [pix] ‘ Average Eyw [pix] ‘ Average Ep[rad] ‘ Average IoU

5 3.79x10~16 7.67x10716 —8.90x10~17 1
25 1.32x10716 2.13x10715 —7.47x10717 1
50 7.58x10~17 3.15x10~1° —6.91x10~17 1
100 5.68x10~17 3.82x101° —6.96x10~17 1

Table 4-1: Results of the reconstruction for a vehicle with dimensions 75x25 performing a single
turn. The error is described as the average error over all 1000 vehicle sequences per scenario.
Note that the errors in this experiment are in the order of magnitude of numeric precision errors.

4-2-1 A20BB'’s performance

A20BB’s reconstruction performance is evaluated using the synthetically generated dataset.
In total, 36 different scenarios have been evaluated, covering nine vehicle sizes and four
different numbers of observations.

Figure 4-3 illustrates an example of a reconstruction based on a vehicle observed five times
making a single turn. The vehicle’s length and width are equal to 75 and 25 respectively. The
figure illustrates that the reconstruction seems to overlap perfectly with its ground-truth.

To provide a more accurate analysis and a numerical performance indication, the method’s
evaluation metrics are illustrated table 4-1. The table depicts the results for a vehicle of size
75x25 pixels the different numbers of observations. Note that for this experiment the errors
are described in pixel values, since all vehicles have the same size. For all four scenarios
covered in the table, the average reconstruction errors in length, width and orientation are in
the order of magnitude of numeric precision errors and the IoU is equal to 1. Based on these
values, the conclusion can be drawn that for the simulated scenarios covering a vehicle of size
75x25 pixels, the reconstruction is nearly perfect. This adheres to what was expected.

Performing the reconstruction on datasets covering the remaining 32 scenarios yield similar
results. The error values for every parameter in each scenario are in the order of magnitude
of numeric precision errors.

4-2-2 Conclusion

To summarize, this experiment analyses A20BB’s performance on a dataset where the as-
sumptions made in A20BB’s approach hold to provide proof for the method’s working princi-
ple and to validate the implementation. A synthetic dataset is constructed based on in-house
collected examples using the procedure described in section 4-1-2.

Based on the theoretical analysis, it is expected that a unique solution can be found for every
set of bounding boxes containing two or more vehicle observations For every vehicle instance
simulated in the synthetic dataset, the set geometrical of equations has an optimal solution
that is closely approximated by the least-squares implementation. These results would suggest
that the optimizer is implemented correctly. In addition, the results suggest that for an ideal
scenario, where the required assumptions hold, OBBs can indeed be reconstructed using a set

of ABBs using A20BB.
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4-3 Experiment 2: Reconstruction for AOBBs with changing vehi-
cle dimensions

This section describes the setup and results of the second experiment. A20BB’s approach
makes the assumption that the perceived size of vehicles in low-altitude aerial imagery remains
constant as a vehicle moves through the captured scene. However, as argued in sections 3-2-4
and 3-2-2, the perceived size of vehicles will vary due to lens distortions, due to a change
of perspective between the camera and the vehicle and due to inaccuracies in individual
annotations.

While collecting the imagery, lens distortions are have already been compensated. However,
the change in perspective and annotations errors will still affect how a vehicle is perceived.
To find out how both factors affect the perceived vehicle size and, ultimately, how they affect
A20BB’s OBB reconstruction performance, the goal of this experiment is to answer the fol-
lowing research question:

“To what extent can OBBs with varying dimensions be reconstructed from a set of ABBs
generated around OBBs using geometry?”

An answer to this question is formulated in three steps. The first step assesses how the
perception of a vehicle size changes between subsequent observations and argues how this
effect can be minimized. The second step then evaluates the impact of a change in OBB
dimensions on the reconstruction performance by applying A20BB to the set of AOBBs.
Initially, the reconstruction performance without any corrections to the ‘rounded-corner effect’
is evaluated. After that, the correction factor introduced in section 3-3-2 is tested to see how
the quality of the reconstructions improves.

4-3-1 OBB dimension analysis

This section describes the analysis performed to identify the magnitude and shape of a change
in the perceived size of vehicles in low-altitude UAV imagery. This analysis is performed based
on the set of manually annotated OBBs. The dimensions of OBB annotations form a fair rep-
resentation of the shape of a vehicle observed from top-down. Therefore, an analysis of OBB
dimensions should in turn be a fair approximation of how the observed vehicle dimensions
change.

Overall dimensional change

As described in section 4-1-1, the set of OBBs is grouped into vehicle instances. Figure 4-4
illustrates the change in OBB length and width for every vehicle instance. It depicts the
dimensions of all observations for each vehicle instance expressed as the difference between
the dimension of that observation and the average dimensions of that instance. The figure
illustrates that when observing a vehicle over the whole scene, its dimensions vary significantly.

For most of the observed vehicle instances, the width shows a highly volatile behaviour around
the mean value. This volatility is likely caused by a high sensitivity to inaccurate annotations
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Figure 4-4: An illustration of the change in OBB dimensions for all vehicle instances over the
course of their observations.

due to the relatively low magnitude of this dimension. To demonstrate, a (not unlikely)
annotation error of 3 pixels already has a significant impact on the observed width (~ 50).

The change in observed length exhibits a similar volatile behaviour. However, the figure
also illustrates a more gradual change. The length of the bounding boxes appears to de-
crease gradually over the first observations of each vehicle and seems to increase in the last
observations.

The gradual change in length is likely to be caused by a change in perspective between the
vehicle and the camera. As described in section 3-2-2, as a vehicle approaches the image centre,
the perceived size of the vehicle decreases. In 3D, this effect depends on three parameters:
(1) the vehicle’s distance to the image centre, (2) its orientation with respect to the image
centre and (3) the shape of the vehicle. The influence of the vehicle’s distance to the image
centre and the shape of the occluded and included sides on the vehicle’s perceived size can
both be identified in the recorded data.

Note that the influence of the perspective transformation also depends on the altitude of
the drone. The higher the altitude of the drone, the smaller the influence of the perspective
transformation will be. However, since all annotations are obtained from the same dataset,
recorded at the same altitude, the influence of this parameter can not be analysed.

Vehicle's distance to the image centre

A dependency of the perspective transformation on the vehicle’s distance to the image cen-
tre can best be illustrated by observing the OBB dimensions in parts of the image where
the vehicle’s orientation with respect to the image centre remains constant. To recall from
section 3-2-2; vehicle’s orientation with respect to the image centre affects how the change
in the observed vehicle size is distributed over the length and width of the vehicle. Keeping
this orientation relatively constant will also keep this distribution constant and allows clear
identification of the dependency of the perspective transformation on the vehicle’s distance
to the image centre.

By keeping the vehicle’s orientation with respect to the image centre constant, the influence of
the perspective tranformation can be approximated as a 2D problem, as described in section
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3-2-2 and depicted in figure 3-6. Section 3-2-2 suggests that in this case, the influence of the
perspective transformation should linearly depend on a vehicle’s distance to the image centre.

Figure 4-5: An illustration of bottom-right and bottom-left exit in the in-house captured imagery.

To verify this statement, the OBB dimensions of vehicles appearing in the bottom-right and
bottom-left exit of the roundabout (figure 4-5) are examined. Most vehicles appearing in these
regions move in a relatively straight line, aligned with their displacement with respect to the
centre of the image, and are observed a sufficient number of times to reduce the influence
noise introduced by annotation errors. Since the vehicles are aligned with their displacement
to the image centre, the change in perspective will mainly affect the perceived length.
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Figure 4-6: The dependency of the change in observed vehicle length (AL) on the distance
vehicle's distance to the image center. The left and right image illustrate vehicles observed in the
bottom-left and bottom-right of the image respectively
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The AL of OBBs for instances appearing more than five times is depicted in figure 4-6. The
figure shows the difference in length between individual OBBs of an instance with respect to
the instance’s average length as a function of the OBBs distance to the image centre.

Though some instances contain noise due to annotation errors, all vehicles do show a positive
correlation between AL and the distance to the image centre. And, as previously suggested,
for most vehicle instances, the relationship even appears to be linear.

Shape of the vehicle

The dependency of the perspective transformation on the ve-

hicle shape can be illustrated by comparing vehicles based on

their shape and size. To do so, the sets of OBB annotation are

divided in two categories: ‘Vans’ and ‘Passenger vehicles’. The Hy I I H
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category ‘Vans’ also includes buses and trucks.

The shape of vehicles affects the perceived dimensions depend- H; i'ﬂi H,
ing on the height of sides that start to appear or disappear
when the perspective changes. The height of these sides are

illustrated for basic examples of both categories in 4-7. The Figure 4-7: Length intersec-
height of the sides for the more box-shaped Van is relatively tion for a van (top) and a regu-
large compared to the more complex-shaped Passenger vehicle. !ar passenger Vehic'_e (bottom),
Therefore, the influence of the perspective transformation for illustrating the height of the

. ides that affect th ti
Vans should be larger than for the passenger vehicles. sides that atiect the perspective
transformation.

To illustrate the influence of the shape in the data, the change
in the annotated OBB length is depicted for five Vans and for
five Passenger vehicles in figure 4-8
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Figure 4-8: Change in the observed OBB length per vehicle instance compared to the average
length of that vehicle instance. The left column depicts the change for five Vans and the right
column for five Passenger Vehicles.

Figure 4-8 clearly illustrates a large difference in the change in observed length between both
categories. For the majority of the observed vans and trucks, the length changes up to 20
pixels from the average value, whereas for most passenger vehicles, the difference is no more
than 10 pixels. The difference in magnitude for the change in the perceived size between
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both categories indicates that the shape of the vehicle indeed plays an important role in
the perspective transformation. For vans, the impact of the perspective transformation is
fairly large, while for passenger vehicles it is relatively low. Therefore, A20BB’s overall
reconstruction performance is expected to be much better for passenger vehicles compared to
vans.

Interestingly, figure 4-8 also illustrates the negative correlation between the perceived vehicle
length and the vehicle’s distance to the image centre for Vans. For example, the yellow line
describes a truck approaching and receding from the image centre, whereas the green, purple
and red line describe a van only approaching the image centre. These relationships can be
easily identified, since vans and trucks are box-shaped. The relationship is less strong for
passenger vehicles.

Conclusion

To summarize, the perceived size of OBB annotations describing a vehicle in low-altitude
aerial imagery changes as the vehicle moves through the scene. In both dimensions, the
influence of incorrect annotations can be identified in the form of noise. For the length, a
more gradual change can also be seen. This change is likely to be caused by a perspective
tranformation between the vehicle and the camera.

The influence of the perspective transformation can be identified by viewing the dimensions
of vehicles over straight road sections aligned with its displacement from the image centre.
Over these sections, the increase in length appears to be linear with the distance of vehicles
to the image centre. In addition, the magnitude of the impact made by the perspective
transformation depends on the shape of vehicles. Vans and trucks are box-shaped and will
therefore be affected more significantly than more complex-shaped passenger vehicles, where
the height of the ‘top-down occluded’ side is lower.

Using this information, the impact of the perspective transformation can be minimized by
considering only observations that are relatively equidistant from the origin. Also, based on
the linear relationship, observations can be inter- and extrapolated over road sections that
are aligned with the vehicle’s displacement from the image centre.

4-3-2 Reconstruction performance with changing vehicle dimensions

This section describes the analysis performed to quantify the impact of a change in observed
vehicle size on A20BB’s reconstruction performance. To allow for a well-defined analysis, the
method is applied to the sythetically constructed AOBBs, creating a scenario where only the
second assumption is enforced to hold.

Comparing A20BBs reconstructions for AOBBs to the results from experiment 1 (section 4-2)
will indicate the impact of a change in OBB dimensions on the reconstruction performance.
The first experiment (section 4-2-1) illustrates that for an ideal scenario the reconstructions
are accurate. Errors that occur are in the order of magnitude of numeric precision errors.
Therefore, any error found A20BB’s reconstructions based on AOBBs should be the result
of changing OBB dimensions.
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An example of the OBBs reconstructed from AOBBs is depicted in figure 4-9. This figure
depicts the ground-truth OBBs (red), the generated AOBBs (green) and the reconstructed
OBBs (blue). To allow for an interpretable image, only the centre of the image is depicted.
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Figure 4-9: An example image of the reconstruction performance based on ABBs fitted around
manually annotated OBBs. Red boxes depict the ground-truth OBBs, green illustrate the con-
structed ABBs and blue shows the reconstructed OBBs. The depicted image is part of the in-house
collected imagery.

For the majority of the reconstructed vehicles, the OBBs overlap quite well with the ground-
truth. It is interesting to note the reconstructions for vehicles 34 (bottom-left), 33, 36, 37 and
41 (bottom-right). These vehicles are approximated to be thicker but shorter compared to
their ground-truth contours. Each of these vehicles spends time waiting to enter the round-
about. As a consequence, a vehicle is perceived multiple times at the same location. The
perceived size at that location occurs multiple times in the vehicle sequence possibly intro-
ducing a bias. In addition, in the annotation process vehicle observations that do not move
are copied to the next frame. If the initial annotation at that location contains annotation
errors, these errors are also copied to the other observations at that location.

Another result to note is the reconstruction for vehicle 33. This vehicle relatively has small
vehicle parameters. Consequently, annotation errors will have a larger impact on the observed
vehicle size and thus on the reconstruction performance. In this case, the annotated OBB is
slightly shorter than the actual vehicle. As a result, the reconstructed orientation is slightly
off.

A more accurate analysis can be made by observing the evaluation metrics for the AOBB
reconstructions. Figure 4-10 depicts the average relative errors in length, width, the aver-
age error in orientation and the average IoU for each vehicle instance. First off, the figure
shows that a change in the observed vehicle size does have an impact on the reconstruction
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performance. It illustrates that the overall reconstructions contain a very small bias towards
shorter but thicker vehicles. This is likely caused by the effect that occurs for vehicles 33, 34,
36, 37 and 41, described earlier.

In addition, the impact of a change in OBB dimensions is relatively larger for the width
compared to the length. The magnitude of the width is smaller, therefore the relative impact
of both the change in perspective and annotation errors is larger.

Consequently, the vehicles are reconstructed having an average orientation that slightly devi-
ates from the actual orientation. Nonetheless, the majority of the reconstructions are accurate
within 2.5°. As a result, the reconstructed IoU is above 85% for the majority of reconstruc-
tions.
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Figure 4-10: Performance metrics for AOBBs. The figure displays histograms of the average
error in length, width and orientation and the average loU per vehicle instance.

4-3-3 Reducing impact of the perspective transformation

In essence, A20BB’s reconstruction performance drops significantly when considering vehi-
cles with a changing object size. However, the analysis performed in section 4-3-1 suggests
that a change in observed vehicle size can be reduced significantly by considering only a se-
lection of the observations. By filtering out observations that are equidistant to the image
centre, the overall influence of the perspective transformation can be minimized, improving
the reconstruction performance.

In addition, the reconstructions in the previous section also suggest that a bias might be
introduced by a vehicle that is observed at the same location multiple times. The specific
size of vehicles at that location along with possible annotation errors introduce a bias in the
optimization. By filtering out these ‘duplicates’, this bias can also be minimized.
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Figure 4-11: The part of the image describing the actual roundabout.

To test these suggestions, A20BB is applied to sets of AOBBs only describing observations
that appear on the actual roundabout. Vehicles observed in this region of the image will not
only be relatively equidistant from the image centre, but will mostly be non-stationary. An
illustration of the part of the image that captures the actual roundabout is depicted in figure
4-11.

The performance metrics for A20BB’s reconstructions only using observations on the actual
roundabout are depicted in figure 4-12. Comparing these results to the reconstructions using
all observations described in figure 4-10, illustrates a strong improvement. The error in the
length is almost completely compensated and the error in the width is significantly reduced.
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Figure 4-12: Performance metrics for AOBBs observed on the actual roundabout. The figure
displays histograms of the average error in length, width and orientation and the average loU per
vehicle instance.
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Vehicle observations omitted in the selected sequences are mostly affected in the observed
length. Therefore, the length approximation improves more significantly than the estimation
of the width. As a consequence of both improvements, the orientation approximation is also
more accurate. All orientations are estimated within a range of 2°. In addition, the average
IoU for all reconstructions is 95%. In literature, this is considered to be near-perfect [21].
Therefore, it is fair to say that using only observations in the middle of the image significantly
reduces OBBs can be accurately reconstructed from AOBBs.

4-3-4 Conclusion

To summarize, this experiment was focussed on answering the following research question:
“To what extent can OBBs with varying dimensions be reconstructed from a set of ABBs
generated around OBBs using geometry?”

An answer to this question is formulated by analysing the size of OBBs describing observations
of vehicles in low-altitude aerial imagery. These OBBs indicate that the perceived size of
vehicles change as they move through the scene due to errors in annotations and a perspective
transformation between the camera and the vehicle.

The perspective transformation depends on three parameters, two of which can be identified
in the data: (1) the vehicle’s distance to the image centre and (2) the shape and height of
the vehicle. In-house annotated data show a linear increase of the perceived size of vehicles
moving in a direction relatively aligned with the vehicle’s displacement from the image centre.
In addition, a comparison between observations of Vans and regular passenger vehicles indicate
a dependency of the magnitude of the perspective transformation on the shape of the vehicle.

The change in dimensions induced by the perspective transformation can be minimized by
considering observations relatively equidistant to the image centre and by filtering out multiple
observations of a single vehicle at the same location. Using a selection of the OBBs, all
observed at the actual roundabout, the length can be reconstructed within 2%, the width
within 7% and orientation within an error of 2 °, resulting in an average IoU of 95%.

Due to the identified linearity, it should be possible to inter- and extrapolate vehicle sizes
over road sections that are relatively aligned with their displacement from the image centre.
Additionally, including the shape of the model and the orientation with respect to the vehicle’s
displacement in approximating the effect of the perspective transformations might further
improve the results.
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4-4 Experiment 3: Reconstruction for manually annotated ABBs

This section describes the setup and results of the third experiment. This experiment is the
first of two experiments investigating the impact of a difference between ABBs and AOBBs
on the reconstruction performance. The focus of this experiment lies on evaluating manually
annotated ABBs.

A20BB’s approach states that the given set of ABBs should be constructable from a target
set of OBBs using geometry. Essentially, this holds if the objects described by the bounding
boxes are perfectly rectangular and the ABBs coincide AOBBs. However, this is generally
not the case for vehicles perceived from aerial perspective. As a consequence of the previously
described perspective transformation, the ‘rounded-corner effect’(section 3-2-3 and errors that
occur in the annotation process, a misfit between manually annotated ABBs and AOBBs is
introduced. The purpose of this experiment is to assess how this misfit affects the recon-
struction performance and to find out what choices can be made to reduce its impact on the
quality of the reconstructions.

The influence of the perspective transformation is addressed in the previous experiment (sec-
tion 4-3). Therefore, the focus in this experiment lies on assessing the influences of rounded
corners and annotation errors. In addition, results of this experiment will allow a fair judge-
ment of the method’s applicability as a means to extend a set of existing manually annotated
ABBs to OBBs. Combining both purposes, the research question of this experiment is:

“To what extent can OBBs be reconstructed from manually annotated ABBs?”

An answer to this question is formulated in three steps, similarly to the approach used in
section 4-3. First, an analysis is performed on the shape of the misfit between manually
annotated ABBs and AOBBs. Secondly, the impact of the misfit on A20BB’s reconstruction
performance is evaluated by comparing the results using manually annotated ABBs to results
of the previous experiment. Subsequently, the correction factor introduced in section 3-3-2 is
applied and evaluated to see if the impact of the ‘rounded-corner effect’ can be mitigated.

4-4-1 ABB-AOBB difference for manual annotations

This section describes the analysis performed to identify the shape and magnitude of the
mismatch between manually annotated ABBs and AOBBs. To reduce the impact of the per-
spective transformation, only bounding boxes describing vehicles on the actual roundabout,
depicted in figure 4-11, are considered.

A histogram of the difference between the length and width of ABBs with respect to corre-
sponding AOBBs is depicted in figure 4-13. Note that the errors in the length and width of
the ABBs are illustrated respectively as F, and E, to differentiate these error from the errors
used for the OBB predictions.

This figure clearly illustrates that there is indeed a significant mismatch between both bound-
ing boxes. The average manually annotated ABBs is shorter and/or narrower compared to
AOBBs and this is in line from what can be expected based on the ‘rounded-corner effect’
described in section 3-2-3 and illustrated in figure 3-8a. Basically, due to the ‘rounded-corner
effect’ ABBs will always be equal or smaller compared to AOBBs depending on the orientation
of the vehicle.
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Figure 4-13: Errors in the dimensions of annotated ABBs and AOBBs

In addition to the negative bias for both dimensions, figure 4-13 also exhibits a significant
amount of variance for both errors. For some vehicles, the manually annotated bounding
boxes are even longer and/or wider compared to the AOBBs in contrast to what can be
expected from the ‘rounded-corner effect’.

To provide more insight into why this variance and these larger manually annotated ABBs
occur, the error between both bounding boxes is plotted as a function of the vehicle’s orien-
tation in figure 4-14. In addition, to illustrate that the variance of the error corresponds to
the variance between the errors prescribed by the ‘rounded-corner effect’ for corners with dif-
ferent radii, the figure also depicts the errors predicted for three vehicles differently rounded
vehicles having ellipse-shaped corners with different radii. To recall from section 3-2-3, the
ABB-AOBB difference predicted by the ‘rounded-corner effect’ can be approximated for ve-
hicles oriented over an interval of [0,7/2] using equations 3-8 and 3-9. In figure 4-14, the
radii used for the corners of the vehicles are: (Rp, Rw = 2 pix), (Rr, Rw = 5 pix) and
(R, Ry = 10 pix).

Figure 4-14 clearly illustrates a dependency of the difference between both bounding boxes
on the orientation of the vehicle. The closer an orientation approaches an angle of +45°, the
smaller the annotated ABB becomes compared to the AOBB. Similarly, as the orientation
approaches an angle of 0° or £90°, ABB becomes relatively larger.

The shape of the ABB-AOBB difference appears to be similar to the shape of the errors
predicted by the ‘rounded-corner effect’. The figure exhibits a fairly large variance for the
difference in dimension for vehicles in the same orientation, which appears to be similar to
the difference between the three predicted vehicle shapes. Therefore, the variance observed
in the data could be explained by the fact that the dataset contains vehicles with differently
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Figure 4-14: Error between ABBs and AOBBs as a function of the ground-truth orientation.
The lines in both figures depicts the ‘rounded-corner effect’ for three differently shaped vehicles,
calculated using equations 3-8 and 3-9. The radii of the ellipse-shaped corners are: (Rp, Ry = 2),
(RL,RW = 5) and (RL,RW = 10)

shaped corners.

However, what is interesting about figure 4-14 is that for almost all observations having an
orientation close to 0°, the annotated ABB is larger than the corresponding AOBB. These
results contradict what is expected from the ‘rounded-corner effect’.

To illustrate what causes this problem, three examples of vehicles oriented between —5° and 5°
are depicted in figure 4-15. The figures show that some green bounding boxes, illustrating the
manually annotated ABBs, are indeed larger compared to the blue bounding boxes, depicting
the AOBBs.

Figure 4-15: Three examples depicting vehicles oriented between —5° and 5°. The green boxes
depict manually annotated ABBs. The blue boxes depict AOBBs generated around manually
annotated OBBs.

The fact that the ABBs are larger appears to mainly be caused by faulty annotations. It
is important to note that different annotation tools were used for obtaining both types of
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bounding boxes and the annotations were performed at different occasions. Whether the
discrepancy between both bounding boxes is caused by the fact that different tools were used
or an error introduced by the annotator remains unclear.

Nonetheless, ABBs describing objects oriented around the image axes appear to be annotated
with a positive bias in both dimensions. This error could just apply to those annotations, but
could also be applicable to all observations. In the latter case, the error introduced would be
systematic and would lead to a positive bias.

To summarize, the ABB-AOBB difference consists of two factors. The first factor comprises
the ‘rounded-corner effect’ due to vehicles being observed as rounded rectangles. A second
factor consists of error introduced by the annotator, introducing a positive bias for observa-
tions aligned with the image axes. The latter factor could point to a tendency for humans to
annotated vehicles larger than their actual observed shape.

4-4-2 Reconstruction performance on manually annotated ABBs

This section describes the analysis performed to quantify A20BB’s reconstruction perfor-
mance for manually annotated ABBs. This analysis is performed by applying A20BB to
the set of manually annotated ABBs. The result of this analysis will provide a measure of
how accurately OBBs can be reconstructed for A20BB’s first intended application and will
illustrate the impact of the ABB-AOBB difference on the quality of the reconstructions.

Figure 4-16: Reconstructions for manually annotated ABBs, depicted by the blue bounding
boxes. The red bounding boxes illustrate the ground-truth OBBs and the green show the manually
annotated ABBs.
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Once more, to reduce the impact of the perspective transformation on the reconstruction
performance, only observations in the middle of the image are considered. A visual example
of the reconstructions for manually annotated ABBs is depicted in figure 4-16.

Note that the original image differs from the image depicted in figure 4-9. This particular
image is selected to highlight the errors using manually annotated ABBs with and without
correction.

The results depicted in this figure clearly illustrate the impact of the ABB-AOBB difference
on the reconstruction quality. All vehicles depicted in this image are reconstructed much
smaller, especially thinner, compared to their corresponding ground-truth. Note that the
reconstructed length and orientation are still fairly accurate. This would suggest that mainly
the width reconstruction is affected by the ABB-AOBB difference. This makes sense. The
variation in both length and orientation is restricted. The magnitude and orientation of the
vehicle’s length axis can only vary between of the diagonal and the longest dimension of the
ABB.

To obtain a more wholistic view on A20BB’s performance for manually annotated ABBs,
the performance metrics for the reconstructions are depicted in figure 4-17. Note that the
domain of the figure describing the errors for the width has increased to [-100%,100%] to
include all width reconstructions. Similar to the visual reconstructions, these results illustrate
a significant negative bias for the width. In addition, the figure also exhibits a large amount
of variance.

The length on the other hand is reconstructed fairly accurately, mostly with an average error
within 8% of the ground-truth. As a result, the orientation of most vehicles can be recon-
structed with a maximum error of 6° and a slight positive bias. Observing the IoU illustrates
a significant drop in performance of the overall contour reconstruction. The majority of the
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Figure 4-17: Performance metrics for manually annotated ABBs. The figure displays histograms
of the average error in length, width and orientation and the average loU per vehicle instance.
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reconstructions has an average IoU below 75%, with outliers below 60%. This drop in per-
formance is mostly induced by faulty width reconstructions. The reconstruction of the other
two parameters are still fairly accurate. Judging the reconstruction performance based on the
IoU alone might therefore paint the wrong picture. In the application of behaviour prediction
for traffic agents for example, the orientation reconstruction is much more relevant.

To conclude, the ABB-AOBB difference for manually annotated ABBs introduces inconsisten-
cies in the set of equations to such an extent, that the optimal solution to the set of equations
results in an OBB that is much thinner compared to the actual observed shape. As a result,
the quality of the average contour reconstruction drops significantly. On the other hand, the
length and orientation of vehicles can be reconstructed with decent accuracy.

4-4-3 Compensating the ABB-AOBB difference

The previous section illustrates a significant drop in A20BB’s reconstruction performance as
a consequence of the ABB-AOBB difference. Section 4-4-1 illustrates that this difference can
be approximated based on the ‘rounded-corner effect’ for ellipse-shaped corners. This raises
questions about whether modelling this ‘rounded-corner effect’ in the set of equations used for
A20BB’s optimization can improve the reconstruction performance. To touch upon whether
this is indeed the case, the two correction factors, Cy and Cp, introduced in section 3-3-2
and described by equations 3-12, are introduced and evaluated.

Each of the parameters used to define the correction factors is determined by fitting equations
3-12 to the results described in 4-14. To do so, the same non-linear least squares optimizer is
used as the one used in A20BB (described in 3-3-3).

The cost functions for this fit are:

Lcorrecti(m = \/(CL - EL)2 + \/(CW - EW)2 (4'2)

and are taken as the difference between the correction factors (Cr, and Cyy) and errors between
the annotated ABBs and corresponding AOBBs (Er, and Eyy).

To illustrate the value of the added constants, By, and By, two types of correction factors
are illustrated in figure 4-18. The first set of factors contains and the second set lacks the
added constants (Br and Byy), respectively depicted by a continuous and dotted line.

Figure 4-18 illustrates a better fit for the correction factor with the added constant. For the
length, the difference is small, but for the width, the added constant significantly improves
the fit. Based on this, one could argue that the error seen in the data can be approximated
by the ‘rounded-corner effect’ plus an added bias.
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Figure 4-18: A visualisation of the correction factor for manually annotated ABBs. The dotted
line depicts correction without and the continuous line with the added constants By, and By

The effectiveness of the added bias could indicate that the anno- Parameter | Value
tation error introduces a positive bias, confirming the suggestion Ry 74
made in the previous section that the annotator has a tendency to R 8.3
annotate vehicles slightly larger than their perceived size. By 0.6
To prevent from over-fitting the correction factor on the data, the Bw 5.9

final parameters used in the optimization are determined based on .

; } . Table 4-2:  Parameters
the ABB-AOBB difference of 50% of all observations. The resulting used to calculated the cor-
values are depicted in table 4-2. These parameters are also applied rection factor for manually
to detected ABBs, as described in section 4-5-4. annotated ABBs.

Impact on the reconstruction performance

The impact of these correction factors is tested by applying A20BB to the set of manu-
ally annotated ABBs once more. The resulting reconstructions are depicted in figure 4-19.
The figure illustrates a significant improvement in A20BB’s performance. The width is re-
constructed much more accurately and, as a result, the length and orientation improve as
well. Note, however, that this improvement is not as strong for every vehicle. For example
vehicles 3, 5 and 7 are still reconstructed thinner but longer compared to their actual size,
implying that the ABB-AOBB difference is not fully compensated. This makes sense since
the introduced correction factors are based on a general prediction of the ‘rounded-corner
effect’. In reality, each vehicle has its own shape, leading to stronger or weaker ABB-AOBB
differences. Therefore, the degree to which the reconstruction improves is different per vehicle
shape. Customizing the radii used in equations 3-12 per individual vehicle would improve the
reconstruction performance further.
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Figure 4-19: An example image of the reconstruction performance based on manually annotated
ABBs, corrected for the ‘rounded-corner effect’. Red boxes depict the ground-truth OBBs, green
illustrate the detected ABBs and blue shows the reconstructed OBBs.

To illustrate how these improvements are reflected in the performance, the performance met-
rics of these reconstructions are displayed in figure 4-20. Comparing these metrics to the re-
constructions for manually annotated ABBs without the added correction factors, described
in figure 4-17, shows significant improvements as well. Firstly, the negative width bias is
much less, resulting in reconstructions with an average relative width error below 15% of the
ground-truth for the majority of the vehicles. In addition, the variance in the average error
of the length is reduced to and the orientation estimation has improved. Most OBBs are
reconstructed with a length having a maximum relative error of 5% and an orientation error
below 2.5°. As a result, the overall contour estimation improves remarkably to an average of
85%.

Altogether, introducing basic correction factors based on the ‘rounded-corner effect’ improves
the reconstruction performance significantly. Using these correction factors, OBBs can be
reconstructed from manually annotated ABBs with an average accuracy of length and width
within 5 and 15% of the ground-truth respectively, an orientation with an overall average error
of below 2.5° and an average IoU of 85%. Note that the correction factors only describe the
‘rounded-corner effect’ generalized over a portion of the vehicles within 5 and 15% respectively
vehicles. Formulating a correction factor per vehicle specifically would improve the results
even more.
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Figure 4-20: Performance metrics for manually annotated ABBs, corrected for the ‘rounded-
corner effect’. The figure displays histograms of the average error in length, width and orientation
and the average loU per vehicle instance. The shelled histograms depict the metrics without
correction factors.

4-4-4 Conclusion

To summarize, the main focus of this experiment was to answer the research question:
“To what extent can OBBs be reconstructed from manually annotated ABBs?”

To find out how the manually annotated ABBs differ from the previously evaluated AOBBs,
an analysis is performed on the difference between the two types of bounding boxes for vehicles
observed from aerial perspective. A comparison between the two bounding boxes illustrates
an ABB-AOBB difference consisting of two factors. The first factor comprises the ‘rounded-
corner effect’” introduced due by the fact that vehicles observed from top-down are shaped as
rounded rectangles. The rounded corners of these vehicles cause manually annotated ABBs to
be smaller than corresponding AOBBs. The second factor can not be identified based on this
analysis, although the shape of the errors points a tendency for humans to annotate vehicles
larger than their actual perceived size.

Subsequently, A20BBs performance to reconstruct OBBs from manually annotated ABBs is
determined by applying the proposed method to the set of manually annotated ABBs. The
results show that the ABB-AOBB difference introduces inconsistencies in the set of equations
using in the optimization to such an extend that the optimal solution found by A20BB is much
thinner compared to the ground-truth OBBs. As such, the average contour reconstruction,
evaluated by the IoU metric, drops significantly. Nonetheless, reconstruction values for the
length and orientation of the vehicle are decent. Therefore, one could conclude that for ABB-
OBB conversion, the IoU metric does not present a fair evaluation in the context of extracting
kinematic parameters of vehicles in aerial imagery.

To improve the reconstruction performance and to attempt to compensate for the ABB-AOBB
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difference, a correction factor is added based on the ‘rounded-corner effect’ formulated for
ellipse-shaped corners and an additional constant. The parameters used to calculate these
correction factors are determined based on the ABB-AOBB difference observed in the dataset.
As a result of adding these correction factors, the reconstruction performance improves sig-
nificantly.

Altogether, using the correction factor calculated based on the observed ABB-AOBB dif-
ference for 50% of all vehicles, the majority of OBBs can be reconstructed from manually
annotated ABBs with an average accuracy of length and width within 5 and 15% of the
original ground-truth respectively, an orientation with an overall average error of below 2.5°
and an average IoU of 85%. In addition, specifying a correction factor per individual vehicle
would improve the results even more.
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4-5 Experiment 4: Reconstruction using ABBs from a detection
network

This section describes the setup and results for the last experiment, focussing on assessing
A20BB’s reconstruction performance as an extension to existing ABB detection networks.
This experiment also comprises the second experiment focussing on analysing the ABB-AOBB
difference, in this case for ABB detections. This experiment focusses on answering the ques-
tion:

“To what extent can OBBs be reconstructed from ABBs created by a detection network?”

ABB detections essentially are reconstructions of manually annotated ABBs, constructed by
an object detection network. Therefore, detected ABBs will contain the same differences
with respect to AOBBs as manually annotated ABBs. On top of those difference, the object
detection network introduces detection errors. Since the ABB-AOBB differences for manually
annotated ABBs have been analysed in the previous experiment, this section will focus mainly
on the error introduced by the detection network.

An answer to this question is formulated in four steps. The first step analyses the detection
error for the in-house trained YOLOv3 network. Subsequently, a second step analyses how
this detection error is reflected in the total ABB-AOBB difference for detected ABBs. Thirdly,
the A20BB reconstruction performance on detected ABBs is quantified, again focussing on
the impact of the detection error. Finally, a fourth step assesses how this performance can
improve using the correction factor introduced in section 3-3-2.

4-5-1 Detection errors

The shape and magnitude of detection errors for neural networks depend very much on the
type of detection network that is used. Therefore, this analysis will not be applicable to all
detection networks. Nonetheless, performing this analysis will provide a basic indication of
how A20BB performs as an extension to a current state-of-the-art network.

For the purpose of this analysis, a version of the YOLOv3 network [26] is trained. The
procedure and data used are described in section 4-1-1. As explained in section 4-1-3, the
metrics used for this evaluation differ from the conventional methods. Detections are already
provided. Therefore, instead of focussing on metrics such as Average Precision (AP) or
Average Recall (AR) evaluating the overall detection accuracy, the metrics assess the accuracy
of the dimensions of detected bounding box: length and width.

The detection error is found by comparing the detected bounding boxes to their corresponding
ground-truth, in the form of the manually annotated ABBs. The errors in both dimensions
are displayed in figure 4-21.

Figure 4-21 illustrates that the detected bounding boxes differ from manually annotated boxes
in two ways. Firstly, the length of the bounding boxes is consistently larger, with an average
of 6 pixels, whereas the width is detected with a negative bias of 2.5 pixels. Thus, vehicles
are detected to be thinner, but longer compared to the annotated bounding boxes. Secondly,
the detector introduces a significant amount of variance in both dimensions.
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Figure 4-21: A figure illustrating the detection error of an in-house trained YOLOv3 network.

As illustrated in section 4-4-1, the ABB-AOBB difference observed for manually annotated
bounding boxes depends on the orientation of the vehicle. To see whether a similar depen-
dency exists for the detection error, the difference in dimensions is also plotted as a function
of the orientation of the OBB ground-truth in figure 4-22. Observing this figure illustrates
that no clear dependency on the orientation can be identified. The variance appears to be
roughly the same for all orientations in both the length and the width.
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Figure 4-22: A figure illustrating the detection error of an in-house trained YOLOv3 network as
a function of the orientation of the underlying vehicle.
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4-5-2 ABB-AOBB difference for detections

The previous section illustrates that detection errors for the in-house trained YOLOv3 net-
work introduce a bias and additional variance in both dimensions compared to manually
annotated bounding boxes. To see how these errors are reflected in the total ABB-AOBB
difference for detected ABBs, the error between the dimensions of the ABB detections and
corresponding AOBBs is depicted in figure 4-23 as a function of the orientation.
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Figure 4-23: A figure illustrating the total ABB-AOBB difference for bounding boxes detected
by the YOLOvV3 network.

Comparing these errors to the results depicted in figure 4-14 illustrates a similar shape. Again,
the detected boxes become increasingly smaller compared to the AOBBs as the orientation
approaches £45° and increases for orientations aligned with the image axes. Note however,
that the influence of the bias and variance introduced by the detection error can also be
identified. The error in length is slightly more positive, whereas the difference width is slightly
more negative. In addition, the variance in the error for vehicles at similar orientations is
higher.

4-5-3 Reconstruction performance for detected ABBs

The detection error introduces a positive bias for the length and a negative bias for the width
of ABBs compared to AOBBs and introduces additional variance. To see how both factors
affect the reconstruction performance, A20BB is applied to the set of detections resulting
from the trained YOLOv3 network. The detections in individual frames are matched based
on the displacement of the bounding boxes, described in section 4-1-1.

The reconstructions based on the YOLOv3 detections are visualized in figure 4-24. To il-
lustrate similarities and differences with the reconstructions based on manually annotated
ABBs, the same frame is depicted as in figure 4-16.
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Similarly to the results based on the manually annotated ABBs, most of the reconstructions
based on detected ABBs the value for the width is inaccurate. Again, this points to the fact
that the difference between the detected ABBs and generated AOBBs introduces inconsis-
tencies to such an extent that the optimal vehicle shape is much thinner compared to the
ground-truth. Comparing the reconstructions to the results depicted in figure 4-16 illustrates
a similar performance, although most detections are reconstructed to be thinner compared
to manually annotated ABBs. Note that the accuracy of the bounding box fit differs per
individual image. Vehicle reconstructions depicted in this image might fit better or worse
compared to the results in other images.

Figure 4-24: An example image of the reconstruction performance based on ABBs obtained
from a YOLOv3 detection network. Red boxes depict the ground-truth OBBs, green illustrate the
detected ABBs and blue shows the reconstructed OBBs.

To see how this is reflected in the reconstruction metrics, the results are quantified in figure 4-
25 and compared to the reconstruction metrics based on manually annotated ABBs, depicted
in figure 4-17. A comparison illustrates an increase in variance for the errors in all dimensions.
The length is reconstructed with a larger error and the width is reconstructed less accurate.
As a result, the orientation estimation is worse and IoUs also drop.

Numerically, the error for the length remains below 10% of the ground-truth value for most
vehicle sequences. However, almost all vehicles are reconstructed with an average width error
of at least 10% of the ground-truth width, averaging at an error of 40% . Nonetheless, the
orientation is reconstructed fairly decently with an average error of most sequences below 5°.
On the other hand, the IoU appears to drop significantly to an average of 50%.

To conclude, the ABB-AOBB difference for detected ABBs introduces inconsistencies in the
set of equations to such an extent, that the optimal solution to the set of equations results in
an OBB that is much thinner compared to the actual observed shape. Similar to the manually
annotated ABBs, the overall quality of the reconstructions drops significantly compared to
the AOBB reconstructions.
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Altogether, without any correction factors, A20BB’s reconstruction performance is too low
to be applied as an extension to existing detection networks.
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Figure 4-25: Performance metrics for ABBs detected by a YOLOv3 network. The figure displays
histograms of the average error in length, width and orientation and the average loU per vehicle
instance.

4-5-4 Compensating the ABB-AOBB difference

Observing the total ABB-AOBB difference for detected ABBs, depicted in figure 4-5-2; a
shape can be identified similar to the difference for manually annotated ABBs. In the previ-
ous section, this shape pointed to an influence of the ‘rounded-corner effect’ for ellipse shaped
corners, which could be compensated by using the correction factors calculated using equa-
tions 3-12. The similarity between both shapes suggests that the reconstructions for detected
ABBs can also improve when introducing similar correction factors. To test whether this
is true, the same correction factors are applied, calculated using the parameters depicted in
table 4-2.

The resulting reconstructions are visualized in figure 4-26. Comparing these reconstruc-
tions to the results without correction depicted in figure 4-24 again illustrates significant
improvements. The majority of the vehicles is reconstructed with a width comparable to the
ground-truth. As a result, the reconstruction for the length and the orientation also improve.
Interestingly, a portion of the vehicles (e.g. vehicles 10, 13, 15 and 25) is reconstructed longer
and thinner compared to the ground-truth. For these vehicles, the ABB-AOBB difference is
not fully compensated due to the fact that the correction factors are generalized over multiple
vehicles and do not account for the detection errors. On the other hand, for some vehicles
(e.g. vehicle 7, 11, 22 and 27), the correction factors appear to work decently, resulting in
fairly accurate reconstructions.

Reconstructions being thinner but longer compared to the ground-truth can also be identified
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Figure 4-26: An example image of the reconstruction performance based on ABBs obtained
from a YOLOv3 detection network. Red boxes depict the ground-truth OBBs, green illustrate the
detected ABBs and blue shows the reconstructed OBBs.

when observing the performance metrics for these reconstructions, depicted in figure 4-27. To
compare, the figure also depicts the reconstructions without corrections in shelled histograms.
The figure illustrates a slight drop in the reconstruction performance of the length. Most of
the reconstructed lengths are larger compared to the ground-truth and the magnitude of the
errors has slightly increased, introducing a average bias of +4.5% of the ground-truth value.
Nonetheless, comparing the results of the remaining performance metrics, illustrates several
improvements. The width is reconstructed more accurately, with most vehicles reconstructed
within 20% of the ground truth value and the negative bias is significantly reduced to 10%.
As a consequence, the orientation estimation also improves slightly with the majority of the
errors below 7°. However, the orientation estimation does exhibit a slight negative bias,
averaging at -2.5°. Overall, the contour reconstruction performance improves significantly to
an average IoU of 77% over all vehicles.

Altogether, the introduction of the correction factors in the optimization indeed improves
the reconstruction performance significantly. However, the impact of the improvement is not
as much as for manually annotated ABBs due to the variance and bias introduced by the
detection error.
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Figure 4-27: Performance metrics for ABBs detected by a YOLOv3 network, corrected for the
‘rounded-corner effect’. The figure displays histograms of the average error in length, width and
orientation and the average loU per vehicle instance. The shelled histograms depict the metrics
without correction factors.

4-5-5 Conclusion

To summarize, the main focus of this experiment was to answer the research question:
“To what extent can OBBs be reconstructed from ABBs created by a detection network?”

Detected ABBs are reconstructions of manually annotated ABBs and will therefore contain
the same ABB-AOBB differences. On top of that, the detection network introduces detection
errors. For the in-house trained YOLOv3 network, the detection errors introduce a positive
bias for the length and a negative bias for the width, along with additional variance in both
dimensions. These biases and the added variance can both be identified in the total ABB-
AOBB difference for detected ABBs. Nonetheless, the shape of the ABB-AOBB difference is
similar to the difference observed for manually annotated ABBs.

Subsequently, A20BBs performance to reconstruct OBBs from detected annotated ABBs is
determined by applying the proposed method to the set of detected ABBs. The results again
show that the ABB-AOBB difference introduces inconsistencies in the set of equations using
in the optimization to such an extent that the optimal solution found by A20BB is much
thinner compared to the ground-truth OBBs. As a result, the quality of the reconstructions
drops significantly. Essentially, without additional improvements, OBB reconstructions using
based on detected ABBs resulting from this trained version of YOLOv3 are too poor to be
useful further on.

As the ABB-AOBB difference for detected ABBs appears similar to the difference for manually
annotated ABBs, the two correction factors compensating for the ‘rounded-corner effect’
introduced in the previous experiment are also evaluated to improve the methods performance,
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again calculated from the ABB-AOBB difference as a function of the orientation. The error
in length has a positive bias of +4.5%, whereas the width has a mean average error of
10%. The majority of the vehicles is reconstructed with an orientation error below 5°. Note
however, that all reconstructions have an average orientation error 2.5°. Overall, the contour
reconstruction performance improves significantly to an average IoU of 77% for all vehicles.
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Chapter 5

Conclusions and Recommendations

This thesis proposed the novel A20BB method, designed to reconstruct a set of Oriented
Bounding Boxes (OBBs) from a set of Axis-aligned Bounding Boxes (ABBs) that describe
multiple observations of a vehicle in low-altitude aerial imagery. This method is intended as
an enhancement tool for datasets and vehicle detection methods used in a vehicle tracking
pipeline.

Based on a non-linear least squares approximation of the geometrical relationship between
all ABBs and OBBs defined for rectangular objects, A20BB finds an optimal set of OBB
dimensions that fits best in all provided ABB.

A20BB’s approach assumes that vehicles observed from low-altitude aerial perspective are
perceived as rectangles and that their size remains constant for all observations. In practice,
both assumptions will not hold, affecting the optimality of the reconstructions. To find out
how accurately OBBs can be reconstructed using A20BB, the objective of this thesis was to
answer the following research question:

“Can the geometrical relationship between OBBs and ABBs be used to reconstruct OBBs
from a set of ABBs describing a vehicle in multiple orientations in one scene captured from
a low-altitude aerial perspective?”

An answer to the main research question is formulated by answering four sub questions, each
covered in a separate experiment. This chapter briefly summarizes the conclusions of each of
the experiments reflects upon their results and formulates an answer to their sub questions.
Subsequently, the discussion section reflects on the scope of the thesis and the results in
general and touches upon the method’s limitations. Lastly, the thesis is concluded by making
recommendations for further research topics.
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5-1 Findings

This section briefly repeats the research question, summarizes the findings for each experiment
and provides the answer to the question in bold.

e Experiment 1: “Can OBBs be reconstructed from ABBs that describe multiple obser-
vations of a rectangular vehicle with constant dimensions?”

— The non-linear least squares problem that describes the geometrical relationship
between ABBs and OBBs is solvable for ABBs under ideal conditions;

— OBBs can be reconstructed perfectly from ABBs using A20BB for rect-
angular objects with a constant size.

e Experiment 2: “To what extent can OBBs with varying dimensions be reconstructed
from a set of ABBs generated around OBBs using geometry?”

— The perceived size of vehicles in low-altitude aerial imagery changes as the vehicle
moves through the scene. The magnitude of this change depends on the shape of
the vehicle and the vehicle’s change in displacement from the image centre;

— The impact of a changing size on the A20BB’s reconstruction performance can be
minimized by considering observations that are equidistant to the image centre;

— OBBs describing an object with varying dimensions can be reconstructed
from ABBs with an average IoU of 95%. The length and width of OBB
are reconstructed with maximum error of 1% and 7% of the ground-
truth respectively, the orientation can be reconstructed with a maxi-
mum error of within 2°.

e Experiment 3: “To what extent can OBBs be reconstructed from manually annotated
ABBs?”

— Vehicles observed from low-altitude aerial perspective are perceived as rounded
rectangles instead of regular rectangles. As a consequence, ABBs around vehicles

are smaller than ABBs that generated around the desired OBBs (AOBBs). This
effect is referred to as the ‘rounded-corner effect’;

— Manually annotated ABBs differ from AOBBs as a consequence of this ‘rounded-
corner effect’ and due to annotation errors. This ABB-AOBB difference reduces
the optimality of the OBB reconstructions;

— To compensate this ABB-AOBB difference, a correction factor is formulated based
on the ‘rounded-corner effect’ for elliptically shaped corners. Applying this com-
pensation factor significantly improves A20BB’s reconstruction performance;

— After applying a correction for the ‘rounded-corner effect’, OBBs can
be reconstructed from manually annotated ABBs with an average loU
of 85%. The length and width are accurate within 5% and 15% of
the ground-truth and the orientation is reconstructed with an overall
average error of below 2.5°.

— IoU metric does not present a fair evaluation in the context of extracting kinematic
parameters of vehicles in aerial imagery.
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e Experiment 4: “To what extent can OBBs be reconstructed from ABBs created by a
detection network?”

— On top of the 'rounded-corner effect, ABBs created by a detection network suffer
from the detection error introduced by the network. The magnitude and shape of
this detection error depend on the detection network;

— To obtain an indication of A20BBs performance on a state-of-the-art detection
network, an out-of-the-box YOLOv3 network is trained on in-house collected data.
The detection error of the YOLOv3 network leads to a positive bias in the length
of ABB detections and a slight negative bias for its width;

— The correction factor to compensate the ‘rounded-corner effect’ also improves the
reconstruction results for detected ABBs;

— After applying a correction for the ‘rounded-corner effect’, OBBs can be
reconstructed from detected ABBs with an average IoU of 77%. The
length and width are reconstructed with a bias of 4.5% and 10% of
the ground-truth and the orientation is reconstructed with an overall
average error of below 5° but above 2.5°.

5-2 Discussion

This section reflects on the scope of the thesis, A20BB’s evaluation and performance in
general and on its application.

5-2-1 Scope of the thesis

The scope of this thesis is set to a point where a set of detected or manually annotated ABBs
is available. This set of ABBs describe several observations of a vehicle in imagery that is
assumed to be pre-processed, compensating lens distortions and stabilizing the frames. In
practice, not all imagery might be processed in a similar fashion. Without these prepro-
cessing steps, shapes in the imagery will be distorted reducing the optimality of A20BB’s
reconstructions.

The goal of this thesis was investigate the hypothesis that the geometrical relationship between
ABBs and OBBs for rectangular objects can be used to reconstruct OBBs from ABBs. The
focus in selecting a least squares solver lay on proving the hypothesis and providing a method
that is easy to implement, rather than on selecting the best suited solver. The results of the
experiment illustrate that the chosen solver works. However, other solvers might be more
suitable.

In addition, the scope of thesis is set to cover the reconstruction of the OBB dimensions and,
to a certain extent, their orientation. As explained in section 3-3-4, A20BB is restricted to
perform an orientation estimation over the interval [0, 7/2]. The resulting orientation is one
of four possible solutions. During the evaluation, the orientation that results in the highest
TIoU with the ground-truth is selected, depicting the most ideal result. Finding the correct
orientation from the four possibilities is not included in the scope of this thesis.
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5-2-2 A20BB'’s evaluation and performance

The experiments performed in this thesis provide a well-structured analysis of A20BB’s
reconstruction performance on annotated and detected ABBs. The analysis starts from an
ideal scenario, working its way to real-world datasets by releasing one assumption at a time.
This provides a clear visualisation of the impact of deviations to each assumption.

The datasets used for evaluation A20BB’s reconstruction performance are fairly represen-
tative to the methods intended applications. However, experiments 2 (section 4-3) and 3
(section 4-4) do illustrate a significant impact of errors made while annotating the imagery.
These annotation errors are caused by human error, but might also be caused by the use of
a different annotation tool for the different bounding box formats. These annotation errors
affect not only the ABBs used as an input to the experiments, but also the OBBs used as
ground-truth used during the evaluation. As such, the results presented in this thesis paint a
slightly distorted picture.

Nonetheless, the annotation errors do not distort the results too much and still allow us to
draw relevant conclusions. Furthermore, as argued in section 3-2-4, at this point in time no
automated annotation tool will yield a better evaluation.

Interestingly, experiment 3 illustrates a large impact of the ‘rounded-corner effect’, inducing
an ABB-AOBB difference for vehicles observed from aerial perspective. Manually annotated
ABBs differ from ABBs generated around OBBs by the fact that vehicles are observed as
rounded- instead of regular rectangles. The implications of this effect are two-fold. The first
implication is addressed in this thesis (section 3-2-3. The equations used in the least squares
approximation are not completely accurate. As a result, the reconstructed ABBs will also
be inaccurate. The ‘rounded-corner effect’ can be compensated to a decent extend using the
proposed correction factor.

More importantly, the presence of the ‘rounded-corner effect’ means that for non-rectangular
objects, ABBs generated around annotated OBBs are not suitable for evaluating ABB detec-
tions. The evaluation method used current publicly available datasets (e.g. DOTA [12]) to
evaluate ABB detections based on an OBB dataset does not provide an accurate measure of
performance.

In general, A20BB’s reconstruction performance for manually annotated ABBs appears to
be accurate. For detected ABBs, the performance is worse, although the reconstructed orien-
tation is fairly accurate. Note that A20BB’s performance on detected ABBs heavily depends
on the detection error introduced by the network. If the accuracy of the detection network
improves, A20BB’s reconstructions will improve as well.

Unfortunately, comparing the results of this thesis to the state-of-the-art proves to be difficult.
Object detection networks are commonly evaluated using methods that assess correctness of
detection rather than observing their accuracy. In addition, converting annotations from ABB
to OBB is, to the authors knowledge, unprecedented and therefore no comparison is possible.
To still allow for an indication of performance, the IoU metric is used. However, as concluded
the results in experiment 3 4-4, this metric does not present a fair evaluation in the context
of extracting kinematic parameters of vehicles in aerial imagery.
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5-2-3 A20BB'’s applicability

A20BB is intended as a data and detection enhancement tool in vehicle tracking pipelines.
A20BB is only applicable to video sequences captured from an aerial perspective in which
the size of objects remain relatively constant. This scenario can be created using low-altitude
aerial imagery, captured by sUAVs/drones. sUAVs/drones can remain at a relatively fixed
position, keeping its perspective with respect to the scene fairly constant.

The in-house collected dataset used to evaluate A20BB’s performance covers one specific
scene. Although only one scene is covered, it is believed that the results are also representative
of other scenarios that cover a similar scenario. As long as the camera remains relatively fixed
and lens distortions are compensated, the perspective and shape of vehicles should be similar,
and thus A20BBs performance should be similar as well.

Note that A20BB is not applicable to low-altitude aerial imagery where the camera’s perspec-
tive moves significantly between subsequent frames. For high-altitude imagery (e.g. satellite
imagery), the perspective between camera and scene changes significantly between consecu-
tive frames (illustrated in figure 2-2). As a result the perceived shape of objects also changes
significantly. Thus, A20BB is also not suitable for high-altitude aerial imagery.

5-3 Further research

To conclude the thesis, this section provides a short description of the topics that are inter-
esting for further research. In general, the following topics could be of interest:

e Choosing the correct orientation. First and foremost, the main limitation to
A20BB is the fact that the orientations of the resulting OBB all comprise one of four
possible solutions. Selecting the correct version is not included in this thesis, but some
recommendations are made in section 3-3-4.

e Using alternate shapes. The proposed methodology employs equations that describe
the ABB-OBB relationship for rectangular objects. It might be interesting to investigate
the use of different shapes or even non-parametric shapes as a basis for the methodology.
Using different shapes might allow this methodology to be applicable to alternately
shaped objects as well;

e Including the change in perspective. As illustrated in the second experiment of
this thesis, the change in perspective as a vehicle moves through the scene causes a
change in the perceived size of objects. Modelling this change could be done based
on the shape of the vehicle and the vehicle’s distance and orientation with respect to
the image centre. Including this model in the method’s calculations could improve the
reconstruction results.

e Tailoring the correction factor for the ‘rounded-corner effect’ to specific
vehicle types. Experiment 3 illustrates a significant impact of the ‘rounded-corner
effect’ to which a compensation is introduced based on a model this effect for ellipse-
shaped corners. The parameters of this correction factor are generalised for all types of
vehicles. However, the ‘rounded-corner effect’ is stronger for some type of vehicles than
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others. As such, customize the correction factor per vehicle type is expected to improve
the reconstruction performance.

e Determining optimal number of observations. In this thesis, the amount of com-
putational effort required to find a solution was deemed to be of lesser importance and
no elaborate analysis is made on the number of observations required. However, as the
number of observations considered for the reconstruction increases, so does the accu-
racy of the reconstruction, but also the computational effort required to find a solution.
Therefore, a trade-off exists in the desired accuracy and the required computational
effort with an optimum in the middle.
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Appendix A

Implementation of the video
stabilization filter

This appendix provides a short description of the video stabilization filter used in this thesis
to compensate drone imagery for long term drift. The filter comprises a feature-based motion
estimation between consecutive imagery based on the procedure described in [39]. The method
proposed in this paper strikes a good balance on computational efficiency and robustness [39].
Its pipeline is depicted in figure A-1.

The procedure in [39] attempts to capture
the global motion of the drone based on
the movement of feature points detected in II=-
the imagery. First, ORB-features [43] are
extracted for every individual image and
matched between subsequent frames. The

Global Motion Estimation

9 Feature Extraction

Input: original video sequence

Keypoint Matching

matches between frames are used to calcu- Affine
late inter-image geometric transformations Transformation

arameters
and these are combined to describe the global Refinement with
motion. Lastly, a Gaussian smoothing filter

is applied to the global motion vectors be-
tween all frames and the transformations are Motion Smoothing With
applied to the imagery. Gaussian Filter

1

Image Warping ‘

A 4

Note however, that aerial imagery recorded ‘
for traffic analysis contains a large number

I_ l
of traffic participants. As depicted in fig- I seabined frame ‘
ure A-2, a portion of the detected features
will therefore lie on these participants. The
pc')smon of the'se traffic Partlclpants varies Figure A-1: The pipeline of the video stabilization
slightly from image to image. As such, g, [39].
matches that are found using these feature
points will introduce noise in the inter-image movement calculations.

Output: stabilized video
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72 Implementation of the video stabilization filter

Figure A-2: An example of ORB-feature points (depicted as purple circles) detected in one of
the image in the recorded dataset. Note that some of the features lie on stationary points whereas

others lie on moving vehicles.

To filter out these noisy matches and improve the final video stability, the procedure suggested
in [39] is slightly altered. This procedure is depicted in figure A-3. Instead of calculating the
inter-image movement using matches between subsequent imagery, all images are matched to
one specific 'mean image’ This 'mean image’ is taken as the mean image of the imagery in
the stabilized video sequence resulting from [39]. By taking the average of all frames in the
video, an image is created that contains no traffic participants, as depicted in figure A-4.

Global Motion Estimation

—

Input: original video sequence

Global Motion Estimation

Feature Extraction

Feature Extraction

Keypoint Matching

Affine
Transformation
Parameters
Refinement with
RANSAC

1

Motion Smoothing With
Gaussian Filter

Image Warping

Stabilized frame

I

Mean Image

Keypoint Matching

Affine
Transformation
Parameters
Refinement with
RANSAC

1

Motion Smoothing With
Gaussian Filter

Image Warping

Stabilized frame

I—

Output: Stabilized Video

Figure A-3: The pipeline of the video stabilization filter used in this thesis.
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After calculating the 'mean image’, its ORB-features are extracted and matched with the
feature points in each of the images in the sequence. The resulting matches are used to
calculate the motion of each individual image with respect to the mean image. Subsequently,
the motion vectors are again passed through a gaussian filter and applied to the imagery. The
resulting set of images is stabilized and compensated for long-term drift.

Figure A-4: A visualisation of the calculated mean image.
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Implementation of the video stabilization filter
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Appendix B

Derivation of the ‘rounded-corner
effect’ for elliptically shaped corners

This appendix describes the mathematical derivation of the ‘rounded-corner effect’ a vehicle
with elliptically shaped corners. As mentioned in section 3-2-3, the ‘rounded-corner effect’
refers to a difference between a manually annotated ABB and an ABB generated around an
OBB, referred to as AOBB, illustrated in figure B-1a. The derivation in this section will show
how the ABB-AOBB difference depends on the orientation of the vehicle with respect to the
image axes.

In this derivation, it is assumed that the vehicle is oriented at an angle 6 with respect to the
image axes lying on the interval [0, g] A sketch of the situation is depicted in figure B-1b.

The green boxes represents the annotated ABB, the red-dotted boxes illustrate the OBB and
the solid-red boxes show the AOBB, generated around the OBB. The blue rounded rectangle
represents the contours of the vehicle.

Figure B-1b suggests that the ABB-AOBB difference is determined by two sets of points.
The first set of points consists of the corner points of the OBB, denoted as p;. The second
set comprises the points on the ellipse-shaped corners of the vehicle where the slope of the
tangent line is parallel to the main axis of the image. These points are denoted as ¢;. The
dimensions of the ABB and AOBB terms of the axis of the image (z,y) will be denoted as
L4 and W4. Essentially, the difference between the dimensions of the ABB and AOBB can
be calculated as:

ALy, = |p1, — q1,| + |p3. — a3, 1, AWy, = |p2, — a2,| + |pa, — qa,]| (B-1)

In this derivation, it is assumed that the corners of the back of the vehicle are shaped the
same as the corners of the front of the vehicle. As a consequence, the differences between sets
p3-q3 and p4-q4 will be the same as the differences between points p1-g1 and ps-go. Therefore,
equations B-1 can be rewritten to:
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(b) A schematic view.

(a) A visual example.

Figure B-1: A visual and schematic illustration of the ‘rounded-corner effect’ for a vehicle in an
orientation 6, depicting the discrepancy between annotated ABBs (green box) and the AOBBs
(solid-red box), generated around the OBB (red-dotted box). In the right figure, points p;
represent the corners of the OBB, points ¢; illustrate the point on the ellipse-shaped corners
where the tangent lines are parallel to the image axis and the blue rounded-rectangle depicts the
contours of the vehicle.

ALa, =2lp1, —qi,|,  AWa, =2|p2, — q2,| (B-2)

Thus, the goal of this derivation is to express the displacement between points pi1-¢; and pa-¢o
in a coordinate system aligned with the axes of the image (x,y). To find these displacements
between pi-q1 and pa-qo, the problem is first viewed in the coordinate system aligned with
the axes of the vehicle, denoted as (z/,3’). Subsequently, the results are converted to the
coordinate system of the image by means of a rotation matrix.

ABB-AOBB displacement with respect to the vehicle axis

The first step is to determine the displacement between both points in terms of 2’ and v/

AIJA:E/ = 2‘]711/ - Q1z, ’7 AI’Ay/ = 2‘p1y/ - qu/ |7 (B 3)
AVVAz/ = 2|p2x’ - qul |7 AVVVAy/ = 2|p2yl - q2y/|

To obtain these displacement, it is beneficial to determine the location of all four points with
respect to the main axes of the vehicle, denoted as (2/,y). For this purpose, a more detailed
view of the difference between the ABBs and the AOBBs is illustrated in figures B-2. Both
figures depict a sketch of a vehicle in a coordinate system aligned with the main axes of the
vehicle, . Figure B-2a is zoomed in on the front of the vehicle, whereas figure B-2b shows a
more detailed view of the top right corner of the vehicle. Again, the green lines depict the
sides of the ABB, the blue lines illustrate the vehicle contours and the red-dotted lines show
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the sides of the OBB. Additionally, the figures include the radii that describe the elliptical
shape of the corners, denoted as R; and Ryy. The slope of the green tangent lines with
respect to the vehicle’s main axes, that define the location of ¢; and ¢, are denoted as 6, and
f>. Both angles can be determined using the vehicle’s orientation 8, where:

0r=—0, Oy=m—0 (B-4)

The location of all points can be expressed with respect to the centre of curvature of each
corresponding corner. To illustrate, for points p; and ¢; this point is denoted as O in figure
B-2b. As a result, the location of point p; can be expressed as:

plz/ = RLJ ply/ = RW (B‘5)

Similarly, the location of point po can be expressed with respect to the centre of curvature
for the lower right corner as:

pQI/ = RL7 p2y/ = _RW (B_6)

Points ¢q; and ¢ must to lie on an ellipse defined by radii Ry, and Ry,. For an ellipse with
radii Ry, and Ryy, all points on this ellipse must lie on a curve described by:

$/2 y12

2 =1 (B-7)
2 2

Ry Ry

Based on this formula, the z’-coordinate of every point on the ellipse can be expressed in

terms of the corresponding g’-coordinate and vice-versa:

(a) A detailed view of the front of the vehicle. (b) A detailed view of one corner of the vehicle.

Figure B-2: The ‘rounded-corner effect’ depicted in the coordinate system of the vehicle (z’,y').
The corner points of the AOBB are depicted as p; and py, whereas the manually annotated corner
points are denoted by ¢; and g2. Ry and Ry, represent the radii that define the elliptical shape
of the corners. 6 represents the orientation of the OBB.
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, I’2 , y/2 ( )
y:RW 1_77 x:RL 1— = B-8
V" R} V" Ry

Additionally, the derivative of function B-7 with respect to 2/, defined as:

dfy' _ _RIQ/V.%'/
dx! Ry

(B-9)

will describe the slope of the tangent to every point on this ellipse. Using equations B-8, this
derivative can be expressed as a function of 2’ and as a function of 3/

Y
R\ [1 — 2~
dy ___ —Rwd o dy "N Ry (B-10)
de’ [ 22 de’ Rry
L R%
Based on figures B-2, it can be shown that the slope of the ellipse for g must be:
dy’
Qn:os = tan(—0) (B-11)

Using equations B-10, this slope can be expressed in terms of ¢, and qu:

2
a1,
fan(—0) = ——— W gy L TW JW (B-12)

_Rqum/
Rrqi,

2)

ai,,
RZ,\|1——
\  Ri

These equations can subsequently be rewritten to express the location of ¢; as a function of
the vehicle’s orientation 6:

R} tan?0 R
=+ L =+ W B-13
s \/R%V + RZtano’ v \/R%, + R? tan? (B-13)

Following a similar procedure, for point g2, the slope of the tangent to the ellipse can be
defined as:

T
@5 = tan(§ —0) = cot(—0) (B-14)
and location of g9 can be expressed as:

R} R, tan20
=+ L , =+ W B-15
. \/R% R tan?0 \/R% + R2, tan?0 (B-15)
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Based on figure B-2b, points ¢, q, and gy must be larger than zero, but a2, should be
below zero. This information can subsequently be filled into equations B-3 combined with
the locations of p; and py described by equations B-5 and B-6:

R? tan20 R}
AL = 2|R; — L AL = 2|Rwy — L
Aot B \/R%V + R2 tan20|’ Ay v \/R%V + R2 tan26|’
R} RY: tan? 6
AW, , = 2|Rp— L AW,, = 2|-R W
Aat ’ L \/RQL + R%, tan?6|’ Ay ‘ wt \/R% + R%, tan? 0‘
(B-16)
Subsequently, these equations can be reduced further to the form:
RIRE, R? R%, tan® 0
ALAM = 2 2 249l ALAyf = 2 2 2 2
Ry, + Ry tan® 6 Ry, + Ry tan® 6 (B-17)
RZR2, tan20 R2R? )
AWy, = 2 LW AWy, = 2 LW
Aat ’\/R%/V + R? tan?6 |’ Ay ’\/RI%V + R? tan? 6

Converting the ABB-AOBB displacement to the image axes

Equations B-17 provide a description of the ABB-AOBB difference expressed in a coordinate
system aligned with the main vehicle axes. The second step of this derivation is to convert
these equations to the image axes (x, y). This can be done by applying a rotation matrix:

T x’ cosf) —sinf
= = B-1
ly] R [y’] ’ R [sin@ cos ] (B-18)
where 0 represents the angle between the two coordinate systems. Note that this angle is equal
to the orientation of the vehicle. In this case, the goal is to calculate the AL 4, and AWAy.

AL, can be calculated using the first row of equation B-18, whereas AWy, is calculated
with the second row:

ALas, = cosfALy, — sin GALAy, B.19
AWy, = sinfAWy, + cos0AW, (B-19)

Note that:
ALAI/ = AWAy,, ALAy, = AWAI/ (B-QO)

Therefore, equations B-19 can be reduced further to:

ALy, |  |cosf —sinf| ALy,
[AWAJ o [cos@ sin 6 ] [ALA!/,] ’ (B-21)

where:

2 P2
ALy, =2 ’\/ R: Ry,

R? R, tan?(0)
ALy, =2 B-22
R}, + R? tan?0|’ A T W ’ (B-22)

R%/V + R2 tan? 6
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Summary

To summarize, the ‘rounded-corner effect’ for vehicles with elliptically shaped corners can be
described as a function of the orientation of the vehicle by the following two functions:

ALy, |  |cos@ —sin®| |ALa,
[AWAJ a [cos@ sin @ ] [ALAy,] ’ (B-23)

where:

ALy, =2 . ALy, =2

R%R%V tan2 @ (B-24)
R%/V + R% tan2 6

2 p2
Ri Ry,

R‘Q,V + R% tan? 6
In these equations, 6 describes the vehicle’s orientation and R; and Ry represent the pa-
rameters that define the shape of the corners. Note that these equations describe the effect
for vehicles where all corners are equally shaped and the vehicle orientation remains on an

interval [0, g] .
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Glossary

List of Acronyms

A20BB Axis-aligned to Oriented Bounding Boxes

ABB 2D Axis-aligned Bounding Box

OBB 2D Oriented Bounding Box

AOBB Axis-aligned Bounding Boxes generated around Oriented Bounding Boxes
sUAVs small Unmanned Aerial Vehicles

IoU Intersection over Union
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